From a6ea8f5ca3d4297b17061ecfbdcf6106a51d9932 Mon Sep 17 00:00:00 2001 From: Vladimir Mandic Date: Fri, 20 Aug 2021 20:43:03 -0400 Subject: [PATCH] implement finger poses in hand detection and gestures --- CHANGELOG.md | 2 +- assets/sample-result.json | 29 +- demo/index.js | 4 +- dist/human.esm-nobundle.js | 18 +- dist/human.esm-nobundle.js.map | 6 +- dist/human.esm.js | 678 +++++++++++++------------- dist/human.esm.js.map | 6 +- dist/human.js | 678 +++++++++++++------------- dist/human.node-gpu.js | 439 +++++++++++++++-- dist/human.node-wasm.js | 439 +++++++++++++++-- dist/human.node.js | 439 +++++++++++++++-- server/build.log | 44 +- src/draw/draw.ts | 16 +- src/fingerpose/description.ts | 48 ++ src/fingerpose/estimator.ts | 205 ++++++++ src/fingerpose/fingerpose.ts | 31 ++ src/fingerpose/gesture.ts | 75 +++ src/fingerpose/gestures.ts | 39 ++ src/gesture/gesture.ts | 9 +- src/handpose/handpose.ts | 20 +- src/interpolate.ts | 2 +- src/result.ts | 14 +- test/test.log | 240 ++++----- typedoc/assets/js/search.js | 2 +- typedoc/interfaces/Hand.html | 18 +- types/src/fingerpose/description.d.ts | 57 +++ types/src/fingerpose/estimator.d.ts | 4 + types/src/fingerpose/fingerpose.d.ts | 5 + types/src/fingerpose/gesture.d.ts | 12 + types/src/fingerpose/gestures.d.ts | 3 + types/src/gesture/gesture.d.ts | 2 +- types/src/result.d.ts | 11 +- wiki | 2 +- 33 files changed, 2631 insertions(+), 966 deletions(-) create mode 100644 src/fingerpose/description.ts create mode 100644 src/fingerpose/estimator.ts create mode 100644 src/fingerpose/fingerpose.ts create mode 100644 src/fingerpose/gesture.ts create mode 100644 src/fingerpose/gestures.ts create mode 100644 types/src/fingerpose/description.d.ts create mode 100644 types/src/fingerpose/estimator.d.ts create mode 100644 types/src/fingerpose/fingerpose.d.ts create mode 100644 types/src/fingerpose/gesture.d.ts create mode 100644 types/src/fingerpose/gestures.d.ts diff --git a/CHANGELOG.md b/CHANGELOG.md index 357aad46..3065015c 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -9,7 +9,7 @@ Repository: **** ## Changelog -### **HEAD -> main** 2021/08/19 mandic00@live.com +### **HEAD -> main** 2021/08/20 mandic00@live.com ### **2.1.4** 2021/08/19 mandic00@live.com diff --git a/assets/sample-result.json b/assets/sample-result.json index b66b774c..5dea4077 100644 --- a/assets/sample-result.json +++ b/assets/sample-result.json @@ -31,23 +31,26 @@ "keypoints": [{"score":0.7,"part":"nose","positionRaw":[0.5763444304466248,0.11134015768766403],"position":[576,145]},{"score":0.61,"part":"leftEye","positionRaw":[0.5944706201553345,0.10566485673189163],"position":[594,137]},{"score":0.82,"part":"rightEye","positionRaw":[0.5578470230102539,0.09248857945203781],"position":[558,120]},{"score":0.23,"part":"leftEar","positionRaw":[0.6052790880203247,0.12891994416713715],"position":[605,168]},{"score":0.41,"part":"rightEar","positionRaw":[0.5136336088180542,0.10578916221857071],"position":[514,138]},{"score":0.54,"part":"leftShoulder","positionRaw":[0.5964832305908203,0.21158094704151154],"position":[596,275]},{"score":0.61,"part":"rightShoulder","positionRaw":[0.46281856298446655,0.17411141097545624],"position":[463,226]},{"score":0.5,"part":"leftElbow","positionRaw":[0.6168122291564941,0.3124275207519531],"position":[617,406]},{"score":0.66,"part":"rightElbow","positionRaw":[0.3865360915660858,0.07774468511343002],"position":[387,101]},{"score":0.47,"part":"leftWrist","positionRaw":[0.6024561524391174,0.21729949116706848],"position":[602,282]},{"score":0.24,"part":"rightWrist","positionRaw":[0.460940420627594,0.10492551326751709],"position":[461,136]},{"score":0.65,"part":"leftHip","positionRaw":[0.5450115203857422,0.4253421127796173],"position":[545,553]},{"score":0.64,"part":"rightHip","positionRaw":[0.43963193893432617,0.42362260818481445],"position":[440,551]},{"score":0.5,"part":"leftKnee","positionRaw":[0.5384384989738464,0.6577324271202087],"position":[538,855]},{"score":0.61,"part":"rightKnee","positionRaw":[0.5079054832458496,0.6598895192146301],"position":[508,858]},{"score":0.46,"part":"leftAnkle","positionRaw":[0.5350232720375061,0.8530999422073364],"position":[535,1109]},{"score":0.51,"part":"rightAnkle","positionRaw":[0.5480659008026123,0.8436547517776489],"position":[548,1097]}] } ], + "hand": [ { - "id": 0, - "score": 0.89, - "box": [553,215,86,66], - "boxRaw": [0.553,0.16538461538461538,0.086,0.05076923076923077], - "keypoints": [[639,281,0],[608,278,12],[587,269,17],[569,268,17],[553,270,17],[598,224,17],[574,219,19],[561,227,18],[554,236,16],[603,219,9],[577,215,11],[564,223,11],[557,232,10],[606,222,2],[582,216,3],[569,223,4],[564,232,4],[607,230,-4],[587,225,-2],[577,228,-2],[571,233,-1]], - "annotations": {"thumb":[[608,278,12],[587,269,17],[569,268,17],[553,270,17]],"indexFinger":[[598,224,17],[574,219,19],[561,227,18],[554,236,16]],"middleFinger":[[603,219,9],[577,215,11],[564,223,11],[557,232,10]],"ringFinger":[[606,222,2],[582,216,3],[569,223,4],[564,232,4]],"pinky":[[607,230,-4],[587,225,-2],[577,228,-2],[571,233,-1]],"palmBase":[[639,281,0]]} + "id": 0, + "score": 0.97, + "box": [215,152,252,439], + "boxRaw": [0.16796875,0.2111111111111111,0.196875,0.6097222222222223], + "keypoints": [[296,530,0],[350,544,-68],[392,545,-114],[427,563,-147],[467,591,-184],[341,381,-113],[353,292,-143],[377,236,-155],[397,202,-162],[291,346,-91],[306,239,-123],[331,185,-136],[355,152,-144],[252,332,-70],[258,240,-94],[276,193,-105],[294,162,-111],[221,332,-52],[215,262,-70],[219,224,-78],[230,195,-82]], + "annotations": {"thumb":[[350,544,-68],[392,545,-114],[427,563,-147],[467,591,-184]],"index":[[341,381,-113],[353,292,-143],[377,236,-155],[397,202,-162]],"middle":[[291,346,-91],[306,239,-123],[331,185,-136],[355,152,-144]],"ring":[[252,332,-70],[258,240,-94],[276,193,-105],[294,162,-111]],"pinky":[[221,332,-52],[215,262,-70],[219,224,-78],[230,195,-82]],"palm":[[296,530,0]]}, + "landmarks": {"thumb":{"curl":"none","direction":"horizontalRight"},"index":{"curl":"none","direction":"diagonalUpRight"},"middle":{"curl":"none","direction":"verticalUp"},"ring":{"curl":"none","direction":"verticalUp"},"pinky":{"curl":"none","direction":"verticalUp"}} }, { - "id": 1, - "score": 0.97, - "box": [539,213,84,113], - "boxRaw": [0.539,0.16384615384615384,0.084,0.08692307692307692], - "keypoints": [[623,326,0],[594,297,16],[579,272,21],[561,255,22],[544,241,23],[608,241,13],[582,216,12],[558,215,11],[543,221,10],[610,240,2],[579,213,0],[552,217,-3],[539,227,-3],[608,244,-7],[580,220,-10],[556,223,-11],[545,233,-11],[602,252,-16],[579,234,-18],[561,234,-18],[551,240,-17]], - "annotations": {"thumb":[[594,297,16],[579,272,21],[561,255,22],[544,241,23]],"indexFinger":[[608,241,13],[582,216,12],[558,215,11],[543,221,10]],"middleFinger":[[610,240,2],[579,213,0],[552,217,-3],[539,227,-3]],"ringFinger":[[608,244,-7],[580,220,-10],[556,223,-11],[545,233,-11]],"pinky":[[602,252,-16],[579,234,-18],[561,234,-18],[551,240,-17]],"palmBase":[[623,326,0]]} + "id": 1, + "score": 0.18, + "box": [611,209,99,280], + "boxRaw": [0.47734375,0.2902777777777778,0.07734375,0.3888888888888889], + "keypoints": [[674,209,0],[647,284,-11],[645,347,-15],[642,399,-16],[642,431,-16],[700,404,-11],[677,482,-14],[639,489,-15],[611,471,-15],[709,409,-6],[684,483,-8],[643,484,-8],[616,462,-8],[710,404,-3],[687,468,-4],[651,468,-3],[628,449,-2],[707,393,-1],[690,439,-3],[662,446,-4],[642,437,-4]], + "annotations": {"thumb":[[647,284,-11],[645,347,-15],[642,399,-16],[642,431,-16]],"index":[[700,404,-11],[677,482,-14],[639,489,-15],[611,471,-15]],"middle":[[709,409,-6],[684,483,-8],[643,484,-8],[616,462,-8]],"ring":[[710,404,-3],[687,468,-4],[651,468,-3],[628,449,-2]],"pinky":[[707,393,-1],[690,439,-3],[662,446,-4],[642,437,-4]],"palm":[[674,209,0]]}, + "landmarks": {"thumb":{"curl":"none","direction":"verticalDown"},"index":{"curl":"half","direction":"verticalDown"},"middle":{"curl":"half","direction":"verticalDown"},"ring":{"curl":"half","direction":"verticalDown"},"pinky":{"curl":"half","direction":"verticalDown"}} } ], "gesture": @@ -62,7 +65,7 @@ }, { "hand": 0, - "gesture": "pinky forward middlefinger up" + "gesture": "thumbs up" }, { "hand": 1, diff --git a/demo/index.js b/demo/index.js index 4689c487..fb316c97 100644 --- a/demo/index.js +++ b/demo/index.js @@ -40,7 +40,7 @@ let userConfig = { enabled: false, flip: false, }, - face: { enabled: true, + face: { enabled: false, detector: { return: false, rotation: true }, mesh: { enabled: true }, iris: { enabled: true }, @@ -48,7 +48,7 @@ let userConfig = { emotion: { enabled: false }, }, object: { enabled: false }, - gesture: { enabled: false }, + gesture: { enabled: true }, hand: { enabled: false }, body: { enabled: false }, // body: { enabled: true, modelPath: 'movenet-multipose.json' }, diff --git a/dist/human.esm-nobundle.js b/dist/human.esm-nobundle.js index 3b81220d..42a12069 100644 --- a/dist/human.esm-nobundle.js +++ b/dist/human.esm-nobundle.js @@ -4,14 +4,14 @@ homepage: author: ' */ -var r5=Object.defineProperty;var ce=Object.getOwnPropertyDescriptor;var fe=Object.getOwnPropertyNames;var me=Object.prototype.hasOwnProperty;var ue=A=>r5(A,"__esModule",{value:!0});var rA=(A,e)=>{ue(A);for(var t in e)r5(A,t,{get:e[t],enumerable:!0})},b=(A,e,t)=>{if(e&&typeof e=="object"||typeof e=="function")for(let r of fe(e))!me.call(A,r)&&r!=="default"&&r5(A,r,{get:()=>e[r],enumerable:!(t=ce(e,r))||t.enumerable});return A};var sA=(A,e,t)=>{if(!e.has(A))throw TypeError("Cannot "+t)};var X=(A,e,t)=>(sA(A,e,"read from private field"),t?t.call(A):e.get(A)),K=(A,e,t)=>{if(e.has(A))throw TypeError("Cannot add the same private member more than once");e instanceof WeakSet?e.add(A):e.set(A,t)},$=(A,e,t,r)=>(sA(A,e,"write to private field"),r?r.call(A,t):e.set(A,t),t);function H(A,e){let t=A.endsWith("/")?"":"/",o=e.startsWith(".")||e.startsWith("/")||e.startsWith("http:")||e.startsWith("https:")||e.startsWith("file:")?`${e}`:`${A}${t}${e}`;if(!o.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${o} Expecting JSON file`);return o}function M(...A){let e=new Date,t=`${e.getHours().toString().padStart(2,"0")}:${e.getMinutes().toString().padStart(2,"0")}:${e.getSeconds().toString().padStart(2,"0")}.${e.getMilliseconds().toString().padStart(3,"0")}`;A&&console.log(t,"Human:",...A)}var I=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function C(...A){let e=t=>t&&typeof t=="object";return A.reduce((t,r)=>(Object.keys(r||{}).forEach(o=>{let a=t[o],x=r[o];Array.isArray(a)&&Array.isArray(x)?t[o]=a.concat(...x):e(a)&&e(x)?t[o]=C(a,x):t[o]=x}),t),{})}var aA={backend:"webgl",modelBasePath:"../models/",wasmPath:"../node_modules/@tensorflow/tfjs-backend-wasm/dist/",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,skipFrame:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:15,skipFrames:15,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:11,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:17,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:1,minConfidence:.2,skipFrames:1},hand:{enabled:!0,rotation:!0,skipFrames:18,minConfidence:.1,iouThreshold:.1,maxDetected:2,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:19},segmentation:{enabled:!1,modelPath:"selfie.json"}};function iA(){let A="",e="";if(typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let r=t[0].match(/\(([^()]+)\)/g);A=r&&r[0]?r[0].replace(/\(|\)/g,""):"",e=navigator.userAgent.replace(t[0],""),A[1]&&(e=e.replace(t[1],"")),e=e.replace(/ /g," ")}}else typeof process!="undefined"&&(A=`${process.platform} ${process.arch}`,e=`NodeJS ${process.version}`);return{platform:A,agent:e}}var n={};rA(n,{data:()=>ze,version:()=>Ee});b(n,M2);b(n,T2);b(n,P2);b(n,v2);b(n,z2);b(n,E2);import{version as he}from"@tensorflow/tfjs/package.json";import{version as pe}from"@tensorflow/tfjs-core/package.json";import{version as be}from"@tensorflow/tfjs-data/package.json";import{version as ge}from"@tensorflow/tfjs-layers/package.json";import{version as Me}from"@tensorflow/tfjs-converter/package.json";import{version as Te}from"@tensorflow/tfjs-backend-cpu/package.json";import{version as Pe}from"@tensorflow/tfjs-backend-webgl/package.json";import{version as ve}from"@tensorflow/tfjs-backend-wasm/package.json";import*as M2 from"@tensorflow/tfjs-core/dist/index.js";import*as T2 from"@tensorflow/tfjs-layers/dist/index.js";import*as P2 from"@tensorflow/tfjs-converter/dist/index.js";import*as ze from"@tensorflow/tfjs-data/dist/index.js";import*as v2 from"@tensorflow/tfjs-backend-cpu/dist/index.js";import*as z2 from"@tensorflow/tfjs-backend-webgl/dist/index.js";import*as E2 from"@tensorflow/tfjs-backend-wasm/dist/index.js";var Ee={tfjs:he,"tfjs-core":pe,"tfjs-data":be,"tfjs-layers":ge,"tfjs-converter":Me,"tfjs-backend-cpu":Te,"tfjs-backend-webgl":Pe,"tfjs-backend-wasm":ve};var q={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Re(){let A=q.gl;!A||(q.extensions=A.getSupportedExtensions())}function xA(){if(!n.findBackend(q.name)){try{q.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(q.width,q.height):document.createElement("canvas")}catch(A){M("error: cannot create canvas:",A);return}try{q.gl=q.canvas.getContext("webgl2",q.webGLattr)}catch(A){M("error: cannot get WebGL2 context:",A);return}try{n.setWebGLContext(2,q.gl)}catch(A){M("error: cannot set WebGL2 context:",A);return}try{let A=new n.GPGPUContext(q.gl);n.registerBackend(q.name,()=>new n.MathBackendWebGL(A),q.priority)}catch(A){M("error: cannot register WebGL backend:",A);return}try{n.getKernelsForBackend("webgl").forEach(e=>{let t={...e,backendName:q.name};n.registerKernel(t)})}catch(A){M("error: cannot update WebGL backend registration:",A);return}try{n.ENV.set("WEBGL_VERSION",2)}catch(A){M("error: cannot set WebGL backend flags:",A);return}Re(),M("backend registered:",q.name)}}function yA(A,e){let t=[A.startPoint[0]*e[0],A.startPoint[1]*e[1]],r=[A.endPoint[0]*e[0],A.endPoint[1]*e[1]];return{startPoint:t,endPoint:r}}function T0(A){return[Math.abs(A.endPoint[0]-A.startPoint[0]),Math.abs(A.endPoint[1]-A.startPoint[1])]}function P0(A){return[A.startPoint[0]+(A.endPoint[0]-A.startPoint[0])/2,A.startPoint[1]+(A.endPoint[1]-A.startPoint[1])/2]}function v0(A,e,t){let r=e.shape[1],o=e.shape[2],a=[[A.startPoint[1]/r,A.startPoint[0]/o,A.endPoint[1]/r,A.endPoint[0]/o]];return n.image.cropAndResize(e,a,[0],t)}function N0(A,e=1.5){let t=P0(A),r=T0(A),o=[e*r[0]/2,e*r[1]/2],a=[t[0]-o[0],t[1]-o[1]],x=[t[0]+o[0],t[1]+o[1]];return{startPoint:a,endPoint:x,landmarks:A.landmarks}}function O0(A){let e=P0(A),t=T0(A),o=Math.max(...t)/2,a=[Math.round(e[0]-o),Math.round(e[1]-o)],x=[Math.round(e[0]+o),Math.round(e[1]+o)];return{startPoint:a,endPoint:x,landmarks:A.landmarks}}function s5(A){let e=A.map(a=>a[0]),t=A.map(a=>a[1]),r=[Math.min(...e),Math.min(...t)],o=[Math.max(...e),Math.max(...t)];return{startPoint:r,endPoint:o,landmarks:A}}var lA=A=>({startPoint:n.slice(A,[0,0],[-1,2]),endPoint:n.slice(A,[0,2],[-1,2])});var H0=[[1,0,0],[0,1,0],[0,0,1]];function we(A){return A-2*Math.PI*Math.floor((A+Math.PI)/(2*Math.PI))}function dA(A,e){let t=Math.PI/2-Math.atan2(-(e[1]-A[1]),e[0]-A[0]);return we(t)}function cA(A,e){return[[1,0,A],[0,1,e],[0,0,1]]}function a0(A,e){let t=0;for(let r=0;r{let l=n.image.resizeBilinear(e,[this.inputSize,this.inputSize]),d=n.sub(n.div(l,127.5),.5),c=this.model.execute(d),u;if(Array.isArray(c)){let h=c.sort((T,g)=>T.size-g.size),R=n.concat([h[0],h[2]],2),j=n.concat([h[1],h[3]],2),W=n.concat([j,R],1);u=n.squeeze(W,0)}else u=n.squeeze(c);let P=Se(u,this.anchors,[this.inputSize,this.inputSize]),f=n.slice(u,[0,0],[-1,1]),p=n.squeeze(n.sigmoid(f));return[u,P,p]});this.config=C(this.config,t);let x=await n.image.nonMaxSuppressionAsync(o,a,this.config.face.detector.maxDetected,this.config.face.detector.iouThreshold,this.config.face.detector.minConfidence),s=await x.array();n.dispose(x);let y=[],i=await a.data();for(let l=0;lthis.config.face.detector.minConfidence){let c=n.slice(o,[s[l],0],[1,-1]),u=lA(c);n.dispose(c);let P=this.anchorsData[s[l]],f=n.tidy(()=>n.reshape(n.squeeze(n.slice(r,[s[l],pA-1],[1,-1])),[pA,-1]));y.push({box:u,landmarks:f,anchor:P,confidence:d})}}return n.dispose(r),n.dispose(o),n.dispose(a),{boxes:y,scaleFactor:[e.shape[2]/this.inputSize,e.shape[1]/this.inputSize]}}};async function gA(A){let e=await n.loadGraphModel(H(A.modelBasePath,A.face.detector.modelPath),{fromTFHub:A.face.detector.modelPath.includes("tfhub.dev")}),t=new bA(e,A);return!e||!e.modelUrl?M("load model failed:",A.face.detector.modelPath):A.debug&&M("load model:",e.modelUrl),t}var t0={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},i5=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],z0=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],d0=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var ke=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],We=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Ie=[33,133,362,263,1,78,308],V2=ke.map(A=>z0[A]),Z2=We.map(A=>z0[A]),F2=Ie.map(A=>z0[A]);var x5=t0.leftEyeLower0,y5=t0.rightEyeLower0,u0={leftBounds:[x5[0],x5[x5.length-1]],rightBounds:[y5[0],y5[y5.length-1]]},MA={count:468,mouth:13,symmetryLine:[13,t0.midwayBetweenEyes[0]]},Ne={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},h0={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function L0(A,e,t,r){for(let o=0;o[a[0]/this.meshSize*(d[0]-this.meshSize/2),a[1]/this.meshSize*(d[1]-this.meshSize/2),d[2]]),s=r!==0?a5(r,[0,0]):H0,y=r!==0?x.map(d=>[...uA(d,s),d[2]]):x,i=r!==0?mA(o):H0,l=[...P0({startPoint:t.startPoint,endPoint:t.endPoint}),1];return y.map(d=>[Math.round(d[0]+a0(l,i[0])),Math.round(d[1]+a0(l,i[1])),Math.round(d[2])])}getLeftToRightEyeDepthDifference(e){let t=e[u0.leftBounds[0]][2],r=e[u0.rightBounds[0]][2];return t-r}getEyeBox(e,t,r,o,a=!1){let x=O0(N0(s5([e[r],e[o]]),this.irisEnlarge)),s=T0(x),y=n.image.cropAndResize(t,[[x.startPoint[1]/this.meshSize,x.startPoint[0]/this.meshSize,x.endPoint[1]/this.meshSize,x.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);if(a&&n.ENV.flags.IS_BROWSER){let i=n.image.flipLeftRight(y);n.dispose(y),y=i}return{box:x,boxSize:s,crop:y}}getEyeCoords(e,t,r,o=!1){let a=[];for(let x=0;x{let i=x;return y===2?i=o:y===4&&(i=a),[s[0],s[1],i]})}correctFaceRotation(e,t,r){let[o,a]=t.landmarks.length>=MA.count?MA.symmetryLine:Ne.symmetryLine,x=dA(t.landmarks[o],t.landmarks[a]),s=P0({startPoint:t.startPoint,endPoint:t.endPoint}),y=[s[0]/r.shape[2],s[1]/r.shape[1]],i=n.image.rotateWithOffset(r,x,0,y),l=a5(-x,s),d=e.face.mesh.enabled?v0({startPoint:t.startPoint,endPoint:t.endPoint},i,[this.meshSize,this.meshSize]):v0({startPoint:t.startPoint,endPoint:t.endPoint},i,[this.boxSize,this.boxSize]),c=n.div(d,255);return n.dispose(d),n.dispose(i),[x,l,c]}async augmentIris(e,t){let{box:r,boxSize:o,crop:a}=this.getEyeBox(e,t,u0.leftBounds[0],u0.leftBounds[1],!0),{box:x,boxSize:s,crop:y}=this.getEyeBox(e,t,u0.rightBounds[0],u0.rightBounds[1]),i=n.concat([a,y]);n.dispose(a),n.dispose(y);let l=this.irisModel.predict(i);n.dispose(i);let d=await l.data();n.dispose(l);let c=d.slice(0,h0.numCoordinates*3),{rawCoords:u,iris:P}=this.getEyeCoords(c,r,o,!0),f=d.slice(h0.numCoordinates*3),{rawCoords:p,iris:h}=this.getEyeCoords(f,x,s),R=this.getLeftToRightEyeDepthDifference(e);Math.abs(R)<30?(L0(e,u,"left",null),L0(e,p,"right",null)):R<1?L0(e,u,"left",["EyeUpper0","EyeLower0"]):L0(e,p,"right",["EyeUpper0","EyeLower0"]);let j=this.getAdjustedIrisCoords(e,P,"left"),W=this.getAdjustedIrisCoords(e,h,"right");return e.concat(j).concat(W)}async predict(e,t){let r=!1,o;if((this.skipped===0||this.skipped>t.face.detector.skipFrames||!t.face.mesh.enabled||!t.skipFrame)&&(o=await this.boundingBoxDetector.getBoundingBoxes(e,t),this.skipped=0),t.skipFrame&&this.skipped++,!t.skipFrame||o&&o.boxes&&(!t.face.mesh.enabled||o.boxes.length!==this.detectedFaces&&this.detectedFaces!==t.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let s of o.boxes){let y=await s.box.startPoint.data(),i=await s.box.endPoint.data(),l=await s.landmarks.array();this.storedBoxes.push({startPoint:y,endPoint:i,landmarks:l,confidence:s.confidence})}this.storedBoxes.length>0&&(r=!0)}if(r){if(!o||!o.boxes||o.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let s=0;s{n.dispose(s.box.startPoint),n.dispose(s.box.endPoint),n.dispose(s.landmarks)});let a=[],x=[];for(let s of this.storedBoxes){let y,i=0,l;if(t.face.detector.rotation&&t.face.mesh.enabled&&n.ENV.flags.IS_BROWSER)[i,l,y]=this.correctFaceRotation(t,s,e);else{l=H0;let d=e.clone(),c=t.face.mesh.enabled?v0({startPoint:s.startPoint,endPoint:s.endPoint},d,[this.meshSize,this.meshSize]):v0({startPoint:s.startPoint,endPoint:s.endPoint},d,[this.boxSize,this.boxSize]);y=n.div(c,255),n.dispose(c),n.dispose(d)}if(!t.face.mesh.enabled)a.push({mesh:[],box:s,faceConfidence:null,boxConfidence:s.confidence,confidence:s.confidence,image:y});else{let[d,c,u]=this.meshDetector.execute(y);n.dispose(d);let P=(await c.data())[0];n.dispose(c);let f=n.reshape(u,[-1,3]),p=await f.array();if(n.dispose(u),n.dispose(f),Ps.confidence>t.face.detector.minConfidence)),this.detectedFaces=a.length,a}};var Z=[null,null,null],d5;async function TA(A,e){let t=await d5.predict(A,e),r=[],o=0;for(let a of t||[]){if(!a||a.isDisposedInternal)continue;let x=a.mesh.map(l=>[l[0]/(A.shape[2]||0),l[1]/(A.shape[1]||0),l[2]/d5.meshSize]),s={};if(a.mesh&&a.mesh.length>0)for(let l of Object.keys(t0))s[l]=t0[l].map(d=>a.mesh[d]);let y=a.box?[Math.trunc(Math.max(0,a.box.startPoint[0])),Math.trunc(Math.max(0,a.box.startPoint[1])),Math.trunc(Math.min(A.shape[2]||0,a.box.endPoint[0])-Math.max(0,a.box.startPoint[0])),Math.trunc(Math.min(A.shape[1]||0,a.box.endPoint[1])-Math.max(0,a.box.startPoint[1]))]:[0,0,0,0],i=a.box?[a.box.startPoint[0]/(A.shape[2]||0),a.box.startPoint[1]/(A.shape[1]||0),(a.box.endPoint[0]-a.box.startPoint[0])/(A.shape[2]||0),(a.box.endPoint[1]-a.box.startPoint[1])/(A.shape[1]||0)]:[0,0,0,0];r.push({id:o++,score:Math.round(100*a.faceConfidence||100*a.boxConfidence||0)/100,boxScore:Math.round(100*a.boxConfidence)/100,faceScore:Math.round(100*a.faceConfidence)/100,box:y,boxRaw:i,mesh:a.mesh,meshRaw:x,annotations:s,tensor:a.image}),a.coords&&n.dispose(a.coords)}return r}async function c5(A){return!Z[0]&&A.face.enabled||!Z[1]&&A.face.mesh.enabled||!Z[2]&&A.face.iris.enabled?(Z=await Promise.all([!Z[0]&&A.face.enabled?gA(A):null,!Z[1]&&A.face.mesh.enabled?n.loadGraphModel(H(A.modelBasePath,A.face.mesh.modelPath),{fromTFHub:A.face.mesh.modelPath.includes("tfhub.dev")}):null,!Z[2]&&A.face.iris.enabled?n.loadGraphModel(H(A.modelBasePath,A.face.iris.modelPath),{fromTFHub:A.face.iris.modelPath.includes("tfhub.dev")}):null]),A.face.mesh.enabled&&(!Z[1]||!Z[1].modelUrl?M("load model failed:",A.face.mesh.modelPath):A.debug&&M("load model:",Z[1].modelUrl)),A.face.iris.enabled&&(!Z[2]||!Z[2].modelUrl?M("load model failed:",A.face.iris.modelPath):A.debug&&M("load model:",Z[2].modelUrl))):A.debug&&(Z[0]&&M("cached model:",Z[0].model.modelUrl),Z[1]&&M("cached model:",Z[1].modelUrl),Z[2]&&M("cached model:",Z[2].modelUrl)),d5=new l5(Z[0],Z[1],Z[2]),Z}var PA=d0,vA=z0;var A0,V0=[],zA=0,f5=Number.MAX_SAFE_INTEGER;async function m5(A){let e=H(A.modelBasePath,A.face.description.modelPath);return A0?A.debug&&M("cached model:",e):(A0=await n.loadGraphModel(e),A0?A.debug&&M("load model:",e):M("load model failed:",A.face.description.modelPath)),A0}function u5(A,e,t=2){if(!A||!e||(A==null?void 0:A.length)===0||(e==null?void 0:e.length)===0||(A==null?void 0:A.length)!==(e==null?void 0:e.length))return 0;let r=5*A.map((a,x)=>Math.abs(A[x]-e[x])**t).reduce((a,x)=>a+x,0)**(1/t);return Math.max(0,100-r)/100}function EA(A,e,t=0){let r={similarity:0,name:"",source:"",embedding:[]};if(!A||!e||!Array.isArray(A)||!Array.isArray(e))return r;for(let o of e)if(o.embedding&&o.name){let a=u5(A,o.embedding);a>t&&a>r.similarity&&(r={...o,similarity:a})}return r}function h5(A){return n.tidy(()=>{let t=A.image||A.tensor||A;if(!(t instanceof n.Tensor))return null;let r=[[.05,.15,.85,.85]];if(!A0.inputs[0].shape)return null;let o=t.shape.length===3?n.image.cropAndResize(n.expandDims(t,0),r,[0],[A0.inputs[0].shape[2],A0.inputs[0].shape[1]]):n.image.cropAndResize(t,r,[0],[A0.inputs[0].shape[2],A0.inputs[0].shape[1]]);return n.mul(o,255)})}async function p5(A,e,t,r){var o,a;return A0?f50?(f5++,V0[t]):(f5=0,new Promise(async x=>{let s=h5(A),y,i={age:0,gender:"unknown",genderScore:0,descriptor:[]};if(e.face.description.enabled&&(y=await A0.predict(s)),n.dispose(s),y){let l=await y.find(h=>h.shape[1]===1).data(),d=Math.trunc(200*Math.abs(l[0]-.5))/100;d>e.face.description.minConfidence&&(i.gender=l[0]<=.5?"female":"male",i.genderScore=Math.min(.99,d));let u=(await n.argMax(y.find(h=>h.shape[1]===100),1).data())[0],P=await y.find(h=>h.shape[1]===100).data();i.age=Math.round(P[u-1]>P[u+1]?10*u-100*P[u-1]:10*u+100*P[u+1])/10;let p=await y.find(h=>h.shape[1]===1024).data();i.descriptor=[...p],y.forEach(h=>n.dispose(h))}V0[t]=i,zA=r,x(i)})):null}var Oe=["angry","disgust","fear","happy","sad","surprise","neutral"],e0,Z0=[],RA=0,b5=Number.MAX_SAFE_INTEGER,g5=[.2989,.587,.114];async function M5(A){return e0?A.debug&&M("cached model:",e0.modelUrl):(e0=await n.loadGraphModel(H(A.modelBasePath,A.face.emotion.modelPath)),!e0||!e0.modelUrl?M("load model failed:",A.face.emotion.modelPath):A.debug&&M("load model:",e0.modelUrl)),e0}async function T5(A,e,t,r){return e0?b50?(b5++,Z0[t]):(b5=0,new Promise(async o=>{let a=n.image.resizeBilinear(A,[e0.inputs[0].shape[2],e0.inputs[0].shape[1]],!1),[x,s,y]=n.split(a,3,3);n.dispose(a);let i=n.mul(x,g5[0]),l=n.mul(s,g5[1]),d=n.mul(y,g5[2]);n.dispose(x),n.dispose(s),n.dispose(y);let c=n.addN([i,l,d]);n.dispose(i),n.dispose(l),n.dispose(d);let u=n.tidy(()=>n.mul(n.sub(c,.5),2));n.dispose(c);let P=[];if(e.face.emotion.enabled){let f=await e0.predict(u),p=await f.data();n.dispose(f);for(let h=0;he.face.emotion.minConfidence&&P.push({score:Math.min(.99,Math.trunc(100*p[h])/100),emotion:Oe[h]});P.sort((h,R)=>R.score-h.score)}n.dispose(u),Z0[t]=P,RA=r,o(P)})):null}var E0=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],wA=E0.length,R0=E0.reduce((A,e,t)=>(A[e]=t,A),{}),He=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Le=He.map(([A,e])=>[R0[A],R0[e]]),jA=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function SA(A){let e=A.reduce(({maxX:t,maxY:r,minX:o,minY:a},{position:{x,y:s}})=>({maxX:Math.max(t,x),maxY:Math.max(r,s),minX:Math.min(o,x),minY:Math.min(a,s)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[e.minX,e.minY,e.maxX-e.minX,e.maxY-e.minY]}function kA(A,[e,t],[r,o]){let a=e/r,x=t/o,s=(i,l)=>({id:l,score:i.score,boxRaw:[i.box[0]/o,i.box[1]/r,i.box[2]/o,i.box[3]/r],box:[Math.trunc(i.box[0]*x),Math.trunc(i.box[1]*a),Math.trunc(i.box[2]*x),Math.trunc(i.box[3]*a)],keypoints:i.keypoints.map(({score:d,part:c,position:u})=>({score:d,part:c,position:[Math.trunc(u.x*x),Math.trunc(u.y*a)],positionRaw:[u.x/r,u.y/r]}))});return A.map((i,l)=>s(i,l))}var P5=class{constructor(e,t){this.priorityQueue=new Array(e),this.numberOfElements=-1,this.getElementValue=t}enqueue(e){this.priorityQueue[++this.numberOfElements]=e,this.swim(this.numberOfElements)}dequeue(){let e=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,e}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(e){for(;e>0&&this.less(Math.floor(e/2),e);)this.exchange(e,Math.floor(e/2)),e=Math.floor(e/2)}sink(e){for(;2*e<=this.numberOfElements;){let t=2*e;if(tt?t:A}function WA(A,e,t,r){let o=t-A,a=r-e;return o*o+a*a}function R5(A,e){return{x:A.x+e.x,y:A.y+e.y}}var F0=1,p0=16,Ve=50**2;function IA(A,e,t,r,o,a,x=2){let s=h=>({y:a.get(h.y,h.x,A),x:a.get(h.y,h.x,a.shape[2]/2+A)}),y=(h,R,j)=>({y:E5(Math.round(h.y/p0),0,R-1),x:E5(Math.round(h.x/p0),0,j-1)}),[i,l]=r.shape,d=y(e.position,i,l),c=s(d),P=R5(e.position,c);for(let h=0;h[R0[c],R0[u]]),x=a.map(([,c])=>c),s=a.map(([c])=>c),y=e.shape[2],i=x.length,l=new Array(y),d=z5(A.part,p0,t);l[A.part.id]={score:A.score,part:E0[A.part.id],position:d};for(let c=i-1;c>=0;--c){let u=x[c],P=s[c];l[u]&&!l[P]&&(l[P]=IA(c,l[u],P,e,t,o))}for(let c=0;ce){s=!1;break}if(!s)break}return s}function Xe(A,e){let[t,r,o]=e.shape,a=new P5(t*r*o,({score:x})=>x);for(let x=0;x{var x;let a=(x=o[r])==null?void 0:x.position;return a?WA(t,e,a.y,a.x)<=Ve:!1})}function Ce(A,e){return e.reduce((r,{position:o,score:a},x)=>(NA(A,o,x)||(r+=a),r),0)/e.length}function OA(A,e,t,r,o,a){let x=[],s=Xe(a,e);for(;x.lengthu.score>a);let d=Ce(x,l),c=SA(l);d>a&&x.push({keypoints:l,box:c,score:Math.round(100*d)/100})}return x}var U,qe=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function w5(A,e){let t=n.tidy(()=>{if(!U.inputs[0].shape)return[];let x=n.image.resizeBilinear(A,[U.inputs[0].shape[2],U.inputs[0].shape[1]]),s=n.sub(n.div(n.cast(x,"float32"),127.5),1),i=U.execute(s,qe).map(l=>n.squeeze(l,[0]));return i[1]=i[1].sigmoid(),i}),r=await Promise.all(t.map(x=>x.buffer()));for(let x of t)n.dispose(x);let o=await OA(r[0],r[1],r[2],r[3],e.body.maxDetected,e.body.minConfidence);return U.inputs[0].shape?kA(o,[A.shape[1],A.shape[2]],[U.inputs[0].shape[2],U.inputs[0].shape[1]]):[]}async function j5(A){return U?A.debug&&M("cached model:",U.modelUrl):(U=await n.loadGraphModel(H(A.modelBasePath,A.body.modelPath)),!U||!U.modelUrl?M("load model failed:",A.body.modelPath):A.debug&&M("load model:",U.modelUrl)),U}function X0(A){return[Math.abs(A.endPoint[0]-A.startPoint[0]),Math.abs(A.endPoint[1]-A.startPoint[1])]}function w0(A){return[A.startPoint[0]+(A.endPoint[0]-A.startPoint[0])/2,A.startPoint[1]+(A.endPoint[1]-A.startPoint[1])/2]}function HA(A,e,t){let r=e.shape[1],o=e.shape[2],a=[[A.startPoint[1]/r,A.startPoint[0]/o,A.endPoint[1]/r,A.endPoint[0]/o]];return n.image.cropAndResize(e,a,[0],t)}function LA(A,e){let t=[A.startPoint[0]*e[0],A.startPoint[1]*e[1]],r=[A.endPoint[0]*e[0],A.endPoint[1]*e[1]],o=A.palmLandmarks.map(a=>[a[0]*e[0],a[1]*e[1]]);return{startPoint:t,endPoint:r,palmLandmarks:o,confidence:A.confidence}}function C0(A,e=1.5){let t=w0(A),r=X0(A),o=[e*r[0]/2,e*r[1]/2],a=[t[0]-o[0],t[1]-o[1]],x=[t[0]+o[0],t[1]+o[1]];return{startPoint:a,endPoint:x,palmLandmarks:A.palmLandmarks}}function q0(A){let e=w0(A),t=X0(A),o=Math.max(...t)/2,a=[e[0]-o,e[1]-o],x=[e[0]+o,e[1]+o];return{startPoint:a,endPoint:x,palmLandmarks:A.palmLandmarks}}var VA=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var S5=class{constructor(e){this.model=e,this.anchors=VA.map(t=>[t.x,t.y]),this.anchorsTensor=n.tensor2d(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=n.tensor1d([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=n.tensor1d([this.inputSize*2,this.inputSize*2])}normalizeBoxes(e){return n.tidy(()=>{let t=n.slice(e,[0,0],[-1,2]),r=n.slice(e,[0,2],[-1,2]),o=n.add(n.div(t,this.inputSizeTensor),this.anchorsTensor),a=n.div(r,this.doubleInputSizeTensor),x=n.mul(n.sub(o,a),this.inputSizeTensor),s=n.mul(n.add(o,a),this.inputSizeTensor);return n.concat2d([x,s],1)})}normalizeLandmarks(e,t){return n.tidy(()=>{let r=n.add(n.div(n.reshape(e,[-1,7,2]),this.inputSizeTensor),this.anchors[t]);return n.mul(r,this.inputSizeTensor)})}async getBoxes(e,t){let r=this.model.predict(e),o=n.squeeze(r);n.dispose(r);let a=n.tidy(()=>n.squeeze(n.sigmoid(n.slice(o,[0,0],[-1,1])))),x=await a.data(),s=n.slice(o,[0,1],[-1,4]),y=this.normalizeBoxes(s);n.dispose(s);let i=await n.image.nonMaxSuppressionAsync(y,x,t.hand.maxDetected,t.hand.iouThreshold,t.hand.minConfidence),l=await i.array();n.dispose(a),n.dispose(i);let d=[];for(let c of l)if(x[c]>=t.hand.minConfidence){let u=n.slice(y,[c,0],[1,-1]),P=n.slice(o,[c,5],[1,14]),f=n.tidy(()=>n.reshape(this.normalizeLandmarks(P,c),[-1,2]));n.dispose(P),d.push({box:u,palmLandmarks:f,confidence:x[c]})}return n.dispose(o),n.dispose(y),d}async estimateHandBounds(e,t){let r=e.shape[1],o=e.shape[2],a=n.tidy(()=>n.sub(n.div(n.image.resizeBilinear(e,[this.inputSize,this.inputSize]),127.5),1)),x=await this.getBoxes(a,t);n.dispose(a);let s=[];if(!x||x.length===0)return s;for(let y of x){let i=await y.box.data(),l=i.slice(0,2),d=i.slice(2,4),c=await y.palmLandmarks.array();n.dispose(y.box),n.dispose(y.palmLandmarks),s.push(LA({startPoint:l,endPoint:d,palmLandmarks:c,confidence:y.confidence},[o/this.inputSize,r/this.inputSize]))}return s}};function Ge(A){return A-2*Math.PI*Math.floor((A+Math.PI)/(2*Math.PI))}function ZA(A,e){let t=Math.PI/2-Math.atan2(-(e[1]-A[1]),e[0]-A[0]);return Ge(t)}var FA=(A,e)=>[[1,0,A],[0,1,e],[0,0,1]];function i0(A,e){let t=0;for(let r=0;rx[0]),r=e.map(x=>x[1]),o=[Math.min(...t),Math.min(...r)],a=[Math.max(...t),Math.max(...r)];return{startPoint:o,endPoint:a}}getBoxForPalmLandmarks(e,t){let r=e.map(a=>W5([...a,1],t)),o=this.calculateLandmarksBoundingBox(r);return C0(q0(o),Ue)}getBoxForHandLandmarks(e){let t=this.calculateLandmarksBoundingBox(e),r=C0(q0(t),qA);r.palmLandmarks=[];for(let o=0;o[x[0]*(u[0]-this.inputSize/2),x[1]*(u[1]-this.inputSize/2),x[2]*u[2]]),y=k5(r,[0,0]),i=s.map(u=>[...W5(u,y),u[2]]),l=CA(o),d=[...w0(t),1],c=[i0(d,l[0]),i0(d,l[1])];return i.map(u=>[Math.trunc(u[0]+c[0]),Math.trunc(u[1]+c[1]),Math.trunc(u[2])])}async estimateHands(e,t){let r=!1,o;(this.skipped===0||this.skipped>t.hand.skipFrames||!t.hand.landmarks||!t.skipFrame)&&(o=await this.handDetector.estimateHandBounds(e,t),this.skipped=0),t.skipFrame&&this.skipped++,o&&o.length>0&&(o.length!==this.detectedHands&&this.detectedHands!==t.hand.maxDetected||!t.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...o],this.storedBoxes.length>0&&(r=!0));let a=[];for(let x=0;x=t.hand.minConfidence){let j=n.reshape(h,[-1,3]),W=await j.array();n.dispose(h),n.dispose(j);let T=this.transformRawCoords(W,u,y,c),g=this.getBoxForHandLandmarks(T);this.storedBoxes[x]={...g,confidence:R};let v={landmarks:T,confidence:R,box:{topLeft:g.startPoint,bottomRight:g.endPoint}};a.push(v)}else this.storedBoxes[x]=null;n.dispose(h)}else{let y=C0(q0(s),qA),i={confidence:s.confidence,box:{topLeft:y.startPoint,bottomRight:y.endPoint}};a.push(i)}}return this.storedBoxes=this.storedBoxes.filter(x=>x!==null),this.detectedHands=a.length,a}};var BA={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},x0,y0,UA;async function N5(A,e){let t=await UA.estimateHands(A,e);if(!t)return[];let r=[];for(let o=0;ot[o].landmarks[l]);let x=t[o].landmarks,s=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],y=[0,0,0,0];if(x&&x.length>0){for(let i of x)i[0]s[2]&&(s[2]=i[0]),i[1]>s[3]&&(s[3]=i[1]);s[2]-=s[0],s[3]-=s[1],y=[s[0]/(A.shape[2]||0),s[1]/(A.shape[1]||0),s[2]/(A.shape[2]||0),s[3]/(A.shape[1]||0)]}else s=t[o].box?[Math.trunc(Math.max(0,t[o].box.topLeft[0])),Math.trunc(Math.max(0,t[o].box.topLeft[1])),Math.trunc(Math.min(A.shape[2]||0,t[o].box.bottomRight[0])-Math.max(0,t[o].box.topLeft[0])),Math.trunc(Math.min(A.shape[1]||0,t[o].box.bottomRight[1])-Math.max(0,t[o].box.topLeft[1]))]:[0,0,0,0],y=[t[o].box.topLeft[0]/(A.shape[2]||0),t[o].box.topLeft[1]/(A.shape[1]||0),(t[o].box.bottomRight[0]-t[o].box.topLeft[0])/(A.shape[2]||0),(t[o].box.bottomRight[1]-t[o].box.topLeft[1])/(A.shape[1]||0)];r.push({id:o,score:Math.round(100*t[o].confidence)/100,box:s,boxRaw:y,keypoints:x,annotations:a})}return r}async function O5(A){!x0||!y0?([x0,y0]=await Promise.all([A.hand.enabled?n.loadGraphModel(H(A.modelBasePath,A.hand.detector.modelPath),{fromTFHub:A.hand.detector.modelPath.includes("tfhub.dev")}):null,A.hand.landmarks?n.loadGraphModel(H(A.modelBasePath,A.hand.skeleton.modelPath),{fromTFHub:A.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),A.hand.enabled&&(!x0||!x0.modelUrl?M("load model failed:",A.hand.detector.modelPath):A.debug&&M("load model:",x0.modelUrl),!y0||!y0.modelUrl?M("load model failed:",A.hand.skeleton.modelPath):A.debug&&M("load model:",y0.modelUrl))):(A.debug&&M("cached model:",x0.modelUrl),A.debug&&M("cached model:",y0.modelUrl));let e=new S5(x0);return UA=new I5(e,y0),[x0,y0]}var JA=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],YA=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var G;async function G0(A){return G?A.debug&&M("cached model:",G.modelUrl):(G=await n.loadGraphModel(H(A.modelBasePath,A.body.modelPath)),G.width=parseInt(G.signature.inputs["input_1:0"].tensorShape.dim[2].size),G.height=parseInt(G.signature.inputs["input_1:0"].tensorShape.dim[1].size),!G||!G.modelUrl?M("load model failed:",A.body.modelPath):A.debug&&M("load model:",G.modelUrl)),G}async function H5(A,e){if(!G)return[];if(!e.body.enabled)return[];let t={width:A.shape[2]||0,height:A.shape[1]||0},r=n.image.resizeBilinear(A,[G.width,G.height],!1),o=n.div(r,[255]);n.dispose(r);let a=await G.predict(o),x=a.find(p=>p.size===195||p.size===155),s=await(x==null?void 0:x.data())||[];a.forEach(p=>n.dispose(p)),n.dispose(o);let y=[],i=(s==null?void 0:s.length)===195?JA:YA,l=5;for(let p=0;pp.position[0]),c=y.map(p=>p.position[1]),u=[Math.min(...d),Math.min(...c),Math.max(...d)-Math.min(...d),Math.max(...c)-Math.min(...d)],P=[0,0,0,0],f=y.reduce((p,h)=>h.score>p?h.score:p,0);return[{id:0,score:f,box:u,boxRaw:P,keypoints:y}]}var B,n0=[],L5=[0,0,0,0],V5=[0,0,0,0],B0=0,Z5=Number.MAX_SAFE_INTEGER,De=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function DA(A){return B?A.debug&&M("cached model:",B.modelUrl):(B=await n.loadGraphModel(H(A.modelBasePath,A.body.modelPath)),!B||!B.modelUrl?M("load model failed:",A.body.modelPath):A.debug&&M("load model:",B.modelUrl)),B}function Ke(A,e){let[t,r]=A.shape;return n.tidy(()=>{let o=(s,y)=>n.sub(s,n.mul(n.div(s,n.scalar(y,"int32")),n.scalar(y,"int32"))),a=n.reshape(A,[r*t]),x=n.max(a,0).dataSync()[0];if(x>e){let s=n.argMax(a,0),y=o(s,t).dataSync()[0],i=n.div(s,n.scalar(t,"int32")).dataSync()[0];return[y,i,x]}return[0,0,x]})}async function F5(A,e){return Z50?(Z5++,[{id:0,score:B0,box:L5,boxRaw:V5,keypoints:n0}]):(Z5=0,new Promise(async t=>{let r=n.tidy(()=>{if(!B.inputs[0].shape)return null;let i=n.image.resizeBilinear(A,[B.inputs[0].shape[2],B.inputs[0].shape[1]],!1);return n.mul(i,2).sub(1)}),o;if(e.body.enabled&&(o=await B.predict(r)),n.dispose(r),o){n0.length=0;let i=o.squeeze();n.dispose(o);let l=i.unstack(2);n.dispose(i);for(let d=0;de.body.minConfidence&&n0.push({score:Math.round(100*P)/100,part:De[d],positionRaw:[c/B.inputs[0].shape[2],u/B.inputs[0].shape[1]],position:[Math.round(A.shape[2]*c/B.inputs[0].shape[2]),Math.round(A.shape[1]*u/B.inputs[0].shape[1])]})}l.forEach(d=>n.dispose(d))}B0=n0.reduce((i,l)=>l.score>i?l.score:i,0);let a=n0.map(i=>i.position[0]),x=n0.map(i=>i.position[1]);L5=[Math.min(...a),Math.min(...x),Math.max(...a)-Math.min(...a),Math.max(...x)-Math.min(...x)];let s=n0.map(i=>i.positionRaw[0]),y=n0.map(i=>i.positionRaw[1]);V5=[Math.min(...s),Math.min(...y),Math.max(...s)-Math.min(...s),Math.max(...y)-Math.min(...y)],t([{id:0,score:B0,box:L5,boxRaw:V5,keypoints:n0}])}))}var o0,Q=[],X5=[0,0,0,0],r0=[0,0,0,0],s0=0,C5=Number.MAX_SAFE_INTEGER,KA=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];async function q5(A){return o0?A.debug&&M("cached model:",o0.modelUrl):(o0=await n.loadGraphModel(H(A.modelBasePath,A.body.modelPath)),!o0||!o0.modelUrl?M("load model failed:",A.body.modelPath):A.debug&&M("load model:",o0.modelUrl)),o0}async function Qe(A,e,t){Q.length=0;let r=A[0][0];for(let i=0;ie.body.minConfidence&&Q.push({score:Math.round(100*s0)/100,part:KA[i],positionRaw:[r[i][1],r[i][0]],position:[Math.round((t.shape[2]||0)*r[i][1]),Math.round((t.shape[1]||0)*r[i][0])]});s0=Q.reduce((i,l)=>l.score>i?l.score:i,0);let o=Q.map(i=>i.position[0]),a=Q.map(i=>i.position[1]);X5=[Math.min(...o),Math.min(...a),Math.max(...o)-Math.min(...o),Math.max(...a)-Math.min(...a)];let x=Q.map(i=>i.positionRaw[0]),s=Q.map(i=>i.positionRaw[1]);r0=[Math.min(...x),Math.min(...s),Math.max(...x)-Math.min(...x),Math.max(...s)-Math.min(...s)];let y=[];return y.push({id:0,score:s0,box:X5,boxRaw:r0,keypoints:Q}),y}async function _e(A,e,t){let r=[];for(let o=0;oe.body.minConfidence&&Q.push({part:KA[x],score:s,positionRaw:[a[3*x+1],a[3*x+0]],position:[Math.trunc(a[3*x+1]*(t.shape[2]||0)),Math.trunc(a[3*x+0]*(t.shape[1]||0))]})}r0=[a[51+1],a[51+0],a[51+3]-a[51+1],a[51+2]-a[51+0]],r.push({id:o,score:s0,boxRaw:r0,box:[Math.trunc(r0[0]*(t.shape[2]||0)),Math.trunc(r0[1]*(t.shape[1]||0)),Math.trunc(r0[2]*(t.shape[2]||0)),Math.trunc(r0[3]*(t.shape[1]||0))],keypoints:Q})}}return r}async function G5(A,e){return C50?(C5++,[{id:0,score:s0,box:X5,boxRaw:r0,keypoints:Q}]):(C5=0,new Promise(async t=>{let r=n.tidy(()=>{if(!o0.inputs[0].shape)return null;let s=o0.inputs[0].shape[2];s===-1&&(s=256);let y=n.image.resizeBilinear(A,[s,s],!1);return n.cast(y,"int32")}),o;e.body.enabled&&(o=await o0.predict(r)),n.dispose(r),o||t([]);let a=await o.array(),x;o.shape[2]===17?x=await Qe(a,e,A):o.shape[2]===56&&(x=await _e(a,e,A)),n.dispose(o),t(x)}))}var b0=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var J,B5=[],U5=Number.MAX_SAFE_INTEGER,U0=2.5;async function J5(A){if(J)A.debug&&M("cached model:",J.modelUrl);else{J=await n.loadGraphModel(H(A.modelBasePath,A.object.modelPath));let e=Object.values(J.modelSignature.inputs);if(J.inputSize=Array.isArray(e)?parseInt(e[0].tensorShape.dim[2].size):null,!J.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${A.object.modelPath}`);!J||!J.modelUrl?M("load model failed:",A.object.modelPath):A.debug&&M("load model:",J.modelUrl)}return J}async function $e(A,e,t,r){let o=0,a=[];for(let i of[1,2,4])n.tidy(async()=>{var p,h;let l=i*13,d=(p=A.find(R=>R.shape[1]===l**2&&R.shape[2]===b0.length))==null?void 0:p.squeeze(),c=(h=A.find(R=>R.shape[1]===l**2&&R.shape[2]r.object.minConfidence&&j!==61){let T=(.5+Math.trunc(R%l))/l,g=(.5+Math.trunc(R/l))/l,v=P[R].map(D=>D*(l/i/e)),[m,S]=[T-U0/i*v[0],g-U0/i*v[1]],[N,O]=[T+U0/i*v[2]-m,g+U0/i*v[3]-S],k=[m,S,N,O];k=k.map(D=>Math.max(0,Math.min(D,1)));let V=[k[0]*t[0],k[1]*t[1],k[2]*t[0],k[3]*t[1]],z={id:o++,score:Math.round(100*W)/100,class:j+1,label:b0[j].label,box:V.map(D=>Math.trunc(D)),boxRaw:k};a.push(z)}}});A.forEach(i=>n.dispose(i));let x=a.map(i=>[i.boxRaw[1],i.boxRaw[0],i.boxRaw[3],i.boxRaw[2]]),s=a.map(i=>i.score),y=[];if(x&&x.length>0){let i=await n.image.nonMaxSuppressionAsync(x,s,r.object.maxDetected,r.object.iouThreshold,r.object.minConfidence);y=await i.data(),n.dispose(i)}return a=a.filter((i,l)=>y.includes(l)).sort((i,l)=>l.score-i.score),a}async function Y5(A,e){return U50?(U5++,B5):(U5=0,new Promise(async t=>{let r=[A.shape[2],A.shape[1]],o=n.image.resizeBilinear(A,[J.inputSize,J.inputSize],!1),a=n.div(o,255),x=a.transpose([0,3,1,2]);n.dispose(a),n.dispose(o);let s;e.object.enabled&&(s=await J.predict(x)),n.dispose(x);let y=await $e(s,J.inputSize,r,e);B5=y,t(y)}))}var Y,D5=[],K5=Number.MAX_SAFE_INTEGER;async function Q5(A){if(Y)A.debug&&M("cached model:",Y.modelUrl);else{Y=await n.loadGraphModel(H(A.modelBasePath,A.object.modelPath));let e=Object.values(Y.modelSignature.inputs);if(Y.inputSize=Array.isArray(e)?parseInt(e[0].tensorShape.dim[2].size):null,!Y.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${A.object.modelPath}`);!Y||!Y.modelUrl?M("load model failed:",A.object.modelPath):A.debug&&M("load model:",Y.modelUrl)}return Y}async function A2(A,e,t,r){if(!A)return[];let o=[],a=await A.array(),x=n.squeeze(A);n.dispose(A);let s=n.split(x,6,1);n.dispose(x);let y=n.stack([s[1],s[0],s[3],s[2]],1),i=n.squeeze(y),l=n.squeeze(s[4]),d=n.squeeze(s[5]);s.forEach(f=>n.dispose(f));let c=await n.image.nonMaxSuppressionAsync(i,l,r.object.maxDetected,r.object.iouThreshold,r.object.minConfidence);n.dispose(i),n.dispose(l),n.dispose(d);let u=await c.data();n.dispose(c);let P=0;for(let f of u){let p=Math.trunc(100*a[0][f][4])/100,h=a[0][f][5],R=b0[h].label,[j,W]=[a[0][f][0]/e,a[0][f][1]/e],T=[j,W,a[0][f][2]/e-j,a[0][f][3]/e-W],g=[Math.trunc(T[0]*t[0]),Math.trunc(T[1]*t[1]),Math.trunc(T[2]*t[0]),Math.trunc(T[3]*t[1])];o.push({id:P++,score:p,class:h,label:R,box:g,boxRaw:T})}return o}async function _5(A,e){return K50?(K5++,D5):(K5=0,new Promise(async t=>{let r=[A.shape[2],A.shape[1]],o=n.image.resizeBilinear(A,[Y.inputSize,Y.inputSize]),a=e.object.enabled?Y.execute(o,["tower_0/detections"]):null;n.dispose(o);let x=await A2(a,Y.inputSize,r,e);D5=x,t(x)}))}function e2(A,e,t){let r=function(s,y,i){let l=new RegExp("\\b"+y+" \\w+ (\\w+)","ig");s.replace(l,(d,c)=>(i[c]=0,d))},o=function(s,y){let i=A.createShader(y);if(A.shaderSource(i,s),A.compileShader(i),!A.getShaderParameter(i,A.COMPILE_STATUS))throw new Error("Filter: GL compile failed",A.getShaderInfoLog(i));return i};this.uniform={},this.attribute={};let a=o(e,A.VERTEX_SHADER),x=o(t,A.FRAGMENT_SHADER);if(this.id=A.createProgram(),A.attachShader(this.id,a),A.attachShader(this.id,x),A.linkProgram(this.id),!A.getProgramParameter(this.id,A.LINK_STATUS))throw new Error("Filter: GL link failed",A.getProgramInfoLog(this.id));A.useProgram(this.id),r(e,"attribute",this.attribute);for(let s in this.attribute)this.attribute[s]=A.getAttribLocation(this.id,s);r(e,"uniform",this.uniform),r(t,"uniform",this.uniform);for(let s in this.uniform)this.uniform[s]=A.getUniformLocation(this.id,s)}function QA(A){A||(A={});let e=0,t=null,r=!1,o=-1,a=[null,null],x=[],s=-1,y=-1,i=null,l=null,d={},c=A.canvas||document.createElement("canvas"),u={},P={INTERMEDIATE:1},f=c.getContext("webgl");if(!f)throw new Error("Filter: getContext() failed");this.addFilter=function(T){let g=Array.prototype.slice.call(arguments,1),v=d[T];x.push({func:v,args:g})},this.reset=function(){x=[]};let p=function(T,g){if(!(T===s&&g===y)){if(c.width=T,s=T,c.height=g,y=g,!i){let v=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);i=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,i),f.bufferData(f.ARRAY_BUFFER,v,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,s,y),a=[null,null]}},h=function(T,g){let v=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,v);let m=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,m);let S=f.createTexture();return f.bindTexture(f.TEXTURE_2D,S),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,T,g,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,S,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:v,texture:S}},R=function(T){return a[T]=a[T]||h(s,y),a[T]},j=function(T=null){var S,N;let g=null,v=null,m=!1;e===0?g=t:g=(S=R(o))==null?void 0:S.texture,e++,r&&!(T&P.INTERMEDIATE)?(v=null,m=e%2==0):(o=(o+1)%2,v=(N=R(o))==null?void 0:N.fbo),f.bindTexture(f.TEXTURE_2D,g),f.bindFramebuffer(f.FRAMEBUFFER,v),f.uniform1f(l.uniform.flipY,m?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(T){if(p(T.width,T.height),e=0,t||(t=f.createTexture()),f.bindTexture(f.TEXTURE_2D,t),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,T),x.length===0)return j(),c;for(let g=0;gc5(e,"__esModule",{value:!0});var de=(e,A)=>{WA(e);for(var t in A)c5(e,t,{get:A[t],enumerable:!0})},b=(e,A,t)=>{if(A&&typeof A=="object"||typeof A=="function")for(let r of SA(A))!kA.call(e,r)&&r!=="default"&&c5(e,r,{get:()=>A[r],enumerable:!(t=jA(A,r))||t.enumerable});return e};var fe=(e,A,t)=>{if(!A.has(e))throw TypeError("Cannot "+t)};var G=(e,A,t)=>(fe(e,A,"read from private field"),t?t.call(e):A.get(e)),e0=(e,A,t)=>{if(A.has(e))throw TypeError("Cannot add the same private member more than once");A instanceof WeakSet?A.add(e):A.set(e,t)},n0=(e,A,t,r)=>(fe(e,A,"write to private field"),r?r.call(e,t):A.set(e,t),t);function Z(e,A){let t=e.endsWith("/")?"":"/",o=A.startsWith(".")||A.startsWith("/")||A.startsWith("http:")||A.startsWith("https:")||A.startsWith("file:")?`${A}`:`${e}${t}${A}`;if(!o.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${o} Expecting JSON file`);return o}function M(...e){let A=new Date,t=`${A.getHours().toString().padStart(2,"0")}:${A.getMinutes().toString().padStart(2,"0")}:${A.getSeconds().toString().padStart(2,"0")}.${A.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(t,"Human:",...e)}var L=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function U(...e){let A=t=>t&&typeof t=="object";return e.reduce((t,r)=>(Object.keys(r||{}).forEach(o=>{let a=t[o],i=r[o];Array.isArray(a)&&Array.isArray(i)?t[o]=a.concat(...i):A(a)&&A(i)?t[o]=U(a,i):t[o]=i}),t),{})}var me={backend:"webgl",modelBasePath:"../models/",wasmPath:"../node_modules/@tensorflow/tfjs-backend-wasm/dist/",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,skipFrame:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:15,skipFrames:15,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:11,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:17,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:1,minConfidence:.2,skipFrames:1},hand:{enabled:!0,rotation:!0,skipFrames:18,minConfidence:.1,iouThreshold:.1,maxDetected:2,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:19},segmentation:{enabled:!1,modelPath:"selfie.json"}};function ue(){let e="",A="";if(typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let r=t[0].match(/\(([^()]+)\)/g);e=r&&r[0]?r[0].replace(/\(|\)/g,""):"",A=navigator.userAgent.replace(t[0],""),e[1]&&(A=A.replace(t[1],"")),A=A.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,A=`NodeJS ${process.version}`);return{platform:e,agent:A}}var n={};de(n,{data:()=>XA,version:()=>CA});b(n,Xt);b(n,Ct);b(n,qt);b(n,Gt);b(n,Ut);b(n,Bt);import{version as IA}from"@tensorflow/tfjs/package.json";import{version as NA}from"@tensorflow/tfjs-core/package.json";import{version as OA}from"@tensorflow/tfjs-data/package.json";import{version as LA}from"@tensorflow/tfjs-layers/package.json";import{version as HA}from"@tensorflow/tfjs-converter/package.json";import{version as VA}from"@tensorflow/tfjs-backend-cpu/package.json";import{version as ZA}from"@tensorflow/tfjs-backend-webgl/package.json";import{version as FA}from"@tensorflow/tfjs-backend-wasm/package.json";import*as Xt from"@tensorflow/tfjs-core/dist/index.js";import*as Ct from"@tensorflow/tfjs-layers/dist/index.js";import*as qt from"@tensorflow/tfjs-converter/dist/index.js";import*as XA from"@tensorflow/tfjs-data/dist/index.js";import*as Gt from"@tensorflow/tfjs-backend-cpu/dist/index.js";import*as Ut from"@tensorflow/tfjs-backend-webgl/dist/index.js";import*as Bt from"@tensorflow/tfjs-backend-wasm/dist/index.js";var CA={tfjs:IA,"tfjs-core":NA,"tfjs-data":OA,"tfjs-layers":LA,"tfjs-converter":HA,"tfjs-backend-cpu":VA,"tfjs-backend-webgl":ZA,"tfjs-backend-wasm":FA};var D={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function qA(){let e=D.gl;!e||(D.extensions=e.getSupportedExtensions())}function he(){if(!n.findBackend(D.name)){try{D.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(D.width,D.height):document.createElement("canvas")}catch(e){M("error: cannot create canvas:",e);return}try{D.gl=D.canvas.getContext("webgl2",D.webGLattr)}catch(e){M("error: cannot get WebGL2 context:",e);return}try{n.setWebGLContext(2,D.gl)}catch(e){M("error: cannot set WebGL2 context:",e);return}try{let e=new n.GPGPUContext(D.gl);n.registerBackend(D.name,()=>new n.MathBackendWebGL(e),D.priority)}catch(e){M("error: cannot register WebGL backend:",e);return}try{n.getKernelsForBackend("webgl").forEach(A=>{let t={...A,backendName:D.name};n.registerKernel(t)})}catch(e){M("error: cannot update WebGL backend registration:",e);return}try{n.ENV.set("WEBGL_VERSION",2)}catch(e){M("error: cannot set WebGL backend flags:",e);return}qA(),M("backend registered:",D.name)}}function pe(e,A){let t=[e.startPoint[0]*A[0],e.startPoint[1]*A[1]],r=[e.endPoint[0]*A[0],e.endPoint[1]*A[1]];return{startPoint:t,endPoint:r}}function w0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function j0(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function S0(e,A,t){let r=A.shape[1],o=A.shape[2],a=[[e.startPoint[1]/r,e.startPoint[0]/o,e.endPoint[1]/r,e.endPoint[0]/o]];return n.image.cropAndResize(A,a,[0],t)}function X0(e,A=1.5){let t=j0(e),r=w0(e),o=[A*r[0]/2,A*r[1]/2],a=[t[0]-o[0],t[1]-o[1]],i=[t[0]+o[0],t[1]+o[1]];return{startPoint:a,endPoint:i,landmarks:e.landmarks}}function C0(e){let A=j0(e),t=w0(e),o=Math.max(...t)/2,a=[Math.round(A[0]-o),Math.round(A[1]-o)],i=[Math.round(A[0]+o),Math.round(A[1]+o)];return{startPoint:a,endPoint:i,landmarks:e.landmarks}}function d5(e){let A=e.map(a=>a[0]),t=e.map(a=>a[1]),r=[Math.min(...A),Math.min(...t)],o=[Math.max(...A),Math.max(...t)];return{startPoint:r,endPoint:o,landmarks:e}}var be=e=>({startPoint:n.slice(e,[0,0],[-1,2]),endPoint:n.slice(e,[0,2],[-1,2])});var q0=[[1,0,0],[0,1,0],[0,0,1]];function GA(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function ge(e,A){let t=Math.PI/2-Math.atan2(-(A[1]-e[1]),A[0]-e[0]);return GA(t)}function Me(e,A){return[[1,0,e],[0,1,A],[0,0,1]]}function l0(e,A){let t=0;for(let r=0;r{let l=n.image.resizeBilinear(A,[this.inputSize,this.inputSize]),c=n.sub(n.div(l,127.5),.5),d=this.model.execute(c),m;if(Array.isArray(d)){let h=d.sort((P,g)=>P.size-g.size),E=n.concat([h[0],h[2]],2),w=n.concat([h[1],h[3]],2),I=n.concat([w,E],1);m=n.squeeze(I,0)}else m=n.squeeze(d);let T=BA(m,this.anchors,[this.inputSize,this.inputSize]),f=n.slice(m,[0,0],[-1,1]),p=n.squeeze(n.sigmoid(f));return[m,T,p]});this.config=U(this.config,t);let i=await n.image.nonMaxSuppressionAsync(o,a,this.config.face.detector.maxDetected,this.config.face.detector.iouThreshold,this.config.face.detector.minConfidence),s=await i.array();n.dispose(i);let y=[],x=await a.data();for(let l=0;lthis.config.face.detector.minConfidence){let d=n.slice(o,[s[l],0],[1,-1]),m=be(d);n.dispose(d);let T=this.anchorsData[s[l]],f=n.tidy(()=>n.reshape(n.squeeze(n.slice(r,[s[l],Ee-1],[1,-1])),[Ee,-1]));y.push({box:m,landmarks:f,anchor:T,confidence:c})}}return n.dispose(r),n.dispose(o),n.dispose(a),{boxes:y,scaleFactor:[A.shape[2]/this.inputSize,A.shape[1]/this.inputSize]}}};async function we(e){let A=await n.loadGraphModel(Z(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),t=new Re(A,e);return!A||!A.modelUrl?M("load model failed:",e.face.detector.modelPath):e.debug&&M("load model:",A.modelUrl),t}var s0={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},m5=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],k0=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],h0=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var DA=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],YA=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],JA=[33,133,362,263,1,78,308],o2=DA.map(e=>k0[e]),r2=YA.map(e=>k0[e]),s2=JA.map(e=>k0[e]);var u5=s0.leftEyeLower0,h5=s0.rightEyeLower0,T0={leftBounds:[u5[0],u5[u5.length-1]],rightBounds:[h5[0],h5[h5.length-1]]},je={count:468,mouth:13,symmetryLine:[13,s0.midwayBetweenEyes[0]]},KA={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},P0={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function G0(e,A,t,r){for(let o=0;o[a[0]/this.meshSize*(c[0]-this.meshSize/2),a[1]/this.meshSize*(c[1]-this.meshSize/2),c[2]]),s=r!==0?f5(r,[0,0]):q0,y=r!==0?i.map(c=>[...ve(c,s),c[2]]):i,x=r!==0?Pe(o):q0,l=[...j0({startPoint:t.startPoint,endPoint:t.endPoint}),1];return y.map(c=>[Math.round(c[0]+l0(l,x[0])),Math.round(c[1]+l0(l,x[1])),Math.round(c[2])])}getLeftToRightEyeDepthDifference(A){let t=A[T0.leftBounds[0]][2],r=A[T0.rightBounds[0]][2];return t-r}getEyeBox(A,t,r,o,a=!1){let i=C0(X0(d5([A[r],A[o]]),this.irisEnlarge)),s=w0(i),y=n.image.cropAndResize(t,[[i.startPoint[1]/this.meshSize,i.startPoint[0]/this.meshSize,i.endPoint[1]/this.meshSize,i.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);if(a&&n.ENV.flags.IS_BROWSER){let x=n.image.flipLeftRight(y);n.dispose(y),y=x}return{box:i,boxSize:s,crop:y}}getEyeCoords(A,t,r,o=!1){let a=[];for(let i=0;i{let x=i;return y===2?x=o:y===4&&(x=a),[s[0],s[1],x]})}correctFaceRotation(A,t,r){let[o,a]=t.landmarks.length>=je.count?je.symmetryLine:KA.symmetryLine,i=ge(t.landmarks[o],t.landmarks[a]),s=j0({startPoint:t.startPoint,endPoint:t.endPoint}),y=[s[0]/r.shape[2],s[1]/r.shape[1]],x=n.image.rotateWithOffset(r,i,0,y),l=f5(-i,s),c=A.face.mesh.enabled?S0({startPoint:t.startPoint,endPoint:t.endPoint},x,[this.meshSize,this.meshSize]):S0({startPoint:t.startPoint,endPoint:t.endPoint},x,[this.boxSize,this.boxSize]),d=n.div(c,255);return n.dispose(c),n.dispose(x),[i,l,d]}async augmentIris(A,t){let{box:r,boxSize:o,crop:a}=this.getEyeBox(A,t,T0.leftBounds[0],T0.leftBounds[1],!0),{box:i,boxSize:s,crop:y}=this.getEyeBox(A,t,T0.rightBounds[0],T0.rightBounds[1]),x=n.concat([a,y]);n.dispose(a),n.dispose(y);let l=this.irisModel.predict(x);n.dispose(x);let c=await l.data();n.dispose(l);let d=c.slice(0,P0.numCoordinates*3),{rawCoords:m,iris:T}=this.getEyeCoords(d,r,o,!0),f=c.slice(P0.numCoordinates*3),{rawCoords:p,iris:h}=this.getEyeCoords(f,i,s),E=this.getLeftToRightEyeDepthDifference(A);Math.abs(E)<30?(G0(A,m,"left",null),G0(A,p,"right",null)):E<1?G0(A,m,"left",["EyeUpper0","EyeLower0"]):G0(A,p,"right",["EyeUpper0","EyeLower0"]);let w=this.getAdjustedIrisCoords(A,T,"left"),I=this.getAdjustedIrisCoords(A,h,"right");return A.concat(w).concat(I)}async predict(A,t){let r=!1,o;if((this.skipped===0||this.skipped>t.face.detector.skipFrames||!t.face.mesh.enabled||!t.skipFrame)&&(o=await this.boundingBoxDetector.getBoundingBoxes(A,t),this.skipped=0),t.skipFrame&&this.skipped++,!t.skipFrame||o&&o.boxes&&(!t.face.mesh.enabled||o.boxes.length!==this.detectedFaces&&this.detectedFaces!==t.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let s of o.boxes){let y=await s.box.startPoint.data(),x=await s.box.endPoint.data(),l=await s.landmarks.array();this.storedBoxes.push({startPoint:y,endPoint:x,landmarks:l,confidence:s.confidence})}this.storedBoxes.length>0&&(r=!0)}if(r){if(!o||!o.boxes||o.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let s=0;s{n.dispose(s.box.startPoint),n.dispose(s.box.endPoint),n.dispose(s.landmarks)});let a=[],i=[];for(let s of this.storedBoxes){let y,x=0,l;if(t.face.detector.rotation&&t.face.mesh.enabled&&n.ENV.flags.IS_BROWSER)[x,l,y]=this.correctFaceRotation(t,s,A);else{l=q0;let c=A.clone(),d=t.face.mesh.enabled?S0({startPoint:s.startPoint,endPoint:s.endPoint},c,[this.meshSize,this.meshSize]):S0({startPoint:s.startPoint,endPoint:s.endPoint},c,[this.boxSize,this.boxSize]);y=n.div(d,255),n.dispose(d),n.dispose(c)}if(!t.face.mesh.enabled)a.push({mesh:[],box:s,faceConfidence:null,boxConfidence:s.confidence,confidence:s.confidence,image:y});else{let[c,d,m]=this.meshDetector.execute(y);n.dispose(c);let T=(await d.data())[0];n.dispose(d);let f=n.reshape(m,[-1,3]),p=await f.array();if(n.dispose(m),n.dispose(f),Ts.confidence>t.face.detector.minConfidence)),this.detectedFaces=a.length,a}};var X=[null,null,null],b5;async function Se(e,A){let t=await b5.predict(e,A),r=[],o=0;for(let a of t||[]){if(!a||a.isDisposedInternal)continue;let i=a.mesh.map(l=>[l[0]/(e.shape[2]||0),l[1]/(e.shape[1]||0),l[2]/b5.meshSize]),s={};if(a.mesh&&a.mesh.length>0)for(let l of Object.keys(s0))s[l]=s0[l].map(c=>a.mesh[c]);let y=a.box?[Math.trunc(Math.max(0,a.box.startPoint[0])),Math.trunc(Math.max(0,a.box.startPoint[1])),Math.trunc(Math.min(e.shape[2]||0,a.box.endPoint[0])-Math.max(0,a.box.startPoint[0])),Math.trunc(Math.min(e.shape[1]||0,a.box.endPoint[1])-Math.max(0,a.box.startPoint[1]))]:[0,0,0,0],x=a.box?[a.box.startPoint[0]/(e.shape[2]||0),a.box.startPoint[1]/(e.shape[1]||0),(a.box.endPoint[0]-a.box.startPoint[0])/(e.shape[2]||0),(a.box.endPoint[1]-a.box.startPoint[1])/(e.shape[1]||0)]:[0,0,0,0];r.push({id:o++,score:Math.round(100*a.faceConfidence||100*a.boxConfidence||0)/100,boxScore:Math.round(100*a.boxConfidence)/100,faceScore:Math.round(100*a.faceConfidence)/100,box:y,boxRaw:x,mesh:a.mesh,meshRaw:i,annotations:s,tensor:a.image}),a.coords&&n.dispose(a.coords)}return r}async function g5(e){return!X[0]&&e.face.enabled||!X[1]&&e.face.mesh.enabled||!X[2]&&e.face.iris.enabled?(X=await Promise.all([!X[0]&&e.face.enabled?we(e):null,!X[1]&&e.face.mesh.enabled?n.loadGraphModel(Z(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!X[2]&&e.face.iris.enabled?n.loadGraphModel(Z(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!X[1]||!X[1].modelUrl?M("load model failed:",e.face.mesh.modelPath):e.debug&&M("load model:",X[1].modelUrl)),e.face.iris.enabled&&(!X[2]||!X[2].modelUrl?M("load model failed:",e.face.iris.modelPath):e.debug&&M("load model:",X[2].modelUrl))):e.debug&&(X[0]&&M("cached model:",X[0].model.modelUrl),X[1]&&M("cached model:",X[1].modelUrl),X[2]&&M("cached model:",X[2].modelUrl)),b5=new p5(X[0],X[1],X[2]),X}var ke=h0,We=k0;var o0,U0=[],Ie=0,M5=Number.MAX_SAFE_INTEGER;async function T5(e){let A=Z(e.modelBasePath,e.face.description.modelPath);return o0?e.debug&&M("cached model:",A):(o0=await n.loadGraphModel(A),o0?e.debug&&M("load model:",A):M("load model failed:",e.face.description.modelPath)),o0}function P5(e,A,t=2){if(!e||!A||(e==null?void 0:e.length)===0||(A==null?void 0:A.length)===0||(e==null?void 0:e.length)!==(A==null?void 0:A.length))return 0;let r=5*e.map((a,i)=>Math.abs(e[i]-A[i])**t).reduce((a,i)=>a+i,0)**(1/t);return Math.max(0,100-r)/100}function Ne(e,A,t=0){let r={similarity:0,name:"",source:"",embedding:[]};if(!e||!A||!Array.isArray(e)||!Array.isArray(A))return r;for(let o of A)if(o.embedding&&o.name){let a=P5(e,o.embedding);a>t&&a>r.similarity&&(r={...o,similarity:a})}return r}function v5(e){return n.tidy(()=>{let t=e.image||e.tensor||e;if(!(t instanceof n.Tensor))return null;let r=[[.05,.15,.85,.85]];if(!o0.inputs[0].shape)return null;let o=t.shape.length===3?n.image.cropAndResize(n.expandDims(t,0),r,[0],[o0.inputs[0].shape[2],o0.inputs[0].shape[1]]):n.image.cropAndResize(t,r,[0],[o0.inputs[0].shape[2],o0.inputs[0].shape[1]]);return n.mul(o,255)})}async function z5(e,A,t,r){var o,a;return o0?M50?(M5++,U0[t]):(M5=0,new Promise(async i=>{let s=v5(e),y,x={age:0,gender:"unknown",genderScore:0,descriptor:[]};if(A.face.description.enabled&&(y=await o0.predict(s)),n.dispose(s),y){let l=await y.find(h=>h.shape[1]===1).data(),c=Math.trunc(200*Math.abs(l[0]-.5))/100;c>A.face.description.minConfidence&&(x.gender=l[0]<=.5?"female":"male",x.genderScore=Math.min(.99,c));let m=(await n.argMax(y.find(h=>h.shape[1]===100),1).data())[0],T=await y.find(h=>h.shape[1]===100).data();x.age=Math.round(T[m-1]>T[m+1]?10*m-100*T[m-1]:10*m+100*T[m+1])/10;let p=await y.find(h=>h.shape[1]===1024).data();x.descriptor=[...p],y.forEach(h=>n.dispose(h))}U0[t]=x,Ie=r,i(x)})):null}var QA=["angry","disgust","fear","happy","sad","surprise","neutral"],r0,B0=[],Oe=0,E5=Number.MAX_SAFE_INTEGER,R5=[.2989,.587,.114];async function w5(e){return r0?e.debug&&M("cached model:",r0.modelUrl):(r0=await n.loadGraphModel(Z(e.modelBasePath,e.face.emotion.modelPath)),!r0||!r0.modelUrl?M("load model failed:",e.face.emotion.modelPath):e.debug&&M("load model:",r0.modelUrl)),r0}async function j5(e,A,t,r){return r0?E50?(E5++,B0[t]):(E5=0,new Promise(async o=>{let a=n.image.resizeBilinear(e,[r0.inputs[0].shape[2],r0.inputs[0].shape[1]],!1),[i,s,y]=n.split(a,3,3);n.dispose(a);let x=n.mul(i,R5[0]),l=n.mul(s,R5[1]),c=n.mul(y,R5[2]);n.dispose(i),n.dispose(s),n.dispose(y);let d=n.addN([x,l,c]);n.dispose(x),n.dispose(l),n.dispose(c);let m=n.tidy(()=>n.mul(n.sub(d,.5),2));n.dispose(d);let T=[];if(A.face.emotion.enabled){let f=await r0.predict(m),p=await f.data();n.dispose(f);for(let h=0;hA.face.emotion.minConfidence&&T.push({score:Math.min(.99,Math.trunc(100*p[h])/100),emotion:QA[h]});T.sort((h,E)=>E.score-h.score)}n.dispose(m),B0[t]=T,Oe=r,o(T)})):null}var W0=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Le=W0.length,I0=W0.reduce((e,A,t)=>(e[A]=t,e),{}),_A=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],$A=_A.map(([e,A])=>[I0[e],I0[A]]),He=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function Ve(e){let A=e.reduce(({maxX:t,maxY:r,minX:o,minY:a},{position:{x:i,y:s}})=>({maxX:Math.max(t,i),maxY:Math.max(r,s),minX:Math.min(o,i),minY:Math.min(a,s)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[A.minX,A.minY,A.maxX-A.minX,A.maxY-A.minY]}function Ze(e,[A,t],[r,o]){let a=A/r,i=t/o,s=(x,l)=>({id:l,score:x.score,boxRaw:[x.box[0]/o,x.box[1]/r,x.box[2]/o,x.box[3]/r],box:[Math.trunc(x.box[0]*i),Math.trunc(x.box[1]*a),Math.trunc(x.box[2]*i),Math.trunc(x.box[3]*a)],keypoints:x.keypoints.map(({score:c,part:d,position:m})=>({score:c,part:d,position:[Math.trunc(m.x*i),Math.trunc(m.y*a)],positionRaw:[m.x/r,m.y/r]}))});return e.map((x,l)=>s(x,l))}var S5=class{constructor(A,t){this.priorityQueue=new Array(A),this.numberOfElements=-1,this.getElementValue=t}enqueue(A){this.priorityQueue[++this.numberOfElements]=A,this.swim(this.numberOfElements)}dequeue(){let A=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,A}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(A){for(;A>0&&this.less(Math.floor(A/2),A);)this.exchange(A,Math.floor(A/2)),A=Math.floor(A/2)}sink(A){for(;2*A<=this.numberOfElements;){let t=2*A;if(tt?t:e}function Fe(e,A,t,r){let o=t-e,a=r-A;return o*o+a*a}function N5(e,A){return{x:e.x+A.x,y:e.y+A.y}}var D0=1,v0=16,et=50**2;function Xe(e,A,t,r,o,a,i=2){let s=h=>({y:a.get(h.y,h.x,e),x:a.get(h.y,h.x,a.shape[2]/2+e)}),y=(h,E,w)=>({y:I5(Math.round(h.y/v0),0,E-1),x:I5(Math.round(h.x/v0),0,w-1)}),[x,l]=r.shape,c=y(A.position,x,l),d=s(c),T=N5(A.position,d);for(let h=0;h[I0[d],I0[m]]),i=a.map(([,d])=>d),s=a.map(([d])=>d),y=A.shape[2],x=i.length,l=new Array(y),c=W5(e.part,v0,t);l[e.part.id]={score:e.score,part:W0[e.part.id],position:c};for(let d=x-1;d>=0;--d){let m=i[d],T=s[d];l[m]&&!l[T]&&(l[T]=Xe(d,l[m],T,A,t,o))}for(let d=0;dA){s=!1;break}if(!s)break}return s}function nt(e,A){let[t,r,o]=A.shape,a=new S5(t*r*o,({score:i})=>i);for(let i=0;i{var i;let a=(i=o[r])==null?void 0:i.position;return a?Fe(t,A,a.y,a.x)<=et:!1})}function ot(e,A){return A.reduce((r,{position:o,score:a},i)=>(Ce(e,o,i)||(r+=a),r),0)/A.length}function qe(e,A,t,r,o,a){let i=[],s=nt(a,A);for(;i.lengthm.score>a);let c=ot(i,l),d=Ve(l);c>a&&i.push({keypoints:l,box:d,score:Math.round(100*c)/100})}return i}var K,rt=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function O5(e,A){let t=n.tidy(()=>{if(!K.inputs[0].shape)return[];let i=n.image.resizeBilinear(e,[K.inputs[0].shape[2],K.inputs[0].shape[1]]),s=n.sub(n.div(n.cast(i,"float32"),127.5),1),x=K.execute(s,rt).map(l=>n.squeeze(l,[0]));return x[1]=x[1].sigmoid(),x}),r=await Promise.all(t.map(i=>i.buffer()));for(let i of t)n.dispose(i);let o=await qe(r[0],r[1],r[2],r[3],A.body.maxDetected,A.body.minConfidence);return K.inputs[0].shape?Ze(o,[e.shape[1],e.shape[2]],[K.inputs[0].shape[2],K.inputs[0].shape[1]]):[]}async function L5(e){return K?e.debug&&M("cached model:",K.modelUrl):(K=await n.loadGraphModel(Z(e.modelBasePath,e.body.modelPath)),!K||!K.modelUrl?M("load model failed:",e.body.modelPath):e.debug&&M("load model:",K.modelUrl)),K}function Y0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function N0(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Ge(e,A,t){let r=A.shape[1],o=A.shape[2],a=[[e.startPoint[1]/r,e.startPoint[0]/o,e.endPoint[1]/r,e.endPoint[0]/o]];return n.image.cropAndResize(A,a,[0],t)}function Ue(e,A){let t=[e.startPoint[0]*A[0],e.startPoint[1]*A[1]],r=[e.endPoint[0]*A[0],e.endPoint[1]*A[1]],o=e.palmLandmarks.map(a=>[a[0]*A[0],a[1]*A[1]]);return{startPoint:t,endPoint:r,palmLandmarks:o,confidence:e.confidence}}function J0(e,A=1.5){let t=N0(e),r=Y0(e),o=[A*r[0]/2,A*r[1]/2],a=[t[0]-o[0],t[1]-o[1]],i=[t[0]+o[0],t[1]+o[1]];return{startPoint:a,endPoint:i,palmLandmarks:e.palmLandmarks}}function K0(e){let A=N0(e),t=Y0(e),o=Math.max(...t)/2,a=[A[0]-o,A[1]-o],i=[A[0]+o,A[1]+o];return{startPoint:a,endPoint:i,palmLandmarks:e.palmLandmarks}}var Be=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var H5=class{constructor(A){this.model=A,this.anchors=Be.map(t=>[t.x,t.y]),this.anchorsTensor=n.tensor2d(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=n.tensor1d([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=n.tensor1d([this.inputSize*2,this.inputSize*2])}normalizeBoxes(A){return n.tidy(()=>{let t=n.slice(A,[0,0],[-1,2]),r=n.slice(A,[0,2],[-1,2]),o=n.add(n.div(t,this.inputSizeTensor),this.anchorsTensor),a=n.div(r,this.doubleInputSizeTensor),i=n.mul(n.sub(o,a),this.inputSizeTensor),s=n.mul(n.add(o,a),this.inputSizeTensor);return n.concat2d([i,s],1)})}normalizeLandmarks(A,t){return n.tidy(()=>{let r=n.add(n.div(n.reshape(A,[-1,7,2]),this.inputSizeTensor),this.anchors[t]);return n.mul(r,this.inputSizeTensor)})}async getBoxes(A,t){let r=this.model.predict(A),o=n.squeeze(r);n.dispose(r);let a=n.tidy(()=>n.squeeze(n.sigmoid(n.slice(o,[0,0],[-1,1])))),i=await a.data(),s=n.slice(o,[0,1],[-1,4]),y=this.normalizeBoxes(s);n.dispose(s);let x=await n.image.nonMaxSuppressionAsync(y,i,t.hand.maxDetected,t.hand.iouThreshold,t.hand.minConfidence),l=await x.array();n.dispose(a),n.dispose(x);let c=[];for(let d of l)if(i[d]>=t.hand.minConfidence){let m=n.slice(y,[d,0],[1,-1]),T=n.slice(o,[d,5],[1,14]),f=n.tidy(()=>n.reshape(this.normalizeLandmarks(T,d),[-1,2]));n.dispose(T),c.push({box:m,palmLandmarks:f,confidence:i[d]})}return n.dispose(o),n.dispose(y),c}async estimateHandBounds(A,t){let r=A.shape[1],o=A.shape[2],a=n.tidy(()=>n.sub(n.div(n.image.resizeBilinear(A,[this.inputSize,this.inputSize]),127.5),1)),i=await this.getBoxes(a,t);n.dispose(a);let s=[];if(!i||i.length===0)return s;for(let y of i){let x=await y.box.data(),l=x.slice(0,2),c=x.slice(2,4),d=await y.palmLandmarks.array();n.dispose(y.box),n.dispose(y.palmLandmarks),s.push(Ue({startPoint:l,endPoint:c,palmLandmarks:d,confidence:y.confidence},[o/this.inputSize,r/this.inputSize]))}return s}};function st(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function De(e,A){let t=Math.PI/2-Math.atan2(-(A[1]-e[1]),A[0]-e[0]);return st(t)}var Ye=(e,A)=>[[1,0,e],[0,1,A],[0,0,1]];function c0(e,A){let t=0;for(let r=0;ri[0]),r=A.map(i=>i[1]),o=[Math.min(...t),Math.min(...r)],a=[Math.max(...t),Math.max(...r)];return{startPoint:o,endPoint:a}}getBoxForPalmLandmarks(A,t){let r=A.map(a=>Z5([...a,1],t)),o=this.calculateLandmarksBoundingBox(r);return J0(K0(o),it)}getBoxForHandLandmarks(A){let t=this.calculateLandmarksBoundingBox(A),r=J0(K0(t),Qe);r.palmLandmarks=[];for(let o=0;o<_e.length;o++)r.palmLandmarks.push(A[_e[o]].slice(0,2));return r}transformRawCoords(A,t,r,o){let a=Y0(t),i=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],s=A.map(m=>[i[0]*(m[0]-this.inputSize/2),i[1]*(m[1]-this.inputSize/2),i[2]*m[2]]),y=V5(r,[0,0]),x=s.map(m=>[...Z5(m,y),m[2]]),l=Ke(o),c=[...N0(t),1],d=[c0(c,l[0]),c0(c,l[1])];return x.map(m=>[Math.trunc(m[0]+d[0]),Math.trunc(m[1]+d[1]),Math.trunc(m[2])])}async estimateHands(A,t){let r=!1,o;(this.skipped===0||this.skipped>t.hand.skipFrames||!t.hand.landmarks||!t.skipFrame)&&(o=await this.handDetector.estimateHandBounds(A,t),this.skipped=0),t.skipFrame&&this.skipped++,o&&o.length>0&&(o.length!==this.detectedHands&&this.detectedHands!==t.hand.maxDetected||!t.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...o],this.storedBoxes.length>0&&(r=!0));let a=[];for(let i=0;i=t.hand.minConfidence){let w=n.reshape(h,[-1,3]),I=await w.array();n.dispose(h),n.dispose(w);let P=this.transformRawCoords(I,m,y,d),g=this.getBoxForHandLandmarks(P);this.storedBoxes[i]={...g,confidence:E};let v={landmarks:P,confidence:E,box:{topLeft:g.startPoint,bottomRight:g.endPoint}};a.push(v)}else this.storedBoxes[i]=null;n.dispose(h)}else{let y=J0(K0(s),Qe),x={confidence:s.confidence,box:{topLeft:y.startPoint,bottomRight:y.endPoint}};a.push(x)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=a.length,a}};var N={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>N.nameMapping[e],getPoints:e=>N.pointsMapping[e]},B={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>B.nameMapping[e]},W={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>W.nameMapping[e]};var p0={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function $e(e,A,t,r){let o=(A-r)/(e-t),a=Math.atan(o)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function eA(e,A){let t=$e(e[0],e[1],A[0],A[1]);if(e.length===2)return t;let r=$e(e[1],e[2],A[1],A[2]);return[t,r]}function AA(e,A=1){let t=0,r=0,o=0;return e>=75&&e<=105?t=1*A:e>=25&&e<=155?r=1*A:o=1*A,[t,r,o]}function lt(e,A,t){let r=e[0]-A[0],o=e[0]-t[0],a=A[0]-t[0],i=e[1]-A[1],s=e[1]-t[1],y=A[1]-t[1],x=e[2]-A[2],l=e[2]-t[2],c=A[2]-t[2],d=Math.sqrt(r*r+i*i+x*x),m=Math.sqrt(o*o+s*s+l*l),T=Math.sqrt(a*a+y*y+c*c),f=(T*T+d*d-m*m)/(2*T*d);f>1?f=1:f<-1&&(f=-1);let p=Math.acos(f);p=57.2958*p%180;let h;return p>p0.NO_CURL_START_LIMIT?h=B.none:p>p0.HALF_CURL_START_LIMIT?h=B.half:h=B.full,h}function tA(e,A,t,r){let o;return r===Math.abs(e)?e>0?o=W.horizontalLeft:o=W.horizontalRight:r===Math.abs(A)?A>0?o=W.horizontalLeft:o=W.horizontalRight:t>0?o=W.horizontalLeft:o=W.horizontalRight,o}function nA(e,A,t,r){let o;return r===Math.abs(e)?e<0?o=W.verticalDown:o=W.verticalUp:r===Math.abs(A)?A<0?o=W.verticalDown:o=W.verticalUp:t<0?o=W.verticalDown:o=W.verticalUp,o}function ct(e,A,t,r,o,a,i,s){let y,x=nA(e,A,t,r),l=tA(o,a,i,s);return x===W.verticalUp?l===W.horizontalLeft?y=W.diagonalUpLeft:y=W.diagonalUpRight:l===W.horizontalLeft?y=W.diagonalDownLeft:y=W.diagonalDownRight,y}function dt(e,A,t,r){let o=e[0]-A[0],a=e[0]-t[0],i=A[0]-t[0],s=e[1]-A[1],y=e[1]-t[1],x=A[1]-t[1],l=Math.max(Math.abs(o),Math.abs(a),Math.abs(i)),c=Math.max(Math.abs(s),Math.abs(y),Math.abs(x)),d=0,m=0,T=0,f=c/(l+1e-5);f>1.5?d+=p0.DISTANCE_VOTE_POWER:f>.66?m+=p0.DISTANCE_VOTE_POWER:T+=p0.DISTANCE_VOTE_POWER;let p=Math.sqrt(o*o+s*s),h=Math.sqrt(a*a+y*y),E=Math.sqrt(i*i+x*x),w=Math.max(p,h,E),I=e[0],P=e[1],g=t[0],v=t[1];w===p?(g=t[0],v=t[1]):w===E&&(I=A[0],P=A[1]);let O=eA([I,P],[g,v]),H=AA(O,p0.TOTAL_ANGLE_VOTE_POWER);d+=H[0],m+=H[1],T+=H[2];for(let V of r){let z=AA(V,p0.SINGLE_ANGLE_VOTE_POWER);d+=z[0],m+=z[1],T+=z[2]}let S;return d===Math.max(d,m,T)?S=nA(y,s,x,c):T===Math.max(m,T)?S=tA(a,o,i,l):S=ct(y,s,x,c,a,o,i,l),S}function X5(e){let A=[],t=[];for(let a of N.all){let i=N.getPoints(a),s=[],y=[];for(let x of i){let l=e[x[0]],c=e[x[1]],d=eA(l,c),m=d[0],T=d[1];s.push(m),y.push(T)}A.push(s),t.push(y)}let r=[],o=[];for(let a of N.all){let i=a===N.thumb?1:0,s=N.getPoints(a),y=e[s[i][0]],x=e[s[i+1][1]],l=e[s[3][1]],c=lt(y,x,l),d=dt(y,x,l,A[a].slice(i));r[a]=c,o[a]=d}return{curls:r,directions:o}}var O0=class{constructor(A){this.name=A,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}addCurl(A,t,r){typeof this.curls[A]=="undefined"&&(this.curls[A]=[]),this.curls[A].push([t,r])}addDirection(A,t,r){this.directions[A]||(this.directions[A]=[]),this.directions[A].push([t,r])}setWeight(A,t){this.weights[A]=t;let r=this.weights.reduce((o,a)=>o+a,0);this.weightsRelative=this.weights.map(o=>o*5/r)}matchAgainst(A,t){let r=0;for(let o in A){let a=A[o],i=this.curls[o];if(typeof i=="undefined"){r+=this.weightsRelative[o];continue}for(let[s,y]of i)if(a===s){r+=y*this.weightsRelative[o];break}}for(let o in t){let a=t[o],i=this.directions[o];if(typeof i=="undefined"){r+=this.weightsRelative[o];continue}for(let[s,y]of i)if(a===s){r+=y*this.weightsRelative[o];break}}return r/10}};var d0=new O0("thumbs up");d0.addCurl(N.thumb,B.none,1);d0.addDirection(N.thumb,W.verticalUp,1);d0.addDirection(N.thumb,W.diagonalUpLeft,.25);d0.addDirection(N.thumb,W.diagonalUpRight,.25);for(let e of[N.index,N.middle,N.ring,N.pinky])d0.addCurl(e,B.full,1),d0.addDirection(e,W.horizontalLeft,1),d0.addDirection(e,W.horizontalRight,1);var C=new O0("victory");C.addCurl(N.thumb,B.half,.5);C.addCurl(N.thumb,B.none,.5);C.addDirection(N.thumb,W.verticalUp,1);C.addDirection(N.thumb,W.diagonalUpLeft,1);C.addCurl(N.index,B.none,1);C.addDirection(N.index,W.verticalUp,.75);C.addDirection(N.index,W.diagonalUpLeft,1);C.addCurl(N.middle,B.none,1);C.addDirection(N.middle,W.verticalUp,1);C.addDirection(N.middle,W.diagonalUpLeft,.75);C.addCurl(N.ring,B.full,1);C.addDirection(N.ring,W.verticalUp,.2);C.addDirection(N.ring,W.diagonalUpLeft,1);C.addDirection(N.ring,W.horizontalLeft,.2);C.addCurl(N.pinky,B.full,1);C.addDirection(N.pinky,W.verticalUp,.2);C.addDirection(N.pinky,W.diagonalUpLeft,1);C.addDirection(N.pinky,W.horizontalLeft,.2);C.setWeight(N.index,2);C.setWeight(N.middle,2);var oA=[d0,C];var ft=.7;function rA(e){let A=X5(e),t={};for(let r of N.all)t[N.getName(r)]={curl:B.getName(A.curls[r]),direction:W.getName(A.directions[r])};return t}function sA(e){let A=X5(e),t=[];for(let r of oA){let o=r.matchAgainst(A.curls,A.directions);o>=ft&&t.push({name:r.name,confidence:o})}return t}var aA={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},f0,m0,iA;async function C5(e,A){let t=await iA.estimateHands(e,A);if(!t)return[];let r=[];for(let o=0;ot[o].landmarks[c]);let i=t[o].landmarks,s=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],y=[0,0,0,0];if(i&&i.length>0){for(let l of i)l[0]s[2]&&(s[2]=l[0]),l[1]>s[3]&&(s[3]=l[1]);s[2]-=s[0],s[3]-=s[1],y=[s[0]/(e.shape[2]||0),s[1]/(e.shape[1]||0),s[2]/(e.shape[2]||0),s[3]/(e.shape[1]||0)]}else s=t[o].box?[Math.trunc(Math.max(0,t[o].box.topLeft[0])),Math.trunc(Math.max(0,t[o].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,t[o].box.bottomRight[0])-Math.max(0,t[o].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,t[o].box.bottomRight[1])-Math.max(0,t[o].box.topLeft[1]))]:[0,0,0,0],y=[t[o].box.topLeft[0]/(e.shape[2]||0),t[o].box.topLeft[1]/(e.shape[1]||0),(t[o].box.bottomRight[0]-t[o].box.topLeft[0])/(e.shape[2]||0),(t[o].box.bottomRight[1]-t[o].box.topLeft[1])/(e.shape[1]||0)];let x=rA(i);r.push({id:o,score:Math.round(100*t[o].confidence)/100,box:s,boxRaw:y,keypoints:i,annotations:a,landmarks:x})}return r}async function q5(e){!f0||!m0?([f0,m0]=await Promise.all([e.hand.enabled?n.loadGraphModel(Z(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?n.loadGraphModel(Z(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!f0||!f0.modelUrl?M("load model failed:",e.hand.detector.modelPath):e.debug&&M("load model:",f0.modelUrl),!m0||!m0.modelUrl?M("load model failed:",e.hand.skeleton.modelPath):e.debug&&M("load model:",m0.modelUrl))):(e.debug&&M("cached model:",f0.modelUrl),e.debug&&M("cached model:",m0.modelUrl));let A=new H5(f0);return iA=new F5(A,m0),[f0,m0]}var xA=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],yA=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var Y;async function Q0(e){return Y?e.debug&&M("cached model:",Y.modelUrl):(Y=await n.loadGraphModel(Z(e.modelBasePath,e.body.modelPath)),Y.width=parseInt(Y.signature.inputs["input_1:0"].tensorShape.dim[2].size),Y.height=parseInt(Y.signature.inputs["input_1:0"].tensorShape.dim[1].size),!Y||!Y.modelUrl?M("load model failed:",e.body.modelPath):e.debug&&M("load model:",Y.modelUrl)),Y}async function G5(e,A){if(!Y)return[];if(!A.body.enabled)return[];let t={width:e.shape[2]||0,height:e.shape[1]||0},r=n.image.resizeBilinear(e,[Y.width,Y.height],!1),o=n.div(r,[255]);n.dispose(r);let a=await Y.predict(o),i=a.find(p=>p.size===195||p.size===155),s=await(i==null?void 0:i.data())||[];a.forEach(p=>n.dispose(p)),n.dispose(o);let y=[],x=(s==null?void 0:s.length)===195?xA:yA,l=5;for(let p=0;pp.position[0]),d=y.map(p=>p.position[1]),m=[Math.min(...c),Math.min(...d),Math.max(...c)-Math.min(...c),Math.max(...d)-Math.min(...c)],T=[0,0,0,0],f=y.reduce((p,h)=>h.score>p?h.score:p,0);return[{id:0,score:f,box:m,boxRaw:T,keypoints:y}]}var J,a0=[],U5=[0,0,0,0],B5=[0,0,0,0],_0=0,D5=Number.MAX_SAFE_INTEGER,mt=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function lA(e){return J?e.debug&&M("cached model:",J.modelUrl):(J=await n.loadGraphModel(Z(e.modelBasePath,e.body.modelPath)),!J||!J.modelUrl?M("load model failed:",e.body.modelPath):e.debug&&M("load model:",J.modelUrl)),J}function ut(e,A){let[t,r]=e.shape;return n.tidy(()=>{let o=(s,y)=>n.sub(s,n.mul(n.div(s,n.scalar(y,"int32")),n.scalar(y,"int32"))),a=n.reshape(e,[r*t]),i=n.max(a,0).dataSync()[0];if(i>A){let s=n.argMax(a,0),y=o(s,t).dataSync()[0],x=n.div(s,n.scalar(t,"int32")).dataSync()[0];return[y,x,i]}return[0,0,i]})}async function Y5(e,A){return D50?(D5++,[{id:0,score:_0,box:U5,boxRaw:B5,keypoints:a0}]):(D5=0,new Promise(async t=>{let r=n.tidy(()=>{if(!J.inputs[0].shape)return null;let x=n.image.resizeBilinear(e,[J.inputs[0].shape[2],J.inputs[0].shape[1]],!1);return n.mul(x,2).sub(1)}),o;if(A.body.enabled&&(o=await J.predict(r)),n.dispose(r),o){a0.length=0;let x=o.squeeze();n.dispose(o);let l=x.unstack(2);n.dispose(x);for(let c=0;cA.body.minConfidence&&a0.push({score:Math.round(100*T)/100,part:mt[c],positionRaw:[d/J.inputs[0].shape[2],m/J.inputs[0].shape[1]],position:[Math.round(e.shape[2]*d/J.inputs[0].shape[2]),Math.round(e.shape[1]*m/J.inputs[0].shape[1])]})}l.forEach(c=>n.dispose(c))}_0=a0.reduce((x,l)=>l.score>x?l.score:x,0);let a=a0.map(x=>x.position[0]),i=a0.map(x=>x.position[1]);U5=[Math.min(...a),Math.min(...i),Math.max(...a)-Math.min(...a),Math.max(...i)-Math.min(...i)];let s=a0.map(x=>x.positionRaw[0]),y=a0.map(x=>x.positionRaw[1]);B5=[Math.min(...s),Math.min(...y),Math.max(...s)-Math.min(...s),Math.max(...y)-Math.min(...y)],t([{id:0,score:_0,box:U5,boxRaw:B5,keypoints:a0}])}))}var i0,A0=[],J5=[0,0,0,0],x0=[0,0,0,0],y0=0,K5=Number.MAX_SAFE_INTEGER,cA=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];async function Q5(e){return i0?e.debug&&M("cached model:",i0.modelUrl):(i0=await n.loadGraphModel(Z(e.modelBasePath,e.body.modelPath)),!i0||!i0.modelUrl?M("load model failed:",e.body.modelPath):e.debug&&M("load model:",i0.modelUrl)),i0}async function ht(e,A,t){A0.length=0;let r=e[0][0];for(let x=0;xA.body.minConfidence&&A0.push({score:Math.round(100*y0)/100,part:cA[x],positionRaw:[r[x][1],r[x][0]],position:[Math.round((t.shape[2]||0)*r[x][1]),Math.round((t.shape[1]||0)*r[x][0])]});y0=A0.reduce((x,l)=>l.score>x?l.score:x,0);let o=A0.map(x=>x.position[0]),a=A0.map(x=>x.position[1]);J5=[Math.min(...o),Math.min(...a),Math.max(...o)-Math.min(...o),Math.max(...a)-Math.min(...a)];let i=A0.map(x=>x.positionRaw[0]),s=A0.map(x=>x.positionRaw[1]);x0=[Math.min(...i),Math.min(...s),Math.max(...i)-Math.min(...i),Math.max(...s)-Math.min(...s)];let y=[];return y.push({id:0,score:y0,box:J5,boxRaw:x0,keypoints:A0}),y}async function pt(e,A,t){let r=[];for(let o=0;oA.body.minConfidence&&A0.push({part:cA[i],score:s,positionRaw:[a[3*i+1],a[3*i+0]],position:[Math.trunc(a[3*i+1]*(t.shape[2]||0)),Math.trunc(a[3*i+0]*(t.shape[1]||0))]})}x0=[a[51+1],a[51+0],a[51+3]-a[51+1],a[51+2]-a[51+0]],r.push({id:o,score:y0,boxRaw:x0,box:[Math.trunc(x0[0]*(t.shape[2]||0)),Math.trunc(x0[1]*(t.shape[1]||0)),Math.trunc(x0[2]*(t.shape[2]||0)),Math.trunc(x0[3]*(t.shape[1]||0))],keypoints:A0})}}return r}async function _5(e,A){return K50?(K5++,[{id:0,score:y0,box:J5,boxRaw:x0,keypoints:A0}]):(K5=0,new Promise(async t=>{let r=n.tidy(()=>{if(!i0.inputs[0].shape)return null;let s=i0.inputs[0].shape[2];s===-1&&(s=256);let y=n.image.resizeBilinear(e,[s,s],!1);return n.cast(y,"int32")}),o;A.body.enabled&&(o=await i0.predict(r)),n.dispose(r),o||t([]);let a=await o.array(),i;o.shape[2]===17?i=await ht(a,A,e):o.shape[2]===56&&(i=await pt(a,A,e)),n.dispose(o),t(i)}))}var z0=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Q,$5=[],ee=Number.MAX_SAFE_INTEGER,$0=2.5;async function Ae(e){if(Q)e.debug&&M("cached model:",Q.modelUrl);else{Q=await n.loadGraphModel(Z(e.modelBasePath,e.object.modelPath));let A=Object.values(Q.modelSignature.inputs);if(Q.inputSize=Array.isArray(A)?parseInt(A[0].tensorShape.dim[2].size):null,!Q.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!Q||!Q.modelUrl?M("load model failed:",e.object.modelPath):e.debug&&M("load model:",Q.modelUrl)}return Q}async function bt(e,A,t,r){let o=0,a=[];for(let x of[1,2,4])n.tidy(async()=>{var p,h;let l=x*13,c=(p=e.find(E=>E.shape[1]===l**2&&E.shape[2]===z0.length))==null?void 0:p.squeeze(),d=(h=e.find(E=>E.shape[1]===l**2&&E.shape[2]r.object.minConfidence&&w!==61){let P=(.5+Math.trunc(E%l))/l,g=(.5+Math.trunc(E/l))/l,v=T[E].map($=>$*(l/x/A)),[u,k]=[P-$0/x*v[0],g-$0/x*v[1]],[O,H]=[P+$0/x*v[2]-u,g+$0/x*v[3]-k],S=[u,k,O,H];S=S.map($=>Math.max(0,Math.min($,1)));let V=[S[0]*t[0],S[1]*t[1],S[2]*t[0],S[3]*t[1]],z={id:o++,score:Math.round(100*I)/100,class:w+1,label:z0[w].label,box:V.map($=>Math.trunc($)),boxRaw:S};a.push(z)}}});e.forEach(x=>n.dispose(x));let i=a.map(x=>[x.boxRaw[1],x.boxRaw[0],x.boxRaw[3],x.boxRaw[2]]),s=a.map(x=>x.score),y=[];if(i&&i.length>0){let x=await n.image.nonMaxSuppressionAsync(i,s,r.object.maxDetected,r.object.iouThreshold,r.object.minConfidence);y=await x.data(),n.dispose(x)}return a=a.filter((x,l)=>y.includes(l)).sort((x,l)=>l.score-x.score),a}async function te(e,A){return ee0?(ee++,$5):(ee=0,new Promise(async t=>{let r=[e.shape[2],e.shape[1]],o=n.image.resizeBilinear(e,[Q.inputSize,Q.inputSize],!1),a=n.div(o,255),i=a.transpose([0,3,1,2]);n.dispose(a),n.dispose(o);let s;A.object.enabled&&(s=await Q.predict(i)),n.dispose(i);let y=await bt(s,Q.inputSize,r,A);$5=y,t(y)}))}var _,ne=[],oe=Number.MAX_SAFE_INTEGER;async function re(e){if(_)e.debug&&M("cached model:",_.modelUrl);else{_=await n.loadGraphModel(Z(e.modelBasePath,e.object.modelPath));let A=Object.values(_.modelSignature.inputs);if(_.inputSize=Array.isArray(A)?parseInt(A[0].tensorShape.dim[2].size):null,!_.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!_||!_.modelUrl?M("load model failed:",e.object.modelPath):e.debug&&M("load model:",_.modelUrl)}return _}async function gt(e,A,t,r){if(!e)return[];let o=[],a=await e.array(),i=n.squeeze(e);n.dispose(e);let s=n.split(i,6,1);n.dispose(i);let y=n.stack([s[1],s[0],s[3],s[2]],1),x=n.squeeze(y),l=n.squeeze(s[4]),c=n.squeeze(s[5]);s.forEach(f=>n.dispose(f));let d=await n.image.nonMaxSuppressionAsync(x,l,r.object.maxDetected,r.object.iouThreshold,r.object.minConfidence);n.dispose(x),n.dispose(l),n.dispose(c);let m=await d.data();n.dispose(d);let T=0;for(let f of m){let p=Math.trunc(100*a[0][f][4])/100,h=a[0][f][5],E=z0[h].label,[w,I]=[a[0][f][0]/A,a[0][f][1]/A],P=[w,I,a[0][f][2]/A-w,a[0][f][3]/A-I],g=[Math.trunc(P[0]*t[0]),Math.trunc(P[1]*t[1]),Math.trunc(P[2]*t[0]),Math.trunc(P[3]*t[1])];o.push({id:T++,score:p,class:h,label:E,box:g,boxRaw:P})}return o}async function se(e,A){return oe0?(oe++,ne):(oe=0,new Promise(async t=>{let r=[e.shape[2],e.shape[1]],o=n.image.resizeBilinear(e,[_.inputSize,_.inputSize]),a=A.object.enabled?_.execute(o,["tower_0/detections"]):null;n.dispose(o);let i=await gt(a,_.inputSize,r,A);ne=i,t(i)}))}function Mt(e,A,t){let r=function(s,y,x){let l=new RegExp("\\b"+y+" \\w+ (\\w+)","ig");s.replace(l,(c,d)=>(x[d]=0,c))},o=function(s,y){let x=e.createShader(y);if(e.shaderSource(x,s),e.compileShader(x),!e.getShaderParameter(x,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(x));return x};this.uniform={},this.attribute={};let a=o(A,e.VERTEX_SHADER),i=o(t,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,a),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(A,"attribute",this.attribute);for(let s in this.attribute)this.attribute[s]=e.getAttribLocation(this.id,s);r(A,"uniform",this.uniform),r(t,"uniform",this.uniform);for(let s in this.uniform)this.uniform[s]=e.getUniformLocation(this.id,s)}function dA(e){e||(e={});let A=0,t=null,r=!1,o=-1,a=[null,null],i=[],s=-1,y=-1,x=null,l=null,c={},d=e.canvas||document.createElement("canvas"),m={},T={INTERMEDIATE:1},f=d.getContext("webgl");if(!f)throw new Error("Filter: getContext() failed");this.addFilter=function(P){let g=Array.prototype.slice.call(arguments,1),v=c[P];i.push({func:v,args:g})},this.reset=function(){i=[]};let p=function(P,g){if(!(P===s&&g===y)){if(d.width=P,s=P,d.height=g,y=g,!x){let v=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);x=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,x),f.bufferData(f.ARRAY_BUFFER,v,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,s,y),a=[null,null]}},h=function(P,g){let v=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,v);let u=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,u);let k=f.createTexture();return f.bindTexture(f.TEXTURE_2D,k),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,P,g,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,k,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:v,texture:k}},E=function(P){return a[P]=a[P]||h(s,y),a[P]},w=function(P=null){var k,O;let g=null,v=null,u=!1;A===0?g=t:g=(k=E(o))==null?void 0:k.texture,A++,r&&!(P&T.INTERMEDIATE)?(v=null,u=A%2==0):(o=(o+1)%2,v=(O=E(o))==null?void 0:O.fbo),f.bindTexture(f.TEXTURE_2D,g),f.bindFramebuffer(f.FRAMEBUFFER,v),f.uniform1f(l.uniform.flipY,u?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(P){if(p(P.width,P.height),A=0,t||(t=f.createTexture()),f.bindTexture(f.TEXTURE_2D,t),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,P),i.length===0)return w(),d;for(let g=0;g0,a=A.naturalHeight||A.videoHeight||A.height||A.shape&&A.shape[2]>0;if(!o||!a)return{tensor:null,canvas:E};let x=o,s=a;if(x>J0&&(x=J0,s=x*a/o),s>J0&&(s=J0,x=s*o/a),e.filter.width>0?x=e.filter.width:e.filter.height>0&&(x=o*(e.filter.height/a)),e.filter.height>0?s=e.filter.height:e.filter.width>0&&(s=a*(e.filter.width/o)),!x||!s)throw new Error("Human: Input cannot determine dimension");(!E||(E==null?void 0:E.width)!==x||(E==null?void 0:E.height)!==s)&&(E=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(x,s):document.createElement("canvas"),(E==null?void 0:E.width)!==x&&(E.width=x),(E==null?void 0:E.height)!==s&&(E.height=s));let y=E.getContext("2d");if(A instanceof ImageData?y.putImageData(A,0,0):e.filter.flip&&typeof y.translate!="undefined"?(y.translate(o,0),y.scale(-1,1),y.drawImage(A,0,0,o,a,0,0,E==null?void 0:E.width,E==null?void 0:E.height),y.setTransform(1,0,0,1,0,0)):y.drawImage(A,0,0,o,a,0,0,E==null?void 0:E.width,E==null?void 0:E.height),e.filter.enabled){if((!F||!L||E.width!==L.width||(E==null?void 0:E.height)!==(L==null?void 0:L.height))&&(L=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(E==null?void 0:E.width,E==null?void 0:E.height):document.createElement("canvas"),(L==null?void 0:L.width)!==(E==null?void 0:E.width)&&(L.width=E==null?void 0:E.width),(L==null?void 0:L.height)!==(E==null?void 0:E.height)&&(L.height=E==null?void 0:E.height),F=n.ENV.flags.IS_BROWSER?new QA({canvas:L}):null),!F)return{tensor:null,canvas:E};F.reset(),F.addFilter("brightness",e.filter.brightness),e.filter.contrast!==0&&F.addFilter("contrast",e.filter.contrast),e.filter.sharpness!==0&&F.addFilter("sharpen",e.filter.sharpness),e.filter.blur!==0&&F.addFilter("blur",e.filter.blur),e.filter.saturation!==0&&F.addFilter("saturation",e.filter.saturation),e.filter.hue!==0&&F.addFilter("hue",e.filter.hue),e.filter.negative&&F.addFilter("negative"),e.filter.sepia&&F.addFilter("sepia"),e.filter.vintage&&F.addFilter("brownie"),e.filter.sepia&&F.addFilter("sepia"),e.filter.kodachrome&&F.addFilter("kodachrome"),e.filter.technicolor&&F.addFilter("technicolor"),e.filter.polaroid&&F.addFilter("polaroid"),e.filter.pixelate!==0&&F.addFilter("pixelate",e.filter.pixelate),F.apply(E)}else L=E,F&&(F=null);if(!t){let i;if(L.data){let l=[L.height,L.width,3];i=n.tensor3d(L.data,l,"int32")}else if(L instanceof ImageData)i=n.browser?n.browser.fromPixels(L):null;else if(e.backend==="webgl"||e.backend==="humangl"){let l=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(x,s):document.createElement("canvas");l.width=x,l.height=s;let d=l.getContext("2d");d==null||d.drawImage(L,0,0),i=n.browser?n.browser.fromPixels(l):null}else{let l=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(x,s):document.createElement("canvas");l.width=x,l.height=s;let d=l.getContext("2d");d==null||d.drawImage(L,0,0);let c=d==null?void 0:d.getImageData(0,0,x,s);i=n.browser?n.browser.fromPixels(c):null}if(i){let l=n.cast(i,"float32");t=n.expandDims(l,0),n.dispose(i),n.dispose(l)}}}let r=e.filter.return?L:null;return{tensor:t,canvas:r}}var _,$5=!1;async function Y0(A){return _?A.debug&&M("cached model:",_.modelUrl):(_=await n.loadGraphModel(H(A.modelBasePath,A.segmentation.modelPath)),!_||!_.modelUrl?M("load model failed:",A.segmentation.modelPath):A.debug&&M("load model:",_.modelUrl)),_}async function AA(A){var P,f;let e=((P=A.tensor)==null?void 0:P.shape[1])||0,t=((f=A.tensor)==null?void 0:f.shape[2])||0;if(!A.tensor||!_||!_.inputs[0].shape)return null;let r=n.image.resizeBilinear(A.tensor,[_.inputs[0].shape[1],_.inputs[0].shape[2]],!1),o=n.div(r,255),a=_.predict(o);n.dispose(r),n.dispose(o);let x=n.squeeze(a,0),s;if(x.shape[2]===2){let p=x.softmax(),[h,R]=n.unstack(p,2),j=n.expandDims(R,2),W=n.expandDims(j,0);n.dispose(p),n.dispose(h),n.dispose(R);let T=n.image.cropAndResize(W,[[0,0,.5,.5]],[0],[e,t]);s=n.squeeze(T,0),n.dispose(T),n.dispose(j),n.dispose(W)}else s=n.image.resizeBilinear(x,[e,t]);if(typeof document=="undefined")return s.data();let y=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(e,t):document.createElement("canvas");y.width=e,y.height=t,n.browser&&await n.browser.toPixels(s,y),n.dispose(s),n.dispose(x),n.dispose(a);let i=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(e,t):document.createElement("canvas");i.width=e,i.height=t;let l=i.getContext("2d");l.filter="blur(8px",await l.drawImage(y,0,0);let d=l.getImageData(0,0,e,t).data,c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(e,t):document.createElement("canvas");c.width=e,c.height=t;let u=c.getContext("2d");return A.canvas&&await u.drawImage(A.canvas,0,0),u.globalCompositeOperation="darken",u.filter="blur(8px)",await u.drawImage(y,0,0),u.globalCompositeOperation="source-over",u.filter="none",A.canvas=c,d}async function _A(A,e,t){var a;if($5)return null;$5=!0,_||await Y0(t);let r=c0(A,t),o=await AA(r);if(n.dispose(r.tensor),e&&o){let x=c0(e,t),s=x.canvas;n.dispose(x.tensor);let y=r.canvas,i=(a=y.getContext("2d"))==null?void 0:a.getImageData(0,0,y.width,y.height).data,l=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(y.width,y.height):document.createElement("canvas");l.width=y.width,l.height=y.height;let d=l.getContext("2d");d.globalCompositeOperation="copy",d.drawImage(s,0,0,l.width,l.height);let c=d.getImageData(0,0,l.width,l.height);for(let u=0;u{let e=(d,c)=>Math.atan2(d[1]-c[1],d[0]-c[0]);if(!A.annotations.rightEyeIris||!A.annotations.leftEyeIris)return{bearing:0,strength:0};let t=[0,-.1],r=1,o=A.mesh[33][2]>A.mesh[263][2],a=o?A.mesh[473]:A.mesh[468],x=o?[(A.mesh[133][0]+A.mesh[33][0])/2,(A.mesh[133][1]+A.mesh[33][1])/2]:[(A.mesh[263][0]+A.mesh[362][0])/2,(A.mesh[263][1]+A.mesh[362][1])/2],s=o?[A.mesh[133][0]-A.mesh[33][0],A.mesh[23][1]-A.mesh[27][1]]:[A.mesh[263][0]-A.mesh[362][0],A.mesh[253][1]-A.mesh[257][1]],y=[(x[0]-a[0])/s[0]-t[0],r*(a[1]-x[1])/s[1]-t[1]],i=Math.sqrt(y[0]**2+y[1]**2);return i=Math.min(i,A.boxRaw[2]/2,A.boxRaw[3]/2),{bearing:(e([0,0],y)+Math.PI/2)%Math.PI,strength:i}},n2=(A,e)=>{let t=p=>{let h=Math.sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]);return p[0]/=h,p[1]/=h,p[2]/=h,p},r=(p,h)=>{let R=p[0]-h[0],j=p[1]-h[1],W=p[2]-h[2];return[R,j,W]},o=(p,h)=>{let R=p[1]*h[2]-p[2]*h[1],j=p[2]*h[0]-p[0]*h[2],W=p[0]*h[1]-p[1]*h[0];return[R,j,W]},a=p=>{let[h,R,j,W,T,g,v,m,S]=p,N,O,k;return W<1?W>-1?(k=Math.asin(W),O=Math.atan2(-v,h),N=Math.atan2(-g,T)):(k=-Math.PI/2,O=-Math.atan2(m,S),N=0):(k=Math.PI/2,O=Math.atan2(m,S),N=0),isNaN(N)&&(N=0),isNaN(O)&&(O=0),isNaN(k)&&(k=0),{pitch:2*-N,yaw:2*-O,roll:2*-k}},x=p=>{let h=(j,W,T,g)=>Math.atan2(g-W,T-j);return{pitch:h(p[10][1],p[10][2],p[152][1],p[152][2]),yaw:h(p[33][0],p[33][2],p[263][0],p[263][2]),roll:h(p[33][0],p[33][1],p[263][0],p[263][1])}},s=A.meshRaw;if(!s||s.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let y=Math.max(A.boxRaw[2]*e[0],A.boxRaw[3]*e[1])/1.5,i=[s[10],s[152],s[234],s[454]].map(p=>[p[0]*e[0]/y,p[1]*e[1]/y,p[2]]),l=t(r(i[1],i[0])),d=t(r(i[3],i[2])),c=t(o(d,l));d=o(l,c);let u=[d[0],d[1],d[2],l[0],l[1],l[2],c[0],c[1],c[2]],P=a(u),f=s.length===478?t2(A):{bearing:0,strength:0};return{angle:P,matrix:u,gaze:f}},eA=async(A,e)=>{var d,c,u,P,f,p;let t,r,o,a,x,s,y,i=[];A.state="run:face",t=I();let l=await TA(e,A.config);if(A.performance.face=Math.trunc(I()-t),!e.shape||e.shape.length!==4)return[];if(!l)return[];for(let h=0;h{if(!A)return[];let e=[];for(let t=0;ty.part==="leftWrist"),o=A[t].keypoints.find(y=>y.part==="rightWrist"),a=A[t].keypoints.find(y=>y.part==="nose");a&&r&&o&&r.position.yy.part==="leftShoulder"),s=A[t].keypoints.find(y=>y.part==="rightShoulder");x&&s&&e.push({body:t,gesture:`leaning ${x.position.y>s.position.y?"left":"right"}`})}return e},ee=A=>{if(!A)return[];let e=[];for(let t=0;t0){let r=A[t].mesh[33][2]-A[t].mesh[263][2];Math.abs(r)<10?e.push({face:t,gesture:"facing center"}):e.push({face:t,gesture:`facing ${r<0?"left":"right"}`}),Math.abs(A[t].mesh[374][1]-A[t].mesh[386][1])/Math.abs(A[t].mesh[443][1]-A[t].mesh[450][1])<.2&&e.push({face:t,gesture:"blink left eye"}),Math.abs(A[t].mesh[145][1]-A[t].mesh[159][1])/Math.abs(A[t].mesh[223][1]-A[t].mesh[230][1])<.2&&e.push({face:t,gesture:"blink right eye"});let x=Math.min(100,500*Math.abs(A[t].mesh[13][1]-A[t].mesh[14][1])/Math.abs(A[t].mesh[10][1]-A[t].mesh[152][1]));x>10&&e.push({face:t,gesture:`mouth ${Math.trunc(x)}% open`});let s=A[t].mesh[152][2];Math.abs(s)>10&&e.push({face:t,gesture:`head ${s<0?"up":"down"}`})}return e},te=A=>{if(!A)return[];let e=[];for(let t=0;t.06||d>.06)&&(i=!1),c>.06&&e.push({iris:t,gesture:"looking right"}),d>.06&&e.push({iris:t,gesture:"looking left"});let u=Math.abs(A[t].mesh[145][1]-A[t].annotations.rightEyeIris[0][1])/A[t].box[3],P=Math.abs(A[t].mesh[374][1]-A[t].annotations.leftEyeIris[0][1])/A[t].box[3];(P<.01||u<.01||P>.022||u>.022)&&(i=!1),(P<.01||u<.01)&&e.push({iris:t,gesture:"looking down"}),(P>.022||u>.022)&&e.push({iris:t,gesture:"looking up"}),i&&e.push({iris:t,gesture:"looking center"})}return e},ne=A=>{if(!A)return[];let e=[];for(let t=0;t0){let o=r.reduce((x,s)=>x.position[2]x.position[1]s2,body:()=>se,canvas:()=>r2,face:()=>re,gesture:()=>oe,hand:()=>ae,object:()=>ie,options:()=>l0,person:()=>o2});var l0={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},D0=A=>Math.round(A*180/Math.PI);function tA(A,e,t,r=0,o){A.fillStyle=o.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:o.color,A.beginPath(),A.arc(e,t,o.pointSize,0,2*Math.PI),A.fill()}function j0(A,e,t,r,o,a){if(A.beginPath(),a.useCurves){let x=(e+e+r)/2,s=(t+t+o)/2;A.ellipse(x,s,r/2,o/2,0,0,2*Math.PI)}else A.lineWidth=a.lineWidth,A.moveTo(e+a.roundRect,t),A.lineTo(e+r-a.roundRect,t),A.quadraticCurveTo(e+r,t,e+r,t+a.roundRect),A.lineTo(e+r,t+o-a.roundRect),A.quadraticCurveTo(e+r,t+o,e+r-a.roundRect,t+o),A.lineTo(e+a.roundRect,t+o),A.quadraticCurveTo(e,t+o,e,t+o-a.roundRect),A.lineTo(e,t+a.roundRect),A.quadraticCurveTo(e,t,e+a.roundRect,t),A.closePath();A.stroke()}function nA(A,e=[],t){if(!(e===void 0||e.length===0)){A.beginPath(),A.moveTo(e[0][0],e[0][1]);for(let r of e){let o=r[2]||0;A.strokeStyle=t.useDepth&&o?`rgba(${127.5+2*o}, ${127.5-2*o}, 255, 0.3)`:t.color,A.fillStyle=t.useDepth&&o?`rgba(${127.5+2*o}, ${127.5-2*o}, 255, 0.3)`:t.color,A.lineTo(r[0],Math.round(r[1]))}A.stroke(),t.fillPolygons&&(A.closePath(),A.fill())}}function S0(A,e=[],t){if(!(e===void 0||e.length===0)){if(!t.useCurves||e.length<=2){nA(A,e,t);return}A.moveTo(e[0][0],e[0][1]);for(let r=0;r1&&y[1].length>0){let i=s[1]>0?`#${s[1]}`:"",l=`${s[0]} ${i}: ${y[1]}`;r.shadowColor&&r.shadowColor!==""&&(o.fillStyle=r.shadowColor,o.fillText(l,8,2+a*r.lineHeight)),o.fillStyle=r.labelColor,o.fillText(l,6,0+a*r.lineHeight),a+=1}}}async function re(A,e,t){var a,x,s,y;let r=C(l0,t);if(!e||!A||!(A instanceof HTMLCanvasElement))return;let o=A.getContext("2d");if(!!o)for(let i of e){o.font=r.font,o.strokeStyle=r.color,o.fillStyle=r.color,r.drawBoxes&&j0(o,i.box[0],i.box[1],i.box[2],i.box[3],r);let l=[];if(l.push(`face: ${Math.trunc(100*i.score)}%`),i.genderScore&&l.push(`${i.gender||""} ${Math.trunc(100*i.genderScore)}%`),i.age&&l.push(`age: ${i.age||""}`),i.iris&&l.push(`distance: ${i.iris}`),i.emotion&&i.emotion.length>0){let d=i.emotion.map(c=>`${Math.trunc(100*c.score)}% ${c.emotion}`);d.length>3&&(d.length=3),l.push(d.join(" "))}i.rotation&&i.rotation.angle&&i.rotation.gaze&&(i.rotation.angle.roll&&l.push(`roll: ${D0(i.rotation.angle.roll)}\xB0 yaw:${D0(i.rotation.angle.yaw)}\xB0 pitch:${D0(i.rotation.angle.pitch)}\xB0`),i.rotation.gaze.bearing&&l.push(`gaze: ${D0(i.rotation.gaze.bearing)}\xB0`)),l.length===0&&l.push("face"),o.fillStyle=r.color;for(let d=l.length-1;d>=0;d--){let c=Math.max(i.box[0],0),u=d*r.lineHeight+i.box[1];r.shadowColor&&r.shadowColor!==""&&(o.fillStyle=r.shadowColor,o.fillText(l[d],c+5,u+16)),o.fillStyle=r.labelColor,o.fillText(l[d],c+4,u+15)}if(o.lineWidth=1,i.mesh&&i.mesh.length>0){if(r.drawPoints)for(let d of i.mesh)tA(o,d[0],d[1],d[2],r);if(r.drawPolygons){o.lineWidth=1;for(let d=0;di.mesh[u]);nA(o,c,r)}if(i.annotations&&i.annotations.leftEyeIris){o.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,o.beginPath();let d=Math.abs(i.annotations.leftEyeIris[3][0]-i.annotations.leftEyeIris[1][0])/2,c=Math.abs(i.annotations.leftEyeIris[4][1]-i.annotations.leftEyeIris[2][1])/2;o.ellipse(i.annotations.leftEyeIris[0][0],i.annotations.leftEyeIris[0][1],d,c,0,0,2*Math.PI),o.stroke(),r.fillPolygons&&(o.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,o.fill())}if(i.annotations&&i.annotations.rightEyeIris){o.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,o.beginPath();let d=Math.abs(i.annotations.rightEyeIris[3][0]-i.annotations.rightEyeIris[1][0])/2,c=Math.abs(i.annotations.rightEyeIris[4][1]-i.annotations.rightEyeIris[2][1])/2;o.ellipse(i.annotations.rightEyeIris[0][0],i.annotations.rightEyeIris[0][1],d,c,0,0,2*Math.PI),o.stroke(),r.fillPolygons&&(o.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,o.fill())}if(r.drawGaze&&((x=(a=i.rotation)==null?void 0:a.gaze)==null?void 0:x.strength)&&((y=(s=i.rotation)==null?void 0:s.gaze)==null?void 0:y.bearing)&&i.annotations.leftEyeIris&&i.annotations.rightEyeIris&&i.annotations.leftEyeIris[0]&&i.annotations.rightEyeIris[0]){o.strokeStyle="pink",o.beginPath();let d=[i.annotations.leftEyeIris[0][0]+Math.sin(i.rotation.gaze.bearing)*i.rotation.gaze.strength*i.box[3],i.annotations.leftEyeIris[0][1]+Math.cos(i.rotation.gaze.bearing)*i.rotation.gaze.strength*i.box[2]];o.moveTo(i.annotations.leftEyeIris[0][0],i.annotations.leftEyeIris[0][1]),o.lineTo(d[0],d[1]);let c=[i.annotations.rightEyeIris[0][0]+Math.sin(i.rotation.gaze.bearing)*i.rotation.gaze.strength*i.box[3],i.annotations.rightEyeIris[0][1]+Math.cos(i.rotation.gaze.bearing)*i.rotation.gaze.strength*i.box[2]];o.moveTo(i.annotations.rightEyeIris[0][0],i.annotations.rightEyeIris[0][1]),o.lineTo(c[0],c[1]),o.stroke()}}}}}async function se(A,e,t){var a;let r=C(l0,t);if(!e||!A||!(A instanceof HTMLCanvasElement))return;let o=A.getContext("2d");if(!!o){o.lineJoin="round";for(let x=0;xi.part==="leftShoulder"),s&&y.push([s.position[0],s.position[1]]),s=e[x].keypoints.find(i=>i.part==="rightShoulder"),s&&y.push([s.position[0],s.position[1]]),S0(o,y,r),y.length=0,s=e[x].keypoints.find(i=>i.part==="rightShoulder"),s&&y.push([s.position[0],s.position[1]]),s=e[x].keypoints.find(i=>i.part==="rightHip"),s&&y.push([s.position[0],s.position[1]]),s=e[x].keypoints.find(i=>i.part==="leftHip"),s&&y.push([s.position[0],s.position[1]]),s=e[x].keypoints.find(i=>i.part==="leftShoulder"),s&&y.push([s.position[0],s.position[1]]),y.length===4&&nA(o,y,r),y.length=0,s=e[x].keypoints.find(i=>i.part==="leftHip"),s&&y.push([s.position[0],s.position[1]]),s=e[x].keypoints.find(i=>i.part==="leftKnee"),s&&y.push([s.position[0],s.position[1]]),s=e[x].keypoints.find(i=>i.part==="leftAnkle"),s&&y.push([s.position[0],s.position[1]]),s=e[x].keypoints.find(i=>i.part==="leftHeel"),s&&y.push([s.position[0],s.position[1]]),s=e[x].keypoints.find(i=>i.part==="leftFoot"),s&&y.push([s.position[0],s.position[1]]),S0(o,y,r),y.length=0,s=e[x].keypoints.find(i=>i.part==="rightHip"),s&&y.push([s.position[0],s.position[1]]),s=e[x].keypoints.find(i=>i.part==="rightKnee"),s&&y.push([s.position[0],s.position[1]]),s=e[x].keypoints.find(i=>i.part==="rightAnkle"),s&&y.push([s.position[0],s.position[1]]),s=e[x].keypoints.find(i=>i.part==="rightHeel"),s&&y.push([s.position[0],s.position[1]]),s=e[x].keypoints.find(i=>i.part==="rightFoot"),s&&y.push([s.position[0],s.position[1]]),S0(o,y,r),y.length=0,s=e[x].keypoints.find(i=>i.part==="leftShoulder"),s&&y.push([s.position[0],s.position[1]]),s=e[x].keypoints.find(i=>i.part==="leftElbow"),s&&y.push([s.position[0],s.position[1]]),s=e[x].keypoints.find(i=>i.part==="leftWrist"),s&&y.push([s.position[0],s.position[1]]),s=e[x].keypoints.find(i=>i.part==="leftPalm"),s&&y.push([s.position[0],s.position[1]]),S0(o,y,r),y.length=0,s=e[x].keypoints.find(i=>i.part==="rightShoulder"),s&&y.push([s.position[0],s.position[1]]),s=e[x].keypoints.find(i=>i.part==="rightElbow"),s&&y.push([s.position[0],s.position[1]]),s=e[x].keypoints.find(i=>i.part==="rightWrist"),s&&y.push([s.position[0],s.position[1]]),s=e[x].keypoints.find(i=>i.part==="rightPalm"),s&&y.push([s.position[0],s.position[1]]),S0(o,y,r)}}}}async function ae(A,e,t){let r=C(l0,t);if(!e||!A||!(A instanceof HTMLCanvasElement))return;let o=A.getContext("2d");if(!!o){o.lineJoin="round",o.font=r.font;for(let a of e){if(r.drawBoxes&&(o.strokeStyle=r.color,o.fillStyle=r.color,j0(o,a.box[0],a.box[1],a.box[2],a.box[3],r),r.drawLabels&&(r.shadowColor&&r.shadowColor!==""&&(o.fillStyle=r.shadowColor,o.fillText("hand",a.box[0]+3,1+a.box[1]+r.lineHeight,a.box[2])),o.fillStyle=r.labelColor,o.fillText("hand",a.box[0]+2,0+a.box[1]+r.lineHeight,a.box[2])),o.stroke()),r.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let x of a.keypoints)o.fillStyle=r.useDepth?`rgba(${127.5+2*x[2]}, ${127.5-2*x[2]}, 255, 0.5)`:r.color,tA(o,x[0],x[1],0,r);if(r.drawLabels){let x=(s,y)=>{o.fillStyle=r.useDepth?`rgba(${127.5+2*s[s.length-1][2]}, ${127.5-2*s[s.length-1][2]}, 255, 0.5)`:r.color,o.fillText(y,s[s.length-1][0]+4,s[s.length-1][1]+4)};o.font=r.font,x(a.annotations.indexFinger,"index"),x(a.annotations.middleFinger,"middle"),x(a.annotations.ringFinger,"ring"),x(a.annotations.pinky,"pinky"),x(a.annotations.thumb,"thumb"),x(a.annotations.palmBase,"palm")}if(r.drawPolygons){let x=s=>{if(!!s)for(let y=0;y0?y-1:0][0],s[y>0?y-1:0][1]),o.lineTo(s[y][0],s[y][1]),o.stroke()};o.lineWidth=r.lineWidth,x(a.annotations.indexFinger),x(a.annotations.middleFinger),x(a.annotations.ringFinger),x(a.annotations.pinky),x(a.annotations.thumb)}}}}async function ie(A,e,t){let r=C(l0,t);if(!e||!A||!(A instanceof HTMLCanvasElement))return;let o=A.getContext("2d");if(!!o){o.lineJoin="round",o.font=r.font;for(let a of e)if(r.drawBoxes){if(o.strokeStyle=r.color,o.fillStyle=r.color,j0(o,a.box[0],a.box[1],a.box[2],a.box[3],r),r.drawLabels){let x=`${a.label} ${Math.round(100*a.score)}%`;r.shadowColor&&r.shadowColor!==""&&(o.fillStyle=r.shadowColor,o.fillText(x,a.box[0]+3,1+a.box[1]+r.lineHeight,a.box[2])),o.fillStyle=r.labelColor,o.fillText(x,a.box[0]+2,0+a.box[1]+r.lineHeight,a.box[2])}o.stroke()}}}async function o2(A,e,t){let r=C(l0,t);if(!e||!A||!(A instanceof HTMLCanvasElement))return;let o=A.getContext("2d");if(!!o){o.lineJoin="round",o.font=r.font;for(let a=0;az.box[0]&&v.box[0]z.box[1]&&v.box[1]+v.box[3]m.body.box[0]&&z.box[0]+z.box[2]m.body.box[1]&&z.box[1]+z.box[3]m.body.box[0]&&z.box[1]+z.box[3]>m.body.box[1]&&z.box[1]+z.box[3]{z&&z.length===4&&(S.push(z[0],z[0]+z[2]),N.push(z[1],z[1]+z[3]))};O((h=m.face)==null?void 0:h.box),O((R=m.body)==null?void 0:R.box),O((W=(j=m.hands)==null?void 0:j.left)==null?void 0:W.box),O((g=(T=m.hands)==null?void 0:T.right)==null?void 0:g.box);let k=Math.min(...S),V=Math.min(...N);m.box=[k,V,Math.max(...S)-k,Math.max(...N)-V],o&&o[1]&&o[2]&&(m.boxRaw=[m.box[0]/o[2],m.box[1]/o[1],m.box[2]/o[2],m.box[3]/o[1]]),x.push(m)}return x}var w={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function ye(A){var r,o,a,x,s,y,i,l,d,c,u,P,f,p,h,R,j,W,T,g,v;if(!A)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};let e=Date.now()-A.timestamp,t=e<1e3?8-Math.log(e+1):1;if(w.canvas=A.canvas,!w.body||A.body.length!==w.body.length)w.body=JSON.parse(JSON.stringify(A.body));else for(let m=0;m((t-1)*w.body[m].box[V]+k)/t),N=A.body[m].boxRaw.map((k,V)=>((t-1)*w.body[m].boxRaw[V]+k)/t),O=A.body[m].keypoints.map((k,V)=>({score:k.score,part:k.part,position:[w.body[m].keypoints[V]?((t-1)*w.body[m].keypoints[V].position[0]+k.position[0])/t:k.position[0],w.body[m].keypoints[V]?((t-1)*w.body[m].keypoints[V].position[1]+k.position[1])/t:k.position[1]],positionRaw:[w.body[m].keypoints[V]?((t-1)*w.body[m].keypoints[V].positionRaw[0]+k.positionRaw[0])/t:k.position[0],w.body[m].keypoints[V]?((t-1)*w.body[m].keypoints[V].positionRaw[1]+k.positionRaw[1])/t:k.position[1]]}));w.body[m]={...A.body[m],box:S,boxRaw:N,keypoints:O}}if(!w.hand||A.hand.length!==w.hand.length)w.hand=JSON.parse(JSON.stringify(A.hand));else for(let m=0;m((t-1)*w.hand[m].box[D]+z)/t),N=A.hand[m].boxRaw.map((z,D)=>((t-1)*w.hand[m].boxRaw[D]+z)/t),O=A.hand[m].keypoints.map((z,D)=>z.map((n5,o5)=>((t-1)*w.hand[m].keypoints[D][o5]+n5)/t)),k=Object.keys(A.hand[m].annotations),V={};for(let z of k)V[z]=A.hand[m].annotations[z].map((D,n5)=>D.map((o5,de)=>((t-1)*w.hand[m].annotations[z][n5][de]+o5)/t));w.hand[m]={...A.hand[m],box:S,boxRaw:N,keypoints:O,annotations:V}}if(!w.face||A.face.length!==w.face.length)w.face=JSON.parse(JSON.stringify(A.face));else for(let m=0;m((t-1)*w.face[m].box[V]+k)/t),N=A.face[m].boxRaw.map((k,V)=>((t-1)*w.face[m].boxRaw[V]+k)/t),O={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};O.matrix=(r=A.face[m].rotation)==null?void 0:r.matrix,O.angle={roll:((t-1)*(((a=(o=w.face[m].rotation)==null?void 0:o.angle)==null?void 0:a.roll)||0)+(((s=(x=A.face[m].rotation)==null?void 0:x.angle)==null?void 0:s.roll)||0))/t,yaw:((t-1)*(((i=(y=w.face[m].rotation)==null?void 0:y.angle)==null?void 0:i.yaw)||0)+(((d=(l=A.face[m].rotation)==null?void 0:l.angle)==null?void 0:d.yaw)||0))/t,pitch:((t-1)*(((u=(c=w.face[m].rotation)==null?void 0:c.angle)==null?void 0:u.pitch)||0)+(((f=(P=A.face[m].rotation)==null?void 0:P.angle)==null?void 0:f.pitch)||0))/t},O.gaze={bearing:((t-1)*(((h=(p=w.face[m].rotation)==null?void 0:p.gaze)==null?void 0:h.bearing)||0)+(((j=(R=A.face[m].rotation)==null?void 0:R.gaze)==null?void 0:j.bearing)||0))/t,strength:((t-1)*(((T=(W=w.face[m].rotation)==null?void 0:W.gaze)==null?void 0:T.strength)||0)+(((v=(g=A.face[m].rotation)==null?void 0:g.gaze)==null?void 0:v.strength)||0))/t},w.face[m]={...A.face[m],rotation:O,box:S,boxRaw:N}}if(!w.object||A.object.length!==w.object.length)w.object=JSON.parse(JSON.stringify(A.object));else for(let m=0;m((t-1)*w.object[m].box[k]+O)/t),N=A.object[m].boxRaw.map((O,k)=>((t-1)*w.object[m].boxRaw[k]+O)/t);w.object[m]={...A.object[m],box:S,boxRaw:N}}if(A.persons){let m=A.persons;if(!w.persons||m.length!==w.persons.length)w.persons=JSON.parse(JSON.stringify(m));else for(let S=0;S((t-1)*w.persons[S].box[O]+N)/t)}return A.gesture&&(w.gesture=A.gesture),A.performance&&(w.performance=A.performance),w}var K0=` +`),l=new Mt(f,g.VERTEX_IDENTITY,P);let v=Float32Array.BYTES_PER_ELEMENT,u=4*v;return f.enableVertexAttribArray(l.attribute.pos),f.vertexAttribPointer(l.attribute.pos,2,f.FLOAT,!1,u,0*v),f.enableVertexAttribArray(l.attribute.uv),f.vertexAttribPointer(l.attribute.uv,2,f.FLOAT,!1,u,2*v),m[P]=l,l};c.colorMatrix=function(P){let g=new Float32Array(P);g[4]/=255,g[9]/=255,g[14]/=255,g[19]/=255;let v=g[18]===1&&g[3]===0&&g[8]===0&&g[13]===0&&g[15]===0&&g[16]===0&&g[17]===0&&g[19]===0?c.colorMatrix.SHADER.WITHOUT_ALPHA:c.colorMatrix.SHADER.WITH_ALPHA,u=I(v);f.uniform1fv(u.uniform.m,g),w()},c.colorMatrix.SHADER={},c.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(` +`),c.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(` +`),c.brightness=function(P){let g=(P||0)+1;c.colorMatrix([g,0,0,0,0,0,g,0,0,0,0,0,g,0,0,0,0,0,1,0])},c.saturation=function(P){let g=(P||0)*2/3+1,v=(g-1)*-.5;c.colorMatrix([g,v,v,0,0,v,g,v,0,0,v,v,g,0,0,0,0,0,1,0])},c.desaturate=function(){c.saturation(-1)},c.contrast=function(P){let g=(P||0)+1,v=-128*(g-1);c.colorMatrix([g,0,0,0,v,0,g,0,0,v,0,0,g,0,v,0,0,0,1,0])},c.negative=function(){c.contrast(-2)},c.hue=function(P){P=(P||0)/180*Math.PI;let g=Math.cos(P),v=Math.sin(P),u=.213,k=.715,O=.072;c.colorMatrix([u+g*(1-u)+v*-u,k+g*-k+v*-k,O+g*-O+v*(1-O),0,0,u+g*-u+v*.143,k+g*(1-k)+v*.14,O+g*-O+v*-.283,0,0,u+g*-u+v*-(1-u),k+g*-k+v*k,O+g*(1-O)+v*O,0,0,0,0,0,1,0])},c.desaturateLuminance=function(){c.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},c.sepia=function(){c.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},c.brownie=function(){c.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},c.vintagePinhole=function(){c.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},c.kodachrome=function(){c.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},c.technicolor=function(){c.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},c.polaroid=function(){c.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},c.shiftToBGR=function(){c.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},c.convolution=function(P){let g=new Float32Array(P),v=1/s,u=1/y,k=I(c.convolution.SHADER);f.uniform1fv(k.uniform.m,g),f.uniform2f(k.uniform.px,v,u),w()},c.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(` +`),c.detectEdges=function(){c.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},c.sobelX=function(){c.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},c.sobelY=function(){c.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},c.sharpen=function(P){let g=P||1;c.convolution.call(this,[0,-1*g,0,-1*g,1+4*g,-1*g,0,-1*g,0])},c.emboss=function(P){let g=P||1;c.convolution.call(this,[-2*g,-1*g,0,-1*g,1,1*g,0,1*g,2*g])},c.blur=function(P){let g=P/7/s,v=P/7/y,u=I(c.blur.SHADER);f.uniform2f(u.uniform.px,0,v),w(T.INTERMEDIATE),f.uniform2f(u.uniform.px,g,0),w()},c.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(` +`),c.pixelate=function(P){let g=P/s,v=P/y,u=I(c.pixelate.SHADER);f.uniform2f(u.uniform.size,g,v),w()},c.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(` +`)}var e5=2048,R,F,q;function b0(e,A){let t;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof n.Tensor)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof n.Tensor)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)t=n.clone(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let o=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,a=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!o||!a)return{tensor:null,canvas:R};let i=o,s=a;if(i>e5&&(i=e5,s=i*a/o),s>e5&&(s=e5,i=s*o/a),A.filter.width>0?i=A.filter.width:A.filter.height>0&&(i=o*(A.filter.height/a)),A.filter.height>0?s=A.filter.height:A.filter.width>0&&(s=a*(A.filter.width/o)),!i||!s)throw new Error("Human: Input cannot determine dimension");(!R||(R==null?void 0:R.width)!==i||(R==null?void 0:R.height)!==s)&&(R=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,s):document.createElement("canvas"),(R==null?void 0:R.width)!==i&&(R.width=i),(R==null?void 0:R.height)!==s&&(R.height=s));let y=R.getContext("2d");if(e instanceof ImageData?y.putImageData(e,0,0):A.filter.flip&&typeof y.translate!="undefined"?(y.translate(o,0),y.scale(-1,1),y.drawImage(e,0,0,o,a,0,0,R==null?void 0:R.width,R==null?void 0:R.height),y.setTransform(1,0,0,1,0,0)):y.drawImage(e,0,0,o,a,0,0,R==null?void 0:R.width,R==null?void 0:R.height),A.filter.enabled){if((!q||!F||R.width!==F.width||(R==null?void 0:R.height)!==(F==null?void 0:F.height))&&(F=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(R==null?void 0:R.width,R==null?void 0:R.height):document.createElement("canvas"),(F==null?void 0:F.width)!==(R==null?void 0:R.width)&&(F.width=R==null?void 0:R.width),(F==null?void 0:F.height)!==(R==null?void 0:R.height)&&(F.height=R==null?void 0:R.height),q=n.ENV.flags.IS_BROWSER?new dA({canvas:F}):null),!q)return{tensor:null,canvas:R};q.reset(),q.addFilter("brightness",A.filter.brightness),A.filter.contrast!==0&&q.addFilter("contrast",A.filter.contrast),A.filter.sharpness!==0&&q.addFilter("sharpen",A.filter.sharpness),A.filter.blur!==0&&q.addFilter("blur",A.filter.blur),A.filter.saturation!==0&&q.addFilter("saturation",A.filter.saturation),A.filter.hue!==0&&q.addFilter("hue",A.filter.hue),A.filter.negative&&q.addFilter("negative"),A.filter.sepia&&q.addFilter("sepia"),A.filter.vintage&&q.addFilter("brownie"),A.filter.sepia&&q.addFilter("sepia"),A.filter.kodachrome&&q.addFilter("kodachrome"),A.filter.technicolor&&q.addFilter("technicolor"),A.filter.polaroid&&q.addFilter("polaroid"),A.filter.pixelate!==0&&q.addFilter("pixelate",A.filter.pixelate),q.apply(R)}else F=R,q&&(q=null);if(!t){let x;if(F.data){let l=[F.height,F.width,3];x=n.tensor3d(F.data,l,"int32")}else if(F instanceof ImageData)x=n.browser?n.browser.fromPixels(F):null;else if(A.backend==="webgl"||A.backend==="humangl"){let l=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,s):document.createElement("canvas");l.width=i,l.height=s;let c=l.getContext("2d");c==null||c.drawImage(F,0,0),x=n.browser?n.browser.fromPixels(l):null}else{let l=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,s):document.createElement("canvas");l.width=i,l.height=s;let c=l.getContext("2d");c==null||c.drawImage(F,0,0);let d=c==null?void 0:c.getImageData(0,0,i,s);x=n.browser?n.browser.fromPixels(d):null}if(x){let l=n.cast(x,"float32");t=n.expandDims(l,0),n.dispose(x),n.dispose(l)}}}let r=A.filter.return?F:null;return{tensor:t,canvas:r}}var t0,ae=!1;async function A5(e){return t0?e.debug&&M("cached model:",t0.modelUrl):(t0=await n.loadGraphModel(Z(e.modelBasePath,e.segmentation.modelPath)),!t0||!t0.modelUrl?M("load model failed:",e.segmentation.modelPath):e.debug&&M("load model:",t0.modelUrl)),t0}async function ie(e){var T,f;let A=((T=e.tensor)==null?void 0:T.shape[1])||0,t=((f=e.tensor)==null?void 0:f.shape[2])||0;if(!e.tensor||!t0||!t0.inputs[0].shape)return null;let r=n.image.resizeBilinear(e.tensor,[t0.inputs[0].shape[1],t0.inputs[0].shape[2]],!1),o=n.div(r,255),a=t0.predict(o);n.dispose(r),n.dispose(o);let i=n.squeeze(a,0),s;if(i.shape[2]===2){let p=i.softmax(),[h,E]=n.unstack(p,2),w=n.expandDims(E,2),I=n.expandDims(w,0);n.dispose(p),n.dispose(h),n.dispose(E);let P=n.image.cropAndResize(I,[[0,0,.5,.5]],[0],[A,t]);s=n.squeeze(P,0),n.dispose(P),n.dispose(w),n.dispose(I)}else s=n.image.resizeBilinear(i,[A,t]);if(typeof document=="undefined")return s.data();let y=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(A,t):document.createElement("canvas");y.width=A,y.height=t,n.browser&&await n.browser.toPixels(s,y),n.dispose(s),n.dispose(i),n.dispose(a);let x=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(A,t):document.createElement("canvas");x.width=A,x.height=t;let l=x.getContext("2d");l.filter="blur(8px",await l.drawImage(y,0,0);let c=l.getImageData(0,0,A,t).data,d=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(A,t):document.createElement("canvas");d.width=A,d.height=t;let m=d.getContext("2d");return e.canvas&&await m.drawImage(e.canvas,0,0),m.globalCompositeOperation="darken",m.filter="blur(8px)",await m.drawImage(y,0,0),m.globalCompositeOperation="source-over",m.filter="none",e.canvas=d,c}async function fA(e,A,t){var a;if(ae)return null;ae=!0,t0||await A5(t);let r=b0(e,t),o=await ie(r);if(n.dispose(r.tensor),A&&o){let i=b0(A,t),s=i.canvas;n.dispose(i.tensor);let y=r.canvas,x=(a=y.getContext("2d"))==null?void 0:a.getImageData(0,0,y.width,y.height).data,l=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(y.width,y.height):document.createElement("canvas");l.width=y.width,l.height=y.height;let c=l.getContext("2d");c.globalCompositeOperation="copy",c.drawImage(s,0,0,l.width,l.height);let d=c.getImageData(0,0,l.width,l.height);for(let m=0;m{let A=(c,d)=>Math.atan2(c[1]-d[1],c[0]-d[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let t=[0,-.1],r=1,o=e.mesh[33][2]>e.mesh[263][2],a=o?e.mesh[473]:e.mesh[468],i=o?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],s=o?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],y=[(i[0]-a[0])/s[0]-t[0],r*(a[1]-i[1])/s[1]-t[1]],x=Math.sqrt(y[0]**2+y[1]**2);return x=Math.min(x,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(A([0,0],y)+Math.PI/2)%Math.PI,strength:x}},Pt=(e,A)=>{let t=p=>{let h=Math.sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]);return p[0]/=h,p[1]/=h,p[2]/=h,p},r=(p,h)=>{let E=p[0]-h[0],w=p[1]-h[1],I=p[2]-h[2];return[E,w,I]},o=(p,h)=>{let E=p[1]*h[2]-p[2]*h[1],w=p[2]*h[0]-p[0]*h[2],I=p[0]*h[1]-p[1]*h[0];return[E,w,I]},a=p=>{let[h,E,w,I,P,g,v,u,k]=p,O,H,S;return I<1?I>-1?(S=Math.asin(I),H=Math.atan2(-v,h),O=Math.atan2(-g,P)):(S=-Math.PI/2,H=-Math.atan2(u,k),O=0):(S=Math.PI/2,H=Math.atan2(u,k),O=0),isNaN(O)&&(O=0),isNaN(H)&&(H=0),isNaN(S)&&(S=0),{pitch:2*-O,yaw:2*-H,roll:2*-S}},i=p=>{let h=(w,I,P,g)=>Math.atan2(g-I,P-w);return{pitch:h(p[10][1],p[10][2],p[152][1],p[152][2]),yaw:h(p[33][0],p[33][2],p[263][0],p[263][2]),roll:h(p[33][0],p[33][1],p[263][0],p[263][1])}},s=e.meshRaw;if(!s||s.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let y=Math.max(e.boxRaw[2]*A[0],e.boxRaw[3]*A[1])/1.5,x=[s[10],s[152],s[234],s[454]].map(p=>[p[0]*A[0]/y,p[1]*A[1]/y,p[2]]),l=t(r(x[1],x[0])),c=t(r(x[3],x[2])),d=t(o(c,l));c=o(l,d);let m=[c[0],c[1],c[2],l[0],l[1],l[2],d[0],d[1],d[2]],T=a(m),f=s.length===478?Tt(e):{bearing:0,strength:0};return{angle:T,matrix:m,gaze:f}},xe=async(e,A)=>{var c,d,m,T,f,p;let t,r,o,a,i,s,y,x=[];e.state="run:face",t=L();let l=await Se(A,e.config);if(e.performance.face=Math.trunc(L()-t),!A.shape||A.shape.length!==4)return[];if(!l)return[];for(let h=0;h{if(!e)return[];let A=[];for(let t=0;ty.part==="leftWrist"),o=e[t].keypoints.find(y=>y.part==="rightWrist"),a=e[t].keypoints.find(y=>y.part==="nose");a&&r&&o&&r.position.yy.part==="leftShoulder"),s=e[t].keypoints.find(y=>y.part==="rightShoulder");i&&s&&A.push({body:t,gesture:`leaning ${i.position.y>s.position.y?"left":"right"}`})}return A},hA=e=>{if(!e)return[];let A=[];for(let t=0;t0){let r=e[t].mesh[33][2]-e[t].mesh[263][2];Math.abs(r)<10?A.push({face:t,gesture:"facing center"}):A.push({face:t,gesture:`facing ${r<0?"left":"right"}`}),Math.abs(e[t].mesh[374][1]-e[t].mesh[386][1])/Math.abs(e[t].mesh[443][1]-e[t].mesh[450][1])<.2&&A.push({face:t,gesture:"blink left eye"}),Math.abs(e[t].mesh[145][1]-e[t].mesh[159][1])/Math.abs(e[t].mesh[223][1]-e[t].mesh[230][1])<.2&&A.push({face:t,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[t].mesh[13][1]-e[t].mesh[14][1])/Math.abs(e[t].mesh[10][1]-e[t].mesh[152][1]));i>10&&A.push({face:t,gesture:`mouth ${Math.trunc(i)}% open`});let s=e[t].mesh[152][2];Math.abs(s)>10&&A.push({face:t,gesture:`head ${s<0?"up":"down"}`})}return A},pA=e=>{if(!e)return[];let A=[];for(let t=0;t.06||c>.06)&&(x=!1),d>.06&&A.push({iris:t,gesture:"looking right"}),c>.06&&A.push({iris:t,gesture:"looking left"});let m=Math.abs(e[t].mesh[145][1]-e[t].annotations.rightEyeIris[0][1])/e[t].box[3],T=Math.abs(e[t].mesh[374][1]-e[t].annotations.leftEyeIris[0][1])/e[t].box[3];(T<.01||m<.01||T>.022||m>.022)&&(x=!1),(T<.01||m<.01)&&A.push({iris:t,gesture:"looking down"}),(T>.022||m>.022)&&A.push({iris:t,gesture:"looking up"}),x&&A.push({iris:t,gesture:"looking center"})}return A},bA=e=>{if(!e)return[];let A=[];for(let t=0;t0){let a=r.reduce((s,y)=>s.position[2]s.position[1]Et,body:()=>TA,canvas:()=>zt,face:()=>MA,gesture:()=>gA,hand:()=>PA,object:()=>vA,options:()=>u0,person:()=>vt});var u0={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},t5=e=>Math.round(e*180/Math.PI);function ye(e,A,t,r=0,o){e.fillStyle=o.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:o.color,e.beginPath(),e.arc(A,t,o.pointSize,0,2*Math.PI),e.fill()}function L0(e,A,t,r,o,a){if(e.beginPath(),a.useCurves){let i=(A+A+r)/2,s=(t+t+o)/2;e.ellipse(i,s,r/2,o/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(A+a.roundRect,t),e.lineTo(A+r-a.roundRect,t),e.quadraticCurveTo(A+r,t,A+r,t+a.roundRect),e.lineTo(A+r,t+o-a.roundRect),e.quadraticCurveTo(A+r,t+o,A+r-a.roundRect,t+o),e.lineTo(A+a.roundRect,t+o),e.quadraticCurveTo(A,t+o,A,t+o-a.roundRect),e.lineTo(A,t+a.roundRect),e.quadraticCurveTo(A,t,A+a.roundRect,t),e.closePath();e.stroke()}function le(e,A=[],t){if(!(A===void 0||A.length===0)){e.beginPath(),e.moveTo(A[0][0],A[0][1]);for(let r of A){let o=r[2]||0;e.strokeStyle=t.useDepth&&o?`rgba(${127.5+2*o}, ${127.5-2*o}, 255, 0.3)`:t.color,e.fillStyle=t.useDepth&&o?`rgba(${127.5+2*o}, ${127.5-2*o}, 255, 0.3)`:t.color,e.lineTo(r[0],Math.round(r[1]))}e.stroke(),t.fillPolygons&&(e.closePath(),e.fill())}}function H0(e,A=[],t){if(!(A===void 0||A.length===0)){if(!t.useCurves||A.length<=2){le(e,A,t);return}e.moveTo(A[0][0],A[0][1]);for(let r=0;r1&&y[1].length>0){let x=s[1]>0?`#${s[1]}`:"",l=`${s[0]} ${x}: ${y[1]}`;r.shadowColor&&r.shadowColor!==""&&(o.fillStyle=r.shadowColor,o.fillText(l,8,2+a*r.lineHeight)),o.fillStyle=r.labelColor,o.fillText(l,6,0+a*r.lineHeight),a+=1}}}async function MA(e,A,t){var a,i,s,y;let r=U(u0,t);if(!A||!e||!(e instanceof HTMLCanvasElement))return;let o=e.getContext("2d");if(!!o)for(let x of A){o.font=r.font,o.strokeStyle=r.color,o.fillStyle=r.color,r.drawBoxes&&L0(o,x.box[0],x.box[1],x.box[2],x.box[3],r);let l=[];if(l.push(`face: ${Math.trunc(100*x.score)}%`),x.genderScore&&l.push(`${x.gender||""} ${Math.trunc(100*x.genderScore)}%`),x.age&&l.push(`age: ${x.age||""}`),x.iris&&l.push(`distance: ${x.iris}`),x.emotion&&x.emotion.length>0){let c=x.emotion.map(d=>`${Math.trunc(100*d.score)}% ${d.emotion}`);c.length>3&&(c.length=3),l.push(c.join(" "))}x.rotation&&x.rotation.angle&&x.rotation.gaze&&(x.rotation.angle.roll&&l.push(`roll: ${t5(x.rotation.angle.roll)}\xB0 yaw:${t5(x.rotation.angle.yaw)}\xB0 pitch:${t5(x.rotation.angle.pitch)}\xB0`),x.rotation.gaze.bearing&&l.push(`gaze: ${t5(x.rotation.gaze.bearing)}\xB0`)),l.length===0&&l.push("face"),o.fillStyle=r.color;for(let c=l.length-1;c>=0;c--){let d=Math.max(x.box[0],0),m=c*r.lineHeight+x.box[1];r.shadowColor&&r.shadowColor!==""&&(o.fillStyle=r.shadowColor,o.fillText(l[c],d+5,m+16)),o.fillStyle=r.labelColor,o.fillText(l[c],d+4,m+15)}if(o.lineWidth=1,x.mesh&&x.mesh.length>0){if(r.drawPoints)for(let c of x.mesh)ye(o,c[0],c[1],c[2],r);if(r.drawPolygons){o.lineWidth=1;for(let c=0;cx.mesh[m]);le(o,d,r)}if(x.annotations&&x.annotations.leftEyeIris){o.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,o.beginPath();let c=Math.abs(x.annotations.leftEyeIris[3][0]-x.annotations.leftEyeIris[1][0])/2,d=Math.abs(x.annotations.leftEyeIris[4][1]-x.annotations.leftEyeIris[2][1])/2;o.ellipse(x.annotations.leftEyeIris[0][0],x.annotations.leftEyeIris[0][1],c,d,0,0,2*Math.PI),o.stroke(),r.fillPolygons&&(o.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,o.fill())}if(x.annotations&&x.annotations.rightEyeIris){o.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,o.beginPath();let c=Math.abs(x.annotations.rightEyeIris[3][0]-x.annotations.rightEyeIris[1][0])/2,d=Math.abs(x.annotations.rightEyeIris[4][1]-x.annotations.rightEyeIris[2][1])/2;o.ellipse(x.annotations.rightEyeIris[0][0],x.annotations.rightEyeIris[0][1],c,d,0,0,2*Math.PI),o.stroke(),r.fillPolygons&&(o.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,o.fill())}if(r.drawGaze&&((i=(a=x.rotation)==null?void 0:a.gaze)==null?void 0:i.strength)&&((y=(s=x.rotation)==null?void 0:s.gaze)==null?void 0:y.bearing)&&x.annotations.leftEyeIris&&x.annotations.rightEyeIris&&x.annotations.leftEyeIris[0]&&x.annotations.rightEyeIris[0]){o.strokeStyle="pink",o.beginPath();let c=[x.annotations.leftEyeIris[0][0]+Math.sin(x.rotation.gaze.bearing)*x.rotation.gaze.strength*x.box[3],x.annotations.leftEyeIris[0][1]+Math.cos(x.rotation.gaze.bearing)*x.rotation.gaze.strength*x.box[2]];o.moveTo(x.annotations.leftEyeIris[0][0],x.annotations.leftEyeIris[0][1]),o.lineTo(c[0],c[1]);let d=[x.annotations.rightEyeIris[0][0]+Math.sin(x.rotation.gaze.bearing)*x.rotation.gaze.strength*x.box[3],x.annotations.rightEyeIris[0][1]+Math.cos(x.rotation.gaze.bearing)*x.rotation.gaze.strength*x.box[2]];o.moveTo(x.annotations.rightEyeIris[0][0],x.annotations.rightEyeIris[0][1]),o.lineTo(d[0],d[1]),o.stroke()}}}}}async function TA(e,A,t){var a;let r=U(u0,t);if(!A||!e||!(e instanceof HTMLCanvasElement))return;let o=e.getContext("2d");if(!!o){o.lineJoin="round";for(let i=0;ix.part==="leftShoulder"),s&&y.push([s.position[0],s.position[1]]),s=A[i].keypoints.find(x=>x.part==="rightShoulder"),s&&y.push([s.position[0],s.position[1]]),H0(o,y,r),y.length=0,s=A[i].keypoints.find(x=>x.part==="rightShoulder"),s&&y.push([s.position[0],s.position[1]]),s=A[i].keypoints.find(x=>x.part==="rightHip"),s&&y.push([s.position[0],s.position[1]]),s=A[i].keypoints.find(x=>x.part==="leftHip"),s&&y.push([s.position[0],s.position[1]]),s=A[i].keypoints.find(x=>x.part==="leftShoulder"),s&&y.push([s.position[0],s.position[1]]),y.length===4&&le(o,y,r),y.length=0,s=A[i].keypoints.find(x=>x.part==="leftHip"),s&&y.push([s.position[0],s.position[1]]),s=A[i].keypoints.find(x=>x.part==="leftKnee"),s&&y.push([s.position[0],s.position[1]]),s=A[i].keypoints.find(x=>x.part==="leftAnkle"),s&&y.push([s.position[0],s.position[1]]),s=A[i].keypoints.find(x=>x.part==="leftHeel"),s&&y.push([s.position[0],s.position[1]]),s=A[i].keypoints.find(x=>x.part==="leftFoot"),s&&y.push([s.position[0],s.position[1]]),H0(o,y,r),y.length=0,s=A[i].keypoints.find(x=>x.part==="rightHip"),s&&y.push([s.position[0],s.position[1]]),s=A[i].keypoints.find(x=>x.part==="rightKnee"),s&&y.push([s.position[0],s.position[1]]),s=A[i].keypoints.find(x=>x.part==="rightAnkle"),s&&y.push([s.position[0],s.position[1]]),s=A[i].keypoints.find(x=>x.part==="rightHeel"),s&&y.push([s.position[0],s.position[1]]),s=A[i].keypoints.find(x=>x.part==="rightFoot"),s&&y.push([s.position[0],s.position[1]]),H0(o,y,r),y.length=0,s=A[i].keypoints.find(x=>x.part==="leftShoulder"),s&&y.push([s.position[0],s.position[1]]),s=A[i].keypoints.find(x=>x.part==="leftElbow"),s&&y.push([s.position[0],s.position[1]]),s=A[i].keypoints.find(x=>x.part==="leftWrist"),s&&y.push([s.position[0],s.position[1]]),s=A[i].keypoints.find(x=>x.part==="leftPalm"),s&&y.push([s.position[0],s.position[1]]),H0(o,y,r),y.length=0,s=A[i].keypoints.find(x=>x.part==="rightShoulder"),s&&y.push([s.position[0],s.position[1]]),s=A[i].keypoints.find(x=>x.part==="rightElbow"),s&&y.push([s.position[0],s.position[1]]),s=A[i].keypoints.find(x=>x.part==="rightWrist"),s&&y.push([s.position[0],s.position[1]]),s=A[i].keypoints.find(x=>x.part==="rightPalm"),s&&y.push([s.position[0],s.position[1]]),H0(o,y,r)}}}}async function PA(e,A,t){let r=U(u0,t);if(!A||!e||!(e instanceof HTMLCanvasElement))return;let o=e.getContext("2d");if(!!o){o.lineJoin="round",o.font=r.font;for(let a of A){if(r.drawBoxes&&(o.strokeStyle=r.color,o.fillStyle=r.color,L0(o,a.box[0],a.box[1],a.box[2],a.box[3],r),r.drawLabels&&(r.shadowColor&&r.shadowColor!==""&&(o.fillStyle=r.shadowColor,o.fillText("hand",a.box[0]+3,1+a.box[1]+r.lineHeight,a.box[2])),o.fillStyle=r.labelColor,o.fillText("hand",a.box[0]+2,0+a.box[1]+r.lineHeight,a.box[2])),o.stroke()),r.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let i of a.keypoints)o.fillStyle=r.useDepth?`rgba(${127.5+2*i[2]}, ${127.5-2*i[2]}, 255, 0.5)`:r.color,ye(o,i[0],i[1],0,r);if(r.drawLabels){let i=(s,y)=>{o.fillStyle=r.useDepth?`rgba(${127.5+2*s[s.length-1][2]}, ${127.5-2*s[s.length-1][2]}, 255, 0.5)`:r.color,o.fillText(y,s[s.length-1][0]+4,s[s.length-1][1]+4)};o.font=r.font,i(a.annotations.index,"index"),i(a.annotations.middle,"middle"),i(a.annotations.ring,"ring"),i(a.annotations.pinky,"pinky"),i(a.annotations.thumb,"thumb"),i(a.annotations.palm,"palm")}if(r.drawPolygons){let i=s=>{if(!!s)for(let y=0;y0?y-1:0][0],s[y>0?y-1:0][1]),o.lineTo(s[y][0],s[y][1]),o.stroke()};o.lineWidth=r.lineWidth,i(a.annotations.index),i(a.annotations.middle),i(a.annotations.ring),i(a.annotations.pinky),i(a.annotations.thumb)}}}}async function vA(e,A,t){let r=U(u0,t);if(!A||!e||!(e instanceof HTMLCanvasElement))return;let o=e.getContext("2d");if(!!o){o.lineJoin="round",o.font=r.font;for(let a of A)if(r.drawBoxes){if(o.strokeStyle=r.color,o.fillStyle=r.color,L0(o,a.box[0],a.box[1],a.box[2],a.box[3],r),r.drawLabels){let i=`${a.label} ${Math.round(100*a.score)}%`;r.shadowColor&&r.shadowColor!==""&&(o.fillStyle=r.shadowColor,o.fillText(i,a.box[0]+3,1+a.box[1]+r.lineHeight,a.box[2])),o.fillStyle=r.labelColor,o.fillText(i,a.box[0]+2,0+a.box[1]+r.lineHeight,a.box[2])}o.stroke()}}}async function vt(e,A,t){let r=U(u0,t);if(!A||!e||!(e instanceof HTMLCanvasElement))return;let o=e.getContext("2d");if(!!o){o.lineJoin="round",o.font=r.font;for(let a=0;az.box[0]&&v.box[0]z.box[1]&&v.box[1]+v.box[3]u.body.box[0]&&z.box[0]+z.box[2]u.body.box[1]&&z.box[1]+z.box[3]u.body.box[0]&&z.box[1]+z.box[3]>u.body.box[1]&&z.box[1]+z.box[3]{z&&z.length===4&&(k.push(z[0],z[0]+z[2]),O.push(z[1],z[1]+z[3]))};H((h=u.face)==null?void 0:h.box),H((E=u.body)==null?void 0:E.box),H((I=(w=u.hands)==null?void 0:w.left)==null?void 0:I.box),H((g=(P=u.hands)==null?void 0:P.right)==null?void 0:g.box);let S=Math.min(...k),V=Math.min(...O);u.box=[S,V,Math.max(...k)-S,Math.max(...O)-V],o&&o[1]&&o[2]&&(u.boxRaw=[u.box[0]/o[2],u.box[1]/o[1],u.box[2]/o[2],u.box[3]/o[1]]),i.push(u)}return i}var j={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function EA(e){var r,o,a,i,s,y,x,l,c,d,m,T,f,p,h,E,w,I,P,g,v;if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};let A=Date.now()-e.timestamp,t=A<1e3?8-Math.log(A+1):1;if(j.canvas=e.canvas,!j.body||e.body.length!==j.body.length)j.body=JSON.parse(JSON.stringify(e.body));else for(let u=0;u((t-1)*j.body[u].box[V]+S)/t),O=e.body[u].boxRaw.map((S,V)=>((t-1)*j.body[u].boxRaw[V]+S)/t),H=e.body[u].keypoints.map((S,V)=>({score:S.score,part:S.part,position:[j.body[u].keypoints[V]?((t-1)*j.body[u].keypoints[V].position[0]+S.position[0])/t:S.position[0],j.body[u].keypoints[V]?((t-1)*j.body[u].keypoints[V].position[1]+S.position[1])/t:S.position[1]],positionRaw:[j.body[u].keypoints[V]?((t-1)*j.body[u].keypoints[V].positionRaw[0]+S.positionRaw[0])/t:S.position[0],j.body[u].keypoints[V]?((t-1)*j.body[u].keypoints[V].positionRaw[1]+S.positionRaw[1])/t:S.position[1]]}));j.body[u]={...e.body[u],box:k,boxRaw:O,keypoints:H}}if(!j.hand||e.hand.length!==j.hand.length)j.hand=JSON.parse(JSON.stringify(e.hand));else for(let u=0;u((t-1)*j.hand[u].box[$]+z)/t),O=e.hand[u].boxRaw.map((z,$)=>((t-1)*j.hand[u].boxRaw[$]+z)/t),H=e.hand[u].keypoints.map((z,$)=>z.map((y5,l5)=>((t-1)*j.hand[u].keypoints[$][l5]+y5)/t)),S=Object.keys(e.hand[u].annotations),V={};for(let z of S)V[z]=e.hand[u].annotations[z].map(($,y5)=>$.map((l5,wA)=>((t-1)*j.hand[u].annotations[z][y5][wA]+l5)/t));j.hand[u]={...e.hand[u],box:k,boxRaw:O,keypoints:H,annotations:V}}if(!j.face||e.face.length!==j.face.length)j.face=JSON.parse(JSON.stringify(e.face));else for(let u=0;u((t-1)*j.face[u].box[V]+S)/t),O=e.face[u].boxRaw.map((S,V)=>((t-1)*j.face[u].boxRaw[V]+S)/t),H={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};H.matrix=(r=e.face[u].rotation)==null?void 0:r.matrix,H.angle={roll:((t-1)*(((a=(o=j.face[u].rotation)==null?void 0:o.angle)==null?void 0:a.roll)||0)+(((s=(i=e.face[u].rotation)==null?void 0:i.angle)==null?void 0:s.roll)||0))/t,yaw:((t-1)*(((x=(y=j.face[u].rotation)==null?void 0:y.angle)==null?void 0:x.yaw)||0)+(((c=(l=e.face[u].rotation)==null?void 0:l.angle)==null?void 0:c.yaw)||0))/t,pitch:((t-1)*(((m=(d=j.face[u].rotation)==null?void 0:d.angle)==null?void 0:m.pitch)||0)+(((f=(T=e.face[u].rotation)==null?void 0:T.angle)==null?void 0:f.pitch)||0))/t},H.gaze={bearing:((t-1)*(((h=(p=j.face[u].rotation)==null?void 0:p.gaze)==null?void 0:h.bearing)||0)+(((w=(E=e.face[u].rotation)==null?void 0:E.gaze)==null?void 0:w.bearing)||0))/t,strength:((t-1)*(((P=(I=j.face[u].rotation)==null?void 0:I.gaze)==null?void 0:P.strength)||0)+(((v=(g=e.face[u].rotation)==null?void 0:g.gaze)==null?void 0:v.strength)||0))/t},j.face[u]={...e.face[u],rotation:H,box:k,boxRaw:O}}if(!j.object||e.object.length!==j.object.length)j.object=JSON.parse(JSON.stringify(e.object));else for(let u=0;u((t-1)*j.object[u].box[S]+H)/t),O=e.object[u].boxRaw.map((H,S)=>((t-1)*j.object[u].boxRaw[S]+H)/t);j.object[u]={...e.object[u],box:k,boxRaw:O}}if(e.persons){let u=e.persons;if(!j.persons||u.length!==j.persons.length)j.persons=JSON.parse(JSON.stringify(u));else for(let k=0;k((t-1)*j.persons[k].box[H]+O)/t)}return e.gesture&&(j.gesture=e.gesture),e.performance&&(j.performance=e.performance),j}var n5=` /9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob @@ -162,7 +162,7 @@ PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1 8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3 ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY -euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,Q0=` +euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,o5=` /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA @@ -730,5 +730,5 @@ AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2 SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/ -2Q==`;var le="2.1.4";var g0,k0,W0,f0,m0,M0,_0,I0,$0,A5,e5,t5,i2=class{constructor(e){K(this,g0,void 0);K(this,k0,void 0);K(this,W0,void 0);K(this,f0,void 0);K(this,m0,void 0);K(this,M0,void 0);this.analyze=(...e)=>{if(!X(this,k0))return;let t=this.tf.engine().state.numTensors,r=X(this,g0);$(this,g0,t);let o=t-r;o!==0&&M(...e,o)};K(this,_0,e=>{if(!X(this,W0))return null;if(!e)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(e instanceof n.Tensor))return"input must be a tensor";try{this.tf.getBackend()}catch(t){return"backend not loaded"}return null});K(this,I0,async(e=!1)=>{var t;if(this.config.backend&&this.config.backend.length>0&&e||this.tf.getBackend()!==this.config.backend){let r=I();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&this.config.debug&&M("running inside web worker"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(M("override: backend set to tensorflow while running in browser"),this.config.backend="humangl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(M("override: backend set to webgl while running in nodejs"),this.config.backend="tensorflow"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")M("override: backend set to webgpu but browser does not support webgpu"),this.config.backend="humangl";else{let a=await navigator.gpu.requestAdapter();this.config.debug&&M("enumerated webgpu adapter:",a)}this.config.backend==="humangl"&&xA();let o=Object.keys(this.tf.engine().registryFactory);if(this.config.debug&&M("available backends:",o),o.includes(this.config.backend)||(M(`error: backend ${this.config.backend} not found in registry`),this.config.backend=this.tf.ENV.flags.IS_NODE?"tensorflow":"humangl",M(`override: using backend ${this.config.backend} instead`)),this.config.debug&&M("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&M("wasm path:",this.config.wasmPath),typeof((t=this.tf)==null?void 0:t.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let a=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),x=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&M(`wasm execution: ${a?"SIMD":"no SIMD"} ${x?"multithreaded":"singlethreaded"}`),this.config.debug&&!a&&M("warning: wasm simd support is not enabled")}try{await this.tf.setBackend(this.config.backend)}catch(a){M("error: cannot set backend:",this.config.backend,a)}}if(this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_CPU_FORWARD",!0),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!1),this.tf.ENV.set("WEBGL_USE_SHAPES_UNIFORMS",!0),typeof this.config.deallocate!="undefined"&&this.config.deallocate&&(M("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let o=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&M(`gl version:${o.getParameter(o.VERSION)} renderer:${o.getParameter(o.RENDERER)}`)}this.tf.enableProdMode(),await this.tf.ready(),this.performance.backend=Math.trunc(I()-r)}});this.next=e=>ye(e||this.result);K(this,$0,async e=>{if(this.config.cacheSensitivity===0)return!1;let t=32;if(!e.shape[1]||!e.shape[2])return!1;let r=n.image.resizeBilinear(e,[Math.trunc(e.shape[1]/t),Math.trunc(e.shape[2]/t)]),o=await r.data(),a=0;for(let y=0;y10*this.config.cacheSensitivity?0:x),s});K(this,A5,async()=>{let e=(o,a="application/octet-stream")=>fetch(`data:${a};base64,${o}`).then(x=>x.blob()),t,r;switch(this.config.warmup){case"face":t=await e(K0);break;case"full":t=await e(Q0);break;default:t=null}if(t){let o=await createImageBitmap(t);r=await this.detect(o,this.config),o.close()}return r});K(this,e5,async()=>new Promise(e=>{let t,r=0;switch(this.config.warmup){case"face":r=256,t="data:image/jpeg;base64,"+K0;break;case"full":case"body":r=1200,t="data:image/jpeg;base64,"+Q0;break;default:t=null}let o=new Image;o.onload=async()=>{let a=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(r,r):document.createElement("canvas");a.width=o.naturalWidth,a.height=o.naturalHeight;let x=a.getContext("2d");x==null||x.drawImage(o,0,0);let s=await this.detect(a,this.config);e(s)},t?o.src=t:e(null)}));K(this,t5,async()=>{let e=o=>Buffer.from(o,"base64"),t;if(this.config.warmup==="face"&&(t=e(K0)),(this.config.warmup==="body"||this.config.warmup==="full")&&(t=e(Q0)),!t)return null;let r;if(typeof n.node!="undefined"){let o=n.node.decodeJpeg(t),a=o.expandDims(0);this.tf.dispose(o),r=await this.detect(a,this.config),this.tf.dispose(a)}else this.config.debug&&M("Warmup tfjs-node not loaded");return r});this.config=C(aA,e||{}),this.tf=n,this.draw=oA,this.version=le,this.state="idle",$(this,g0,0),$(this,k0,!1),$(this,W0,!1),$(this,f0,!0),$(this,M0,0),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,movenet:null,handpose:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,centernet:null,faceres:null,segmentation:null},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[]},this.image=t=>c0(t,this.config),this.faceTriangulation=PA,this.faceUVMap=vA,this.sysinfo=iA(),$(this,m0,1)}similarity(e,t){return u5(e,t)}segmentation(e,t){return _A(e,t,this.config)}enhance(e){return h5(e)}match(e,t,r=0){return EA(e,t,r)}async load(e){this.state="load";let t=I();e&&(this.config=C(this.config,e)),X(this,f0)&&(this.config.debug&&M(`version: ${this.version}`),this.config.debug&&M(`tfjs version: ${this.tf.version_core}`),this.config.debug&&M("platform:",this.sysinfo.platform),this.config.debug&&M("agent:",this.sysinfo.agent),await X(this,I0).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&M("configuration:",this.config),this.config.debug&&M("tf flags:",this.tf.ENV.flags))),await $A(this),X(this,f0)&&(this.config.debug&&M("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),$(this,f0,!1));let r=Math.trunc(I()-t);r>(this.performance.load||0)&&(this.performance.load=r)}async detect(e,t){return new Promise(async r=>{this.state="config";let o,a;this.config=C(this.config,t),this.state="check";let x=X(this,_0).call(this,e);x&&(M(x,e),r({error:x}));let s=I();await X(this,I0).call(this),await this.load(),o=I();let y=c0(e,this.config);if(this.performance.image=Math.trunc(I()-o),this.analyze("Get Image:"),this.config.segmentation.enabled&&y&&y.tensor&&(this.analyze("Start Segmentation:"),this.state="run:segmentation",o=I(),await AA(y),a=Math.trunc(I()-o),a>0&&(this.performance.segmentation=a),y.canvas&&(n.dispose(y.tensor),y=c0(y.canvas,this.config)),this.analyze("End Segmentation:")),!y||!y.tensor){M("could not convert input to tensor"),r({error:"could not convert input to tensor"});return}o=I(),this.config.skipFrame=await X(this,$0).call(this,y.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(I()-o),this.analyze("Check Changed:");let i=[],l=[],d=[],c=[];this.config.async?(i=this.config.face.enabled?eA(this,y.tensor):[],this.performance.face&&delete this.performance.face):(this.state="run:face",o=I(),i=this.config.face.enabled?await eA(this,y.tensor):[],a=Math.trunc(I()-o),a>0&&(this.performance.face=a)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?l=this.config.body.enabled?w5(y.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?l=this.config.body.enabled?H5(y.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?l=this.config.body.enabled?F5(y.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(l=this.config.body.enabled?G5(y.tensor,this.config):[]),this.performance.body&&delete this.performance.body):(this.state="run:body",o=I(),this.config.body.modelPath.includes("posenet")?l=this.config.body.enabled?await w5(y.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?l=this.config.body.enabled?await H5(y.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?l=this.config.body.enabled?await F5(y.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(l=this.config.body.enabled?await G5(y.tensor,this.config):[]),a=Math.trunc(I()-o),a>0&&(this.performance.body=a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(d=this.config.hand.enabled?N5(y.tensor,this.config):[],this.performance.hand&&delete this.performance.hand):(this.state="run:hand",o=I(),d=this.config.hand.enabled?await N5(y.tensor,this.config):[],a=Math.trunc(I()-o),a>0&&(this.performance.hand=a)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(this.config.object.modelPath.includes("nanodet")?c=this.config.object.enabled?Y5(y.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(c=this.config.object.enabled?_5(y.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(this.state="run:object",o=I(),this.config.object.modelPath.includes("nanodet")?c=this.config.object.enabled?await Y5(y.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(c=this.config.object.enabled?await _5(y.tensor,this.config):[]),a=Math.trunc(I()-o),a>0&&(this.performance.object=a)),this.analyze("End Object:"),this.config.async&&([i,l,d,c]=await Promise.all([i,l,d,c]));let u=[];this.config.gesture.enabled&&(o=I(),u=[...ee(i),...Ae(l),...ne(d),...te(i)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(I()-o)),this.performance.total=Math.trunc(I()-s),this.state="idle",this.result={face:i,body:l,hand:d,gesture:u,object:c,performance:this.performance,canvas:y.canvas,timestamp:Date.now(),get persons(){var P;return xe(i,l,d,u,(P=y==null?void 0:y.tensor)==null?void 0:P.shape)}},n.dispose(y.tensor),r(this.result)})}async warmup(e){let t=I();if(e&&(this.config=C(this.config,e)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let r;typeof createImageBitmap=="function"?r=await X(this,A5).call(this):typeof Image!="undefined"?r=await X(this,e5).call(this):r=await X(this,t5).call(this);let o=I();return this.config.debug&&M("Warmup",this.config.warmup,Math.round(o-t),"ms",r),r}};g0=new WeakMap,k0=new WeakMap,W0=new WeakMap,f0=new WeakMap,m0=new WeakMap,M0=new WeakMap,_0=new WeakMap,I0=new WeakMap,$0=new WeakMap,A5=new WeakMap,e5=new WeakMap,t5=new WeakMap;export{i2 as Human,i2 as default}; +2Q==`;var RA="2.1.4";var E0,V0,Z0,g0,M0,R0,r5,F0,s5,a5,i5,x5,wt=class{constructor(A){e0(this,E0,void 0);e0(this,V0,void 0);e0(this,Z0,void 0);e0(this,g0,void 0);e0(this,M0,void 0);e0(this,R0,void 0);this.analyze=(...A)=>{if(!G(this,V0))return;let t=this.tf.engine().state.numTensors,r=G(this,E0);n0(this,E0,t);let o=t-r;o!==0&&M(...A,o)};e0(this,r5,A=>{if(!G(this,Z0))return null;if(!A)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(A instanceof n.Tensor))return"input must be a tensor";try{this.tf.getBackend()}catch(t){return"backend not loaded"}return null});e0(this,F0,async(A=!1)=>{var t;if(this.config.backend&&this.config.backend.length>0&&A||this.tf.getBackend()!==this.config.backend){let r=L();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&this.config.debug&&M("running inside web worker"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(M("override: backend set to tensorflow while running in browser"),this.config.backend="humangl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(M("override: backend set to webgl while running in nodejs"),this.config.backend="tensorflow"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")M("override: backend set to webgpu but browser does not support webgpu"),this.config.backend="humangl";else{let a=await navigator.gpu.requestAdapter();this.config.debug&&M("enumerated webgpu adapter:",a)}this.config.backend==="humangl"&&he();let o=Object.keys(this.tf.engine().registryFactory);if(this.config.debug&&M("available backends:",o),o.includes(this.config.backend)||(M(`error: backend ${this.config.backend} not found in registry`),this.config.backend=this.tf.ENV.flags.IS_NODE?"tensorflow":"humangl",M(`override: using backend ${this.config.backend} instead`)),this.config.debug&&M("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&M("wasm path:",this.config.wasmPath),typeof((t=this.tf)==null?void 0:t.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let a=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),i=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&M(`wasm execution: ${a?"SIMD":"no SIMD"} ${i?"multithreaded":"singlethreaded"}`),this.config.debug&&!a&&M("warning: wasm simd support is not enabled")}try{await this.tf.setBackend(this.config.backend)}catch(a){M("error: cannot set backend:",this.config.backend,a)}}if(this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_CPU_FORWARD",!0),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!1),this.tf.ENV.set("WEBGL_USE_SHAPES_UNIFORMS",!0),typeof this.config.deallocate!="undefined"&&this.config.deallocate&&(M("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let o=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&M(`gl version:${o.getParameter(o.VERSION)} renderer:${o.getParameter(o.RENDERER)}`)}this.tf.enableProdMode(),await this.tf.ready(),this.performance.backend=Math.trunc(L()-r)}});this.next=A=>EA(A||this.result);e0(this,s5,async A=>{if(this.config.cacheSensitivity===0)return!1;let t=32;if(!A.shape[1]||!A.shape[2])return!1;let r=n.image.resizeBilinear(A,[Math.trunc(A.shape[1]/t),Math.trunc(A.shape[2]/t)]),o=await r.data(),a=0;for(let y=0;y10*this.config.cacheSensitivity?0:i),s});e0(this,a5,async()=>{let A=(o,a="application/octet-stream")=>fetch(`data:${a};base64,${o}`).then(i=>i.blob()),t,r;switch(this.config.warmup){case"face":t=await A(n5);break;case"full":t=await A(o5);break;default:t=null}if(t){let o=await createImageBitmap(t);r=await this.detect(o,this.config),o.close()}return r});e0(this,i5,async()=>new Promise(A=>{let t,r=0;switch(this.config.warmup){case"face":r=256,t="data:image/jpeg;base64,"+n5;break;case"full":case"body":r=1200,t="data:image/jpeg;base64,"+o5;break;default:t=null}let o=new Image;o.onload=async()=>{let a=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(r,r):document.createElement("canvas");a.width=o.naturalWidth,a.height=o.naturalHeight;let i=a.getContext("2d");i==null||i.drawImage(o,0,0);let s=await this.detect(a,this.config);A(s)},t?o.src=t:A(null)}));e0(this,x5,async()=>{let A=o=>Buffer.from(o,"base64"),t;if(this.config.warmup==="face"&&(t=A(n5)),(this.config.warmup==="body"||this.config.warmup==="full")&&(t=A(o5)),!t)return null;let r;if(typeof n.node!="undefined"){let o=n.node.decodeJpeg(t),a=o.expandDims(0);this.tf.dispose(o),r=await this.detect(a,this.config),this.tf.dispose(a)}else this.config.debug&&M("Warmup tfjs-node not loaded");return r});this.config=U(me,A||{}),this.tf=n,this.draw=ce,this.version=RA,this.state="idle",n0(this,E0,0),n0(this,V0,!1),n0(this,Z0,!1),n0(this,g0,!0),n0(this,R0,0),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,movenet:null,handpose:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,centernet:null,faceres:null,segmentation:null},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[]},this.image=t=>b0(t,this.config),this.faceTriangulation=ke,this.faceUVMap=We,this.sysinfo=ue(),n0(this,M0,1)}similarity(A,t){return P5(A,t)}segmentation(A,t){return fA(A,t,this.config)}enhance(A){return v5(A)}match(A,t,r=0){return Ne(A,t,r)}async load(A){this.state="load";let t=L();A&&(this.config=U(this.config,A)),G(this,g0)&&(this.config.debug&&M(`version: ${this.version}`),this.config.debug&&M(`tfjs version: ${this.tf.version_core}`),this.config.debug&&M("platform:",this.sysinfo.platform),this.config.debug&&M("agent:",this.sysinfo.agent),await G(this,F0).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&M("configuration:",this.config),this.config.debug&&M("tf flags:",this.tf.ENV.flags))),await mA(this),G(this,g0)&&(this.config.debug&&M("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),n0(this,g0,!1));let r=Math.trunc(L()-t);r>(this.performance.load||0)&&(this.performance.load=r)}async detect(A,t){return new Promise(async r=>{this.state="config";let o,a;this.config=U(this.config,t),this.state="check";let i=G(this,r5).call(this,A);i&&(M(i,A),r({error:i}));let s=L();await G(this,F0).call(this),await this.load(),o=L();let y=b0(A,this.config);if(this.performance.image=Math.trunc(L()-o),this.analyze("Get Image:"),this.config.segmentation.enabled&&y&&y.tensor&&(this.analyze("Start Segmentation:"),this.state="run:segmentation",o=L(),await ie(y),a=Math.trunc(L()-o),a>0&&(this.performance.segmentation=a),y.canvas&&(n.dispose(y.tensor),y=b0(y.canvas,this.config)),this.analyze("End Segmentation:")),!y||!y.tensor){M("could not convert input to tensor"),r({error:"could not convert input to tensor"});return}o=L(),this.config.skipFrame=await G(this,s5).call(this,y.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(L()-o),this.analyze("Check Changed:");let x=[],l=[],c=[],d=[];this.config.async?(x=this.config.face.enabled?xe(this,y.tensor):[],this.performance.face&&delete this.performance.face):(this.state="run:face",o=L(),x=this.config.face.enabled?await xe(this,y.tensor):[],a=Math.trunc(L()-o),a>0&&(this.performance.face=a)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?l=this.config.body.enabled?O5(y.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?l=this.config.body.enabled?G5(y.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?l=this.config.body.enabled?Y5(y.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(l=this.config.body.enabled?_5(y.tensor,this.config):[]),this.performance.body&&delete this.performance.body):(this.state="run:body",o=L(),this.config.body.modelPath.includes("posenet")?l=this.config.body.enabled?await O5(y.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?l=this.config.body.enabled?await G5(y.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?l=this.config.body.enabled?await Y5(y.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(l=this.config.body.enabled?await _5(y.tensor,this.config):[]),a=Math.trunc(L()-o),a>0&&(this.performance.body=a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(c=this.config.hand.enabled?C5(y.tensor,this.config):[],this.performance.hand&&delete this.performance.hand):(this.state="run:hand",o=L(),c=this.config.hand.enabled?await C5(y.tensor,this.config):[],a=Math.trunc(L()-o),a>0&&(this.performance.hand=a)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(this.config.object.modelPath.includes("nanodet")?d=this.config.object.enabled?te(y.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(d=this.config.object.enabled?se(y.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(this.state="run:object",o=L(),this.config.object.modelPath.includes("nanodet")?d=this.config.object.enabled?await te(y.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(d=this.config.object.enabled?await se(y.tensor,this.config):[]),a=Math.trunc(L()-o),a>0&&(this.performance.object=a)),this.analyze("End Object:"),this.config.async&&([x,l,c,d]=await Promise.all([x,l,c,d]));let m=[];this.config.gesture.enabled&&(o=L(),m=[...hA(x),...uA(l),...bA(c),...pA(x)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(L()-o)),this.performance.total=Math.trunc(L()-s),this.state="idle",this.result={face:x,body:l,hand:c,gesture:m,object:d,performance:this.performance,canvas:y.canvas,timestamp:Date.now(),get persons(){var T;return zA(x,l,c,m,(T=y==null?void 0:y.tensor)==null?void 0:T.shape)}},n.dispose(y.tensor),r(this.result)})}async warmup(A){let t=L();if(A&&(this.config=U(this.config,A)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let r;typeof createImageBitmap=="function"?r=await G(this,a5).call(this):typeof Image!="undefined"?r=await G(this,i5).call(this):r=await G(this,x5).call(this);let o=L();return this.config.debug&&M("Warmup",this.config.warmup,Math.round(o-t),"ms",r),r}};E0=new WeakMap,V0=new WeakMap,Z0=new WeakMap,g0=new WeakMap,M0=new WeakMap,R0=new WeakMap,r5=new WeakMap,F0=new WeakMap,s5=new WeakMap,a5=new WeakMap,i5=new WeakMap,x5=new WeakMap;export{wt as Human,wt as default}; //# sourceMappingURL=human.esm-nobundle.js.map diff --git a/dist/human.esm-nobundle.js.map b/dist/human.esm-nobundle.js.map index 542630fc..5d9b3346 100644 --- a/dist/human.esm-nobundle.js.map +++ b/dist/human.esm-nobundle.js.map @@ -1,7 +1,7 @@ { "version": 3, - "sources": ["../src/helpers.ts", "../src/config.ts", "../src/sysinfo.ts", "../tfjs/tf-browser.ts", "../src/tfjs/backend.ts", "../src/blazeface/box.ts", "../src/blazeface/util.ts", "../src/blazeface/blazeface.ts", "../src/blazeface/coords.ts", "../src/blazeface/facepipeline.ts", "../src/blazeface/facemesh.ts", "../src/faceres/faceres.ts", "../src/emotion/emotion.ts", "../src/posenet/keypoints.ts", "../src/posenet/utils.ts", "../src/posenet/poses.ts", "../src/posenet/posenet.ts", "../src/handpose/box.ts", "../src/handpose/anchors.ts", "../src/handpose/handdetector.ts", "../src/handpose/util.ts", "../src/handpose/handpipeline.ts", "../src/handpose/handpose.ts", "../src/blazepose/annotations.ts", "../src/blazepose/blazepose.ts", "../src/efficientpose/efficientpose.ts", "../src/movenet/movenet.ts", "../src/object/labels.ts", "../src/object/nanodet.ts", "../src/object/centernet.ts", "../src/image/imagefx.js", "../src/image/image.ts", "../src/segmentation/segmentation.ts", "../src/models.ts", "../src/face.ts", "../src/gesture/gesture.ts", "../src/draw/draw.ts", "../src/persons.ts", "../src/interpolate.ts", "../src/sample.ts", "../src/human.ts"], - "sourcesContent": ["/**\n * Simple helper functions used accross codebase\n */\n\n// helper function: join two paths\nexport function join(folder: string, file: string): string {\n const separator = folder.endsWith('/') ? '' : '/';\n const skipJoin = file.startsWith('.') || file.startsWith('/') || file.startsWith('http:') || file.startsWith('https:') || file.startsWith('file:');\n const path = skipJoin ? `${file}` : `${folder}${separator}${file}`;\n if (!path.toLocaleLowerCase().includes('.json')) throw new Error(`Human: ModelPath Error: ${path} Expecting JSON file`);\n return path;\n}\n\n// helper function: wrapper around console output\nexport function log(...msg): void {\n const dt = new Date();\n const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;\n // eslint-disable-next-line no-console\n if (msg) console.log(ts, 'Human:', ...msg);\n}\n\n// helper function: gets elapsed time on both browser and nodejs\nexport const now = () => {\n if (typeof performance !== 'undefined') return performance.now();\n return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());\n};\n\n// helper function: perform deep merge of multiple objects so it allows full inheriance with overrides\nexport function mergeDeep(...objects) {\n const isObject = (obj) => obj && typeof obj === 'object';\n return objects.reduce((prev, obj) => {\n Object.keys(obj || {}).forEach((key) => {\n const pVal = prev[key];\n const oVal = obj[key];\n if (Array.isArray(pVal) && Array.isArray(oVal)) prev[key] = pVal.concat(...oVal);\n else if (isObject(pVal) && isObject(oVal)) prev[key] = mergeDeep(pVal, oVal);\n else prev[key] = oVal;\n });\n return prev;\n }, {});\n}\n\n// helper function: return min and max from input array\nexport const minmax = (data: Array) => data.reduce((acc: Array, val) => {\n acc[0] = (acc[0] === undefined || val < acc[0]) ? val : acc[0];\n acc[1] = (acc[1] === undefined || val > acc[1]) ? val : acc[1];\n return acc;\n}, []);\n", "/* eslint-disable indent */\n/* eslint-disable no-multi-spaces */\n\n/**\n * Configuration interface definition for **Human** library\n *\n * Contains all configurable parameters\n * @typedef Config\n */\nexport interface Config {\n /** Backend used for TFJS operations */\n backend: null | '' | 'cpu' | 'wasm' | 'webgl' | 'humangl' | 'tensorflow' | 'webgpu',\n\n /** Path to *.wasm files if backend is set to `wasm` */\n wasmPath: string,\n\n /** Print debug statements to console */\n debug: boolean,\n\n /** Perform model loading and inference concurrently or sequentially */\n async: boolean,\n\n /** What to use for `human.warmup()`\n * - warmup pre-initializes all models for faster inference but can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n */\n warmup: 'none' | 'face' | 'full' | 'body',\n\n /** Base model path (typically starting with file://, http:// or https://) for all models\n * - individual modelPath values are relative to this path\n */\n modelBasePath: string,\n\n /** Cache sensitivity\n * - values 0..1 where 0.01 means reset cache if input changed more than 1%\n * - set to 0 to disable caching\n */\n cacheSensitivity: number;\n\n /** Cache sensitivity\n * - values 0..1 where 0.01 means reset cache if input changed more than 1%\n * - set to 0 to disable caching\n */\n skipFrame: boolean;\n\n /** Run input through image filters before inference\n * - image filters run with near-zero latency as they are executed on the GPU\n */\n filter: {\n enabled: boolean,\n /** Resize input width\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n width: number,\n /** Resize input height\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n height: number,\n /** Return processed canvas imagedata in result */\n return: boolean,\n /** Flip input as mirror image */\n flip: boolean,\n /** Range: -1 (darken) to 1 (lighten) */\n brightness: number,\n /** Range: -1 (reduce contrast) to 1 (increase contrast) */\n contrast: number,\n /** Range: 0 (no sharpening) to 1 (maximum sharpening) */\n sharpness: number,\n /** Range: 0 (no blur) to N (blur radius in pixels) */\n blur: number\n /** Range: -1 (reduce saturation) to 1 (increase saturation) */\n saturation: number,\n /** Range: 0 (no change) to 360 (hue rotation in degrees) */\n hue: number,\n /** Image negative */\n negative: boolean,\n /** Image sepia colors */\n sepia: boolean,\n /** Image vintage colors */\n vintage: boolean,\n /** Image kodachrome colors */\n kodachrome: boolean,\n /** Image technicolor colors */\n technicolor: boolean,\n /** Image polaroid camera effect */\n polaroid: boolean,\n /** Range: 0 (no pixelate) to N (number of pixels to pixelate) */\n pixelate: number,\n },\n // type definition end\n\n /** Controlls gesture detection */\n gesture: {\n enabled: boolean,\n },\n\n /** Controlls and configures all face-specific options:\n * - face detection, face mesh detection, age, gender, emotion detection and face description\n * Parameters:\n * - enabled: true/false\n * - modelPath: path for each of face models\n * - minConfidence: threshold for discarding a prediction\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxDetected: maximum number of faces detected in the input, should be set to the minimum number for performance\n * - rotation: use calculated rotated face image or just box with rotation as-is, false means higher performance, but incorrect mesh mapping on higher face angles\n * - return: return extracted face as tensor for futher user processing, in which case user is reponsible for manually disposing the tensor\n */\n face: {\n enabled: boolean,\n detector: {\n modelPath: string,\n rotation: boolean,\n maxDetected: number,\n skipFrames: number,\n minConfidence: number,\n iouThreshold: number,\n return: boolean,\n },\n mesh: {\n enabled: boolean,\n modelPath: string,\n },\n iris: {\n enabled: boolean,\n modelPath: string,\n },\n description: {\n enabled: boolean,\n modelPath: string,\n skipFrames: number,\n minConfidence: number,\n },\n emotion: {\n enabled: boolean,\n minConfidence: number,\n skipFrames: number,\n modelPath: string,\n },\n },\n\n /** Controlls and configures all body detection specific options\n * - enabled: true/false\n * - modelPath: body pose model, can be absolute path or relative to modelBasePath\n * - minConfidence: threshold for discarding a prediction\n * - maxDetected: maximum number of people detected in the input, should be set to the minimum number for performance\n */\n body: {\n enabled: boolean,\n modelPath: string,\n maxDetected: number,\n minConfidence: number,\n skipFrames: number,\n },\n\n /** Controlls and configures all hand detection specific options\n * - enabled: true/false\n * - landmarks: detect hand landmarks or just hand boundary box\n * - modelPath: paths for hand detector and hand skeleton models, can be absolute path or relative to modelBasePath\n * - minConfidence: threshold for discarding a prediction\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxDetected: maximum number of hands detected in the input, should be set to the minimum number for performance\n * - rotation: use best-guess rotated hand image or just box with rotation as-is, false means higher performance, but incorrect finger mapping if hand is inverted\n */\n hand: {\n enabled: boolean,\n rotation: boolean,\n skipFrames: number,\n minConfidence: number,\n iouThreshold: number,\n maxDetected: number,\n landmarks: boolean,\n detector: {\n modelPath: string,\n },\n skeleton: {\n modelPath: string,\n },\n },\n\n /** Controlls and configures all object detection specific options\n * - enabled: true/false\n * - modelPath: object detection model, can be absolute path or relative to modelBasePath\n * - minConfidence: minimum score that detection must have to return as valid object\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxDetected: maximum number of detections to return\n */\n object: {\n enabled: boolean,\n modelPath: string,\n minConfidence: number,\n iouThreshold: number,\n maxDetected: number,\n skipFrames: number,\n },\n\n /** Controlls and configures all body segmentation module\n * removes background from input containing person\n * if segmentation is enabled it will run as preprocessing task before any other model\n * alternatively leave it disabled and use it on-demand using human.segmentation method which can\n * remove background or replace it with user-provided background\n *\n * - enabled: true/false\n * - modelPath: object detection model, can be absolute path or relative to modelBasePath\n */\n segmentation: {\n enabled: boolean,\n modelPath: string,\n },\n}\n\nconst config: Config = {\n backend: 'webgl', // select tfjs backend to use, leave empty to use default backend\n // can be 'webgl', 'wasm', 'cpu', or 'humangl' which is a custom version of webgl\n modelBasePath: '../models/', // base path for all models\n wasmPath: '../node_modules/@tensorflow/tfjs-backend-wasm/dist/', // path for wasm binaries, only used for backend: wasm\n debug: true, // print additional status messages to console\n async: true, // execute enabled models in parallel\n warmup: 'full', // what to use for human.warmup(), can be 'none', 'face', 'full'\n // warmup pre-initializes all models for faster inference but can take\n // significant time on startup\n // only used for `webgl` and `humangl` backends\n cacheSensitivity: 0.75, // cache sensitivity\n // values 0..1 where 0.01 means reset cache if input changed more than 1%\n // set to 0 to disable caching\n skipFrame: false, // internal & dynamic\n filter: { // run input through image filters before inference\n // image filters run with near-zero latency as they are executed on the GPU\n enabled: true, // enable image pre-processing filters\n width: 0, // resize input width\n height: 0, // resize input height\n // if both width and height are set to 0, there is no resizing\n // if just one is set, second one is scaled automatically\n // if both are set, values are used as-is\n flip: false, // flip input as mirror image\n return: true, // return processed canvas imagedata in result\n brightness: 0, // range: -1 (darken) to 1 (lighten)\n contrast: 0, // range: -1 (reduce contrast) to 1 (increase contrast)\n sharpness: 0, // range: 0 (no sharpening) to 1 (maximum sharpening)\n blur: 0, // range: 0 (no blur) to N (blur radius in pixels)\n saturation: 0, // range: -1 (reduce saturation) to 1 (increase saturation)\n hue: 0, // range: 0 (no change) to 360 (hue rotation in degrees)\n negative: false, // image negative\n sepia: false, // image sepia colors\n vintage: false, // image vintage colors\n kodachrome: false, // image kodachrome colors\n technicolor: false, // image technicolor colors\n polaroid: false, // image polaroid camera effect\n pixelate: 0, // range: 0 (no pixelate) to N (number of pixels to pixelate)\n },\n\n gesture: {\n enabled: true, // enable gesture recognition based on model results\n },\n\n face: {\n enabled: true, // controls if specified modul is enabled\n // face.enabled is required for all face models:\n // detector, mesh, iris, age, gender, emotion\n // (note: module is not loaded until it is required)\n detector: {\n modelPath: 'blazeface.json', // detector model, can be absolute path or relative to modelBasePath\n rotation: true, // use best-guess rotated face image or just box with rotation as-is\n // false means higher performance, but incorrect mesh mapping if face angle is above 20 degrees\n // this parameter is not valid in nodejs\n maxDetected: 15, // maximum number of faces detected in the input\n // should be set to the minimum number for performance\n skipFrames: 15, // how many max frames to go without re-running the face bounding box detector\n // only used when cacheSensitivity is not zero\n // e.g., if model is running st 25 FPS, we can re-use existing bounding\n // box for updated face analysis as the head probably hasn't moved much\n // in short time (10 * 1/25 = 0.25 sec)\n minConfidence: 0.2, // threshold for discarding a prediction\n iouThreshold: 0.1, // ammount of overlap between two detected objects before one object is removed\n return: false, // return extracted face as tensor\n // in which case user is reponsible for disposing the tensor\n },\n\n mesh: {\n enabled: true,\n modelPath: 'facemesh.json', // facemesh model, can be absolute path or relative to modelBasePath\n },\n\n iris: {\n enabled: true,\n modelPath: 'iris.json', // face iris model\n // can be either absolute path or relative to modelBasePath\n },\n\n description: {\n enabled: true, // to improve accuracy of face description extraction it is\n // recommended to enable detector.rotation and mesh.enabled\n modelPath: 'faceres.json', // face description model\n // can be either absolute path or relative to modelBasePath\n skipFrames: 11, // how many max frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n minConfidence: 0.1, // threshold for discarding a prediction\n },\n\n emotion: {\n enabled: true,\n minConfidence: 0.1, // threshold for discarding a prediction\n skipFrames: 17, // how max many frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n modelPath: 'emotion.json', // face emotion model, can be absolute path or relative to modelBasePath\n },\n },\n\n body: {\n enabled: true,\n modelPath: 'movenet-lightning.json', // body model, can be absolute path or relative to modelBasePath\n // can be 'posenet', 'blazepose', 'efficientpose', 'movenet-lightning', 'movenet-thunder'\n maxDetected: 1, // maximum number of people detected in the input\n // should be set to the minimum number for performance\n // only valid for posenet as other models detects single pose\n minConfidence: 0.2, // threshold for discarding a prediction\n skipFrames: 1, // how many max frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n},\n\n hand: {\n enabled: true,\n rotation: true, // use best-guess rotated hand image or just box with rotation as-is\n // false means higher performance, but incorrect finger mapping if hand is inverted\n skipFrames: 18, // how many max frames to go without re-running the hand bounding box detector\n // only used when cacheSensitivity is not zero\n // e.g., if model is running st 25 FPS, we can re-use existing bounding\n // box for updated hand skeleton analysis as the hand probably\n // hasn't moved much in short time (10 * 1/25 = 0.25 sec)\n minConfidence: 0.1, // threshold for discarding a prediction\n iouThreshold: 0.1, // ammount of overlap between two detected objects before one object is removed\n maxDetected: 2, // maximum number of hands detected in the input\n // should be set to the minimum number for performance\n landmarks: true, // detect hand landmarks or just hand boundary box\n detector: {\n modelPath: 'handdetect.json', // hand detector model, can be absolute path or relative to modelBasePath\n },\n skeleton: {\n modelPath: 'handskeleton.json', // hand skeleton model, can be absolute path or relative to modelBasePath\n },\n },\n\n object: {\n enabled: false,\n modelPath: 'mb3-centernet.json', // experimental: object detection model, can be absolute path or relative to modelBasePath\n // can be 'mb3-centernet' or 'nanodet'\n minConfidence: 0.2, // threshold for discarding a prediction\n iouThreshold: 0.4, // ammount of overlap between two detected objects before one object is removed\n maxDetected: 10, // maximum number of objects detected in the input\n skipFrames: 19, // how many max frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n },\n\n segmentation: {\n enabled: false, // controlls and configures all body segmentation module\n // removes background from input containing person\n // if segmentation is enabled it will run as preprocessing task before any other model\n // alternatively leave it disabled and use it on-demand using human.segmentation method which can\n // remove background or replace it with user-provided background\n modelPath: 'selfie.json', // experimental: object detection model, can be absolute path or relative to modelBasePath\n // can be 'selfie' or 'meet'\n },\n};\nexport { config as defaults };\n", "/**\n * Helper function that returns basic system info\n */\nexport function info(): { platform: string, agent: string } {\n let platform = '';\n let agent = '';\n if (typeof navigator !== 'undefined') {\n const raw = navigator.userAgent.match(/\\(([^()]+)\\)/g);\n if (raw && raw[0]) {\n const platformMatch = raw[0].match(/\\(([^()]+)\\)/g);\n platform = (platformMatch && platformMatch[0]) ? platformMatch[0].replace(/\\(|\\)/g, '') : '';\n agent = navigator.userAgent.replace(raw[0], '');\n if (platform[1]) agent = agent.replace(raw[1], '');\n agent = agent.replace(/ /g, ' ');\n }\n } else if (typeof process !== 'undefined') {\n platform = `${process.platform} ${process.arch}`;\n agent = `NodeJS ${process.version}`;\n }\n return { platform, agent };\n}\n", "/**\n * Creates tfjs bundle used by Human browser build target\n * @external\n */\n\n// get versions of all packages\nimport { version as tfjsVersion } from '@tensorflow/tfjs/package.json';\nimport { version as tfjsCoreVersion } from '@tensorflow/tfjs-core/package.json';\nimport { version as tfjsDataVersion } from '@tensorflow/tfjs-data/package.json';\nimport { version as tfjsLayersVersion } from '@tensorflow/tfjs-layers/package.json';\nimport { version as tfjsConverterVersion } from '@tensorflow/tfjs-converter/package.json';\nimport { version as tfjsBackendCPUVersion } from '@tensorflow/tfjs-backend-cpu/package.json';\nimport { version as tfjsBackendWebGLVersion } from '@tensorflow/tfjs-backend-webgl/package.json';\nimport { version as tfjsBackendWASMVersion } from '@tensorflow/tfjs-backend-wasm/package.json';\n\n// export all from sources\n// requires treeShaking:ignore-annotations due to tfjs misconfiguration\n/*\nexport * from '@tensorflow/tfjs-core/src/index';\nexport * from '@tensorflow/tfjs-layers/src/index';\nexport * from '@tensorflow/tfjs-converter/src/index';\nexport * as data from '@tensorflow/tfjs-data/src/index';\nexport * from '@tensorflow/tfjs-backend-cpu/src/index';\nexport * from '@tensorflow/tfjs-backend-webgl/src/index';\nexport * from '@tensorflow/tfjs-backend-wasm/src/index';\n*/\n\n// export all from build\nexport * from '@tensorflow/tfjs-core/dist/index.js';\nexport * from '@tensorflow/tfjs-layers/dist/index.js';\nexport * from '@tensorflow/tfjs-converter/dist/index.js';\nexport * as data from '@tensorflow/tfjs-data/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-cpu/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-webgl/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-wasm/dist/index.js';\n// export * from '@tensorflow/tfjs-backend-webgpu/dist/index.js'; // experimental\n\n// export versions\nexport const version = {\n tfjs: tfjsVersion,\n 'tfjs-core': tfjsCoreVersion,\n 'tfjs-data': tfjsDataVersion,\n 'tfjs-layers': tfjsLayersVersion,\n 'tfjs-converter': tfjsConverterVersion,\n 'tfjs-backend-cpu': tfjsBackendCPUVersion,\n 'tfjs-backend-webgl': tfjsBackendWebGLVersion,\n 'tfjs-backend-wasm': tfjsBackendWASMVersion,\n};\n", "/**\n * Custom TFJS backend for Human based on WebGL\n * Not used by default\n */\n\nimport { log } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\n\nexport const config = {\n name: 'humangl',\n priority: 99,\n canvas: null,\n gl: null,\n width: 1024,\n height: 1024,\n extensions: [],\n webGLattr: { // https://www.khronos.org/registry/webgl/specs/latest/1.0/#5.2\n alpha: false,\n antialias: false,\n premultipliedAlpha: false,\n preserveDrawingBuffer: false,\n depth: false,\n stencil: false,\n failIfMajorPerformanceCaveat: false,\n desynchronized: true,\n },\n};\n\nfunction extensions(): void {\n /*\n https://www.khronos.org/registry/webgl/extensions/\n https://webglreport.com/?v=2\n */\n const gl = config.gl;\n if (!gl) return;\n config.extensions = gl.getSupportedExtensions() as string[];\n // gl.getExtension('KHR_parallel_shader_compile');\n}\n\n/**\n * Registers custom WebGL2 backend to be used by Human library\n *\n * @returns void\n */\nexport function register(): void {\n if (!tf.findBackend(config.name)) {\n // log('backend registration:', config.name);\n try {\n config.canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(config.width, config.height) : document.createElement('canvas');\n } catch (err) {\n log('error: cannot create canvas:', err);\n return;\n }\n try {\n config.gl = config.canvas.getContext('webgl2', config.webGLattr) as WebGL2RenderingContext;\n } catch (err) {\n log('error: cannot get WebGL2 context:', err);\n return;\n }\n try {\n tf.setWebGLContext(2, config.gl);\n } catch (err) {\n log('error: cannot set WebGL2 context:', err);\n return;\n }\n try {\n const ctx = new tf.GPGPUContext(config.gl);\n tf.registerBackend(config.name, () => new tf.MathBackendWebGL(ctx), config.priority);\n } catch (err) {\n log('error: cannot register WebGL backend:', err);\n return;\n }\n try {\n const kernels = tf.getKernelsForBackend('webgl');\n kernels.forEach((kernelConfig) => {\n const newKernelConfig = { ...kernelConfig, backendName: config.name };\n tf.registerKernel(newKernelConfig);\n });\n } catch (err) {\n log('error: cannot update WebGL backend registration:', err);\n return;\n }\n try {\n tf.ENV.set('WEBGL_VERSION', 2);\n } catch (err) {\n log('error: cannot set WebGL backend flags:', err);\n return;\n }\n extensions();\n log('backend registered:', config.name);\n }\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n return { startPoint, endPoint };\n}\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]];\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]];\n return { startPoint, endPoint, landmarks: box.landmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [Math.round(centers[0] - halfSize), Math.round(centers[1] - halfSize)];\n const endPoint = [Math.round(centers[0] + halfSize), Math.round(centers[1] + halfSize)];\n return { startPoint, endPoint, landmarks: box.landmarks };\n}\n\nexport function calculateLandmarksBoundingBox(landmarks) {\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint, landmarks };\n}\n\nexport const disposeBox = (t) => {\n tf.dispose(t.startPoint);\n tf.dispose(t.endPoint);\n};\n\nexport const createBox = (startEndTensor) => ({\n startPoint: tf.slice(startEndTensor, [0, 0], [-1, 2]),\n endPoint: tf.slice(startEndTensor, [0, 2], [-1, 2]),\n});\n", "export const IDENTITY_MATRIX = [[1, 0, 0], [0, 1, 0], [0, 0, 1]];\n/**\n * Normalizes the provided angle to the range -pi to pi.\n * @param angle The angle in radians to be normalized.\n */\nexport function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\n/**\n * Computes the angle of rotation between two anchor points.\n * @param point1 First anchor point\n * @param point2 Second anchor point\n */\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport function radToDegrees(rad) {\n return rad * 180 / Math.PI;\n}\n\nexport function buildTranslationMatrix(x, y) {\n return [[1, 0, x], [0, 1, y], [0, 0, 1]];\n}\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: Array = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: Array = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n\nexport function xyDistanceBetweenPoints(a, b) {\n return Math.sqrt(((a[0] - b[0]) ** 2) + ((a[1] - b[1]) ** 2));\n}\n\nexport function generateAnchors(inputSize) {\n const spec = { strides: [inputSize / 16, inputSize / 8], anchors: [2, 6] };\n const anchors: Array<[number, number]> = [];\n for (let i = 0; i < spec.strides.length; i++) {\n const stride = spec.strides[i];\n const gridRows = Math.floor((inputSize + stride - 1) / stride);\n const gridCols = Math.floor((inputSize + stride - 1) / stride);\n const anchorsNum = spec.anchors[i];\n for (let gridY = 0; gridY < gridRows; gridY++) {\n const anchorY = stride * (gridY + 0.5);\n for (let gridX = 0; gridX < gridCols; gridX++) {\n const anchorX = stride * (gridX + 0.5);\n for (let n = 0; n < anchorsNum; n++) {\n anchors.push([anchorX, anchorY]);\n }\n }\n }\n }\n return anchors;\n}\n", "import { log, join, mergeDeep } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as box from './box';\nimport * as util from './util';\nimport { Config } from '../config';\nimport { Tensor, GraphModel } from '../tfjs/types';\n\nconst keypointsCount = 6;\n\nfunction decodeBounds(boxOutputs, anchors, inputSize) {\n const boxStarts = tf.slice(boxOutputs, [0, 1], [-1, 2]);\n const centers = tf.add(boxStarts, anchors);\n const boxSizes = tf.slice(boxOutputs, [0, 3], [-1, 2]);\n const boxSizesNormalized = tf.div(boxSizes, inputSize);\n const centersNormalized = tf.div(centers, inputSize);\n const halfBoxSize = tf.div(boxSizesNormalized, 2);\n const starts = tf.sub(centersNormalized, halfBoxSize);\n const ends = tf.add(centersNormalized, halfBoxSize);\n const startNormalized = tf.mul(starts, inputSize);\n const endNormalized = tf.mul(ends, inputSize);\n const concatAxis = 1;\n return tf.concat2d([startNormalized, endNormalized], concatAxis);\n}\n\nexport class BlazeFaceModel {\n model: GraphModel;\n anchorsData: [number, number][];\n anchors: Tensor;\n inputSize: number;\n config: Config;\n\n constructor(model, config: Config) {\n this.model = model;\n this.anchorsData = util.generateAnchors(model.inputs[0].shape[1]);\n this.anchors = tf.tensor2d(this.anchorsData);\n this.inputSize = model.inputs[0].shape[2];\n this.config = config;\n }\n\n async getBoundingBoxes(inputImage: Tensor, userConfig: Config) {\n // sanity check on input\n if ((!inputImage) || (inputImage['isDisposedInternal']) || (inputImage.shape.length !== 4) || (inputImage.shape[1] < 1) || (inputImage.shape[2] < 1)) return null;\n const [batch, boxes, scores] = tf.tidy(() => {\n const resizedImage = tf.image.resizeBilinear(inputImage, [this.inputSize, this.inputSize]);\n const normalizedImage = tf.sub(tf.div(resizedImage, 127.5), 0.5);\n const res = this.model.execute(normalizedImage);\n let batchOut;\n if (Array.isArray(res)) { // are we using tfhub or pinto converted model?\n const sorted = res.sort((a, b) => a.size - b.size);\n const concat384 = tf.concat([sorted[0], sorted[2]], 2); // dim: 384, 1 + 16\n const concat512 = tf.concat([sorted[1], sorted[3]], 2); // dim: 512, 1 + 16\n const concat = tf.concat([concat512, concat384], 1);\n batchOut = tf.squeeze(concat, 0);\n } else {\n batchOut = tf.squeeze(res); // when using tfhub model\n }\n const boxesOut = decodeBounds(batchOut, this.anchors, [this.inputSize, this.inputSize]);\n const logits = tf.slice(batchOut, [0, 0], [-1, 1]);\n const scoresOut = tf.squeeze(tf.sigmoid(logits)); // inside tf.tidy\n return [batchOut, boxesOut, scoresOut];\n });\n\n this.config = mergeDeep(this.config, userConfig) as Config;\n\n const nmsTensor = await tf.image.nonMaxSuppressionAsync(boxes, scores, this.config.face.detector.maxDetected, this.config.face.detector.iouThreshold, this.config.face.detector.minConfidence);\n const nms = await nmsTensor.array();\n tf.dispose(nmsTensor);\n const annotatedBoxes: Array<{ box: { startPoint: Tensor, endPoint: Tensor }, landmarks: Tensor, anchor: number[], confidence: number }> = [];\n const scoresData = await scores.data();\n for (let i = 0; i < nms.length; i++) {\n const confidence = scoresData[nms[i]];\n if (confidence > this.config.face.detector.minConfidence) {\n const boundingBox = tf.slice(boxes, [nms[i], 0], [1, -1]);\n const localBox = box.createBox(boundingBox);\n tf.dispose(boundingBox);\n const anchor = this.anchorsData[nms[i]];\n const landmarks = tf.tidy(() => tf.reshape(tf.squeeze(tf.slice(batch, [nms[i], keypointsCount - 1], [1, -1])), [keypointsCount, -1]));\n annotatedBoxes.push({ box: localBox, landmarks, anchor, confidence });\n }\n }\n tf.dispose(batch);\n tf.dispose(boxes);\n tf.dispose(scores);\n return {\n boxes: annotatedBoxes,\n scaleFactor: [inputImage.shape[2] / this.inputSize, inputImage.shape[1] / this.inputSize],\n };\n }\n}\n\nexport async function load(config: Config) {\n const model = await tf.loadGraphModel(join(config.modelBasePath, config.face.detector.modelPath), { fromTFHub: config.face.detector.modelPath.includes('tfhub.dev') });\n const blazeFace = new BlazeFaceModel(model, config);\n if (!model || !model.modelUrl) log('load model failed:', config.face.detector.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n return blazeFace;\n}\n", "export const MESH_ANNOTATIONS = {\n silhouette: [\n 10, 338, 297, 332, 284, 251, 389, 356, 454, 323, 361, 288,\n 397, 365, 379, 378, 400, 377, 152, 148, 176, 149, 150, 136,\n 172, 58, 132, 93, 234, 127, 162, 21, 54, 103, 67, 109,\n ],\n lipsUpperOuter: [61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291],\n lipsLowerOuter: [146, 91, 181, 84, 17, 314, 405, 321, 375, 291],\n lipsUpperInner: [78, 191, 80, 81, 82, 13, 312, 311, 310, 415, 308],\n lipsLowerInner: [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308],\n rightEyeUpper0: [246, 161, 160, 159, 158, 157, 173],\n rightEyeLower0: [33, 7, 163, 144, 145, 153, 154, 155, 133],\n rightEyeUpper1: [247, 30, 29, 27, 28, 56, 190],\n rightEyeLower1: [130, 25, 110, 24, 23, 22, 26, 112, 243],\n rightEyeUpper2: [113, 225, 224, 223, 222, 221, 189],\n rightEyeLower2: [226, 31, 228, 229, 230, 231, 232, 233, 244],\n rightEyeLower3: [143, 111, 117, 118, 119, 120, 121, 128, 245],\n rightEyebrowUpper: [156, 70, 63, 105, 66, 107, 55, 193],\n rightEyebrowLower: [35, 124, 46, 53, 52, 65],\n rightEyeIris: [473, 474, 475, 476, 477],\n leftEyeUpper0: [466, 388, 387, 386, 385, 384, 398],\n leftEyeLower0: [263, 249, 390, 373, 374, 380, 381, 382, 362],\n leftEyeUpper1: [467, 260, 259, 257, 258, 286, 414],\n leftEyeLower1: [359, 255, 339, 254, 253, 252, 256, 341, 463],\n leftEyeUpper2: [342, 445, 444, 443, 442, 441, 413],\n leftEyeLower2: [446, 261, 448, 449, 450, 451, 452, 453, 464],\n leftEyeLower3: [372, 340, 346, 347, 348, 349, 350, 357, 465],\n leftEyebrowUpper: [383, 300, 293, 334, 296, 336, 285, 417],\n leftEyebrowLower: [265, 353, 276, 283, 282, 295],\n leftEyeIris: [468, 469, 470, 471, 472],\n midwayBetweenEyes: [168],\n noseTip: [1],\n noseBottom: [2],\n noseRightCorner: [98],\n noseLeftCorner: [327],\n rightCheek: [205],\n leftCheek: [425],\n};\n\nexport const MESH_TO_IRIS_INDICES_MAP = [ // A mapping from facemesh model keypoints to iris model keypoints.\n { key: 'EyeUpper0', indices: [9, 10, 11, 12, 13, 14, 15] },\n { key: 'EyeUpper1', indices: [25, 26, 27, 28, 29, 30, 31] },\n { key: 'EyeUpper2', indices: [41, 42, 43, 44, 45, 46, 47] },\n { key: 'EyeLower0', indices: [0, 1, 2, 3, 4, 5, 6, 7, 8] },\n { key: 'EyeLower1', indices: [16, 17, 18, 19, 20, 21, 22, 23, 24] },\n { key: 'EyeLower2', indices: [32, 33, 34, 35, 36, 37, 38, 39, 40] },\n { key: 'EyeLower3', indices: [54, 55, 56, 57, 58, 59, 60, 61, 62] },\n // { key: 'EyebrowUpper', indices: [63, 64, 65, 66, 67, 68, 69, 70] },\n // { key: 'EyebrowLower', indices: [48, 49, 50, 51, 52, 53] },\n];\n\nexport const UV468 = [\n [0.499976992607117, 0.652534008026123],\n [0.500025987625122, 0.547487020492554],\n [0.499974012374878, 0.602371990680695],\n [0.482113003730774, 0.471979022026062],\n [0.500150978565216, 0.527155995368958],\n [0.499909996986389, 0.498252987861633],\n [0.499523013830185, 0.40106201171875],\n [0.289712011814117, 0.380764007568359],\n [0.499954998493195, 0.312398016452789],\n [0.499987006187439, 0.269918978214264],\n [0.500023007392883, 0.107050001621246],\n [0.500023007392883, 0.666234016418457],\n [0.5000159740448, 0.679224014282227],\n [0.500023007392883, 0.692348003387451],\n [0.499976992607117, 0.695277988910675],\n [0.499976992607117, 0.70593398809433],\n [0.499976992607117, 0.719385027885437],\n [0.499976992607117, 0.737019002437592],\n [0.499967992305756, 0.781370997428894],\n [0.499816000461578, 0.562981009483337],\n [0.473773002624512, 0.573909997940063],\n [0.104906998574734, 0.254140973091125],\n [0.365929991006851, 0.409575998783112],\n [0.338757991790771, 0.41302502155304],\n [0.311120003461838, 0.409460008144379],\n [0.274657994508743, 0.389131009578705],\n [0.393361985683441, 0.403706014156342],\n [0.345234006643295, 0.344011008739471],\n [0.370094001293182, 0.346076011657715],\n [0.319321990013123, 0.347265005111694],\n [0.297903001308441, 0.353591024875641],\n [0.24779200553894, 0.410809993743896],\n [0.396889001131058, 0.842755019664764],\n [0.280097991228104, 0.375599980354309],\n [0.106310002505779, 0.399955987930298],\n [0.2099249958992, 0.391353011131287],\n [0.355807989835739, 0.534406006336212],\n [0.471751004457474, 0.65040397644043],\n [0.474155008792877, 0.680191993713379],\n [0.439785003662109, 0.657229006290436],\n [0.414617002010345, 0.66654098033905],\n [0.450374007225037, 0.680860996246338],\n [0.428770989179611, 0.682690978050232],\n [0.374971002340317, 0.727805018424988],\n [0.486716985702515, 0.547628998756409],\n [0.485300987958908, 0.527395009994507],\n [0.257764995098114, 0.314490020275116],\n [0.401223003864288, 0.455172002315521],\n [0.429818987846375, 0.548614978790283],\n [0.421351999044418, 0.533740997314453],\n [0.276895999908447, 0.532056987285614],\n [0.483370006084442, 0.499586999416351],\n [0.33721199631691, 0.282882988452911],\n [0.296391993761063, 0.293242990970612],\n [0.169294998049736, 0.193813979625702],\n [0.447580009698868, 0.302609980106354],\n [0.392390012741089, 0.353887975215912],\n [0.354490011930466, 0.696784019470215],\n [0.067304998636246, 0.730105042457581],\n [0.442739009857178, 0.572826027870178],\n [0.457098007202148, 0.584792017936707],\n [0.381974011659622, 0.694710969924927],\n [0.392388999462128, 0.694203019142151],\n [0.277076005935669, 0.271932005882263],\n [0.422551989555359, 0.563233017921448],\n [0.385919004678726, 0.281364023685455],\n [0.383103013038635, 0.255840003490448],\n [0.331431001424789, 0.119714021682739],\n [0.229923993349075, 0.232002973556519],\n [0.364500999450684, 0.189113974571228],\n [0.229622006416321, 0.299540996551514],\n [0.173287004232407, 0.278747975826263],\n [0.472878992557526, 0.666198015213013],\n [0.446828007698059, 0.668527007102966],\n [0.422762006521225, 0.673889994621277],\n [0.445307999849319, 0.580065965652466],\n [0.388103008270264, 0.693961024284363],\n [0.403039008378983, 0.706539988517761],\n [0.403629004955292, 0.693953037261963],\n [0.460041999816895, 0.557139039039612],\n [0.431158006191254, 0.692366003990173],\n [0.452181994915009, 0.692366003990173],\n [0.475387006998062, 0.692366003990173],\n [0.465828001499176, 0.779190003871918],\n [0.472328990697861, 0.736225962638855],\n [0.473087012767792, 0.717857003211975],\n [0.473122000694275, 0.704625964164734],\n [0.473033010959625, 0.695277988910675],\n [0.427942007780075, 0.695277988910675],\n [0.426479011774063, 0.703539967536926],\n [0.423162013292313, 0.711845993995667],\n [0.4183090031147, 0.720062971115112],\n [0.390094995498657, 0.639572978019714],\n [0.013953999616206, 0.560034036636353],\n [0.499913990497589, 0.58014702796936],\n [0.413199990987778, 0.69539999961853],\n [0.409626007080078, 0.701822996139526],\n [0.468080013990402, 0.601534962654114],\n [0.422728985548019, 0.585985004901886],\n [0.463079988956451, 0.593783974647522],\n [0.37211999297142, 0.47341400384903],\n [0.334562003612518, 0.496073007583618],\n [0.411671012639999, 0.546965003013611],\n [0.242175996303558, 0.14767599105835],\n [0.290776997804642, 0.201445996761322],\n [0.327338010072708, 0.256527006626129],\n [0.399509996175766, 0.748921036720276],\n [0.441727995872498, 0.261676013469696],\n [0.429764986038208, 0.187834024429321],\n [0.412198007106781, 0.108901023864746],\n [0.288955003023148, 0.398952007293701],\n [0.218936994671822, 0.435410976409912],\n [0.41278201341629, 0.398970007896423],\n [0.257135003805161, 0.355440020561218],\n [0.427684992551804, 0.437960982322693],\n [0.448339998722076, 0.536936044692993],\n [0.178560003638268, 0.45755398273468],\n [0.247308000922203, 0.457193970680237],\n [0.286267012357712, 0.467674970626831],\n [0.332827985286713, 0.460712015628815],\n [0.368755996227264, 0.447206974029541],\n [0.398963987827301, 0.432654976844788],\n [0.476410001516342, 0.405806005001068],\n [0.189241006970406, 0.523923993110657],\n [0.228962004184723, 0.348950982093811],\n [0.490725994110107, 0.562400996685028],\n [0.404670000076294, 0.485132992267609],\n [0.019469000399113, 0.401564002037048],\n [0.426243007183075, 0.420431017875671],\n [0.396993011236191, 0.548797011375427],\n [0.266469985246658, 0.376977026462555],\n [0.439121007919312, 0.51895797252655],\n [0.032313998788595, 0.644356966018677],\n [0.419054001569748, 0.387154996395111],\n [0.462783008813858, 0.505746960639954],\n [0.238978996872902, 0.779744982719421],\n [0.198220998048782, 0.831938028335571],\n [0.107550002634525, 0.540755033493042],\n [0.183610007166862, 0.740257024765015],\n [0.134409993886948, 0.333683013916016],\n [0.385764002799988, 0.883153975009918],\n [0.490967005491257, 0.579378008842468],\n [0.382384985685349, 0.508572995662689],\n [0.174399003386497, 0.397670984268188],\n [0.318785011768341, 0.39623498916626],\n [0.343364000320435, 0.400596976280212],\n [0.396100014448166, 0.710216999053955],\n [0.187885001301765, 0.588537991046906],\n [0.430987000465393, 0.944064974784851],\n [0.318993002176285, 0.898285031318665],\n [0.266247987747192, 0.869701027870178],\n [0.500023007392883, 0.190576016902924],\n [0.499976992607117, 0.954452991485596],\n [0.366169989109039, 0.398822009563446],\n [0.393207013607025, 0.39553701877594],\n [0.410373002290726, 0.391080021858215],\n [0.194993004202843, 0.342101991176605],\n [0.388664990663528, 0.362284004688263],\n [0.365961998701096, 0.355970978736877],\n [0.343364000320435, 0.355356991291046],\n [0.318785011768341, 0.35834002494812],\n [0.301414996385574, 0.363156020641327],\n [0.058132998645306, 0.319076001644135],\n [0.301414996385574, 0.387449026107788],\n [0.499987989664078, 0.618434011936188],\n [0.415838003158569, 0.624195992946625],\n [0.445681989192963, 0.566076993942261],\n [0.465844005346298, 0.620640993118286],\n [0.49992299079895, 0.351523995399475],\n [0.288718998432159, 0.819945991039276],\n [0.335278987884521, 0.852819979190826],\n [0.440512001514435, 0.902418971061707],\n [0.128294005990028, 0.791940987110138],\n [0.408771991729736, 0.373893976211548],\n [0.455606997013092, 0.451801002025604],\n [0.499877005815506, 0.908990025520325],\n [0.375436991453171, 0.924192011356354],\n [0.11421000212431, 0.615022003650665],\n [0.448662012815475, 0.695277988910675],\n [0.4480200111866, 0.704632043838501],\n [0.447111994028091, 0.715808033943176],\n [0.444831997156143, 0.730794012546539],\n [0.430011987686157, 0.766808986663818],\n [0.406787008047104, 0.685672998428345],\n [0.400738000869751, 0.681069016456604],\n [0.392399996519089, 0.677703022956848],\n [0.367855995893478, 0.663918972015381],\n [0.247923001646996, 0.601333022117615],\n [0.452769994735718, 0.420849978923798],\n [0.43639200925827, 0.359887003898621],\n [0.416164010763168, 0.368713974952698],\n [0.413385987281799, 0.692366003990173],\n [0.228018000721931, 0.683571994304657],\n [0.468268007040024, 0.352671027183533],\n [0.411361992359161, 0.804327011108398],\n [0.499989002943039, 0.469825029373169],\n [0.479153990745544, 0.442654013633728],\n [0.499974012374878, 0.439637005329132],\n [0.432112008333206, 0.493588984012604],\n [0.499886006116867, 0.866917014122009],\n [0.49991300702095, 0.821729004383087],\n [0.456548988819122, 0.819200992584229],\n [0.344549000263214, 0.745438992977142],\n [0.37890899181366, 0.574010014533997],\n [0.374292999505997, 0.780184984207153],\n [0.319687992334366, 0.570737957954407],\n [0.357154995203018, 0.604269981384277],\n [0.295284003019333, 0.621580958366394],\n [0.447750002145767, 0.862477004528046],\n [0.410986006259918, 0.508723020553589],\n [0.31395098567009, 0.775308012962341],\n [0.354128003120422, 0.812552988529205],\n [0.324548006057739, 0.703992962837219],\n [0.189096003770828, 0.646299958229065],\n [0.279776990413666, 0.71465802192688],\n [0.1338230073452, 0.682700991630554],\n [0.336768001317978, 0.644733011722565],\n [0.429883986711502, 0.466521978378296],\n [0.455527991056442, 0.548622965812683],\n [0.437114000320435, 0.558896005153656],\n [0.467287987470627, 0.529924988746643],\n [0.414712011814117, 0.335219979286194],\n [0.37704598903656, 0.322777986526489],\n [0.344107985496521, 0.320150971412659],\n [0.312875986099243, 0.32233202457428],\n [0.283526003360748, 0.333190023899078],\n [0.241245999932289, 0.382785975933075],\n [0.102986000478268, 0.468762993812561],\n [0.267612010240555, 0.424560010433197],\n [0.297879010438919, 0.433175981044769],\n [0.333433985710144, 0.433878004550934],\n [0.366427004337311, 0.426115989685059],\n [0.396012008190155, 0.416696012020111],\n [0.420121014118195, 0.41022801399231],\n [0.007561000064015, 0.480777025222778],\n [0.432949006557465, 0.569517970085144],\n [0.458638995885849, 0.479089021682739],\n [0.473466008901596, 0.545744001865387],\n [0.476087987422943, 0.563830018043518],\n [0.468472003936768, 0.555056989192963],\n [0.433990985155106, 0.582361996173859],\n [0.483518004417419, 0.562983989715576],\n [0.482482999563217, 0.57784903049469],\n [0.42645001411438, 0.389798998832703],\n [0.438998997211456, 0.39649498462677],\n [0.450067013502121, 0.400434017181396],\n [0.289712011814117, 0.368252992630005],\n [0.276670008897781, 0.363372981548309],\n [0.517862021923065, 0.471948027610779],\n [0.710287988185883, 0.380764007568359],\n [0.526226997375488, 0.573909997940063],\n [0.895093023777008, 0.254140973091125],\n [0.634069979190826, 0.409575998783112],\n [0.661242008209229, 0.41302502155304],\n [0.688880026340485, 0.409460008144379],\n [0.725341975688934, 0.389131009578705],\n [0.606630027294159, 0.40370500087738],\n [0.654766023159027, 0.344011008739471],\n [0.629905998706818, 0.346076011657715],\n [0.680678009986877, 0.347265005111694],\n [0.702096998691559, 0.353591024875641],\n [0.75221198797226, 0.410804986953735],\n [0.602918028831482, 0.842862963676453],\n [0.719901978969574, 0.375599980354309],\n [0.893692970275879, 0.399959981441498],\n [0.790081977844238, 0.391354024410248],\n [0.643998026847839, 0.534487962722778],\n [0.528249025344849, 0.65040397644043],\n [0.525849997997284, 0.680191040039062],\n [0.560214996337891, 0.657229006290436],\n [0.585384011268616, 0.66654098033905],\n [0.549625992774963, 0.680860996246338],\n [0.57122802734375, 0.682691991329193],\n [0.624852001667023, 0.72809898853302],\n [0.513050019741058, 0.547281980514526],\n [0.51509702205658, 0.527251958847046],\n [0.742246985435486, 0.314507007598877],\n [0.598631024360657, 0.454979002475739],\n [0.570338010787964, 0.548575043678284],\n [0.578631997108459, 0.533622980117798],\n [0.723087012767792, 0.532054007053375],\n [0.516445994377136, 0.499638974666595],\n [0.662801027297974, 0.282917976379395],\n [0.70362401008606, 0.293271005153656],\n [0.830704987049103, 0.193813979625702],\n [0.552385985851288, 0.302568018436432],\n [0.607609987258911, 0.353887975215912],\n [0.645429015159607, 0.696707010269165],\n [0.932694971561432, 0.730105042457581],\n [0.557260990142822, 0.572826027870178],\n [0.542901992797852, 0.584792017936707],\n [0.6180260181427, 0.694710969924927],\n [0.607590973377228, 0.694203019142151],\n [0.722943007946014, 0.271963000297546],\n [0.577413976192474, 0.563166975975037],\n [0.614082992076874, 0.281386971473694],\n [0.616907000541687, 0.255886018276215],\n [0.668509006500244, 0.119913995265961],\n [0.770092010498047, 0.232020974159241],\n [0.635536015033722, 0.189248979091644],\n [0.77039098739624, 0.299556016921997],\n [0.826722025871277, 0.278755009174347],\n [0.527121007442474, 0.666198015213013],\n [0.553171992301941, 0.668527007102966],\n [0.577238023281097, 0.673889994621277],\n [0.554691970348358, 0.580065965652466],\n [0.611896991729736, 0.693961024284363],\n [0.59696102142334, 0.706539988517761],\n [0.596370995044708, 0.693953037261963],\n [0.539958000183105, 0.557139039039612],\n [0.568841993808746, 0.692366003990173],\n [0.547818005084991, 0.692366003990173],\n [0.52461302280426, 0.692366003990173],\n [0.534089982509613, 0.779141008853912],\n [0.527670979499817, 0.736225962638855],\n [0.526912987232208, 0.717857003211975],\n [0.526877999305725, 0.704625964164734],\n [0.526966989040375, 0.695277988910675],\n [0.572058022022247, 0.695277988910675],\n [0.573521018028259, 0.703539967536926],\n [0.57683801651001, 0.711845993995667],\n [0.581691026687622, 0.720062971115112],\n [0.609944999217987, 0.639909982681274],\n [0.986046016216278, 0.560034036636353],\n [0.5867999792099, 0.69539999961853],\n [0.590372025966644, 0.701822996139526],\n [0.531915009021759, 0.601536989212036],\n [0.577268004417419, 0.585934996604919],\n [0.536915004253387, 0.593786001205444],\n [0.627542972564697, 0.473352015018463],\n [0.665585994720459, 0.495950996875763],\n [0.588353991508484, 0.546862006187439],\n [0.757824003696442, 0.14767599105835],\n [0.709249973297119, 0.201507985591888],\n [0.672684013843536, 0.256581008434296],\n [0.600408971309662, 0.74900496006012],\n [0.55826598405838, 0.261672019958496],\n [0.570303976535797, 0.187870979309082],\n [0.588165998458862, 0.109044015407562],\n [0.711045026779175, 0.398952007293701],\n [0.781069993972778, 0.435405015945435],\n [0.587247014045715, 0.398931980133057],\n [0.742869973182678, 0.355445981025696],\n [0.572156012058258, 0.437651991844177],\n [0.55186802148819, 0.536570012569427],\n [0.821442008018494, 0.457556009292603],\n [0.752701997756958, 0.457181990146637],\n [0.71375697851181, 0.467626988887787],\n [0.66711300611496, 0.460672974586487],\n [0.631101012229919, 0.447153985500336],\n [0.6008620262146, 0.432473003864288],\n [0.523481011390686, 0.405627012252808],\n [0.810747981071472, 0.523926019668579],\n [0.771045982837677, 0.348959028720856],\n [0.509127020835876, 0.562718033790588],\n [0.595292985439301, 0.485023975372314],\n [0.980530977249146, 0.401564002037048],\n [0.573499977588654, 0.420000016689301],\n [0.602994978427887, 0.548687994480133],\n [0.733529984951019, 0.376977026462555],\n [0.560611009597778, 0.519016981124878],\n [0.967685997486115, 0.644356966018677],\n [0.580985009670258, 0.387160003185272],\n [0.537728011608124, 0.505385041236877],\n [0.760966002941132, 0.779752969741821],\n [0.801778972148895, 0.831938028335571],\n [0.892440974712372, 0.54076099395752],\n [0.816350996494293, 0.740260004997253],\n [0.865594983100891, 0.333687007427216],\n [0.614073991775513, 0.883246004581451],\n [0.508952975273132, 0.579437971115112],\n [0.617941975593567, 0.508316040039062],\n [0.825608015060425, 0.397674977779388],\n [0.681214988231659, 0.39623498916626],\n [0.656635999679565, 0.400596976280212],\n [0.603900015354156, 0.710216999053955],\n [0.81208598613739, 0.588539004325867],\n [0.56801301240921, 0.944564998149872],\n [0.681007981300354, 0.898285031318665],\n [0.733752012252808, 0.869701027870178],\n [0.633830010890961, 0.398822009563446],\n [0.606792986392975, 0.39553701877594],\n [0.589659988880157, 0.391062021255493],\n [0.805015981197357, 0.342108011245728],\n [0.611334979534149, 0.362284004688263],\n [0.634037971496582, 0.355970978736877],\n [0.656635999679565, 0.355356991291046],\n [0.681214988231659, 0.35834002494812],\n [0.698584973812103, 0.363156020641327],\n [0.941866993904114, 0.319076001644135],\n [0.698584973812103, 0.387449026107788],\n [0.584177017211914, 0.624107003211975],\n [0.554318010807037, 0.566076993942261],\n [0.534153997898102, 0.62064003944397],\n [0.711217999458313, 0.819975018501282],\n [0.664629995822906, 0.852871000766754],\n [0.559099972248077, 0.902631998062134],\n [0.871706008911133, 0.791940987110138],\n [0.591234028339386, 0.373893976211548],\n [0.544341027736664, 0.451583981513977],\n [0.624562978744507, 0.924192011356354],\n [0.88577002286911, 0.615028977394104],\n [0.551338016986847, 0.695277988910675],\n [0.551980018615723, 0.704632043838501],\n [0.552887976169586, 0.715808033943176],\n [0.555167973041534, 0.730794012546539],\n [0.569944024085999, 0.767035007476807],\n [0.593203008174896, 0.685675978660583],\n [0.599261999130249, 0.681069016456604],\n [0.607599973678589, 0.677703022956848],\n [0.631937980651855, 0.663500010967255],\n [0.752032995223999, 0.601315021514893],\n [0.547226011753082, 0.420395016670227],\n [0.563543975353241, 0.359827995300293],\n [0.583841025829315, 0.368713974952698],\n [0.586614012718201, 0.692366003990173],\n [0.771915018558502, 0.683578014373779],\n [0.531597018241882, 0.352482974529266],\n [0.588370978832245, 0.804440975189209],\n [0.52079701423645, 0.442565023899078],\n [0.567984998226166, 0.493479013442993],\n [0.543282985687256, 0.819254994392395],\n [0.655317008495331, 0.745514988899231],\n [0.621008992195129, 0.574018001556396],\n [0.625559985637665, 0.78031200170517],\n [0.680198013782501, 0.570719003677368],\n [0.64276397228241, 0.604337990283966],\n [0.704662978649139, 0.621529996395111],\n [0.552012026309967, 0.862591981887817],\n [0.589071989059448, 0.508637011051178],\n [0.685944974422455, 0.775357007980347],\n [0.645735025405884, 0.812640011310577],\n [0.675342977046967, 0.703978002071381],\n [0.810858011245728, 0.646304965019226],\n [0.72012197971344, 0.714666962623596],\n [0.866151988506317, 0.682704985141754],\n [0.663187026977539, 0.644596993923187],\n [0.570082008838654, 0.466325998306274],\n [0.544561982154846, 0.548375964164734],\n [0.562758982181549, 0.558784961700439],\n [0.531987011432648, 0.530140042304993],\n [0.585271000862122, 0.335177004337311],\n [0.622952997684479, 0.32277899980545],\n [0.655896008014679, 0.320163011550903],\n [0.687132000923157, 0.322345972061157],\n [0.716481983661652, 0.333200991153717],\n [0.758756995201111, 0.382786989212036],\n [0.897013008594513, 0.468769013881683],\n [0.732392013072968, 0.424547016620636],\n [0.70211398601532, 0.433162987232208],\n [0.66652500629425, 0.433866024017334],\n [0.633504986763, 0.426087975502014],\n [0.603875994682312, 0.416586995124817],\n [0.579657971858978, 0.409945011138916],\n [0.992439985275269, 0.480777025222778],\n [0.567192018032074, 0.569419980049133],\n [0.54136598110199, 0.478899002075195],\n [0.526564002037048, 0.546118021011353],\n [0.523913025856018, 0.563830018043518],\n [0.531529009342194, 0.555056989192963],\n [0.566035985946655, 0.582329034805298],\n [0.51631098985672, 0.563053965568542],\n [0.5174720287323, 0.577877044677734],\n [0.573594987392426, 0.389806985855103],\n [0.560697972774506, 0.395331978797913],\n [0.549755990505219, 0.399751007556915],\n [0.710287988185883, 0.368252992630005],\n [0.723330020904541, 0.363372981548309],\n];\n\nexport const TRI468 = [\n 127, 34, 139, 11, 0, 37, 232, 231, 120, 72, 37, 39, 128, 121, 47, 232, 121, 128, 104, 69, 67, 175, 171, 148, 157, 154, 155, 118, 50, 101, 73, 39, 40, 9,\n 151, 108, 48, 115, 131, 194, 204, 211, 74, 40, 185, 80, 42, 183, 40, 92, 186, 230, 229, 118, 202, 212, 214, 83, 18, 17, 76, 61, 146, 160, 29, 30, 56,\n 157, 173, 106, 204, 194, 135, 214, 192, 203, 165, 98, 21, 71, 68, 51, 45, 4, 144, 24, 23, 77, 146, 91, 205, 50, 187, 201, 200, 18, 91, 106, 182, 90, 91,\n 181, 85, 84, 17, 206, 203, 36, 148, 171, 140, 92, 40, 39, 193, 189, 244, 159, 158, 28, 247, 246, 161, 236, 3, 196, 54, 68, 104, 193, 168, 8, 117,\n 228, 31, 189, 193, 55, 98, 97, 99, 126, 47, 100, 166, 79, 218, 155, 154, 26, 209, 49, 131, 135, 136, 150, 47, 126, 217, 223, 52, 53, 45, 51, 134, 211,\n 170, 140, 67, 69, 108, 43, 106, 91, 230, 119, 120, 226, 130, 247, 63, 53, 52, 238, 20, 242, 46, 70, 156, 78, 62, 96, 46, 53, 63, 143, 34, 227, 173,\n 155, 133, 123, 117, 111, 44, 125, 19, 236, 134, 51, 216, 206, 205, 154, 153, 22, 39, 37, 167, 200, 201, 208, 36, 142, 100, 57, 212, 202, 20, 60, 99, 28,\n 158, 157, 35, 226, 113, 160, 159, 27, 204, 202, 210, 113, 225, 46, 43, 202, 204, 62, 76, 77, 137, 123, 116, 41, 38, 72, 203, 129, 142, 64, 98, 240, 49,\n 102, 64, 41, 73, 74, 212, 216, 207, 42, 74, 184, 169, 170, 211, 170, 149, 176, 105, 66, 69, 122, 6, 168, 123, 147, 187, 96, 77, 90, 65, 55, 107, 89,\n 90, 180, 101, 100, 120, 63, 105, 104, 93, 137, 227, 15, 86, 85, 129, 102, 49, 14, 87, 86, 55, 8, 9, 100, 47, 121, 145, 23, 22, 88, 89, 179, 6, 122,\n 196, 88, 95, 96, 138, 172, 136, 215, 58, 172, 115, 48, 219, 42, 80, 81, 195, 3, 51, 43, 146, 61, 171, 175, 199, 81, 82, 38, 53, 46, 225, 144, 163, 110,\n 246, 33, 7, 52, 65, 66, 229, 228, 117, 34, 127, 234, 107, 108, 69, 109, 108, 151, 48, 64, 235, 62, 78, 191, 129, 209, 126, 111, 35, 143, 163, 161, 246,\n 117, 123, 50, 222, 65, 52, 19, 125, 141, 221, 55, 65, 3, 195, 197, 25, 7, 33, 220, 237, 44, 70, 71, 139, 122, 193, 245, 247, 130, 33, 71, 21, 162,\n 153, 158, 159, 170, 169, 150, 188, 174, 196, 216, 186, 92, 144, 160, 161, 2, 97, 167, 141, 125, 241, 164, 167, 37, 72, 38, 12, 145, 159, 160, 38, 82, 13,\n 63, 68, 71, 226, 35, 111, 158, 153, 154, 101, 50, 205, 206, 92, 165, 209, 198, 217, 165, 167, 97, 220, 115, 218, 133, 112, 243, 239, 238, 241, 214,\n 135, 169, 190, 173, 133, 171, 208, 32, 125, 44, 237, 86, 87, 178, 85, 86, 179, 84, 85, 180, 83, 84, 181, 201, 83, 182, 137, 93, 132, 76, 62, 183, 61,\n 76, 184, 57, 61, 185, 212, 57, 186, 214, 207, 187, 34, 143, 156, 79, 239, 237, 123, 137, 177, 44, 1, 4, 201, 194, 32, 64, 102, 129, 213, 215, 138, 59,\n 166, 219, 242, 99, 97, 2, 94, 141, 75, 59, 235, 24, 110, 228, 25, 130, 226, 23, 24, 229, 22, 23, 230, 26, 22, 231, 112, 26, 232, 189, 190, 243, 221, 56,\n 190, 28, 56, 221, 27, 28, 222, 29, 27, 223, 30, 29, 224, 247, 30, 225, 238, 79, 20, 166, 59, 75, 60, 75, 240, 147, 177, 215, 20, 79, 166, 187, 147, 213,\n 112, 233, 244, 233, 128, 245, 128, 114, 188, 114, 217, 174, 131, 115, 220, 217, 198, 236, 198, 131, 134, 177, 132, 58, 143, 35, 124, 110, 163, 7, 228,\n 110, 25, 356, 389, 368, 11, 302, 267, 452, 350, 349, 302, 303, 269, 357, 343, 277, 452, 453, 357, 333, 332, 297, 175, 152, 377, 384, 398, 382, 347,\n 348, 330, 303, 304, 270, 9, 336, 337, 278, 279, 360, 418, 262, 431, 304, 408, 409, 310, 415, 407, 270, 409, 410, 450, 348, 347, 422, 430, 434, 313,\n 314, 17, 306, 307, 375, 387, 388, 260, 286, 414, 398, 335, 406, 418, 364, 367, 416, 423, 358, 327, 251, 284, 298, 281, 5, 4, 373, 374, 253, 307, 320,\n 321, 425, 427, 411, 421, 313, 18, 321, 405, 406, 320, 404, 405, 315, 16, 17, 426, 425, 266, 377, 400, 369, 322, 391, 269, 417, 465, 464, 386, 257, 258,\n 466, 260, 388, 456, 399, 419, 284, 332, 333, 417, 285, 8, 346, 340, 261, 413, 441, 285, 327, 460, 328, 355, 371, 329, 392, 439, 438, 382, 341, 256,\n 429, 420, 360, 364, 394, 379, 277, 343, 437, 443, 444, 283, 275, 440, 363, 431, 262, 369, 297, 338, 337, 273, 375, 321, 450, 451, 349, 446, 342, 467,\n 293, 334, 282, 458, 461, 462, 276, 353, 383, 308, 324, 325, 276, 300, 293, 372, 345, 447, 382, 398, 362, 352, 345, 340, 274, 1, 19, 456, 248, 281, 436,\n 427, 425, 381, 256, 252, 269, 391, 393, 200, 199, 428, 266, 330, 329, 287, 273, 422, 250, 462, 328, 258, 286, 384, 265, 353, 342, 387, 259, 257, 424,\n 431, 430, 342, 353, 276, 273, 335, 424, 292, 325, 307, 366, 447, 345, 271, 303, 302, 423, 266, 371, 294, 455, 460, 279, 278, 294, 271, 272, 304, 432,\n 434, 427, 272, 407, 408, 394, 430, 431, 395, 369, 400, 334, 333, 299, 351, 417, 168, 352, 280, 411, 325, 319, 320, 295, 296, 336, 319, 403, 404, 330,\n 348, 349, 293, 298, 333, 323, 454, 447, 15, 16, 315, 358, 429, 279, 14, 15, 316, 285, 336, 9, 329, 349, 350, 374, 380, 252, 318, 402, 403, 6, 197, 419,\n 318, 319, 325, 367, 364, 365, 435, 367, 397, 344, 438, 439, 272, 271, 311, 195, 5, 281, 273, 287, 291, 396, 428, 199, 311, 271, 268, 283, 444, 445,\n 373, 254, 339, 263, 466, 249, 282, 334, 296, 449, 347, 346, 264, 447, 454, 336, 296, 299, 338, 10, 151, 278, 439, 455, 292, 407, 415, 358, 371, 355,\n 340, 345, 372, 390, 249, 466, 346, 347, 280, 442, 443, 282, 19, 94, 370, 441, 442, 295, 248, 419, 197, 263, 255, 359, 440, 275, 274, 300, 383, 368,\n 351, 412, 465, 263, 467, 466, 301, 368, 389, 380, 374, 386, 395, 378, 379, 412, 351, 419, 436, 426, 322, 373, 390, 388, 2, 164, 393, 370, 462, 461,\n 164, 0, 267, 302, 11, 12, 374, 373, 387, 268, 12, 13, 293, 300, 301, 446, 261, 340, 385, 384, 381, 330, 266, 425, 426, 423, 391, 429, 355, 437, 391,\n 327, 326, 440, 457, 438, 341, 382, 362, 459, 457, 461, 434, 430, 394, 414, 463, 362, 396, 369, 262, 354, 461, 457, 316, 403, 402, 315, 404, 403, 314,\n 405, 404, 313, 406, 405, 421, 418, 406, 366, 401, 361, 306, 408, 407, 291, 409, 408, 287, 410, 409, 432, 436, 410, 434, 416, 411, 264, 368, 383, 309,\n 438, 457, 352, 376, 401, 274, 275, 4, 421, 428, 262, 294, 327, 358, 433, 416, 367, 289, 455, 439, 462, 370, 326, 2, 326, 370, 305, 460, 455, 254,\n 449, 448, 255, 261, 446, 253, 450, 449, 252, 451, 450, 256, 452, 451, 341, 453, 452, 413, 464, 463, 441, 413, 414, 258, 442, 441, 257, 443, 442, 259,\n 444, 443, 260, 445, 444, 467, 342, 445, 459, 458, 250, 289, 392, 290, 290, 328, 460, 376, 433, 435, 250, 290, 392, 411, 416, 433, 341, 463, 464, 453,\n 464, 465, 357, 465, 412, 343, 412, 399, 360, 363, 440, 437, 399, 456, 420, 456, 363, 401, 435, 288, 372, 383, 353, 339, 255, 249, 448, 261, 255, 133,\n 243, 190, 133, 155, 112, 33, 246, 247, 33, 130, 25, 398, 384, 286, 362, 398, 414, 362, 463, 341, 263, 359, 467, 263, 249, 255, 466, 467, 260, 75, 60,\n 166, 238, 239, 79, 162, 127, 139, 72, 11, 37, 121, 232, 120, 73, 72, 39, 114, 128, 47, 233, 232, 128, 103, 104, 67, 152, 175, 148, 173, 157, 155,\n 119, 118, 101, 74, 73, 40, 107, 9, 108, 49, 48, 131, 32, 194, 211, 184, 74, 185, 191, 80, 183, 185, 40, 186, 119, 230, 118, 210, 202, 214, 84, 83, 17,\n 77, 76, 146, 161, 160, 30, 190, 56, 173, 182, 106, 194, 138, 135, 192, 129, 203, 98, 54, 21, 68, 5, 51, 4, 145, 144, 23, 90, 77, 91, 207, 205, 187, 83,\n 201, 18, 181, 91, 182, 180, 90, 181, 16, 85, 17, 205, 206, 36, 176, 148, 140, 165, 92, 39, 245, 193, 244, 27, 159, 28, 30, 247, 161, 174, 236, 196,\n 103, 54, 104, 55, 193, 8, 111, 117, 31, 221, 189, 55, 240, 98, 99, 142, 126, 100, 219, 166, 218, 112, 155, 26, 198, 209, 131, 169, 135, 150, 114, 47,\n 217, 224, 223, 53, 220, 45, 134, 32, 211, 140, 109, 67, 108, 146, 43, 91, 231, 230, 120, 113, 226, 247, 105, 63, 52, 241, 238, 242, 124, 46, 156, 95,\n 78, 96, 70, 46, 63, 116, 143, 227, 116, 123, 111, 1, 44, 19, 3, 236, 51, 207, 216, 205, 26, 154, 22, 165, 39, 167, 199, 200, 208, 101, 36, 100, 43,\n 57, 202, 242, 20, 99, 56, 28, 157, 124, 35, 113, 29, 160, 27, 211, 204, 210, 124, 113, 46, 106, 43, 204, 96, 62, 77, 227, 137, 116, 73, 41, 72, 36, 203,\n 142, 235, 64, 240, 48, 49, 64, 42, 41, 74, 214, 212, 207, 183, 42, 184, 210, 169, 211, 140, 170, 176, 104, 105, 69, 193, 122, 168, 50, 123, 187, 89, 96,\n 90, 66, 65, 107, 179, 89, 180, 119, 101, 120, 68, 63, 104, 234, 93, 227, 16, 15, 85, 209, 129, 49, 15, 14, 86, 107, 55, 9, 120, 100, 121, 153, 145, 22,\n 178, 88, 179, 197, 6, 196, 89, 88, 96, 135, 138, 136, 138, 215, 172, 218, 115, 219, 41, 42, 81, 5, 195, 51, 57, 43, 61, 208, 171, 199, 41, 81, 38,\n 224, 53, 225, 24, 144, 110, 105, 52, 66, 118, 229, 117, 227, 34, 234, 66, 107, 69, 10, 109, 151, 219, 48, 235, 183, 62, 191, 142, 129, 126, 116, 111,\n 143, 7, 163, 246, 118, 117, 50, 223, 222, 52, 94, 19, 141, 222, 221, 65, 196, 3, 197, 45, 220, 44, 156, 70, 139, 188, 122, 245, 139, 71, 162, 145,\n 153, 159, 149, 170, 150, 122, 188, 196, 206, 216, 92, 163, 144, 161, 164, 2, 167, 242, 141, 241, 0, 164, 37, 11, 72, 12, 144, 145, 160, 12, 38, 13, 70,\n 63, 71, 31, 226, 111, 157, 158, 154, 36, 101, 205, 203, 206, 165, 126, 209, 217, 98, 165, 97, 237, 220, 218, 237, 239, 241, 210, 214, 169, 140, 171, 32,\n 241, 125, 237, 179, 86, 178, 180, 85, 179, 181, 84, 180, 182, 83, 181, 194, 201, 182, 177, 137, 132, 184, 76, 183, 185, 61, 184, 186, 57, 185, 216, 212,\n 186, 192, 214, 187, 139, 34, 156, 218, 79, 237, 147, 123, 177, 45, 44, 4, 208, 201, 32, 98, 64, 129, 192, 213, 138, 235, 59, 219, 141, 242, 97, 97, 2,\n 141, 240, 75, 235, 229, 24, 228, 31, 25, 226, 230, 23, 229, 231, 22, 230, 232, 26, 231, 233, 112, 232, 244, 189, 243, 189, 221, 190, 222, 28, 221,\n 223, 27, 222, 224, 29, 223, 225, 30, 224, 113, 247, 225, 99, 60, 240, 213, 147, 215, 60, 20, 166, 192, 187, 213, 243, 112, 244, 244, 233, 245, 245,\n 128, 188, 188, 114, 174, 134, 131, 220, 174, 217, 236, 236, 198, 134, 215, 177, 58, 156, 143, 124, 25, 110, 7, 31, 228, 25, 264, 356, 368, 0, 11, 267,\n 451, 452, 349, 267, 302, 269, 350, 357, 277, 350, 452, 357, 299, 333, 297, 396, 175, 377, 381, 384, 382, 280, 347, 330, 269, 303, 270, 151, 9, 337,\n 344, 278, 360, 424, 418, 431, 270, 304, 409, 272, 310, 407, 322, 270, 410, 449, 450, 347, 432, 422, 434, 18, 313, 17, 291, 306, 375, 259, 387, 260,\n 424, 335, 418, 434, 364, 416, 391, 423, 327, 301, 251, 298, 275, 281, 4, 254, 373, 253, 375, 307, 321, 280, 425, 411, 200, 421, 18, 335, 321, 406,\n 321, 320, 405, 314, 315, 17, 423, 426, 266, 396, 377, 369, 270, 322, 269, 413, 417, 464, 385, 386, 258, 248, 456, 419, 298, 284, 333, 168, 417, 8,\n 448, 346, 261, 417, 413, 285, 326, 327, 328, 277, 355, 329, 309, 392, 438, 381, 382, 256, 279, 429, 360, 365, 364, 379, 355, 277, 437, 282, 443, 283,\n 281, 275, 363, 395, 431, 369, 299, 297, 337, 335, 273, 321, 348, 450, 349, 359, 446, 467, 283, 293, 282, 250, 458, 462, 300, 276, 383, 292, 308, 325,\n 283, 276, 293, 264, 372, 447, 346, 352, 340, 354, 274, 19, 363, 456, 281, 426, 436, 425, 380, 381, 252, 267, 269, 393, 421, 200, 428, 371, 266, 329,\n 432, 287, 422, 290, 250, 328, 385, 258, 384, 446, 265, 342, 386, 387, 257, 422, 424, 430, 445, 342, 276, 422, 273, 424, 306, 292, 307, 352, 366, 345,\n 268, 271, 302, 358, 423, 371, 327, 294, 460, 331, 279, 294, 303, 271, 304, 436, 432, 427, 304, 272, 408, 395, 394, 431, 378, 395, 400, 296, 334, 299,\n 6, 351, 168, 376, 352, 411, 307, 325, 320, 285, 295, 336, 320, 319, 404, 329, 330, 349, 334, 293, 333, 366, 323, 447, 316, 15, 315, 331, 358, 279,\n 317, 14, 316, 8, 285, 9, 277, 329, 350, 253, 374, 252, 319, 318, 403, 351, 6, 419, 324, 318, 325, 397, 367, 365, 288, 435, 397, 278, 344, 439, 310,\n 272, 311, 248, 195, 281, 375, 273, 291, 175, 396, 199, 312, 311, 268, 276, 283, 445, 390, 373, 339, 295, 282, 296, 448, 449, 346, 356, 264, 454, 337,\n 336, 299, 337, 338, 151, 294, 278, 455, 308, 292, 415, 429, 358, 355, 265, 340, 372, 388, 390, 466, 352, 346, 280, 295, 442, 282, 354, 19, 370, 285,\n 441, 295, 195, 248, 197, 457, 440, 274, 301, 300, 368, 417, 351, 465, 251, 301, 389, 385, 380, 386, 394, 395, 379, 399, 412, 419, 410, 436, 322, 387,\n 373, 388, 326, 2, 393, 354, 370, 461, 393, 164, 267, 268, 302, 12, 386, 374, 387, 312, 268, 13, 298, 293, 301, 265, 446, 340, 380, 385, 381, 280, 330,\n 425, 322, 426, 391, 420, 429, 437, 393, 391, 326, 344, 440, 438, 458, 459, 461, 364, 434, 394, 428, 396, 262, 274, 354, 457, 317, 316, 402, 316, 315,\n 403, 315, 314, 404, 314, 313, 405, 313, 421, 406, 323, 366, 361, 292, 306, 407, 306, 291, 408, 291, 287, 409, 287, 432, 410, 427, 434, 411, 372, 264,\n 383, 459, 309, 457, 366, 352, 401, 1, 274, 4, 418, 421, 262, 331, 294, 358, 435, 433, 367, 392, 289, 439, 328, 462, 326, 94, 2, 370, 289, 305, 455, 339,\n 254, 448, 359, 255, 446, 254, 253, 449, 253, 252, 450, 252, 256, 451, 256, 341, 452, 414, 413, 463, 286, 441, 414, 286, 258, 441, 258, 257, 442, 257,\n 259, 443, 259, 260, 444, 260, 467, 445, 309, 459, 250, 305, 289, 290, 305, 290, 460, 401, 376, 435, 309, 250, 392, 376, 411, 433, 453, 341, 464, 357,\n 453, 465, 343, 357, 412, 437, 343, 399, 344, 360, 440, 420, 437, 456, 360, 420, 363, 361, 401, 288, 265, 372, 353, 390, 339, 249, 339, 448, 255];\n\nexport const TRI68 = [0, 1, 36, 0, 36, 17, 1, 2, 41, 1, 41, 36, 2, 3, 31, 2, 31, 41, 3, 4, 48, 3, 48, 31, 4, 5, 48, 5, 6, 48, 6, 7, 59, 6, 59, 48, 7, 8, 58, 7, 58, 59,\n 8, 9, 56, 8, 56, 57, 8, 57, 58, 9, 10, 55, 9, 55, 56, 10, 11, 54, 10, 54, 55, 11, 12, 54, 12, 13, 54, 13, 14, 35, 13, 35, 54, 14, 15, 46, 14, 46, 35, 15, 16,\n 45, 15, 45, 46, 16, 26, 45, 17, 36, 18, 18, 37, 19, 18, 36, 37, 19, 38, 20, 19, 37, 38, 20, 39, 21, 20, 38, 39, 21, 39, 27, 22, 42, 23, 22, 27, 42, 23, 43, 24,\n 23, 42, 43, 24, 44, 25, 24, 43, 44, 25, 45, 26, 25, 44, 45, 27, 39, 28, 27, 28, 42, 28, 39, 29, 28, 29, 42, 29, 31, 30, 29, 30, 35, 29, 40, 31, 29, 35, 47, 29,\n 39, 40, 29, 47, 42, 30, 31, 32, 30, 32, 33, 30, 33, 34, 30, 34, 35, 31, 50, 32, 31, 40, 41, 31, 48, 49, 31, 49, 50, 32, 51, 33, 32, 50, 51, 33, 51, 34, 34, 52,\n 35, 34, 51, 52, 35, 46, 47, 35, 52, 53, 35, 53, 54, 36, 41, 37, 37, 40, 38, 37, 41, 40, 38, 40, 39, 42, 47, 43, 43, 47, 44, 44, 46, 45, 44, 47, 46, 48, 60, 49,\n 48, 59, 60, 49, 61, 50, 49, 60, 61, 50, 62, 51, 50, 61, 62, 51, 62, 52, 52, 63, 53, 52, 62, 63, 53, 64, 54, 53, 63, 64, 54, 64, 55, 55, 65, 56, 55, 64, 65, 56,\n 66, 57, 56, 65, 66, 57, 66, 58, 58, 67, 59, 58, 66, 67, 59, 67, 60, 60, 67, 61, 61, 66, 62, 61, 67, 66, 62, 66, 63, 63, 65, 64, 63, 66, 65, 21, 27, 22];\n\nexport const TRI33 = [\n /* eyes */ 0, 8, 7, 7, 8, 1, 2, 10, 9, 9, 10, 3,\n /* brows */ 17, 0, 18, 18, 0, 7, 18, 7, 19, 19, 7, 1, 19, 1, 11, 19, 11, 20, 21, 3, 22, 21, 9, 3, 20, 9, 21, 20, 2, 9, 20, 11, 2,\n /* 4head */ 23, 17, 18, 25, 21, 22, 24, 19, 20, 24, 18, 19, 24, 20, 21, 24, 23, 18, 24, 21, 25,\n /* nose */ 11, 12, 4, 11, 4, 13, 1, 12, 11, 11, 13, 2, 12, 14, 4, 4, 14, 13,\n /* up-lip */ 14, 5, 15, 14, 15, 6, 12, 5, 14, 14, 6, 13,\n /* cheeks */ 8, 12, 1, 2, 13, 10, 8, 26, 12, 10, 13, 27, 26, 5, 12, 13, 6, 27, 0, 26, 8, 10, 27, 3,\n /* chin */ 5, 32, 16, 16, 32, 6, 5, 30, 32, 6, 32, 31,\n /* cont */ 26, 30, 5, 27, 6, 31, 0, 28, 26, 3, 27, 29, 17, 28, 0, 3, 29, 22, 23, 28, 17, 22, 29, 25, 28, 30, 26, 27, 31, 29,\n];\n\nexport const TRI7 = [0, 4, 1, 2, 4, 3, 4, 5, 6];\n\nexport const VTX68 = [\n /* cont */ 127, 234, 132, 58, 172, 150, 149, 148, 152, 377, 378, 379, 397, 288, 361, 454, 356,\n /* brows */ 70, 63, 105, 66, 107, 336, 296, 334, 293, 300,\n /* nose */ 168, 6, 195, 4, 98, 97, 2, 326, 327,\n /* eyes */ 33, 160, 158, 133, 153, 144, 362, 385, 387, 263, 373, 380,\n /* lip */ 57, 40, 37, 0, 267, 270, 287, 321, 314, 17, 84, 91,\n /* mouth */ 78, 81, 13, 311, 308, 402, 14, 178,\n];\n\nexport const VTX33 = [33, 133, 362, 263, 1, 62, 308, 159, 145, 386, 374, 6, 102, 331, 2, 13, 14, 70, 105, 107, 336, 334, 300, 54, 10, 284, 50, 280, 234, 454, 58, 288, 152];\n\nexport const VTX7 = [33, 133, 362, 263, 1, 78, 308];\n\nexport const UV68 = VTX68.map((x) => UV468[x]);\n\nexport const UV33 = VTX33.map((x) => UV468[x]);\n\nexport const UV7 = VTX7.map((x) => UV468[x]);\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as bounding from './box';\nimport * as util from './util';\nimport * as coords from './coords';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport { BlazeFaceModel } from './blazeface';\n\nconst leftOutline = coords.MESH_ANNOTATIONS['leftEyeLower0'];\nconst rightOutline = coords.MESH_ANNOTATIONS['rightEyeLower0'];\n\nconst eyeLandmarks = {\n leftBounds: [leftOutline[0], leftOutline[leftOutline.length - 1]],\n rightBounds: [rightOutline[0], rightOutline[rightOutline.length - 1]],\n};\n\nconst meshLandmarks = {\n count: 468,\n mouth: 13,\n symmetryLine: [13, coords.MESH_ANNOTATIONS['midwayBetweenEyes'][0]],\n};\n\nconst blazeFaceLandmarks = {\n leftEye: 0,\n rightEye: 1,\n nose: 2,\n mouth: 3,\n leftEar: 4,\n rightEar: 5,\n symmetryLine: [3, 2],\n};\n\nconst irisLandmarks = {\n upperCenter: 3,\n lowerCenter: 4,\n index: 71,\n numCoordinates: 76,\n};\n\n// Replace the raw coordinates returned by facemesh with refined iris model coordinates\n// Update the z coordinate to be an average of the original and the new.\nfunction replaceRawCoordinates(rawCoords, newCoords, prefix, keys) {\n for (let i = 0; i < coords.MESH_TO_IRIS_INDICES_MAP.length; i++) {\n const { key, indices } = coords.MESH_TO_IRIS_INDICES_MAP[i];\n const originalIndices = coords.MESH_ANNOTATIONS[`${prefix}${key}`];\n if (!keys || keys.includes(key)) {\n for (let j = 0; j < indices.length; j++) {\n const index = indices[j];\n rawCoords[originalIndices[j]] = [\n newCoords[index][0], newCoords[index][1],\n (newCoords[index][2] + rawCoords[originalIndices[j]][2]) / 2,\n ];\n }\n }\n }\n}\n// The Pipeline coordinates between the bounding box and skeleton models.\nexport class Pipeline {\n storedBoxes: Array<{ startPoint: number[], endPoint: number[], landmarks: Array, confidence: number, faceConfidence?: number }>;\n boundingBoxDetector: BlazeFaceModel; // tf.GraphModel\n meshDetector: GraphModel; // tf.GraphModel\n irisModel: GraphModel; // tf.GraphModel\n boxSize: number;\n meshSize: number;\n irisSize: number;\n irisEnlarge: number;\n skipped: number;\n detectedFaces: number;\n\n constructor(boundingBoxDetector, meshDetector, irisModel) {\n // An array of facial bounding boxes.\n this.storedBoxes = [];\n this.boundingBoxDetector = boundingBoxDetector;\n this.meshDetector = meshDetector;\n this.irisModel = irisModel;\n this.boxSize = boundingBoxDetector?.model?.inputs[0].shape[2] || 0;\n this.meshSize = meshDetector?.inputs[0].shape[2] || boundingBoxDetector?.model?.inputs[0].shape[2];\n this.irisSize = irisModel?.inputs[0].shape[1] || 0;\n this.irisEnlarge = 2.3;\n this.skipped = 0;\n this.detectedFaces = 0;\n }\n\n transformRawCoords(rawCoords, box, angle, rotationMatrix) {\n const boxSize = bounding.getBoxSize({ startPoint: box.startPoint, endPoint: box.endPoint });\n const coordsScaled = rawCoords.map((coord) => ([\n boxSize[0] / this.meshSize * (coord[0] - this.meshSize / 2),\n boxSize[1] / this.meshSize * (coord[1] - this.meshSize / 2),\n coord[2],\n ]));\n const coordsRotationMatrix = (angle !== 0) ? util.buildRotationMatrix(angle, [0, 0]) : util.IDENTITY_MATRIX;\n const coordsRotated = (angle !== 0) ? coordsScaled.map((coord) => ([...util.rotatePoint(coord, coordsRotationMatrix), coord[2]])) : coordsScaled;\n const inverseRotationMatrix = (angle !== 0) ? util.invertTransformMatrix(rotationMatrix) : util.IDENTITY_MATRIX;\n const boxCenter = [...bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint }), 1];\n return coordsRotated.map((coord) => ([\n Math.round(coord[0] + util.dot(boxCenter, inverseRotationMatrix[0])),\n Math.round(coord[1] + util.dot(boxCenter, inverseRotationMatrix[1])),\n Math.round(coord[2]),\n ]));\n }\n\n // eslint-disable-next-line class-methods-use-this\n getLeftToRightEyeDepthDifference(rawCoords) {\n const leftEyeZ = rawCoords[eyeLandmarks.leftBounds[0]][2];\n const rightEyeZ = rawCoords[eyeLandmarks.rightBounds[0]][2];\n return leftEyeZ - rightEyeZ;\n }\n\n // Returns a box describing a cropped region around the eye fit for passing to the iris model.\n getEyeBox(rawCoords, face, eyeInnerCornerIndex, eyeOuterCornerIndex, flip = false) {\n const box = bounding.squarifyBox(bounding.enlargeBox(bounding.calculateLandmarksBoundingBox([rawCoords[eyeInnerCornerIndex], rawCoords[eyeOuterCornerIndex]]), this.irisEnlarge));\n const boxSize = bounding.getBoxSize(box);\n let crop = tf.image.cropAndResize(face, [[\n box.startPoint[1] / this.meshSize,\n box.startPoint[0] / this.meshSize, box.endPoint[1] / this.meshSize,\n box.endPoint[0] / this.meshSize,\n ]], [0], [this.irisSize, this.irisSize]);\n if (flip && tf.ENV.flags.IS_BROWSER) {\n const flipped = tf.image.flipLeftRight(crop); // flipLeftRight is not defined for tfjs-node\n tf.dispose(crop);\n crop = flipped;\n }\n return { box, boxSize, crop };\n }\n\n // Given a cropped image of an eye, returns the coordinates of the contours surrounding the eye and the iris.\n getEyeCoords(eyeData, eyeBox, eyeBoxSize, flip = false) {\n const eyeRawCoords: Array<[number, number, number]> = [];\n for (let i = 0; i < irisLandmarks.numCoordinates; i++) {\n const x = eyeData[i * 3];\n const y = eyeData[i * 3 + 1];\n const z = eyeData[i * 3 + 2];\n eyeRawCoords.push([\n (flip ? (1 - (x / this.irisSize)) : (x / this.irisSize)) * eyeBoxSize[0] + eyeBox.startPoint[0],\n (y / this.irisSize) * eyeBoxSize[1] + eyeBox.startPoint[1], z,\n ]);\n }\n return { rawCoords: eyeRawCoords, iris: eyeRawCoords.slice(irisLandmarks.index) };\n }\n\n // The z-coordinates returned for the iris are unreliable, so we take the z values from the surrounding keypoints.\n // eslint-disable-next-line class-methods-use-this\n getAdjustedIrisCoords(rawCoords, irisCoords, direction) {\n const upperCenterZ = rawCoords[coords.MESH_ANNOTATIONS[`${direction}EyeUpper0`][irisLandmarks.upperCenter]][2];\n const lowerCenterZ = rawCoords[coords.MESH_ANNOTATIONS[`${direction}EyeLower0`][irisLandmarks.lowerCenter]][2];\n const averageZ = (upperCenterZ + lowerCenterZ) / 2;\n // Iris indices: 0: center | 1: right | 2: above | 3: left | 4: below\n return irisCoords.map((coord, i) => {\n let z = averageZ;\n if (i === 2) {\n z = upperCenterZ;\n } else if (i === 4) {\n z = lowerCenterZ;\n }\n return [coord[0], coord[1], z];\n });\n }\n\n correctFaceRotation(config, box, input) {\n const [indexOfMouth, indexOfForehead] = (box.landmarks.length >= meshLandmarks.count) ? meshLandmarks.symmetryLine : blazeFaceLandmarks.symmetryLine;\n const angle = util.computeRotation(box.landmarks[indexOfMouth], box.landmarks[indexOfForehead]);\n const faceCenter = bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint });\n const faceCenterNormalized = [faceCenter[0] / input.shape[2], faceCenter[1] / input.shape[1]];\n const rotatedImage = tf.image.rotateWithOffset(input, angle, 0, faceCenterNormalized); // rotateWithOffset is not defined for tfjs-node\n const rotationMatrix = util.buildRotationMatrix(-angle, faceCenter);\n const cut = config.face.mesh.enabled\n ? bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.meshSize, this.meshSize])\n : bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.boxSize, this.boxSize]);\n const face = tf.div(cut, 255);\n tf.dispose(cut);\n tf.dispose(rotatedImage);\n return [angle, rotationMatrix, face];\n }\n\n async augmentIris(rawCoords, face) {\n const { box: leftEyeBox, boxSize: leftEyeBoxSize, crop: leftEyeCrop } = this.getEyeBox(rawCoords, face, eyeLandmarks.leftBounds[0], eyeLandmarks.leftBounds[1], true);\n const { box: rightEyeBox, boxSize: rightEyeBoxSize, crop: rightEyeCrop } = this.getEyeBox(rawCoords, face, eyeLandmarks.rightBounds[0], eyeLandmarks.rightBounds[1]);\n const combined = tf.concat([leftEyeCrop, rightEyeCrop]);\n tf.dispose(leftEyeCrop);\n tf.dispose(rightEyeCrop);\n const eyePredictions = this.irisModel.predict(combined) as Tensor;\n tf.dispose(combined);\n const eyePredictionsData = await eyePredictions.data(); // inside tf.tidy\n tf.dispose(eyePredictions);\n const leftEyeData = eyePredictionsData.slice(0, irisLandmarks.numCoordinates * 3);\n const { rawCoords: leftEyeRawCoords, iris: leftIrisRawCoords } = this.getEyeCoords(leftEyeData, leftEyeBox, leftEyeBoxSize, true);\n const rightEyeData = eyePredictionsData.slice(irisLandmarks.numCoordinates * 3);\n const { rawCoords: rightEyeRawCoords, iris: rightIrisRawCoords } = this.getEyeCoords(rightEyeData, rightEyeBox, rightEyeBoxSize);\n const leftToRightEyeDepthDifference = this.getLeftToRightEyeDepthDifference(rawCoords);\n if (Math.abs(leftToRightEyeDepthDifference) < 30) { // User is looking straight ahead.\n replaceRawCoordinates(rawCoords, leftEyeRawCoords, 'left', null);\n replaceRawCoordinates(rawCoords, rightEyeRawCoords, 'right', null);\n // If the user is looking to the left or to the right, the iris coordinates tend to diverge too much from the mesh coordinates for them to be merged\n // So we only update a single contour line above and below the eye.\n } else if (leftToRightEyeDepthDifference < 1) { // User is looking towards the right.\n replaceRawCoordinates(rawCoords, leftEyeRawCoords, 'left', ['EyeUpper0', 'EyeLower0']);\n } else { // User is looking towards the left.\n replaceRawCoordinates(rawCoords, rightEyeRawCoords, 'right', ['EyeUpper0', 'EyeLower0']);\n }\n const adjustedLeftIrisCoords = this.getAdjustedIrisCoords(rawCoords, leftIrisRawCoords, 'left');\n const adjustedRightIrisCoords = this.getAdjustedIrisCoords(rawCoords, rightIrisRawCoords, 'right');\n const newCoords = rawCoords.concat(adjustedLeftIrisCoords).concat(adjustedRightIrisCoords);\n return newCoords;\n }\n\n async predict(input, config) {\n let useFreshBox = false;\n // run new detector every skipFrames unless we only want box to start with\n let detector;\n if ((this.skipped === 0) || (this.skipped > config.face.detector.skipFrames) || !config.face.mesh.enabled || !config.skipFrame) {\n detector = await this.boundingBoxDetector.getBoundingBoxes(input, config);\n this.skipped = 0;\n }\n if (config.skipFrame) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (!config.skipFrame || (detector && detector.boxes && (!config.face.mesh.enabled || (detector.boxes.length !== this.detectedFaces) && (this.detectedFaces !== config.face.detector.maxDetected)))) {\n this.storedBoxes = [];\n this.detectedFaces = 0;\n for (const possible of detector.boxes) {\n const startPoint = await possible.box.startPoint.data();\n const endPoint = await possible.box.endPoint.data();\n const landmarks = await possible.landmarks.array();\n this.storedBoxes.push({ startPoint, endPoint, landmarks, confidence: possible.confidence });\n }\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n\n if (useFreshBox) {\n if (!detector || !detector.boxes || (detector.boxes.length === 0)) {\n this.storedBoxes = [];\n this.detectedFaces = 0;\n return null;\n }\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const scaledBox = bounding.scaleBoxCoordinates({ startPoint: this.storedBoxes[i].startPoint, endPoint: this.storedBoxes[i].endPoint }, detector.scaleFactor);\n const enlargedBox = bounding.enlargeBox(scaledBox);\n const squarifiedBox = bounding.squarifyBox(enlargedBox);\n const landmarks = this.storedBoxes[i].landmarks;\n const confidence = this.storedBoxes[i].confidence;\n this.storedBoxes[i] = { ...squarifiedBox, confidence, landmarks };\n }\n }\n if (detector && detector.boxes) {\n detector.boxes.forEach((prediction) => {\n tf.dispose(prediction.box.startPoint);\n tf.dispose(prediction.box.endPoint);\n tf.dispose(prediction.landmarks);\n });\n }\n\n const results: Array<{ mesh, box, faceConfidence, boxConfidence, confidence, image }> = [];\n // for (let i = 0; i < this.storedBoxes.length; i++) {\n const newBoxes: Array<{ startPoint: number[]; endPoint: number[]; landmarks: number[]; confidence: number; faceConfidence?: number | undefined; }> = [];\n for (let box of this.storedBoxes) {\n // let box = this.storedBoxes[i]; // The facial bounding box landmarks could come either from blazeface (if we are using a fresh box), or from the mesh model (if we are reusing an old box).\n let face;\n let angle = 0;\n let rotationMatrix;\n\n if (config.face.detector.rotation && config.face.mesh.enabled && tf.ENV.flags.IS_BROWSER) {\n [angle, rotationMatrix, face] = this.correctFaceRotation(config, box, input);\n } else {\n rotationMatrix = util.IDENTITY_MATRIX;\n const clonedImage = input.clone();\n const cut = config.face.mesh.enabled\n ? bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, clonedImage, [this.meshSize, this.meshSize])\n : bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, clonedImage, [this.boxSize, this.boxSize]);\n face = tf.div(cut, 255);\n tf.dispose(cut);\n tf.dispose(clonedImage);\n }\n\n // if we're not going to produce mesh, don't spend time with further processing\n if (!config.face.mesh.enabled) {\n results.push({\n mesh: [],\n box,\n faceConfidence: null,\n boxConfidence: box.confidence,\n confidence: box.confidence,\n image: face,\n });\n } else {\n const [contours, confidence, contourCoords] = this.meshDetector.execute(face) as Array; // The first returned tensor represents facial contours which are already included in the coordinates.\n tf.dispose(contours);\n const faceConfidence = (await confidence.data())[0] as number; // inside tf.tidy\n tf.dispose(confidence);\n const coordsReshaped = tf.reshape(contourCoords, [-1, 3]);\n let rawCoords = await coordsReshaped.array();\n tf.dispose(contourCoords);\n tf.dispose(coordsReshaped);\n if (faceConfidence < config.face.detector.minConfidence) {\n // if (!this.storedBoxes[i]) console.log('2', i, this.storedBoxes.length, this.storedBoxes[i], box, this.storedBoxes);\n // this.storedBoxes[i].confidence = faceConfidence; // reset confidence of cached box\n box.confidence = faceConfidence; // reset confidence of cached box\n tf.dispose(face);\n } else {\n if (config.face.iris.enabled) rawCoords = await this.augmentIris(rawCoords, face);\n\n // override box from detection with one calculated from mesh\n const mesh = this.transformRawCoords(rawCoords, box, angle, rotationMatrix);\n box = { ...bounding.enlargeBox(bounding.calculateLandmarksBoundingBox(mesh), 1.5), confidence: box.confidence }; // redefine box with mesh calculated one\n\n // do rotation one more time with mesh keypoints if we want to return perfect image\n if (config.face.detector.rotation && config.face.mesh.enabled && config.face.description.enabled && tf.ENV.flags.IS_BROWSER) {\n [angle, rotationMatrix, face] = this.correctFaceRotation(config, box, input);\n }\n\n results.push({\n mesh,\n box,\n faceConfidence,\n boxConfidence: box.confidence,\n confidence: faceConfidence,\n image: face,\n });\n\n // updated stored cache values\n // this.storedBoxes[i] = { ...bounding.squarifyBox(box), confidence: box.confidence, faceConfidence };\n box = { ...bounding.squarifyBox(box), confidence: box.confidence, faceConfidence };\n }\n }\n newBoxes.push(box);\n }\n\n // results = results.filter((a) => a !== null);\n // remove cache entries for detected boxes on low confidence\n if (config.face.mesh.enabled) this.storedBoxes = newBoxes.filter((a) => a.confidence > config.face.detector.minConfidence);\n this.detectedFaces = results.length;\n\n return results;\n }\n}\n", "/**\n * FaceMesh & BlazeFace Module entry point\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as blazeface from './blazeface';\nimport * as facepipeline from './facepipeline';\nimport * as coords from './coords';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Face } from '../result';\nimport { Config } from '../config';\n\nlet faceModels: [blazeface.BlazeFaceModel | null, GraphModel | null, GraphModel | null] = [null, null, null];\nlet facePipeline;\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const predictions = await facePipeline.predict(input, config);\n const results: Array = [];\n let id = 0;\n for (const prediction of (predictions || [])) {\n if (!prediction || prediction.isDisposedInternal) continue; // guard against disposed tensors on long running operations such as pause in middle of processing\n const meshRaw = prediction.mesh.map((pt) => [\n pt[0] / (input.shape[2] || 0),\n pt[1] / (input.shape[1] || 0),\n pt[2] / facePipeline.meshSize,\n ]);\n const annotations = {};\n if (prediction.mesh && prediction.mesh.length > 0) {\n for (const key of Object.keys(coords.MESH_ANNOTATIONS)) annotations[key] = coords.MESH_ANNOTATIONS[key].map((index) => prediction.mesh[index]);\n }\n const clampedBox: [number, number, number, number] = prediction.box ? [\n Math.trunc(Math.max(0, prediction.box.startPoint[0])),\n Math.trunc(Math.max(0, prediction.box.startPoint[1])),\n Math.trunc(Math.min((input.shape[2] || 0), prediction.box.endPoint[0]) - Math.max(0, prediction.box.startPoint[0])),\n Math.trunc(Math.min((input.shape[1] || 0), prediction.box.endPoint[1]) - Math.max(0, prediction.box.startPoint[1])),\n ] : [0, 0, 0, 0];\n const boxRaw: [number, number, number, number] = prediction.box ? [\n prediction.box.startPoint[0] / (input.shape[2] || 0),\n prediction.box.startPoint[1] / (input.shape[1] || 0),\n (prediction.box.endPoint[0] - prediction.box.startPoint[0]) / (input.shape[2] || 0),\n (prediction.box.endPoint[1] - prediction.box.startPoint[1]) / (input.shape[1] || 0),\n ] : [0, 0, 0, 0];\n results.push({\n id: id++,\n score: Math.round(100 * prediction.faceConfidence || 100 * prediction.boxConfidence || 0) / 100,\n boxScore: Math.round(100 * prediction.boxConfidence) / 100,\n faceScore: Math.round(100 * prediction.faceConfidence) / 100,\n box: clampedBox,\n boxRaw,\n mesh: prediction.mesh,\n meshRaw,\n annotations,\n tensor: prediction.image,\n });\n if (prediction.coords) tf.dispose(prediction.coords);\n }\n return results;\n}\n\nexport async function load(config): Promise<[unknown, GraphModel | null, GraphModel | null]> {\n if ((!faceModels[0] && config.face.enabled) || (!faceModels[1] && config.face.mesh.enabled) || (!faceModels[2] && config.face.iris.enabled)) {\n faceModels = await Promise.all([\n (!faceModels[0] && config.face.enabled) ? blazeface.load(config) : null,\n (!faceModels[1] && config.face.mesh.enabled) ? tf.loadGraphModel(join(config.modelBasePath, config.face.mesh.modelPath), { fromTFHub: config.face.mesh.modelPath.includes('tfhub.dev') }) as unknown as GraphModel : null,\n (!faceModels[2] && config.face.iris.enabled) ? tf.loadGraphModel(join(config.modelBasePath, config.face.iris.modelPath), { fromTFHub: config.face.iris.modelPath.includes('tfhub.dev') }) as unknown as GraphModel : null,\n ]);\n if (config.face.mesh.enabled) {\n if (!faceModels[1] || !faceModels[1]['modelUrl']) log('load model failed:', config.face.mesh.modelPath);\n else if (config.debug) log('load model:', faceModels[1]['modelUrl']);\n }\n if (config.face.iris.enabled) {\n if (!faceModels[2] || !faceModels[2]['modelUrl']) log('load model failed:', config.face.iris.modelPath);\n else if (config.debug) log('load model:', faceModels[2]['modelUrl']);\n }\n } else if (config.debug) {\n if (faceModels[0]) log('cached model:', faceModels[0].model['modelUrl']);\n if (faceModels[1]) log('cached model:', faceModels[1]['modelUrl']);\n if (faceModels[2]) log('cached model:', faceModels[2]['modelUrl']);\n }\n facePipeline = new facepipeline.Pipeline(faceModels[0], faceModels[1], faceModels[2]);\n return faceModels;\n}\n\nexport const triangulation = coords.TRI468;\nexport const uvmap = coords.UV468;\n", "/**\n * HSE-FaceRes Module\n * Returns Age, Gender, Descriptor\n * Implements Face simmilarity function\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model: GraphModel;\nconst last: Array<{\n age: number,\n gender: string,\n genderScore: number,\n descriptor: number[],\n}> = [];\n\nlet lastCount = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\ntype DB = Array<{ name: string, source: string, embedding: number[] }>;\n\nexport async function load(config: Config): Promise {\n const modelUrl = join(config.modelBasePath, config.face.description.modelPath);\n if (!model) {\n model = await tf.loadGraphModel(modelUrl) as unknown as GraphModel;\n if (!model) log('load model failed:', config.face.description.modelPath);\n else if (config.debug) log('load model:', modelUrl);\n } else if (config.debug) log('cached model:', modelUrl);\n return model;\n}\n\nexport function similarity(embedding1: Array, embedding2: Array, order = 2): number {\n if (!embedding1 || !embedding2) return 0;\n if (embedding1?.length === 0 || embedding2?.length === 0) return 0;\n if (embedding1?.length !== embedding2?.length) return 0;\n // general minkowski distance, euclidean distance is limited case where order is 2\n const distance = 5.0 * embedding1\n .map((_val, i) => (Math.abs(embedding1[i] - embedding2[i]) ** order)) // distance squared\n .reduce((sum, now) => (sum + now), 0) // sum all distances\n ** (1 / order); // get root of\n const res = Math.max(0, 100 - distance) / 100.0;\n return res;\n}\n\nexport function match(embedding: Array, db: DB, threshold = 0) {\n let best = { similarity: 0, name: '', source: '', embedding: [] as number[] };\n if (!embedding || !db || !Array.isArray(embedding) || !Array.isArray(db)) return best;\n for (const f of db) {\n if (f.embedding && f.name) {\n const perc = similarity(embedding, f.embedding);\n if (perc > threshold && perc > best.similarity) best = { ...f, similarity: perc };\n }\n }\n return best;\n}\n\nexport function enhance(input): Tensor {\n const image = tf.tidy(() => {\n // input received from detector is already normalized to 0..1\n // input is also assumed to be straightened\n const tensor = input.image || input.tensor || input;\n if (!(tensor instanceof tf.Tensor)) return null;\n // do a tight crop of image and resize it to fit the model\n const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // const box = [[0.0, 0.0, 1.0, 1.0]]; // basically no crop for test\n if (!model.inputs[0].shape) return null; // model has no shape so no point continuing\n const crop = (tensor.shape.length === 3)\n ? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing\n : tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n\n /*\n // just resize to fit the embedding model instead of cropping\n const crop = tf.image.resizeBilinear(tensor, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n */\n\n /*\n // convert to black&white to avoid colorization impact\n const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const [red, green, blue] = tf.split(crop, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n */\n\n /*\n // increase image pseudo-contrast 100%\n // (or do it per-channel so mean is done on each channel)\n // (or calculate histogram and do it based on histogram)\n const mean = merge.mean();\n const factor = 2;\n const contrast = merge.sub(mean).mul(factor).add(mean);\n */\n\n /*\n // normalize brightness from 0..1\n // silly way of creating pseudo-hdr of image\n const darken = crop.sub(crop.min());\n const lighten = darken.div(darken.max());\n */\n\n const norm = tf.mul(crop, 255);\n\n return norm;\n });\n return image;\n}\n\nexport async function predict(image: Tensor, config: Config, idx, count) {\n if (!model) return null;\n if ((skipped < config.face.description.skipFrames) && config.skipFrame && (lastCount === count) && last[idx]?.age && (last[idx]?.age > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const enhanced = enhance(image);\n\n let resT;\n const obj = {\n age: 0,\n gender: 'unknown',\n genderScore: 0,\n descriptor: [],\n };\n\n if (config.face.description.enabled) resT = await model.predict(enhanced);\n tf.dispose(enhanced);\n\n if (resT) {\n const gender = await resT.find((t) => t.shape[1] === 1).data();\n const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;\n if (confidence > config.face.description.minConfidence) {\n obj.gender = gender[0] <= 0.5 ? 'female' : 'male';\n obj.genderScore = Math.min(0.99, confidence);\n }\n const argmax = tf.argMax(resT.find((t) => t.shape[1] === 100), 1);\n const age = (await argmax.data())[0];\n const all = await resT.find((t) => t.shape[1] === 100).data(); // inside tf.tidy\n obj.age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;\n\n const desc = resT.find((t) => t.shape[1] === 1024);\n // const reshape = desc.reshape([128, 8]); // reshape large 1024-element descriptor to 128 x 8\n // const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it which leaves us with 128-element descriptor\n\n const descriptor = await desc.data();\n obj.descriptor = [...descriptor];\n resT.forEach((t) => tf.dispose(t));\n }\n\n last[idx] = obj;\n lastCount = count;\n resolve(obj);\n });\n}\n", "/**\n * Emotion Module\n */\n\nimport { log, join } from '../helpers';\nimport { Config } from '../config';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\n\nconst annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'];\nlet model;\n// let last: Array<{ score: number, emotion: string }> = [];\nconst last: Array> = [];\nlet lastCount = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\n// tuning values\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.face.emotion.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.face.emotion.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx, count) {\n if (!model) return null;\n if ((skipped < config.face.emotion.skipFrames) && config.skipFrame && (lastCount === count) && last[idx] && (last[idx].length > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const [red, green, blue] = tf.split(resize, 3, 3);\n tf.dispose(resize);\n // weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n tf.dispose(red);\n tf.dispose(green);\n tf.dispose(blue);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n tf.dispose(redNorm);\n tf.dispose(greenNorm);\n tf.dispose(blueNorm);\n const normalize = tf.tidy(() => tf.mul(tf.sub(grayscale, 0.5), 2));\n tf.dispose(grayscale);\n const obj: Array<{ score: number, emotion: string }> = [];\n if (config.face.emotion.enabled) {\n const emotionT = await model.predict(normalize); // result is already in range 0..1, no need for additional activation\n const data = await emotionT.data();\n tf.dispose(emotionT);\n for (let i = 0; i < data.length; i++) {\n if (data[i] > config.face.emotion.minConfidence) obj.push({ score: Math.min(0.99, Math.trunc(100 * data[i]) / 100), emotion: annotations[i] });\n }\n obj.sort((a, b) => b.score - a.score);\n }\n tf.dispose(normalize);\n last[idx] = obj;\n lastCount = count;\n resolve(obj);\n });\n}\n", "export const partNames = [\n 'nose', 'leftEye', 'rightEye', 'leftEar', 'rightEar', 'leftShoulder',\n 'rightShoulder', 'leftElbow', 'rightElbow', 'leftWrist', 'rightWrist',\n 'leftHip', 'rightHip', 'leftKnee', 'rightKnee', 'leftAnkle', 'rightAnkle',\n];\n\nexport const count = partNames.length; // 17 keypoints\n\nexport const partIds = partNames.reduce((result, jointName, i) => {\n result[jointName] = i;\n return result;\n}, {});\n\nconst connectedPartNames = [\n ['leftHip', 'leftShoulder'], ['leftElbow', 'leftShoulder'],\n ['leftElbow', 'leftWrist'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['rightHip', 'rightShoulder'],\n ['rightElbow', 'rightShoulder'], ['rightElbow', 'rightWrist'],\n ['rightHip', 'rightKnee'], ['rightKnee', 'rightAnkle'],\n ['leftShoulder', 'rightShoulder'], ['leftHip', 'rightHip'],\n];\nexport const connectedPartIndices = connectedPartNames.map(([jointNameA, jointNameB]) => ([partIds[jointNameA], partIds[jointNameB]]));\n\nexport const poseChain = [\n ['nose', 'leftEye'], ['leftEye', 'leftEar'], ['nose', 'rightEye'],\n ['rightEye', 'rightEar'], ['nose', 'leftShoulder'],\n ['leftShoulder', 'leftElbow'], ['leftElbow', 'leftWrist'],\n ['leftShoulder', 'leftHip'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['nose', 'rightShoulder'],\n ['rightShoulder', 'rightElbow'], ['rightElbow', 'rightWrist'],\n ['rightShoulder', 'rightHip'], ['rightHip', 'rightKnee'],\n ['rightKnee', 'rightAnkle'],\n];\n", "import * as kpt from './keypoints';\nimport { Body } from '../result';\n\nexport function eitherPointDoesntMeetConfidence(a: number, b: number, minConfidence: number) {\n return (a < minConfidence || b < minConfidence);\n}\n\nexport function getAdjacentKeyPoints(keypoints, minConfidence: number) {\n return kpt.connectedPartIndices.reduce((result, [leftJoint, rightJoint]) => {\n if (eitherPointDoesntMeetConfidence(keypoints[leftJoint].score, keypoints[rightJoint].score, minConfidence)) {\n return result;\n }\n result.push([keypoints[leftJoint], keypoints[rightJoint]]);\n return result;\n }, []);\n}\n\nexport function getBoundingBox(keypoints): [number, number, number, number] {\n const coord = keypoints.reduce(({ maxX, maxY, minX, minY }, { position: { x, y } }) => ({\n maxX: Math.max(maxX, x),\n maxY: Math.max(maxY, y),\n minX: Math.min(minX, x),\n minY: Math.min(minY, y),\n }), {\n maxX: Number.NEGATIVE_INFINITY,\n maxY: Number.NEGATIVE_INFINITY,\n minX: Number.POSITIVE_INFINITY,\n minY: Number.POSITIVE_INFINITY,\n });\n return [coord.minX, coord.minY, coord.maxX - coord.minX, coord.maxY - coord.minY];\n}\n\nexport function scalePoses(poses, [height, width], [inputResolutionHeight, inputResolutionWidth]): Array {\n const scaleY = height / inputResolutionHeight;\n const scaleX = width / inputResolutionWidth;\n const scalePose = (pose, i) => ({\n id: i,\n score: pose.score,\n boxRaw: [pose.box[0] / inputResolutionWidth, pose.box[1] / inputResolutionHeight, pose.box[2] / inputResolutionWidth, pose.box[3] / inputResolutionHeight],\n box: [Math.trunc(pose.box[0] * scaleX), Math.trunc(pose.box[1] * scaleY), Math.trunc(pose.box[2] * scaleX), Math.trunc(pose.box[3] * scaleY)],\n keypoints: pose.keypoints.map(({ score, part, position }) => ({\n score,\n part,\n position: [Math.trunc(position.x * scaleX), Math.trunc(position.y * scaleY)],\n positionRaw: [position.x / inputResolutionHeight, position.y / inputResolutionHeight],\n })),\n });\n const scaledPoses = poses.map((pose, i) => scalePose(pose, i));\n return scaledPoses;\n}\n\n// algorithm based on Coursera Lecture from Algorithms, Part 1: https://www.coursera.org/learn/algorithms-part1/lecture/ZjoSM/heapsort\nexport class MaxHeap {\n priorityQueue: Array; // don't touch\n numberOfElements: number;\n getElementValue: unknown; // function call\n\n constructor(maxSize, getElementValue) {\n this.priorityQueue = new Array(maxSize);\n this.numberOfElements = -1;\n this.getElementValue = getElementValue;\n }\n\n enqueue(x) {\n this.priorityQueue[++this.numberOfElements] = x;\n this.swim(this.numberOfElements);\n }\n\n dequeue() {\n const max = this.priorityQueue[0];\n this.exchange(0, this.numberOfElements--);\n this.sink(0);\n this.priorityQueue[this.numberOfElements + 1] = null;\n return max;\n }\n\n empty() { return this.numberOfElements === -1; }\n\n size() { return this.numberOfElements + 1; }\n\n all() { return this.priorityQueue.slice(0, this.numberOfElements + 1); }\n\n max() { return this.priorityQueue[0]; }\n\n swim(k) {\n while (k > 0 && this.less(Math.floor(k / 2), k)) {\n this.exchange(k, Math.floor(k / 2));\n k = Math.floor(k / 2);\n }\n }\n\n sink(k) {\n while (2 * k <= this.numberOfElements) {\n let j = 2 * k;\n if (j < this.numberOfElements && this.less(j, j + 1)) j++;\n if (!this.less(k, j)) break;\n this.exchange(k, j);\n k = j;\n }\n }\n\n getValueAt(i) {\n // @ts-ignore getter is of unknown type\n return this.getElementValue(this.priorityQueue[i]);\n }\n\n less(i, j) {\n return this.getValueAt(i) < this.getValueAt(j);\n }\n\n exchange(i, j) {\n const t = this.priorityQueue[i];\n this.priorityQueue[i] = this.priorityQueue[j];\n this.priorityQueue[j] = t;\n }\n}\n\nexport function getOffsetPoint(y, x, keypoint, offsets) {\n return {\n y: offsets.get(y, x, keypoint),\n x: offsets.get(y, x, keypoint + kpt.count),\n };\n}\n\nexport function getImageCoords(part, outputStride, offsets) {\n const { heatmapY, heatmapX, id: keypoint } = part;\n const { y, x } = getOffsetPoint(heatmapY, heatmapX, keypoint, offsets);\n return {\n x: part.heatmapX * outputStride + x,\n y: part.heatmapY * outputStride + y,\n };\n}\n\nexport function fillArray(element, size) {\n const result = new Array(size);\n for (let i = 0; i < size; i++) {\n result[i] = element;\n }\n return result;\n}\n\nexport function clamp(a, min, max) {\n if (a < min) return min;\n if (a > max) return max;\n return a;\n}\n\nexport function squaredDistance(y1, x1, y2, x2) {\n const dy = y2 - y1;\n const dx = x2 - x1;\n return dy * dy + dx * dx;\n}\n\nexport function addVectors(a, b) {\n return { x: a.x + b.x, y: a.y + b.y };\n}\n\nexport function clampVector(a, min, max) {\n return { y: clamp(a.y, min, max), x: clamp(a.x, min, max) };\n}\n", "import * as utils from './utils';\nimport * as kpt from './keypoints';\n\nconst localMaximumRadius = 1;\nconst outputStride = 16;\nconst squaredNmsRadius = 50 ** 2;\n\nfunction traverse(edgeId, sourceKeypoint, targetId, scores, offsets, displacements, offsetRefineStep = 2) {\n const getDisplacement = (point) => ({\n y: displacements.get(point.y, point.x, edgeId),\n x: displacements.get(point.y, point.x, (displacements.shape[2] / 2) + edgeId),\n });\n const getStridedIndexNearPoint = (point, height, width) => ({\n y: utils.clamp(Math.round(point.y / outputStride), 0, height - 1),\n x: utils.clamp(Math.round(point.x / outputStride), 0, width - 1),\n });\n\n const [height, width] = scores.shape;\n // Nearest neighbor interpolation for the source->target displacements.\n const sourceKeypointIndices = getStridedIndexNearPoint(sourceKeypoint.position, height, width);\n const displacement = getDisplacement(sourceKeypointIndices);\n const displacedPoint = utils.addVectors(sourceKeypoint.position, displacement);\n let targetKeypoint = displacedPoint;\n for (let i = 0; i < offsetRefineStep; i++) {\n const targetKeypointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const offsetPoint = utils.getOffsetPoint(targetKeypointIndices.y, targetKeypointIndices.x, targetId, offsets);\n targetKeypoint = utils.addVectors(\n { x: targetKeypointIndices.x * outputStride, y: targetKeypointIndices.y * outputStride },\n { x: offsetPoint.x, y: offsetPoint.y },\n );\n }\n const targetKeyPointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const score = scores.get(targetKeyPointIndices.y, targetKeyPointIndices.x, targetId);\n return { position: targetKeypoint, part: kpt.partNames[targetId], score };\n}\n\nexport function decodePose(root, scores, offsets, displacementsFwd, displacementsBwd) {\n const tuples = kpt.poseChain.map(([parentJoinName, childJoinName]) => ([kpt.partIds[parentJoinName], kpt.partIds[childJoinName]]));\n const edgesFwd = tuples.map(([, childJointId]) => childJointId);\n const edgesBwd = tuples.map(([parentJointId]) => parentJointId);\n const numParts = scores.shape[2]; // [21,21,17]\n const numEdges = edgesFwd.length;\n const keypoints = new Array(numParts);\n // Start a new detection instance at the position of the root.\n const rootPoint = utils.getImageCoords(root.part, outputStride, offsets);\n keypoints[root.part.id] = {\n score: root.score,\n part: kpt.partNames[root.part.id],\n position: rootPoint,\n };\n // Decode the part positions upwards in the tree, following the backward displacements.\n for (let edge = numEdges - 1; edge >= 0; --edge) {\n const sourceId = edgesFwd[edge];\n const targetId = edgesBwd[edge];\n if (keypoints[sourceId] && !keypoints[targetId]) {\n keypoints[targetId] = traverse(edge, keypoints[sourceId], targetId, scores, offsets, displacementsBwd);\n }\n }\n // Decode the part positions downwards in the tree, following the forward displacements.\n for (let edge = 0; edge < numEdges; ++edge) {\n const sourceId = edgesBwd[edge];\n const targetId = edgesFwd[edge];\n if (keypoints[sourceId] && !keypoints[targetId]) {\n keypoints[targetId] = traverse(edge, keypoints[sourceId], targetId, scores, offsets, displacementsFwd);\n }\n }\n return keypoints;\n}\n\nfunction scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores) {\n const [height, width] = scores.shape;\n let localMaximum = true;\n const yStart = Math.max(heatmapY - localMaximumRadius, 0);\n const yEnd = Math.min(heatmapY + localMaximumRadius + 1, height);\n for (let yCurrent = yStart; yCurrent < yEnd; ++yCurrent) {\n const xStart = Math.max(heatmapX - localMaximumRadius, 0);\n const xEnd = Math.min(heatmapX + localMaximumRadius + 1, width);\n for (let xCurrent = xStart; xCurrent < xEnd; ++xCurrent) {\n if (scores.get(yCurrent, xCurrent, keypointId) > score) {\n localMaximum = false;\n break;\n }\n }\n if (!localMaximum) break;\n }\n return localMaximum;\n}\n\nexport function buildPartWithScoreQueue(minConfidence, scores) {\n const [height, width, numKeypoints] = scores.shape;\n const queue = new utils.MaxHeap(height * width * numKeypoints, ({ score }) => score);\n for (let heatmapY = 0; heatmapY < height; ++heatmapY) {\n for (let heatmapX = 0; heatmapX < width; ++heatmapX) {\n for (let keypointId = 0; keypointId < numKeypoints; ++keypointId) {\n const score = scores.get(heatmapY, heatmapX, keypointId);\n // Only consider parts with score greater or equal to threshold as root candidates.\n if (score < minConfidence) continue;\n // Only consider keypoints whose score is maximum in a local window.\n if (scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores)) queue.enqueue({ score, part: { heatmapY, heatmapX, id: keypointId } });\n }\n }\n }\n return queue;\n}\n\nfunction withinRadius(poses, { x, y }, keypointId) {\n return poses.some(({ keypoints }) => {\n const correspondingKeypoint = keypoints[keypointId]?.position;\n if (!correspondingKeypoint) return false;\n return utils.squaredDistance(y, x, correspondingKeypoint.y, correspondingKeypoint.x) <= squaredNmsRadius;\n });\n}\n\nfunction getInstanceScore(existingPoses, keypoints) {\n const notOverlappedKeypointScores = keypoints.reduce((result, { position, score }, keypointId) => {\n if (!withinRadius(existingPoses, position, keypointId)) result += score;\n return result;\n }, 0.0);\n return notOverlappedKeypointScores / keypoints.length;\n}\n\nexport function decode(offsets, scores, displacementsFwd, displacementsBwd, maxDetected, minConfidence) {\n const poses: Array<{ keypoints, box: [number, number, number, number], score: number }> = [];\n const queue = buildPartWithScoreQueue(minConfidence, scores);\n // Generate at most maxDetected object instances per image in decreasing root part score order.\n while (poses.length < maxDetected && !queue.empty()) {\n // The top element in the queue is the next root candidate.\n const root = queue.dequeue();\n // Part-based non-maximum suppression: We reject a root candidate if it is within a disk of `nmsRadius` pixels from the corresponding part of a previously detected instance.\n // @ts-ignore this one is tree walk\n const rootImageCoords = utils.getImageCoords(root.part, outputStride, offsets);\n // @ts-ignore this one is tree walk\n if (withinRadius(poses, rootImageCoords, root.part.id)) continue;\n // Else start a new detection instance at the position of the root.\n let keypoints = decodePose(root, scores, offsets, displacementsFwd, displacementsBwd);\n keypoints = keypoints.filter((a) => a.score > minConfidence);\n const score = getInstanceScore(poses, keypoints);\n const box = utils.getBoundingBox(keypoints);\n if (score > minConfidence) poses.push({ keypoints, box, score: Math.round(100 * score) / 100 });\n }\n return poses;\n}\n", "/**\n * PoseNet module entry point\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as poses from './poses';\nimport * as util from './utils';\nimport { Body } from '../result';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model: GraphModel;\nconst poseNetOutputs = ['MobilenetV1/offset_2/BiasAdd'/* offsets */, 'MobilenetV1/heatmap_2/BiasAdd'/* heatmapScores */, 'MobilenetV1/displacement_fwd_2/BiasAdd'/* displacementFwd */, 'MobilenetV1/displacement_bwd_2/BiasAdd'/* displacementBwd */];\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const res = tf.tidy(() => {\n if (!model.inputs[0].shape) return [];\n const resized = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n const normalized = tf.sub(tf.div(tf.cast(resized, 'float32'), 127.5), 1.0);\n const results: Array = model.execute(normalized, poseNetOutputs) as Array;\n const results3d = results.map((y) => tf.squeeze(y, [0]));\n results3d[1] = results3d[1].sigmoid(); // apply sigmoid on scores\n return results3d;\n });\n\n const buffers = await Promise.all(res.map((tensor: Tensor) => tensor.buffer()));\n for (const t of res) tf.dispose(t);\n\n const decoded = await poses.decode(buffers[0], buffers[1], buffers[2], buffers[3], config.body.maxDetected, config.body.minConfidence);\n if (!model.inputs[0].shape) return [];\n const scaled = util.scalePoses(decoded, [input.shape[1], input.shape[2]], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) as Body[];\n return scaled;\n}\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath)) as unknown as GraphModel;\n if (!model || !model['modelUrl']) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model['modelUrl']);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n const palmLandmarks = box.palmLandmarks.map((coord) => {\n const scaledCoord = [coord[0] * factor[0], coord[1] * factor[1]];\n return scaledCoord;\n });\n return { startPoint, endPoint, palmLandmarks, confidence: box.confidence };\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]];\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [centers[0] - halfSize, centers[1] - halfSize];\n const endPoint = [centers[0] + halfSize, centers[1] + halfSize];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function shiftBox(box, shiftFactor) {\n const boxSize = [\n box.endPoint[0] - box.startPoint[0],\n box.endPoint[1] - box.startPoint[1],\n ];\n const shiftVector = [boxSize[0] * shiftFactor[0], boxSize[1] * shiftFactor[1]];\n const startPoint = [box.startPoint[0] + shiftVector[0], box.startPoint[1] + shiftVector[1]];\n const endPoint = [box.endPoint[0] + shiftVector[0], box.endPoint[1] + shiftVector[1]];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n", "export const anchors = [\n { x: 0.015625, y: 0.015625 },\n { x: 0.015625, y: 0.015625 },\n { x: 0.046875, y: 0.015625 },\n { x: 0.046875, y: 0.015625 },\n { x: 0.078125, y: 0.015625 },\n { x: 0.078125, y: 0.015625 },\n { x: 0.109375, y: 0.015625 },\n { x: 0.109375, y: 0.015625 },\n { x: 0.140625, y: 0.015625 },\n { x: 0.140625, y: 0.015625 },\n { x: 0.171875, y: 0.015625 },\n { x: 0.171875, y: 0.015625 },\n { x: 0.203125, y: 0.015625 },\n { x: 0.203125, y: 0.015625 },\n { x: 0.234375, y: 0.015625 },\n { x: 0.234375, y: 0.015625 },\n { x: 0.265625, y: 0.015625 },\n { x: 0.265625, y: 0.015625 },\n { x: 0.296875, y: 0.015625 },\n { x: 0.296875, y: 0.015625 },\n { x: 0.328125, y: 0.015625 },\n { x: 0.328125, y: 0.015625 },\n { x: 0.359375, y: 0.015625 },\n { x: 0.359375, y: 0.015625 },\n { x: 0.390625, y: 0.015625 },\n { x: 0.390625, y: 0.015625 },\n { x: 0.421875, y: 0.015625 },\n { x: 0.421875, y: 0.015625 },\n { x: 0.453125, y: 0.015625 },\n { x: 0.453125, y: 0.015625 },\n { x: 0.484375, y: 0.015625 },\n { x: 0.484375, y: 0.015625 },\n { x: 0.515625, y: 0.015625 },\n { x: 0.515625, y: 0.015625 },\n { x: 0.546875, y: 0.015625 },\n { x: 0.546875, y: 0.015625 },\n { x: 0.578125, y: 0.015625 },\n { x: 0.578125, y: 0.015625 },\n { x: 0.609375, y: 0.015625 },\n { x: 0.609375, y: 0.015625 },\n { x: 0.640625, y: 0.015625 },\n { x: 0.640625, y: 0.015625 },\n { x: 0.671875, y: 0.015625 },\n { x: 0.671875, y: 0.015625 },\n { x: 0.703125, y: 0.015625 },\n { x: 0.703125, y: 0.015625 },\n { x: 0.734375, y: 0.015625 },\n { x: 0.734375, y: 0.015625 },\n { x: 0.765625, y: 0.015625 },\n { x: 0.765625, y: 0.015625 },\n { x: 0.796875, y: 0.015625 },\n { x: 0.796875, y: 0.015625 },\n { x: 0.828125, y: 0.015625 },\n { x: 0.828125, y: 0.015625 },\n { x: 0.859375, y: 0.015625 },\n { x: 0.859375, y: 0.015625 },\n { x: 0.890625, y: 0.015625 },\n { x: 0.890625, y: 0.015625 },\n { x: 0.921875, y: 0.015625 },\n { x: 0.921875, y: 0.015625 },\n { x: 0.953125, y: 0.015625 },\n { x: 0.953125, y: 0.015625 },\n { x: 0.984375, y: 0.015625 },\n { x: 0.984375, y: 0.015625 },\n { x: 0.015625, y: 0.046875 },\n { x: 0.015625, y: 0.046875 },\n { x: 0.046875, y: 0.046875 },\n { x: 0.046875, y: 0.046875 },\n { x: 0.078125, y: 0.046875 },\n { x: 0.078125, y: 0.046875 },\n { x: 0.109375, y: 0.046875 },\n { x: 0.109375, y: 0.046875 },\n { x: 0.140625, y: 0.046875 },\n { x: 0.140625, y: 0.046875 },\n { x: 0.171875, y: 0.046875 },\n { x: 0.171875, y: 0.046875 },\n { x: 0.203125, y: 0.046875 },\n { x: 0.203125, y: 0.046875 },\n { x: 0.234375, y: 0.046875 },\n { x: 0.234375, y: 0.046875 },\n { x: 0.265625, y: 0.046875 },\n { x: 0.265625, y: 0.046875 },\n { x: 0.296875, y: 0.046875 },\n { x: 0.296875, y: 0.046875 },\n { x: 0.328125, y: 0.046875 },\n { x: 0.328125, y: 0.046875 },\n { x: 0.359375, y: 0.046875 },\n { x: 0.359375, y: 0.046875 },\n { x: 0.390625, y: 0.046875 },\n { x: 0.390625, y: 0.046875 },\n { x: 0.421875, y: 0.046875 },\n { x: 0.421875, y: 0.046875 },\n { x: 0.453125, y: 0.046875 },\n { x: 0.453125, y: 0.046875 },\n { x: 0.484375, y: 0.046875 },\n { x: 0.484375, y: 0.046875 },\n { x: 0.515625, y: 0.046875 },\n { x: 0.515625, y: 0.046875 },\n { x: 0.546875, y: 0.046875 },\n { x: 0.546875, y: 0.046875 },\n { x: 0.578125, y: 0.046875 },\n { x: 0.578125, y: 0.046875 },\n { x: 0.609375, y: 0.046875 },\n { x: 0.609375, y: 0.046875 },\n { x: 0.640625, y: 0.046875 },\n { x: 0.640625, y: 0.046875 },\n { x: 0.671875, y: 0.046875 },\n { x: 0.671875, y: 0.046875 },\n { x: 0.703125, y: 0.046875 },\n { x: 0.703125, y: 0.046875 },\n { x: 0.734375, y: 0.046875 },\n { x: 0.734375, y: 0.046875 },\n { x: 0.765625, y: 0.046875 },\n { x: 0.765625, y: 0.046875 },\n { x: 0.796875, y: 0.046875 },\n { x: 0.796875, y: 0.046875 },\n { x: 0.828125, y: 0.046875 },\n { x: 0.828125, y: 0.046875 },\n { x: 0.859375, y: 0.046875 },\n { x: 0.859375, y: 0.046875 },\n { x: 0.890625, y: 0.046875 },\n { x: 0.890625, y: 0.046875 },\n { x: 0.921875, y: 0.046875 },\n { x: 0.921875, y: 0.046875 },\n { x: 0.953125, y: 0.046875 },\n { x: 0.953125, y: 0.046875 },\n { x: 0.984375, y: 0.046875 },\n { x: 0.984375, y: 0.046875 },\n { x: 0.015625, y: 0.078125 },\n { x: 0.015625, y: 0.078125 },\n { x: 0.046875, y: 0.078125 },\n { x: 0.046875, y: 0.078125 },\n { x: 0.078125, y: 0.078125 },\n { x: 0.078125, y: 0.078125 },\n { x: 0.109375, y: 0.078125 },\n { x: 0.109375, y: 0.078125 },\n { x: 0.140625, y: 0.078125 },\n { x: 0.140625, y: 0.078125 },\n { x: 0.171875, y: 0.078125 },\n { x: 0.171875, y: 0.078125 },\n { x: 0.203125, y: 0.078125 },\n { x: 0.203125, y: 0.078125 },\n { x: 0.234375, y: 0.078125 },\n { x: 0.234375, y: 0.078125 },\n { x: 0.265625, y: 0.078125 },\n { x: 0.265625, y: 0.078125 },\n { x: 0.296875, y: 0.078125 },\n { x: 0.296875, y: 0.078125 },\n { x: 0.328125, y: 0.078125 },\n { x: 0.328125, y: 0.078125 },\n { x: 0.359375, y: 0.078125 },\n { x: 0.359375, y: 0.078125 },\n { x: 0.390625, y: 0.078125 },\n { x: 0.390625, y: 0.078125 },\n { x: 0.421875, y: 0.078125 },\n { x: 0.421875, y: 0.078125 },\n { x: 0.453125, y: 0.078125 },\n { x: 0.453125, y: 0.078125 },\n { x: 0.484375, y: 0.078125 },\n { x: 0.484375, y: 0.078125 },\n { x: 0.515625, y: 0.078125 },\n { x: 0.515625, y: 0.078125 },\n { x: 0.546875, y: 0.078125 },\n { x: 0.546875, y: 0.078125 },\n { x: 0.578125, y: 0.078125 },\n { x: 0.578125, y: 0.078125 },\n { x: 0.609375, y: 0.078125 },\n { x: 0.609375, y: 0.078125 },\n { x: 0.640625, y: 0.078125 },\n { x: 0.640625, y: 0.078125 },\n { x: 0.671875, y: 0.078125 },\n { x: 0.671875, y: 0.078125 },\n { x: 0.703125, y: 0.078125 },\n { x: 0.703125, y: 0.078125 },\n { x: 0.734375, y: 0.078125 },\n { x: 0.734375, y: 0.078125 },\n { x: 0.765625, y: 0.078125 },\n { x: 0.765625, y: 0.078125 },\n { x: 0.796875, y: 0.078125 },\n { x: 0.796875, y: 0.078125 },\n { x: 0.828125, y: 0.078125 },\n { x: 0.828125, y: 0.078125 },\n { x: 0.859375, y: 0.078125 },\n { x: 0.859375, y: 0.078125 },\n { x: 0.890625, y: 0.078125 },\n { x: 0.890625, y: 0.078125 },\n { x: 0.921875, y: 0.078125 },\n { x: 0.921875, y: 0.078125 },\n { x: 0.953125, y: 0.078125 },\n { x: 0.953125, y: 0.078125 },\n { x: 0.984375, y: 0.078125 },\n { x: 0.984375, y: 0.078125 },\n { x: 0.015625, y: 0.109375 },\n { x: 0.015625, y: 0.109375 },\n { x: 0.046875, y: 0.109375 },\n { x: 0.046875, y: 0.109375 },\n { x: 0.078125, y: 0.109375 },\n { x: 0.078125, y: 0.109375 },\n { x: 0.109375, y: 0.109375 },\n { x: 0.109375, y: 0.109375 },\n { x: 0.140625, y: 0.109375 },\n { x: 0.140625, y: 0.109375 },\n { x: 0.171875, y: 0.109375 },\n { x: 0.171875, y: 0.109375 },\n { x: 0.203125, y: 0.109375 },\n { x: 0.203125, y: 0.109375 },\n { x: 0.234375, y: 0.109375 },\n { x: 0.234375, y: 0.109375 },\n { x: 0.265625, y: 0.109375 },\n { x: 0.265625, y: 0.109375 },\n { x: 0.296875, y: 0.109375 },\n { x: 0.296875, y: 0.109375 },\n { x: 0.328125, y: 0.109375 },\n { x: 0.328125, y: 0.109375 },\n { x: 0.359375, y: 0.109375 },\n { x: 0.359375, y: 0.109375 },\n { x: 0.390625, y: 0.109375 },\n { x: 0.390625, y: 0.109375 },\n { x: 0.421875, y: 0.109375 },\n { x: 0.421875, y: 0.109375 },\n { x: 0.453125, y: 0.109375 },\n { x: 0.453125, y: 0.109375 },\n { x: 0.484375, y: 0.109375 },\n { x: 0.484375, y: 0.109375 },\n { x: 0.515625, y: 0.109375 },\n { x: 0.515625, y: 0.109375 },\n { x: 0.546875, y: 0.109375 },\n { x: 0.546875, y: 0.109375 },\n { x: 0.578125, y: 0.109375 },\n { x: 0.578125, y: 0.109375 },\n { x: 0.609375, y: 0.109375 },\n { x: 0.609375, y: 0.109375 },\n { x: 0.640625, y: 0.109375 },\n { x: 0.640625, y: 0.109375 },\n { x: 0.671875, y: 0.109375 },\n { x: 0.671875, y: 0.109375 },\n { x: 0.703125, y: 0.109375 },\n { x: 0.703125, y: 0.109375 },\n { x: 0.734375, y: 0.109375 },\n { x: 0.734375, y: 0.109375 },\n { x: 0.765625, y: 0.109375 },\n { x: 0.765625, y: 0.109375 },\n { x: 0.796875, y: 0.109375 },\n { x: 0.796875, y: 0.109375 },\n { x: 0.828125, y: 0.109375 },\n { x: 0.828125, y: 0.109375 },\n { x: 0.859375, y: 0.109375 },\n { x: 0.859375, y: 0.109375 },\n { x: 0.890625, y: 0.109375 },\n { x: 0.890625, y: 0.109375 },\n { x: 0.921875, y: 0.109375 },\n { x: 0.921875, y: 0.109375 },\n { x: 0.953125, y: 0.109375 },\n { x: 0.953125, y: 0.109375 },\n { x: 0.984375, y: 0.109375 },\n { x: 0.984375, y: 0.109375 },\n { x: 0.015625, y: 0.140625 },\n { x: 0.015625, y: 0.140625 },\n { x: 0.046875, y: 0.140625 },\n { x: 0.046875, y: 0.140625 },\n { x: 0.078125, y: 0.140625 },\n { x: 0.078125, y: 0.140625 },\n { x: 0.109375, y: 0.140625 },\n { x: 0.109375, y: 0.140625 },\n { x: 0.140625, y: 0.140625 },\n { x: 0.140625, y: 0.140625 },\n { x: 0.171875, y: 0.140625 },\n { x: 0.171875, y: 0.140625 },\n { x: 0.203125, y: 0.140625 },\n { x: 0.203125, y: 0.140625 },\n { x: 0.234375, y: 0.140625 },\n { x: 0.234375, y: 0.140625 },\n { x: 0.265625, y: 0.140625 },\n { x: 0.265625, y: 0.140625 },\n { x: 0.296875, y: 0.140625 },\n { x: 0.296875, y: 0.140625 },\n { x: 0.328125, y: 0.140625 },\n { x: 0.328125, y: 0.140625 },\n { x: 0.359375, y: 0.140625 },\n { x: 0.359375, y: 0.140625 },\n { x: 0.390625, y: 0.140625 },\n { x: 0.390625, y: 0.140625 },\n { x: 0.421875, y: 0.140625 },\n { x: 0.421875, y: 0.140625 },\n { x: 0.453125, y: 0.140625 },\n { x: 0.453125, y: 0.140625 },\n { x: 0.484375, y: 0.140625 },\n { x: 0.484375, y: 0.140625 },\n { x: 0.515625, y: 0.140625 },\n { x: 0.515625, y: 0.140625 },\n { x: 0.546875, y: 0.140625 },\n { x: 0.546875, y: 0.140625 },\n { x: 0.578125, y: 0.140625 },\n { x: 0.578125, y: 0.140625 },\n { x: 0.609375, y: 0.140625 },\n { x: 0.609375, y: 0.140625 },\n { x: 0.640625, y: 0.140625 },\n { x: 0.640625, y: 0.140625 },\n { x: 0.671875, y: 0.140625 },\n { x: 0.671875, y: 0.140625 },\n { x: 0.703125, y: 0.140625 },\n { x: 0.703125, y: 0.140625 },\n { x: 0.734375, y: 0.140625 },\n { x: 0.734375, y: 0.140625 },\n { x: 0.765625, y: 0.140625 },\n { x: 0.765625, y: 0.140625 },\n { x: 0.796875, y: 0.140625 },\n { x: 0.796875, y: 0.140625 },\n { x: 0.828125, y: 0.140625 },\n { x: 0.828125, y: 0.140625 },\n { x: 0.859375, y: 0.140625 },\n { x: 0.859375, y: 0.140625 },\n { x: 0.890625, y: 0.140625 },\n { x: 0.890625, y: 0.140625 },\n { x: 0.921875, y: 0.140625 },\n { x: 0.921875, y: 0.140625 },\n { x: 0.953125, y: 0.140625 },\n { x: 0.953125, y: 0.140625 },\n { x: 0.984375, y: 0.140625 },\n { x: 0.984375, y: 0.140625 },\n { x: 0.015625, y: 0.171875 },\n { x: 0.015625, y: 0.171875 },\n { x: 0.046875, y: 0.171875 },\n { x: 0.046875, y: 0.171875 },\n { x: 0.078125, y: 0.171875 },\n { x: 0.078125, y: 0.171875 },\n { x: 0.109375, y: 0.171875 },\n { x: 0.109375, y: 0.171875 },\n { x: 0.140625, y: 0.171875 },\n { x: 0.140625, y: 0.171875 },\n { x: 0.171875, y: 0.171875 },\n { x: 0.171875, y: 0.171875 },\n { x: 0.203125, y: 0.171875 },\n { x: 0.203125, y: 0.171875 },\n { x: 0.234375, y: 0.171875 },\n { x: 0.234375, y: 0.171875 },\n { x: 0.265625, y: 0.171875 },\n { x: 0.265625, y: 0.171875 },\n { x: 0.296875, y: 0.171875 },\n { x: 0.296875, y: 0.171875 },\n { x: 0.328125, y: 0.171875 },\n { x: 0.328125, y: 0.171875 },\n { x: 0.359375, y: 0.171875 },\n { x: 0.359375, y: 0.171875 },\n { x: 0.390625, y: 0.171875 },\n { x: 0.390625, y: 0.171875 },\n { x: 0.421875, y: 0.171875 },\n { x: 0.421875, y: 0.171875 },\n { x: 0.453125, y: 0.171875 },\n { x: 0.453125, y: 0.171875 },\n { x: 0.484375, y: 0.171875 },\n { x: 0.484375, y: 0.171875 },\n { x: 0.515625, y: 0.171875 },\n { x: 0.515625, y: 0.171875 },\n { x: 0.546875, y: 0.171875 },\n { x: 0.546875, y: 0.171875 },\n { x: 0.578125, y: 0.171875 },\n { x: 0.578125, y: 0.171875 },\n { x: 0.609375, y: 0.171875 },\n { x: 0.609375, y: 0.171875 },\n { x: 0.640625, y: 0.171875 },\n { x: 0.640625, y: 0.171875 },\n { x: 0.671875, y: 0.171875 },\n { x: 0.671875, y: 0.171875 },\n { x: 0.703125, y: 0.171875 },\n { x: 0.703125, y: 0.171875 },\n { x: 0.734375, y: 0.171875 },\n { x: 0.734375, y: 0.171875 },\n { x: 0.765625, y: 0.171875 },\n { x: 0.765625, y: 0.171875 },\n { x: 0.796875, y: 0.171875 },\n { x: 0.796875, y: 0.171875 },\n { x: 0.828125, y: 0.171875 },\n { x: 0.828125, y: 0.171875 },\n { x: 0.859375, y: 0.171875 },\n { x: 0.859375, y: 0.171875 },\n { x: 0.890625, y: 0.171875 },\n { x: 0.890625, y: 0.171875 },\n { x: 0.921875, y: 0.171875 },\n { x: 0.921875, y: 0.171875 },\n { x: 0.953125, y: 0.171875 },\n { x: 0.953125, y: 0.171875 },\n { x: 0.984375, y: 0.171875 },\n { x: 0.984375, y: 0.171875 },\n { x: 0.015625, y: 0.203125 },\n { x: 0.015625, y: 0.203125 },\n { x: 0.046875, y: 0.203125 },\n { x: 0.046875, y: 0.203125 },\n { x: 0.078125, y: 0.203125 },\n { x: 0.078125, y: 0.203125 },\n { x: 0.109375, y: 0.203125 },\n { x: 0.109375, y: 0.203125 },\n { x: 0.140625, y: 0.203125 },\n { x: 0.140625, y: 0.203125 },\n { x: 0.171875, y: 0.203125 },\n { x: 0.171875, y: 0.203125 },\n { x: 0.203125, y: 0.203125 },\n { x: 0.203125, y: 0.203125 },\n { x: 0.234375, y: 0.203125 },\n { x: 0.234375, y: 0.203125 },\n { x: 0.265625, y: 0.203125 },\n { x: 0.265625, y: 0.203125 },\n { x: 0.296875, y: 0.203125 },\n { x: 0.296875, y: 0.203125 },\n { x: 0.328125, y: 0.203125 },\n { x: 0.328125, y: 0.203125 },\n { x: 0.359375, y: 0.203125 },\n { x: 0.359375, y: 0.203125 },\n { x: 0.390625, y: 0.203125 },\n { x: 0.390625, y: 0.203125 },\n { x: 0.421875, y: 0.203125 },\n { x: 0.421875, y: 0.203125 },\n { x: 0.453125, y: 0.203125 },\n { x: 0.453125, y: 0.203125 },\n { x: 0.484375, y: 0.203125 },\n { x: 0.484375, y: 0.203125 },\n { x: 0.515625, y: 0.203125 },\n { x: 0.515625, y: 0.203125 },\n { x: 0.546875, y: 0.203125 },\n { x: 0.546875, y: 0.203125 },\n { x: 0.578125, y: 0.203125 },\n { x: 0.578125, y: 0.203125 },\n { x: 0.609375, y: 0.203125 },\n { x: 0.609375, y: 0.203125 },\n { x: 0.640625, y: 0.203125 },\n { x: 0.640625, y: 0.203125 },\n { x: 0.671875, y: 0.203125 },\n { x: 0.671875, y: 0.203125 },\n { x: 0.703125, y: 0.203125 },\n { x: 0.703125, y: 0.203125 },\n { x: 0.734375, y: 0.203125 },\n { x: 0.734375, y: 0.203125 },\n { x: 0.765625, y: 0.203125 },\n { x: 0.765625, y: 0.203125 },\n { x: 0.796875, y: 0.203125 },\n { x: 0.796875, y: 0.203125 },\n { x: 0.828125, y: 0.203125 },\n { x: 0.828125, y: 0.203125 },\n { x: 0.859375, y: 0.203125 },\n { x: 0.859375, y: 0.203125 },\n { x: 0.890625, y: 0.203125 },\n { x: 0.890625, y: 0.203125 },\n { x: 0.921875, y: 0.203125 },\n { x: 0.921875, y: 0.203125 },\n { x: 0.953125, y: 0.203125 },\n { x: 0.953125, y: 0.203125 },\n { x: 0.984375, y: 0.203125 },\n { x: 0.984375, y: 0.203125 },\n { x: 0.015625, y: 0.234375 },\n { x: 0.015625, y: 0.234375 },\n { x: 0.046875, y: 0.234375 },\n { x: 0.046875, y: 0.234375 },\n { x: 0.078125, y: 0.234375 },\n { x: 0.078125, y: 0.234375 },\n { x: 0.109375, y: 0.234375 },\n { x: 0.109375, y: 0.234375 },\n { x: 0.140625, y: 0.234375 },\n { x: 0.140625, y: 0.234375 },\n { x: 0.171875, y: 0.234375 },\n { x: 0.171875, y: 0.234375 },\n { x: 0.203125, y: 0.234375 },\n { x: 0.203125, y: 0.234375 },\n { x: 0.234375, y: 0.234375 },\n { x: 0.234375, y: 0.234375 },\n { x: 0.265625, y: 0.234375 },\n { x: 0.265625, y: 0.234375 },\n { x: 0.296875, y: 0.234375 },\n { x: 0.296875, y: 0.234375 },\n { x: 0.328125, y: 0.234375 },\n { x: 0.328125, y: 0.234375 },\n { x: 0.359375, y: 0.234375 },\n { x: 0.359375, y: 0.234375 },\n { x: 0.390625, y: 0.234375 },\n { x: 0.390625, y: 0.234375 },\n { x: 0.421875, y: 0.234375 },\n { x: 0.421875, y: 0.234375 },\n { x: 0.453125, y: 0.234375 },\n { x: 0.453125, y: 0.234375 },\n { x: 0.484375, y: 0.234375 },\n { x: 0.484375, y: 0.234375 },\n { x: 0.515625, y: 0.234375 },\n { x: 0.515625, y: 0.234375 },\n { x: 0.546875, y: 0.234375 },\n { x: 0.546875, y: 0.234375 },\n { x: 0.578125, y: 0.234375 },\n { x: 0.578125, y: 0.234375 },\n { x: 0.609375, y: 0.234375 },\n { x: 0.609375, y: 0.234375 },\n { x: 0.640625, y: 0.234375 },\n { x: 0.640625, y: 0.234375 },\n { x: 0.671875, y: 0.234375 },\n { x: 0.671875, y: 0.234375 },\n { x: 0.703125, y: 0.234375 },\n { x: 0.703125, y: 0.234375 },\n { x: 0.734375, y: 0.234375 },\n { x: 0.734375, y: 0.234375 },\n { x: 0.765625, y: 0.234375 },\n { x: 0.765625, y: 0.234375 },\n { x: 0.796875, y: 0.234375 },\n { x: 0.796875, y: 0.234375 },\n { x: 0.828125, y: 0.234375 },\n { x: 0.828125, y: 0.234375 },\n { x: 0.859375, y: 0.234375 },\n { x: 0.859375, y: 0.234375 },\n { x: 0.890625, y: 0.234375 },\n { x: 0.890625, y: 0.234375 },\n { x: 0.921875, y: 0.234375 },\n { x: 0.921875, y: 0.234375 },\n { x: 0.953125, y: 0.234375 },\n { x: 0.953125, y: 0.234375 },\n { x: 0.984375, y: 0.234375 },\n { x: 0.984375, y: 0.234375 },\n { x: 0.015625, y: 0.265625 },\n { x: 0.015625, y: 0.265625 },\n { x: 0.046875, y: 0.265625 },\n { x: 0.046875, y: 0.265625 },\n { x: 0.078125, y: 0.265625 },\n { x: 0.078125, y: 0.265625 },\n { x: 0.109375, y: 0.265625 },\n { x: 0.109375, y: 0.265625 },\n { x: 0.140625, y: 0.265625 },\n { x: 0.140625, y: 0.265625 },\n { x: 0.171875, y: 0.265625 },\n { x: 0.171875, y: 0.265625 },\n { x: 0.203125, y: 0.265625 },\n { x: 0.203125, y: 0.265625 },\n { x: 0.234375, y: 0.265625 },\n { x: 0.234375, y: 0.265625 },\n { x: 0.265625, y: 0.265625 },\n { x: 0.265625, y: 0.265625 },\n { x: 0.296875, y: 0.265625 },\n { x: 0.296875, y: 0.265625 },\n { x: 0.328125, y: 0.265625 },\n { x: 0.328125, y: 0.265625 },\n { x: 0.359375, y: 0.265625 },\n { x: 0.359375, y: 0.265625 },\n { x: 0.390625, y: 0.265625 },\n { x: 0.390625, y: 0.265625 },\n { x: 0.421875, y: 0.265625 },\n { x: 0.421875, y: 0.265625 },\n { x: 0.453125, y: 0.265625 },\n { x: 0.453125, y: 0.265625 },\n { x: 0.484375, y: 0.265625 },\n { x: 0.484375, y: 0.265625 },\n { x: 0.515625, y: 0.265625 },\n { x: 0.515625, y: 0.265625 },\n { x: 0.546875, y: 0.265625 },\n { x: 0.546875, y: 0.265625 },\n { x: 0.578125, y: 0.265625 },\n { x: 0.578125, y: 0.265625 },\n { x: 0.609375, y: 0.265625 },\n { x: 0.609375, y: 0.265625 },\n { x: 0.640625, y: 0.265625 },\n { x: 0.640625, y: 0.265625 },\n { x: 0.671875, y: 0.265625 },\n { x: 0.671875, y: 0.265625 },\n { x: 0.703125, y: 0.265625 },\n { x: 0.703125, y: 0.265625 },\n { x: 0.734375, y: 0.265625 },\n { x: 0.734375, y: 0.265625 },\n { x: 0.765625, y: 0.265625 },\n { x: 0.765625, y: 0.265625 },\n { x: 0.796875, y: 0.265625 },\n { x: 0.796875, y: 0.265625 },\n { x: 0.828125, y: 0.265625 },\n { x: 0.828125, y: 0.265625 },\n { x: 0.859375, y: 0.265625 },\n { x: 0.859375, y: 0.265625 },\n { x: 0.890625, y: 0.265625 },\n { x: 0.890625, y: 0.265625 },\n { x: 0.921875, y: 0.265625 },\n { x: 0.921875, y: 0.265625 },\n { x: 0.953125, y: 0.265625 },\n { x: 0.953125, y: 0.265625 },\n { x: 0.984375, y: 0.265625 },\n { x: 0.984375, y: 0.265625 },\n { x: 0.015625, y: 0.296875 },\n { x: 0.015625, y: 0.296875 },\n { x: 0.046875, y: 0.296875 },\n { x: 0.046875, y: 0.296875 },\n { x: 0.078125, y: 0.296875 },\n { x: 0.078125, y: 0.296875 },\n { x: 0.109375, y: 0.296875 },\n { x: 0.109375, y: 0.296875 },\n { x: 0.140625, y: 0.296875 },\n { x: 0.140625, y: 0.296875 },\n { x: 0.171875, y: 0.296875 },\n { x: 0.171875, y: 0.296875 },\n { x: 0.203125, y: 0.296875 },\n { x: 0.203125, y: 0.296875 },\n { x: 0.234375, y: 0.296875 },\n { x: 0.234375, y: 0.296875 },\n { x: 0.265625, y: 0.296875 },\n { x: 0.265625, y: 0.296875 },\n { x: 0.296875, y: 0.296875 },\n { x: 0.296875, y: 0.296875 },\n { x: 0.328125, y: 0.296875 },\n { x: 0.328125, y: 0.296875 },\n { x: 0.359375, y: 0.296875 },\n { x: 0.359375, y: 0.296875 },\n { x: 0.390625, y: 0.296875 },\n { x: 0.390625, y: 0.296875 },\n { x: 0.421875, y: 0.296875 },\n { x: 0.421875, y: 0.296875 },\n { x: 0.453125, y: 0.296875 },\n { x: 0.453125, y: 0.296875 },\n { x: 0.484375, y: 0.296875 },\n { x: 0.484375, y: 0.296875 },\n { x: 0.515625, y: 0.296875 },\n { x: 0.515625, y: 0.296875 },\n { x: 0.546875, y: 0.296875 },\n { x: 0.546875, y: 0.296875 },\n { x: 0.578125, y: 0.296875 },\n { x: 0.578125, y: 0.296875 },\n { x: 0.609375, y: 0.296875 },\n { x: 0.609375, y: 0.296875 },\n { x: 0.640625, y: 0.296875 },\n { x: 0.640625, y: 0.296875 },\n { x: 0.671875, y: 0.296875 },\n { x: 0.671875, y: 0.296875 },\n { x: 0.703125, y: 0.296875 },\n { x: 0.703125, y: 0.296875 },\n { x: 0.734375, y: 0.296875 },\n { x: 0.734375, y: 0.296875 },\n { x: 0.765625, y: 0.296875 },\n { x: 0.765625, y: 0.296875 },\n { x: 0.796875, y: 0.296875 },\n { x: 0.796875, y: 0.296875 },\n { x: 0.828125, y: 0.296875 },\n { x: 0.828125, y: 0.296875 },\n { x: 0.859375, y: 0.296875 },\n { x: 0.859375, y: 0.296875 },\n { x: 0.890625, y: 0.296875 },\n { x: 0.890625, y: 0.296875 },\n { x: 0.921875, y: 0.296875 },\n { x: 0.921875, y: 0.296875 },\n { x: 0.953125, y: 0.296875 },\n { x: 0.953125, y: 0.296875 },\n { x: 0.984375, y: 0.296875 },\n { x: 0.984375, y: 0.296875 },\n { x: 0.015625, y: 0.328125 },\n { x: 0.015625, y: 0.328125 },\n { x: 0.046875, y: 0.328125 },\n { x: 0.046875, y: 0.328125 },\n { x: 0.078125, y: 0.328125 },\n { x: 0.078125, y: 0.328125 },\n { x: 0.109375, y: 0.328125 },\n { x: 0.109375, y: 0.328125 },\n { x: 0.140625, y: 0.328125 },\n { x: 0.140625, y: 0.328125 },\n { x: 0.171875, y: 0.328125 },\n { x: 0.171875, y: 0.328125 },\n { x: 0.203125, y: 0.328125 },\n { x: 0.203125, y: 0.328125 },\n { x: 0.234375, y: 0.328125 },\n { x: 0.234375, y: 0.328125 },\n { x: 0.265625, y: 0.328125 },\n { x: 0.265625, y: 0.328125 },\n { x: 0.296875, y: 0.328125 },\n { x: 0.296875, y: 0.328125 },\n { x: 0.328125, y: 0.328125 },\n { x: 0.328125, y: 0.328125 },\n { x: 0.359375, y: 0.328125 },\n { x: 0.359375, y: 0.328125 },\n { x: 0.390625, y: 0.328125 },\n { x: 0.390625, y: 0.328125 },\n { x: 0.421875, y: 0.328125 },\n { x: 0.421875, y: 0.328125 },\n { x: 0.453125, y: 0.328125 },\n { x: 0.453125, y: 0.328125 },\n { x: 0.484375, y: 0.328125 },\n { x: 0.484375, y: 0.328125 },\n { x: 0.515625, y: 0.328125 },\n { x: 0.515625, y: 0.328125 },\n { x: 0.546875, y: 0.328125 },\n { x: 0.546875, y: 0.328125 },\n { x: 0.578125, y: 0.328125 },\n { x: 0.578125, y: 0.328125 },\n { x: 0.609375, y: 0.328125 },\n { x: 0.609375, y: 0.328125 },\n { x: 0.640625, y: 0.328125 },\n { x: 0.640625, y: 0.328125 },\n { x: 0.671875, y: 0.328125 },\n { x: 0.671875, y: 0.328125 },\n { x: 0.703125, y: 0.328125 },\n { x: 0.703125, y: 0.328125 },\n { x: 0.734375, y: 0.328125 },\n { x: 0.734375, y: 0.328125 },\n { x: 0.765625, y: 0.328125 },\n { x: 0.765625, y: 0.328125 },\n { x: 0.796875, y: 0.328125 },\n { x: 0.796875, y: 0.328125 },\n { x: 0.828125, y: 0.328125 },\n { x: 0.828125, y: 0.328125 },\n { x: 0.859375, y: 0.328125 },\n { x: 0.859375, y: 0.328125 },\n { x: 0.890625, y: 0.328125 },\n { x: 0.890625, y: 0.328125 },\n { x: 0.921875, y: 0.328125 },\n { x: 0.921875, y: 0.328125 },\n { x: 0.953125, y: 0.328125 },\n { x: 0.953125, y: 0.328125 },\n { x: 0.984375, y: 0.328125 },\n { x: 0.984375, y: 0.328125 },\n { x: 0.015625, y: 0.359375 },\n { x: 0.015625, y: 0.359375 },\n { x: 0.046875, y: 0.359375 },\n { x: 0.046875, y: 0.359375 },\n { x: 0.078125, y: 0.359375 },\n { x: 0.078125, y: 0.359375 },\n { x: 0.109375, y: 0.359375 },\n { x: 0.109375, y: 0.359375 },\n { x: 0.140625, y: 0.359375 },\n { x: 0.140625, y: 0.359375 },\n { x: 0.171875, y: 0.359375 },\n { x: 0.171875, y: 0.359375 },\n { x: 0.203125, y: 0.359375 },\n { x: 0.203125, y: 0.359375 },\n { x: 0.234375, y: 0.359375 },\n { x: 0.234375, y: 0.359375 },\n { x: 0.265625, y: 0.359375 },\n { x: 0.265625, y: 0.359375 },\n { x: 0.296875, y: 0.359375 },\n { x: 0.296875, y: 0.359375 },\n { x: 0.328125, y: 0.359375 },\n { x: 0.328125, y: 0.359375 },\n { x: 0.359375, y: 0.359375 },\n { x: 0.359375, y: 0.359375 },\n { x: 0.390625, y: 0.359375 },\n { x: 0.390625, y: 0.359375 },\n { x: 0.421875, y: 0.359375 },\n { x: 0.421875, y: 0.359375 },\n { x: 0.453125, y: 0.359375 },\n { x: 0.453125, y: 0.359375 },\n { x: 0.484375, y: 0.359375 },\n { x: 0.484375, y: 0.359375 },\n { x: 0.515625, y: 0.359375 },\n { x: 0.515625, y: 0.359375 },\n { x: 0.546875, y: 0.359375 },\n { x: 0.546875, y: 0.359375 },\n { x: 0.578125, y: 0.359375 },\n { x: 0.578125, y: 0.359375 },\n { x: 0.609375, y: 0.359375 },\n { x: 0.609375, y: 0.359375 },\n { x: 0.640625, y: 0.359375 },\n { x: 0.640625, y: 0.359375 },\n { x: 0.671875, y: 0.359375 },\n { x: 0.671875, y: 0.359375 },\n { x: 0.703125, y: 0.359375 },\n { x: 0.703125, y: 0.359375 },\n { x: 0.734375, y: 0.359375 },\n { x: 0.734375, y: 0.359375 },\n { x: 0.765625, y: 0.359375 },\n { x: 0.765625, y: 0.359375 },\n { x: 0.796875, y: 0.359375 },\n { x: 0.796875, y: 0.359375 },\n { x: 0.828125, y: 0.359375 },\n { x: 0.828125, y: 0.359375 },\n { x: 0.859375, y: 0.359375 },\n { x: 0.859375, y: 0.359375 },\n { x: 0.890625, y: 0.359375 },\n { x: 0.890625, y: 0.359375 },\n { x: 0.921875, y: 0.359375 },\n { x: 0.921875, y: 0.359375 },\n { x: 0.953125, y: 0.359375 },\n { x: 0.953125, y: 0.359375 },\n { x: 0.984375, y: 0.359375 },\n { x: 0.984375, y: 0.359375 },\n { x: 0.015625, y: 0.390625 },\n { x: 0.015625, y: 0.390625 },\n { x: 0.046875, y: 0.390625 },\n { x: 0.046875, y: 0.390625 },\n { x: 0.078125, y: 0.390625 },\n { x: 0.078125, y: 0.390625 },\n { x: 0.109375, y: 0.390625 },\n { x: 0.109375, y: 0.390625 },\n { x: 0.140625, y: 0.390625 },\n { x: 0.140625, y: 0.390625 },\n { x: 0.171875, y: 0.390625 },\n { x: 0.171875, y: 0.390625 },\n { x: 0.203125, y: 0.390625 },\n { x: 0.203125, y: 0.390625 },\n { x: 0.234375, y: 0.390625 },\n { x: 0.234375, y: 0.390625 },\n { x: 0.265625, y: 0.390625 },\n { x: 0.265625, y: 0.390625 },\n { x: 0.296875, y: 0.390625 },\n { x: 0.296875, y: 0.390625 },\n { x: 0.328125, y: 0.390625 },\n { x: 0.328125, y: 0.390625 },\n { x: 0.359375, y: 0.390625 },\n { x: 0.359375, y: 0.390625 },\n { x: 0.390625, y: 0.390625 },\n { x: 0.390625, y: 0.390625 },\n { x: 0.421875, y: 0.390625 },\n { x: 0.421875, y: 0.390625 },\n { x: 0.453125, y: 0.390625 },\n { x: 0.453125, y: 0.390625 },\n { x: 0.484375, y: 0.390625 },\n { x: 0.484375, y: 0.390625 },\n { x: 0.515625, y: 0.390625 },\n { x: 0.515625, y: 0.390625 },\n { x: 0.546875, y: 0.390625 },\n { x: 0.546875, y: 0.390625 },\n { x: 0.578125, y: 0.390625 },\n { x: 0.578125, y: 0.390625 },\n { x: 0.609375, y: 0.390625 },\n { x: 0.609375, y: 0.390625 },\n { x: 0.640625, y: 0.390625 },\n { x: 0.640625, y: 0.390625 },\n { x: 0.671875, y: 0.390625 },\n { x: 0.671875, y: 0.390625 },\n { x: 0.703125, y: 0.390625 },\n { x: 0.703125, y: 0.390625 },\n { x: 0.734375, y: 0.390625 },\n { x: 0.734375, y: 0.390625 },\n { x: 0.765625, y: 0.390625 },\n { x: 0.765625, y: 0.390625 },\n { x: 0.796875, y: 0.390625 },\n { x: 0.796875, y: 0.390625 },\n { x: 0.828125, y: 0.390625 },\n { x: 0.828125, y: 0.390625 },\n { x: 0.859375, y: 0.390625 },\n { x: 0.859375, y: 0.390625 },\n { x: 0.890625, y: 0.390625 },\n { x: 0.890625, y: 0.390625 },\n { x: 0.921875, y: 0.390625 },\n { x: 0.921875, y: 0.390625 },\n { x: 0.953125, y: 0.390625 },\n { x: 0.953125, y: 0.390625 },\n { x: 0.984375, y: 0.390625 },\n { x: 0.984375, y: 0.390625 },\n { x: 0.015625, y: 0.421875 },\n { x: 0.015625, y: 0.421875 },\n { x: 0.046875, y: 0.421875 },\n { x: 0.046875, y: 0.421875 },\n { x: 0.078125, y: 0.421875 },\n { x: 0.078125, y: 0.421875 },\n { x: 0.109375, y: 0.421875 },\n { x: 0.109375, y: 0.421875 },\n { x: 0.140625, y: 0.421875 },\n { x: 0.140625, y: 0.421875 },\n { x: 0.171875, y: 0.421875 },\n { x: 0.171875, y: 0.421875 },\n { x: 0.203125, y: 0.421875 },\n { x: 0.203125, y: 0.421875 },\n { x: 0.234375, y: 0.421875 },\n { x: 0.234375, y: 0.421875 },\n { x: 0.265625, y: 0.421875 },\n { x: 0.265625, y: 0.421875 },\n { x: 0.296875, y: 0.421875 },\n { x: 0.296875, y: 0.421875 },\n { x: 0.328125, y: 0.421875 },\n { x: 0.328125, y: 0.421875 },\n { x: 0.359375, y: 0.421875 },\n { x: 0.359375, y: 0.421875 },\n { x: 0.390625, y: 0.421875 },\n { x: 0.390625, y: 0.421875 },\n { x: 0.421875, y: 0.421875 },\n { x: 0.421875, y: 0.421875 },\n { x: 0.453125, y: 0.421875 },\n { x: 0.453125, y: 0.421875 },\n { x: 0.484375, y: 0.421875 },\n { x: 0.484375, y: 0.421875 },\n { x: 0.515625, y: 0.421875 },\n { x: 0.515625, y: 0.421875 },\n { x: 0.546875, y: 0.421875 },\n { x: 0.546875, y: 0.421875 },\n { x: 0.578125, y: 0.421875 },\n { x: 0.578125, y: 0.421875 },\n { x: 0.609375, y: 0.421875 },\n { x: 0.609375, y: 0.421875 },\n { x: 0.640625, y: 0.421875 },\n { x: 0.640625, y: 0.421875 },\n { x: 0.671875, y: 0.421875 },\n { x: 0.671875, y: 0.421875 },\n { x: 0.703125, y: 0.421875 },\n { x: 0.703125, y: 0.421875 },\n { x: 0.734375, y: 0.421875 },\n { x: 0.734375, y: 0.421875 },\n { x: 0.765625, y: 0.421875 },\n { x: 0.765625, y: 0.421875 },\n { x: 0.796875, y: 0.421875 },\n { x: 0.796875, y: 0.421875 },\n { x: 0.828125, y: 0.421875 },\n { x: 0.828125, y: 0.421875 },\n { x: 0.859375, y: 0.421875 },\n { x: 0.859375, y: 0.421875 },\n { x: 0.890625, y: 0.421875 },\n { x: 0.890625, y: 0.421875 },\n { x: 0.921875, y: 0.421875 },\n { x: 0.921875, y: 0.421875 },\n { x: 0.953125, y: 0.421875 },\n { x: 0.953125, y: 0.421875 },\n { x: 0.984375, y: 0.421875 },\n { x: 0.984375, y: 0.421875 },\n { x: 0.015625, y: 0.453125 },\n { x: 0.015625, y: 0.453125 },\n { x: 0.046875, y: 0.453125 },\n { x: 0.046875, y: 0.453125 },\n { x: 0.078125, y: 0.453125 },\n { x: 0.078125, y: 0.453125 },\n { x: 0.109375, y: 0.453125 },\n { x: 0.109375, y: 0.453125 },\n { x: 0.140625, y: 0.453125 },\n { x: 0.140625, y: 0.453125 },\n { x: 0.171875, y: 0.453125 },\n { x: 0.171875, y: 0.453125 },\n { x: 0.203125, y: 0.453125 },\n { x: 0.203125, y: 0.453125 },\n { x: 0.234375, y: 0.453125 },\n { x: 0.234375, y: 0.453125 },\n { x: 0.265625, y: 0.453125 },\n { x: 0.265625, y: 0.453125 },\n { x: 0.296875, y: 0.453125 },\n { x: 0.296875, y: 0.453125 },\n { x: 0.328125, y: 0.453125 },\n { x: 0.328125, y: 0.453125 },\n { x: 0.359375, y: 0.453125 },\n { x: 0.359375, y: 0.453125 },\n { x: 0.390625, y: 0.453125 },\n { x: 0.390625, y: 0.453125 },\n { x: 0.421875, y: 0.453125 },\n { x: 0.421875, y: 0.453125 },\n { x: 0.453125, y: 0.453125 },\n { x: 0.453125, y: 0.453125 },\n { x: 0.484375, y: 0.453125 },\n { x: 0.484375, y: 0.453125 },\n { x: 0.515625, y: 0.453125 },\n { x: 0.515625, y: 0.453125 },\n { x: 0.546875, y: 0.453125 },\n { x: 0.546875, y: 0.453125 },\n { x: 0.578125, y: 0.453125 },\n { x: 0.578125, y: 0.453125 },\n { x: 0.609375, y: 0.453125 },\n { x: 0.609375, y: 0.453125 },\n { x: 0.640625, y: 0.453125 },\n { x: 0.640625, y: 0.453125 },\n { x: 0.671875, y: 0.453125 },\n { x: 0.671875, y: 0.453125 },\n { x: 0.703125, y: 0.453125 },\n { x: 0.703125, y: 0.453125 },\n { x: 0.734375, y: 0.453125 },\n { x: 0.734375, y: 0.453125 },\n { x: 0.765625, y: 0.453125 },\n { x: 0.765625, y: 0.453125 },\n { x: 0.796875, y: 0.453125 },\n { x: 0.796875, y: 0.453125 },\n { x: 0.828125, y: 0.453125 },\n { x: 0.828125, y: 0.453125 },\n { x: 0.859375, y: 0.453125 },\n { x: 0.859375, y: 0.453125 },\n { x: 0.890625, y: 0.453125 },\n { x: 0.890625, y: 0.453125 },\n { x: 0.921875, y: 0.453125 },\n { x: 0.921875, y: 0.453125 },\n { x: 0.953125, y: 0.453125 },\n { x: 0.953125, y: 0.453125 },\n { x: 0.984375, y: 0.453125 },\n { x: 0.984375, y: 0.453125 },\n { x: 0.015625, y: 0.484375 },\n { x: 0.015625, y: 0.484375 },\n { x: 0.046875, y: 0.484375 },\n { x: 0.046875, y: 0.484375 },\n { x: 0.078125, y: 0.484375 },\n { x: 0.078125, y: 0.484375 },\n { x: 0.109375, y: 0.484375 },\n { x: 0.109375, y: 0.484375 },\n { x: 0.140625, y: 0.484375 },\n { x: 0.140625, y: 0.484375 },\n { x: 0.171875, y: 0.484375 },\n { x: 0.171875, y: 0.484375 },\n { x: 0.203125, y: 0.484375 },\n { x: 0.203125, y: 0.484375 },\n { x: 0.234375, y: 0.484375 },\n { x: 0.234375, y: 0.484375 },\n { x: 0.265625, y: 0.484375 },\n { x: 0.265625, y: 0.484375 },\n { x: 0.296875, y: 0.484375 },\n { x: 0.296875, y: 0.484375 },\n { x: 0.328125, y: 0.484375 },\n { x: 0.328125, y: 0.484375 },\n { x: 0.359375, y: 0.484375 },\n { x: 0.359375, y: 0.484375 },\n { x: 0.390625, y: 0.484375 },\n { x: 0.390625, y: 0.484375 },\n { x: 0.421875, y: 0.484375 },\n { x: 0.421875, y: 0.484375 },\n { x: 0.453125, y: 0.484375 },\n { x: 0.453125, y: 0.484375 },\n { x: 0.484375, y: 0.484375 },\n { x: 0.484375, y: 0.484375 },\n { x: 0.515625, y: 0.484375 },\n { x: 0.515625, y: 0.484375 },\n { x: 0.546875, y: 0.484375 },\n { x: 0.546875, y: 0.484375 },\n { x: 0.578125, y: 0.484375 },\n { x: 0.578125, y: 0.484375 },\n { x: 0.609375, y: 0.484375 },\n { x: 0.609375, y: 0.484375 },\n { x: 0.640625, y: 0.484375 },\n { x: 0.640625, y: 0.484375 },\n { x: 0.671875, y: 0.484375 },\n { x: 0.671875, y: 0.484375 },\n { x: 0.703125, y: 0.484375 },\n { x: 0.703125, y: 0.484375 },\n { x: 0.734375, y: 0.484375 },\n { x: 0.734375, y: 0.484375 },\n { x: 0.765625, y: 0.484375 },\n { x: 0.765625, y: 0.484375 },\n { x: 0.796875, y: 0.484375 },\n { x: 0.796875, y: 0.484375 },\n { x: 0.828125, y: 0.484375 },\n { x: 0.828125, y: 0.484375 },\n { x: 0.859375, y: 0.484375 },\n { x: 0.859375, y: 0.484375 },\n { x: 0.890625, y: 0.484375 },\n { x: 0.890625, y: 0.484375 },\n { x: 0.921875, y: 0.484375 },\n { x: 0.921875, y: 0.484375 },\n { x: 0.953125, y: 0.484375 },\n { x: 0.953125, y: 0.484375 },\n { x: 0.984375, y: 0.484375 },\n { x: 0.984375, y: 0.484375 },\n { x: 0.015625, y: 0.515625 },\n { x: 0.015625, y: 0.515625 },\n { x: 0.046875, y: 0.515625 },\n { x: 0.046875, y: 0.515625 },\n { x: 0.078125, y: 0.515625 },\n { x: 0.078125, y: 0.515625 },\n { x: 0.109375, y: 0.515625 },\n { x: 0.109375, y: 0.515625 },\n { x: 0.140625, y: 0.515625 },\n { x: 0.140625, y: 0.515625 },\n { x: 0.171875, y: 0.515625 },\n { x: 0.171875, y: 0.515625 },\n { x: 0.203125, y: 0.515625 },\n { x: 0.203125, y: 0.515625 },\n { x: 0.234375, y: 0.515625 },\n { x: 0.234375, y: 0.515625 },\n { x: 0.265625, y: 0.515625 },\n { x: 0.265625, y: 0.515625 },\n { x: 0.296875, y: 0.515625 },\n { x: 0.296875, y: 0.515625 },\n { x: 0.328125, y: 0.515625 },\n { x: 0.328125, y: 0.515625 },\n { x: 0.359375, y: 0.515625 },\n { x: 0.359375, y: 0.515625 },\n { x: 0.390625, y: 0.515625 },\n { x: 0.390625, y: 0.515625 },\n { x: 0.421875, y: 0.515625 },\n { x: 0.421875, y: 0.515625 },\n { x: 0.453125, y: 0.515625 },\n { x: 0.453125, y: 0.515625 },\n { x: 0.484375, y: 0.515625 },\n { x: 0.484375, y: 0.515625 },\n { x: 0.515625, y: 0.515625 },\n { x: 0.515625, y: 0.515625 },\n { x: 0.546875, y: 0.515625 },\n { x: 0.546875, y: 0.515625 },\n { x: 0.578125, y: 0.515625 },\n { x: 0.578125, y: 0.515625 },\n { x: 0.609375, y: 0.515625 },\n { x: 0.609375, y: 0.515625 },\n { x: 0.640625, y: 0.515625 },\n { x: 0.640625, y: 0.515625 },\n { x: 0.671875, y: 0.515625 },\n { x: 0.671875, y: 0.515625 },\n { x: 0.703125, y: 0.515625 },\n { x: 0.703125, y: 0.515625 },\n { x: 0.734375, y: 0.515625 },\n { x: 0.734375, y: 0.515625 },\n { x: 0.765625, y: 0.515625 },\n { x: 0.765625, y: 0.515625 },\n { x: 0.796875, y: 0.515625 },\n { x: 0.796875, y: 0.515625 },\n { x: 0.828125, y: 0.515625 },\n { x: 0.828125, y: 0.515625 },\n { x: 0.859375, y: 0.515625 },\n { x: 0.859375, y: 0.515625 },\n { x: 0.890625, y: 0.515625 },\n { x: 0.890625, y: 0.515625 },\n { x: 0.921875, y: 0.515625 },\n { x: 0.921875, y: 0.515625 },\n { x: 0.953125, y: 0.515625 },\n { x: 0.953125, y: 0.515625 },\n { x: 0.984375, y: 0.515625 },\n { x: 0.984375, y: 0.515625 },\n { x: 0.015625, y: 0.546875 },\n { x: 0.015625, y: 0.546875 },\n { x: 0.046875, y: 0.546875 },\n { x: 0.046875, y: 0.546875 },\n { x: 0.078125, y: 0.546875 },\n { x: 0.078125, y: 0.546875 },\n { x: 0.109375, y: 0.546875 },\n { x: 0.109375, y: 0.546875 },\n { x: 0.140625, y: 0.546875 },\n { x: 0.140625, y: 0.546875 },\n { x: 0.171875, y: 0.546875 },\n { x: 0.171875, y: 0.546875 },\n { x: 0.203125, y: 0.546875 },\n { x: 0.203125, y: 0.546875 },\n { x: 0.234375, y: 0.546875 },\n { x: 0.234375, y: 0.546875 },\n { x: 0.265625, y: 0.546875 },\n { x: 0.265625, y: 0.546875 },\n { x: 0.296875, y: 0.546875 },\n { x: 0.296875, y: 0.546875 },\n { x: 0.328125, y: 0.546875 },\n { x: 0.328125, y: 0.546875 },\n { x: 0.359375, y: 0.546875 },\n { x: 0.359375, y: 0.546875 },\n { x: 0.390625, y: 0.546875 },\n { x: 0.390625, y: 0.546875 },\n { x: 0.421875, y: 0.546875 },\n { x: 0.421875, y: 0.546875 },\n { x: 0.453125, y: 0.546875 },\n { x: 0.453125, y: 0.546875 },\n { x: 0.484375, y: 0.546875 },\n { x: 0.484375, y: 0.546875 },\n { x: 0.515625, y: 0.546875 },\n { x: 0.515625, y: 0.546875 },\n { x: 0.546875, y: 0.546875 },\n { x: 0.546875, y: 0.546875 },\n { x: 0.578125, y: 0.546875 },\n { x: 0.578125, y: 0.546875 },\n { x: 0.609375, y: 0.546875 },\n { x: 0.609375, y: 0.546875 },\n { x: 0.640625, y: 0.546875 },\n { x: 0.640625, y: 0.546875 },\n { x: 0.671875, y: 0.546875 },\n { x: 0.671875, y: 0.546875 },\n { x: 0.703125, y: 0.546875 },\n { x: 0.703125, y: 0.546875 },\n { x: 0.734375, y: 0.546875 },\n { x: 0.734375, y: 0.546875 },\n { x: 0.765625, y: 0.546875 },\n { x: 0.765625, y: 0.546875 },\n { x: 0.796875, y: 0.546875 },\n { x: 0.796875, y: 0.546875 },\n { x: 0.828125, y: 0.546875 },\n { x: 0.828125, y: 0.546875 },\n { x: 0.859375, y: 0.546875 },\n { x: 0.859375, y: 0.546875 },\n { x: 0.890625, y: 0.546875 },\n { x: 0.890625, y: 0.546875 },\n { x: 0.921875, y: 0.546875 },\n { x: 0.921875, y: 0.546875 },\n { x: 0.953125, y: 0.546875 },\n { x: 0.953125, y: 0.546875 },\n { x: 0.984375, y: 0.546875 },\n { x: 0.984375, y: 0.546875 },\n { x: 0.015625, y: 0.578125 },\n { x: 0.015625, y: 0.578125 },\n { x: 0.046875, y: 0.578125 },\n { x: 0.046875, y: 0.578125 },\n { x: 0.078125, y: 0.578125 },\n { x: 0.078125, y: 0.578125 },\n { x: 0.109375, y: 0.578125 },\n { x: 0.109375, y: 0.578125 },\n { x: 0.140625, y: 0.578125 },\n { x: 0.140625, y: 0.578125 },\n { x: 0.171875, y: 0.578125 },\n { x: 0.171875, y: 0.578125 },\n { x: 0.203125, y: 0.578125 },\n { x: 0.203125, y: 0.578125 },\n { x: 0.234375, y: 0.578125 },\n { x: 0.234375, y: 0.578125 },\n { x: 0.265625, y: 0.578125 },\n { x: 0.265625, y: 0.578125 },\n { x: 0.296875, y: 0.578125 },\n { x: 0.296875, y: 0.578125 },\n { x: 0.328125, y: 0.578125 },\n { x: 0.328125, y: 0.578125 },\n { x: 0.359375, y: 0.578125 },\n { x: 0.359375, y: 0.578125 },\n { x: 0.390625, y: 0.578125 },\n { x: 0.390625, y: 0.578125 },\n { x: 0.421875, y: 0.578125 },\n { x: 0.421875, y: 0.578125 },\n { x: 0.453125, y: 0.578125 },\n { x: 0.453125, y: 0.578125 },\n { x: 0.484375, y: 0.578125 },\n { x: 0.484375, y: 0.578125 },\n { x: 0.515625, y: 0.578125 },\n { x: 0.515625, y: 0.578125 },\n { x: 0.546875, y: 0.578125 },\n { x: 0.546875, y: 0.578125 },\n { x: 0.578125, y: 0.578125 },\n { x: 0.578125, y: 0.578125 },\n { x: 0.609375, y: 0.578125 },\n { x: 0.609375, y: 0.578125 },\n { x: 0.640625, y: 0.578125 },\n { x: 0.640625, y: 0.578125 },\n { x: 0.671875, y: 0.578125 },\n { x: 0.671875, y: 0.578125 },\n { x: 0.703125, y: 0.578125 },\n { x: 0.703125, y: 0.578125 },\n { x: 0.734375, y: 0.578125 },\n { x: 0.734375, y: 0.578125 },\n { x: 0.765625, y: 0.578125 },\n { x: 0.765625, y: 0.578125 },\n { x: 0.796875, y: 0.578125 },\n { x: 0.796875, y: 0.578125 },\n { x: 0.828125, y: 0.578125 },\n { x: 0.828125, y: 0.578125 },\n { x: 0.859375, y: 0.578125 },\n { x: 0.859375, y: 0.578125 },\n { x: 0.890625, y: 0.578125 },\n { x: 0.890625, y: 0.578125 },\n { x: 0.921875, y: 0.578125 },\n { x: 0.921875, y: 0.578125 },\n { x: 0.953125, y: 0.578125 },\n { x: 0.953125, y: 0.578125 },\n { x: 0.984375, y: 0.578125 },\n { x: 0.984375, y: 0.578125 },\n { x: 0.015625, y: 0.609375 },\n { x: 0.015625, y: 0.609375 },\n { x: 0.046875, y: 0.609375 },\n { x: 0.046875, y: 0.609375 },\n { x: 0.078125, y: 0.609375 },\n { x: 0.078125, y: 0.609375 },\n { x: 0.109375, y: 0.609375 },\n { x: 0.109375, y: 0.609375 },\n { x: 0.140625, y: 0.609375 },\n { x: 0.140625, y: 0.609375 },\n { x: 0.171875, y: 0.609375 },\n { x: 0.171875, y: 0.609375 },\n { x: 0.203125, y: 0.609375 },\n { x: 0.203125, y: 0.609375 },\n { x: 0.234375, y: 0.609375 },\n { x: 0.234375, y: 0.609375 },\n { x: 0.265625, y: 0.609375 },\n { x: 0.265625, y: 0.609375 },\n { x: 0.296875, y: 0.609375 },\n { x: 0.296875, y: 0.609375 },\n { x: 0.328125, y: 0.609375 },\n { x: 0.328125, y: 0.609375 },\n { x: 0.359375, y: 0.609375 },\n { x: 0.359375, y: 0.609375 },\n { x: 0.390625, y: 0.609375 },\n { x: 0.390625, y: 0.609375 },\n { x: 0.421875, y: 0.609375 },\n { x: 0.421875, y: 0.609375 },\n { x: 0.453125, y: 0.609375 },\n { x: 0.453125, y: 0.609375 },\n { x: 0.484375, y: 0.609375 },\n { x: 0.484375, y: 0.609375 },\n { x: 0.515625, y: 0.609375 },\n { x: 0.515625, y: 0.609375 },\n { x: 0.546875, y: 0.609375 },\n { x: 0.546875, y: 0.609375 },\n { x: 0.578125, y: 0.609375 },\n { x: 0.578125, y: 0.609375 },\n { x: 0.609375, y: 0.609375 },\n { x: 0.609375, y: 0.609375 },\n { x: 0.640625, y: 0.609375 },\n { x: 0.640625, y: 0.609375 },\n { x: 0.671875, y: 0.609375 },\n { x: 0.671875, y: 0.609375 },\n { x: 0.703125, y: 0.609375 },\n { x: 0.703125, y: 0.609375 },\n { x: 0.734375, y: 0.609375 },\n { x: 0.734375, y: 0.609375 },\n { x: 0.765625, y: 0.609375 },\n { x: 0.765625, y: 0.609375 },\n { x: 0.796875, y: 0.609375 },\n { x: 0.796875, y: 0.609375 },\n { x: 0.828125, y: 0.609375 },\n { x: 0.828125, y: 0.609375 },\n { x: 0.859375, y: 0.609375 },\n { x: 0.859375, y: 0.609375 },\n { x: 0.890625, y: 0.609375 },\n { x: 0.890625, y: 0.609375 },\n { x: 0.921875, y: 0.609375 },\n { x: 0.921875, y: 0.609375 },\n { x: 0.953125, y: 0.609375 },\n { x: 0.953125, y: 0.609375 },\n { x: 0.984375, y: 0.609375 },\n { x: 0.984375, y: 0.609375 },\n { x: 0.015625, y: 0.640625 },\n { x: 0.015625, y: 0.640625 },\n { x: 0.046875, y: 0.640625 },\n { x: 0.046875, y: 0.640625 },\n { x: 0.078125, y: 0.640625 },\n { x: 0.078125, y: 0.640625 },\n { x: 0.109375, y: 0.640625 },\n { x: 0.109375, y: 0.640625 },\n { x: 0.140625, y: 0.640625 },\n { x: 0.140625, y: 0.640625 },\n { x: 0.171875, y: 0.640625 },\n { x: 0.171875, y: 0.640625 },\n { x: 0.203125, y: 0.640625 },\n { x: 0.203125, y: 0.640625 },\n { x: 0.234375, y: 0.640625 },\n { x: 0.234375, y: 0.640625 },\n { x: 0.265625, y: 0.640625 },\n { x: 0.265625, y: 0.640625 },\n { x: 0.296875, y: 0.640625 },\n { x: 0.296875, y: 0.640625 },\n { x: 0.328125, y: 0.640625 },\n { x: 0.328125, y: 0.640625 },\n { x: 0.359375, y: 0.640625 },\n { x: 0.359375, y: 0.640625 },\n { x: 0.390625, y: 0.640625 },\n { x: 0.390625, y: 0.640625 },\n { x: 0.421875, y: 0.640625 },\n { x: 0.421875, y: 0.640625 },\n { x: 0.453125, y: 0.640625 },\n { x: 0.453125, y: 0.640625 },\n { x: 0.484375, y: 0.640625 },\n { x: 0.484375, y: 0.640625 },\n { x: 0.515625, y: 0.640625 },\n { x: 0.515625, y: 0.640625 },\n { x: 0.546875, y: 0.640625 },\n { x: 0.546875, y: 0.640625 },\n { x: 0.578125, y: 0.640625 },\n { x: 0.578125, y: 0.640625 },\n { x: 0.609375, y: 0.640625 },\n { x: 0.609375, y: 0.640625 },\n { x: 0.640625, y: 0.640625 },\n { x: 0.640625, y: 0.640625 },\n { x: 0.671875, y: 0.640625 },\n { x: 0.671875, y: 0.640625 },\n { x: 0.703125, y: 0.640625 },\n { x: 0.703125, y: 0.640625 },\n { x: 0.734375, y: 0.640625 },\n { x: 0.734375, y: 0.640625 },\n { x: 0.765625, y: 0.640625 },\n { x: 0.765625, y: 0.640625 },\n { x: 0.796875, y: 0.640625 },\n { x: 0.796875, y: 0.640625 },\n { x: 0.828125, y: 0.640625 },\n { x: 0.828125, y: 0.640625 },\n { x: 0.859375, y: 0.640625 },\n { x: 0.859375, y: 0.640625 },\n { x: 0.890625, y: 0.640625 },\n { x: 0.890625, y: 0.640625 },\n { x: 0.921875, y: 0.640625 },\n { x: 0.921875, y: 0.640625 },\n { x: 0.953125, y: 0.640625 },\n { x: 0.953125, y: 0.640625 },\n { x: 0.984375, y: 0.640625 },\n { x: 0.984375, y: 0.640625 },\n { x: 0.015625, y: 0.671875 },\n { x: 0.015625, y: 0.671875 },\n { x: 0.046875, y: 0.671875 },\n { x: 0.046875, y: 0.671875 },\n { x: 0.078125, y: 0.671875 },\n { x: 0.078125, y: 0.671875 },\n { x: 0.109375, y: 0.671875 },\n { x: 0.109375, y: 0.671875 },\n { x: 0.140625, y: 0.671875 },\n { x: 0.140625, y: 0.671875 },\n { x: 0.171875, y: 0.671875 },\n { x: 0.171875, y: 0.671875 },\n { x: 0.203125, y: 0.671875 },\n { x: 0.203125, y: 0.671875 },\n { x: 0.234375, y: 0.671875 },\n { x: 0.234375, y: 0.671875 },\n { x: 0.265625, y: 0.671875 },\n { x: 0.265625, y: 0.671875 },\n { x: 0.296875, y: 0.671875 },\n { x: 0.296875, y: 0.671875 },\n { x: 0.328125, y: 0.671875 },\n { x: 0.328125, y: 0.671875 },\n { x: 0.359375, y: 0.671875 },\n { x: 0.359375, y: 0.671875 },\n { x: 0.390625, y: 0.671875 },\n { x: 0.390625, y: 0.671875 },\n { x: 0.421875, y: 0.671875 },\n { x: 0.421875, y: 0.671875 },\n { x: 0.453125, y: 0.671875 },\n { x: 0.453125, y: 0.671875 },\n { x: 0.484375, y: 0.671875 },\n { x: 0.484375, y: 0.671875 },\n { x: 0.515625, y: 0.671875 },\n { x: 0.515625, y: 0.671875 },\n { x: 0.546875, y: 0.671875 },\n { x: 0.546875, y: 0.671875 },\n { x: 0.578125, y: 0.671875 },\n { x: 0.578125, y: 0.671875 },\n { x: 0.609375, y: 0.671875 },\n { x: 0.609375, y: 0.671875 },\n { x: 0.640625, y: 0.671875 },\n { x: 0.640625, y: 0.671875 },\n { x: 0.671875, y: 0.671875 },\n { x: 0.671875, y: 0.671875 },\n { x: 0.703125, y: 0.671875 },\n { x: 0.703125, y: 0.671875 },\n { x: 0.734375, y: 0.671875 },\n { x: 0.734375, y: 0.671875 },\n { x: 0.765625, y: 0.671875 },\n { x: 0.765625, y: 0.671875 },\n { x: 0.796875, y: 0.671875 },\n { x: 0.796875, y: 0.671875 },\n { x: 0.828125, y: 0.671875 },\n { x: 0.828125, y: 0.671875 },\n { x: 0.859375, y: 0.671875 },\n { x: 0.859375, y: 0.671875 },\n { x: 0.890625, y: 0.671875 },\n { x: 0.890625, y: 0.671875 },\n { x: 0.921875, y: 0.671875 },\n { x: 0.921875, y: 0.671875 },\n { x: 0.953125, y: 0.671875 },\n { x: 0.953125, y: 0.671875 },\n { x: 0.984375, y: 0.671875 },\n { x: 0.984375, y: 0.671875 },\n { x: 0.015625, y: 0.703125 },\n { x: 0.015625, y: 0.703125 },\n { x: 0.046875, y: 0.703125 },\n { x: 0.046875, y: 0.703125 },\n { x: 0.078125, y: 0.703125 },\n { x: 0.078125, y: 0.703125 },\n { x: 0.109375, y: 0.703125 },\n { x: 0.109375, y: 0.703125 },\n { x: 0.140625, y: 0.703125 },\n { x: 0.140625, y: 0.703125 },\n { x: 0.171875, y: 0.703125 },\n { x: 0.171875, y: 0.703125 },\n { x: 0.203125, y: 0.703125 },\n { x: 0.203125, y: 0.703125 },\n { x: 0.234375, y: 0.703125 },\n { x: 0.234375, y: 0.703125 },\n { x: 0.265625, y: 0.703125 },\n { x: 0.265625, y: 0.703125 },\n { x: 0.296875, y: 0.703125 },\n { x: 0.296875, y: 0.703125 },\n { x: 0.328125, y: 0.703125 },\n { x: 0.328125, y: 0.703125 },\n { x: 0.359375, y: 0.703125 },\n { x: 0.359375, y: 0.703125 },\n { x: 0.390625, y: 0.703125 },\n { x: 0.390625, y: 0.703125 },\n { x: 0.421875, y: 0.703125 },\n { x: 0.421875, y: 0.703125 },\n { x: 0.453125, y: 0.703125 },\n { x: 0.453125, y: 0.703125 },\n { x: 0.484375, y: 0.703125 },\n { x: 0.484375, y: 0.703125 },\n { x: 0.515625, y: 0.703125 },\n { x: 0.515625, y: 0.703125 },\n { x: 0.546875, y: 0.703125 },\n { x: 0.546875, y: 0.703125 },\n { x: 0.578125, y: 0.703125 },\n { x: 0.578125, y: 0.703125 },\n { x: 0.609375, y: 0.703125 },\n { x: 0.609375, y: 0.703125 },\n { x: 0.640625, y: 0.703125 },\n { x: 0.640625, y: 0.703125 },\n { x: 0.671875, y: 0.703125 },\n { x: 0.671875, y: 0.703125 },\n { x: 0.703125, y: 0.703125 },\n { x: 0.703125, y: 0.703125 },\n { x: 0.734375, y: 0.703125 },\n { x: 0.734375, y: 0.703125 },\n { x: 0.765625, y: 0.703125 },\n { x: 0.765625, y: 0.703125 },\n { x: 0.796875, y: 0.703125 },\n { x: 0.796875, y: 0.703125 },\n { x: 0.828125, y: 0.703125 },\n { x: 0.828125, y: 0.703125 },\n { x: 0.859375, y: 0.703125 },\n { x: 0.859375, y: 0.703125 },\n { x: 0.890625, y: 0.703125 },\n { x: 0.890625, y: 0.703125 },\n { x: 0.921875, y: 0.703125 },\n { x: 0.921875, y: 0.703125 },\n { x: 0.953125, y: 0.703125 },\n { x: 0.953125, y: 0.703125 },\n { x: 0.984375, y: 0.703125 },\n { x: 0.984375, y: 0.703125 },\n { x: 0.015625, y: 0.734375 },\n { x: 0.015625, y: 0.734375 },\n { x: 0.046875, y: 0.734375 },\n { x: 0.046875, y: 0.734375 },\n { x: 0.078125, y: 0.734375 },\n { x: 0.078125, y: 0.734375 },\n { x: 0.109375, y: 0.734375 },\n { x: 0.109375, y: 0.734375 },\n { x: 0.140625, y: 0.734375 },\n { x: 0.140625, y: 0.734375 },\n { x: 0.171875, y: 0.734375 },\n { x: 0.171875, y: 0.734375 },\n { x: 0.203125, y: 0.734375 },\n { x: 0.203125, y: 0.734375 },\n { x: 0.234375, y: 0.734375 },\n { x: 0.234375, y: 0.734375 },\n { x: 0.265625, y: 0.734375 },\n { x: 0.265625, y: 0.734375 },\n { x: 0.296875, y: 0.734375 },\n { x: 0.296875, y: 0.734375 },\n { x: 0.328125, y: 0.734375 },\n { x: 0.328125, y: 0.734375 },\n { x: 0.359375, y: 0.734375 },\n { x: 0.359375, y: 0.734375 },\n { x: 0.390625, y: 0.734375 },\n { x: 0.390625, y: 0.734375 },\n { x: 0.421875, y: 0.734375 },\n { x: 0.421875, y: 0.734375 },\n { x: 0.453125, y: 0.734375 },\n { x: 0.453125, y: 0.734375 },\n { x: 0.484375, y: 0.734375 },\n { x: 0.484375, y: 0.734375 },\n { x: 0.515625, y: 0.734375 },\n { x: 0.515625, y: 0.734375 },\n { x: 0.546875, y: 0.734375 },\n { x: 0.546875, y: 0.734375 },\n { x: 0.578125, y: 0.734375 },\n { x: 0.578125, y: 0.734375 },\n { x: 0.609375, y: 0.734375 },\n { x: 0.609375, y: 0.734375 },\n { x: 0.640625, y: 0.734375 },\n { x: 0.640625, y: 0.734375 },\n { x: 0.671875, y: 0.734375 },\n { x: 0.671875, y: 0.734375 },\n { x: 0.703125, y: 0.734375 },\n { x: 0.703125, y: 0.734375 },\n { x: 0.734375, y: 0.734375 },\n { x: 0.734375, y: 0.734375 },\n { x: 0.765625, y: 0.734375 },\n { x: 0.765625, y: 0.734375 },\n { x: 0.796875, y: 0.734375 },\n { x: 0.796875, y: 0.734375 },\n { x: 0.828125, y: 0.734375 },\n { x: 0.828125, y: 0.734375 },\n { x: 0.859375, y: 0.734375 },\n { x: 0.859375, y: 0.734375 },\n { x: 0.890625, y: 0.734375 },\n { x: 0.890625, y: 0.734375 },\n { x: 0.921875, y: 0.734375 },\n { x: 0.921875, y: 0.734375 },\n { x: 0.953125, y: 0.734375 },\n { x: 0.953125, y: 0.734375 },\n { x: 0.984375, y: 0.734375 },\n { x: 0.984375, y: 0.734375 },\n { x: 0.015625, y: 0.765625 },\n { x: 0.015625, y: 0.765625 },\n { x: 0.046875, y: 0.765625 },\n { x: 0.046875, y: 0.765625 },\n { x: 0.078125, y: 0.765625 },\n { x: 0.078125, y: 0.765625 },\n { x: 0.109375, y: 0.765625 },\n { x: 0.109375, y: 0.765625 },\n { x: 0.140625, y: 0.765625 },\n { x: 0.140625, y: 0.765625 },\n { x: 0.171875, y: 0.765625 },\n { x: 0.171875, y: 0.765625 },\n { x: 0.203125, y: 0.765625 },\n { x: 0.203125, y: 0.765625 },\n { x: 0.234375, y: 0.765625 },\n { x: 0.234375, y: 0.765625 },\n { x: 0.265625, y: 0.765625 },\n { x: 0.265625, y: 0.765625 },\n { x: 0.296875, y: 0.765625 },\n { x: 0.296875, y: 0.765625 },\n { x: 0.328125, y: 0.765625 },\n { x: 0.328125, y: 0.765625 },\n { x: 0.359375, y: 0.765625 },\n { x: 0.359375, y: 0.765625 },\n { x: 0.390625, y: 0.765625 },\n { x: 0.390625, y: 0.765625 },\n { x: 0.421875, y: 0.765625 },\n { x: 0.421875, y: 0.765625 },\n { x: 0.453125, y: 0.765625 },\n { x: 0.453125, y: 0.765625 },\n { x: 0.484375, y: 0.765625 },\n { x: 0.484375, y: 0.765625 },\n { x: 0.515625, y: 0.765625 },\n { x: 0.515625, y: 0.765625 },\n { x: 0.546875, y: 0.765625 },\n { x: 0.546875, y: 0.765625 },\n { x: 0.578125, y: 0.765625 },\n { x: 0.578125, y: 0.765625 },\n { x: 0.609375, y: 0.765625 },\n { x: 0.609375, y: 0.765625 },\n { x: 0.640625, y: 0.765625 },\n { x: 0.640625, y: 0.765625 },\n { x: 0.671875, y: 0.765625 },\n { x: 0.671875, y: 0.765625 },\n { x: 0.703125, y: 0.765625 },\n { x: 0.703125, y: 0.765625 },\n { x: 0.734375, y: 0.765625 },\n { x: 0.734375, y: 0.765625 },\n { x: 0.765625, y: 0.765625 },\n { x: 0.765625, y: 0.765625 },\n { x: 0.796875, y: 0.765625 },\n { x: 0.796875, y: 0.765625 },\n { x: 0.828125, y: 0.765625 },\n { x: 0.828125, y: 0.765625 },\n { x: 0.859375, y: 0.765625 },\n { x: 0.859375, y: 0.765625 },\n { x: 0.890625, y: 0.765625 },\n { x: 0.890625, y: 0.765625 },\n { x: 0.921875, y: 0.765625 },\n { x: 0.921875, y: 0.765625 },\n { x: 0.953125, y: 0.765625 },\n { x: 0.953125, y: 0.765625 },\n { x: 0.984375, y: 0.765625 },\n { x: 0.984375, y: 0.765625 },\n { x: 0.015625, y: 0.796875 },\n { x: 0.015625, y: 0.796875 },\n { x: 0.046875, y: 0.796875 },\n { x: 0.046875, y: 0.796875 },\n { x: 0.078125, y: 0.796875 },\n { x: 0.078125, y: 0.796875 },\n { x: 0.109375, y: 0.796875 },\n { x: 0.109375, y: 0.796875 },\n { x: 0.140625, y: 0.796875 },\n { x: 0.140625, y: 0.796875 },\n { x: 0.171875, y: 0.796875 },\n { x: 0.171875, y: 0.796875 },\n { x: 0.203125, y: 0.796875 },\n { x: 0.203125, y: 0.796875 },\n { x: 0.234375, y: 0.796875 },\n { x: 0.234375, y: 0.796875 },\n { x: 0.265625, y: 0.796875 },\n { x: 0.265625, y: 0.796875 },\n { x: 0.296875, y: 0.796875 },\n { x: 0.296875, y: 0.796875 },\n { x: 0.328125, y: 0.796875 },\n { x: 0.328125, y: 0.796875 },\n { x: 0.359375, y: 0.796875 },\n { x: 0.359375, y: 0.796875 },\n { x: 0.390625, y: 0.796875 },\n { x: 0.390625, y: 0.796875 },\n { x: 0.421875, y: 0.796875 },\n { x: 0.421875, y: 0.796875 },\n { x: 0.453125, y: 0.796875 },\n { x: 0.453125, y: 0.796875 },\n { x: 0.484375, y: 0.796875 },\n { x: 0.484375, y: 0.796875 },\n { x: 0.515625, y: 0.796875 },\n { x: 0.515625, y: 0.796875 },\n { x: 0.546875, y: 0.796875 },\n { x: 0.546875, y: 0.796875 },\n { x: 0.578125, y: 0.796875 },\n { x: 0.578125, y: 0.796875 },\n { x: 0.609375, y: 0.796875 },\n { x: 0.609375, y: 0.796875 },\n { x: 0.640625, y: 0.796875 },\n { x: 0.640625, y: 0.796875 },\n { x: 0.671875, y: 0.796875 },\n { x: 0.671875, y: 0.796875 },\n { x: 0.703125, y: 0.796875 },\n { x: 0.703125, y: 0.796875 },\n { x: 0.734375, y: 0.796875 },\n { x: 0.734375, y: 0.796875 },\n { x: 0.765625, y: 0.796875 },\n { x: 0.765625, y: 0.796875 },\n { x: 0.796875, y: 0.796875 },\n { x: 0.796875, y: 0.796875 },\n { x: 0.828125, y: 0.796875 },\n { x: 0.828125, y: 0.796875 },\n { x: 0.859375, y: 0.796875 },\n { x: 0.859375, y: 0.796875 },\n { x: 0.890625, y: 0.796875 },\n { x: 0.890625, y: 0.796875 },\n { x: 0.921875, y: 0.796875 },\n { x: 0.921875, y: 0.796875 },\n { x: 0.953125, y: 0.796875 },\n { x: 0.953125, y: 0.796875 },\n { x: 0.984375, y: 0.796875 },\n { x: 0.984375, y: 0.796875 },\n { x: 0.015625, y: 0.828125 },\n { x: 0.015625, y: 0.828125 },\n { x: 0.046875, y: 0.828125 },\n { x: 0.046875, y: 0.828125 },\n { x: 0.078125, y: 0.828125 },\n { x: 0.078125, y: 0.828125 },\n { x: 0.109375, y: 0.828125 },\n { x: 0.109375, y: 0.828125 },\n { x: 0.140625, y: 0.828125 },\n { x: 0.140625, y: 0.828125 },\n { x: 0.171875, y: 0.828125 },\n { x: 0.171875, y: 0.828125 },\n { x: 0.203125, y: 0.828125 },\n { x: 0.203125, y: 0.828125 },\n { x: 0.234375, y: 0.828125 },\n { x: 0.234375, y: 0.828125 },\n { x: 0.265625, y: 0.828125 },\n { x: 0.265625, y: 0.828125 },\n { x: 0.296875, y: 0.828125 },\n { x: 0.296875, y: 0.828125 },\n { x: 0.328125, y: 0.828125 },\n { x: 0.328125, y: 0.828125 },\n { x: 0.359375, y: 0.828125 },\n { x: 0.359375, y: 0.828125 },\n { x: 0.390625, y: 0.828125 },\n { x: 0.390625, y: 0.828125 },\n { x: 0.421875, y: 0.828125 },\n { x: 0.421875, y: 0.828125 },\n { x: 0.453125, y: 0.828125 },\n { x: 0.453125, y: 0.828125 },\n { x: 0.484375, y: 0.828125 },\n { x: 0.484375, y: 0.828125 },\n { x: 0.515625, y: 0.828125 },\n { x: 0.515625, y: 0.828125 },\n { x: 0.546875, y: 0.828125 },\n { x: 0.546875, y: 0.828125 },\n { x: 0.578125, y: 0.828125 },\n { x: 0.578125, y: 0.828125 },\n { x: 0.609375, y: 0.828125 },\n { x: 0.609375, y: 0.828125 },\n { x: 0.640625, y: 0.828125 },\n { x: 0.640625, y: 0.828125 },\n { x: 0.671875, y: 0.828125 },\n { x: 0.671875, y: 0.828125 },\n { x: 0.703125, y: 0.828125 },\n { x: 0.703125, y: 0.828125 },\n { x: 0.734375, y: 0.828125 },\n { x: 0.734375, y: 0.828125 },\n { x: 0.765625, y: 0.828125 },\n { x: 0.765625, y: 0.828125 },\n { x: 0.796875, y: 0.828125 },\n { x: 0.796875, y: 0.828125 },\n { x: 0.828125, y: 0.828125 },\n { x: 0.828125, y: 0.828125 },\n { x: 0.859375, y: 0.828125 },\n { x: 0.859375, y: 0.828125 },\n { x: 0.890625, y: 0.828125 },\n { x: 0.890625, y: 0.828125 },\n { x: 0.921875, y: 0.828125 },\n { x: 0.921875, y: 0.828125 },\n { x: 0.953125, y: 0.828125 },\n { x: 0.953125, y: 0.828125 },\n { x: 0.984375, y: 0.828125 },\n { x: 0.984375, y: 0.828125 },\n { x: 0.015625, y: 0.859375 },\n { x: 0.015625, y: 0.859375 },\n { x: 0.046875, y: 0.859375 },\n { x: 0.046875, y: 0.859375 },\n { x: 0.078125, y: 0.859375 },\n { x: 0.078125, y: 0.859375 },\n { x: 0.109375, y: 0.859375 },\n { x: 0.109375, y: 0.859375 },\n { x: 0.140625, y: 0.859375 },\n { x: 0.140625, y: 0.859375 },\n { x: 0.171875, y: 0.859375 },\n { x: 0.171875, y: 0.859375 },\n { x: 0.203125, y: 0.859375 },\n { x: 0.203125, y: 0.859375 },\n { x: 0.234375, y: 0.859375 },\n { x: 0.234375, y: 0.859375 },\n { x: 0.265625, y: 0.859375 },\n { x: 0.265625, y: 0.859375 },\n { x: 0.296875, y: 0.859375 },\n { x: 0.296875, y: 0.859375 },\n { x: 0.328125, y: 0.859375 },\n { x: 0.328125, y: 0.859375 },\n { x: 0.359375, y: 0.859375 },\n { x: 0.359375, y: 0.859375 },\n { x: 0.390625, y: 0.859375 },\n { x: 0.390625, y: 0.859375 },\n { x: 0.421875, y: 0.859375 },\n { x: 0.421875, y: 0.859375 },\n { x: 0.453125, y: 0.859375 },\n { x: 0.453125, y: 0.859375 },\n { x: 0.484375, y: 0.859375 },\n { x: 0.484375, y: 0.859375 },\n { x: 0.515625, y: 0.859375 },\n { x: 0.515625, y: 0.859375 },\n { x: 0.546875, y: 0.859375 },\n { x: 0.546875, y: 0.859375 },\n { x: 0.578125, y: 0.859375 },\n { x: 0.578125, y: 0.859375 },\n { x: 0.609375, y: 0.859375 },\n { x: 0.609375, y: 0.859375 },\n { x: 0.640625, y: 0.859375 },\n { x: 0.640625, y: 0.859375 },\n { x: 0.671875, y: 0.859375 },\n { x: 0.671875, y: 0.859375 },\n { x: 0.703125, y: 0.859375 },\n { x: 0.703125, y: 0.859375 },\n { x: 0.734375, y: 0.859375 },\n { x: 0.734375, y: 0.859375 },\n { x: 0.765625, y: 0.859375 },\n { x: 0.765625, y: 0.859375 },\n { x: 0.796875, y: 0.859375 },\n { x: 0.796875, y: 0.859375 },\n { x: 0.828125, y: 0.859375 },\n { x: 0.828125, y: 0.859375 },\n { x: 0.859375, y: 0.859375 },\n { x: 0.859375, y: 0.859375 },\n { x: 0.890625, y: 0.859375 },\n { x: 0.890625, y: 0.859375 },\n { x: 0.921875, y: 0.859375 },\n { x: 0.921875, y: 0.859375 },\n { x: 0.953125, y: 0.859375 },\n { x: 0.953125, y: 0.859375 },\n { x: 0.984375, y: 0.859375 },\n { x: 0.984375, y: 0.859375 },\n { x: 0.015625, y: 0.890625 },\n { x: 0.015625, y: 0.890625 },\n { x: 0.046875, y: 0.890625 },\n { x: 0.046875, y: 0.890625 },\n { x: 0.078125, y: 0.890625 },\n { x: 0.078125, y: 0.890625 },\n { x: 0.109375, y: 0.890625 },\n { x: 0.109375, y: 0.890625 },\n { x: 0.140625, y: 0.890625 },\n { x: 0.140625, y: 0.890625 },\n { x: 0.171875, y: 0.890625 },\n { x: 0.171875, y: 0.890625 },\n { x: 0.203125, y: 0.890625 },\n { x: 0.203125, y: 0.890625 },\n { x: 0.234375, y: 0.890625 },\n { x: 0.234375, y: 0.890625 },\n { x: 0.265625, y: 0.890625 },\n { x: 0.265625, y: 0.890625 },\n { x: 0.296875, y: 0.890625 },\n { x: 0.296875, y: 0.890625 },\n { x: 0.328125, y: 0.890625 },\n { x: 0.328125, y: 0.890625 },\n { x: 0.359375, y: 0.890625 },\n { x: 0.359375, y: 0.890625 },\n { x: 0.390625, y: 0.890625 },\n { x: 0.390625, y: 0.890625 },\n { x: 0.421875, y: 0.890625 },\n { x: 0.421875, y: 0.890625 },\n { x: 0.453125, y: 0.890625 },\n { x: 0.453125, y: 0.890625 },\n { x: 0.484375, y: 0.890625 },\n { x: 0.484375, y: 0.890625 },\n { x: 0.515625, y: 0.890625 },\n { x: 0.515625, y: 0.890625 },\n { x: 0.546875, y: 0.890625 },\n { x: 0.546875, y: 0.890625 },\n { x: 0.578125, y: 0.890625 },\n { x: 0.578125, y: 0.890625 },\n { x: 0.609375, y: 0.890625 },\n { x: 0.609375, y: 0.890625 },\n { x: 0.640625, y: 0.890625 },\n { x: 0.640625, y: 0.890625 },\n { x: 0.671875, y: 0.890625 },\n { x: 0.671875, y: 0.890625 },\n { x: 0.703125, y: 0.890625 },\n { x: 0.703125, y: 0.890625 },\n { x: 0.734375, y: 0.890625 },\n { x: 0.734375, y: 0.890625 },\n { x: 0.765625, y: 0.890625 },\n { x: 0.765625, y: 0.890625 },\n { x: 0.796875, y: 0.890625 },\n { x: 0.796875, y: 0.890625 },\n { x: 0.828125, y: 0.890625 },\n { x: 0.828125, y: 0.890625 },\n { x: 0.859375, y: 0.890625 },\n { x: 0.859375, y: 0.890625 },\n { x: 0.890625, y: 0.890625 },\n { x: 0.890625, y: 0.890625 },\n { x: 0.921875, y: 0.890625 },\n { x: 0.921875, y: 0.890625 },\n { x: 0.953125, y: 0.890625 },\n { x: 0.953125, y: 0.890625 },\n { x: 0.984375, y: 0.890625 },\n { x: 0.984375, y: 0.890625 },\n { x: 0.015625, y: 0.921875 },\n { x: 0.015625, y: 0.921875 },\n { x: 0.046875, y: 0.921875 },\n { x: 0.046875, y: 0.921875 },\n { x: 0.078125, y: 0.921875 },\n { x: 0.078125, y: 0.921875 },\n { x: 0.109375, y: 0.921875 },\n { x: 0.109375, y: 0.921875 },\n { x: 0.140625, y: 0.921875 },\n { x: 0.140625, y: 0.921875 },\n { x: 0.171875, y: 0.921875 },\n { x: 0.171875, y: 0.921875 },\n { x: 0.203125, y: 0.921875 },\n { x: 0.203125, y: 0.921875 },\n { x: 0.234375, y: 0.921875 },\n { x: 0.234375, y: 0.921875 },\n { x: 0.265625, y: 0.921875 },\n { x: 0.265625, y: 0.921875 },\n { x: 0.296875, y: 0.921875 },\n { x: 0.296875, y: 0.921875 },\n { x: 0.328125, y: 0.921875 },\n { x: 0.328125, y: 0.921875 },\n { x: 0.359375, y: 0.921875 },\n { x: 0.359375, y: 0.921875 },\n { x: 0.390625, y: 0.921875 },\n { x: 0.390625, y: 0.921875 },\n { x: 0.421875, y: 0.921875 },\n { x: 0.421875, y: 0.921875 },\n { x: 0.453125, y: 0.921875 },\n { x: 0.453125, y: 0.921875 },\n { x: 0.484375, y: 0.921875 },\n { x: 0.484375, y: 0.921875 },\n { x: 0.515625, y: 0.921875 },\n { x: 0.515625, y: 0.921875 },\n { x: 0.546875, y: 0.921875 },\n { x: 0.546875, y: 0.921875 },\n { x: 0.578125, y: 0.921875 },\n { x: 0.578125, y: 0.921875 },\n { x: 0.609375, y: 0.921875 },\n { x: 0.609375, y: 0.921875 },\n { x: 0.640625, y: 0.921875 },\n { x: 0.640625, y: 0.921875 },\n { x: 0.671875, y: 0.921875 },\n { x: 0.671875, y: 0.921875 },\n { x: 0.703125, y: 0.921875 },\n { x: 0.703125, y: 0.921875 },\n { x: 0.734375, y: 0.921875 },\n { x: 0.734375, y: 0.921875 },\n { x: 0.765625, y: 0.921875 },\n { x: 0.765625, y: 0.921875 },\n { x: 0.796875, y: 0.921875 },\n { x: 0.796875, y: 0.921875 },\n { x: 0.828125, y: 0.921875 },\n { x: 0.828125, y: 0.921875 },\n { x: 0.859375, y: 0.921875 },\n { x: 0.859375, y: 0.921875 },\n { x: 0.890625, y: 0.921875 },\n { x: 0.890625, y: 0.921875 },\n { x: 0.921875, y: 0.921875 },\n { x: 0.921875, y: 0.921875 },\n { x: 0.953125, y: 0.921875 },\n { x: 0.953125, y: 0.921875 },\n { x: 0.984375, y: 0.921875 },\n { x: 0.984375, y: 0.921875 },\n { x: 0.015625, y: 0.953125 },\n { x: 0.015625, y: 0.953125 },\n { x: 0.046875, y: 0.953125 },\n { x: 0.046875, y: 0.953125 },\n { x: 0.078125, y: 0.953125 },\n { x: 0.078125, y: 0.953125 },\n { x: 0.109375, y: 0.953125 },\n { x: 0.109375, y: 0.953125 },\n { x: 0.140625, y: 0.953125 },\n { x: 0.140625, y: 0.953125 },\n { x: 0.171875, y: 0.953125 },\n { x: 0.171875, y: 0.953125 },\n { x: 0.203125, y: 0.953125 },\n { x: 0.203125, y: 0.953125 },\n { x: 0.234375, y: 0.953125 },\n { x: 0.234375, y: 0.953125 },\n { x: 0.265625, y: 0.953125 },\n { x: 0.265625, y: 0.953125 },\n { x: 0.296875, y: 0.953125 },\n { x: 0.296875, y: 0.953125 },\n { x: 0.328125, y: 0.953125 },\n { x: 0.328125, y: 0.953125 },\n { x: 0.359375, y: 0.953125 },\n { x: 0.359375, y: 0.953125 },\n { x: 0.390625, y: 0.953125 },\n { x: 0.390625, y: 0.953125 },\n { x: 0.421875, y: 0.953125 },\n { x: 0.421875, y: 0.953125 },\n { x: 0.453125, y: 0.953125 },\n { x: 0.453125, y: 0.953125 },\n { x: 0.484375, y: 0.953125 },\n { x: 0.484375, y: 0.953125 },\n { x: 0.515625, y: 0.953125 },\n { x: 0.515625, y: 0.953125 },\n { x: 0.546875, y: 0.953125 },\n { x: 0.546875, y: 0.953125 },\n { x: 0.578125, y: 0.953125 },\n { x: 0.578125, y: 0.953125 },\n { x: 0.609375, y: 0.953125 },\n { x: 0.609375, y: 0.953125 },\n { x: 0.640625, y: 0.953125 },\n { x: 0.640625, y: 0.953125 },\n { x: 0.671875, y: 0.953125 },\n { x: 0.671875, y: 0.953125 },\n { x: 0.703125, y: 0.953125 },\n { x: 0.703125, y: 0.953125 },\n { x: 0.734375, y: 0.953125 },\n { x: 0.734375, y: 0.953125 },\n { x: 0.765625, y: 0.953125 },\n { x: 0.765625, y: 0.953125 },\n { x: 0.796875, y: 0.953125 },\n { x: 0.796875, y: 0.953125 },\n { x: 0.828125, y: 0.953125 },\n { x: 0.828125, y: 0.953125 },\n { x: 0.859375, y: 0.953125 },\n { x: 0.859375, y: 0.953125 },\n { x: 0.890625, y: 0.953125 },\n { x: 0.890625, y: 0.953125 },\n { x: 0.921875, y: 0.953125 },\n { x: 0.921875, y: 0.953125 },\n { x: 0.953125, y: 0.953125 },\n { x: 0.953125, y: 0.953125 },\n { x: 0.984375, y: 0.953125 },\n { x: 0.984375, y: 0.953125 },\n { x: 0.015625, y: 0.984375 },\n { x: 0.015625, y: 0.984375 },\n { x: 0.046875, y: 0.984375 },\n { x: 0.046875, y: 0.984375 },\n { x: 0.078125, y: 0.984375 },\n { x: 0.078125, y: 0.984375 },\n { x: 0.109375, y: 0.984375 },\n { x: 0.109375, y: 0.984375 },\n { x: 0.140625, y: 0.984375 },\n { x: 0.140625, y: 0.984375 },\n { x: 0.171875, y: 0.984375 },\n { x: 0.171875, y: 0.984375 },\n { x: 0.203125, y: 0.984375 },\n { x: 0.203125, y: 0.984375 },\n { x: 0.234375, y: 0.984375 },\n { x: 0.234375, y: 0.984375 },\n { x: 0.265625, y: 0.984375 },\n { x: 0.265625, y: 0.984375 },\n { x: 0.296875, y: 0.984375 },\n { x: 0.296875, y: 0.984375 },\n { x: 0.328125, y: 0.984375 },\n { x: 0.328125, y: 0.984375 },\n { x: 0.359375, y: 0.984375 },\n { x: 0.359375, y: 0.984375 },\n { x: 0.390625, y: 0.984375 },\n { x: 0.390625, y: 0.984375 },\n { x: 0.421875, y: 0.984375 },\n { x: 0.421875, y: 0.984375 },\n { x: 0.453125, y: 0.984375 },\n { x: 0.453125, y: 0.984375 },\n { x: 0.484375, y: 0.984375 },\n { x: 0.484375, y: 0.984375 },\n { x: 0.515625, y: 0.984375 },\n { x: 0.515625, y: 0.984375 },\n { x: 0.546875, y: 0.984375 },\n { x: 0.546875, y: 0.984375 },\n { x: 0.578125, y: 0.984375 },\n { x: 0.578125, y: 0.984375 },\n { x: 0.609375, y: 0.984375 },\n { x: 0.609375, y: 0.984375 },\n { x: 0.640625, y: 0.984375 },\n { x: 0.640625, y: 0.984375 },\n { x: 0.671875, y: 0.984375 },\n { x: 0.671875, y: 0.984375 },\n { x: 0.703125, y: 0.984375 },\n { x: 0.703125, y: 0.984375 },\n { x: 0.734375, y: 0.984375 },\n { x: 0.734375, y: 0.984375 },\n { x: 0.765625, y: 0.984375 },\n { x: 0.765625, y: 0.984375 },\n { x: 0.796875, y: 0.984375 },\n { x: 0.796875, y: 0.984375 },\n { x: 0.828125, y: 0.984375 },\n { x: 0.828125, y: 0.984375 },\n { x: 0.859375, y: 0.984375 },\n { x: 0.859375, y: 0.984375 },\n { x: 0.890625, y: 0.984375 },\n { x: 0.890625, y: 0.984375 },\n { x: 0.921875, y: 0.984375 },\n { x: 0.921875, y: 0.984375 },\n { x: 0.953125, y: 0.984375 },\n { x: 0.953125, y: 0.984375 },\n { x: 0.984375, y: 0.984375 },\n { x: 0.984375, y: 0.984375 },\n { x: 0.03125, y: 0.03125 },\n { x: 0.03125, y: 0.03125 },\n { x: 0.09375, y: 0.03125 },\n { x: 0.09375, y: 0.03125 },\n { x: 0.15625, y: 0.03125 },\n { x: 0.15625, y: 0.03125 },\n { x: 0.21875, y: 0.03125 },\n { x: 0.21875, y: 0.03125 },\n { x: 0.28125, y: 0.03125 },\n { x: 0.28125, y: 0.03125 },\n { x: 0.34375, y: 0.03125 },\n { x: 0.34375, y: 0.03125 },\n { x: 0.40625, y: 0.03125 },\n { x: 0.40625, y: 0.03125 },\n { x: 0.46875, y: 0.03125 },\n { x: 0.46875, y: 0.03125 },\n { x: 0.53125, y: 0.03125 },\n { x: 0.53125, y: 0.03125 },\n { x: 0.59375, y: 0.03125 },\n { x: 0.59375, y: 0.03125 },\n { x: 0.65625, y: 0.03125 },\n { x: 0.65625, y: 0.03125 },\n { x: 0.71875, y: 0.03125 },\n { x: 0.71875, y: 0.03125 },\n { x: 0.78125, y: 0.03125 },\n { x: 0.78125, y: 0.03125 },\n { x: 0.84375, y: 0.03125 },\n { x: 0.84375, y: 0.03125 },\n { x: 0.90625, y: 0.03125 },\n { x: 0.90625, y: 0.03125 },\n { x: 0.96875, y: 0.03125 },\n { x: 0.96875, y: 0.03125 },\n { x: 0.03125, y: 0.09375 },\n { x: 0.03125, y: 0.09375 },\n { x: 0.09375, y: 0.09375 },\n { x: 0.09375, y: 0.09375 },\n { x: 0.15625, y: 0.09375 },\n { x: 0.15625, y: 0.09375 },\n { x: 0.21875, y: 0.09375 },\n { x: 0.21875, y: 0.09375 },\n { x: 0.28125, y: 0.09375 },\n { x: 0.28125, y: 0.09375 },\n { x: 0.34375, y: 0.09375 },\n { x: 0.34375, y: 0.09375 },\n { x: 0.40625, y: 0.09375 },\n { x: 0.40625, y: 0.09375 },\n { x: 0.46875, y: 0.09375 },\n { x: 0.46875, y: 0.09375 },\n { x: 0.53125, y: 0.09375 },\n { x: 0.53125, y: 0.09375 },\n { x: 0.59375, y: 0.09375 },\n { x: 0.59375, y: 0.09375 },\n { x: 0.65625, y: 0.09375 },\n { x: 0.65625, y: 0.09375 },\n { x: 0.71875, y: 0.09375 },\n { x: 0.71875, y: 0.09375 },\n { x: 0.78125, y: 0.09375 },\n { x: 0.78125, y: 0.09375 },\n { x: 0.84375, y: 0.09375 },\n { x: 0.84375, y: 0.09375 },\n { x: 0.90625, y: 0.09375 },\n { x: 0.90625, y: 0.09375 },\n { x: 0.96875, y: 0.09375 },\n { x: 0.96875, y: 0.09375 },\n { x: 0.03125, y: 0.15625 },\n { x: 0.03125, y: 0.15625 },\n { x: 0.09375, y: 0.15625 },\n { x: 0.09375, y: 0.15625 },\n { x: 0.15625, y: 0.15625 },\n { x: 0.15625, y: 0.15625 },\n { x: 0.21875, y: 0.15625 },\n { x: 0.21875, y: 0.15625 },\n { x: 0.28125, y: 0.15625 },\n { x: 0.28125, y: 0.15625 },\n { x: 0.34375, y: 0.15625 },\n { x: 0.34375, y: 0.15625 },\n { x: 0.40625, y: 0.15625 },\n { x: 0.40625, y: 0.15625 },\n { x: 0.46875, y: 0.15625 },\n { x: 0.46875, y: 0.15625 },\n { x: 0.53125, y: 0.15625 },\n { x: 0.53125, y: 0.15625 },\n { x: 0.59375, y: 0.15625 },\n { x: 0.59375, y: 0.15625 },\n { x: 0.65625, y: 0.15625 },\n { x: 0.65625, y: 0.15625 },\n { x: 0.71875, y: 0.15625 },\n { x: 0.71875, y: 0.15625 },\n { x: 0.78125, y: 0.15625 },\n { x: 0.78125, y: 0.15625 },\n { x: 0.84375, y: 0.15625 },\n { x: 0.84375, y: 0.15625 },\n { x: 0.90625, y: 0.15625 },\n { x: 0.90625, y: 0.15625 },\n { x: 0.96875, y: 0.15625 },\n { x: 0.96875, y: 0.15625 },\n { x: 0.03125, y: 0.21875 },\n { x: 0.03125, y: 0.21875 },\n { x: 0.09375, y: 0.21875 },\n { x: 0.09375, y: 0.21875 },\n { x: 0.15625, y: 0.21875 },\n { x: 0.15625, y: 0.21875 },\n { x: 0.21875, y: 0.21875 },\n { x: 0.21875, y: 0.21875 },\n { x: 0.28125, y: 0.21875 },\n { x: 0.28125, y: 0.21875 },\n { x: 0.34375, y: 0.21875 },\n { x: 0.34375, y: 0.21875 },\n { x: 0.40625, y: 0.21875 },\n { x: 0.40625, y: 0.21875 },\n { x: 0.46875, y: 0.21875 },\n { x: 0.46875, y: 0.21875 },\n { x: 0.53125, y: 0.21875 },\n { x: 0.53125, y: 0.21875 },\n { x: 0.59375, y: 0.21875 },\n { x: 0.59375, y: 0.21875 },\n { x: 0.65625, y: 0.21875 },\n { x: 0.65625, y: 0.21875 },\n { x: 0.71875, y: 0.21875 },\n { x: 0.71875, y: 0.21875 },\n { x: 0.78125, y: 0.21875 },\n { x: 0.78125, y: 0.21875 },\n { x: 0.84375, y: 0.21875 },\n { x: 0.84375, y: 0.21875 },\n { x: 0.90625, y: 0.21875 },\n { x: 0.90625, y: 0.21875 },\n { x: 0.96875, y: 0.21875 },\n { x: 0.96875, y: 0.21875 },\n { x: 0.03125, y: 0.28125 },\n { x: 0.03125, y: 0.28125 },\n { x: 0.09375, y: 0.28125 },\n { x: 0.09375, y: 0.28125 },\n { x: 0.15625, y: 0.28125 },\n { x: 0.15625, y: 0.28125 },\n { x: 0.21875, y: 0.28125 },\n { x: 0.21875, y: 0.28125 },\n { x: 0.28125, y: 0.28125 },\n { x: 0.28125, y: 0.28125 },\n { x: 0.34375, y: 0.28125 },\n { x: 0.34375, y: 0.28125 },\n { x: 0.40625, y: 0.28125 },\n { x: 0.40625, y: 0.28125 },\n { x: 0.46875, y: 0.28125 },\n { x: 0.46875, y: 0.28125 },\n { x: 0.53125, y: 0.28125 },\n { x: 0.53125, y: 0.28125 },\n { x: 0.59375, y: 0.28125 },\n { x: 0.59375, y: 0.28125 },\n { x: 0.65625, y: 0.28125 },\n { x: 0.65625, y: 0.28125 },\n { x: 0.71875, y: 0.28125 },\n { x: 0.71875, y: 0.28125 },\n { x: 0.78125, y: 0.28125 },\n { x: 0.78125, y: 0.28125 },\n { x: 0.84375, y: 0.28125 },\n { x: 0.84375, y: 0.28125 },\n { x: 0.90625, y: 0.28125 },\n { x: 0.90625, y: 0.28125 },\n { x: 0.96875, y: 0.28125 },\n { x: 0.96875, y: 0.28125 },\n { x: 0.03125, y: 0.34375 },\n { x: 0.03125, y: 0.34375 },\n { x: 0.09375, y: 0.34375 },\n { x: 0.09375, y: 0.34375 },\n { x: 0.15625, y: 0.34375 },\n { x: 0.15625, y: 0.34375 },\n { x: 0.21875, y: 0.34375 },\n { x: 0.21875, y: 0.34375 },\n { x: 0.28125, y: 0.34375 },\n { x: 0.28125, y: 0.34375 },\n { x: 0.34375, y: 0.34375 },\n { x: 0.34375, y: 0.34375 },\n { x: 0.40625, y: 0.34375 },\n { x: 0.40625, y: 0.34375 },\n { x: 0.46875, y: 0.34375 },\n { x: 0.46875, y: 0.34375 },\n { x: 0.53125, y: 0.34375 },\n { x: 0.53125, y: 0.34375 },\n { x: 0.59375, y: 0.34375 },\n { x: 0.59375, y: 0.34375 },\n { x: 0.65625, y: 0.34375 },\n { x: 0.65625, y: 0.34375 },\n { x: 0.71875, y: 0.34375 },\n { x: 0.71875, y: 0.34375 },\n { x: 0.78125, y: 0.34375 },\n { x: 0.78125, y: 0.34375 },\n { x: 0.84375, y: 0.34375 },\n { x: 0.84375, y: 0.34375 },\n { x: 0.90625, y: 0.34375 },\n { x: 0.90625, y: 0.34375 },\n { x: 0.96875, y: 0.34375 },\n { x: 0.96875, y: 0.34375 },\n { x: 0.03125, y: 0.40625 },\n { x: 0.03125, y: 0.40625 },\n { x: 0.09375, y: 0.40625 },\n { x: 0.09375, y: 0.40625 },\n { x: 0.15625, y: 0.40625 },\n { x: 0.15625, y: 0.40625 },\n { x: 0.21875, y: 0.40625 },\n { x: 0.21875, y: 0.40625 },\n { x: 0.28125, y: 0.40625 },\n { x: 0.28125, y: 0.40625 },\n { x: 0.34375, y: 0.40625 },\n { x: 0.34375, y: 0.40625 },\n { x: 0.40625, y: 0.40625 },\n { x: 0.40625, y: 0.40625 },\n { x: 0.46875, y: 0.40625 },\n { x: 0.46875, y: 0.40625 },\n { x: 0.53125, y: 0.40625 },\n { x: 0.53125, y: 0.40625 },\n { x: 0.59375, y: 0.40625 },\n { x: 0.59375, y: 0.40625 },\n { x: 0.65625, y: 0.40625 },\n { x: 0.65625, y: 0.40625 },\n { x: 0.71875, y: 0.40625 },\n { x: 0.71875, y: 0.40625 },\n { x: 0.78125, y: 0.40625 },\n { x: 0.78125, y: 0.40625 },\n { x: 0.84375, y: 0.40625 },\n { x: 0.84375, y: 0.40625 },\n { x: 0.90625, y: 0.40625 },\n { x: 0.90625, y: 0.40625 },\n { x: 0.96875, y: 0.40625 },\n { x: 0.96875, y: 0.40625 },\n { x: 0.03125, y: 0.46875 },\n { x: 0.03125, y: 0.46875 },\n { x: 0.09375, y: 0.46875 },\n { x: 0.09375, y: 0.46875 },\n { x: 0.15625, y: 0.46875 },\n { x: 0.15625, y: 0.46875 },\n { x: 0.21875, y: 0.46875 },\n { x: 0.21875, y: 0.46875 },\n { x: 0.28125, y: 0.46875 },\n { x: 0.28125, y: 0.46875 },\n { x: 0.34375, y: 0.46875 },\n { x: 0.34375, y: 0.46875 },\n { x: 0.40625, y: 0.46875 },\n { x: 0.40625, y: 0.46875 },\n { x: 0.46875, y: 0.46875 },\n { x: 0.46875, y: 0.46875 },\n { x: 0.53125, y: 0.46875 },\n { x: 0.53125, y: 0.46875 },\n { x: 0.59375, y: 0.46875 },\n { x: 0.59375, y: 0.46875 },\n { x: 0.65625, y: 0.46875 },\n { x: 0.65625, y: 0.46875 },\n { x: 0.71875, y: 0.46875 },\n { x: 0.71875, y: 0.46875 },\n { x: 0.78125, y: 0.46875 },\n { x: 0.78125, y: 0.46875 },\n { x: 0.84375, y: 0.46875 },\n { x: 0.84375, y: 0.46875 },\n { x: 0.90625, y: 0.46875 },\n { x: 0.90625, y: 0.46875 },\n { x: 0.96875, y: 0.46875 },\n { x: 0.96875, y: 0.46875 },\n { x: 0.03125, y: 0.53125 },\n { x: 0.03125, y: 0.53125 },\n { x: 0.09375, y: 0.53125 },\n { x: 0.09375, y: 0.53125 },\n { x: 0.15625, y: 0.53125 },\n { x: 0.15625, y: 0.53125 },\n { x: 0.21875, y: 0.53125 },\n { x: 0.21875, y: 0.53125 },\n { x: 0.28125, y: 0.53125 },\n { x: 0.28125, y: 0.53125 },\n { x: 0.34375, y: 0.53125 },\n { x: 0.34375, y: 0.53125 },\n { x: 0.40625, y: 0.53125 },\n { x: 0.40625, y: 0.53125 },\n { x: 0.46875, y: 0.53125 },\n { x: 0.46875, y: 0.53125 },\n { x: 0.53125, y: 0.53125 },\n { x: 0.53125, y: 0.53125 },\n { x: 0.59375, y: 0.53125 },\n { x: 0.59375, y: 0.53125 },\n { x: 0.65625, y: 0.53125 },\n { x: 0.65625, y: 0.53125 },\n { x: 0.71875, y: 0.53125 },\n { x: 0.71875, y: 0.53125 },\n { x: 0.78125, y: 0.53125 },\n { x: 0.78125, y: 0.53125 },\n { x: 0.84375, y: 0.53125 },\n { x: 0.84375, y: 0.53125 },\n { x: 0.90625, y: 0.53125 },\n { x: 0.90625, y: 0.53125 },\n { x: 0.96875, y: 0.53125 },\n { x: 0.96875, y: 0.53125 },\n { x: 0.03125, y: 0.59375 },\n { x: 0.03125, y: 0.59375 },\n { x: 0.09375, y: 0.59375 },\n { x: 0.09375, y: 0.59375 },\n { x: 0.15625, y: 0.59375 },\n { x: 0.15625, y: 0.59375 },\n { x: 0.21875, y: 0.59375 },\n { x: 0.21875, y: 0.59375 },\n { x: 0.28125, y: 0.59375 },\n { x: 0.28125, y: 0.59375 },\n { x: 0.34375, y: 0.59375 },\n { x: 0.34375, y: 0.59375 },\n { x: 0.40625, y: 0.59375 },\n { x: 0.40625, y: 0.59375 },\n { x: 0.46875, y: 0.59375 },\n { x: 0.46875, y: 0.59375 },\n { x: 0.53125, y: 0.59375 },\n { x: 0.53125, y: 0.59375 },\n { x: 0.59375, y: 0.59375 },\n { x: 0.59375, y: 0.59375 },\n { x: 0.65625, y: 0.59375 },\n { x: 0.65625, y: 0.59375 },\n { x: 0.71875, y: 0.59375 },\n { x: 0.71875, y: 0.59375 },\n { x: 0.78125, y: 0.59375 },\n { x: 0.78125, y: 0.59375 },\n { x: 0.84375, y: 0.59375 },\n { x: 0.84375, y: 0.59375 },\n { x: 0.90625, y: 0.59375 },\n { x: 0.90625, y: 0.59375 },\n { x: 0.96875, y: 0.59375 },\n { x: 0.96875, y: 0.59375 },\n { x: 0.03125, y: 0.65625 },\n { x: 0.03125, y: 0.65625 },\n { x: 0.09375, y: 0.65625 },\n { x: 0.09375, y: 0.65625 },\n { x: 0.15625, y: 0.65625 },\n { x: 0.15625, y: 0.65625 },\n { x: 0.21875, y: 0.65625 },\n { x: 0.21875, y: 0.65625 },\n { x: 0.28125, y: 0.65625 },\n { x: 0.28125, y: 0.65625 },\n { x: 0.34375, y: 0.65625 },\n { x: 0.34375, y: 0.65625 },\n { x: 0.40625, y: 0.65625 },\n { x: 0.40625, y: 0.65625 },\n { x: 0.46875, y: 0.65625 },\n { x: 0.46875, y: 0.65625 },\n { x: 0.53125, y: 0.65625 },\n { x: 0.53125, y: 0.65625 },\n { x: 0.59375, y: 0.65625 },\n { x: 0.59375, y: 0.65625 },\n { x: 0.65625, y: 0.65625 },\n { x: 0.65625, y: 0.65625 },\n { x: 0.71875, y: 0.65625 },\n { x: 0.71875, y: 0.65625 },\n { x: 0.78125, y: 0.65625 },\n { x: 0.78125, y: 0.65625 },\n { x: 0.84375, y: 0.65625 },\n { x: 0.84375, y: 0.65625 },\n { x: 0.90625, y: 0.65625 },\n { x: 0.90625, y: 0.65625 },\n { x: 0.96875, y: 0.65625 },\n { x: 0.96875, y: 0.65625 },\n { x: 0.03125, y: 0.71875 },\n { x: 0.03125, y: 0.71875 },\n { x: 0.09375, y: 0.71875 },\n { x: 0.09375, y: 0.71875 },\n { x: 0.15625, y: 0.71875 },\n { x: 0.15625, y: 0.71875 },\n { x: 0.21875, y: 0.71875 },\n { x: 0.21875, y: 0.71875 },\n { x: 0.28125, y: 0.71875 },\n { x: 0.28125, y: 0.71875 },\n { x: 0.34375, y: 0.71875 },\n { x: 0.34375, y: 0.71875 },\n { x: 0.40625, y: 0.71875 },\n { x: 0.40625, y: 0.71875 },\n { x: 0.46875, y: 0.71875 },\n { x: 0.46875, y: 0.71875 },\n { x: 0.53125, y: 0.71875 },\n { x: 0.53125, y: 0.71875 },\n { x: 0.59375, y: 0.71875 },\n { x: 0.59375, y: 0.71875 },\n { x: 0.65625, y: 0.71875 },\n { x: 0.65625, y: 0.71875 },\n { x: 0.71875, y: 0.71875 },\n { x: 0.71875, y: 0.71875 },\n { x: 0.78125, y: 0.71875 },\n { x: 0.78125, y: 0.71875 },\n { x: 0.84375, y: 0.71875 },\n { x: 0.84375, y: 0.71875 },\n { x: 0.90625, y: 0.71875 },\n { x: 0.90625, y: 0.71875 },\n { x: 0.96875, y: 0.71875 },\n { x: 0.96875, y: 0.71875 },\n { x: 0.03125, y: 0.78125 },\n { x: 0.03125, y: 0.78125 },\n { x: 0.09375, y: 0.78125 },\n { x: 0.09375, y: 0.78125 },\n { x: 0.15625, y: 0.78125 },\n { x: 0.15625, y: 0.78125 },\n { x: 0.21875, y: 0.78125 },\n { x: 0.21875, y: 0.78125 },\n { x: 0.28125, y: 0.78125 },\n { x: 0.28125, y: 0.78125 },\n { x: 0.34375, y: 0.78125 },\n { x: 0.34375, y: 0.78125 },\n { x: 0.40625, y: 0.78125 },\n { x: 0.40625, y: 0.78125 },\n { x: 0.46875, y: 0.78125 },\n { x: 0.46875, y: 0.78125 },\n { x: 0.53125, y: 0.78125 },\n { x: 0.53125, y: 0.78125 },\n { x: 0.59375, y: 0.78125 },\n { x: 0.59375, y: 0.78125 },\n { x: 0.65625, y: 0.78125 },\n { x: 0.65625, y: 0.78125 },\n { x: 0.71875, y: 0.78125 },\n { x: 0.71875, y: 0.78125 },\n { x: 0.78125, y: 0.78125 },\n { x: 0.78125, y: 0.78125 },\n { x: 0.84375, y: 0.78125 },\n { x: 0.84375, y: 0.78125 },\n { x: 0.90625, y: 0.78125 },\n { x: 0.90625, y: 0.78125 },\n { x: 0.96875, y: 0.78125 },\n { x: 0.96875, y: 0.78125 },\n { x: 0.03125, y: 0.84375 },\n { x: 0.03125, y: 0.84375 },\n { x: 0.09375, y: 0.84375 },\n { x: 0.09375, y: 0.84375 },\n { x: 0.15625, y: 0.84375 },\n { x: 0.15625, y: 0.84375 },\n { x: 0.21875, y: 0.84375 },\n { x: 0.21875, y: 0.84375 },\n { x: 0.28125, y: 0.84375 },\n { x: 0.28125, y: 0.84375 },\n { x: 0.34375, y: 0.84375 },\n { x: 0.34375, y: 0.84375 },\n { x: 0.40625, y: 0.84375 },\n { x: 0.40625, y: 0.84375 },\n { x: 0.46875, y: 0.84375 },\n { x: 0.46875, y: 0.84375 },\n { x: 0.53125, y: 0.84375 },\n { x: 0.53125, y: 0.84375 },\n { x: 0.59375, y: 0.84375 },\n { x: 0.59375, y: 0.84375 },\n { x: 0.65625, y: 0.84375 },\n { x: 0.65625, y: 0.84375 },\n { x: 0.71875, y: 0.84375 },\n { x: 0.71875, y: 0.84375 },\n { x: 0.78125, y: 0.84375 },\n { x: 0.78125, y: 0.84375 },\n { x: 0.84375, y: 0.84375 },\n { x: 0.84375, y: 0.84375 },\n { x: 0.90625, y: 0.84375 },\n { x: 0.90625, y: 0.84375 },\n { x: 0.96875, y: 0.84375 },\n { x: 0.96875, y: 0.84375 },\n { x: 0.03125, y: 0.90625 },\n { x: 0.03125, y: 0.90625 },\n { x: 0.09375, y: 0.90625 },\n { x: 0.09375, y: 0.90625 },\n { x: 0.15625, y: 0.90625 },\n { x: 0.15625, y: 0.90625 },\n { x: 0.21875, y: 0.90625 },\n { x: 0.21875, y: 0.90625 },\n { x: 0.28125, y: 0.90625 },\n { x: 0.28125, y: 0.90625 },\n { x: 0.34375, y: 0.90625 },\n { x: 0.34375, y: 0.90625 },\n { x: 0.40625, y: 0.90625 },\n { x: 0.40625, y: 0.90625 },\n { x: 0.46875, y: 0.90625 },\n { x: 0.46875, y: 0.90625 },\n { x: 0.53125, y: 0.90625 },\n { x: 0.53125, y: 0.90625 },\n { x: 0.59375, y: 0.90625 },\n { x: 0.59375, y: 0.90625 },\n { x: 0.65625, y: 0.90625 },\n { x: 0.65625, y: 0.90625 },\n { x: 0.71875, y: 0.90625 },\n { x: 0.71875, y: 0.90625 },\n { x: 0.78125, y: 0.90625 },\n { x: 0.78125, y: 0.90625 },\n { x: 0.84375, y: 0.90625 },\n { x: 0.84375, y: 0.90625 },\n { x: 0.90625, y: 0.90625 },\n { x: 0.90625, y: 0.90625 },\n { x: 0.96875, y: 0.90625 },\n { x: 0.96875, y: 0.90625 },\n { x: 0.03125, y: 0.96875 },\n { x: 0.03125, y: 0.96875 },\n { x: 0.09375, y: 0.96875 },\n { x: 0.09375, y: 0.96875 },\n { x: 0.15625, y: 0.96875 },\n { x: 0.15625, y: 0.96875 },\n { x: 0.21875, y: 0.96875 },\n { x: 0.21875, y: 0.96875 },\n { x: 0.28125, y: 0.96875 },\n { x: 0.28125, y: 0.96875 },\n { x: 0.34375, y: 0.96875 },\n { x: 0.34375, y: 0.96875 },\n { x: 0.40625, y: 0.96875 },\n { x: 0.40625, y: 0.96875 },\n { x: 0.46875, y: 0.96875 },\n { x: 0.46875, y: 0.96875 },\n { x: 0.53125, y: 0.96875 },\n { x: 0.53125, y: 0.96875 },\n { x: 0.59375, y: 0.96875 },\n { x: 0.59375, y: 0.96875 },\n { x: 0.65625, y: 0.96875 },\n { x: 0.65625, y: 0.96875 },\n { x: 0.71875, y: 0.96875 },\n { x: 0.71875, y: 0.96875 },\n { x: 0.78125, y: 0.96875 },\n { x: 0.78125, y: 0.96875 },\n { x: 0.84375, y: 0.96875 },\n { x: 0.84375, y: 0.96875 },\n { x: 0.90625, y: 0.96875 },\n { x: 0.90625, y: 0.96875 },\n { x: 0.96875, y: 0.96875 },\n { x: 0.96875, y: 0.96875 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n];\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as box from './box';\nimport * as anchors from './anchors';\nimport { Tensor, GraphModel } from '../tfjs/types';\n\nexport class HandDetector {\n model: GraphModel;\n anchors: number[][];\n anchorsTensor: Tensor;\n inputSize: number;\n inputSizeTensor: Tensor;\n doubleInputSizeTensor: Tensor;\n\n constructor(model) {\n this.model = model;\n this.anchors = anchors.anchors.map((anchor) => [anchor.x, anchor.y]);\n this.anchorsTensor = tf.tensor2d(this.anchors);\n this.inputSize = (this.model && this.model.inputs && this.model.inputs[0].shape) ? this.model.inputs[0].shape[2] : 0;\n this.inputSizeTensor = tf.tensor1d([this.inputSize, this.inputSize]);\n this.doubleInputSizeTensor = tf.tensor1d([this.inputSize * 2, this.inputSize * 2]);\n }\n\n normalizeBoxes(boxes) {\n return tf.tidy(() => {\n const boxOffsets = tf.slice(boxes, [0, 0], [-1, 2]);\n const boxSizes = tf.slice(boxes, [0, 2], [-1, 2]);\n const boxCenterPoints = tf.add(tf.div(boxOffsets, this.inputSizeTensor), this.anchorsTensor);\n const halfBoxSizes = tf.div(boxSizes, this.doubleInputSizeTensor);\n const startPoints = tf.mul(tf.sub(boxCenterPoints, halfBoxSizes), this.inputSizeTensor);\n const endPoints = tf.mul(tf.add(boxCenterPoints, halfBoxSizes), this.inputSizeTensor);\n return tf.concat2d([startPoints, endPoints], 1);\n });\n }\n\n normalizeLandmarks(rawPalmLandmarks, index) {\n return tf.tidy(() => {\n const landmarks = tf.add(tf.div(tf.reshape(rawPalmLandmarks, [-1, 7, 2]), this.inputSizeTensor), this.anchors[index]);\n return tf.mul(landmarks, this.inputSizeTensor);\n });\n }\n\n async getBoxes(input, config) {\n const batched = this.model.predict(input) as Tensor;\n const predictions = tf.squeeze(batched);\n tf.dispose(batched);\n const scoresT = tf.tidy(() => tf.squeeze(tf.sigmoid(tf.slice(predictions, [0, 0], [-1, 1]))));\n const scores = await scoresT.data();\n const rawBoxes = tf.slice(predictions, [0, 1], [-1, 4]);\n const boxes = this.normalizeBoxes(rawBoxes);\n tf.dispose(rawBoxes);\n const filteredT = await tf.image.nonMaxSuppressionAsync(boxes, scores, config.hand.maxDetected, config.hand.iouThreshold, config.hand.minConfidence);\n const filtered = await filteredT.array();\n\n tf.dispose(scoresT);\n tf.dispose(filteredT);\n const hands: Array<{ box: Tensor, palmLandmarks: Tensor, confidence: number }> = [];\n for (const index of filtered) {\n if (scores[index] >= config.hand.minConfidence) {\n const matchingBox = tf.slice(boxes, [index, 0], [1, -1]);\n const rawPalmLandmarks = tf.slice(predictions, [index, 5], [1, 14]);\n const palmLandmarks = tf.tidy(() => tf.reshape(this.normalizeLandmarks(rawPalmLandmarks, index), [-1, 2]));\n tf.dispose(rawPalmLandmarks);\n hands.push({ box: matchingBox, palmLandmarks, confidence: scores[index] });\n }\n }\n tf.dispose(predictions);\n tf.dispose(boxes);\n return hands;\n }\n\n async estimateHandBounds(input, config): Promise<{ startPoint: number[]; endPoint: number[]; palmLandmarks: number[]; confidence: number }[]> {\n const inputHeight = input.shape[1];\n const inputWidth = input.shape[2];\n const image = tf.tidy(() => tf.sub(tf.div(tf.image.resizeBilinear(input, [this.inputSize, this.inputSize]), 127.5), 1));\n const predictions = await this.getBoxes(image, config);\n tf.dispose(image);\n const hands: Array<{ startPoint: number[]; endPoint: number[]; palmLandmarks: number[]; confidence: number }> = [];\n if (!predictions || predictions.length === 0) return hands;\n for (const prediction of predictions) {\n const boxes = await prediction.box.data();\n const startPoint = boxes.slice(0, 2);\n const endPoint = boxes.slice(2, 4);\n const palmLandmarks = await prediction.palmLandmarks.array();\n tf.dispose(prediction.box);\n tf.dispose(prediction.palmLandmarks);\n hands.push(box.scaleBoxCoordinates({ startPoint, endPoint, palmLandmarks, confidence: prediction.confidence }, [inputWidth / this.inputSize, inputHeight / this.inputSize]));\n }\n return hands;\n }\n}\n", "export function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport const buildTranslationMatrix = (x, y) => [[1, 0, x], [0, 1, y], [0, 0, 1]];\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: Array = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: Array = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as box from './box';\nimport * as util from './util';\nimport * as detector from './handdetector';\nimport { Tensor, GraphModel } from '../tfjs/types';\n\nconst palmBoxEnlargeFactor = 5; // default 3\nconst handBoxEnlargeFactor = 1.65; // default 1.65\nconst palmLandmarkIds = [0, 5, 9, 13, 17, 1, 2];\nconst palmLandmarksPalmBase = 0;\nconst palmLandmarksMiddleFingerBase = 2;\n\nexport class HandPipeline {\n handDetector: detector.HandDetector;\n handPoseModel: GraphModel;\n inputSize: number;\n storedBoxes: Array<{ startPoint: number[]; endPoint: number[]; palmLandmarks: number[]; confidence: number } | null>;\n skipped: number;\n detectedHands: number;\n\n constructor(handDetector, handPoseModel) {\n this.handDetector = handDetector;\n this.handPoseModel = handPoseModel;\n // @ts-ignore model is not undefined here\n this.inputSize = this.handPoseModel?.inputs[0].shape[2];\n this.storedBoxes = [];\n this.skipped = 0;\n this.detectedHands = 0;\n }\n\n // eslint-disable-next-line class-methods-use-this\n calculateLandmarksBoundingBox(landmarks) {\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint };\n }\n\n getBoxForPalmLandmarks(palmLandmarks, rotationMatrix) {\n const rotatedPalmLandmarks = palmLandmarks.map((coord) => util.rotatePoint([...coord, 1], rotationMatrix));\n const boxAroundPalm = this.calculateLandmarksBoundingBox(rotatedPalmLandmarks);\n return box.enlargeBox(box.squarifyBox(boxAroundPalm), palmBoxEnlargeFactor);\n }\n\n getBoxForHandLandmarks(landmarks) {\n const boundingBox = this.calculateLandmarksBoundingBox(landmarks);\n const boxAroundHand = box.enlargeBox(box.squarifyBox(boundingBox), handBoxEnlargeFactor);\n boxAroundHand.palmLandmarks = [];\n for (let i = 0; i < palmLandmarkIds.length; i++) {\n boxAroundHand.palmLandmarks.push(landmarks[palmLandmarkIds[i]].slice(0, 2));\n }\n return boxAroundHand;\n }\n\n transformRawCoords(rawCoords, box2, angle, rotationMatrix) {\n const boxSize = box.getBoxSize(box2);\n const scaleFactor = [boxSize[0] / this.inputSize, boxSize[1] / this.inputSize, (boxSize[0] + boxSize[1]) / this.inputSize / 2];\n const coordsScaled = rawCoords.map((coord) => [\n scaleFactor[0] * (coord[0] - this.inputSize / 2),\n scaleFactor[1] * (coord[1] - this.inputSize / 2),\n scaleFactor[2] * coord[2],\n ]);\n const coordsRotationMatrix = util.buildRotationMatrix(angle, [0, 0]);\n const coordsRotated = coordsScaled.map((coord) => {\n const rotated = util.rotatePoint(coord, coordsRotationMatrix);\n return [...rotated, coord[2]];\n });\n const inverseRotationMatrix = util.invertTransformMatrix(rotationMatrix);\n const boxCenter = [...box.getBoxCenter(box2), 1];\n const originalBoxCenter = [\n util.dot(boxCenter, inverseRotationMatrix[0]),\n util.dot(boxCenter, inverseRotationMatrix[1]),\n ];\n return coordsRotated.map((coord) => [\n Math.trunc(coord[0] + originalBoxCenter[0]),\n Math.trunc(coord[1] + originalBoxCenter[1]),\n Math.trunc(coord[2]),\n ]);\n }\n\n async estimateHands(image, config) {\n let useFreshBox = false;\n\n // run new detector every skipFrames unless we only want box to start with\n let boxes;\n\n // console.log(this.skipped, config.hand.skipFrames, !config.hand.landmarks, !config.skipFrame);\n if ((this.skipped === 0) || (this.skipped > config.hand.skipFrames) || !config.hand.landmarks || !config.skipFrame) {\n boxes = await this.handDetector.estimateHandBounds(image, config);\n this.skipped = 0;\n }\n if (config.skipFrame) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (boxes && (boxes.length > 0) && ((boxes.length !== this.detectedHands) && (this.detectedHands !== config.hand.maxDetected) || !config.hand.landmarks)) {\n this.detectedHands = 0;\n this.storedBoxes = [...boxes];\n // for (const possible of boxes) this.storedBoxes.push(possible);\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n const hands: Array<{ landmarks?: number[], confidence: number, box: { topLeft: number[], bottomRight: number[] } }> = [];\n\n // go through working set of boxes\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const currentBox = this.storedBoxes[i];\n if (!currentBox) continue;\n if (config.hand.landmarks) {\n const angle = config.hand.rotation ? util.computeRotation(currentBox.palmLandmarks[palmLandmarksPalmBase], currentBox.palmLandmarks[palmLandmarksMiddleFingerBase]) : 0;\n const palmCenter = box.getBoxCenter(currentBox);\n const palmCenterNormalized = [palmCenter[0] / image.shape[2], palmCenter[1] / image.shape[1]];\n const rotatedImage = config.hand.rotation && tf.ENV.flags.IS_BROWSER ? tf.image.rotateWithOffset(image, angle, 0, palmCenterNormalized) : image.clone();\n const rotationMatrix = util.buildRotationMatrix(-angle, palmCenter);\n const newBox = useFreshBox ? this.getBoxForPalmLandmarks(currentBox.palmLandmarks, rotationMatrix) : currentBox;\n const croppedInput = box.cutBoxFromImageAndResize(newBox, rotatedImage, [this.inputSize, this.inputSize]);\n const handImage = tf.div(croppedInput, 255);\n tf.dispose(croppedInput);\n tf.dispose(rotatedImage);\n const [confidenceT, keypoints] = await this.handPoseModel.predict(handImage) as Array;\n tf.dispose(handImage);\n const confidence = (await confidenceT.data())[0];\n tf.dispose(confidenceT);\n if (confidence >= config.hand.minConfidence) {\n const keypointsReshaped = tf.reshape(keypoints, [-1, 3]);\n const rawCoords = await keypointsReshaped.array();\n tf.dispose(keypoints);\n tf.dispose(keypointsReshaped);\n const coords = this.transformRawCoords(rawCoords, newBox, angle, rotationMatrix);\n const nextBoundingBox = this.getBoxForHandLandmarks(coords);\n this.storedBoxes[i] = { ...nextBoundingBox, confidence };\n const result = {\n landmarks: coords,\n confidence,\n box: { topLeft: nextBoundingBox.startPoint, bottomRight: nextBoundingBox.endPoint },\n };\n hands.push(result);\n } else {\n this.storedBoxes[i] = null;\n }\n tf.dispose(keypoints);\n } else {\n // const enlarged = box.enlargeBox(box.squarifyBox(box.shiftBox(currentBox, HAND_BOX_SHIFT_VECTOR)), handBoxEnlargeFactor);\n const enlarged = box.enlargeBox(box.squarifyBox(currentBox), handBoxEnlargeFactor);\n const result = {\n confidence: currentBox.confidence,\n box: { topLeft: enlarged.startPoint, bottomRight: enlarged.endPoint },\n };\n hands.push(result);\n }\n }\n this.storedBoxes = this.storedBoxes.filter((a) => a !== null);\n this.detectedHands = hands.length;\n return hands;\n }\n}\n", "/**\n * HandPose module entry point\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as handdetector from './handdetector';\nimport * as handpipeline from './handpipeline';\nimport { Hand } from '../result';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport { Config } from '../config';\n\nconst meshAnnotations = {\n thumb: [1, 2, 3, 4],\n indexFinger: [5, 6, 7, 8],\n middleFinger: [9, 10, 11, 12],\n ringFinger: [13, 14, 15, 16],\n pinky: [17, 18, 19, 20],\n palmBase: [0],\n};\n\nlet handDetectorModel: GraphModel | null;\nlet handPoseModel: GraphModel | null;\nlet handPipeline: handpipeline.HandPipeline;\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const predictions = await handPipeline.estimateHands(input, config);\n if (!predictions) return [];\n const hands: Array = [];\n for (let i = 0; i < predictions.length; i++) {\n const annotations = {};\n if (predictions[i].landmarks) {\n for (const key of Object.keys(meshAnnotations)) {\n // @ts-ignore landmarks are not undefined\n annotations[key] = meshAnnotations[key].map((index) => predictions[i].landmarks[index]);\n }\n }\n\n const keypoints = predictions[i].landmarks as unknown as Array<[number, number, number]>;\n\n let box: [number, number, number, number] = [Number.MAX_SAFE_INTEGER, Number.MAX_SAFE_INTEGER, 0, 0]; // maximums so conditionals work\n let boxRaw: [number, number, number, number] = [0, 0, 0, 0];\n if (keypoints && keypoints.length > 0) { // if we have landmarks, calculate box based on landmarks\n for (const pt of keypoints) {\n if (pt[0] < box[0]) box[0] = pt[0];\n if (pt[1] < box[1]) box[1] = pt[1];\n if (pt[0] > box[2]) box[2] = pt[0];\n if (pt[1] > box[3]) box[3] = pt[1];\n }\n box[2] -= box[0];\n box[3] -= box[1];\n boxRaw = [box[0] / (input.shape[2] || 0), box[1] / (input.shape[1] || 0), box[2] / (input.shape[2] || 0), box[3] / (input.shape[1] || 0)];\n } else { // otherwise use box from prediction\n box = predictions[i].box ? [\n Math.trunc(Math.max(0, predictions[i].box.topLeft[0])),\n Math.trunc(Math.max(0, predictions[i].box.topLeft[1])),\n Math.trunc(Math.min((input.shape[2] || 0), predictions[i].box.bottomRight[0]) - Math.max(0, predictions[i].box.topLeft[0])),\n Math.trunc(Math.min((input.shape[1] || 0), predictions[i].box.bottomRight[1]) - Math.max(0, predictions[i].box.topLeft[1])),\n ] : [0, 0, 0, 0];\n boxRaw = [\n (predictions[i].box.topLeft[0]) / (input.shape[2] || 0),\n (predictions[i].box.topLeft[1]) / (input.shape[1] || 0),\n (predictions[i].box.bottomRight[0] - predictions[i].box.topLeft[0]) / (input.shape[2] || 0),\n (predictions[i].box.bottomRight[1] - predictions[i].box.topLeft[1]) / (input.shape[1] || 0),\n ];\n }\n hands.push({ id: i, score: Math.round(100 * predictions[i].confidence) / 100, box, boxRaw, keypoints, annotations });\n }\n return hands;\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (!handDetectorModel || !handPoseModel) {\n [handDetectorModel, handPoseModel] = await Promise.all([\n config.hand.enabled ? tf.loadGraphModel(join(config.modelBasePath, config.hand.detector.modelPath), { fromTFHub: config.hand.detector.modelPath.includes('tfhub.dev') }) as unknown as GraphModel : null,\n config.hand.landmarks ? tf.loadGraphModel(join(config.modelBasePath, config.hand.skeleton.modelPath), { fromTFHub: config.hand.skeleton.modelPath.includes('tfhub.dev') }) as unknown as GraphModel : null,\n ]);\n if (config.hand.enabled) {\n if (!handDetectorModel || !handDetectorModel['modelUrl']) log('load model failed:', config.hand.detector.modelPath);\n else if (config.debug) log('load model:', handDetectorModel['modelUrl']);\n if (!handPoseModel || !handPoseModel['modelUrl']) log('load model failed:', config.hand.skeleton.modelPath);\n else if (config.debug) log('load model:', handPoseModel['modelUrl']);\n }\n } else {\n if (config.debug) log('cached model:', handDetectorModel['modelUrl']);\n if (config.debug) log('cached model:', handPoseModel['modelUrl']);\n }\n const handDetector = new handdetector.HandDetector(handDetectorModel);\n handPipeline = new handpipeline.HandPipeline(handDetector, handPoseModel);\n return [handDetectorModel, handPoseModel];\n}\n", "export const full = [\n 'nose',\n 'leftEyeInside',\n 'leftEye',\n 'leftEyeOutside',\n 'rightEyeInside',\n 'rightEye',\n 'rightEyeOutside',\n 'leftEar',\n 'rightEar',\n 'leftMouth',\n 'rightMouth',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'leftWrist',\n 'rightWrist',\n 'leftPalm',\n 'rightPalm',\n 'leftIndex',\n 'rightIndex',\n 'leftPinky',\n 'rightPinky',\n 'leftHip',\n 'rightHip',\n 'leftKnee',\n 'rightKnee',\n 'leftAnkle',\n 'rightAnkle',\n 'leftHeel',\n 'rightHeel',\n 'leftFoot',\n 'rightFoot',\n 'midHip',\n 'forehead',\n 'leftThumb',\n 'leftHand',\n 'rightThumb',\n 'rightHand',\n];\n\nexport const upper = [\n 'nose',\n 'leftEyeInside',\n 'leftEye',\n 'leftEyeOutside',\n 'rightEyeInside',\n 'rightEye',\n 'rightEyeOutside',\n 'leftEar',\n 'rightEar',\n 'leftMouth',\n 'rightMouth',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'left:15',\n 'right:16',\n 'left:17',\n 'right:18',\n 'left:19',\n 'right:20',\n 'left:21',\n 'right:22',\n 'leftChest',\n 'rightChest',\n 'neck',\n 'forehead',\n 'left:27',\n 'right:28',\n 'left:29',\n 'right:30',\n];\n", "/**\n * BlazePose Module\n */\n\n// paper: https://ai.googleblog.com/2020/08/on-device-real-time-body-pose-tracking.html\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as annotations from './annotations';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport { Body } from '../result';\nimport { Config } from '../config';\n\nlet model: GraphModel;\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath)) as unknown as GraphModel;\n model['width'] = parseInt(model['signature'].inputs['input_1:0'].tensorShape.dim[2].size);\n model['height'] = parseInt(model['signature'].inputs['input_1:0'].tensorShape.dim[1].size);\n if (!model || !model['modelUrl']) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model['modelUrl']);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if (!model) return [];\n if (!config.body.enabled) return [];\n const imgSize = { width: (image.shape[2] || 0), height: (image.shape[1] || 0) };\n const resize = tf.image.resizeBilinear(image, [model['width'], model['height']], false);\n const normalize = tf.div(resize, [255.0]);\n tf.dispose(resize);\n const resT = await model.predict(normalize) as Array;\n const findT = resT.find((t) => (t.size === 195 || t.size === 155));\n const points = await findT?.data() || []; // order of output tensors may change between models, full has 195 and upper has 155 items\n resT.forEach((t) => tf.dispose(t));\n tf.dispose(normalize);\n const keypoints: Array<{ id, part, position: [number, number, number], positionRaw: [number, number, number], score, presence }> = [];\n const labels = points?.length === 195 ? annotations.full : annotations.upper; // full model has 39 keypoints, upper has 31 keypoints\n const depth = 5; // each points has x,y,z,visibility,presence\n for (let i = 0; i < points.length / depth; i++) {\n keypoints.push({\n id: i,\n part: labels[i],\n position: [\n Math.trunc(imgSize.width * points[depth * i + 0] / 255), // return normalized x value istead of 0..255\n Math.trunc(imgSize.height * points[depth * i + 1] / 255), // return normalized y value istead of 0..255\n Math.trunc(points[depth * i + 2]) + 0, // fix negative zero\n ],\n positionRaw: [\n points[depth * i + 0] / 255, // return x value normalized to 0..1\n points[depth * i + 1] / 255, // return y value normalized to 0..1\n points[depth * i + 2] + 0, // fix negative zero\n ],\n score: (100 - Math.trunc(100 / (1 + Math.exp(points[depth * i + 3])))) / 100, // reverse sigmoid value\n presence: (100 - Math.trunc(100 / (1 + Math.exp(points[depth * i + 4])))) / 100, // reverse sigmoid value\n });\n }\n const x = keypoints.map((a) => a.position[0]);\n const y = keypoints.map((a) => a.position[1]);\n const box: [number, number, number, number] = [\n Math.min(...x),\n Math.min(...y),\n Math.max(...x) - Math.min(...x),\n Math.max(...y) - Math.min(...x),\n ];\n const boxRaw: [number, number, number, number] = [0, 0, 0, 0]; // not yet implemented\n const score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n return [{ id: 0, score, box, boxRaw, keypoints }];\n}\n", "/**\n * EfficientPose Module\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { Body } from '../result';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model: GraphModel;\n\ntype Keypoints = { score: number, part: string, position: [number, number], positionRaw: [number, number] };\n\nconst keypoints: Array = [];\nlet box: [number, number, number, number] = [0, 0, 0, 0];\nlet boxRaw: [number, number, number, number] = [0, 0, 0, 0];\nlet score = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nconst bodyParts = ['head', 'neck', 'rightShoulder', 'rightElbow', 'rightWrist', 'chest', 'leftShoulder', 'leftElbow', 'leftWrist', 'pelvis', 'rightHip', 'rightKnee', 'rightAnkle', 'leftHip', 'leftKnee', 'leftAnkle'];\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath)) as unknown as GraphModel;\n if (!model || !model['modelUrl']) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model['modelUrl']);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n// performs argmax and max functions on a 2d tensor\nfunction max2d(inputs, minScore) {\n const [width, height] = inputs.shape;\n return tf.tidy(() => {\n const mod = (a, b) => tf.sub(a, tf.mul(tf.div(a, tf.scalar(b, 'int32')), tf.scalar(b, 'int32'))); // modulus op implemented in tf\n const reshaped = tf.reshape(inputs, [height * width]); // combine all data\n const newScore = tf.max(reshaped, 0).dataSync()[0]; // get highest score // inside tf.tidy\n if (newScore > minScore) { // skip coordinate calculation is score is too low\n const coords = tf.argMax(reshaped, 0);\n const x = mod(coords, width).dataSync()[0]; // inside tf.tidy\n const y = tf.div(coords, tf.scalar(width, 'int32')).dataSync()[0]; // inside tf.tidy\n return [x, y, newScore];\n }\n return [0, 0, newScore];\n });\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if ((skipped < config.body.skipFrames) && config.skipFrame && Object.keys(keypoints).length > 0) {\n skipped++;\n return [{ id: 0, score, box, boxRaw, keypoints }];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const tensor = tf.tidy(() => {\n if (!model.inputs[0].shape) return null;\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const enhance = tf.mul(resize, 2);\n const norm = enhance.sub(1);\n return norm;\n });\n\n let resT;\n if (config.body.enabled) resT = await model.predict(tensor);\n tf.dispose(tensor);\n\n if (resT) {\n keypoints.length = 0;\n const squeeze = resT.squeeze();\n tf.dispose(resT);\n // body parts are basically just a stack of 2d tensors\n const stack = squeeze.unstack(2);\n tf.dispose(squeeze);\n // process each unstacked tensor as a separate body part\n for (let id = 0; id < stack.length; id++) {\n // actual processing to get coordinates and score\n const [x, y, partScore] = max2d(stack[id], config.body.minConfidence);\n if (score > config.body.minConfidence) {\n keypoints.push({\n score: Math.round(100 * partScore) / 100,\n part: bodyParts[id],\n positionRaw: [ // normalized to 0..1\n // @ts-ignore model is not undefined here\n x / model.inputs[0].shape[2], y / model.inputs[0].shape[1],\n ],\n position: [ // normalized to input image size\n // @ts-ignore model is not undefined here\n Math.round(image.shape[2] * x / model.inputs[0].shape[2]), Math.round(image.shape[1] * y / model.inputs[0].shape[1]),\n ],\n });\n }\n }\n stack.forEach((s) => tf.dispose(s));\n }\n score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n const x = keypoints.map((a) => a.position[0]);\n const y = keypoints.map((a) => a.position[1]);\n box = [\n Math.min(...x),\n Math.min(...y),\n Math.max(...x) - Math.min(...x),\n Math.max(...y) - Math.min(...y),\n ];\n const xRaw = keypoints.map((a) => a.positionRaw[0]);\n const yRaw = keypoints.map((a) => a.positionRaw[1]);\n boxRaw = [\n Math.min(...xRaw),\n Math.min(...yRaw),\n Math.max(...xRaw) - Math.min(...xRaw),\n Math.max(...yRaw) - Math.min(...yRaw),\n ];\n resolve([{ id: 0, score, box, boxRaw, keypoints }]);\n });\n}\n", "/**\n * EfficientPose Module\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { Body } from '../result';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model: GraphModel;\n\ntype Keypoints = { score: number, part: string, position: [number, number], positionRaw: [number, number] };\nconst keypoints: Array = [];\ntype Person = { id: number, score: number, box: [number, number, number, number], boxRaw: [number, number, number, number], keypoints: Array }\n\nlet box: [number, number, number, number] = [0, 0, 0, 0];\nlet boxRaw: [number, number, number, number] = [0, 0, 0, 0];\nlet score = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nconst bodyParts = ['nose', 'leftEye', 'rightEye', 'leftEar', 'rightEar', 'leftShoulder', 'rightShoulder', 'leftElbow', 'rightElbow', 'leftWrist', 'rightWrist', 'leftHip', 'rightHip', 'leftKnee', 'rightKnee', 'leftAnkle', 'rightAnkle'];\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath)) as unknown as GraphModel;\n if (!model || !model['modelUrl']) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model['modelUrl']);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nasync function parseSinglePose(res, config, image) {\n keypoints.length = 0;\n const kpt = res[0][0];\n for (let id = 0; id < kpt.length; id++) {\n score = kpt[id][2];\n if (score > config.body.minConfidence) {\n keypoints.push({\n score: Math.round(100 * score) / 100,\n part: bodyParts[id],\n positionRaw: [ // normalized to 0..1\n kpt[id][1],\n kpt[id][0],\n ],\n position: [ // normalized to input image size\n Math.round((image.shape[2] || 0) * kpt[id][1]),\n Math.round((image.shape[1] || 0) * kpt[id][0]),\n ],\n });\n }\n }\n score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n const x = keypoints.map((a) => a.position[0]);\n const y = keypoints.map((a) => a.position[1]);\n box = [\n Math.min(...x),\n Math.min(...y),\n Math.max(...x) - Math.min(...x),\n Math.max(...y) - Math.min(...y),\n ];\n const xRaw = keypoints.map((a) => a.positionRaw[0]);\n const yRaw = keypoints.map((a) => a.positionRaw[1]);\n boxRaw = [\n Math.min(...xRaw),\n Math.min(...yRaw),\n Math.max(...xRaw) - Math.min(...xRaw),\n Math.max(...yRaw) - Math.min(...yRaw),\n ];\n const persons: Array = [];\n persons.push({ id: 0, score, box, boxRaw, keypoints });\n return persons;\n}\n\nasync function parseMultiPose(res, config, image) {\n const persons: Array = [];\n for (let p = 0; p < res[0].length; p++) {\n const kpt = res[0][p];\n score = Math.round(100 * kpt[51 + 4]) / 100;\n // eslint-disable-next-line no-continue\n if (score < config.body.minConfidence) continue;\n keypoints.length = 0;\n for (let i = 0; i < 17; i++) {\n const partScore = Math.round(100 * kpt[3 * i + 2]) / 100;\n if (partScore > config.body.minConfidence) {\n keypoints.push({\n part: bodyParts[i],\n score: partScore,\n positionRaw: [\n kpt[3 * i + 1],\n kpt[3 * i + 0],\n ],\n position: [\n Math.trunc(kpt[3 * i + 1] * (image.shape[2] || 0)),\n Math.trunc(kpt[3 * i + 0] * (image.shape[1] || 0)),\n ],\n });\n }\n }\n boxRaw = [kpt[51 + 1], kpt[51 + 0], kpt[51 + 3] - kpt[51 + 1], kpt[51 + 2] - kpt[51 + 0]];\n persons.push({\n id: p,\n score,\n boxRaw,\n box: [\n Math.trunc(boxRaw[0] * (image.shape[2] || 0)),\n Math.trunc(boxRaw[1] * (image.shape[1] || 0)),\n Math.trunc(boxRaw[2] * (image.shape[2] || 0)),\n Math.trunc(boxRaw[3] * (image.shape[1] || 0)),\n ],\n keypoints,\n });\n }\n return persons;\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if ((skipped < config.body.skipFrames) && config.skipFrame && Object.keys(keypoints).length > 0) {\n skipped++;\n return [{ id: 0, score, box, boxRaw, keypoints }];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const tensor = tf.tidy(() => {\n if (!model.inputs[0].shape) return null;\n let inputSize = model.inputs[0].shape[2];\n if (inputSize === -1) inputSize = 256;\n const resize = tf.image.resizeBilinear(image, [inputSize, inputSize], false);\n const cast = tf.cast(resize, 'int32');\n return cast;\n });\n\n let resT;\n if (config.body.enabled) resT = await model.predict(tensor);\n tf.dispose(tensor);\n\n if (!resT) resolve([]);\n const res = await resT.array();\n let persons;\n if (resT.shape[2] === 17) persons = await parseSinglePose(res, config, image);\n else if (resT.shape[2] === 56) persons = await parseMultiPose(res, config, image);\n tf.dispose(resT);\n\n resolve(persons);\n });\n}\n", "/**\n * CoCo Labels used by object detection modules\n */\nexport const labels = [\n { class: 1, label: 'person' },\n { class: 2, label: 'bicycle' },\n { class: 3, label: 'car' },\n { class: 4, label: 'motorcycle' },\n { class: 5, label: 'airplane' },\n { class: 6, label: 'bus' },\n { class: 7, label: 'train' },\n { class: 8, label: 'truck' },\n { class: 9, label: 'boat' },\n { class: 10, label: 'traffic light' },\n { class: 11, label: 'fire hydrant' },\n { class: 12, label: 'stop sign' },\n { class: 13, label: 'parking meter' },\n { class: 14, label: 'bench' },\n { class: 15, label: 'bird' },\n { class: 16, label: 'cat' },\n { class: 17, label: 'dog' },\n { class: 18, label: 'horse' },\n { class: 19, label: 'sheep' },\n { class: 20, label: 'cow' },\n { class: 21, label: 'elephant' },\n { class: 22, label: 'bear' },\n { class: 23, label: 'zebra' },\n { class: 24, label: 'giraffe' },\n { class: 25, label: 'backpack' },\n { class: 26, label: 'umbrella' },\n { class: 27, label: 'handbag' },\n { class: 28, label: 'tie' },\n { class: 29, label: 'suitcase' },\n { class: 30, label: 'frisbee' },\n { class: 31, label: 'skis' },\n { class: 32, label: 'snowboard' },\n { class: 33, label: 'sports ball' },\n { class: 34, label: 'kite' },\n { class: 35, label: 'baseball bat' },\n { class: 36, label: 'baseball glove' },\n { class: 37, label: 'skateboard' },\n { class: 38, label: 'surfboard' },\n { class: 39, label: 'tennis racket' },\n { class: 40, label: 'bottle' },\n { class: 41, label: 'wine glass' },\n { class: 42, label: 'cup' },\n { class: 43, label: 'fork' },\n { class: 44, label: 'knife' },\n { class: 45, label: 'spoon' },\n { class: 46, label: 'bowl' },\n { class: 47, label: 'banana' },\n { class: 48, label: 'apple' },\n { class: 49, label: 'sandwich' },\n { class: 50, label: 'orange' },\n { class: 51, label: 'broccoli' },\n { class: 52, label: 'carrot' },\n { class: 53, label: 'hot dog' },\n { class: 54, label: 'pizza' },\n { class: 55, label: 'donut' },\n { class: 56, label: 'cake' },\n { class: 57, label: 'chair' },\n { class: 58, label: 'couch' },\n { class: 59, label: 'potted plant' },\n { class: 60, label: 'bed' },\n { class: 61, label: 'dining table' },\n { class: 62, label: 'toilet' },\n { class: 63, label: 'tv' },\n { class: 64, label: 'laptop' },\n { class: 65, label: 'mouse' },\n { class: 66, label: 'remote' },\n { class: 67, label: 'keyboard' },\n { class: 68, label: 'cell phone' },\n { class: 69, label: 'microwave' },\n { class: 70, label: 'oven' },\n { class: 71, label: 'toaster' },\n { class: 72, label: 'sink' },\n { class: 73, label: 'refrigerator' },\n { class: 74, label: 'book' },\n { class: 75, label: 'clock' },\n { class: 76, label: 'vase' },\n { class: 77, label: 'scissors' },\n { class: 78, label: 'teddy bear' },\n { class: 79, label: 'hair drier' },\n { class: 80, label: 'toothbrush' },\n];\n", "/**\n * NanoDet object detection module\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { labels } from './labels';\nimport { Item } from '../result';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model;\nlet last: Array = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nconst scaleBox = 2.5; // increase box size\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.object.modelPath));\n const inputs = Object.values(model.modelSignature['inputs']);\n model.inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : null;\n if (!model.inputSize) throw new Error(`Human: Cannot determine model inputSize: ${config.object.modelPath}`);\n if (!model || !model.modelUrl) log('load model failed:', config.object.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nasync function process(res, inputSize, outputShape, config) {\n let id = 0;\n let results: Array = [];\n for (const strideSize of [1, 2, 4]) { // try each stride size as it detects large/medium/small objects\n // find scores, boxes, classes\n tf.tidy(async () => { // wrap in tidy to automatically deallocate temp tensors\n const baseSize = strideSize * 13; // 13x13=169, 26x26=676, 52x52=2704\n // find boxes and scores output depending on stride\n const scoresT = res.find((a) => (a.shape[1] === (baseSize ** 2) && a.shape[2] === labels.length))?.squeeze();\n const featuresT = res.find((a) => (a.shape[1] === (baseSize ** 2) && a.shape[2] < labels.length))?.squeeze();\n const boxesMax = featuresT.reshape([-1, 4, featuresT.shape[1] / 4]); // reshape [output] to [4, output / 4] where number is number of different features inside each stride\n const boxIdx = await boxesMax.argMax(2).array(); // what we need is indexes of features with highest scores, not values itself\n const scores = await scoresT.array(); // optionally use exponential scores or just as-is\n for (let i = 0; i < scoresT.shape[0]; i++) { // total strides (x * y matrix)\n for (let j = 0; j < scoresT.shape[1]; j++) { // one score for each class\n const score = scores[i][j]; // get score for current position\n if (score > config.object.minConfidence && j !== 61) {\n const cx = (0.5 + Math.trunc(i % baseSize)) / baseSize; // center.x normalized to range 0..1\n const cy = (0.5 + Math.trunc(i / baseSize)) / baseSize; // center.y normalized to range 0..1\n const boxOffset = boxIdx[i].map((a) => a * (baseSize / strideSize / inputSize)); // just grab indexes of features with highest scores\n const [x, y] = [\n cx - (scaleBox / strideSize * boxOffset[0]),\n cy - (scaleBox / strideSize * boxOffset[1]),\n ];\n const [w, h] = [\n cx + (scaleBox / strideSize * boxOffset[2]) - x,\n cy + (scaleBox / strideSize * boxOffset[3]) - y,\n ];\n let boxRaw = [x, y, w, h]; // results normalized to range 0..1\n boxRaw = boxRaw.map((a) => Math.max(0, Math.min(a, 1))); // fix out-of-bounds coords\n const box = [ // results normalized to input image pixels\n boxRaw[0] * outputShape[0],\n boxRaw[1] * outputShape[1],\n boxRaw[2] * outputShape[0],\n boxRaw[3] * outputShape[1],\n ];\n const result = {\n id: id++,\n // strideSize,\n score: Math.round(100 * score) / 100,\n class: j + 1,\n label: labels[j].label,\n // center: [Math.trunc(outputShape[0] * cx), Math.trunc(outputShape[1] * cy)],\n // centerRaw: [cx, cy],\n box: (box.map((a) => Math.trunc(a))) as [number, number, number, number],\n boxRaw: boxRaw as [number, number, number, number],\n };\n results.push(result);\n }\n }\n }\n });\n }\n // deallocate tensors\n res.forEach((t) => tf.dispose(t));\n\n // normally nms is run on raw results, but since boxes need to be calculated this way we skip calulcation of\n // unnecessary boxes and run nms only on good candidates (basically it just does IOU analysis as scores are already filtered)\n const nmsBoxes = results.map((a) => [a.boxRaw[1], a.boxRaw[0], a.boxRaw[3], a.boxRaw[2]]); // switches coordinates from x,y to y,x as expected by tf.nms\n const nmsScores = results.map((a) => a.score);\n let nmsIdx: Array = [];\n if (nmsBoxes && nmsBoxes.length > 0) {\n const nms = await tf.image.nonMaxSuppressionAsync(nmsBoxes, nmsScores, config.object.maxDetected, config.object.iouThreshold, config.object.minConfidence);\n nmsIdx = await nms.data();\n tf.dispose(nms);\n }\n\n // filter & sort results\n results = results\n .filter((_val, idx) => nmsIdx.includes(idx))\n .sort((a, b) => (b.score - a.score));\n\n return results;\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if ((skipped < config.object.skipFrames) && config.skipFrame && (last.length > 0)) {\n skipped++;\n return last;\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const outputSize = [image.shape[2], image.shape[1]];\n const resize = tf.image.resizeBilinear(image, [model.inputSize, model.inputSize], false);\n const norm = tf.div(resize, 255);\n const transpose = norm.transpose([0, 3, 1, 2]);\n tf.dispose(norm);\n tf.dispose(resize);\n\n let objectT;\n if (config.object.enabled) objectT = await model.predict(transpose);\n tf.dispose(transpose);\n\n const obj = await process(objectT, model.inputSize, outputSize, config);\n last = obj;\n resolve(obj);\n });\n}\n", "/**\n * CenterNet object detection module\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { labels } from './labels';\nimport { Item } from '../result';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model;\nlet last: Item[] = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.object.modelPath));\n const inputs = Object.values(model.modelSignature['inputs']);\n model.inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : null;\n if (!model.inputSize) throw new Error(`Human: Cannot determine model inputSize: ${config.object.modelPath}`);\n if (!model || !model.modelUrl) log('load model failed:', config.object.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nasync function process(res: Tensor, inputSize, outputShape, config: Config) {\n if (!res) return [];\n const results: Array = [];\n const detections = await res.array();\n const squeezeT = tf.squeeze(res);\n tf.dispose(res);\n const arr = tf.split(squeezeT, 6, 1); // x1, y1, x2, y2, score, class\n tf.dispose(squeezeT);\n const stackT = tf.stack([arr[1], arr[0], arr[3], arr[2]], 1); // reorder dims as tf.nms expects y, x\n const boxesT = tf.squeeze(stackT);\n const scoresT = tf.squeeze(arr[4]);\n const classesT = tf.squeeze(arr[5]);\n arr.forEach((t) => tf.dispose(t));\n const nmsT = await tf.image.nonMaxSuppressionAsync(boxesT, scoresT, config.object.maxDetected, config.object.iouThreshold, config.object.minConfidence);\n tf.dispose(boxesT);\n tf.dispose(scoresT);\n tf.dispose(classesT);\n const nms = await nmsT.data();\n tf.dispose(nmsT);\n let i = 0;\n for (const id of nms) {\n const score = Math.trunc(100 * detections[0][id][4]) / 100;\n const classVal = detections[0][id][5];\n const label = labels[classVal].label;\n const [x, y] = [\n detections[0][id][0] / inputSize,\n detections[0][id][1] / inputSize,\n ];\n const boxRaw = [\n x,\n y,\n detections[0][id][2] / inputSize - x,\n detections[0][id][3] / inputSize - y,\n ] as [number, number, number, number];\n const box = [\n Math.trunc(boxRaw[0] * outputShape[0]),\n Math.trunc(boxRaw[1] * outputShape[1]),\n Math.trunc(boxRaw[2] * outputShape[0]),\n Math.trunc(boxRaw[3] * outputShape[1]),\n ] as [number, number, number, number];\n results.push({ id: i++, score, class: classVal, label, box, boxRaw });\n }\n return results;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if ((skipped < config.object.skipFrames) && config.skipFrame && (last.length > 0)) {\n skipped++;\n return last;\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const outputSize = [input.shape[2], input.shape[1]];\n const resize = tf.image.resizeBilinear(input, [model.inputSize, model.inputSize]);\n const objectT = config.object.enabled ? model.execute(resize, ['tower_0/detections']) : null;\n tf.dispose(resize);\n\n const obj = await process(objectT, model.inputSize, outputSize, config);\n last = obj;\n resolve(obj);\n });\n}\n", "/*\nWebGLImageFilter by Dominic Szablewski: \n*/\n\nfunction GLProgram(gl, vertexSource, fragmentSource) {\n const _collect = function (source, prefix, collection) {\n const r = new RegExp('\\\\b' + prefix + ' \\\\w+ (\\\\w+)', 'ig');\n source.replace(r, (match, name) => {\n collection[name] = 0;\n return match;\n });\n };\n\n const _compile = function (source, type) {\n const shader = gl.createShader(type);\n gl.shaderSource(shader, source);\n gl.compileShader(shader);\n if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) throw new Error('Filter: GL compile failed', gl.getShaderInfoLog(shader));\n return shader;\n };\n\n this.uniform = {};\n this.attribute = {};\n const _vsh = _compile(vertexSource, gl.VERTEX_SHADER);\n const _fsh = _compile(fragmentSource, gl.FRAGMENT_SHADER);\n this.id = gl.createProgram();\n gl.attachShader(this.id, _vsh);\n gl.attachShader(this.id, _fsh);\n gl.linkProgram(this.id);\n\n if (!gl.getProgramParameter(this.id, gl.LINK_STATUS)) throw new Error('Filter: GL link failed', gl.getProgramInfoLog(this.id));\n\n gl.useProgram(this.id);\n // Collect attributes\n _collect(vertexSource, 'attribute', this.attribute);\n for (const a in this.attribute) this.attribute[a] = gl.getAttribLocation(this.id, a);\n // Collect uniforms\n _collect(vertexSource, 'uniform', this.uniform);\n _collect(fragmentSource, 'uniform', this.uniform);\n for (const u in this.uniform) this.uniform[u] = gl.getUniformLocation(this.id, u);\n}\n\n// export const GLImageFilter = function (params) {\nexport function GLImageFilter(params) {\n if (!params) params = { };\n let _drawCount = 0;\n let _sourceTexture = null;\n let _lastInChain = false;\n let _currentFramebufferIndex = -1;\n let _tempFramebuffers = [null, null];\n let _filterChain = [];\n let _width = -1;\n let _height = -1;\n let _vertexBuffer = null;\n let _currentProgram = null;\n const _filter = {};\n const _canvas = params.canvas || document.createElement('canvas');\n // key is the shader program source, value is the compiled program\n const _shaderProgramCache = { };\n const DRAW = { INTERMEDIATE: 1 };\n const gl = _canvas.getContext('webgl');\n if (!gl) throw new Error('Filter: getContext() failed');\n\n this.addFilter = function (name) {\n // eslint-disable-next-line prefer-rest-params\n const args = Array.prototype.slice.call(arguments, 1);\n const filter = _filter[name];\n _filterChain.push({ func: filter, args });\n };\n\n this.reset = function () {\n _filterChain = [];\n };\n\n const _resize = function (width, height) {\n // Same width/height? Nothing to do here\n if (width === _width && height === _height) { return; }\n _canvas.width = width;\n _width = width;\n _canvas.height = height;\n _height = height;\n // Create the context if we don't have it yet\n if (!_vertexBuffer) {\n // Create the vertex buffer for the two triangles [x, y, u, v] * 6\n const vertices = new Float32Array([\n -1, -1, 0, 1, 1, -1, 1, 1, -1, 1, 0, 0,\n -1, 1, 0, 0, 1, -1, 1, 1, 1, 1, 1, 0,\n ]);\n // eslint-disable-next-line no-unused-expressions\n (_vertexBuffer = gl.createBuffer(), gl.bindBuffer(gl.ARRAY_BUFFER, _vertexBuffer));\n gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);\n gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, true);\n }\n gl.viewport(0, 0, _width, _height);\n // Delete old temp framebuffers\n _tempFramebuffers = [null, null];\n };\n\n const _createFramebufferTexture = function (width, height) {\n const fbo = gl.createFramebuffer();\n gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);\n const renderbuffer = gl.createRenderbuffer();\n gl.bindRenderbuffer(gl.RENDERBUFFER, renderbuffer);\n const texture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, texture);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, width, height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0);\n gl.bindTexture(gl.TEXTURE_2D, null);\n gl.bindFramebuffer(gl.FRAMEBUFFER, null);\n return { fbo, texture };\n };\n\n const _getTempFramebuffer = function (index) {\n _tempFramebuffers[index] = _tempFramebuffers[index] || _createFramebufferTexture(_width, _height);\n return _tempFramebuffers[index];\n };\n\n const _draw = function (flags = null) {\n let source = null;\n let target = null;\n let flipY = false;\n // Set up the source\n if (_drawCount === 0) {\n // First draw call - use the source texture\n source = _sourceTexture;\n } else {\n // All following draw calls use the temp buffer last drawn to\n source = _getTempFramebuffer(_currentFramebufferIndex)?.texture;\n }\n _drawCount++;\n // Set up the target\n if (_lastInChain && !(flags & DRAW.INTERMEDIATE)) {\n // Last filter in our chain - draw directly to the WebGL Canvas. We may\n // also have to flip the image vertically now\n target = null;\n flipY = _drawCount % 2 === 0;\n } else {\n // Intermediate draw call - get a temp buffer to draw to\n _currentFramebufferIndex = (_currentFramebufferIndex + 1) % 2;\n target = _getTempFramebuffer(_currentFramebufferIndex)?.fbo;\n }\n // Bind the source and target and draw the two triangles\n gl.bindTexture(gl.TEXTURE_2D, source);\n gl.bindFramebuffer(gl.FRAMEBUFFER, target);\n gl.uniform1f(_currentProgram.uniform.flipY, (flipY ? -1 : 1));\n gl.drawArrays(gl.TRIANGLES, 0, 6);\n };\n\n this.apply = function (image) {\n _resize(image.width, image.height);\n _drawCount = 0;\n // Create the texture for the input image if we haven't yet\n if (!_sourceTexture) _sourceTexture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, _sourceTexture);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);\n // No filters? Just draw\n if (_filterChain.length === 0) {\n // const program = _compileShader(SHADER.FRAGMENT_IDENTITY);\n _draw();\n return _canvas;\n }\n for (let i = 0; i < _filterChain.length; i++) {\n _lastInChain = (i === _filterChain.length - 1);\n const f = _filterChain[i];\n f.func.apply(this, f.args || []);\n }\n return _canvas;\n };\n\n const _compileShader = function (fragmentSource) {\n if (_shaderProgramCache[fragmentSource]) {\n _currentProgram = _shaderProgramCache[fragmentSource];\n gl.useProgram(_currentProgram.id);\n return _currentProgram;\n }\n // Compile shaders\n const SHADER = {};\n SHADER.VERTEX_IDENTITY = [\n 'precision highp float;',\n 'attribute vec2 pos;',\n 'attribute vec2 uv;',\n 'varying vec2 vUv;',\n 'uniform float flipY;',\n 'void main(void) {',\n 'vUv = uv;',\n 'gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);',\n '}',\n ].join('\\n');\n SHADER.FRAGMENT_IDENTITY = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'void main(void) {',\n 'gl_FragColor = texture2D(texture, vUv);',\n '}',\n ].join('\\n');\n _currentProgram = new GLProgram(gl, SHADER.VERTEX_IDENTITY, fragmentSource);\n const floatSize = Float32Array.BYTES_PER_ELEMENT;\n const vertSize = 4 * floatSize;\n gl.enableVertexAttribArray(_currentProgram.attribute.pos);\n gl.vertexAttribPointer(_currentProgram.attribute.pos, 2, gl.FLOAT, false, vertSize, 0 * floatSize);\n gl.enableVertexAttribArray(_currentProgram.attribute.uv);\n gl.vertexAttribPointer(_currentProgram.attribute.uv, 2, gl.FLOAT, false, vertSize, 2 * floatSize);\n _shaderProgramCache[fragmentSource] = _currentProgram;\n return _currentProgram;\n };\n\n // -------------------------------------------------------------------------\n // Color Matrix Filter\n _filter.colorMatrix = function (matrix) {\n // Create a Float32 Array and normalize the offset component to 0-1\n const m = new Float32Array(matrix);\n m[4] /= 255;\n m[9] /= 255;\n m[14] /= 255;\n m[19] /= 255;\n // Can we ignore the alpha value? Makes things a bit faster.\n const shader = (m[18] === 1 && m[3] === 0 && m[8] === 0 && m[13] === 0 && m[15] === 0 && m[16] === 0 && m[17] === 0 && m[19] === 0)\n ? _filter.colorMatrix.SHADER.WITHOUT_ALPHA\n : _filter.colorMatrix.SHADER.WITH_ALPHA;\n const program = _compileShader(shader);\n gl.uniform1fv(program.uniform.m, m);\n _draw();\n };\n _filter.colorMatrix.SHADER = {};\n _filter.colorMatrix.SHADER.WITH_ALPHA = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform float m[20];',\n 'void main(void) {',\n 'vec4 c = texture2D(texture, vUv);',\n 'gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];',\n 'gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];',\n 'gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];',\n 'gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];',\n '}',\n ].join('\\n');\n _filter.colorMatrix.SHADER.WITHOUT_ALPHA = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform float m[20];',\n 'void main(void) {',\n 'vec4 c = texture2D(texture, vUv);',\n 'gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];',\n 'gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];',\n 'gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];',\n 'gl_FragColor.a = c.a;',\n '}',\n ].join('\\n');\n\n _filter.brightness = function (brightness) {\n const b = (brightness || 0) + 1;\n _filter.colorMatrix([\n b, 0, 0, 0, 0,\n 0, b, 0, 0, 0,\n 0, 0, b, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.saturation = function (amount) {\n const x = (amount || 0) * 2 / 3 + 1;\n const y = ((x - 1) * -0.5);\n _filter.colorMatrix([\n x, y, y, 0, 0,\n y, x, y, 0, 0,\n y, y, x, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.desaturate = function () {\n _filter.saturation(-1);\n };\n\n _filter.contrast = function (amount) {\n const v = (amount || 0) + 1;\n const o = -128 * (v - 1);\n\n _filter.colorMatrix([\n v, 0, 0, 0, o,\n 0, v, 0, 0, o,\n 0, 0, v, 0, o,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.negative = function () {\n _filter.contrast(-2);\n };\n\n _filter.hue = function (rotation) {\n rotation = (rotation || 0) / 180 * Math.PI;\n const cos = Math.cos(rotation);\n const sin = Math.sin(rotation);\n const lumR = 0.213;\n const lumG = 0.715;\n const lumB = 0.072;\n\n _filter.colorMatrix([\n lumR + cos * (1 - lumR) + sin * (-lumR), lumG + cos * (-lumG) + sin * (-lumG), lumB + cos * (-lumB) + sin * (1 - lumB), 0, 0,\n lumR + cos * (-lumR) + sin * (0.143), lumG + cos * (1 - lumG) + sin * (0.140), lumB + cos * (-lumB) + sin * (-0.283), 0, 0,\n lumR + cos * (-lumR) + sin * (-(1 - lumR)), lumG + cos * (-lumG) + sin * (lumG), lumB + cos * (1 - lumB) + sin * (lumB), 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.desaturateLuminance = function () {\n _filter.colorMatrix([\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.sepia = function () {\n _filter.colorMatrix([\n 0.393, 0.7689999, 0.18899999, 0, 0,\n 0.349, 0.6859999, 0.16799999, 0, 0,\n 0.272, 0.5339999, 0.13099999, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.brownie = function () {\n _filter.colorMatrix([\n 0.5997023498159715, 0.34553243048391263, -0.2708298674538042, 0, 47.43192855600873,\n -0.037703249837783157, 0.8609577587992641, 0.15059552388459913, 0, -36.96841498319127,\n 0.24113635128153335, -0.07441037908422492, 0.44972182064877153, 0, -7.562075277591283,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.vintagePinhole = function () {\n _filter.colorMatrix([\n 0.6279345635605994, 0.3202183420819367, -0.03965408211312453, 0, 9.651285835294123,\n 0.02578397704808868, 0.6441188644374771, 0.03259127616149294, 0, 7.462829176470591,\n 0.0466055556782719, -0.0851232987247891, 0.5241648018700465, 0, 5.159190588235296,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.kodachrome = function () {\n _filter.colorMatrix([\n 1.1285582396593525, -0.3967382283601348, -0.03992559172921793, 0, 63.72958762196502,\n -0.16404339962244616, 1.0835251566291304, -0.05498805115633132, 0, 24.732407896706203,\n -0.16786010706155763, -0.5603416277695248, 1.6014850761964943, 0, 35.62982807460946,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.technicolor = function () {\n _filter.colorMatrix([\n 1.9125277891456083, -0.8545344976951645, -0.09155508482755585, 0, 11.793603434377337,\n -0.3087833385928097, 1.7658908555458428, -0.10601743074722245, 0, -70.35205161461398,\n -0.231103377548616, -0.7501899197440212, 1.847597816108189, 0, 30.950940869491138,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.polaroid = function () {\n _filter.colorMatrix([\n 1.438, -0.062, -0.062, 0, 0,\n -0.122, 1.378, -0.122, 0, 0,\n -0.016, -0.016, 1.483, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.shiftToBGR = function () {\n _filter.colorMatrix([\n 0, 0, 1, 0, 0,\n 0, 1, 0, 0, 0,\n 1, 0, 0, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n // -------------------------------------------------------------------------\n // Convolution Filter\n _filter.convolution = function (matrix) {\n const m = new Float32Array(matrix);\n const pixelSizeX = 1 / _width;\n const pixelSizeY = 1 / _height;\n const program = _compileShader(_filter.convolution.SHADER);\n gl.uniform1fv(program.uniform.m, m);\n gl.uniform2f(program.uniform.px, pixelSizeX, pixelSizeY);\n _draw();\n };\n\n _filter.convolution.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform vec2 px;',\n 'uniform float m[9];',\n 'void main(void) {',\n 'vec4 c11 = texture2D(texture, vUv - px);', // top left\n 'vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));', // top center\n 'vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));', // top right\n 'vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );', // mid left\n 'vec4 c22 = texture2D(texture, vUv);', // mid center\n 'vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );', // mid right\n 'vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );', // bottom left\n 'vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );', // bottom center\n 'vec4 c33 = texture2D(texture, vUv + px );', // bottom right\n 'gl_FragColor = ',\n 'c11 * m[0] + c12 * m[1] + c22 * m[2] +',\n 'c21 * m[3] + c22 * m[4] + c23 * m[5] +',\n 'c31 * m[6] + c32 * m[7] + c33 * m[8];',\n 'gl_FragColor.a = c22.a;',\n '}',\n ].join('\\n');\n\n _filter.detectEdges = function () {\n _filter.convolution.call(this, [\n 0, 1, 0,\n 1, -4, 1,\n 0, 1, 0,\n ]);\n };\n\n _filter.sobelX = function () {\n _filter.convolution.call(this, [\n -1, 0, 1,\n -2, 0, 2,\n -1, 0, 1,\n ]);\n };\n\n _filter.sobelY = function () {\n _filter.convolution.call(this, [\n -1, -2, -1,\n 0, 0, 0,\n 1, 2, 1,\n ]);\n };\n\n _filter.sharpen = function (amount) {\n const a = amount || 1;\n _filter.convolution.call(this, [\n 0, -1 * a, 0,\n -1 * a, 1 + 4 * a, -1 * a,\n 0, -1 * a, 0,\n ]);\n };\n\n _filter.emboss = function (size) {\n const s = size || 1;\n _filter.convolution.call(this, [\n -2 * s, -1 * s, 0,\n -1 * s, 1, 1 * s,\n 0, 1 * s, 2 * s,\n ]);\n };\n\n // -------------------------------------------------------------------------\n // Blur Filter\n _filter.blur = function (size) {\n const blurSizeX = (size / 7) / _width;\n const blurSizeY = (size / 7) / _height;\n const program = _compileShader(_filter.blur.SHADER);\n // Vertical\n gl.uniform2f(program.uniform.px, 0, blurSizeY);\n _draw(DRAW.INTERMEDIATE);\n // Horizontal\n gl.uniform2f(program.uniform.px, blurSizeX, 0);\n _draw();\n };\n\n _filter.blur.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform vec2 px;',\n 'void main(void) {',\n 'gl_FragColor = vec4(0.0);',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;',\n 'gl_FragColor += texture2D(texture, vUv )*0.159576912161;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;',\n '}',\n ].join('\\n');\n\n // -------------------------------------------------------------------------\n // Pixelate Filter\n _filter.pixelate = function (size) {\n const blurSizeX = (size) / _width;\n const blurSizeY = (size) / _height;\n const program = _compileShader(_filter.pixelate.SHADER);\n // Horizontal\n gl.uniform2f(program.uniform.size, blurSizeX, blurSizeY);\n _draw();\n };\n\n _filter.pixelate.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform vec2 size;',\n 'uniform sampler2D texture;',\n 'vec2 pixelate(vec2 coord, vec2 size) {',\n 'return floor( coord / size ) * size;',\n '}',\n 'void main(void) {',\n 'gl_FragColor = vec4(0.0);',\n 'vec2 coord = pixelate(vUv, size);',\n 'gl_FragColor += texture2D(texture, coord);',\n '}',\n ].join('\\n');\n}\n", "/**\n * Image Processing module used by Human\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as fxImage from './imagefx';\nimport { Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\ntype Input = Tensor | typeof Image | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas;\n\nconst maxSize = 2048;\n// internal temp canvases\nlet inCanvas;\nlet outCanvas;\n// instance of fximage\nlet fx: fxImage.GLImageFilter | null;\n\n// process input image and return tensor\n// input can be tensor, imagedata, htmlimageelement, htmlvideoelement\n// input is resized and run through imagefx filter\nexport function process(input: Input, config: Config): { tensor: Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement } {\n let tensor;\n if (!input) throw new Error('Human: Input is missing');\n // sanity checks since different browsers do not implement all dom elements\n if (\n !(input instanceof tf.Tensor)\n && !(typeof Image !== 'undefined' && input instanceof Image)\n && !(typeof ImageData !== 'undefined' && input instanceof ImageData)\n && !(typeof ImageBitmap !== 'undefined' && input instanceof ImageBitmap)\n && !(typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n && !(typeof HTMLMediaElement !== 'undefined' && input instanceof HTMLMediaElement)\n && !(typeof HTMLVideoElement !== 'undefined' && input instanceof HTMLVideoElement)\n && !(typeof HTMLCanvasElement !== 'undefined' && input instanceof HTMLCanvasElement)\n && !(typeof OffscreenCanvas !== 'undefined' && input instanceof OffscreenCanvas)\n ) {\n throw new Error('Human: Input type is not recognized');\n }\n if (input instanceof tf.Tensor) {\n // if input is tensor, use as-is\n if (input.shape && input.shape.length === 4 && input.shape[0] === 1 && input.shape[3] === 3) tensor = tf.clone(input);\n else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${input.shape}`);\n } else {\n // check if resizing will be needed\n const originalWidth = input['naturalWidth'] || input['videoWidth'] || input['width'] || (input['shape'] && (input['shape'][1] > 0));\n const originalHeight = input['naturalHeight'] || input['videoHeight'] || input['height'] || (input['shape'] && (input['shape'][2] > 0));\n if (!originalWidth || !originalHeight) return { tensor: null, canvas: inCanvas }; // video may become temporarily unavailable due to onresize\n let targetWidth = originalWidth;\n let targetHeight = originalHeight;\n if (targetWidth > maxSize) {\n targetWidth = maxSize;\n targetHeight = targetWidth * originalHeight / originalWidth;\n }\n if (targetHeight > maxSize) {\n targetHeight = maxSize;\n targetWidth = targetHeight * originalWidth / originalHeight;\n }\n\n // create our canvas and resize it if needed\n if (config.filter.width > 0) targetWidth = config.filter.width;\n else if (config.filter.height > 0) targetWidth = originalWidth * (config.filter.height / originalHeight);\n if (config.filter.height > 0) targetHeight = config.filter.height;\n else if (config.filter.width > 0) targetHeight = originalHeight * (config.filter.width / originalWidth);\n if (!targetWidth || !targetHeight) throw new Error('Human: Input cannot determine dimension');\n if (!inCanvas || (inCanvas?.width !== targetWidth) || (inCanvas?.height !== targetHeight)) {\n inCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n if (inCanvas?.width !== targetWidth) inCanvas.width = targetWidth;\n if (inCanvas?.height !== targetHeight) inCanvas.height = targetHeight;\n }\n\n // draw input to our canvas\n const ctx = inCanvas.getContext('2d');\n if (input instanceof ImageData) {\n ctx.putImageData(input, 0, 0);\n } else {\n if (config.filter.flip && typeof ctx.translate !== 'undefined') {\n ctx.translate(originalWidth, 0);\n ctx.scale(-1, 1);\n ctx.drawImage(input, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height);\n ctx.setTransform(1, 0, 0, 1, 0, 0); // resets transforms to defaults\n } else {\n ctx.drawImage(input, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height);\n }\n }\n\n // imagefx transforms using gl\n if (config.filter.enabled) {\n if (!fx || !outCanvas || (inCanvas.width !== outCanvas.width) || (inCanvas?.height !== outCanvas?.height)) {\n outCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(inCanvas?.width, inCanvas?.height) : document.createElement('canvas');\n if (outCanvas?.width !== inCanvas?.width) outCanvas.width = inCanvas?.width;\n if (outCanvas?.height !== inCanvas?.height) outCanvas.height = inCanvas?.height;\n // log('created FX filter');\n fx = tf.ENV.flags.IS_BROWSER ? new fxImage.GLImageFilter({ canvas: outCanvas }) : null; // && (typeof document !== 'undefined')\n }\n if (!fx) return { tensor: null, canvas: inCanvas };\n fx.reset();\n fx.addFilter('brightness', config.filter.brightness); // must have at least one filter enabled\n if (config.filter.contrast !== 0) fx.addFilter('contrast', config.filter.contrast);\n if (config.filter.sharpness !== 0) fx.addFilter('sharpen', config.filter.sharpness);\n if (config.filter.blur !== 0) fx.addFilter('blur', config.filter.blur);\n if (config.filter.saturation !== 0) fx.addFilter('saturation', config.filter.saturation);\n if (config.filter.hue !== 0) fx.addFilter('hue', config.filter.hue);\n if (config.filter.negative) fx.addFilter('negative');\n if (config.filter.sepia) fx.addFilter('sepia');\n if (config.filter.vintage) fx.addFilter('brownie');\n if (config.filter.sepia) fx.addFilter('sepia');\n if (config.filter.kodachrome) fx.addFilter('kodachrome');\n if (config.filter.technicolor) fx.addFilter('technicolor');\n if (config.filter.polaroid) fx.addFilter('polaroid');\n if (config.filter.pixelate !== 0) fx.addFilter('pixelate', config.filter.pixelate);\n fx.apply(inCanvas);\n // read pixel data\n /*\n const gl = outCanvas.getContext('webgl');\n if (gl) {\n const glBuffer = new Uint8Array(outCanvas.width * outCanvas.height * 4);\n const pixBuffer = new Uint8Array(outCanvas.width * outCanvas.height * 3);\n gl.readPixels(0, 0, outCanvas.width, outCanvas.height, gl.RGBA, gl.UNSIGNED_BYTE, glBuffer);\n // gl returns rbga while we only need rgb, so discarding alpha channel\n // gl returns starting point as lower left, so need to invert vertical\n let i = 0;\n for (let y = outCanvas.height - 1; y >= 0; y--) {\n for (let x = 0; x < outCanvas.width; x++) {\n const index = (x + y * outCanvas.width) * 4;\n pixBuffer[i++] = glBuffer[index + 0];\n pixBuffer[i++] = glBuffer[index + 1];\n pixBuffer[i++] = glBuffer[index + 2];\n }\n }\n outCanvas.data = pixBuffer;\n const shape = [outCanvas.height, outCanvas.width, 3];\n const pixels = tf.tensor3d(outCanvas.data, shape, 'float32');\n tensor = tf.expandDims(pixels, 0);\n tf.dispose(pixels);\n }\n */\n } else {\n outCanvas = inCanvas;\n if (fx) fx = null;\n }\n\n // create tensor from image if tensor is not already defined\n if (!tensor) {\n let pixels;\n if (outCanvas.data) { // if we have data, just convert to tensor\n const shape = [outCanvas.height, outCanvas.width, 3];\n pixels = tf.tensor3d(outCanvas.data, shape, 'int32');\n } else if (outCanvas instanceof ImageData) { // if input is imagedata, just use it\n pixels = tf.browser ? tf.browser.fromPixels(outCanvas) : null;\n } else if (config.backend === 'webgl' || config.backend === 'humangl') { // tf kernel-optimized method to get imagedata\n // we cant use canvas as-is as it already has a context, so we do a silly one more canvas\n const tempCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n tempCanvas.width = targetWidth;\n tempCanvas.height = targetHeight;\n const tempCtx = tempCanvas.getContext('2d');\n tempCtx?.drawImage(outCanvas, 0, 0);\n pixels = tf.browser ? tf.browser.fromPixels(tempCanvas) : null;\n } else { // cpu and wasm kernel does not implement efficient fromPixels method\n // we cant use canvas as-is as it already has a context, so we do a silly one more canvas and do fromPixels on ImageData instead\n const tempCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n tempCanvas.width = targetWidth;\n tempCanvas.height = targetHeight;\n const tempCtx = tempCanvas.getContext('2d');\n tempCtx?.drawImage(outCanvas, 0, 0);\n const data = tempCtx?.getImageData(0, 0, targetWidth, targetHeight);\n pixels = tf.browser ? tf.browser.fromPixels(data) : null;\n }\n if (pixels) {\n const casted = tf.cast(pixels, 'float32');\n tensor = tf.expandDims(casted, 0);\n tf.dispose(pixels);\n tf.dispose(casted);\n }\n }\n }\n const canvas = config.filter.return ? outCanvas : null;\n return { tensor, canvas };\n}\n", "/**\n * EfficientPose Module\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as image from '../image/image';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\ntype Input = Tensor | typeof Image | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas;\n\nlet model: GraphModel;\nlet busy = false;\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.segmentation.modelPath)) as unknown as GraphModel;\n if (!model || !model['modelUrl']) log('load model failed:', config.segmentation.modelPath);\n else if (config.debug) log('load model:', model['modelUrl']);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(input: { tensor: Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement }): Promise {\n const width = input.tensor?.shape[1] || 0;\n const height = input.tensor?.shape[2] || 0;\n if (!input.tensor) return null;\n if (!model || !model.inputs[0].shape) return null;\n const resizeInput = tf.image.resizeBilinear(input.tensor, [model.inputs[0].shape[1], model.inputs[0].shape[2]], false);\n const norm = tf.div(resizeInput, 255);\n const res = model.predict(norm) as Tensor;\n // meet output: 1,256,256,1\n // selfie output: 1,144,256,2\n tf.dispose(resizeInput);\n tf.dispose(norm);\n\n const squeeze = tf.squeeze(res, 0);\n let resizeOutput;\n if (squeeze.shape[2] === 2) {\n // model meet has two channels for fg and bg\n const softmax = squeeze.softmax();\n const [bg, fg] = tf.unstack(softmax, 2);\n const expand = tf.expandDims(fg, 2);\n const pad = tf.expandDims(expand, 0);\n tf.dispose(softmax);\n tf.dispose(bg);\n tf.dispose(fg);\n // running sofmax before unstack creates 2x2 matrix so we only take upper-left quadrant\n const crop = tf.image.cropAndResize(pad, [[0, 0, 0.5, 0.5]], [0], [width, height]);\n // otherwise run softmax after unstack and use standard resize\n // resizeOutput = tf.image.resizeBilinear(expand, [input.tensor?.shape[1], input.tensor?.shape[2]]);\n resizeOutput = tf.squeeze(crop, 0);\n tf.dispose(crop);\n tf.dispose(expand);\n tf.dispose(pad);\n } else { // model selfie has a single channel that we can use directly\n resizeOutput = tf.image.resizeBilinear(squeeze, [width, height]);\n }\n\n if (typeof document === 'undefined') return resizeOutput.data(); // we're running in nodejs so return alpha array as-is\n\n const overlay = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(width, height) : document.createElement('canvas');\n overlay.width = width;\n overlay.height = height;\n if (tf.browser) await tf.browser.toPixels(resizeOutput, overlay);\n tf.dispose(resizeOutput);\n tf.dispose(squeeze);\n tf.dispose(res);\n\n // get alpha channel data\n const alphaCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(width, height) : document.createElement('canvas'); // need one more copy since input may already have gl context so 2d context fails\n alphaCanvas.width = width;\n alphaCanvas.height = height;\n const ctxAlpha = alphaCanvas.getContext('2d') as CanvasRenderingContext2D;\n ctxAlpha.filter = 'blur(8px';\n await ctxAlpha.drawImage(overlay, 0, 0);\n const alpha = ctxAlpha.getImageData(0, 0, width, height).data;\n\n // get original canvas merged with overlay\n const original = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(width, height) : document.createElement('canvas'); // need one more copy since input may already have gl context so 2d context fails\n original.width = width;\n original.height = height;\n const ctx = original.getContext('2d') as CanvasRenderingContext2D;\n if (input.canvas) await ctx.drawImage(input.canvas, 0, 0);\n // https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/globalCompositeOperation // best options are: darken, color-burn, multiply\n ctx.globalCompositeOperation = 'darken';\n ctx.filter = 'blur(8px)'; // use css filter for bluring, can be done with gaussian blur manually instead\n await ctx.drawImage(overlay, 0, 0);\n ctx.globalCompositeOperation = 'source-over'; // reset\n ctx.filter = 'none'; // reset\n\n input.canvas = original;\n\n return alpha;\n}\n\nexport async function process(input: Input, background: Input | undefined, config: Config): Promise {\n if (busy) return null;\n busy = true;\n if (!model) await load(config);\n const img = image.process(input, config);\n const alpha = await predict(img);\n tf.dispose(img.tensor);\n\n if (background && alpha) {\n const tmp = image.process(background, config);\n const bg = tmp.canvas;\n tf.dispose(tmp.tensor);\n const fg = img.canvas;\n const fgData = fg.getContext('2d')?.getImageData(0, 0, fg.width, fg.height).data as Uint8ClampedArray;\n\n const c = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(fg.width, fg.height) : document.createElement('canvas');\n c.width = fg.width;\n c.height = fg.height;\n const ctx = c.getContext('2d') as CanvasRenderingContext2D;\n\n ctx.globalCompositeOperation = 'copy'; // reset\n ctx.drawImage(bg, 0, 0, c.width, c.height);\n const cData = ctx.getImageData(0, 0, c.width, c.height) as ImageData;\n for (let i = 0; i < c.width * c.height; i++) { // this should be done with globalCompositeOperation instead of looping through image data\n cData.data[4 * i + 0] = ((255 - alpha[4 * i + 0]) / 255.0 * cData.data[4 * i + 0]) + (alpha[4 * i + 0] / 255.0 * fgData[4 * i + 0]);\n cData.data[4 * i + 1] = ((255 - alpha[4 * i + 1]) / 255.0 * cData.data[4 * i + 1]) + (alpha[4 * i + 1] / 255.0 * fgData[4 * i + 1]);\n cData.data[4 * i + 2] = ((255 - alpha[4 * i + 2]) / 255.0 * cData.data[4 * i + 2]) + (alpha[4 * i + 2] / 255.0 * fgData[4 * i + 2]);\n cData.data[4 * i + 3] = ((255 - alpha[4 * i + 3]) / 255.0 * cData.data[4 * i + 3]) + (alpha[4 * i + 3] / 255.0 * fgData[4 * i + 3]);\n }\n ctx.putImageData(cData, 0, 0);\n img.canvas = c;\n }\n busy = false;\n return img.canvas;\n}\n", "import * as facemesh from './blazeface/facemesh';\nimport * as faceres from './faceres/faceres';\nimport * as emotion from './emotion/emotion';\nimport * as posenet from './posenet/posenet';\nimport * as handpose from './handpose/handpose';\nimport * as blazepose from './blazepose/blazepose';\nimport * as efficientpose from './efficientpose/efficientpose';\nimport * as movenet from './movenet/movenet';\nimport * as nanodet from './object/nanodet';\nimport * as centernet from './object/centernet';\nimport * as segmentation from './segmentation/segmentation';\n// import * as agegenderrace from './gear/agegenderrace';\n\n/** Load method preloads all instance.configured models on-demand\n * - Not explicitly required as any required model is load implicitly on it's first run\n * @param userinstance.config?: {@link instance.config}\n*/\nexport async function load(instance) {\n if (instance.config.async) { // load models concurrently\n [\n instance.models.face,\n instance.models.emotion,\n instance.models.handpose,\n instance.models.posenet,\n instance.models.blazepose,\n instance.models.efficientpose,\n instance.models.movenet,\n instance.models.nanodet,\n instance.models.centernet,\n instance.models.faceres,\n instance.models.segmentation,\n // instance.models.agegenderrace,\n ] = await Promise.all([\n instance.models.face || (instance.config.face.enabled ? facemesh.load(instance.config) : null),\n instance.models.emotion || ((instance.config.face.enabled && instance.config.face.emotion.enabled) ? emotion.load(instance.config) : null),\n instance.models.handpose || (instance.config.hand.enabled ? handpose.load(instance.config) : null),\n instance.models.posenet || (instance.config.body.enabled && instance.config.body.modelPath.includes('posenet') ? posenet.load(instance.config) : null),\n instance.models.blazepose || (instance.config.body.enabled && instance.config.body.modelPath.includes('blazepose') ? blazepose.load(instance.config) : null),\n instance.models.efficientpose || (instance.config.body.enabled && instance.config.body.modelPath.includes('efficientpose') ? efficientpose.load(instance.config) : null),\n instance.models.movenet || (instance.config.body.enabled && instance.config.body.modelPath.includes('movenet') ? movenet.load(instance.config) : null),\n instance.models.nanodet || (instance.config.object.enabled && instance.config.object.modelPath.includes('nanodet') ? nanodet.load(instance.config) : null),\n instance.models.centernet || (instance.config.object.enabled && instance.config.object.modelPath.includes('centernet') ? centernet.load(instance.config) : null),\n instance.models.faceres || ((instance.config.face.enabled && instance.config.face.description.enabled) ? faceres.load(instance.config) : null),\n instance.models.segmentation || (instance.config.segmentation.enabled ? segmentation.load(instance.config) : null),\n // instance.models.agegenderrace || ((instance.config.face.enabled && instance.config.face.agegenderrace.enabled) ? agegenderrace.load(instance.config) : null),\n ]);\n } else { // load models sequentially\n if (instance.config.face.enabled && !instance.models.face) instance.models.face = await facemesh.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.emotion.enabled && !instance.models.emotion) instance.models.emotion = await emotion.load(instance.config);\n if (instance.config.hand.enabled && !instance.models.handpose) instance.models.handpose = await handpose.load(instance.config);\n if (instance.config.body.enabled && !instance.models.posenet && instance.config.body.modelPath.includes('posenet')) instance.models.posenet = await posenet.load(instance.config);\n if (instance.config.body.enabled && !instance.models.blazepose && instance.config.body.modelPath.includes('blazepose')) instance.models.blazepose = await blazepose.load(instance.config);\n if (instance.config.body.enabled && !instance.models.efficientpose && instance.config.body.modelPath.includes('efficientpose')) instance.models.efficientpose = await blazepose.load(instance.config);\n if (instance.config.body.enabled && !instance.models.movenet && instance.config.body.modelPath.includes('movenet')) instance.models.movenet = await movenet.load(instance.config);\n if (instance.config.object.enabled && !instance.models.nanodet && instance.config.object.modelPath.includes('nanodet')) instance.models.nanodet = await nanodet.load(instance.config);\n if (instance.config.object.enabled && !instance.models.centernet && instance.config.object.modelPath.includes('centernet')) instance.models.centernet = await centernet.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.description.enabled && !instance.models.faceres) instance.models.faceres = await faceres.load(instance.config);\n if (instance.config.segmentation.enabled && !instance.models.segmentation) instance.models.segmentation = await segmentation.load(instance.config);\n // if (instance.config.face.enabled && instance.config.face.agegenderrace.enabled && !instance.models.agegenderrace) instance.models.agegenderrace = await agegenderrace.load(instance.config);\n }\n}\n", "/**\n * Module that analyzes person age\n * Obsolete\n */\n\nimport { log, now } from './helpers';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as facemesh from './blazeface/facemesh';\nimport * as emotion from './emotion/emotion';\nimport * as faceres from './faceres/faceres';\nimport { Face } from './result';\nimport { Tensor } from './tfjs/types';\n\n// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\nconst rad2deg = (theta) => Math.round((theta * 180) / Math.PI);\n\nconst calculateGaze = (face): { bearing: number, strength: number } => {\n const radians = (pt1, pt2) => Math.atan2(pt1[1] - pt2[1], pt1[0] - pt2[0]); // function to calculate angle between any two points\n if (!face.annotations['rightEyeIris'] || !face.annotations['leftEyeIris']) return { bearing: 0, strength: 0 };\n\n const offsetIris = [0, -0.1]; // iris center may not align with average of eye extremes\n const eyeRatio = 1; // factor to normalize changes x vs y\n\n const left = face.mesh[33][2] > face.mesh[263][2]; // pick left or right eye depending which one is closer bazed on outsize point z axis\n const irisCenter = left ? face.mesh[473] : face.mesh[468];\n const eyeCenter = left // eye center is average of extreme points on x axis for both x and y, ignoring y extreme points as eyelids naturally open/close more when gazing up/down so relative point is less precise\n ? [(face.mesh[133][0] + face.mesh[33][0]) / 2, (face.mesh[133][1] + face.mesh[33][1]) / 2]\n : [(face.mesh[263][0] + face.mesh[362][0]) / 2, (face.mesh[263][1] + face.mesh[362][1]) / 2];\n const eyeSize = left // eye size is difference between extreme points for both x and y, used to normalize & squarify eye dimensions\n ? [face.mesh[133][0] - face.mesh[33][0], face.mesh[23][1] - face.mesh[27][1]]\n : [face.mesh[263][0] - face.mesh[362][0], face.mesh[253][1] - face.mesh[257][1]];\n\n const eyeDiff = [ // x distance between extreme point and center point normalized with eye size\n (eyeCenter[0] - irisCenter[0]) / eyeSize[0] - offsetIris[0],\n eyeRatio * (irisCenter[1] - eyeCenter[1]) / eyeSize[1] - offsetIris[1],\n ];\n let strength = Math.sqrt((eyeDiff[0] ** 2) + (eyeDiff[1] ** 2)); // vector length is a diagonal between two differences\n strength = Math.min(strength, face.boxRaw[2] / 2, face.boxRaw[3] / 2); // limit strength to half of box size to avoid clipping due to low precision\n const bearing = (radians([0, 0], eyeDiff) + (Math.PI / 2)) % Math.PI; // using eyeDiff instead eyeCenter/irisCenter combo due to manual adjustments and rotate clockwise 90degrees\n\n return { bearing, strength };\n};\n\nconst calculateFaceAngle = (face, imageSize): {\n angle: { pitch: number, yaw: number, roll: number },\n matrix: [number, number, number, number, number, number, number, number, number],\n gaze: { bearing: number, strength: number },\n} => {\n // const degrees = (theta) => Math.abs(((theta * 180) / Math.PI) % 360);\n const normalize = (v) => { // normalize vector\n const length = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);\n v[0] /= length;\n v[1] /= length;\n v[2] /= length;\n return v;\n };\n const subVectors = (a, b) => { // vector subtraction (a - b)\n const x = a[0] - b[0];\n const y = a[1] - b[1];\n const z = a[2] - b[2];\n return [x, y, z];\n };\n const crossVectors = (a, b) => { // vector cross product (a x b)\n const x = a[1] * b[2] - a[2] * b[1];\n const y = a[2] * b[0] - a[0] * b[2];\n const z = a[0] * b[1] - a[1] * b[0];\n return [x, y, z];\n };\n // 3x3 rotation matrix to Euler angles based on https://www.geometrictools.com/Documentation/EulerAngles.pdf\n const rotationMatrixToEulerAngle = (r) => {\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const [r00, r01, r02, r10, r11, r12, r20, r21, r22] = r;\n let thetaX: number;\n let thetaY: number;\n let thetaZ: number;\n if (r10 < 1) { // YZX calculation\n if (r10 > -1) {\n thetaZ = Math.asin(r10);\n thetaY = Math.atan2(-r20, r00);\n thetaX = Math.atan2(-r12, r11);\n } else {\n thetaZ = -Math.PI / 2;\n thetaY = -Math.atan2(r21, r22);\n thetaX = 0;\n }\n } else {\n thetaZ = Math.PI / 2;\n thetaY = Math.atan2(r21, r22);\n thetaX = 0;\n }\n if (isNaN(thetaX)) thetaX = 0;\n if (isNaN(thetaY)) thetaY = 0;\n if (isNaN(thetaZ)) thetaZ = 0;\n return { pitch: 2 * -thetaX, yaw: 2 * -thetaY, roll: 2 * -thetaZ };\n };\n // simple Euler angle calculation based existing 3D mesh\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const meshToEulerAngle = (mesh) => {\n const radians = (a1, a2, b1, b2) => Math.atan2(b2 - a2, b1 - a1);\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const angle = {\n // values are in radians in range of -pi/2 to pi/2 which is -90 to +90 degrees, value of 0 means center\n // pitch is face move up/down\n pitch: radians(mesh[10][1], mesh[10][2], mesh[152][1], mesh[152][2]), // looking at y,z of top and bottom points of the face\n // yaw is face turn left/right\n yaw: radians(mesh[33][0], mesh[33][2], mesh[263][0], mesh[263][2]), // looking at x,z of outside corners of leftEye and rightEye\n // roll is face lean left/right\n roll: radians(mesh[33][0], mesh[33][1], mesh[263][0], mesh[263][1]), // looking at x,y of outside corners of leftEye and rightEye\n };\n return angle;\n };\n\n // initialize gaze and mesh\n const mesh = face.meshRaw;\n if (!mesh || mesh.length < 300) return { angle: { pitch: 0, yaw: 0, roll: 0 }, matrix: [1, 0, 0, 0, 1, 0, 0, 0, 1], gaze: { bearing: 0, strength: 0 } };\n\n const size = Math.max(face.boxRaw[2] * imageSize[0], face.boxRaw[3] * imageSize[1]) / 1.5;\n // top, bottom, left, right\n const pts = [mesh[10], mesh[152], mesh[234], mesh[454]].map((pt) => [\n // make the xyz coordinates proportional, independent of the image/box size\n pt[0] * imageSize[0] / size,\n pt[1] * imageSize[1] / size,\n pt[2],\n ]);\n\n const y_axis = normalize(subVectors(pts[1], pts[0]));\n let x_axis = normalize(subVectors(pts[3], pts[2]));\n const z_axis = normalize(crossVectors(x_axis, y_axis));\n // adjust x_axis to make sure that all axes are perpendicular to each other\n x_axis = crossVectors(y_axis, z_axis);\n\n // Rotation Matrix from Axis Vectors - http://renderdan.blogspot.com/2006/05/rotation-matrix-from-axis-vectors.html\n // 3x3 rotation matrix is flatten to array in row-major order. Note that the rotation represented by this matrix is inverted.\n const matrix: [number, number, number, number, number, number, number, number, number] = [\n x_axis[0], x_axis[1], x_axis[2],\n y_axis[0], y_axis[1], y_axis[2],\n z_axis[0], z_axis[1], z_axis[2],\n ];\n const angle = rotationMatrixToEulerAngle(matrix);\n // const angle = meshToEulerAngle(mesh);\n\n // we have iris keypoints so we can calculate gaze direction\n const gaze = mesh.length === 478 ? calculateGaze(face) : { bearing: 0, strength: 0 };\n\n return { angle, matrix, gaze };\n};\n\nexport const detectFace = async (parent /* instance of human */, input: Tensor): Promise => {\n // run facemesh, includes blazeface and iris\n // eslint-disable-next-line no-async-promise-executor\n let timeStamp;\n let ageRes;\n let gearRes;\n let genderRes;\n let emotionRes;\n let embeddingRes;\n let descRes;\n const faceRes: Array = [];\n parent.state = 'run:face';\n timeStamp = now();\n const faces = await facemesh.predict(input, parent.config);\n parent.performance.face = Math.trunc(now() - timeStamp);\n if (!input.shape || input.shape.length !== 4) return [];\n if (!faces) return [];\n // for (const face of faces) {\n for (let i = 0; i < faces.length; i++) {\n parent.analyze('Get Face');\n\n // is something went wrong, skip the face\n // @ts-ignore possibly undefied\n if (!faces[i].tensor || faces[i].tensor['isDisposedInternal']) {\n log('Face object is disposed:', faces[i].tensor);\n continue;\n }\n\n const rotation = calculateFaceAngle(faces[i], [input.shape[2], input.shape[1]]);\n\n // run emotion, inherits face from blazeface\n parent.analyze('Start Emotion:');\n if (parent.config.async) {\n emotionRes = parent.config.face.emotion.enabled ? emotion.predict(faces[i].tensor || tf.tensor([]), parent.config, i, faces.length) : {};\n } else {\n parent.state = 'run:emotion';\n timeStamp = now();\n emotionRes = parent.config.face.emotion.enabled ? await emotion.predict(faces[i].tensor || tf.tensor([]), parent.config, i, faces.length) : {};\n parent.performance.emotion = Math.trunc(now() - timeStamp);\n }\n parent.analyze('End Emotion:');\n\n // run gear, inherits face from blazeface\n /*\n parent.analyze('Start GEAR:');\n if (parent.config.async) {\n gearRes = parent.config.face.agegenderrace.enabled ? agegenderrace.predict(faces[i].tensor || tf.tensor([]), parent.config, i, faces.length) : {};\n } else {\n parent.state = 'run:gear';\n timeStamp = now();\n gearRes = parent.config.face.agegenderrace.enabled ? await agegenderrace.predict(faces[i].tensor || tf.tensor([]), parent.config, i, faces.length) : {};\n parent.performance.emotion = Math.trunc(now() - timeStamp);\n }\n parent.analyze('End GEAR:');\n */\n\n // run emotion, inherits face from blazeface\n parent.analyze('Start Description:');\n if (parent.config.async) {\n descRes = parent.config.face.description.enabled ? faceres.predict(faces[i].tensor || tf.tensor([]), parent.config, i, faces.length) : [];\n } else {\n parent.state = 'run:description';\n timeStamp = now();\n descRes = parent.config.face.description.enabled ? await faceres.predict(faces[i].tensor || tf.tensor([]), parent.config, i, faces.length) : [];\n parent.performance.embedding = Math.trunc(now() - timeStamp);\n }\n parent.analyze('End Description:');\n\n // if async wait for results\n if (parent.config.async) {\n [ageRes, genderRes, emotionRes, embeddingRes, descRes, gearRes] = await Promise.all([ageRes, genderRes, emotionRes, embeddingRes, descRes, gearRes]);\n }\n\n parent.analyze('Finish Face:');\n\n // calculate iris distance\n // iris: array[ center, left, top, right, bottom]\n if (!parent.config.face.iris.enabled && faces[i]?.annotations?.leftEyeIris && faces[i]?.annotations?.rightEyeIris) {\n delete faces[i].annotations.leftEyeIris;\n delete faces[i].annotations.rightEyeIris;\n }\n const irisSize = (faces[i].annotations?.leftEyeIris && faces[i].annotations?.rightEyeIris)\n /* note: average human iris size is 11.7mm */\n ? Math.max(Math.abs(faces[i].annotations.leftEyeIris[3][0] - faces[i].annotations.leftEyeIris[1][0]), Math.abs(faces[i].annotations.rightEyeIris[4][1] - faces[i].annotations.rightEyeIris[2][1])) / input.shape[2]\n : 0;\n\n // optionally return tensor\n const tensor = parent.config.face.detector.return ? tf.squeeze(faces[i].tensor) : null;\n // dispose original face tensor\n tf.dispose(faces[i].tensor);\n // delete temp face image\n if (faces[i].tensor) delete faces[i].tensor;\n // combine results\n faceRes.push({\n ...faces[i],\n id: i,\n age: descRes.age,\n gender: descRes.gender,\n genderScore: descRes.genderScore,\n embedding: descRes.descriptor,\n emotion: emotionRes,\n iris: irisSize !== 0 ? Math.trunc(500 / irisSize / 11.7) / 100 : 0,\n rotation,\n tensor,\n });\n\n parent.analyze('End Face');\n }\n parent.analyze('End FaceMesh:');\n if (parent.config.async) {\n if (parent.performance.face) delete parent.performance.face;\n if (parent.performance.age) delete parent.performance.age;\n if (parent.performance.gender) delete parent.performance.gender;\n if (parent.performance.emotion) delete parent.performance.emotion;\n }\n return faceRes;\n};\n", "/**\n * Gesture detection module\n */\n\nimport { Gesture } from '../result';\n\n/**\n * @typedef FaceGesture\n */\nexport type FaceGesture =\n `facing ${'left' | 'center' | 'right'}`\n | `blink ${'left' | 'right'} eye`\n | `mouth ${number}% open`\n | `head ${'up' | 'down'}`;\n\n/**\n * @typedef IrisGesture\n */\nexport type IrisGesture =\n 'facing center'\n | `looking ${'left' | 'right' | 'up' | 'down'}`\n | 'looking center';\n\n/**\n * @typedef BodyGesture\n */\nexport type BodyGesture =\n `leaning ${'left' | 'right'}`\n | `raise ${'left' | 'right'} hand`\n | 'i give up';\n\n/**\n * @typedef BodyGesture\n */\nexport type HandGesture =\n `${'thumb' | 'index finger' | 'middle finger' | 'ring finger' | 'pinky'} forward`\n | `${'thumb' | 'index finger' | 'middle finger' | 'ring finger' | 'pinky'} up`;\n\nexport const body = (res): Gesture[] => {\n if (!res) return [];\n const gestures: Array<{ body: number, gesture: BodyGesture }> = [];\n for (let i = 0; i < res.length; i++) {\n // raising hands\n const leftWrist = res[i].keypoints.find((a) => (a.part === 'leftWrist'));\n const rightWrist = res[i].keypoints.find((a) => (a.part === 'rightWrist'));\n const nose = res[i].keypoints.find((a) => (a.part === 'nose'));\n if (nose && leftWrist && rightWrist && (leftWrist.position.y < nose.position.y) && (rightWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'i give up' });\n else if (nose && leftWrist && (leftWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'raise left hand' });\n else if (nose && rightWrist && (rightWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'raise right hand' });\n\n // leaning\n const leftShoulder = res[i].keypoints.find((a) => (a.part === 'leftShoulder'));\n const rightShoulder = res[i].keypoints.find((a) => (a.part === 'rightShoulder'));\n if (leftShoulder && rightShoulder) gestures.push({ body: i, gesture: `leaning ${(leftShoulder.position.y > rightShoulder.position.y) ? 'left' : 'right'}` });\n }\n return gestures;\n};\n\nexport const face = (res): Gesture[] => {\n if (!res) return [];\n const gestures: Array<{ face: number, gesture: FaceGesture }> = [];\n for (let i = 0; i < res.length; i++) {\n if (res[i].mesh && res[i].mesh.length > 0) {\n const eyeFacing = res[i].mesh[33][2] - res[i].mesh[263][2];\n if (Math.abs(eyeFacing) < 10) gestures.push({ face: i, gesture: 'facing center' });\n else gestures.push({ face: i, gesture: `facing ${eyeFacing < 0 ? 'left' : 'right'}` });\n const openLeft = Math.abs(res[i].mesh[374][1] - res[i].mesh[386][1]) / Math.abs(res[i].mesh[443][1] - res[i].mesh[450][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openLeft < 0.2) gestures.push({ face: i, gesture: 'blink left eye' });\n const openRight = Math.abs(res[i].mesh[145][1] - res[i].mesh[159][1]) / Math.abs(res[i].mesh[223][1] - res[i].mesh[230][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openRight < 0.2) gestures.push({ face: i, gesture: 'blink right eye' });\n const mouthOpen = Math.min(100, 500 * Math.abs(res[i].mesh[13][1] - res[i].mesh[14][1]) / Math.abs(res[i].mesh[10][1] - res[i].mesh[152][1]));\n if (mouthOpen > 10) gestures.push({ face: i, gesture: `mouth ${Math.trunc(mouthOpen)}% open` });\n const chinDepth = res[i].mesh[152][2];\n if (Math.abs(chinDepth) > 10) gestures.push({ face: i, gesture: `head ${chinDepth < 0 ? 'up' : 'down'}` });\n }\n }\n return gestures;\n};\n\nexport const iris = (res): Gesture[] => {\n if (!res) return [];\n const gestures: Array<{ iris: number, gesture: IrisGesture }> = [];\n for (let i = 0; i < res.length; i++) {\n if (!res[i].annotations || !res[i].annotations.leftEyeIris || !res[i].annotations.rightEyeIris) continue;\n const sizeXLeft = res[i].annotations.leftEyeIris[3][0] - res[i].annotations.leftEyeIris[1][0];\n const sizeYLeft = res[i].annotations.leftEyeIris[4][1] - res[i].annotations.leftEyeIris[2][1];\n const areaLeft = Math.abs(sizeXLeft * sizeYLeft);\n\n const sizeXRight = res[i].annotations.rightEyeIris[3][0] - res[i].annotations.rightEyeIris[1][0];\n const sizeYRight = res[i].annotations.rightEyeIris[4][1] - res[i].annotations.rightEyeIris[2][1];\n const areaRight = Math.abs(sizeXRight * sizeYRight);\n\n let center = false;\n const difference = Math.abs(areaLeft - areaRight) / Math.max(areaLeft, areaRight);\n if (difference < 0.25) {\n center = true;\n gestures.push({ iris: i, gesture: 'facing center' });\n }\n\n const rightIrisCenterX = Math.abs(res[i].mesh[33][0] - res[i].annotations.rightEyeIris[0][0]) / res[i].box[2];\n const leftIrisCenterX = Math.abs(res[i].mesh[263][0] - res[i].annotations.leftEyeIris[0][0]) / res[i].box[2];\n if (leftIrisCenterX > 0.06 || rightIrisCenterX > 0.06) center = false;\n if (leftIrisCenterX > 0.06) gestures.push({ iris: i, gesture: 'looking right' });\n if (rightIrisCenterX > 0.06) gestures.push({ iris: i, gesture: 'looking left' });\n\n const rightIrisCenterY = Math.abs(res[i].mesh[145][1] - res[i].annotations.rightEyeIris[0][1]) / res[i].box[3];\n const leftIrisCenterY = Math.abs(res[i].mesh[374][1] - res[i].annotations.leftEyeIris[0][1]) / res[i].box[3];\n if (leftIrisCenterY < 0.01 || rightIrisCenterY < 0.01 || leftIrisCenterY > 0.022 || rightIrisCenterY > 0.022) center = false;\n if (leftIrisCenterY < 0.01 || rightIrisCenterY < 0.01) gestures.push({ iris: i, gesture: 'looking down' });\n if (leftIrisCenterY > 0.022 || rightIrisCenterY > 0.022) gestures.push({ iris: i, gesture: 'looking up' });\n\n // still center;\n if (center) gestures.push({ iris: i, gesture: 'looking center' });\n }\n return gestures;\n};\n\nexport const hand = (res): Gesture[] => {\n if (!res) return [];\n const gestures: Array<{ hand: number, gesture: HandGesture }> = [];\n for (let i = 0; i < res.length; i++) {\n const fingers: Array<{ name: string, position: number }> = [];\n for (const [finger, pos] of Object.entries(res[i]['annotations'])) {\n if (finger !== 'palmBase' && Array.isArray(pos)) fingers.push({ name: finger.toLowerCase(), position: pos[0] }); // get tip of each finger\n }\n if (fingers && fingers.length > 0) {\n const closest = fingers.reduce((best, a) => (best.position[2] < a.position[2] ? best : a));\n gestures.push({ hand: i, gesture: `${closest.name} forward` as HandGesture });\n const highest = fingers.reduce((best, a) => (best.position[1] < a.position[1] ? best : a));\n gestures.push({ hand: i, gesture: `${highest.name} up` as HandGesture });\n }\n }\n return gestures;\n};\n", "/**\n * Module that implements helper draw functions, exposed as human.draw\n */\n\nimport { TRI468 as triangulation } from '../blazeface/coords';\nimport { mergeDeep, now } from '../helpers';\nimport type { Result, Face, Body, Hand, Item, Gesture, Person } from '../result';\n\n/**\n * Draw Options\n * Accessed via `human.draw.options` or provided per each draw method as the drawOptions optional parameter\n * -color: draw color\n * -labelColor: color for labels\n * -shadowColor: optional shadow color for labels\n * -font: font for labels\n * -lineHeight: line height for labels, used for multi-line labels,\n * -lineWidth: width of any lines,\n * -pointSize: size of any point,\n * -roundRect: for boxes, round corners by this many pixels,\n * -drawPoints: should points be drawn,\n * -drawLabels: should labels be drawn,\n * -drawBoxes: should boxes be drawn,\n * -drawPolygons: should polygons be drawn,\n * -fillPolygons: should drawn polygons be filled,\n * -useDepth: use z-axis coordinate as color shade,\n * -useCurves: draw polygons as cures or as lines,\n * -bufferedOutput: experimental: allows to call draw methods multiple times for each detection and interpolate results between results thus achieving smoother animations\n */\nexport interface DrawOptions {\n color: string,\n labelColor: string,\n shadowColor: string,\n font: string,\n lineHeight: number,\n lineWidth: number,\n pointSize: number,\n roundRect: number,\n drawPoints: boolean,\n drawLabels: boolean,\n drawBoxes: boolean,\n drawPolygons: boolean,\n drawGaze: boolean,\n fillPolygons: boolean,\n useDepth: boolean,\n useCurves: boolean,\n bufferedOutput: boolean,\n}\n\nexport const options: DrawOptions = {\n color: 'rgba(173, 216, 230, 0.6)', // 'lightblue' with light alpha channel\n labelColor: 'rgba(173, 216, 230, 1)', // 'lightblue' with dark alpha channel\n shadowColor: 'black',\n font: 'small-caps 14px \"Segoe UI\"',\n lineHeight: 18,\n lineWidth: 4,\n pointSize: 2,\n roundRect: 8,\n drawPoints: false,\n drawLabels: true,\n drawBoxes: true,\n drawPolygons: true,\n drawGaze: true,\n fillPolygons: false,\n useDepth: true,\n useCurves: false,\n bufferedOutput: true,\n};\n\nconst rad2deg = (theta) => Math.round((theta * 180) / Math.PI);\n\nfunction point(ctx, x, y, z = 0, localOptions) {\n ctx.fillStyle = localOptions.useDepth && z ? `rgba(${127.5 + (2 * z)}, ${127.5 - (2 * z)}, 255, 0.3)` : localOptions.color;\n ctx.beginPath();\n ctx.arc(x, y, localOptions.pointSize, 0, 2 * Math.PI);\n ctx.fill();\n}\n\nfunction rect(ctx, x, y, width, height, localOptions) {\n ctx.beginPath();\n if (localOptions.useCurves) {\n const cx = (x + x + width) / 2;\n const cy = (y + y + height) / 2;\n ctx.ellipse(cx, cy, width / 2, height / 2, 0, 0, 2 * Math.PI);\n } else {\n ctx.lineWidth = localOptions.lineWidth;\n ctx.moveTo(x + localOptions.roundRect, y);\n ctx.lineTo(x + width - localOptions.roundRect, y);\n ctx.quadraticCurveTo(x + width, y, x + width, y + localOptions.roundRect);\n ctx.lineTo(x + width, y + height - localOptions.roundRect);\n ctx.quadraticCurveTo(x + width, y + height, x + width - localOptions.roundRect, y + height);\n ctx.lineTo(x + localOptions.roundRect, y + height);\n ctx.quadraticCurveTo(x, y + height, x, y + height - localOptions.roundRect);\n ctx.lineTo(x, y + localOptions.roundRect);\n ctx.quadraticCurveTo(x, y, x + localOptions.roundRect, y);\n ctx.closePath();\n }\n ctx.stroke();\n}\n\nfunction lines(ctx, points: [number, number, number?][] = [], localOptions) {\n if (points === undefined || points.length === 0) return;\n ctx.beginPath();\n ctx.moveTo(points[0][0], points[0][1]);\n for (const pt of points) {\n const z = pt[2] || 0;\n ctx.strokeStyle = localOptions.useDepth && z ? `rgba(${127.5 + (2 * z)}, ${127.5 - (2 * z)}, 255, 0.3)` : localOptions.color;\n ctx.fillStyle = localOptions.useDepth && z ? `rgba(${127.5 + (2 * z)}, ${127.5 - (2 * z)}, 255, 0.3)` : localOptions.color;\n ctx.lineTo(pt[0], Math.round(pt[1]));\n }\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nfunction curves(ctx, points: [number, number, number?][] = [], localOptions) {\n if (points === undefined || points.length === 0) return;\n if (!localOptions.useCurves || points.length <= 2) {\n lines(ctx, points, localOptions);\n return;\n }\n ctx.moveTo(points[0][0], points[0][1]);\n for (let i = 0; i < points.length - 2; i++) {\n const xc = (points[i][0] + points[i + 1][0]) / 2;\n const yc = (points[i][1] + points[i + 1][1]) / 2;\n ctx.quadraticCurveTo(points[i][0], points[i][1], xc, yc);\n }\n ctx.quadraticCurveTo(points[points.length - 2][0], points[points.length - 2][1], points[points.length - 1][0], points[points.length - 1][1]);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nexport async function gesture(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.font = localOptions.font;\n ctx.fillStyle = localOptions.color;\n let i = 1;\n for (let j = 0; j < result.length; j++) {\n let where: unknown[] = []; // what&where is a record\n let what: unknown[] = []; // what&where is a record\n [where, what] = Object.entries(result[j]);\n if ((what.length > 1) && ((what[1] as string).length > 0)) {\n const who = where[1] as number > 0 ? `#${where[1]}` : '';\n const label = `${where[0]} ${who}: ${what[1]}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, 8, 2 + (i * localOptions.lineHeight));\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, 6, 0 + (i * localOptions.lineHeight));\n i += 1;\n }\n }\n}\n\nexport async function face(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n for (const f of result) {\n ctx.font = localOptions.font;\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n if (localOptions.drawBoxes) rect(ctx, f.box[0], f.box[1], f.box[2], f.box[3], localOptions);\n // silly hack since fillText does not suport new line\n const labels:string[] = [];\n labels.push(`face: ${Math.trunc(100 * f.score)}%`);\n if (f.genderScore) labels.push(`${f.gender || ''} ${Math.trunc(100 * f.genderScore)}%`);\n if (f.age) labels.push(`age: ${f.age || ''}`);\n if (f.iris) labels.push(`distance: ${f.iris}`);\n if (f.emotion && f.emotion.length > 0) {\n const emotion = f.emotion.map((a) => `${Math.trunc(100 * a.score)}% ${a.emotion}`);\n if (emotion.length > 3) emotion.length = 3;\n labels.push(emotion.join(' '));\n }\n if (f.rotation && f.rotation.angle && f.rotation.gaze) {\n if (f.rotation.angle.roll) labels.push(`roll: ${rad2deg(f.rotation.angle.roll)}\u00B0 yaw:${rad2deg(f.rotation.angle.yaw)}\u00B0 pitch:${rad2deg(f.rotation.angle.pitch)}\u00B0`);\n if (f.rotation.gaze.bearing) labels.push(`gaze: ${rad2deg(f.rotation.gaze.bearing)}\u00B0`);\n }\n if (labels.length === 0) labels.push('face');\n ctx.fillStyle = localOptions.color;\n for (let i = labels.length - 1; i >= 0; i--) {\n const x = Math.max(f.box[0], 0);\n const y = i * localOptions.lineHeight + f.box[1];\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(labels[i], x + 5, y + 16);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(labels[i], x + 4, y + 15);\n }\n ctx.lineWidth = 1;\n if (f.mesh && f.mesh.length > 0) {\n if (localOptions.drawPoints) {\n for (const pt of f.mesh) point(ctx, pt[0], pt[1], pt[2], localOptions);\n // for (const pt of f.meshRaw) point(ctx, pt[0] * inCanvas.offsetWidth, pt[1] * inCanvas.offsetHeight, pt[2]);\n }\n if (localOptions.drawPolygons) {\n ctx.lineWidth = 1;\n for (let i = 0; i < triangulation.length / 3; i++) {\n const points = [\n triangulation[i * 3 + 0],\n triangulation[i * 3 + 1],\n triangulation[i * 3 + 2],\n ].map((index) => f.mesh[index]);\n lines(ctx, points, localOptions);\n }\n // iris: array[center, left, top, right, bottom]\n if (f.annotations && f.annotations['leftEyeIris']) {\n ctx.strokeStyle = localOptions.useDepth ? 'rgba(255, 200, 255, 0.3)' : localOptions.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations['leftEyeIris'][3][0] - f.annotations['leftEyeIris'][1][0]) / 2;\n const sizeY = Math.abs(f.annotations['leftEyeIris'][4][1] - f.annotations['leftEyeIris'][2][1]) / 2;\n ctx.ellipse(f.annotations['leftEyeIris'][0][0], f.annotations['leftEyeIris'][0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.fillStyle = localOptions.useDepth ? 'rgba(255, 255, 200, 0.3)' : localOptions.color;\n ctx.fill();\n }\n }\n if (f.annotations && f.annotations['rightEyeIris']) {\n ctx.strokeStyle = localOptions.useDepth ? 'rgba(255, 200, 255, 0.3)' : localOptions.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations['rightEyeIris'][3][0] - f.annotations['rightEyeIris'][1][0]) / 2;\n const sizeY = Math.abs(f.annotations['rightEyeIris'][4][1] - f.annotations['rightEyeIris'][2][1]) / 2;\n ctx.ellipse(f.annotations['rightEyeIris'][0][0], f.annotations['rightEyeIris'][0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.fillStyle = localOptions.useDepth ? 'rgba(255, 255, 200, 0.3)' : localOptions.color;\n ctx.fill();\n }\n }\n if (localOptions.drawGaze && f.rotation?.gaze?.strength && f.rotation?.gaze?.bearing && f.annotations['leftEyeIris'] && f.annotations['rightEyeIris'] && f.annotations['leftEyeIris'][0] && f.annotations['rightEyeIris'][0]) {\n ctx.strokeStyle = 'pink';\n ctx.beginPath();\n\n const leftGaze = [\n f.annotations['leftEyeIris'][0][0] + (Math.sin(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[3]),\n f.annotations['leftEyeIris'][0][1] + (Math.cos(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[2]),\n ];\n ctx.moveTo(f.annotations['leftEyeIris'][0][0], f.annotations['leftEyeIris'][0][1]);\n ctx.lineTo(leftGaze[0], leftGaze[1]);\n\n const rightGaze = [\n f.annotations['rightEyeIris'][0][0] + (Math.sin(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[3]),\n f.annotations['rightEyeIris'][0][1] + (Math.cos(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[2]),\n ];\n ctx.moveTo(f.annotations['rightEyeIris'][0][0], f.annotations['rightEyeIris'][0][1]);\n ctx.lineTo(rightGaze[0], rightGaze[1]);\n\n ctx.stroke();\n }\n }\n }\n }\n}\n\nexport async function body(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n for (let i = 0; i < result.length; i++) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n ctx.lineWidth = localOptions.lineWidth;\n ctx.font = localOptions.font;\n if (localOptions.drawBoxes && result[i].box && result[i].box?.length === 4) {\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n }\n if (localOptions.drawPoints) {\n for (let pt = 0; pt < result[i].keypoints.length; pt++) {\n ctx.fillStyle = localOptions.useDepth && result[i].keypoints[pt].position[2] ? `rgba(${127.5 + (2 * (result[i].keypoints[pt].position[2] || 0))}, ${127.5 - (2 * (result[i].keypoints[pt].position[2] || 0))}, 255, 0.5)` : localOptions.color;\n point(ctx, result[i].keypoints[pt].position[0], result[i].keypoints[pt].position[1], 0, localOptions);\n }\n }\n if (localOptions.drawLabels) {\n ctx.font = localOptions.font;\n if (result[i].keypoints) {\n for (const pt of result[i].keypoints) {\n ctx.fillStyle = localOptions.useDepth && pt.position[2] ? `rgba(${127.5 + (2 * pt.position[2])}, ${127.5 - (2 * pt.position[2])}, 255, 0.5)` : localOptions.color;\n ctx.fillText(`${pt.part} ${Math.trunc(100 * pt.score)}%`, pt.position[0] + 4, pt.position[1] + 4);\n }\n }\n }\n if (localOptions.drawPolygons && result[i].keypoints) {\n let part;\n const points: [number, number, number?][] = [];\n // shoulder line\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n curves(ctx, points, localOptions);\n // torso main\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightHip');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftHip');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n if (points.length === 4) lines(ctx, points, localOptions); // only draw if we have complete torso\n // leg left\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftHip');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftKnee');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftAnkle');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftHeel');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftFoot');\n if (part) points.push([part.position[0], part.position[1]]);\n curves(ctx, points, localOptions);\n // leg right\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightHip');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightKnee');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightAnkle');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightHeel');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightFoot');\n if (part) points.push([part.position[0], part.position[1]]);\n curves(ctx, points, localOptions);\n // arm left\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftElbow');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftWrist');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftPalm');\n if (part) points.push([part.position[0], part.position[1]]);\n curves(ctx, points, localOptions);\n // arm right\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightElbow');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightWrist');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightPalm');\n if (part) points.push([part.position[0], part.position[1]]);\n curves(ctx, points, localOptions);\n // draw all\n }\n }\n}\n\nexport async function hand(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText('hand', h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText('hand', h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.stroke();\n }\n if (localOptions.drawPoints) {\n if (h.keypoints && h.keypoints.length > 0) {\n for (const pt of h.keypoints) {\n ctx.fillStyle = localOptions.useDepth ? `rgba(${127.5 + (2 * pt[2])}, ${127.5 - (2 * pt[2])}, 255, 0.5)` : localOptions.color;\n point(ctx, pt[0], pt[1], 0, localOptions);\n }\n }\n }\n if (localOptions.drawLabels) {\n const addHandLabel = (part, title) => {\n ctx.fillStyle = localOptions.useDepth ? `rgba(${127.5 + (2 * part[part.length - 1][2])}, ${127.5 - (2 * part[part.length - 1][2])}, 255, 0.5)` : localOptions.color;\n ctx.fillText(title, part[part.length - 1][0] + 4, part[part.length - 1][1] + 4);\n };\n ctx.font = localOptions.font;\n addHandLabel(h.annotations['indexFinger'], 'index');\n addHandLabel(h.annotations['middleFinger'], 'middle');\n addHandLabel(h.annotations['ringFinger'], 'ring');\n addHandLabel(h.annotations['pinky'], 'pinky');\n addHandLabel(h.annotations['thumb'], 'thumb');\n addHandLabel(h.annotations['palmBase'], 'palm');\n }\n if (localOptions.drawPolygons) {\n const addHandLine = (part) => {\n if (!part) return;\n for (let i = 0; i < part.length; i++) {\n ctx.beginPath();\n ctx.strokeStyle = localOptions.useDepth ? `rgba(${127.5 + (2 * part[i][2])}, ${127.5 - (2 * part[i][2])}, 255, 0.5)` : localOptions.color;\n ctx.moveTo(part[i > 0 ? i - 1 : 0][0], part[i > 0 ? i - 1 : 0][1]);\n ctx.lineTo(part[i][0], part[i][1]);\n ctx.stroke();\n }\n };\n ctx.lineWidth = localOptions.lineWidth;\n addHandLine(h.annotations['indexFinger']);\n addHandLine(h.annotations['middleFinger']);\n addHandLine(h.annotations['ringFinger']);\n addHandLine(h.annotations['pinky']);\n addHandLine(h.annotations['thumb']);\n // addPart(h.annotations.palmBase);\n }\n }\n}\n\nexport async function object(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `${h.label} ${Math.round(100 * h.score)}%`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.stroke();\n }\n }\n}\n\nexport async function person(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n\n for (let i = 0; i < result.length; i++) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `person #${i}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.stroke();\n }\n }\n}\n\nexport async function canvas(inCanvas: HTMLCanvasElement, outCanvas: HTMLCanvasElement) {\n if (!inCanvas || !outCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement) || !(outCanvas instanceof HTMLCanvasElement)) return;\n const outCtx = inCanvas.getContext('2d');\n outCtx?.drawImage(inCanvas, 0, 0);\n}\n\nexport async function all(inCanvas: HTMLCanvasElement, result: Result, drawOptions?: DrawOptions) {\n const timestamp = now();\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return null;\n if (!(inCanvas instanceof HTMLCanvasElement)) return null;\n\n const promise = Promise.all([\n face(inCanvas, result.face, localOptions),\n body(inCanvas, result.body, localOptions),\n hand(inCanvas, result.hand, localOptions),\n object(inCanvas, result.object, localOptions),\n // person(inCanvas, result.persons, localOptions);\n gesture(inCanvas, result.gesture, localOptions), // gestures do not have buffering\n ]);\n /*\n if (!bufferedResult) bufferedResult = result; // first pass\n else if (localOptions.bufferedOutput) calcBuffered(result); // do results interpolation\n else bufferedResult = result; // or just use results as-is\n const promises: Promise[] = [];\n promises.push(face(inCanvas, bufferedResult.face, localOptions));\n promises.push(body(inCanvas, bufferedResult.body, localOptions));\n promises.push(hand(inCanvas, bufferedResult.hand, localOptions));\n promises.push(object(inCanvas, bufferedResult.object, localOptions));\n // promises.push(person(inCanvas, bufferedResult.persons, localOptions));\n promises.push(gesture(inCanvas, result.gesture, localOptions)); // gestures do not have buffering\n // await Promise.all(promises);\n */\n result.performance.draw = Math.trunc(now() - timestamp);\n return promise;\n}\n", "/**\n * Module that analyzes existing results and recombines them into a unified person object\n */\n\nimport { Face, Body, Hand, Gesture, Person } from './result';\n\nexport function join(faces: Array, bodies: Array, hands: Array, gestures: Array, shape: Array | undefined): Array {\n let id = 0;\n const persons: Array = [];\n for (const face of faces) { // person is defined primarily by face and then we append other objects as found\n const person: Person = { id: id++, face, body: null, hands: { left: null, right: null }, gestures: [], box: [0, 0, 0, 0] };\n for (const body of bodies) {\n if (face.box[0] > body.box[0] // x within body\n && face.box[0] < body.box[0] + body.box[2]\n && face.box[1] + face.box[3] > body.box[1] // y within body\n && face.box[1] + face.box[3] < body.box[1] + body.box[3]) {\n person.body = body;\n }\n }\n if (person.body) { // only try to join hands if body is found\n for (const hand of hands) {\n if (hand.box[0] + hand.box[2] > person.body.box[0] // x within body for left hand\n && hand.box[0] + hand.box[2] < person.body.box[0] + person.body.box[2]\n && hand.box[1] + hand.box[3] > person.body.box[1] // x within body for left hand\n && hand.box[1] + hand.box[3] < person.body.box[1] + person.body.box[3]) {\n if (person.hands) person.hands.left = hand;\n }\n if (hand.box[0] < person.body.box[0] + person.body.box[2] // x within body for right hand\n && hand.box[0] > person.body.box[0]\n && hand.box[1] + hand.box[3] > person.body.box[1] // x within body for right hand\n && hand.box[1] + hand.box[3] < person.body.box[1] + person.body.box[3]) {\n if (person.hands) person.hands.right = hand;\n }\n }\n }\n for (const gesture of gestures) { // append all gestures according to ids\n if (gesture['face'] !== undefined && gesture['face'] === face.id) person.gestures?.push(gesture);\n else if (gesture['iris'] !== undefined && gesture['iris'] === face.id) person.gestures?.push(gesture);\n else if (gesture['body'] !== undefined && gesture['body'] === person.body?.id) person.gestures?.push(gesture);\n else if (gesture['hand'] !== undefined && gesture['hand'] === person.hands?.left?.id) person.gestures?.push(gesture);\n else if (gesture['hand'] !== undefined && gesture['hand'] === person.hands?.right?.id) person.gestures?.push(gesture);\n }\n\n // create new overarching box from all boxes beloning to person\n const x: number[] = [];\n const y: number[] = [];\n const extractXY = (box: [number, number, number, number] | undefined) => { // extract all [x, y] coordinates from boxes [x, y, width, height]\n if (box && box.length === 4) {\n x.push(box[0], box[0] + box[2]);\n y.push(box[1], box[1] + box[3]);\n }\n };\n extractXY(person.face?.box);\n extractXY(person.body?.box);\n extractXY(person.hands?.left?.box);\n extractXY(person.hands?.right?.box);\n const minX = Math.min(...x);\n const minY = Math.min(...y);\n person.box = [minX, minY, Math.max(...x) - minX, Math.max(...y) - minY]; // create new overarching box\n\n // shape is known so we calculate boxRaw as well\n if (shape && shape[1] && shape[2]) person.boxRaw = [person.box[0] / shape[2], person.box[1] / shape[1], person.box[2] / shape[2], person.box[3] / shape[1]];\n\n persons.push(person);\n }\n return persons;\n}\n", "/**\n * Module that interpolates results for smoother animations\n */\n\nimport type { Result, Face, Body, Hand, Item, Gesture, Person } from './result';\n\nconst bufferedResult: Result = { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0 };\n\nexport function calc(newResult: Result): Result {\n if (!newResult) return { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0 };\n // each record is only updated using deep clone when number of detected record changes, otherwise it will converge by itself\n // otherwise bufferedResult is a shallow clone of result plus updated local calculated values\n // thus mixing by-reference and by-value assignments to minimize memory operations\n\n const elapsed = Date.now() - newResult.timestamp;\n // curve fitted: buffer = 8 - ln(delay)\n // interpolation formula: current = ((buffer - 1) * previous + live) / buffer\n // - at 50ms delay buffer = ~4.1 => 28% towards live data\n // - at 250ms delay buffer = ~2.5 => 40% towards live data\n // - at 500ms delay buffer = ~1.8 => 55% towards live data\n // - at 750ms delay buffer = ~1.4 => 71% towards live data\n // - at 1sec delay buffer = 1 which means live data is used\n const bufferedFactor = elapsed < 1000 ? 8 - Math.log(elapsed + 1) : 1;\n\n bufferedResult.canvas = newResult.canvas;\n\n // interpolate body results\n if (!bufferedResult.body || (newResult.body.length !== bufferedResult.body.length)) {\n bufferedResult.body = JSON.parse(JSON.stringify(newResult.body as Body[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.body.length; i++) {\n const box = newResult.body[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.body[i].box[j] + b) / bufferedFactor) as [number, number, number, number];\n const boxRaw = newResult.body[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.body[i].boxRaw[j] + b) / bufferedFactor) as [number, number, number, number];\n const keypoints = (newResult.body[i].keypoints // update keypoints\n .map((keypoint, j) => ({\n score: keypoint.score,\n part: keypoint.part,\n position: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * bufferedResult.body[i].keypoints[j].position[0] + keypoint.position[0]) / bufferedFactor : keypoint.position[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * bufferedResult.body[i].keypoints[j].position[1] + keypoint.position[1]) / bufferedFactor : keypoint.position[1],\n ],\n positionRaw: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * bufferedResult.body[i].keypoints[j].positionRaw[0] + keypoint.positionRaw[0]) / bufferedFactor : keypoint.position[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * bufferedResult.body[i].keypoints[j].positionRaw[1] + keypoint.positionRaw[1]) / bufferedFactor : keypoint.position[1],\n ],\n }))) as Array<{ score: number, part: string, position: [number, number, number?], positionRaw: [number, number, number?] }>;\n bufferedResult.body[i] = { ...newResult.body[i], box, boxRaw, keypoints }; // shallow clone plus updated values\n }\n }\n\n // interpolate hand results\n if (!bufferedResult.hand || (newResult.hand.length !== bufferedResult.hand.length)) {\n bufferedResult.hand = JSON.parse(JSON.stringify(newResult.hand as Hand[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.hand.length; i++) {\n const box = (newResult.hand[i].box// update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].box[j] + b) / bufferedFactor)) as [number, number, number, number];\n const boxRaw = (newResult.hand[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].boxRaw[j] + b) / bufferedFactor)) as [number, number, number, number];\n const keypoints = newResult.hand[i].keypoints // update landmarks\n .map((landmark, j) => landmark\n .map((coord, k) => (((bufferedFactor - 1) * bufferedResult.hand[i].keypoints[j][k] + coord) / bufferedFactor)) as [number, number, number]);\n const keys = Object.keys(newResult.hand[i].annotations); // update annotations\n const annotations = {};\n for (const key of keys) {\n annotations[key] = newResult.hand[i].annotations[key]\n .map((val, j) => val.map((coord, k) => ((bufferedFactor - 1) * bufferedResult.hand[i].annotations[key][j][k] + coord) / bufferedFactor));\n }\n bufferedResult.hand[i] = { ...newResult.hand[i], box, boxRaw, keypoints, annotations }; // shallow clone plus updated values\n }\n }\n\n // interpolate face results\n if (!bufferedResult.face || (newResult.face.length !== bufferedResult.face.length)) {\n bufferedResult.face = JSON.parse(JSON.stringify(newResult.face as Face[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.face.length; i++) {\n const box = (newResult.face[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].box[j] + b) / bufferedFactor)) as [number, number, number, number];\n const boxRaw = (newResult.face[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].boxRaw[j] + b) / bufferedFactor)) as [number, number, number, number];\n const rotation: {\n matrix: [number, number, number, number, number, number, number, number, number],\n angle: { roll: number, yaw: number, pitch: number },\n gaze: { bearing: number, strength: number }\n } = { matrix: [0, 0, 0, 0, 0, 0, 0, 0, 0], angle: { roll: 0, yaw: 0, pitch: 0 }, gaze: { bearing: 0, strength: 0 } };\n rotation.matrix = newResult.face[i].rotation?.matrix as [number, number, number, number, number, number, number, number, number];\n rotation.angle = {\n roll: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle?.roll || 0) + (newResult.face[i].rotation?.angle?.roll || 0)) / bufferedFactor,\n yaw: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle?.yaw || 0) + (newResult.face[i].rotation?.angle?.yaw || 0)) / bufferedFactor,\n pitch: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle?.pitch || 0) + (newResult.face[i].rotation?.angle?.pitch || 0)) / bufferedFactor,\n };\n rotation.gaze = {\n // not fully correct due projection on circle, also causes wrap-around draw on jump from negative to positive\n bearing: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.gaze?.bearing || 0) + (newResult.face[i].rotation?.gaze?.bearing || 0)) / bufferedFactor,\n strength: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.gaze?.strength || 0) + (newResult.face[i].rotation?.gaze?.strength || 0)) / bufferedFactor,\n };\n bufferedResult.face[i] = { ...newResult.face[i], rotation, box, boxRaw }; // shallow clone plus updated values\n }\n }\n\n // interpolate object detection results\n if (!bufferedResult.object || (newResult.object.length !== bufferedResult.object.length)) {\n bufferedResult.object = JSON.parse(JSON.stringify(newResult.object as Item[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.object.length; i++) {\n const box = (newResult.object[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].box[j] + b) / bufferedFactor)) as [number, number, number, number];\n const boxRaw = (newResult.object[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].boxRaw[j] + b) / bufferedFactor)) as [number, number, number, number];\n bufferedResult.object[i] = { ...newResult.object[i], box, boxRaw }; // shallow clone plus updated values\n }\n }\n\n // interpolate person results\n if (newResult.persons) {\n const newPersons = newResult.persons; // trigger getter function\n if (!bufferedResult.persons || (newPersons.length !== bufferedResult.persons.length)) {\n bufferedResult.persons = JSON.parse(JSON.stringify(newPersons as Person[]));\n } else {\n for (let i = 0; i < newPersons.length; i++) { // update person box, we don't update the rest as it's updated as reference anyhow\n bufferedResult.persons[i].box = (newPersons[i].box\n .map((box, j) => ((bufferedFactor - 1) * bufferedResult.persons[i].box[j] + box) / bufferedFactor)) as [number, number, number, number];\n }\n }\n }\n\n // just copy latest gestures without interpolation\n if (newResult.gesture) bufferedResult.gesture = newResult.gesture as Gesture[];\n if (newResult.performance) bufferedResult.performance = newResult.performance;\n\n return bufferedResult;\n}\n", "/**\n * Embedded sample images used during warmup in dataURL format\n */\n\n// data:image/jpeg;base64,\nexport const face = `\n/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA\nAAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu\nbmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob\nIxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo\nKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E\nAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE\nEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH\nSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1\ntre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB\nAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET\nIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla\nY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG\nx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML\nXp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF\nPUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/\nAJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z\n5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9\nzZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO\ntHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6\n8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W\nwA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk\nEtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6\nGhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT\nA7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep\nrBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb\nLCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ\nih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K\nKAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l\npBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x\nUqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4\nHaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr\nxL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS\nNO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD\n1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX\n+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3\nGBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K\nq4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0\nnhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm\nuic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH\nArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV\nwF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8\n87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P\nFQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD\nYNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv\nJmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ\nQmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el\nUJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681\nly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly\nCK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc\nUDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF\n63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x\nXY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2\nZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk\nXb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK\ncBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef\neNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4\n/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5\nrl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru\n/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A\nzviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO\nI4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1\njfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ\nGRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG\ncZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb\nWmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis\nZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH\nckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi\nlbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO\nxuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK\nJtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX\nPaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c\nW0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t\nC6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk\n4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn\nxHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW\nvHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi\nqr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV\nhamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F\nj4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6\nwqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm\noy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ\nk7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg\nnQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP\n1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1\nH1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ\n1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx\nzSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt\nfFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp\nOxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj\nVtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy\nrFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe\n5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D\nd/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69\nMlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ\nFbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ\nMA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP\nByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn\n0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU\nyOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is\npNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz\nTSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu\nuCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem\ngGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk\nHvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy\ns9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu\nm6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb\n0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz\n9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN\nDNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n\nR6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk\nnmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu\n6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd\n9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb\nSms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S\nMSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz\nFEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8\nVSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx\nY0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ\nmupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+\n5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh\n05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd\nua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ\n5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR\nMqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8\n1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4\nB9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag\nBc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA\n3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn\n3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx\n1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU\ntzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6\nf3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA\nbvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ\nzyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup\n6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM\n350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0\n/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a\nYfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ\nagBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO\nmAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl\nmOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR\nnqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo\nEPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt\n4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ\nScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p\niMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj\nPQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l\nc6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1\n8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3\nylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY\neuPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`;\n\n// data:image/jpeg;base64,\nexport const body = `\n/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk\nJyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF\nRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA\nAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA\nAQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA\nAAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA\nAhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj\n+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt\nFh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR\nPLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl\nmZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp\n+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa\nzhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D\nh1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2\nex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67\nd4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y\nRv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP\nLd3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC\nvy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi\neSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/\nMx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+\nr3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO\nO0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s\ntfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN\nTmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc\n0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj\nq83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w\n+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s\nd8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t\ncI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4\nYibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe\nbzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi\nKxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6\nrNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ\n9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf\nJvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V\nbxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q\nVbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM\nlorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/\n/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme\nE4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv\nfauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6\njkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN\n+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk\nRvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK\ncGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop\nyW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn\nE8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX\n12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW\niI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS\nRWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf\n0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx\nDS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL\nG8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK\nxC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ\na9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4\nZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6\ntvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+\nfJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE\nerk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR\nMd5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9\nlcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD\nj8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV\n5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt\nCu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/\n+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c\nvUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p\njrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0\n77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP\nSel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8\n5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe\nY0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R\nHwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV\nrWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU\nz7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8\nto6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X\ny8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt\nstcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/\nw9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT\nDpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l\nXV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t\nydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS\n34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX\ne09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn\n26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf\n3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q\n6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P\nNbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO\nyZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN\n3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8\n2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h\ndqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx\nkr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t\nDHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb\neFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc\n1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka\nc258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE\nxEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu\ns5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK\n0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9\ndM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt\nPXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T\nMd/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T\nadq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b\nSVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt\npdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm\nvfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr\nEejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N\nvwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh\nZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I\ntkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW\nd43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe\nN4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218\n8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG\nPNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY\nV1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw\nw18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT\nEx5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1\naxqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/\ntDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I\nmbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe\nXRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1\nizjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2\ncrFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4\nOadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2\nr8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx\nzc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz\n+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v\nMevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu\nryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095\nYZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE\n9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8\nmNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O\nuSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O\nfft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6\nOlty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT\nuTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3\n6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1\nMb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF\nfeH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq\nxVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v\ned7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ\nmtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz\nmWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP\nB39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0\n5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1\nmkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt\nmxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO\n1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq\nZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q\nky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7\nROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK\nGEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i\ntMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T\n+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+\nO8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO\nesd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es\nvPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz\nXV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1\n+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY\n36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL\nq555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY\n3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz\np7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr\n1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV\nxUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt\npCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS\nfP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH\nmMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z\n1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+\nn3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d\nMRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df\nzXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl\nJ2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs\nzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH\nDpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ\ndHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR\ntER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j\nadmFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC\nb2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X\nqdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh\nydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O\n8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L\nT7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0\nZa1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr\nvNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer\nrWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL\noNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq\nj/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh\nodZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8\n8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1\nlNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+\noza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL\nknU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK\nEtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N\nmtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm\n9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N\nIpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W\nMYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2\n+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql\no+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37\nO99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE\nTE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1\nL7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4\nizsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt\n1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb\nV5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum\nL37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12\nCvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE\nebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo\nGvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu\nL8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh\n5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3\n6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9\nXO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM\nfeKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj\nSZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF\nXaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr\n79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h\nyeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT\nOC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223\n2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt\nadohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y\ncnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX\nDpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p\n7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso\nS24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l\nbPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe\nvVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG\nH6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7\nx3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz\n5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY\nq+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn\nvLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2\nIjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK\nz0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ\nYYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON\nZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW\nekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf\ncjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c\nbiuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO\nCkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw\ny1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi\nQXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E\nbL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r\ntv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t\nLRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP\nRqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm\ns7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el\nXX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1\nvK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq\nqrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v\nVYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0\nZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q\nmT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm\n6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG\nf63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo\ndPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22\ngtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M\nMoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb\nc2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX\n6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn\n1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK\nfOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ\nEqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u\n7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT\nqPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa\nS2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf\nLp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU\nIiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O\n8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c\nvU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx\n5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V\nKTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm\n2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu\nj8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB\nTTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9\nRUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL\nCWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA\nAAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8\ncTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj\nqKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF\n0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK\nZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK\n66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu\nXT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9\nXOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN\nM2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv\nVrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK\n7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI\n3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m\nXY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m\n1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A\nJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC\nEgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9\n8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL\nOrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H\nM+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA\nTsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8\nelpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp\nBjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS\nCRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r\nrcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY\njbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW\nUsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB\nKUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb\nSz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL\n+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v\nT471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM\nsfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj\nFontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl\n5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q\n7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv\n6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa\n0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/\nAOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM\nd8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5\n6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP\nbFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu\nLJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy\nwt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX\n0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK\n3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn\nKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0\nvobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t\nzya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps\nuOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi\nFdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2\nO3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z\naK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz\n0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb\nT/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l\nqMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t\ntrJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn\nmvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa\neq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe\nPwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of\nTdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O\n1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG\nf/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi\n0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY\n5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc\nV2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L\n/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM\nt/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd\nVknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD\nKLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R\nfwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3\nVxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ\nDJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ\n3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv\nx7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD\nweqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI\n6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew\nPnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk\nj3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm\nOqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/\nAKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez\nN9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ\n92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp\n+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue\nV9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv\navHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0\nvQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP\n8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt\nn1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw\nnUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3\n7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P\n0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U\nx8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG\n0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L\nfaQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ\nQKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA\nBAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A\ntLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv\n9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr\njn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm\nb7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB\nACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk\ndEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1\nrMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+\nx+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA\nAAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr\nYvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4\n5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V\nkK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg\nBIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA\nAAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g\nWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx\nOEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2\nH/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF\n+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V\nh6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA\nEgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu\nZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml\nHMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl\nn0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN\n3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi\n/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00\n+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC\nUACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2\nM2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp\n5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn\nN1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS\nOjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL\n/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo\nstLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3\nGyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA\nAAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4\nqmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy\nWEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a\nfJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI\nrTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2\nrz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc\n3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3\nTur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA\nAAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx\nskA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F\no7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx\nNO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h\n2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te\npSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7\ncvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7\nmZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA\nAAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA\nhGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J\nqx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI\nXRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy\nRHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX\nqNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX\nkaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P\nya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC\nExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA\nlAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA\nAAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o\nb9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP\ny6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae\nkzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu\n9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ\nk7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1\n8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp\nDXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh\nnyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ\nAAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA\nAAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO\nyvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5\nPM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii\nIpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r\nO3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE\nyTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX\n6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2\nJgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS\nAAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA\nAAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx\nWa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI\n6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5\nK2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7\nVv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id\nPW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ\n2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4\neF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7\npiVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR\nACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ\nJQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i\nUiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61\nrZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq\nZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2\nf0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO\nIjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts\nbAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA\nAAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA\nBAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2\nSbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T\nlBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/\n2Q==`;\n", "/**\n * Human main module\n */\n\nimport { log, now, mergeDeep } from './helpers';\nimport { Config, defaults } from './config';\nimport { Result, Face, Hand, Body, Item, Gesture } from './result';\nimport * as sysinfo from './sysinfo';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as backend from './tfjs/backend';\nimport * as models from './models';\nimport * as face from './face';\nimport * as facemesh from './blazeface/facemesh';\nimport * as faceres from './faceres/faceres';\nimport * as posenet from './posenet/posenet';\nimport * as handpose from './handpose/handpose';\nimport * as blazepose from './blazepose/blazepose';\nimport * as efficientpose from './efficientpose/efficientpose';\nimport * as movenet from './movenet/movenet';\nimport * as nanodet from './object/nanodet';\nimport * as centernet from './object/centernet';\nimport * as segmentation from './segmentation/segmentation';\nimport * as gesture from './gesture/gesture';\nimport * as image from './image/image';\nimport * as draw from './draw/draw';\nimport * as persons from './persons';\nimport * as interpolate from './interpolate';\nimport * as sample from './sample';\nimport * as app from '../package.json';\nimport { Tensor, GraphModel } from './tfjs/types';\n\n// export types\nexport type { Config } from './config';\nexport type { Result, Face, Hand, Body, Item, Gesture, Person } from './result';\nexport type { DrawOptions } from './draw/draw';\n\n/** Defines all possible input types for **Human** detection\n * @typedef Input Type\n */\nexport type Input = Tensor | typeof Image | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas;\n\n/** Error message\n * @typedef Error Type\n */\nexport type Error = { error: string };\n\n/** Instance of TensorFlow/JS\n * @external\n */\nexport type TensorFlow = typeof tf;\n\n/**\n * **Human** library main class\n *\n * All methods and properties are available only as members of Human class\n *\n * - Configuration object definition: {@link Config}\n * - Results object definition: {@link Result}\n * - Possible inputs: {@link Input}\n *\n * @param userConfig: {@link Config}\n */\nexport class Human {\n /** Current version of Human library in *semver* format */\n version: string;\n /** Current configuration\n * - Details: {@link Config}\n */\n config: Config;\n /** Last known result of detect run\n * - Can be accessed anytime after initial detection\n */\n result: Result;\n /** Current state of Human library\n * - Can be polled to determine operations that are currently executed\n * - Progresses through: 'config', 'check', 'backend', 'load', 'run:', 'idle'\n */\n state: string;\n /** @internal: Instance of current image being processed */\n image: { tensor: Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement | null };\n /** @internal: Instance of TensorFlow/JS used by Human\n * - Can be embedded or externally provided\n */\n tf: TensorFlow;\n /** Draw helper classes that can draw detected objects on canvas using specified draw\n * - options: {@link DrawOptions} global settings for all draw operations, can be overriden for each draw method\n * - face: draw detected faces\n * - body: draw detected people and body parts\n * - hand: draw detected hands and hand parts\n * - canvas: draw processed canvas which is a processed copy of the input\n * - all: meta-function that performs: canvas, face, body, hand\n */\n draw: {\n options: draw.DrawOptions,\n gesture: typeof draw.gesture,\n face: typeof draw.face,\n body: typeof draw.body,\n hand: typeof draw.hand,\n canvas: typeof draw.canvas,\n all: typeof draw.all,\n };\n /** Types used by Human */\n static Config: Config;\n static Result: Result;\n static Face: Face;\n static Hand: Hand;\n static Body: Body;\n static Item: Item;\n static Gesture: Gesture;\n static Person: Gesture\n static DrawOptions: draw.DrawOptions;\n /** @internal: Currently loaded models */\n models: {\n face: [unknown, GraphModel | null, GraphModel | null] | null,\n posenet: GraphModel | null,\n blazepose: GraphModel | null,\n efficientpose: GraphModel | null,\n movenet: GraphModel | null,\n handpose: [GraphModel | null, GraphModel | null] | null,\n age: GraphModel | null,\n gender: GraphModel | null,\n emotion: GraphModel | null,\n embedding: GraphModel | null,\n nanodet: GraphModel | null,\n centernet: GraphModel | null,\n faceres: GraphModel | null,\n segmentation: GraphModel | null,\n };\n /** Reference face triangualtion array of 468 points, used for triangle references between points */\n faceTriangulation: typeof facemesh.triangulation;\n /** Refernce UV map of 468 values, used for 3D mapping of the face mesh */\n faceUVMap: typeof facemesh.uvmap;\n /** Platform and agent information detected by Human */\n sysinfo: { platform: string, agent: string };\n /** Performance object that contains values for all recently performed operations */\n performance: Record; // perf members are dynamically defined as needed\n #numTensors: number;\n #analyzeMemoryLeaks: boolean;\n #checkSanity: boolean;\n #firstRun: boolean;\n #lastInputSum: number;\n #lastCacheDiff: number;\n\n // definition end\n\n /**\n * Creates instance of Human library that is futher used for all operations\n * @param userConfig: {@link Config}\n */\n constructor(userConfig?: Config | Record) {\n this.config = mergeDeep(defaults, userConfig || {});\n this.tf = tf;\n this.draw = draw;\n this.version = app.version;\n this.state = 'idle';\n this.#numTensors = 0;\n this.#analyzeMemoryLeaks = false;\n this.#checkSanity = false;\n this.#firstRun = true;\n this.#lastCacheDiff = 0;\n this.performance = { backend: 0, load: 0, image: 0, frames: 0, cached: 0, changed: 0, total: 0, draw: 0 };\n // object that contains all initialized models\n this.models = {\n face: null,\n posenet: null,\n blazepose: null,\n efficientpose: null,\n movenet: null,\n handpose: null,\n age: null,\n gender: null,\n emotion: null,\n embedding: null,\n nanodet: null,\n centernet: null,\n faceres: null,\n segmentation: null,\n };\n this.result = { face: [], body: [], hand: [], gesture: [], object: [], performance: {}, timestamp: 0, persons: [] };\n // export access to image processing\n // @ts-ignore eslint-typescript cannot correctly infer type in anonymous function\n this.image = (input: Input) => image.process(input, this.config);\n // export raw access to underlying models\n this.faceTriangulation = facemesh.triangulation;\n this.faceUVMap = facemesh.uvmap;\n // include platform info\n this.sysinfo = sysinfo.info();\n this.#lastInputSum = 1;\n }\n\n // helper function: measure tensor leak\n /** @hidden */\n analyze = (...msg: string[]) => {\n if (!this.#analyzeMemoryLeaks) return;\n const currentTensors = this.tf.engine().state.numTensors;\n const previousTensors = this.#numTensors;\n this.#numTensors = currentTensors;\n const leaked = currentTensors - previousTensors;\n if (leaked !== 0) log(...msg, leaked);\n }\n\n // quick sanity check on inputs\n /** @hidden */\n #sanity = (input: Input): null | string => {\n if (!this.#checkSanity) return null;\n if (!input) return 'input is not defined';\n if (this.tf.ENV.flags.IS_NODE && !(input instanceof tf.Tensor)) return 'input must be a tensor';\n try {\n this.tf.getBackend();\n } catch {\n return 'backend not loaded';\n }\n return null;\n }\n\n /** Simmilarity method calculates simmilarity between two provided face descriptors (face embeddings)\n * - Calculation is based on normalized Minkowski distance between\n *\n * @param embedding1: face descriptor as array of numbers\n * @param embedding2: face descriptor as array of numbers\n * @returns similarity: number\n */\n // eslint-disable-next-line class-methods-use-this\n similarity(embedding1: Array, embedding2: Array): number {\n return faceres.similarity(embedding1, embedding2);\n }\n\n /**\n * Segmentation method takes any input and returns processed canvas with body segmentation\n * Optional parameter background is used to fill the background with specific input\n * Segmentation is not triggered as part of detect process\n *\n * @param input: {@link Input}\n * @param background?: {@link Input}\n * @returns Canvas\n */\n segmentation(input: Input, background?: Input) {\n return segmentation.process(input, background, this.config);\n }\n\n /** Enhance method performs additional enhacements to face image previously detected for futher processing\n * @param input: Tensor as provided in human.result.face[n].tensor\n * @returns Tensor\n */\n // eslint-disable-next-line class-methods-use-this\n enhance(input: Tensor): Tensor | null {\n return faceres.enhance(input);\n }\n\n /** Math method find best match between provided face descriptor and predefined database of known descriptors\n * @param faceEmbedding: face descriptor previsouly calculated on any face\n * @param db: array of mapping of face descriptors to known values\n * @param threshold: minimum score for matching to be considered in the result\n * @returns best match\n */\n // eslint-disable-next-line class-methods-use-this\n match(faceEmbedding: Array, db: Array<{ name: string, source: string, embedding: number[] }>, threshold = 0): { name: string, source: string, similarity: number, embedding: number[] } {\n return faceres.match(faceEmbedding, db, threshold);\n }\n\n /** Load method preloads all configured models on-demand\n * - Not explicitly required as any required model is load implicitly on it's first run\n * @param userConfig?: {@link Config}\n */\n async load(userConfig?: Config | Record) {\n this.state = 'load';\n const timeStamp = now();\n if (userConfig) this.config = mergeDeep(this.config, userConfig) as Config;\n\n if (this.#firstRun) { // print version info on first run and check for correct backend setup\n if (this.config.debug) log(`version: ${this.version}`);\n if (this.config.debug) log(`tfjs version: ${this.tf.version_core}`);\n if (this.config.debug) log('platform:', this.sysinfo.platform);\n if (this.config.debug) log('agent:', this.sysinfo.agent);\n\n await this.#checkBackend(true);\n if (this.tf.ENV.flags.IS_BROWSER) {\n if (this.config.debug) log('configuration:', this.config);\n if (this.config.debug) log('tf flags:', this.tf.ENV.flags);\n }\n }\n\n await models.load(this); // actually loads models\n\n if (this.#firstRun) { // print memory stats on first run\n if (this.config.debug) log('tf engine state:', this.tf.engine().state.numBytes, 'bytes', this.tf.engine().state.numTensors, 'tensors');\n this.#firstRun = false;\n }\n\n const current = Math.trunc(now() - timeStamp);\n if (current > (this.performance.load as number || 0)) this.performance.load = current;\n }\n\n // check if backend needs initialization if it changed\n /** @hidden */\n #checkBackend = async (force = false) => {\n if (this.config.backend && (this.config.backend.length > 0) && force || (this.tf.getBackend() !== this.config.backend)) {\n const timeStamp = now();\n this.state = 'backend';\n /* force backend reload\n if (this.config.backend in tf.engine().registry) {\n const backendFactory = tf.findBackendFactory(this.config.backend);\n tf.removeBackend(this.config.backend);\n tf.registerBackend(this.config.backend, backendFactory);\n } else {\n log('Backend not registred:', this.config.backend);\n }\n */\n\n if (this.config.backend && this.config.backend.length > 0) {\n // detect web worker\n // @ts-ignore ignore missing type for WorkerGlobalScope as that is the point\n if (typeof window === 'undefined' && typeof WorkerGlobalScope !== 'undefined' && this.config.debug) {\n log('running inside web worker');\n }\n\n // force browser vs node backend\n if (this.tf.ENV.flags.IS_BROWSER && this.config.backend === 'tensorflow') {\n log('override: backend set to tensorflow while running in browser');\n this.config.backend = 'humangl';\n }\n if (this.tf.ENV.flags.IS_NODE && (this.config.backend === 'webgl' || this.config.backend === 'humangl')) {\n log('override: backend set to webgl while running in nodejs');\n this.config.backend = 'tensorflow';\n }\n\n // handle webgpu\n if (this.tf.ENV.flags.IS_BROWSER && this.config.backend === 'webgpu') {\n if (typeof navigator === 'undefined' || typeof navigator['gpu'] === 'undefined') {\n log('override: backend set to webgpu but browser does not support webgpu');\n this.config.backend = 'humangl';\n } else {\n const adapter = await navigator['gpu'].requestAdapter();\n if (this.config.debug) log('enumerated webgpu adapter:', adapter);\n }\n }\n\n // check available backends\n if (this.config.backend === 'humangl') backend.register();\n const available = Object.keys(this.tf.engine().registryFactory);\n if (this.config.debug) log('available backends:', available);\n\n if (!available.includes(this.config.backend)) {\n log(`error: backend ${this.config.backend} not found in registry`);\n this.config.backend = this.tf.ENV.flags.IS_NODE ? 'tensorflow' : 'humangl';\n log(`override: using backend ${this.config.backend} instead`);\n }\n\n if (this.config.debug) log('setting backend:', this.config.backend);\n\n // handle wasm\n if (this.config.backend === 'wasm') {\n if (this.config.debug) log('wasm path:', this.config.wasmPath);\n if (typeof this.tf?.setWasmPaths !== 'undefined') this.tf.setWasmPaths(this.config.wasmPath);\n else throw new Error('Human: WASM backend is not loaded');\n const simd = await this.tf.env().getAsync('WASM_HAS_SIMD_SUPPORT');\n const mt = await this.tf.env().getAsync('WASM_HAS_MULTITHREAD_SUPPORT');\n if (this.config.debug) log(`wasm execution: ${simd ? 'SIMD' : 'no SIMD'} ${mt ? 'multithreaded' : 'singlethreaded'}`);\n if (this.config.debug && !simd) log('warning: wasm simd support is not enabled');\n }\n\n // handle humangl\n try {\n await this.tf.setBackend(this.config.backend);\n } catch (err) {\n log('error: cannot set backend:', this.config.backend, err);\n }\n }\n\n // handle webgl & humangl\n if (this.tf.getBackend() === 'webgl' || this.tf.getBackend() === 'humangl') {\n this.tf.ENV.set('CHECK_COMPUTATION_FOR_ERRORS', false);\n this.tf.ENV.set('WEBGL_CPU_FORWARD', true);\n this.tf.ENV.set('WEBGL_PACK_DEPTHWISECONV', false);\n this.tf.ENV.set('WEBGL_USE_SHAPES_UNIFORMS', true);\n // if (!this.config.object.enabled) this.tf.ENV.set('WEBGL_FORCE_F16_TEXTURES', true); // safe to use 16bit precision\n if (typeof this.config['deallocate'] !== 'undefined' && this.config['deallocate']) { // hidden param\n log('changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:', true);\n this.tf.ENV.set('WEBGL_DELETE_TEXTURE_THRESHOLD', 0);\n }\n // @ts-ignore getGPGPUContext only exists on WebGL backend\n const gl = await this.tf.backend().getGPGPUContext().gl;\n if (this.config.debug) log(`gl version:${gl.getParameter(gl.VERSION)} renderer:${gl.getParameter(gl.RENDERER)}`);\n }\n\n // wait for ready\n this.tf.enableProdMode();\n await this.tf.ready();\n this.performance.backend = Math.trunc(now() - timeStamp);\n }\n }\n\n /**\n * Runs interpolation using last known result and returns smoothened result\n * Interpolation is based on time since last known result so can be called independently\n *\n * @param result?: {@link Result} optional use specific result set to run interpolation on\n * @returns result: {@link Result}\n */\n next = (result?: Result) => interpolate.calc(result || this.result) as Result;\n\n // check if input changed sufficiently to trigger new detections\n /** @hidden */\n #skipFrame = async (input: Tensor) => {\n if (this.config.cacheSensitivity === 0) return false;\n const resizeFact = 32;\n if (!input.shape[1] || !input.shape[2]) return false;\n const reduced: Tensor = tf.image.resizeBilinear(input, [Math.trunc(input.shape[1] / resizeFact), Math.trunc(input.shape[2] / resizeFact)]);\n // use tensor sum\n /*\n const sumT = this.tf.sum(reduced);\n const sum = await sumT.data()[0] as number;\n sumT.dispose();\n */\n // use js loop sum, faster than uploading tensor to gpu calculating and downloading back\n const reducedData = await reduced.data(); // raw image rgb array\n let sum = 0;\n for (let i = 0; i < reducedData.length / 3; i++) sum += reducedData[3 * i + 2]; // look only at green value of each pixel\n\n reduced.dispose();\n const diff = 100 * (Math.max(sum, this.#lastInputSum) / Math.min(sum, this.#lastInputSum) - 1);\n this.#lastInputSum = sum;\n // if previous frame was skipped, skip this frame if changed more than cacheSensitivity\n // if previous frame was not skipped, then look for cacheSensitivity or difference larger than one in previous frame to avoid resetting cache in subsequent frames unnecessarily\n const skipFrame = diff < Math.max(this.config.cacheSensitivity, this.#lastCacheDiff);\n // if difference is above 10x threshold, don't use last value to force reset cache for significant change of scenes or images\n this.#lastCacheDiff = diff > 10 * this.config.cacheSensitivity ? 0 : diff;\n return skipFrame;\n }\n\n /** Main detection method\n * - Analyze configuration: {@link Config}\n * - Pre-process input: {@link Input}\n * - Run inference for all configured models\n * - Process and return result: {@link Result}\n *\n * @param input: Input\n * @param userConfig?: {@link Config}\n * @returns result: {@link Result}\n */\n async detect(input: Input, userConfig?: Config | Record): Promise {\n // detection happens inside a promise\n return new Promise(async (resolve) => {\n this.state = 'config';\n let timeStamp;\n let elapsedTime;\n\n // update configuration\n this.config = mergeDeep(this.config, userConfig) as Config;\n\n // sanity checks\n this.state = 'check';\n const error = this.#sanity(input);\n if (error) {\n log(error, input);\n resolve({ error });\n }\n\n const timeStart = now();\n\n // configure backend\n await this.#checkBackend();\n\n // load models if enabled\n await this.load();\n\n timeStamp = now();\n let process = image.process(input, this.config);\n this.performance.image = Math.trunc(now() - timeStamp);\n this.analyze('Get Image:');\n\n // run segmentation preprocessing\n if (this.config.segmentation.enabled && process && process.tensor) {\n this.analyze('Start Segmentation:');\n this.state = 'run:segmentation';\n timeStamp = now();\n await segmentation.predict(process);\n elapsedTime = Math.trunc(now() - timeStamp);\n if (elapsedTime > 0) this.performance.segmentation = elapsedTime;\n if (process.canvas) {\n // replace input\n tf.dispose(process.tensor);\n process = image.process(process.canvas, this.config);\n }\n this.analyze('End Segmentation:');\n }\n\n if (!process || !process.tensor) {\n log('could not convert input to tensor');\n resolve({ error: 'could not convert input to tensor' });\n return;\n }\n\n timeStamp = now();\n this.config.skipFrame = await this.#skipFrame(process.tensor);\n if (!this.performance.frames) this.performance.frames = 0;\n if (!this.performance.cached) this.performance.cached = 0;\n (this.performance.frames as number)++;\n if (this.config.skipFrame) this.performance.cached++;\n this.performance.changed = Math.trunc(now() - timeStamp);\n this.analyze('Check Changed:');\n\n // prepare where to store model results\n // keep them with weak typing as it can be promise or not\n let faceRes: Face[] | Promise | never[] = [];\n let bodyRes: Body[] | Promise | never[] = [];\n let handRes: Hand[] | Promise | never[] = [];\n let objectRes: Item[] | Promise | never[] = [];\n\n // run face detection followed by all models that rely on face bounding box: face mesh, age, gender, emotion\n if (this.config.async) {\n faceRes = this.config.face.enabled ? face.detectFace(this, process.tensor) : [];\n if (this.performance.face) delete this.performance.face;\n } else {\n this.state = 'run:face';\n timeStamp = now();\n faceRes = this.config.face.enabled ? await face.detectFace(this, process.tensor) : [];\n elapsedTime = Math.trunc(now() - timeStamp);\n if (elapsedTime > 0) this.performance.face = elapsedTime;\n }\n\n // run body: can be posenet, blazepose, efficientpose, movenet\n this.analyze('Start Body:');\n if (this.config.async) {\n if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? posenet.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? blazepose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? efficientpose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('movenet')) bodyRes = this.config.body.enabled ? movenet.predict(process.tensor, this.config) : [];\n if (this.performance.body) delete this.performance.body;\n } else {\n this.state = 'run:body';\n timeStamp = now();\n if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? await posenet.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? await blazepose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? await efficientpose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('movenet')) bodyRes = this.config.body.enabled ? await movenet.predict(process.tensor, this.config) : [];\n elapsedTime = Math.trunc(now() - timeStamp);\n if (elapsedTime > 0) this.performance.body = elapsedTime;\n }\n this.analyze('End Body:');\n\n // run handpose\n this.analyze('Start Hand:');\n if (this.config.async) {\n handRes = this.config.hand.enabled ? handpose.predict(process.tensor, this.config) : [];\n if (this.performance.hand) delete this.performance.hand;\n } else {\n this.state = 'run:hand';\n timeStamp = now();\n handRes = this.config.hand.enabled ? await handpose.predict(process.tensor, this.config) : [];\n elapsedTime = Math.trunc(now() - timeStamp);\n if (elapsedTime > 0) this.performance.hand = elapsedTime;\n }\n this.analyze('End Hand:');\n\n // run nanodet\n this.analyze('Start Object:');\n if (this.config.async) {\n if (this.config.object.modelPath.includes('nanodet')) objectRes = this.config.object.enabled ? nanodet.predict(process.tensor, this.config) : [];\n else if (this.config.object.modelPath.includes('centernet')) objectRes = this.config.object.enabled ? centernet.predict(process.tensor, this.config) : [];\n if (this.performance.object) delete this.performance.object;\n } else {\n this.state = 'run:object';\n timeStamp = now();\n if (this.config.object.modelPath.includes('nanodet')) objectRes = this.config.object.enabled ? await nanodet.predict(process.tensor, this.config) : [];\n else if (this.config.object.modelPath.includes('centernet')) objectRes = this.config.object.enabled ? await centernet.predict(process.tensor, this.config) : [];\n elapsedTime = Math.trunc(now() - timeStamp);\n if (elapsedTime > 0) this.performance.object = elapsedTime;\n }\n this.analyze('End Object:');\n\n // if async wait for results\n if (this.config.async) [faceRes, bodyRes, handRes, objectRes] = await Promise.all([faceRes, bodyRes, handRes, objectRes]);\n\n // run gesture analysis last\n let gestureRes: Gesture[] = [];\n if (this.config.gesture.enabled) {\n timeStamp = now();\n gestureRes = [...gesture.face(faceRes), ...gesture.body(bodyRes), ...gesture.hand(handRes), ...gesture.iris(faceRes)];\n if (!this.config.async) this.performance.gesture = Math.trunc(now() - timeStamp);\n else if (this.performance.gesture) delete this.performance.gesture;\n }\n\n this.performance.total = Math.trunc(now() - timeStart);\n this.state = 'idle';\n this.result = {\n face: faceRes as Face[],\n body: bodyRes as Body[],\n hand: handRes as Hand[],\n gesture: gestureRes,\n object: objectRes as Item[],\n performance: this.performance,\n canvas: process.canvas,\n timestamp: Date.now(),\n get persons() { return persons.join(faceRes as Face[], bodyRes as Body[], handRes as Hand[], gestureRes, process?.tensor?.shape); },\n };\n\n // finally dispose input tensor\n tf.dispose(process.tensor);\n\n // log('Result:', result);\n resolve(this.result);\n });\n }\n\n /** @hidden */\n #warmupBitmap = async () => {\n const b64toBlob = (base64: string, type = 'application/octet-stream') => fetch(`data:${type};base64,${base64}`).then((res) => res.blob());\n let blob;\n let res;\n switch (this.config.warmup) {\n case 'face': blob = await b64toBlob(sample.face); break;\n case 'full': blob = await b64toBlob(sample.body); break;\n default: blob = null;\n }\n if (blob) {\n const bitmap = await createImageBitmap(blob);\n res = await this.detect(bitmap, this.config);\n bitmap.close();\n }\n return res;\n }\n\n /** @hidden */\n #warmupCanvas = async () => new Promise((resolve) => {\n let src;\n let size = 0;\n switch (this.config.warmup) {\n case 'face':\n size = 256;\n src = 'data:image/jpeg;base64,' + sample.face;\n break;\n case 'full':\n case 'body':\n size = 1200;\n src = 'data:image/jpeg;base64,' + sample.body;\n break;\n default:\n src = null;\n }\n // src = encodeURI('../assets/human-sample-upper.jpg');\n const img = new Image();\n img.onload = async () => {\n const canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(size, size) : document.createElement('canvas');\n canvas.width = img.naturalWidth;\n canvas.height = img.naturalHeight;\n const ctx = canvas.getContext('2d');\n ctx?.drawImage(img, 0, 0);\n // const data = ctx?.getImageData(0, 0, canvas.height, canvas.width);\n const res = await this.detect(canvas, this.config);\n resolve(res);\n };\n if (src) img.src = src;\n else resolve(null);\n });\n\n /** @hidden */\n #warmupNode = async () => {\n const atob = (str: string) => Buffer.from(str, 'base64');\n let img;\n if (this.config.warmup === 'face') img = atob(sample.face);\n if (this.config.warmup === 'body' || this.config.warmup === 'full') img = atob(sample.body);\n if (!img) return null;\n let res;\n if (typeof tf['node'] !== 'undefined') {\n const data = tf['node'].decodeJpeg(img);\n const expanded = data.expandDims(0);\n this.tf.dispose(data);\n // log('Input:', expanded);\n res = await this.detect(expanded, this.config);\n this.tf.dispose(expanded);\n } else {\n if (this.config.debug) log('Warmup tfjs-node not loaded');\n /*\n const input = await canvasJS.loadImage(img);\n const canvas = canvasJS.createCanvas(input.width, input.height);\n const ctx = canvas.getContext('2d');\n ctx.drawImage(img, 0, 0, input.width, input.height);\n res = await this.detect(input, this.config);\n */\n }\n return res;\n }\n\n /** Warmup method pre-initializes all configured models for faster inference\n * - can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n * @param userConfig?: Config\n */\n async warmup(userConfig?: Config | Record): Promise {\n const t0 = now();\n if (userConfig) this.config = mergeDeep(this.config, userConfig) as Config;\n if (!this.config.warmup || this.config.warmup === 'none') return { error: 'null' };\n let res;\n if (typeof createImageBitmap === 'function') res = await this.#warmupBitmap();\n else if (typeof Image !== 'undefined') res = await this.#warmupCanvas();\n else res = await this.#warmupNode();\n const t1 = now();\n if (this.config.debug) log('Warmup', this.config.warmup, Math.round(t1 - t0), 'ms', res);\n return res;\n }\n}\n\n/**\n * Class Human is also available as default export\n */\nexport { Human as default };\n"], - "mappings": ";;;;;;owBAKO,WAAc,EAAgB,EAAsB,CACzD,GAAM,GAAY,EAAO,SAAS,KAAO,GAAK,IAExC,EAAO,AADI,EAAK,WAAW,MAAQ,EAAK,WAAW,MAAQ,EAAK,WAAW,UAAY,EAAK,WAAW,WAAa,EAAK,WAAW,SAClH,GAAG,IAAS,GAAG,IAAS,IAAY,IAC5D,GAAI,CAAC,EAAK,oBAAoB,SAAS,SAAU,KAAM,IAAI,OAAM,2BAA2B,yBAC5F,MAAO,GAIF,cAAgB,EAAW,CAChC,GAAM,GAAK,GAAI,MACT,EAAK,GAAG,EAAG,WAAW,WAAW,SAAS,EAAG,QAAQ,EAAG,aAAa,WAAW,SAAS,EAAG,QAAQ,EAAG,aAAa,WAAW,SAAS,EAAG,QAAQ,EAAG,kBAAkB,WAAW,SAAS,EAAG,OAErM,AAAI,GAAK,QAAQ,IAAI,EAAI,SAAU,GAAG,GAIjC,GAAM,GAAM,IACb,MAAO,cAAgB,YAAoB,YAAY,MACpD,SAAU,QAAO,QAAQ,OAAO,UAAY,IAAO,KAAM,YAI3D,cAAsB,EAAS,CACpC,GAAM,GAAW,AAAC,GAAQ,GAAO,MAAO,IAAQ,SAChD,MAAO,GAAQ,OAAO,CAAC,EAAM,IAC3B,QAAO,KAAK,GAAO,IAAI,QAAQ,AAAC,GAAQ,CACtC,GAAM,GAAO,EAAK,GACZ,EAAO,EAAI,GACjB,AAAI,MAAM,QAAQ,IAAS,MAAM,QAAQ,GAAO,EAAK,GAAO,EAAK,OAAO,GAAG,GACtE,AAAI,EAAS,IAAS,EAAS,GAAO,EAAK,GAAO,EAAU,EAAM,GAClE,EAAK,GAAO,IAEZ,GACN,IC+KL,GAAM,IAAiB,CACrB,QAAS,QAET,cAAe,aACf,SAAU,sDACV,MAAO,GACP,MAAO,GACP,OAAQ,OAIR,iBAAkB,IAGlB,UAAW,GACX,OAAQ,CAEN,QAAS,GACT,MAAO,EACP,OAAQ,EAIR,KAAM,GACN,OAAQ,GACR,WAAY,EACZ,SAAU,EACV,UAAW,EACX,KAAM,EACN,WAAY,EACZ,IAAK,EACL,SAAU,GACV,MAAO,GACP,QAAS,GACT,WAAY,GACZ,YAAa,GACb,SAAU,GACV,SAAU,GAGZ,QAAS,CACP,QAAS,IAGX,KAAM,CACJ,QAAS,GAIT,SAAU,CACR,UAAW,iBACX,SAAU,GAGV,YAAa,GAEb,WAAY,GAKZ,cAAe,GACf,aAAc,GACd,OAAQ,IAIV,KAAM,CACJ,QAAS,GACT,UAAW,iBAGb,KAAM,CACJ,QAAS,GACT,UAAW,aAIb,YAAa,CACX,QAAS,GAET,UAAW,eAEX,WAAY,GAEZ,cAAe,IAGjB,QAAS,CACP,QAAS,GACT,cAAe,GACf,WAAY,GAEZ,UAAW,iBAIf,KAAM,CACJ,QAAS,GACT,UAAW,yBAEX,YAAa,EAGb,cAAe,GACf,WAAY,GAId,KAAM,CACJ,QAAS,GACT,SAAU,GAEV,WAAY,GAKZ,cAAe,GACf,aAAc,GACd,YAAa,EAEb,UAAW,GACX,SAAU,CACR,UAAW,mBAEb,SAAU,CACR,UAAW,sBAIf,OAAQ,CACN,QAAS,GACT,UAAW,qBAEX,cAAe,GACf,aAAc,GACd,YAAa,GACb,WAAY,IAId,aAAc,CACZ,QAAS,GAKT,UAAW,gBCvWR,aAAqD,CAC1D,GAAI,GAAW,GACX,EAAQ,GACZ,GAAI,MAAO,YAAc,YAAa,CACpC,GAAM,GAAM,UAAU,UAAU,MAAM,iBACtC,GAAI,GAAO,EAAI,GAAI,CACjB,GAAM,GAAgB,EAAI,GAAG,MAAM,iBACnC,EAAY,GAAiB,EAAc,GAAM,EAAc,GAAG,QAAQ,SAAU,IAAM,GAC1F,EAAQ,UAAU,UAAU,QAAQ,EAAI,GAAI,IACxC,EAAS,IAAI,GAAQ,EAAM,QAAQ,EAAI,GAAI,KAC/C,EAAQ,EAAM,QAAQ,MAAO,UAE1B,AAAI,OAAO,UAAY,aAC5B,GAAW,GAAG,QAAQ,YAAY,QAAQ,OAC1C,EAAQ,UAAU,QAAQ,WAE5B,MAAO,CAAE,WAAU,qDCSrB,QACA,QACA,QAEA,QACA,QACA,QA5BA,yDACA,8DACA,8DACA,gEACA,mEACA,qEACA,uEACA,sEAeA,uDACA,yDACA,4DACA,uDACA,8DACA,gEACA,+DAIO,GAAM,IAAU,CACrB,KAAM,GACN,YAAa,GACb,YAAa,GACb,cAAe,GACf,iBAAkB,GAClB,mBAAoB,GACpB,qBAAsB,GACtB,oBAAqB,ICtChB,GAAM,GAAS,CACpB,KAAM,UACN,SAAU,GACV,OAAoD,KACpD,GAAmC,KACnC,MAAO,KACP,OAAQ,KACR,WAAuB,GACvB,UAAW,CACT,MAAO,GACP,UAAW,GACX,mBAAoB,GACpB,sBAAuB,GACvB,MAAO,GACP,QAAS,GACT,6BAA8B,GAC9B,eAAgB,KAIpB,aAA4B,CAK1B,GAAM,GAAK,EAAO,GAClB,AAAI,CAAC,GACL,GAAO,WAAa,EAAG,0BASlB,aAA0B,CAC/B,GAAI,CAAC,AAAG,cAAY,EAAO,MAAO,CAEhC,GAAI,CACF,EAAO,OAAU,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAO,MAAO,EAAO,QAAU,SAAS,cAAc,gBAC9H,EAAP,CACA,EAAI,+BAAgC,GACpC,OAEF,GAAI,CACF,EAAO,GAAK,EAAO,OAAO,WAAW,SAAU,EAAO,iBAC/C,EAAP,CACA,EAAI,oCAAqC,GACzC,OAEF,GAAI,CACF,AAAG,kBAAgB,EAAG,EAAO,UACtB,EAAP,CACA,EAAI,oCAAqC,GACzC,OAEF,GAAI,CACF,GAAM,GAAM,GAAO,gBAAa,EAAO,IACvC,AAAG,kBAAgB,EAAO,KAAM,IAAM,GAAO,oBAAiB,GAAM,EAAO,gBACpE,EAAP,CACA,EAAI,wCAAyC,GAC7C,OAEF,GAAI,CAEF,AADgB,AAAG,uBAAqB,SAChC,QAAQ,AAAC,GAAiB,CAChC,GAAM,GAAkB,IAAK,EAAc,YAAa,EAAO,MAC/D,AAAG,iBAAe,WAEb,EAAP,CACA,EAAI,mDAAoD,GACxD,OAEF,GAAI,CACF,AAAG,MAAI,IAAI,gBAAiB,SACrB,EAAP,CACA,EAAI,yCAA0C,GAC9C,OAEF,KACA,EAAI,sBAAuB,EAAO,OCvF/B,YAA6B,EAAK,EAAQ,CAC/C,GAAM,GAAa,CAAC,EAAI,WAAW,GAAK,EAAO,GAAI,EAAI,WAAW,GAAK,EAAO,IACxE,EAAW,CAAC,EAAI,SAAS,GAAK,EAAO,GAAI,EAAI,SAAS,GAAK,EAAO,IACxE,MAAO,CAAE,aAAY,YAGhB,YAAoB,EAAK,CAC9B,MAAO,CACL,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,IAC1C,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,KAIvC,YAAsB,EAAK,CAChC,MAAO,CACL,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAC5D,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,GAIzD,YAAkC,EAAK,EAAO,EAAU,CAC7D,GAAM,GAAI,EAAM,MAAM,GAChB,EAAI,EAAM,MAAM,GAChB,EAAQ,CAAC,CACb,EAAI,WAAW,GAAK,EACpB,EAAI,WAAW,GAAK,EACpB,EAAI,SAAS,GAAK,EAClB,EAAI,SAAS,GAAK,IAEpB,MAAO,AAAG,SAAM,cAAc,EAAO,EAAO,CAAC,GAAI,GAG5C,YAAoB,EAAK,EAAS,IAAK,CAC5C,GAAM,GAAS,GAAa,GACtB,EAAO,GAAW,GAClB,EAAc,CAAC,EAAS,EAAK,GAAK,EAAG,EAAS,EAAK,GAAK,GACxD,EAAa,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IAClE,EAAW,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IACtE,MAAO,CAAE,aAAY,WAAU,UAAW,EAAI,WAGzC,YAAqB,EAAK,CAC/B,GAAM,GAAU,GAAa,GACvB,EAAO,GAAW,GAElB,EAAW,AADD,KAAK,IAAI,GAAG,GACD,EACrB,EAAa,CAAC,KAAK,MAAM,EAAQ,GAAK,GAAW,KAAK,MAAM,EAAQ,GAAK,IACzE,EAAW,CAAC,KAAK,MAAM,EAAQ,GAAK,GAAW,KAAK,MAAM,EAAQ,GAAK,IAC7E,MAAO,CAAE,aAAY,WAAU,UAAW,EAAI,WAGzC,YAAuC,EAAW,CACvD,GAAM,GAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAa,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC3C,EAAW,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC/C,MAAO,CAAE,aAAY,WAAU,aAQ1B,GAAM,IAAY,AAAC,GAAoB,EAC5C,WAAY,AAAG,QAAM,EAAgB,CAAC,EAAG,GAAI,CAAC,GAAI,IAClD,SAAU,AAAG,QAAM,EAAgB,CAAC,EAAG,GAAI,CAAC,GAAI,MCpE3C,GAAM,IAAkB,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAKtD,YAA0B,EAAO,CACtC,MAAO,GAAQ,EAAI,KAAK,GAAK,KAAK,MAAO,GAAQ,KAAK,IAAO,GAAI,KAAK,KAQjE,YAAyB,EAAQ,EAAQ,CAC9C,GAAM,GAAU,KAAK,GAAK,EAAI,KAAK,MAAM,CAAE,GAAO,GAAK,EAAO,IAAK,EAAO,GAAK,EAAO,IACtF,MAAO,IAAiB,GAOnB,YAAgC,EAAG,EAAG,CAC3C,MAAO,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAGhC,YAAa,EAAI,EAAI,CAC1B,GAAI,GAAU,EACd,OAAS,GAAI,EAAG,EAAI,EAAG,OAAQ,IAC7B,GAAW,EAAG,GAAK,EAAG,GAExB,MAAO,GAGF,YAA4B,EAAK,EAAa,CACnD,GAAM,GAAwB,GAC9B,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,EAAO,KAAK,EAAI,GAAG,IAErB,MAAO,GAGF,YAAmC,EAAM,EAAM,CACpD,GAAM,GAA2B,GAC3B,EAAO,EAAK,OAClB,OAAS,GAAM,EAAG,EAAM,EAAM,IAAO,CACnC,EAAQ,KAAK,IACb,OAAS,GAAM,EAAG,EAAM,EAAM,IAC5B,EAAQ,GAAK,KAAK,GAAI,EAAK,GAAM,GAAmB,EAAM,KAG9D,MAAO,GAGF,YAA6B,EAAU,EAAQ,CACpD,GAAM,GAAO,KAAK,IAAI,GAChB,EAAO,KAAK,IAAI,GAChB,EAAiB,CAAC,CAAC,EAAM,CAAC,EAAM,GAAI,CAAC,EAAM,EAAM,GAAI,CAAC,EAAG,EAAG,IAC5D,EAAoB,GAAuB,EAAO,GAAI,EAAO,IAC7D,EAA2B,GAA0B,EAAmB,GACxE,EAA4B,GAAuB,CAAC,EAAO,GAAI,CAAC,EAAO,IAC7E,MAAO,IAA0B,EAA0B,GAGtD,YAA+B,EAAQ,CAC5C,GAAM,GAAoB,CAAC,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAAK,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,KAC5E,EAAuB,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAChD,EAAsB,CAC1B,CAAC,GAAI,EAAkB,GAAI,GAC3B,CAAC,GAAI,EAAkB,GAAI,IAE7B,MAAO,CACL,EAAkB,GAAG,OAAO,EAAoB,IAChD,EAAkB,GAAG,OAAO,EAAoB,IAChD,CAAC,EAAG,EAAG,IAIJ,YAAqB,EAAuB,EAAgB,CACjE,MAAO,CACL,GAAI,EAAuB,EAAe,IAC1C,GAAI,EAAuB,EAAe,KAQvC,YAAyB,EAAW,CACzC,GAAM,GAAO,CAAE,QAAS,CAAC,EAAY,GAAI,EAAY,GAAI,QAAS,CAAC,EAAG,IAChE,EAAmC,GACzC,OAAS,GAAI,EAAG,EAAI,EAAK,QAAQ,OAAQ,IAAK,CAC5C,GAAM,GAAS,EAAK,QAAQ,GACtB,EAAW,KAAK,MAAO,GAAY,EAAS,GAAK,GACjD,EAAW,KAAK,MAAO,GAAY,EAAS,GAAK,GACjD,EAAa,EAAK,QAAQ,GAChC,OAAS,GAAQ,EAAG,EAAQ,EAAU,IAAS,CAC7C,GAAM,GAAU,EAAU,GAAQ,IAClC,OAAS,GAAQ,EAAG,EAAQ,EAAU,IAAS,CAC7C,GAAM,GAAU,EAAU,GAAQ,IAClC,OAAS,GAAI,EAAG,EAAI,EAAY,IAC9B,EAAQ,KAAK,CAAC,EAAS,MAK/B,MAAO,GCrGT,GAAM,IAAiB,EAEvB,YAAsB,EAAY,EAAS,EAAW,CACpD,GAAM,GAAY,AAAG,QAAM,EAAY,CAAC,EAAG,GAAI,CAAC,GAAI,IAC9C,EAAU,AAAG,MAAI,EAAW,GAC5B,EAAW,AAAG,QAAM,EAAY,CAAC,EAAG,GAAI,CAAC,GAAI,IAC7C,EAAqB,AAAG,MAAI,EAAU,GACtC,EAAoB,AAAG,MAAI,EAAS,GACpC,EAAc,AAAG,MAAI,EAAoB,GACzC,EAAS,AAAG,MAAI,EAAmB,GACnC,EAAO,AAAG,MAAI,EAAmB,GACjC,EAAkB,AAAG,MAAI,EAAQ,GACjC,EAAgB,AAAG,MAAI,EAAM,GAEnC,MAAO,AAAG,YAAS,CAAC,EAAiB,GADlB,GAId,YAAqB,CAO1B,YAAY,EAAO,EAAgB,CACjC,KAAK,MAAQ,EACb,KAAK,YAAc,AAAK,GAAgB,EAAM,OAAO,GAAG,MAAM,IAC9D,KAAK,QAAU,AAAG,WAAS,KAAK,aAChC,KAAK,UAAY,EAAM,OAAO,GAAG,MAAM,GACvC,KAAK,OAAS,OAGV,kBAAiB,EAAoB,EAAoB,CAE7D,GAAK,CAAC,GAAgB,EAAW,oBAA2B,EAAW,MAAM,SAAW,GAAO,EAAW,MAAM,GAAK,GAAO,EAAW,MAAM,GAAK,EAAI,MAAO,MAC7J,GAAM,CAAC,EAAO,EAAO,GAAU,AAAG,OAAK,IAAM,CAC3C,GAAM,GAAe,AAAG,QAAM,eAAe,EAAY,CAAC,KAAK,UAAW,KAAK,YACzE,EAAkB,AAAG,MAAI,AAAG,MAAI,EAAc,OAAQ,IACtD,EAAM,KAAK,MAAM,QAAQ,GAC3B,EACJ,GAAI,MAAM,QAAQ,GAAM,CACtB,GAAM,GAAS,EAAI,KAAK,CAAC,EAAG,IAAM,EAAE,KAAO,EAAE,MACvC,EAAY,AAAG,SAAO,CAAC,EAAO,GAAI,EAAO,IAAK,GAC9C,EAAY,AAAG,SAAO,CAAC,EAAO,GAAI,EAAO,IAAK,GAC9C,EAAS,AAAG,SAAO,CAAC,EAAW,GAAY,GACjD,EAAW,AAAG,UAAQ,EAAQ,OAE9B,GAAW,AAAG,UAAQ,GAExB,GAAM,GAAW,GAAa,EAAU,KAAK,QAAS,CAAC,KAAK,UAAW,KAAK,YACtE,EAAS,AAAG,QAAM,EAAU,CAAC,EAAG,GAAI,CAAC,GAAI,IACzC,EAAY,AAAG,UAAQ,AAAG,UAAQ,IACxC,MAAO,CAAC,EAAU,EAAU,KAG9B,KAAK,OAAS,EAAU,KAAK,OAAQ,GAErC,GAAM,GAAY,KAAM,AAAG,SAAM,uBAAuB,EAAO,EAAQ,KAAK,OAAO,KAAK,SAAS,YAAa,KAAK,OAAO,KAAK,SAAS,aAAc,KAAK,OAAO,KAAK,SAAS,eAC1K,EAAM,KAAM,GAAU,QAC5B,AAAG,UAAQ,GACX,GAAM,GAAoI,GACpI,EAAa,KAAM,GAAO,OAChC,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAM,GAAa,EAAW,EAAI,IAClC,GAAI,EAAa,KAAK,OAAO,KAAK,SAAS,cAAe,CACxD,GAAM,GAAc,AAAG,QAAM,EAAO,CAAC,EAAI,GAAI,GAAI,CAAC,EAAG,KAC/C,EAAW,AAAI,GAAU,GAC/B,AAAG,UAAQ,GACX,GAAM,GAAS,KAAK,YAAY,EAAI,IAC9B,EAAY,AAAG,OAAK,IAAM,AAAG,UAAQ,AAAG,UAAQ,AAAG,QAAM,EAAO,CAAC,EAAI,GAAI,GAAiB,GAAI,CAAC,EAAG,MAAO,CAAC,GAAgB,MAChI,EAAe,KAAK,CAAE,IAAK,EAAU,YAAW,SAAQ,gBAG5D,MAAG,WAAQ,GACX,AAAG,UAAQ,GACX,AAAG,UAAQ,GACJ,CACL,MAAO,EACP,YAAa,CAAC,EAAW,MAAM,GAAK,KAAK,UAAW,EAAW,MAAM,GAAK,KAAK,cAKrF,kBAA2B,EAAgB,CACzC,GAAM,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eACjJ,EAAY,GAAI,IAAe,EAAO,GAC5C,MAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,SAAS,WACrE,EAAO,OAAO,EAAI,cAAe,EAAM,UACzC,EC/FF,GAAM,IAAmB,CAC9B,WAAY,CACV,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACvD,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,KAEpD,eAAgB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,KAC7D,eAAgB,CAAC,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC3D,eAAgB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC9D,eAAgB,CAAC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC9D,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC/C,eAAgB,CAAC,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACtD,eAAgB,CAAC,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,KAC1C,eAAgB,CAAC,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,KACpD,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC/C,eAAgB,CAAC,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACzD,kBAAmB,CAAC,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,KACnD,kBAAmB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,IACzC,aAAc,CAAC,IAAK,IAAK,IAAK,IAAK,KACnC,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACtD,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,KAC5C,YAAa,CAAC,IAAK,IAAK,IAAK,IAAK,KAClC,kBAAmB,CAAC,KACpB,QAAS,CAAC,GACV,WAAY,CAAC,GACb,gBAAiB,CAAC,IAClB,eAAgB,CAAC,KACjB,WAAY,CAAC,KACb,UAAW,CAAC,MAGD,GAA2B,CACtC,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,GAAI,GAAI,GAAI,GAAI,GAAI,KACrD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KACtD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KACtD,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,IACtD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KAC9D,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KAC9D,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,MAKnD,GAAQ,CACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,iBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,iBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,cAAgB,kBACjB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,mBAGT,GAAS,CACpB,IAAK,GAAI,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,EACtJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GACrJ,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAC7I,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAClJ,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GACrJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GACpJ,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GACjJ,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,EAAG,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,EAAG,IAC/I,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,GAAI,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GACtJ,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAClJ,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACnJ,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,IAClJ,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,EAAG,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GACnJ,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,EAAG,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,EAAG,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAClJ,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAChJ,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IACpJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GACrJ,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GACpJ,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EACpJ,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAC9I,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAC9I,IAAK,GAAI,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAwBvI,GAAM,IAAQ,CACP,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/E,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC1C,IAAK,EAAG,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,IAChC,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAChD,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,KAGhC,GAAQ,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,KAE1J,GAAO,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,KAElC,GAAO,GAAM,IAAI,AAAC,GAAM,GAAM,IAE9B,GAAO,GAAM,IAAI,AAAC,GAAM,GAAM,IAE9B,GAAM,GAAK,IAAI,AAAC,GAAM,GAAM,IChoBzC,GAAM,IAAc,AAAO,GAAiB,cACtC,GAAe,AAAO,GAAiB,eAEvC,GAAe,CACnB,WAAY,CAAC,GAAY,GAAI,GAAY,GAAY,OAAS,IAC9D,YAAa,CAAC,GAAa,GAAI,GAAa,GAAa,OAAS,KAG9D,GAAgB,CACpB,MAAO,IACP,MAAO,GACP,aAAc,CAAC,GAAI,AAAO,GAAiB,kBAAqB,KAG5D,GAAqB,CACzB,QAAS,EACT,SAAU,EACV,KAAM,EACN,MAAO,EACP,QAAS,EACT,SAAU,EACV,aAAc,CAAC,EAAG,IAGd,GAAgB,CACpB,YAAa,EACb,YAAa,EACb,MAAO,GACP,eAAgB,IAKlB,YAA+B,EAAW,EAAW,EAAQ,EAAM,CACjE,OAAS,GAAI,EAAG,EAAI,AAAO,GAAyB,OAAQ,IAAK,CAC/D,GAAM,CAAE,MAAK,WAAY,AAAO,GAAyB,GACnD,EAAkB,AAAO,GAAiB,GAAG,IAAS,KAC5D,GAAI,CAAC,GAAQ,EAAK,SAAS,GACzB,OAAS,GAAI,EAAG,EAAI,EAAQ,OAAQ,IAAK,CACvC,GAAM,GAAQ,EAAQ,GACtB,EAAU,EAAgB,IAAM,CAC9B,EAAU,GAAO,GAAI,EAAU,GAAO,GACrC,GAAU,GAAO,GAAK,EAAU,EAAgB,IAAI,IAAM,KAO9D,YAAe,CAYpB,YAAY,EAAqB,EAAc,EAAW,CApE5D,QAsEI,KAAK,YAAc,GACnB,KAAK,oBAAsB,EAC3B,KAAK,aAAe,EACpB,KAAK,UAAY,EACjB,KAAK,QAAU,qBAAqB,QAArB,cAA4B,OAAO,GAAG,MAAM,KAAM,EACjE,KAAK,SAAW,kBAAc,OAAO,GAAG,MAAM,KAAM,qBAAqB,QAArB,cAA4B,OAAO,GAAG,MAAM,IAChG,KAAK,SAAW,kBAAW,OAAO,GAAG,MAAM,KAAM,EACjD,KAAK,YAAc,IACnB,KAAK,QAAU,EACf,KAAK,cAAgB,EAGvB,mBAAmB,EAAW,EAAK,EAAO,EAAgB,CACxD,GAAM,GAAU,AAAS,GAAW,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC1E,EAAe,EAAU,IAAI,AAAC,GAAW,CAC7C,EAAQ,GAAK,KAAK,SAAY,GAAM,GAAK,KAAK,SAAW,GACzD,EAAQ,GAAK,KAAK,SAAY,GAAM,GAAK,KAAK,SAAW,GACzD,EAAM,KAEF,EAAwB,IAAU,EAAK,AAAK,GAAoB,EAAO,CAAC,EAAG,IAAW,GACtF,EAAiB,IAAU,EAAK,EAAa,IAAI,AAAC,GAAW,CAAC,GAAG,AAAK,GAAY,EAAO,GAAuB,EAAM,KAAQ,EAC9H,EAAyB,IAAU,EAAK,AAAK,GAAsB,GAAuB,GAC1F,EAAY,CAAC,GAAG,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAAa,GACrG,MAAO,GAAc,IAAI,AAAC,GAAW,CACnC,KAAK,MAAM,EAAM,GAAK,AAAK,GAAI,EAAW,EAAsB,KAChE,KAAK,MAAM,EAAM,GAAK,AAAK,GAAI,EAAW,EAAsB,KAChE,KAAK,MAAM,EAAM,MAKrB,iCAAiC,EAAW,CAC1C,GAAM,GAAW,EAAU,GAAa,WAAW,IAAI,GACjD,EAAY,EAAU,GAAa,YAAY,IAAI,GACzD,MAAO,GAAW,EAIpB,UAAU,EAAW,EAAM,EAAqB,EAAqB,EAAO,GAAO,CACjF,GAAM,GAAM,AAAS,GAAY,AAAS,GAAW,AAAS,GAA8B,CAAC,EAAU,GAAsB,EAAU,KAAwB,KAAK,cAC9J,EAAU,AAAS,GAAW,GAChC,EAAO,AAAG,QAAM,cAAc,EAAM,CAAC,CACvC,EAAI,WAAW,GAAK,KAAK,SACzB,EAAI,WAAW,GAAK,KAAK,SAAU,EAAI,SAAS,GAAK,KAAK,SAC1D,EAAI,SAAS,GAAK,KAAK,WACrB,CAAC,GAAI,CAAC,KAAK,SAAU,KAAK,WAC9B,GAAI,GAAQ,AAAG,MAAI,MAAM,WAAY,CACnC,GAAM,GAAU,AAAG,QAAM,cAAc,GACvC,AAAG,UAAQ,GACX,EAAO,EAET,MAAO,CAAE,MAAK,UAAS,QAIzB,aAAa,EAAS,EAAQ,EAAY,EAAO,GAAO,CACtD,GAAM,GAAgD,GACtD,OAAS,GAAI,EAAG,EAAI,GAAc,eAAgB,IAAK,CACrD,GAAM,GAAI,EAAQ,EAAI,GAChB,EAAI,EAAQ,EAAI,EAAI,GACpB,EAAI,EAAQ,EAAI,EAAI,GAC1B,EAAa,KAAK,CACf,GAAQ,EAAK,EAAI,KAAK,SAAc,EAAI,KAAK,UAAa,EAAW,GAAK,EAAO,WAAW,GAC5F,EAAI,KAAK,SAAY,EAAW,GAAK,EAAO,WAAW,GAAI,IAGhE,MAAO,CAAE,UAAW,EAAc,KAAM,EAAa,MAAM,GAAc,QAK3E,sBAAsB,EAAW,EAAY,EAAW,CACtD,GAAM,GAAe,EAAU,AAAO,GAAiB,GAAG,cAAsB,GAAc,cAAc,GACtG,EAAe,EAAU,AAAO,GAAiB,GAAG,cAAsB,GAAc,cAAc,GACtG,EAAY,GAAe,GAAgB,EAEjD,MAAO,GAAW,IAAI,CAAC,EAAO,IAAM,CAClC,GAAI,GAAI,EACR,MAAI,KAAM,EACR,EAAI,EACK,IAAM,GACf,GAAI,GAEC,CAAC,EAAM,GAAI,EAAM,GAAI,KAIhC,oBAAoB,EAAQ,EAAK,EAAO,CACtC,GAAM,CAAC,EAAc,GAAoB,EAAI,UAAU,QAAU,GAAc,MAAS,GAAc,aAAe,GAAmB,aAClI,EAAQ,AAAK,GAAgB,EAAI,UAAU,GAAe,EAAI,UAAU,IACxE,EAAa,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC/E,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,AAAG,QAAM,iBAAiB,EAAO,EAAO,EAAG,GAC1D,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,EAAM,EAAO,KAAK,KAAK,QACzB,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,SAAU,KAAK,WAC7H,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,QAAS,KAAK,UAC1H,EAAO,AAAG,MAAI,EAAK,KACzB,MAAG,WAAQ,GACX,AAAG,UAAQ,GACJ,CAAC,EAAO,EAAgB,QAG3B,aAAY,EAAW,EAAM,CACjC,GAAM,CAAE,IAAK,EAAY,QAAS,EAAgB,KAAM,GAAgB,KAAK,UAAU,EAAW,EAAM,GAAa,WAAW,GAAI,GAAa,WAAW,GAAI,IAC1J,CAAE,IAAK,EAAa,QAAS,EAAiB,KAAM,GAAiB,KAAK,UAAU,EAAW,EAAM,GAAa,YAAY,GAAI,GAAa,YAAY,IAC3J,EAAW,AAAG,SAAO,CAAC,EAAa,IACzC,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,GAAM,GAAiB,KAAK,UAAU,QAAQ,GAC9C,AAAG,UAAQ,GACX,GAAM,GAAqB,KAAM,GAAe,OAChD,AAAG,UAAQ,GACX,GAAM,GAAc,EAAmB,MAAM,EAAG,GAAc,eAAiB,GACzE,CAAE,UAAW,EAAkB,KAAM,GAAsB,KAAK,aAAa,EAAa,EAAY,EAAgB,IACtH,EAAe,EAAmB,MAAM,GAAc,eAAiB,GACvE,CAAE,UAAW,EAAmB,KAAM,GAAuB,KAAK,aAAa,EAAc,EAAa,GAC1G,EAAgC,KAAK,iCAAiC,GAC5E,AAAI,KAAK,IAAI,GAAiC,GAC5C,IAAsB,EAAW,EAAkB,OAAQ,MAC3D,GAAsB,EAAW,EAAmB,QAAS,OAGxD,AAAI,EAAgC,EACzC,GAAsB,EAAW,EAAkB,OAAQ,CAAC,YAAa,cAEzE,GAAsB,EAAW,EAAmB,QAAS,CAAC,YAAa,cAE7E,GAAM,GAAyB,KAAK,sBAAsB,EAAW,EAAmB,QAClF,EAA0B,KAAK,sBAAsB,EAAW,EAAoB,SAE1F,MADkB,GAAU,OAAO,GAAwB,OAAO,QAI9D,SAAQ,EAAO,EAAQ,CAC3B,GAAI,GAAc,GAEd,EAQJ,GAPK,MAAK,UAAY,GAAO,KAAK,QAAU,EAAO,KAAK,SAAS,YAAe,CAAC,EAAO,KAAK,KAAK,SAAW,CAAC,EAAO,YACnH,GAAW,KAAM,MAAK,oBAAoB,iBAAiB,EAAO,GAClE,KAAK,QAAU,GAEb,EAAO,WAAW,KAAK,UAGvB,CAAC,EAAO,WAAc,GAAY,EAAS,OAAU,EAAC,EAAO,KAAK,KAAK,SAAY,EAAS,MAAM,SAAW,KAAK,eAAmB,KAAK,gBAAkB,EAAO,KAAK,SAAS,aAAgB,CACnM,KAAK,YAAc,GACnB,KAAK,cAAgB,EACrB,OAAW,KAAY,GAAS,MAAO,CACrC,GAAM,GAAa,KAAM,GAAS,IAAI,WAAW,OAC3C,EAAW,KAAM,GAAS,IAAI,SAAS,OACvC,EAAY,KAAM,GAAS,UAAU,QAC3C,KAAK,YAAY,KAAK,CAAE,aAAY,WAAU,YAAW,WAAY,EAAS,aAEhF,AAAI,KAAK,YAAY,OAAS,GAAG,GAAc,IAGjD,GAAI,EAAa,CACf,GAAI,CAAC,GAAY,CAAC,EAAS,OAAU,EAAS,MAAM,SAAW,EAC7D,YAAK,YAAc,GACnB,KAAK,cAAgB,EACd,KAET,OAAS,GAAI,EAAG,EAAI,KAAK,YAAY,OAAQ,IAAK,CAChD,GAAM,GAAY,AAAS,GAAoB,CAAE,WAAY,KAAK,YAAY,GAAG,WAAY,SAAU,KAAK,YAAY,GAAG,UAAY,EAAS,aAC1I,EAAc,AAAS,GAAW,GAClC,EAAgB,AAAS,GAAY,GACrC,EAAY,KAAK,YAAY,GAAG,UAChC,EAAa,KAAK,YAAY,GAAG,WACvC,KAAK,YAAY,GAAK,IAAK,EAAe,aAAY,cAG1D,AAAI,GAAY,EAAS,OACvB,EAAS,MAAM,QAAQ,AAAC,GAAe,CACrC,AAAG,UAAQ,EAAW,IAAI,YAC1B,AAAG,UAAQ,EAAW,IAAI,UAC1B,AAAG,UAAQ,EAAW,aAI1B,GAAM,GAAkF,GAElF,EAA+I,GACrJ,OAAS,KAAO,MAAK,YAAa,CAEhC,GAAI,GACA,EAAQ,EACR,EAEJ,GAAI,EAAO,KAAK,SAAS,UAAY,EAAO,KAAK,KAAK,SAAW,AAAG,MAAI,MAAM,WAC5E,CAAC,EAAO,EAAgB,GAAQ,KAAK,oBAAoB,EAAQ,EAAK,OACjE,CACL,EAAsB,GACtB,GAAM,GAAc,EAAM,QACpB,EAAM,EAAO,KAAK,KAAK,QACzB,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAa,CAAC,KAAK,SAAU,KAAK,WAC5H,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAa,CAAC,KAAK,QAAS,KAAK,UAC/H,EAAO,AAAG,MAAI,EAAK,KACnB,AAAG,UAAQ,GACX,AAAG,UAAQ,GAIb,GAAI,CAAC,EAAO,KAAK,KAAK,QACpB,EAAQ,KAAK,CACX,KAAM,GACN,MACA,eAAgB,KAChB,cAAe,EAAI,WACnB,WAAY,EAAI,WAChB,MAAO,QAEJ,CACL,GAAM,CAAC,EAAU,EAAY,GAAiB,KAAK,aAAa,QAAQ,GACxE,AAAG,UAAQ,GACX,GAAM,GAAkB,MAAM,GAAW,QAAQ,GACjD,AAAG,UAAQ,GACX,GAAM,GAAiB,AAAG,UAAQ,EAAe,CAAC,GAAI,IAClD,EAAY,KAAM,GAAe,QAGrC,GAFA,AAAG,UAAQ,GACX,AAAG,UAAQ,GACP,EAAiB,EAAO,KAAK,SAAS,cAGxC,EAAI,WAAa,EACjB,AAAG,UAAQ,OACN,CACL,AAAI,EAAO,KAAK,KAAK,SAAS,GAAY,KAAM,MAAK,YAAY,EAAW,IAG5E,GAAM,GAAO,KAAK,mBAAmB,EAAW,EAAK,EAAO,GAC5D,EAAM,IAAK,AAAS,GAAW,AAAS,GAA8B,GAAO,KAAM,WAAY,EAAI,YAG/F,EAAO,KAAK,SAAS,UAAY,EAAO,KAAK,KAAK,SAAW,EAAO,KAAK,YAAY,SAAW,AAAG,MAAI,MAAM,YAC/G,EAAC,EAAO,EAAgB,GAAQ,KAAK,oBAAoB,EAAQ,EAAK,IAGxE,EAAQ,KAAK,CACX,OACA,MACA,iBACA,cAAe,EAAI,WACnB,WAAY,EACZ,MAAO,IAKT,EAAM,IAAK,AAAS,GAAY,GAAM,WAAY,EAAI,WAAY,mBAGtE,EAAS,KAAK,GAKhB,MAAI,GAAO,KAAK,KAAK,SAAS,MAAK,YAAc,EAAS,OAAO,AAAC,GAAM,EAAE,WAAa,EAAO,KAAK,SAAS,gBAC5G,KAAK,cAAgB,EAAQ,OAEtB,IC7TX,GAAI,GAAsF,CAAC,KAAM,KAAM,MACnG,GAEJ,kBAA8B,EAAe,EAAiC,CAC5E,GAAM,GAAc,KAAM,IAAa,QAAQ,EAAO,GAChD,EAAuB,GACzB,EAAK,EACT,OAAW,KAAe,IAAe,GAAK,CAC5C,GAAI,CAAC,GAAc,EAAW,mBAAoB,SAClD,GAAM,GAAU,EAAW,KAAK,IAAI,AAAC,GAAO,CAC1C,EAAG,GAAM,GAAM,MAAM,IAAM,GAC3B,EAAG,GAAM,GAAM,MAAM,IAAM,GAC3B,EAAG,GAAK,GAAa,WAEjB,EAAc,GACpB,GAAI,EAAW,MAAQ,EAAW,KAAK,OAAS,EAC9C,OAAW,KAAO,QAAO,KAAY,IAAmB,EAAY,GAAO,AAAO,GAAiB,GAAK,IAAI,AAAC,GAAU,EAAW,KAAK,IAEzI,GAAM,GAA+C,EAAW,IAAM,CACpE,KAAK,MAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,KACjD,KAAK,MAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,KACjD,KAAK,MAAM,KAAK,IAAK,EAAM,MAAM,IAAM,EAAI,EAAW,IAAI,SAAS,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,KAC/G,KAAK,MAAM,KAAK,IAAK,EAAM,MAAM,IAAM,EAAI,EAAW,IAAI,SAAS,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,MAC7G,CAAC,EAAG,EAAG,EAAG,GACR,EAA2C,EAAW,IAAM,CAChE,EAAW,IAAI,WAAW,GAAM,GAAM,MAAM,IAAM,GAClD,EAAW,IAAI,WAAW,GAAM,GAAM,MAAM,IAAM,GACjD,GAAW,IAAI,SAAS,GAAK,EAAW,IAAI,WAAW,IAAO,GAAM,MAAM,IAAM,GAChF,GAAW,IAAI,SAAS,GAAK,EAAW,IAAI,WAAW,IAAO,GAAM,MAAM,IAAM,IAC/E,CAAC,EAAG,EAAG,EAAG,GACd,EAAQ,KAAK,CACX,GAAI,IACJ,MAAO,KAAK,MAAM,IAAM,EAAW,gBAAkB,IAAM,EAAW,eAAiB,GAAK,IAC5F,SAAU,KAAK,MAAM,IAAM,EAAW,eAAiB,IACvD,UAAW,KAAK,MAAM,IAAM,EAAW,gBAAkB,IACzD,IAAK,EACL,SACA,KAAM,EAAW,KACjB,UACA,cACA,OAAQ,EAAW,QAEjB,EAAW,QAAQ,AAAG,UAAQ,EAAW,QAE/C,MAAO,GAGT,kBAA2B,EAAkE,CAC3F,MAAK,CAAC,EAAW,IAAM,EAAO,KAAK,SAAa,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,SAAa,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QACjI,GAAa,KAAM,SAAQ,IAAI,CAC5B,CAAC,EAAW,IAAM,EAAO,KAAK,QAAW,AAAU,GAAK,GAAU,KAClE,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QAAW,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,KAAK,WAAY,CAAE,UAAW,EAAO,KAAK,KAAK,UAAU,SAAS,eAA2C,KACpN,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QAAW,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,KAAK,WAAY,CAAE,UAAW,EAAO,KAAK,KAAK,UAAU,SAAS,eAA2C,OAEnN,EAAO,KAAK,KAAK,SACnB,CAAI,CAAC,EAAW,IAAM,CAAC,EAAW,GAAG,SAAa,EAAI,qBAAsB,EAAO,KAAK,KAAK,WACpF,EAAO,OAAO,EAAI,cAAe,EAAW,GAAG,WAEtD,EAAO,KAAK,KAAK,SACnB,CAAI,CAAC,EAAW,IAAM,CAAC,EAAW,GAAG,SAAa,EAAI,qBAAsB,EAAO,KAAK,KAAK,WACpF,EAAO,OAAO,EAAI,cAAe,EAAW,GAAG,YAEjD,EAAO,OACZ,GAAW,IAAI,EAAI,gBAAiB,EAAW,GAAG,MAAM,UACxD,EAAW,IAAI,EAAI,gBAAiB,EAAW,GAAG,UAClD,EAAW,IAAI,EAAI,gBAAiB,EAAW,GAAG,WAExD,GAAe,GAAiB,IAAS,EAAW,GAAI,EAAW,GAAI,EAAW,IAC3E,EAGF,GAAM,IAAuB,GACvB,GAAe,GC1E5B,GAAI,IACE,GAKD,GAED,GAAY,EACZ,GAAU,OAAO,iBAIrB,kBAA2B,EAAqC,CAC9D,GAAM,GAAW,EAAK,EAAO,cAAe,EAAO,KAAK,YAAY,WACpE,MAAK,IAIM,EAAO,OAAO,EAAI,gBAAiB,GAH5C,IAAQ,KAAM,AAAG,kBAAe,GAChC,AAAK,GACI,EAAO,OAAO,EAAI,cAAe,GAD9B,EAAI,qBAAsB,EAAO,KAAK,YAAY,YAGzD,GAGF,YAAoB,EAA2B,EAA2B,EAAQ,EAAW,CAGlG,GAFI,CAAC,GAAc,CAAC,GAChB,kBAAY,UAAW,GAAK,kBAAY,UAAW,GACnD,kBAAY,UAAW,kBAAY,QAAQ,MAAO,GAEtD,GAAM,GAAW,EAAM,EACpB,IAAI,CAAC,EAAM,IAAO,KAAK,IAAI,EAAW,GAAK,EAAW,KAAO,GAC7D,OAAO,CAAC,EAAK,IAAS,EAAM,EAAM,IAC/B,GAAI,GAEV,MADY,MAAK,IAAI,EAAG,IAAM,GAAY,IAIrC,YAAe,EAA0B,EAAQ,EAAY,EAAG,CACrE,GAAI,GAAO,CAAE,WAAY,EAAG,KAAM,GAAI,OAAQ,GAAI,UAAW,IAC7D,GAAI,CAAC,GAAa,CAAC,GAAM,CAAC,MAAM,QAAQ,IAAc,CAAC,MAAM,QAAQ,GAAK,MAAO,GACjF,OAAW,KAAK,GACd,GAAI,EAAE,WAAa,EAAE,KAAM,CACzB,GAAM,GAAO,GAAW,EAAW,EAAE,WACrC,AAAI,EAAO,GAAa,EAAO,EAAK,YAAY,GAAO,IAAK,EAAG,WAAY,IAG/E,MAAO,GAGF,YAAiB,EAAe,CAkDrC,MAjDc,AAAG,QAAK,IAAM,CAG1B,GAAM,GAAS,EAAM,OAAS,EAAM,QAAU,EAC9C,GAAI,CAAE,aAAqB,WAAS,MAAO,MAE3C,GAAM,GAAM,CAAC,CAAC,IAAM,IAAM,IAAM,MAEhC,GAAI,CAAC,GAAM,OAAO,GAAG,MAAO,MAAO,MACnC,GAAM,GAAQ,EAAO,MAAM,SAAW,EAClC,AAAG,QAAM,cAAc,AAAG,aAAW,EAAQ,GAAI,EAAK,CAAC,GAAI,CAAC,GAAM,OAAO,GAAG,MAAM,GAAI,GAAM,OAAO,GAAG,MAAM,KAC5G,AAAG,QAAM,cAAc,EAAQ,EAAK,CAAC,GAAI,CAAC,GAAM,OAAO,GAAG,MAAM,GAAI,GAAM,OAAO,GAAG,MAAM,KAoC9F,MAFa,AAAG,OAAI,EAAM,OAO9B,kBAA8B,EAAe,EAAgB,EAAK,EAAO,CAhHzE,QAiHE,MAAK,IACA,GAAU,EAAO,KAAK,YAAY,YAAe,EAAO,WAAc,KAAc,GAAU,OAAK,KAAL,cAAW,MAAQ,OAAK,KAAL,cAAW,KAAM,EACrI,MACO,GAAK,IAEd,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAW,GAAQ,GAErB,EACE,EAAM,CACV,IAAa,EACb,OAAgB,UAChB,YAAqB,EACrB,WAAsB,IAMxB,GAHI,EAAO,KAAK,YAAY,SAAS,GAAO,KAAM,IAAM,QAAQ,IAChE,AAAG,UAAQ,GAEP,EAAM,CACR,GAAM,GAAS,KAAM,GAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,GAAG,OAClD,EAAa,KAAK,MAAM,IAAM,KAAK,IAAK,EAAO,GAAK,KAAS,IACnE,AAAI,EAAa,EAAO,KAAK,YAAY,eACvC,GAAI,OAAS,EAAO,IAAM,GAAM,SAAW,OAC3C,EAAI,YAAc,KAAK,IAAI,IAAM,IAGnC,GAAM,GAAO,MAAM,AADJ,AAAG,UAAO,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,KAAM,GACrC,QAAQ,GAC5B,EAAM,KAAM,GAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,KAAK,OACvD,EAAI,IAAM,KAAK,MAAM,EAAI,EAAM,GAAK,EAAI,EAAM,GAAK,GAAK,EAAM,IAAM,EAAI,EAAM,GAAK,GAAK,EAAM,IAAM,EAAI,EAAM,IAAM,GAMpH,GAAM,GAAa,KAAM,AAJZ,GAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,MAIf,OAC9B,EAAI,WAAa,CAAC,GAAG,GACrB,EAAK,QAAQ,AAAC,GAAM,AAAG,UAAQ,IAGjC,GAAK,GAAO,EACZ,GAAY,EACZ,EAAQ,MA3CS,KCxGrB,GAAM,IAAc,CAAC,QAAS,UAAW,OAAQ,QAAS,MAAO,WAAY,WACzE,GAEE,GAAyD,GAC3D,GAAY,EACZ,GAAU,OAAO,iBAGf,GAAM,CAAC,MAAQ,KAAQ,MAE7B,kBAA2B,EAAqC,CAC9D,MAAK,IAIM,EAAO,OAAO,EAAI,gBAAiB,GAAM,UAHlD,IAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,QAAQ,YAC/E,AAAI,CAAC,IAAS,CAAC,GAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,QAAQ,WACpE,EAAO,OAAO,EAAI,cAAe,GAAM,WAE3C,GAGT,kBAA8B,EAAe,EAAgB,EAAK,EAAO,CACvE,MAAK,IACA,GAAU,EAAO,KAAK,QAAQ,YAAe,EAAO,WAAc,KAAc,GAAU,GAAK,IAAS,GAAK,GAAK,OAAS,EAC9H,MACO,GAAK,IAEd,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,GAAM,OAAO,GAAG,MAAM,GAAI,GAAM,OAAO,GAAG,MAAM,IAAK,IAC9F,CAAC,EAAK,EAAO,GAAQ,AAAG,QAAM,EAAQ,EAAG,GAC/C,AAAG,UAAQ,GAEX,GAAM,GAAU,AAAG,MAAI,EAAK,GAAI,IAC1B,EAAY,AAAG,MAAI,EAAO,GAAI,IAC9B,EAAW,AAAG,MAAI,EAAM,GAAI,IAClC,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,GAAM,GAAY,AAAG,OAAK,CAAC,EAAS,EAAW,IAC/C,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,GAAM,GAAY,AAAG,OAAK,IAAM,AAAG,MAAI,AAAG,MAAI,EAAW,IAAM,IAC/D,AAAG,UAAQ,GACX,GAAM,GAAiD,GACvD,GAAI,EAAO,KAAK,QAAQ,QAAS,CAC/B,GAAM,GAAW,KAAM,IAAM,QAAQ,GAC/B,EAAO,KAAM,GAAS,OAC5B,AAAG,UAAQ,GACX,OAAS,GAAI,EAAG,EAAI,EAAK,OAAQ,IAC/B,AAAI,EAAK,GAAK,EAAO,KAAK,QAAQ,eAAe,EAAI,KAAK,CAAE,MAAO,KAAK,IAAI,IAAM,KAAK,MAAM,IAAM,EAAK,IAAM,KAAM,QAAS,GAAY,KAE3I,EAAI,KAAK,CAAC,EAAG,IAAM,EAAE,MAAQ,EAAE,OAEjC,AAAG,UAAQ,GACX,GAAK,GAAO,EACZ,GAAY,EACZ,EAAQ,MApCS,KC7Bd,GAAM,IAAY,CACvB,OAAQ,UAAW,WAAY,UAAW,WAAY,eACtD,gBAAiB,YAAa,aAAc,YAAa,aACzD,UAAW,WAAY,WAAY,YAAa,YAAa,cAGlD,GAAQ,GAAU,OAElB,GAAU,GAAU,OAAO,CAAC,EAAQ,EAAW,IAC1D,GAAO,GAAa,EACb,GACN,IAEG,GAAqB,CACzB,CAAC,UAAW,gBAAiB,CAAC,YAAa,gBAC3C,CAAC,YAAa,aAAc,CAAC,UAAW,YACxC,CAAC,WAAY,aAAc,CAAC,WAAY,iBACxC,CAAC,aAAc,iBAAkB,CAAC,aAAc,cAChD,CAAC,WAAY,aAAc,CAAC,YAAa,cACzC,CAAC,eAAgB,iBAAkB,CAAC,UAAW,aAEpC,GAAuB,GAAmB,IAAI,CAAC,CAAC,EAAY,KAAiB,CAAC,GAAQ,GAAa,GAAQ,KAE3G,GAAY,CACvB,CAAC,OAAQ,WAAY,CAAC,UAAW,WAAY,CAAC,OAAQ,YACtD,CAAC,WAAY,YAAa,CAAC,OAAQ,gBACnC,CAAC,eAAgB,aAAc,CAAC,YAAa,aAC7C,CAAC,eAAgB,WAAY,CAAC,UAAW,YACzC,CAAC,WAAY,aAAc,CAAC,OAAQ,iBACpC,CAAC,gBAAiB,cAAe,CAAC,aAAc,cAChD,CAAC,gBAAiB,YAAa,CAAC,WAAY,aAC5C,CAAC,YAAa,eCdT,YAAwB,EAA6C,CAC1E,GAAM,GAAQ,EAAU,OAAO,CAAC,CAAE,OAAM,OAAM,OAAM,QAAQ,CAAE,SAAU,CAAE,EAAG,QAAW,EACtF,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,KACnB,CACF,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,oBAEf,MAAO,CAAC,EAAM,KAAM,EAAM,KAAM,EAAM,KAAO,EAAM,KAAM,EAAM,KAAO,EAAM,MAGvE,YAAoB,EAAO,CAAC,EAAQ,GAAQ,CAAC,EAAuB,GAAoC,CAC7G,GAAM,GAAS,EAAS,EAClB,EAAS,EAAQ,EACjB,EAAY,CAAC,EAAM,IAAO,EAC9B,GAAI,EACJ,MAAO,EAAK,MACZ,OAAQ,CAAC,EAAK,IAAI,GAAK,EAAsB,EAAK,IAAI,GAAK,EAAuB,EAAK,IAAI,GAAK,EAAsB,EAAK,IAAI,GAAK,GACpI,IAAK,CAAC,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,IACrI,UAAW,EAAK,UAAU,IAAI,CAAC,CAAE,QAAO,OAAM,cAAgB,EAC5D,QACA,OACA,SAAU,CAAC,KAAK,MAAM,EAAS,EAAI,GAAS,KAAK,MAAM,EAAS,EAAI,IACpE,YAAa,CAAC,EAAS,EAAI,EAAuB,EAAS,EAAI,QAInE,MADoB,GAAM,IAAI,CAAC,EAAM,IAAM,EAAU,EAAM,IAKtD,YAAc,CAKnB,YAAY,EAAS,EAAiB,CACpC,KAAK,cAAgB,GAAI,OAAM,GAC/B,KAAK,iBAAmB,GACxB,KAAK,gBAAkB,EAGzB,QAAQ,EAAG,CACT,KAAK,cAAc,EAAE,KAAK,kBAAoB,EAC9C,KAAK,KAAK,KAAK,kBAGjB,SAAU,CACR,GAAM,GAAM,KAAK,cAAc,GAC/B,YAAK,SAAS,EAAG,KAAK,oBACtB,KAAK,KAAK,GACV,KAAK,cAAc,KAAK,iBAAmB,GAAK,KACzC,EAGT,OAAQ,CAAE,MAAO,MAAK,mBAAqB,GAE3C,MAAO,CAAE,MAAO,MAAK,iBAAmB,EAExC,KAAM,CAAE,MAAO,MAAK,cAAc,MAAM,EAAG,KAAK,iBAAmB,GAEnE,KAAM,CAAE,MAAO,MAAK,cAAc,GAElC,KAAK,EAAG,CACN,KAAO,EAAI,GAAK,KAAK,KAAK,KAAK,MAAM,EAAI,GAAI,IAC3C,KAAK,SAAS,EAAG,KAAK,MAAM,EAAI,IAChC,EAAI,KAAK,MAAM,EAAI,GAIvB,KAAK,EAAG,CACN,KAAO,EAAI,GAAK,KAAK,kBAAkB,CACrC,GAAI,GAAI,EAAI,EAEZ,GADI,EAAI,KAAK,kBAAoB,KAAK,KAAK,EAAG,EAAI,IAAI,IAClD,CAAC,KAAK,KAAK,EAAG,GAAI,MACtB,KAAK,SAAS,EAAG,GACjB,EAAI,GAIR,WAAW,EAAG,CAEZ,MAAO,MAAK,gBAAgB,KAAK,cAAc,IAGjD,KAAK,EAAG,EAAG,CACT,MAAO,MAAK,WAAW,GAAK,KAAK,WAAW,GAG9C,SAAS,EAAG,EAAG,CACb,GAAM,GAAI,KAAK,cAAc,GAC7B,KAAK,cAAc,GAAK,KAAK,cAAc,GAC3C,KAAK,cAAc,GAAK,IAIrB,YAAwB,EAAG,EAAG,EAAU,EAAS,CACtD,MAAO,CACL,EAAG,EAAQ,IAAI,EAAG,EAAG,GACrB,EAAG,EAAQ,IAAI,EAAG,EAAG,EAAe,KAIjC,YAAwB,EAAM,EAAc,EAAS,CAC1D,GAAM,CAAE,WAAU,WAAU,GAAI,GAAa,EACvC,CAAE,IAAG,KAAM,GAAe,EAAU,EAAU,EAAU,GAC9D,MAAO,CACL,EAAG,EAAK,SAAW,EAAe,EAClC,EAAG,EAAK,SAAW,EAAe,GAY/B,YAAe,EAAG,EAAK,EAAK,CACjC,MAAI,GAAI,EAAY,EAChB,EAAI,EAAY,EACb,EAGF,YAAyB,EAAI,EAAI,EAAI,EAAI,CAC9C,GAAM,GAAK,EAAK,EACV,EAAK,EAAK,EAChB,MAAO,GAAK,EAAK,EAAK,EAGjB,YAAoB,EAAG,EAAG,CAC/B,MAAO,CAAE,EAAG,EAAE,EAAI,EAAE,EAAG,EAAG,EAAE,EAAI,EAAE,GCvJpC,GAAM,IAAqB,EACrB,GAAe,GACf,GAAmB,IAAM,EAE/B,YAAkB,EAAQ,EAAgB,EAAU,EAAQ,EAAS,EAAe,EAAmB,EAAG,CACxG,GAAM,GAAkB,AAAC,GAAW,EAClC,EAAG,EAAc,IAAI,EAAM,EAAG,EAAM,EAAG,GACvC,EAAG,EAAc,IAAI,EAAM,EAAG,EAAM,EAAI,EAAc,MAAM,GAAK,EAAK,KAElE,EAA2B,CAAC,EAAO,EAAQ,IAAW,EAC1D,EAAG,AAAM,GAAM,KAAK,MAAM,EAAM,EAAI,IAAe,EAAG,EAAS,GAC/D,EAAG,AAAM,GAAM,KAAK,MAAM,EAAM,EAAI,IAAe,EAAG,EAAQ,KAG1D,CAAC,EAAQ,GAAS,EAAO,MAEzB,EAAwB,EAAyB,EAAe,SAAU,EAAQ,GAClF,EAAe,EAAgB,GAEjC,EADmB,AAAM,GAAW,EAAe,SAAU,GAEjE,OAAS,GAAI,EAAG,EAAI,EAAkB,IAAK,CACzC,GAAM,GAAwB,EAAyB,EAAgB,EAAQ,GACzE,EAAc,AAAM,GAAe,EAAsB,EAAG,EAAsB,EAAG,EAAU,GACrG,EAAiB,AAAM,GACrB,CAAE,EAAG,EAAsB,EAAI,GAAc,EAAG,EAAsB,EAAI,IAC1E,CAAE,EAAG,EAAY,EAAG,EAAG,EAAY,IAGvC,GAAM,GAAwB,EAAyB,EAAgB,EAAQ,GACzE,EAAQ,EAAO,IAAI,EAAsB,EAAG,EAAsB,EAAG,GAC3E,MAAO,CAAE,SAAU,EAAgB,KAAM,AAAI,GAAU,GAAW,SAG7D,YAAoB,EAAM,EAAQ,EAAS,EAAkB,EAAkB,CACpF,GAAM,GAAS,AAAI,GAAU,IAAI,CAAC,CAAC,EAAgB,KAAoB,CAAC,AAAI,GAAQ,GAAiB,AAAI,GAAQ,KAC3G,EAAW,EAAO,IAAI,CAAC,CAAC,CAAE,KAAkB,GAC5C,EAAW,EAAO,IAAI,CAAC,CAAC,KAAmB,GAC3C,EAAW,EAAO,MAAM,GACxB,EAAW,EAAS,OACpB,EAAY,GAAI,OAAM,GAEtB,EAAY,AAAM,GAAe,EAAK,KAAM,GAAc,GAChE,EAAU,EAAK,KAAK,IAAM,CACxB,MAAO,EAAK,MACZ,KAAM,AAAI,GAAU,EAAK,KAAK,IAC9B,SAAU,GAGZ,OAAS,GAAO,EAAW,EAAG,GAAQ,EAAG,EAAE,EAAM,CAC/C,GAAM,GAAW,EAAS,GACpB,EAAW,EAAS,GAC1B,AAAI,EAAU,IAAa,CAAC,EAAU,IACpC,GAAU,GAAY,GAAS,EAAM,EAAU,GAAW,EAAU,EAAQ,EAAS,IAIzF,OAAS,GAAO,EAAG,EAAO,EAAU,EAAE,EAAM,CAC1C,GAAM,GAAW,EAAS,GACpB,EAAW,EAAS,GAC1B,AAAI,EAAU,IAAa,CAAC,EAAU,IACpC,GAAU,GAAY,GAAS,EAAM,EAAU,GAAW,EAAU,EAAQ,EAAS,IAGzF,MAAO,GAGT,YAAqC,EAAY,EAAO,EAAU,EAAU,EAAQ,CAClF,GAAM,CAAC,EAAQ,GAAS,EAAO,MAC3B,EAAe,GACb,EAAS,KAAK,IAAI,EAAW,GAAoB,GACjD,EAAO,KAAK,IAAI,EAAW,GAAqB,EAAG,GACzD,OAAS,GAAW,EAAQ,EAAW,EAAM,EAAE,EAAU,CACvD,GAAM,GAAS,KAAK,IAAI,EAAW,GAAoB,GACjD,EAAO,KAAK,IAAI,EAAW,GAAqB,EAAG,GACzD,OAAS,GAAW,EAAQ,EAAW,EAAM,EAAE,EAC7C,GAAI,EAAO,IAAI,EAAU,EAAU,GAAc,EAAO,CACtD,EAAe,GACf,MAGJ,GAAI,CAAC,EAAc,MAErB,MAAO,GAGF,YAAiC,EAAe,EAAQ,CAC7D,GAAM,CAAC,EAAQ,EAAO,GAAgB,EAAO,MACvC,EAAQ,GAAU,IAAQ,EAAS,EAAQ,EAAc,CAAC,CAAE,WAAY,GAC9E,OAAS,GAAW,EAAG,EAAW,EAAQ,EAAE,EAC1C,OAAS,GAAW,EAAG,EAAW,EAAO,EAAE,EACzC,OAAS,GAAa,EAAG,EAAa,EAAc,EAAE,EAAY,CAChE,GAAM,GAAQ,EAAO,IAAI,EAAU,EAAU,GAE7C,AAAI,EAAQ,GAER,GAA4B,EAAY,EAAO,EAAU,EAAU,IAAS,EAAM,QAAQ,CAAE,QAAO,KAAM,CAAE,WAAU,WAAU,GAAI,KAI7I,MAAO,GAGT,YAAsB,EAAO,CAAE,IAAG,KAAK,EAAY,CACjD,MAAO,GAAM,KAAK,CAAC,CAAE,eAAgB,CA1GvC,MA2GI,GAAM,GAAwB,KAAU,KAAV,cAAuB,SACrD,MAAK,GACE,AAAM,GAAgB,EAAG,EAAG,EAAsB,EAAG,EAAsB,IAAM,GADrD,KAKvC,YAA0B,EAAe,EAAW,CAKlD,MAAO,AAJ6B,GAAU,OAAO,CAAC,EAAQ,CAAE,WAAU,SAAS,IAC5E,IAAa,EAAe,EAAU,IAAa,IAAU,GAC3D,GACN,GACkC,EAAU,OAG1C,YAAgB,EAAS,EAAQ,EAAkB,EAAkB,EAAa,EAAe,CACtG,GAAM,GAAoF,GACpF,EAAQ,GAAwB,EAAe,GAErD,KAAO,EAAM,OAAS,GAAe,CAAC,EAAM,SAAS,CAEnD,GAAM,GAAO,EAAM,UAGb,EAAkB,AAAM,GAAe,EAAK,KAAM,GAAc,GAEtE,GAAI,GAAa,EAAO,EAAiB,EAAK,KAAK,IAAK,SAExD,GAAI,GAAY,GAAW,EAAM,EAAQ,EAAS,EAAkB,GACpE,EAAY,EAAU,OAAO,AAAC,GAAM,EAAE,MAAQ,GAC9C,GAAM,GAAQ,GAAiB,EAAO,GAChC,EAAM,AAAM,GAAe,GACjC,AAAI,EAAQ,GAAe,EAAM,KAAK,CAAE,YAAW,MAAK,MAAO,KAAK,MAAM,IAAM,GAAS,MAE3F,MAAO,GChIT,GAAI,GACE,GAAiB,CAAC,+BAA6C,gCAAoD,yCAA+D,0CAExL,kBAA8B,EAAe,EAAiC,CAC5E,GAAM,GAAM,AAAG,OAAK,IAAM,CACxB,GAAI,CAAC,EAAM,OAAO,GAAG,MAAO,MAAO,GACnC,GAAM,GAAU,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KAC1F,EAAa,AAAG,MAAI,AAAG,MAAI,AAAG,OAAK,EAAS,WAAY,OAAQ,GAEhE,EAAY,AADa,EAAM,QAAQ,EAAY,IAC/B,IAAI,AAAC,GAAM,AAAG,UAAQ,EAAG,CAAC,KACpD,SAAU,GAAK,EAAU,GAAG,UACrB,IAGH,EAAU,KAAM,SAAQ,IAAI,EAAI,IAAI,AAAC,GAAmB,EAAO,WACrE,OAAW,KAAK,GAAK,AAAG,UAAQ,GAEhC,GAAM,GAAU,KAAM,AAAM,IAAO,EAAQ,GAAI,EAAQ,GAAI,EAAQ,GAAI,EAAQ,GAAI,EAAO,KAAK,YAAa,EAAO,KAAK,eACxH,MAAK,GAAM,OAAO,GAAG,MACN,AAAK,GAAW,EAAS,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,IAAK,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KADxF,GAKrC,kBAA2B,EAAqC,CAC9D,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,AAAI,CAAC,GAAS,CAAC,EAAM,SAAa,EAAI,qBAAsB,EAAO,KAAK,WAC/D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,ECvCF,YAAoB,EAAK,CAC9B,MAAO,CACL,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,IAC1C,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,KAIvC,YAAsB,EAAK,CAChC,MAAO,CACL,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAC5D,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,GAIzD,YAAkC,EAAK,EAAO,EAAU,CAC7D,GAAM,GAAI,EAAM,MAAM,GAChB,EAAI,EAAM,MAAM,GAChB,EAAQ,CAAC,CACb,EAAI,WAAW,GAAK,EACpB,EAAI,WAAW,GAAK,EACpB,EAAI,SAAS,GAAK,EAClB,EAAI,SAAS,GAAK,IAEpB,MAAO,AAAG,SAAM,cAAc,EAAO,EAAO,CAAC,GAAI,GAG5C,YAA6B,EAAK,EAAQ,CAC/C,GAAM,GAAa,CAAC,EAAI,WAAW,GAAK,EAAO,GAAI,EAAI,WAAW,GAAK,EAAO,IACxE,EAAW,CAAC,EAAI,SAAS,GAAK,EAAO,GAAI,EAAI,SAAS,GAAK,EAAO,IAClE,EAAgB,EAAI,cAAc,IAAI,AAAC,GACvB,CAAC,EAAM,GAAK,EAAO,GAAI,EAAM,GAAK,EAAO,KAG/D,MAAO,CAAE,aAAY,WAAU,gBAAe,WAAY,EAAI,YAGzD,YAAoB,EAAK,EAAS,IAAK,CAC5C,GAAM,GAAS,GAAa,GACtB,EAAO,GAAW,GAClB,EAAc,CAAC,EAAS,EAAK,GAAK,EAAG,EAAS,EAAK,GAAK,GACxD,EAAa,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IAClE,EAAW,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IACtE,MAAO,CAAE,aAAY,WAAU,cAAe,EAAI,eAG7C,YAAqB,EAAK,CAC/B,GAAM,GAAU,GAAa,GACvB,EAAO,GAAW,GAElB,EAAW,AADD,KAAK,IAAI,GAAG,GACD,EACrB,EAAa,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GAClD,EAAW,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GACtD,MAAO,CAAE,aAAY,WAAU,cAAe,EAAI,eCtD7C,GAAM,IAAU,CACrB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,QC33FX,YAAmB,CAQxB,YAAY,EAAO,CACjB,KAAK,MAAQ,EACb,KAAK,QAAU,AAAQ,GAAQ,IAAI,AAAC,GAAW,CAAC,EAAO,EAAG,EAAO,IACjE,KAAK,cAAgB,AAAG,WAAS,KAAK,SACtC,KAAK,UAAa,KAAK,OAAS,KAAK,MAAM,QAAU,KAAK,MAAM,OAAO,GAAG,MAAS,KAAK,MAAM,OAAO,GAAG,MAAM,GAAK,EACnH,KAAK,gBAAkB,AAAG,WAAS,CAAC,KAAK,UAAW,KAAK,YACzD,KAAK,sBAAwB,AAAG,WAAS,CAAC,KAAK,UAAY,EAAG,KAAK,UAAY,IAGjF,eAAe,EAAO,CACpB,MAAO,AAAG,QAAK,IAAM,CACnB,GAAM,GAAa,AAAG,QAAM,EAAO,CAAC,EAAG,GAAI,CAAC,GAAI,IAC1C,EAAW,AAAG,QAAM,EAAO,CAAC,EAAG,GAAI,CAAC,GAAI,IACxC,EAAkB,AAAG,MAAI,AAAG,MAAI,EAAY,KAAK,iBAAkB,KAAK,eACxE,EAAe,AAAG,MAAI,EAAU,KAAK,uBACrC,EAAc,AAAG,MAAI,AAAG,MAAI,EAAiB,GAAe,KAAK,iBACjE,EAAY,AAAG,MAAI,AAAG,MAAI,EAAiB,GAAe,KAAK,iBACrE,MAAO,AAAG,YAAS,CAAC,EAAa,GAAY,KAIjD,mBAAmB,EAAkB,EAAO,CAC1C,MAAO,AAAG,QAAK,IAAM,CACnB,GAAM,GAAY,AAAG,MAAI,AAAG,MAAI,AAAG,UAAQ,EAAkB,CAAC,GAAI,EAAG,IAAK,KAAK,iBAAkB,KAAK,QAAQ,IAC9G,MAAO,AAAG,OAAI,EAAW,KAAK,wBAI5B,UAAS,EAAO,EAAQ,CAC5B,GAAM,GAAU,KAAK,MAAM,QAAQ,GAC7B,EAAc,AAAG,UAAQ,GAC/B,AAAG,UAAQ,GACX,GAAM,GAAU,AAAG,OAAK,IAAM,AAAG,UAAQ,AAAG,UAAQ,AAAG,QAAM,EAAa,CAAC,EAAG,GAAI,CAAC,GAAI,OACjF,EAAS,KAAM,GAAQ,OACvB,EAAW,AAAG,QAAM,EAAa,CAAC,EAAG,GAAI,CAAC,GAAI,IAC9C,EAAQ,KAAK,eAAe,GAClC,AAAG,UAAQ,GACX,GAAM,GAAY,KAAM,AAAG,SAAM,uBAAuB,EAAO,EAAQ,EAAO,KAAK,YAAa,EAAO,KAAK,aAAc,EAAO,KAAK,eAChI,EAAW,KAAM,GAAU,QAEjC,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,GAAM,GAA2E,GACjF,OAAW,KAAS,GAClB,GAAI,EAAO,IAAU,EAAO,KAAK,cAAe,CAC9C,GAAM,GAAc,AAAG,QAAM,EAAO,CAAC,EAAO,GAAI,CAAC,EAAG,KAC9C,EAAmB,AAAG,QAAM,EAAa,CAAC,EAAO,GAAI,CAAC,EAAG,KACzD,EAAgB,AAAG,OAAK,IAAM,AAAG,UAAQ,KAAK,mBAAmB,EAAkB,GAAQ,CAAC,GAAI,KACtG,AAAG,UAAQ,GACX,EAAM,KAAK,CAAE,IAAK,EAAa,gBAAe,WAAY,EAAO,KAGrE,MAAG,WAAQ,GACX,AAAG,UAAQ,GACJ,OAGH,oBAAmB,EAAO,EAA8G,CAC5I,GAAM,GAAc,EAAM,MAAM,GAC1B,EAAa,EAAM,MAAM,GACzB,EAAQ,AAAG,OAAK,IAAM,AAAG,MAAI,AAAG,MAAI,AAAG,QAAM,eAAe,EAAO,CAAC,KAAK,UAAW,KAAK,YAAa,OAAQ,IAC9G,EAAc,KAAM,MAAK,SAAS,EAAO,GAC/C,AAAG,UAAQ,GACX,GAAM,GAA0G,GAChH,GAAI,CAAC,GAAe,EAAY,SAAW,EAAG,MAAO,GACrD,OAAW,KAAc,GAAa,CACpC,GAAM,GAAQ,KAAM,GAAW,IAAI,OAC7B,EAAa,EAAM,MAAM,EAAG,GAC5B,EAAW,EAAM,MAAM,EAAG,GAC1B,EAAgB,KAAM,GAAW,cAAc,QACrD,AAAG,UAAQ,EAAW,KACtB,AAAG,UAAQ,EAAW,eACtB,EAAM,KAAK,AAAI,GAAoB,CAAE,aAAY,WAAU,gBAAe,WAAY,EAAW,YAAc,CAAC,EAAa,KAAK,UAAW,EAAc,KAAK,aAElK,MAAO,KCvFJ,YAA0B,EAAO,CACtC,MAAO,GAAQ,EAAI,KAAK,GAAK,KAAK,MAAO,GAAQ,KAAK,IAAO,GAAI,KAAK,KAGjE,YAAyB,EAAQ,EAAQ,CAC9C,GAAM,GAAU,KAAK,GAAK,EAAI,KAAK,MAAM,CAAE,GAAO,GAAK,EAAO,IAAK,EAAO,GAAK,EAAO,IACtF,MAAO,IAAiB,GAGnB,GAAM,IAAyB,CAAC,EAAG,IAAM,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAEvE,YAAa,EAAI,EAAI,CAC1B,GAAI,GAAU,EACd,OAAS,GAAI,EAAG,EAAI,EAAG,OAAQ,IAC7B,GAAW,EAAG,GAAK,EAAG,GAExB,MAAO,GAGF,YAA4B,EAAK,EAAa,CACnD,GAAM,GAAwB,GAC9B,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,EAAO,KAAK,EAAI,GAAG,IAErB,MAAO,GAGF,YAAmC,EAAM,EAAM,CACpD,GAAM,GAA2B,GAC3B,EAAO,EAAK,OAClB,OAAS,GAAM,EAAG,EAAM,EAAM,IAAO,CACnC,EAAQ,KAAK,IACb,OAAS,GAAM,EAAG,EAAM,EAAM,IAC5B,EAAQ,GAAK,KAAK,GAAI,EAAK,GAAM,GAAmB,EAAM,KAG9D,MAAO,GAGF,YAA6B,EAAU,EAAQ,CACpD,GAAM,GAAO,KAAK,IAAI,GAChB,EAAO,KAAK,IAAI,GAChB,EAAiB,CAAC,CAAC,EAAM,CAAC,EAAM,GAAI,CAAC,EAAM,EAAM,GAAI,CAAC,EAAG,EAAG,IAC5D,EAAoB,GAAuB,EAAO,GAAI,EAAO,IAC7D,EAA2B,GAA0B,EAAmB,GACxE,EAA4B,GAAuB,CAAC,EAAO,GAAI,CAAC,EAAO,IAC7E,MAAO,IAA0B,EAA0B,GAGtD,YAA+B,EAAQ,CAC5C,GAAM,GAAoB,CAAC,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAAK,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,KAC5E,EAAuB,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAChD,EAAsB,CAC1B,CAAC,GAAI,EAAkB,GAAI,GAC3B,CAAC,GAAI,EAAkB,GAAI,IAE7B,MAAO,CACL,EAAkB,GAAG,OAAO,EAAoB,IAChD,EAAkB,GAAG,OAAO,EAAoB,IAChD,CAAC,EAAG,EAAG,IAIJ,YAAqB,EAAuB,EAAgB,CACjE,MAAO,CACL,GAAI,EAAuB,EAAe,IAC1C,GAAI,EAAuB,EAAe,KC5D9C,GAAM,IAAuB,EACvB,GAAuB,KACvB,GAAkB,CAAC,EAAG,EAAG,EAAG,GAAI,GAAI,EAAG,GACvC,GAAwB,EACxB,GAAgC,EAE/B,QAAmB,CAQxB,YAAY,EAAc,EAAe,CApB3C,MAqBI,KAAK,aAAe,EACpB,KAAK,cAAgB,EAErB,KAAK,UAAY,QAAK,gBAAL,cAAoB,OAAO,GAAG,MAAM,GACrD,KAAK,YAAc,GACnB,KAAK,QAAU,EACf,KAAK,cAAgB,EAIvB,8BAA8B,EAAW,CACvC,GAAM,GAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAa,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC3C,EAAW,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC/C,MAAO,CAAE,aAAY,YAGvB,uBAAuB,EAAe,EAAgB,CACpD,GAAM,GAAuB,EAAc,IAAI,AAAC,GAAU,AAAK,GAAY,CAAC,GAAG,EAAO,GAAI,IACpF,EAAgB,KAAK,8BAA8B,GACzD,MAAO,AAAI,IAAW,AAAI,GAAY,GAAgB,IAGxD,uBAAuB,EAAW,CAChC,GAAM,GAAc,KAAK,8BAA8B,GACjD,EAAgB,AAAI,GAAW,AAAI,GAAY,GAAc,IACnE,EAAc,cAAgB,GAC9B,OAAS,GAAI,EAAG,EAAI,GAAgB,OAAQ,IAC1C,EAAc,cAAc,KAAK,EAAU,GAAgB,IAAI,MAAM,EAAG,IAE1E,MAAO,GAGT,mBAAmB,EAAW,EAAM,EAAO,EAAgB,CACzD,GAAM,GAAU,AAAI,GAAW,GACzB,EAAc,CAAC,EAAQ,GAAK,KAAK,UAAW,EAAQ,GAAK,KAAK,UAAY,GAAQ,GAAK,EAAQ,IAAM,KAAK,UAAY,GACtH,EAAe,EAAU,IAAI,AAAC,GAAU,CAC5C,EAAY,GAAM,GAAM,GAAK,KAAK,UAAY,GAC9C,EAAY,GAAM,GAAM,GAAK,KAAK,UAAY,GAC9C,EAAY,GAAK,EAAM,KAEnB,EAAuB,AAAK,GAAoB,EAAO,CAAC,EAAG,IAC3D,EAAgB,EAAa,IAAI,AAAC,GAE/B,CAAC,GADQ,AAAK,GAAY,EAAO,GACpB,EAAM,KAEtB,EAAwB,AAAK,GAAsB,GACnD,EAAY,CAAC,GAAG,AAAI,GAAa,GAAO,GACxC,EAAoB,CACxB,AAAK,GAAI,EAAW,EAAsB,IAC1C,AAAK,GAAI,EAAW,EAAsB,KAE5C,MAAO,GAAc,IAAI,AAAC,GAAU,CAClC,KAAK,MAAM,EAAM,GAAK,EAAkB,IACxC,KAAK,MAAM,EAAM,GAAK,EAAkB,IACxC,KAAK,MAAM,EAAM,WAIf,eAAc,EAAO,EAAQ,CACjC,GAAI,GAAc,GAGd,EAGJ,AAAK,MAAK,UAAY,GAAO,KAAK,QAAU,EAAO,KAAK,YAAe,CAAC,EAAO,KAAK,WAAa,CAAC,EAAO,YACvG,GAAQ,KAAM,MAAK,aAAa,mBAAmB,EAAO,GAC1D,KAAK,QAAU,GAEb,EAAO,WAAW,KAAK,UAGvB,GAAU,EAAM,OAAS,GAAQ,GAAM,SAAW,KAAK,eAAmB,KAAK,gBAAkB,EAAO,KAAK,aAAgB,CAAC,EAAO,KAAK,YAC5I,MAAK,cAAgB,EACrB,KAAK,YAAc,CAAC,GAAG,GAEnB,KAAK,YAAY,OAAS,GAAG,GAAc,KAEjD,GAAM,GAAgH,GAGtH,OAAS,GAAI,EAAG,EAAI,KAAK,YAAY,OAAQ,IAAK,CAChD,GAAM,GAAa,KAAK,YAAY,GACpC,GAAI,EAAC,EACL,GAAI,EAAO,KAAK,UAAW,CACzB,GAAM,GAAQ,EAAO,KAAK,SAAW,AAAK,GAAgB,EAAW,cAAc,IAAwB,EAAW,cAAc,KAAkC,EAChK,EAAa,AAAI,GAAa,GAC9B,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,EAAO,KAAK,UAAY,AAAG,MAAI,MAAM,WAAa,AAAG,QAAM,iBAAiB,EAAO,EAAO,EAAG,GAAwB,EAAM,QAC1I,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,EAAS,EAAc,KAAK,uBAAuB,EAAW,cAAe,GAAkB,EAC/F,EAAe,AAAI,GAAyB,EAAQ,EAAc,CAAC,KAAK,UAAW,KAAK,YACxF,EAAY,AAAG,MAAI,EAAc,KACvC,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,GAAM,CAAC,EAAa,GAAa,KAAM,MAAK,cAAc,QAAQ,GAClE,AAAG,UAAQ,GACX,GAAM,GAAc,MAAM,GAAY,QAAQ,GAE9C,GADA,AAAG,UAAQ,GACP,GAAc,EAAO,KAAK,cAAe,CAC3C,GAAM,GAAoB,AAAG,UAAQ,EAAW,CAAC,GAAI,IAC/C,EAAY,KAAM,GAAkB,QAC1C,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,GAAM,GAAS,KAAK,mBAAmB,EAAW,EAAQ,EAAO,GAC3D,EAAkB,KAAK,uBAAuB,GACpD,KAAK,YAAY,GAAK,IAAK,EAAiB,cAC5C,GAAM,GAAS,CACb,UAAW,EACX,aACA,IAAK,CAAE,QAAS,EAAgB,WAAY,YAAa,EAAgB,WAE3E,EAAM,KAAK,OAEX,MAAK,YAAY,GAAK,KAExB,AAAG,UAAQ,OACN,CAEL,GAAM,GAAW,AAAI,GAAW,AAAI,GAAY,GAAa,IACvD,EAAS,CACb,WAAY,EAAW,WACvB,IAAK,CAAE,QAAS,EAAS,WAAY,YAAa,EAAS,WAE7D,EAAM,KAAK,IAGf,YAAK,YAAc,KAAK,YAAY,OAAO,AAAC,GAAM,IAAM,MACxD,KAAK,cAAgB,EAAM,OACpB,IC5IX,GAAM,IAAkB,CACtB,MAAO,CAAC,EAAG,EAAG,EAAG,GACjB,YAAa,CAAC,EAAG,EAAG,EAAG,GACvB,aAAc,CAAC,EAAG,GAAI,GAAI,IAC1B,WAAY,CAAC,GAAI,GAAI,GAAI,IACzB,MAAO,CAAC,GAAI,GAAI,GAAI,IACpB,SAAU,CAAC,IAGT,GACA,GACA,GAEJ,kBAA8B,EAAe,EAAiC,CAC5E,GAAM,GAAc,KAAM,IAAa,cAAc,EAAO,GAC5D,GAAI,CAAC,EAAa,MAAO,GACzB,GAAM,GAAqB,GAC3B,OAAS,GAAI,EAAG,EAAI,EAAY,OAAQ,IAAK,CAC3C,GAAM,GAAc,GACpB,GAAI,EAAY,GAAG,UACjB,OAAW,KAAO,QAAO,KAAK,IAE5B,EAAY,GAAO,GAAgB,GAAK,IAAI,AAAC,GAAU,EAAY,GAAG,UAAU,IAIpF,GAAM,GAAY,EAAY,GAAG,UAE7B,EAAwC,CAAC,OAAO,iBAAkB,OAAO,iBAAkB,EAAG,GAC9F,EAA2C,CAAC,EAAG,EAAG,EAAG,GACzD,GAAI,GAAa,EAAU,OAAS,EAAG,CACrC,OAAW,KAAM,GACf,AAAI,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAElC,EAAI,IAAM,EAAI,GACd,EAAI,IAAM,EAAI,GACd,EAAS,CAAC,EAAI,GAAM,GAAM,MAAM,IAAM,GAAI,EAAI,GAAM,GAAM,MAAM,IAAM,GAAI,EAAI,GAAM,GAAM,MAAM,IAAM,GAAI,EAAI,GAAM,GAAM,MAAM,IAAM,QAEtI,GAAM,EAAY,GAAG,IAAM,CACzB,KAAK,MAAM,KAAK,IAAI,EAAG,EAAY,GAAG,IAAI,QAAQ,KAClD,KAAK,MAAM,KAAK,IAAI,EAAG,EAAY,GAAG,IAAI,QAAQ,KAClD,KAAK,MAAM,KAAK,IAAK,EAAM,MAAM,IAAM,EAAI,EAAY,GAAG,IAAI,YAAY,IAAM,KAAK,IAAI,EAAG,EAAY,GAAG,IAAI,QAAQ,KACvH,KAAK,MAAM,KAAK,IAAK,EAAM,MAAM,IAAM,EAAI,EAAY,GAAG,IAAI,YAAY,IAAM,KAAK,IAAI,EAAG,EAAY,GAAG,IAAI,QAAQ,MACrH,CAAC,EAAG,EAAG,EAAG,GACd,EAAS,CACN,EAAY,GAAG,IAAI,QAAQ,GAAO,GAAM,MAAM,IAAM,GACpD,EAAY,GAAG,IAAI,QAAQ,GAAO,GAAM,MAAM,IAAM,GACpD,GAAY,GAAG,IAAI,YAAY,GAAK,EAAY,GAAG,IAAI,QAAQ,IAAO,GAAM,MAAM,IAAM,GACxF,GAAY,GAAG,IAAI,YAAY,GAAK,EAAY,GAAG,IAAI,QAAQ,IAAO,GAAM,MAAM,IAAM,IAG7F,EAAM,KAAK,CAAE,GAAI,EAAG,MAAO,KAAK,MAAM,IAAM,EAAY,GAAG,YAAc,IAAK,MAAK,SAAQ,YAAW,gBAExG,MAAO,GAGT,kBAA2B,EAAiE,CAC1F,AAAI,CAAC,IAAqB,CAAC,GACzB,EAAC,GAAmB,IAAiB,KAAM,SAAQ,IAAI,CACrD,EAAO,KAAK,QAAU,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eAA2C,KACpM,EAAO,KAAK,UAAY,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eAA2C,OAEpM,EAAO,KAAK,SACd,CAAI,CAAC,IAAqB,CAAC,GAAkB,SAAa,EAAI,qBAAsB,EAAO,KAAK,SAAS,WAChG,EAAO,OAAO,EAAI,cAAe,GAAkB,UAC5D,AAAI,CAAC,IAAiB,CAAC,GAAc,SAAa,EAAI,qBAAsB,EAAO,KAAK,SAAS,WACxF,EAAO,OAAO,EAAI,cAAe,GAAc,YAGtD,GAAO,OAAO,EAAI,gBAAiB,GAAkB,UACrD,EAAO,OAAO,EAAI,gBAAiB,GAAc,WAEvD,GAAM,GAAe,GAAiB,IAAa,IACnD,UAAe,GAAiB,IAAa,EAAc,IACpD,CAAC,GAAmB,ICzFtB,GAAM,IAAO,CAClB,OACA,gBACA,UACA,iBACA,iBACA,WACA,kBACA,UACA,WACA,YACA,aACA,eACA,gBACA,YACA,aACA,YACA,aACA,WACA,YACA,YACA,aACA,YACA,aACA,UACA,WACA,WACA,YACA,YACA,aACA,WACA,YACA,WACA,YACA,SACA,WACA,YACA,WACA,aACA,aAGW,GAAQ,CACnB,OACA,gBACA,UACA,iBACA,iBACA,WACA,kBACA,UACA,WACA,YACA,aACA,eACA,gBACA,YACA,aACA,UACA,WACA,UACA,WACA,UACA,WACA,UACA,WACA,YACA,aACA,OACA,WACA,UACA,WACA,UACA,YC5DF,GAAI,GAEJ,kBAA2B,EAAqC,CAC9D,MAAK,GAMM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UALlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,EAAM,MAAW,SAAS,EAAM,UAAa,OAAO,aAAa,YAAY,IAAI,GAAG,MACpF,EAAM,OAAY,SAAS,EAAM,UAAa,OAAO,aAAa,YAAY,IAAI,GAAG,MACrF,AAAI,CAAC,GAAS,CAAC,EAAM,SAAa,EAAI,qBAAsB,EAAO,KAAK,WAC/D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGT,kBAA8B,EAAe,EAAiC,CAC5E,GAAI,CAAC,EAAO,MAAO,GACnB,GAAI,CAAC,EAAO,KAAK,QAAS,MAAO,GACjC,GAAM,GAAU,CAAE,MAAQ,EAAM,MAAM,IAAM,EAAI,OAAS,EAAM,MAAM,IAAM,GACrE,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,MAAU,EAAM,QAAY,IAC3E,EAAY,AAAG,MAAI,EAAQ,CAAC,MAClC,AAAG,UAAQ,GACX,GAAM,GAAO,KAAM,GAAM,QAAQ,GAC3B,EAAQ,EAAK,KAAK,AAAC,GAAO,EAAE,OAAS,KAAO,EAAE,OAAS,KACvD,EAAS,KAAM,kBAAO,SAAU,GACtC,EAAK,QAAQ,AAAC,GAAM,AAAG,UAAQ,IAC/B,AAAG,UAAQ,GACX,GAAM,GAA6H,GAC7H,EAAS,kBAAQ,UAAW,IAAkB,GAAmB,GACjE,EAAQ,EACd,OAAS,GAAI,EAAG,EAAI,EAAO,OAAS,EAAO,IACzC,EAAU,KAAK,CACb,GAAI,EACJ,KAAM,EAAO,GACb,SAAU,CACR,KAAK,MAAM,EAAQ,MAAQ,EAAO,EAAQ,EAAI,GAAK,KACnD,KAAK,MAAM,EAAQ,OAAS,EAAO,EAAQ,EAAI,GAAK,KACpD,KAAK,MAAM,EAAO,EAAQ,EAAI,IAAM,GAEtC,YAAa,CACX,EAAO,EAAQ,EAAI,GAAK,IACxB,EAAO,EAAQ,EAAI,GAAK,IACxB,EAAO,EAAQ,EAAI,GAAK,GAE1B,MAAQ,KAAM,KAAK,MAAM,IAAO,GAAI,KAAK,IAAI,EAAO,EAAQ,EAAI,OAAS,IACzE,SAAW,KAAM,KAAK,MAAM,IAAO,GAAI,KAAK,IAAI,EAAO,EAAQ,EAAI,OAAS,MAGhF,GAAM,GAAI,EAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IACpC,EAAI,EAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IACpC,EAAwC,CAC5C,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,GAC7B,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAEzB,EAA2C,CAAC,EAAG,EAAG,EAAG,GACrD,EAAQ,EAAU,OAAO,CAAC,EAAM,IAAU,EAAK,MAAQ,EAAO,EAAK,MAAQ,EAAO,GACxF,MAAO,CAAC,CAAE,GAAI,EAAG,QAAO,MAAK,SAAQ,cC3DvC,GAAI,GAIE,GAA8B,GAChC,GAAwC,CAAC,EAAG,EAAG,EAAG,GAClD,GAA2C,CAAC,EAAG,EAAG,EAAG,GACrD,GAAQ,EACR,GAAU,OAAO,iBAEf,GAAY,CAAC,OAAQ,OAAQ,gBAAiB,aAAc,aAAc,QAAS,eAAgB,YAAa,YAAa,SAAU,WAAY,YAAa,aAAc,UAAW,WAAY,aAE3M,kBAA2B,EAAqC,CAC9D,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,AAAI,CAAC,GAAS,CAAC,EAAM,SAAa,EAAI,qBAAsB,EAAO,KAAK,WAC/D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAIT,YAAe,EAAQ,EAAU,CAC/B,GAAM,CAAC,EAAO,GAAU,EAAO,MAC/B,MAAO,AAAG,QAAK,IAAM,CACnB,GAAM,GAAM,CAAC,EAAG,IAAM,AAAG,MAAI,EAAG,AAAG,MAAI,AAAG,MAAI,EAAG,AAAG,SAAO,EAAG,UAAW,AAAG,SAAO,EAAG,WAChF,EAAW,AAAG,UAAQ,EAAQ,CAAC,EAAS,IACxC,EAAW,AAAG,MAAI,EAAU,GAAG,WAAW,GAChD,GAAI,EAAW,EAAU,CACvB,GAAM,GAAS,AAAG,SAAO,EAAU,GAC7B,EAAI,EAAI,EAAQ,GAAO,WAAW,GAClC,EAAI,AAAG,MAAI,EAAQ,AAAG,SAAO,EAAO,UAAU,WAAW,GAC/D,MAAO,CAAC,EAAG,EAAG,GAEhB,MAAO,CAAC,EAAG,EAAG,KAIlB,kBAA8B,EAAe,EAAiC,CAC5E,MAAK,IAAU,EAAO,KAAK,YAAe,EAAO,WAAa,OAAO,KAAK,IAAW,OAAS,EAC5F,MACO,CAAC,CAAE,GAAI,EAAG,SAAO,OAAK,UAAQ,gBAEvC,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,OAAK,IAAM,CAC3B,GAAI,CAAC,EAAM,OAAO,GAAG,MAAO,MAAO,MACnC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,IAAK,IAGpG,MADa,AADG,AAAG,OAAI,EAAQ,GACV,IAAI,KAIvB,EAIJ,GAHI,EAAO,KAAK,SAAS,GAAO,KAAM,GAAM,QAAQ,IACpD,AAAG,UAAQ,GAEP,EAAM,CACR,GAAU,OAAS,EACnB,GAAM,GAAU,EAAK,UACrB,AAAG,UAAQ,GAEX,GAAM,GAAQ,EAAQ,QAAQ,GAC9B,AAAG,UAAQ,GAEX,OAAS,GAAK,EAAG,EAAK,EAAM,OAAQ,IAAM,CAExC,GAAM,CAAC,EAAG,EAAG,GAAa,GAAM,EAAM,GAAK,EAAO,KAAK,eACvD,AAAI,GAAQ,EAAO,KAAK,eACtB,GAAU,KAAK,CACb,MAAO,KAAK,MAAM,IAAM,GAAa,IACrC,KAAM,GAAU,GAChB,YAAa,CAEX,EAAI,EAAM,OAAO,GAAG,MAAM,GAAI,EAAI,EAAM,OAAO,GAAG,MAAM,IAE1D,SAAU,CAER,KAAK,MAAM,EAAM,MAAM,GAAK,EAAI,EAAM,OAAO,GAAG,MAAM,IAAK,KAAK,MAAM,EAAM,MAAM,GAAK,EAAI,EAAM,OAAO,GAAG,MAAM,OAKzH,EAAM,QAAQ,AAAC,GAAM,AAAG,UAAQ,IAElC,GAAQ,GAAU,OAAO,CAAC,EAAM,IAAU,EAAK,MAAQ,EAAO,EAAK,MAAQ,EAAO,GAClF,GAAM,GAAI,GAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IACpC,EAAI,GAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IAC1C,GAAM,CACJ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,GAC7B,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAE/B,GAAM,GAAO,GAAU,IAAI,AAAC,GAAM,EAAE,YAAY,IAC1C,EAAO,GAAU,IAAI,AAAC,GAAM,EAAE,YAAY,IAChD,GAAS,CACP,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GAAQ,KAAK,IAAI,GAAG,GAChC,KAAK,IAAI,GAAG,GAAQ,KAAK,IAAI,GAAG,IAElC,EAAQ,CAAC,CAAE,GAAI,EAAG,SAAO,OAAK,UAAQ,mBCtG1C,GAAI,IAGE,EAA8B,GAGhC,GAAwC,CAAC,EAAG,EAAG,EAAG,GAClD,GAA2C,CAAC,EAAG,EAAG,EAAG,GACrD,GAAQ,EACR,GAAU,OAAO,iBAEf,GAAY,CAAC,OAAQ,UAAW,WAAY,UAAW,WAAY,eAAgB,gBAAiB,YAAa,aAAc,YAAa,aAAc,UAAW,WAAY,WAAY,YAAa,YAAa,cAE7N,kBAA2B,EAAqC,CAC9D,MAAK,IAIM,EAAO,OAAO,EAAI,gBAAiB,GAAM,UAHlD,IAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,AAAI,CAAC,IAAS,CAAC,GAAM,SAAa,EAAI,qBAAsB,EAAO,KAAK,WAC/D,EAAO,OAAO,EAAI,cAAe,GAAM,WAE3C,GAGT,kBAA+B,EAAK,EAAQ,EAAO,CACjD,EAAU,OAAS,EACnB,GAAM,GAAM,EAAI,GAAG,GACnB,OAAS,GAAK,EAAG,EAAK,EAAI,OAAQ,IAChC,GAAQ,EAAI,GAAI,GACZ,GAAQ,EAAO,KAAK,eACtB,EAAU,KAAK,CACb,MAAO,KAAK,MAAM,IAAM,IAAS,IACjC,KAAM,GAAU,GAChB,YAAa,CACX,EAAI,GAAI,GACR,EAAI,GAAI,IAEV,SAAU,CACR,KAAK,MAAO,GAAM,MAAM,IAAM,GAAK,EAAI,GAAI,IAC3C,KAAK,MAAO,GAAM,MAAM,IAAM,GAAK,EAAI,GAAI,OAKnD,GAAQ,EAAU,OAAO,CAAC,EAAM,IAAU,EAAK,MAAQ,EAAO,EAAK,MAAQ,EAAO,GAClF,GAAM,GAAI,EAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IACpC,EAAI,EAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IAC1C,GAAM,CACJ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,GAC7B,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAE/B,GAAM,GAAO,EAAU,IAAI,AAAC,GAAM,EAAE,YAAY,IAC1C,EAAO,EAAU,IAAI,AAAC,GAAM,EAAE,YAAY,IAChD,GAAS,CACP,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GAAQ,KAAK,IAAI,GAAG,GAChC,KAAK,IAAI,GAAG,GAAQ,KAAK,IAAI,GAAG,IAElC,GAAM,GAAyB,GAC/B,SAAQ,KAAK,CAAE,GAAI,EAAG,SAAO,OAAK,UAAQ,cACnC,EAGT,kBAA8B,EAAK,EAAQ,EAAO,CAChD,GAAM,GAAyB,GAC/B,OAAS,GAAI,EAAG,EAAI,EAAI,GAAG,OAAQ,IAAK,CACtC,GAAM,GAAM,EAAI,GAAG,GAGnB,GAFA,GAAQ,KAAK,MAAM,IAAM,EAAI,GAAK,IAAM,IAEpC,KAAQ,EAAO,KAAK,eACxB,GAAU,OAAS,EACnB,OAAS,GAAI,EAAG,EAAI,GAAI,IAAK,CAC3B,GAAM,GAAY,KAAK,MAAM,IAAM,EAAI,EAAI,EAAI,IAAM,IACrD,AAAI,EAAY,EAAO,KAAK,eAC1B,EAAU,KAAK,CACb,KAAM,GAAU,GAChB,MAAO,EACP,YAAa,CACX,EAAI,EAAI,EAAI,GACZ,EAAI,EAAI,EAAI,IAEd,SAAU,CACR,KAAK,MAAM,EAAI,EAAI,EAAI,GAAM,GAAM,MAAM,IAAM,IAC/C,KAAK,MAAM,EAAI,EAAI,EAAI,GAAM,GAAM,MAAM,IAAM,OAKvD,GAAS,CAAC,EAAI,GAAK,GAAI,EAAI,GAAK,GAAI,EAAI,GAAK,GAAK,EAAI,GAAK,GAAI,EAAI,GAAK,GAAK,EAAI,GAAK,IACtF,EAAQ,KAAK,CACX,GAAI,EACJ,SACA,UACA,IAAK,CACH,KAAK,MAAM,GAAO,GAAM,GAAM,MAAM,IAAM,IAC1C,KAAK,MAAM,GAAO,GAAM,GAAM,MAAM,IAAM,IAC1C,KAAK,MAAM,GAAO,GAAM,GAAM,MAAM,IAAM,IAC1C,KAAK,MAAM,GAAO,GAAM,GAAM,MAAM,IAAM,KAE5C,eAGJ,MAAO,GAGT,kBAA8B,EAAe,EAAiC,CAC5E,MAAK,IAAU,EAAO,KAAK,YAAe,EAAO,WAAa,OAAO,KAAK,GAAW,OAAS,EAC5F,MACO,CAAC,CAAE,GAAI,EAAG,SAAO,OAAK,UAAQ,eAEvC,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,OAAK,IAAM,CAC3B,GAAI,CAAC,GAAM,OAAO,GAAG,MAAO,MAAO,MACnC,GAAI,GAAY,GAAM,OAAO,GAAG,MAAM,GACtC,AAAI,IAAc,IAAI,GAAY,KAClC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAW,GAAY,IAEtE,MADa,AAAG,QAAK,EAAQ,WAI3B,EACJ,AAAI,EAAO,KAAK,SAAS,GAAO,KAAM,IAAM,QAAQ,IACpD,AAAG,UAAQ,GAEN,GAAM,EAAQ,IACnB,GAAM,GAAM,KAAM,GAAK,QACnB,EACJ,AAAI,EAAK,MAAM,KAAO,GAAI,EAAU,KAAM,IAAgB,EAAK,EAAQ,GAC9D,EAAK,MAAM,KAAO,IAAI,GAAU,KAAM,IAAe,EAAK,EAAQ,IAC3E,AAAG,UAAQ,GAEX,EAAQ,MC5IL,GAAM,IAAS,CACpB,CAAE,MAAO,EAAG,MAAO,UACnB,CAAE,MAAO,EAAG,MAAO,WACnB,CAAE,MAAO,EAAG,MAAO,OACnB,CAAE,MAAO,EAAG,MAAO,cACnB,CAAE,MAAO,EAAG,MAAO,YACnB,CAAE,MAAO,EAAG,MAAO,OACnB,CAAE,MAAO,EAAG,MAAO,SACnB,CAAE,MAAO,EAAG,MAAO,SACnB,CAAE,MAAO,EAAG,MAAO,QACnB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,eACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,kBACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,MACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,eCxEtB,GAAI,GACA,GAAoB,GACpB,GAAU,OAAO,iBAEf,GAAW,IAEjB,kBAA2B,EAAqC,CAC9D,GAAK,EAOE,AAAI,EAAO,OAAO,EAAI,gBAAiB,EAAM,cAPxC,CACV,EAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,OAAO,YACzE,GAAM,GAAS,OAAO,OAAO,EAAM,eAAe,QAElD,GADA,EAAM,UAAY,MAAM,QAAQ,GAAU,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,MAAQ,KACpF,CAAC,EAAM,UAAW,KAAM,IAAI,OAAM,4CAA4C,EAAO,OAAO,aAChG,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,OAAO,WAC9D,EAAO,OAAO,EAAI,cAAe,EAAM,UAElD,MAAO,GAGT,kBAAuB,EAAK,EAAW,EAAa,EAAQ,CAC1D,GAAI,GAAK,EACL,EAAuB,GAC3B,OAAW,KAAc,CAAC,EAAG,EAAG,GAE9B,AAAG,OAAK,SAAY,CAlCxB,QAmCM,GAAM,GAAW,EAAa,GAExB,EAAU,KAAI,KAAK,AAAC,GAAO,EAAE,MAAM,KAAQ,GAAY,GAAM,EAAE,MAAM,KAAO,GAAO,UAAzE,cAAmF,UAC7F,EAAY,KAAI,KAAK,AAAC,GAAO,EAAE,MAAM,KAAQ,GAAY,GAAM,EAAE,MAAM,GAAK,GAAO,UAAvE,cAAiF,UAE7F,EAAS,KAAM,AADJ,GAAU,QAAQ,CAAC,GAAI,EAAG,EAAU,MAAM,GAAK,IAClC,OAAO,GAAG,QAClC,EAAS,KAAM,GAAQ,QAC7B,OAAS,GAAI,EAAG,EAAI,EAAQ,MAAM,GAAI,IACpC,OAAS,GAAI,EAAG,EAAI,EAAQ,MAAM,GAAI,IAAK,CACzC,GAAM,GAAQ,EAAO,GAAG,GACxB,GAAI,EAAQ,EAAO,OAAO,eAAiB,IAAM,GAAI,CACnD,GAAM,GAAM,IAAM,KAAK,MAAM,EAAI,IAAa,EACxC,EAAM,IAAM,KAAK,MAAM,EAAI,IAAa,EACxC,EAAY,EAAO,GAAG,IAAI,AAAC,GAAM,EAAK,GAAW,EAAa,IAC9D,CAAC,EAAG,GAAK,CACb,EAAM,GAAW,EAAa,EAAU,GACxC,EAAM,GAAW,EAAa,EAAU,IAEpC,CAAC,EAAG,GAAK,CACb,EAAM,GAAW,EAAa,EAAU,GAAM,EAC9C,EAAM,GAAW,EAAa,EAAU,GAAM,GAE5C,EAAS,CAAC,EAAG,EAAG,EAAG,GACvB,EAAS,EAAO,IAAI,AAAC,GAAM,KAAK,IAAI,EAAG,KAAK,IAAI,EAAG,KACnD,GAAM,GAAM,CACV,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,IAEpB,EAAS,CACb,GAAI,IAEJ,MAAO,KAAK,MAAM,IAAM,GAAS,IACjC,MAAO,EAAI,EACX,MAAO,GAAO,GAAG,MAGjB,IAAM,EAAI,IAAI,AAAC,GAAM,KAAK,MAAM,IAChC,OAAQ,GAEV,EAAQ,KAAK,OAOvB,EAAI,QAAQ,AAAC,GAAM,AAAG,UAAQ,IAI9B,GAAM,GAAW,EAAQ,IAAI,AAAC,GAAM,CAAC,EAAE,OAAO,GAAI,EAAE,OAAO,GAAI,EAAE,OAAO,GAAI,EAAE,OAAO,KAC/E,EAAY,EAAQ,IAAI,AAAC,GAAM,EAAE,OACnC,EAAwB,GAC5B,GAAI,GAAY,EAAS,OAAS,EAAG,CACnC,GAAM,GAAM,KAAM,AAAG,SAAM,uBAAuB,EAAU,EAAW,EAAO,OAAO,YAAa,EAAO,OAAO,aAAc,EAAO,OAAO,eAC5I,EAAS,KAAM,GAAI,OACnB,AAAG,UAAQ,GAIb,SAAU,EACP,OAAO,CAAC,EAAM,IAAQ,EAAO,SAAS,IACtC,KAAK,CAAC,EAAG,IAAO,EAAE,MAAQ,EAAE,OAExB,EAGT,kBAA8B,EAAe,EAAiC,CAC5E,MAAK,IAAU,EAAO,OAAO,YAAe,EAAO,WAAc,GAAK,OAAS,EAC7E,MACO,IAET,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAa,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,IAC1C,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,UAAW,EAAM,WAAY,IAC5E,EAAO,AAAG,MAAI,EAAQ,KACtB,EAAY,EAAK,UAAU,CAAC,EAAG,EAAG,EAAG,IAC3C,AAAG,UAAQ,GACX,AAAG,UAAQ,GAEX,GAAI,GACJ,AAAI,EAAO,OAAO,SAAS,GAAU,KAAM,GAAM,QAAQ,IACzD,AAAG,UAAQ,GAEX,GAAM,GAAM,KAAM,IAAQ,EAAS,EAAM,UAAW,EAAY,GAChE,GAAO,EACP,EAAQ,MCjHZ,GAAI,GACA,GAAe,GACf,GAAU,OAAO,iBAErB,kBAA2B,EAAqC,CAC9D,GAAK,EAOE,AAAI,EAAO,OAAO,EAAI,gBAAiB,EAAM,cAPxC,CACV,EAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,OAAO,YACzE,GAAM,GAAS,OAAO,OAAO,EAAM,eAAe,QAElD,GADA,EAAM,UAAY,MAAM,QAAQ,GAAU,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,MAAQ,KACpF,CAAC,EAAM,UAAW,KAAM,IAAI,OAAM,4CAA4C,EAAO,OAAO,aAChG,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,OAAO,WAC9D,EAAO,OAAO,EAAI,cAAe,EAAM,UAElD,MAAO,GAGT,kBAAuB,EAAa,EAAW,EAAa,EAAgB,CAC1E,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAuB,GACvB,EAAa,KAAM,GAAI,QACvB,EAAW,AAAG,UAAQ,GAC5B,AAAG,UAAQ,GACX,GAAM,GAAM,AAAG,QAAM,EAAU,EAAG,GAClC,AAAG,UAAQ,GACX,GAAM,GAAS,AAAG,QAAM,CAAC,EAAI,GAAI,EAAI,GAAI,EAAI,GAAI,EAAI,IAAK,GACpD,EAAS,AAAG,UAAQ,GACpB,EAAU,AAAG,UAAQ,EAAI,IACzB,EAAW,AAAG,UAAQ,EAAI,IAChC,EAAI,QAAQ,AAAC,GAAM,AAAG,UAAQ,IAC9B,GAAM,GAAO,KAAM,AAAG,SAAM,uBAAuB,EAAQ,EAAS,EAAO,OAAO,YAAa,EAAO,OAAO,aAAc,EAAO,OAAO,eACzI,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,GAAM,GAAM,KAAM,GAAK,OACvB,AAAG,UAAQ,GACX,GAAI,GAAI,EACR,OAAW,KAAM,GAAK,CACpB,GAAM,GAAQ,KAAK,MAAM,IAAM,EAAW,GAAG,GAAI,IAAM,IACjD,EAAW,EAAW,GAAG,GAAI,GAC7B,EAAQ,GAAO,GAAU,MACzB,CAAC,EAAG,GAAK,CACb,EAAW,GAAG,GAAI,GAAK,EACvB,EAAW,GAAG,GAAI,GAAK,GAEnB,EAAS,CACb,EACA,EACA,EAAW,GAAG,GAAI,GAAK,EAAY,EACnC,EAAW,GAAG,GAAI,GAAK,EAAY,GAE/B,EAAM,CACV,KAAK,MAAM,EAAO,GAAK,EAAY,IACnC,KAAK,MAAM,EAAO,GAAK,EAAY,IACnC,KAAK,MAAM,EAAO,GAAK,EAAY,IACnC,KAAK,MAAM,EAAO,GAAK,EAAY,KAErC,EAAQ,KAAK,CAAE,GAAI,IAAK,QAAO,MAAO,EAAU,QAAO,MAAK,WAE9D,MAAO,GAGT,kBAA8B,EAAe,EAAiC,CAC5E,MAAK,IAAU,EAAO,OAAO,YAAe,EAAO,WAAc,GAAK,OAAS,EAC7E,MACO,IAET,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAa,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,IAC1C,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,UAAW,EAAM,YAChE,EAAU,EAAO,OAAO,QAAU,EAAM,QAAQ,EAAQ,CAAC,uBAAyB,KACxF,AAAG,UAAQ,GAEX,GAAM,GAAM,KAAM,IAAQ,EAAS,EAAM,UAAW,EAAY,GAChE,GAAO,EACP,EAAQ,MClFZ,YAAmB,EAAI,EAAc,EAAgB,CACnD,GAAM,GAAW,SAAU,EAAQ,EAAQ,EAAY,CACrD,GAAM,GAAI,GAAI,QAAO,MAAQ,EAAS,eAAgB,MACtD,EAAO,QAAQ,EAAG,CAAC,EAAO,IACxB,GAAW,GAAQ,EACZ,KAIL,EAAW,SAAU,EAAQ,EAAM,CACvC,GAAM,GAAS,EAAG,aAAa,GAG/B,GAFA,EAAG,aAAa,EAAQ,GACxB,EAAG,cAAc,GACb,CAAC,EAAG,mBAAmB,EAAQ,EAAG,gBAAiB,KAAM,IAAI,OAAM,4BAA6B,EAAG,iBAAiB,IACxH,MAAO,IAGT,KAAK,QAAU,GACf,KAAK,UAAY,GACjB,GAAM,GAAO,EAAS,EAAc,EAAG,eACjC,EAAO,EAAS,EAAgB,EAAG,iBAMzC,GALA,KAAK,GAAK,EAAG,gBACb,EAAG,aAAa,KAAK,GAAI,GACzB,EAAG,aAAa,KAAK,GAAI,GACzB,EAAG,YAAY,KAAK,IAEhB,CAAC,EAAG,oBAAoB,KAAK,GAAI,EAAG,aAAc,KAAM,IAAI,OAAM,yBAA0B,EAAG,kBAAkB,KAAK,KAE1H,EAAG,WAAW,KAAK,IAEnB,EAAS,EAAc,YAAa,KAAK,WACzC,OAAW,KAAK,MAAK,UAAW,KAAK,UAAU,GAAK,EAAG,kBAAkB,KAAK,GAAI,GAElF,EAAS,EAAc,UAAW,KAAK,SACvC,EAAS,EAAgB,UAAW,KAAK,SACzC,OAAW,KAAK,MAAK,QAAS,KAAK,QAAQ,GAAK,EAAG,mBAAmB,KAAK,GAAI,GAI1E,YAAuB,EAAQ,CACpC,AAAK,GAAQ,GAAS,IACtB,GAAI,GAAa,EACb,EAAiB,KACjB,EAAe,GACf,EAA2B,GAC3B,EAAoB,CAAC,KAAM,MAC3B,EAAe,GACf,EAAS,GACT,EAAU,GACV,EAAgB,KAChB,EAAkB,KAChB,EAAU,GACV,EAAU,EAAO,QAAU,SAAS,cAAc,UAElD,EAAsB,GACtB,EAAO,CAAE,aAAc,GACvB,EAAK,EAAQ,WAAW,SAC9B,GAAI,CAAC,EAAI,KAAM,IAAI,OAAM,+BAEzB,KAAK,UAAY,SAAU,EAAM,CAE/B,GAAM,GAAO,MAAM,UAAU,MAAM,KAAK,UAAW,GAC7C,EAAS,EAAQ,GACvB,EAAa,KAAK,CAAE,KAAM,EAAQ,UAGpC,KAAK,MAAQ,UAAY,CACvB,EAAe,IAGjB,GAAM,GAAU,SAAU,EAAO,EAAQ,CAEvC,GAAI,MAAU,GAAU,IAAW,GAMnC,IALA,EAAQ,MAAQ,EAChB,EAAS,EACT,EAAQ,OAAS,EACjB,EAAU,EAEN,CAAC,EAAe,CAElB,GAAM,GAAW,GAAI,cAAa,CAChC,GAAI,GAAI,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,GAAI,EAAG,EAAG,EACrC,GAAI,EAAG,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,EAAG,EAAG,EAAG,IAGrC,AAAC,EAAgB,EAAG,eAAgB,EAAG,WAAW,EAAG,aAAc,GACnE,EAAG,WAAW,EAAG,aAAc,EAAU,EAAG,aAC5C,EAAG,YAAY,EAAG,+BAAgC,IAEpD,EAAG,SAAS,EAAG,EAAG,EAAQ,GAE1B,EAAoB,CAAC,KAAM,QAGvB,EAA4B,SAAU,EAAO,EAAQ,CACzD,GAAM,GAAM,EAAG,oBACf,EAAG,gBAAgB,EAAG,YAAa,GACnC,GAAM,GAAe,EAAG,qBACxB,EAAG,iBAAiB,EAAG,aAAc,GACrC,GAAM,GAAU,EAAG,gBACnB,SAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,WAAW,EAAG,WAAY,EAAG,EAAG,KAAM,EAAO,EAAQ,EAAG,EAAG,KAAM,EAAG,cAAe,MACtF,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,QAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,QAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,qBAAqB,EAAG,YAAa,EAAG,kBAAmB,EAAG,WAAY,EAAS,GACtF,EAAG,YAAY,EAAG,WAAY,MAC9B,EAAG,gBAAgB,EAAG,YAAa,MAC5B,CAAE,MAAK,YAGV,EAAsB,SAAU,EAAO,CAC3C,SAAkB,GAAS,EAAkB,IAAU,EAA0B,EAAQ,GAClF,EAAkB,IAGrB,EAAQ,SAAU,EAAQ,KAAM,CAzHxC,QA0HI,GAAI,GAAS,KACT,EAAS,KACT,EAAQ,GAEZ,AAAI,IAAe,EAEjB,EAAS,EAGT,EAAS,KAAoB,KAApB,cAA+C,QAE1D,IAEA,AAAI,GAAgB,CAAE,GAAQ,EAAK,cAGjC,GAAS,KACT,EAAQ,EAAa,GAAM,GAG3B,GAA4B,GAA2B,GAAK,EAC5D,EAAS,KAAoB,KAApB,cAA+C,KAG1D,EAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,gBAAgB,EAAG,YAAa,GACnC,EAAG,UAAU,EAAgB,QAAQ,MAAQ,EAAQ,GAAK,GAC1D,EAAG,WAAW,EAAG,UAAW,EAAG,IAGjC,KAAK,MAAQ,SAAU,EAAO,CAY5B,GAXA,EAAQ,EAAM,MAAO,EAAM,QAC3B,EAAa,EAER,GAAgB,GAAiB,EAAG,iBACzC,EAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,SAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,SAC1D,EAAG,WAAW,EAAG,WAAY,EAAG,EAAG,KAAM,EAAG,KAAM,EAAG,cAAe,GAEhE,EAAa,SAAW,EAE1B,WACO,EAET,OAAS,GAAI,EAAG,EAAI,EAAa,OAAQ,IAAK,CAC5C,EAAgB,IAAM,EAAa,OAAS,EAC5C,GAAM,GAAI,EAAa,GACvB,EAAE,KAAK,MAAM,KAAM,EAAE,MAAQ,IAE/B,MAAO,IAGT,GAAM,GAAiB,SAAU,EAAgB,CAC/C,GAAI,EAAoB,GACtB,SAAkB,EAAoB,GACtC,EAAG,WAAW,EAAgB,IACvB,EAGT,GAAM,GAAS,GACf,EAAO,gBAAkB,CACvB,yBACA,sBACA,qBACA,oBACA,uBACA,oBACA,YACA,mDACA,KACA,KAAK;AAAA,GACP,EAAO,kBAAoB,CACzB,yBACA,oBACA,6BACA,oBACA,0CACA,KACA,KAAK;AAAA,GACP,EAAkB,GAAI,IAAU,EAAI,EAAO,gBAAiB,GAC5D,GAAM,GAAY,aAAa,kBACzB,EAAW,EAAI,EACrB,SAAG,wBAAwB,EAAgB,UAAU,KACrD,EAAG,oBAAoB,EAAgB,UAAU,IAAK,EAAG,EAAG,MAAO,GAAO,EAAU,EAAI,GACxF,EAAG,wBAAwB,EAAgB,UAAU,IACrD,EAAG,oBAAoB,EAAgB,UAAU,GAAI,EAAG,EAAG,MAAO,GAAO,EAAU,EAAI,GACvF,EAAoB,GAAkB,EAC/B,GAKT,EAAQ,YAAc,SAAU,EAAQ,CAEtC,GAAM,GAAI,GAAI,cAAa,GAC3B,EAAE,IAAM,IACR,EAAE,IAAM,IACR,EAAE,KAAO,IACT,EAAE,KAAO,IAET,GAAM,GAAU,EAAE,MAAQ,GAAK,EAAE,KAAO,GAAK,EAAE,KAAO,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,EAC7H,EAAQ,YAAY,OAAO,cAC3B,EAAQ,YAAY,OAAO,WACzB,EAAU,EAAe,GAC/B,EAAG,WAAW,EAAQ,QAAQ,EAAG,GACjC,KAEF,EAAQ,YAAY,OAAS,GAC7B,EAAQ,YAAY,OAAO,WAAa,CACtC,yBACA,oBACA,6BACA,uBACA,oBACA,oCACA,6EACA,6EACA,kFACA,kFACA,KACA,KAAK;AAAA,GACP,EAAQ,YAAY,OAAO,cAAgB,CACzC,yBACA,oBACA,6BACA,uBACA,oBACA,oCACA,gEACA,gEACA,oEACA,wBACA,KACA,KAAK;AAAA,GAEP,EAAQ,WAAa,SAAU,EAAY,CACzC,GAAM,GAAK,IAAc,GAAK,EAC9B,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,SAAU,EAAQ,CACrC,GAAM,GAAK,IAAU,GAAK,EAAI,EAAI,EAC5B,EAAM,GAAI,GAAK,IACrB,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,WAAW,KAGrB,EAAQ,SAAW,SAAU,EAAQ,CACnC,GAAM,GAAK,IAAU,GAAK,EACpB,EAAI,KAAQ,GAAI,GAEtB,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,SAAW,UAAY,CAC7B,EAAQ,SAAS,KAGnB,EAAQ,IAAM,SAAU,EAAU,CAChC,EAAY,IAAY,GAAK,IAAM,KAAK,GACxC,GAAM,GAAM,KAAK,IAAI,GACf,EAAM,KAAK,IAAI,GACf,EAAO,KACP,EAAO,KACP,EAAO,KAEb,EAAQ,YAAY,CAClB,EAAO,EAAO,GAAI,GAAQ,EAAO,CAAC,EAAO,EAAO,EAAO,CAAC,EAAQ,EAAO,CAAC,EAAO,EAAO,EAAO,CAAC,EAAQ,EAAO,GAAI,GAAO,EAAG,EAC3H,EAAO,EAAO,CAAC,EAAQ,EAAO,KAAQ,EAAO,EAAO,GAAI,GAAQ,EAAO,IAAQ,EAAO,EAAO,CAAC,EAAQ,EAAO,MAAS,EAAG,EACzH,EAAO,EAAO,CAAC,EAAQ,EAAO,CAAE,GAAI,GAAQ,EAAO,EAAO,CAAC,EAAQ,EAAO,EAAO,EAAO,EAAO,GAAI,GAAQ,EAAO,EAAO,EAAG,EAC5H,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,oBAAsB,UAAY,CACxC,EAAQ,YAAY,CAClB,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,MAAQ,UAAY,CAC1B,EAAQ,YAAY,CAClB,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,QAAU,UAAY,CAC5B,EAAQ,YAAY,CAClB,kBAAoB,mBAAqB,mBAAqB,EAAG,kBACjE,qBAAuB,kBAAoB,mBAAqB,EAAG,mBACnE,mBAAqB,oBAAsB,mBAAqB,EAAG,mBACnE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,eAAiB,UAAY,CACnC,EAAQ,YAAY,CAClB,kBAAoB,kBAAoB,oBAAsB,EAAG,kBACjE,mBAAqB,kBAAoB,mBAAqB,EAAG,kBACjE,kBAAoB,mBAAqB,kBAAoB,EAAG,kBAChE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,YAAY,CAClB,mBAAoB,mBAAqB,oBAAsB,EAAG,kBAClE,oBAAsB,mBAAoB,oBAAsB,EAAG,mBACnE,oBAAsB,mBAAqB,mBAAoB,EAAG,kBAClE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,YAAc,UAAY,CAChC,EAAQ,YAAY,CAClB,mBAAoB,mBAAqB,oBAAsB,EAAG,mBAClE,mBAAqB,mBAAoB,oBAAsB,EAAG,mBAClE,kBAAoB,mBAAqB,kBAAmB,EAAG,mBAC/D,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,SAAW,UAAY,CAC7B,EAAQ,YAAY,CAClB,MAAO,MAAQ,MAAQ,EAAG,EAC1B,MAAQ,MAAO,MAAQ,EAAG,EAC1B,MAAQ,MAAQ,MAAO,EAAG,EAC1B,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAMhB,EAAQ,YAAc,SAAU,EAAQ,CACtC,GAAM,GAAI,GAAI,cAAa,GACrB,EAAa,EAAI,EACjB,EAAa,EAAI,EACjB,EAAU,EAAe,EAAQ,YAAY,QACnD,EAAG,WAAW,EAAQ,QAAQ,EAAG,GACjC,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAY,GAC7C,KAGF,EAAQ,YAAY,OAAS,CAC3B,yBACA,oBACA,6BACA,mBACA,sBACA,oBACA,2CACA,4DACA,mEACA,6DACA,sCACA,6DACA,oEACA,6DACA,4CACA,kBACA,yCACA,yCACA,wCACA,0BACA,KACA,KAAK;AAAA,GAEP,EAAQ,YAAc,UAAY,CAChC,EAAQ,YAAY,KAAK,KAAM,CAC7B,EAAG,EAAG,EACN,EAAG,GAAI,EACP,EAAG,EAAG,KAIV,EAAQ,OAAS,UAAY,CAC3B,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAI,EAAG,EACP,GAAI,EAAG,EACP,GAAI,EAAG,KAIX,EAAQ,OAAS,UAAY,CAC3B,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAI,GAAI,GACR,EAAG,EAAG,EACN,EAAG,EAAG,KAIV,EAAQ,QAAU,SAAU,EAAQ,CAClC,GAAM,GAAI,GAAU,EACpB,EAAQ,YAAY,KAAK,KAAM,CAC7B,EAAG,GAAK,EAAG,EACX,GAAK,EAAG,EAAI,EAAI,EAAG,GAAK,EACxB,EAAG,GAAK,EAAG,KAIf,EAAQ,OAAS,SAAU,EAAM,CAC/B,GAAM,GAAI,GAAQ,EAClB,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAK,EAAG,GAAK,EAAG,EAChB,GAAK,EAAG,EAAG,EAAI,EACf,EAAG,EAAI,EAAG,EAAI,KAMlB,EAAQ,KAAO,SAAU,EAAM,CAC7B,GAAM,GAAa,EAAO,EAAK,EACzB,EAAa,EAAO,EAAK,EACzB,EAAU,EAAe,EAAQ,KAAK,QAE5C,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAG,GACpC,EAAM,EAAK,cAEX,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAW,GAC5C,KAGF,EAAQ,KAAK,OAAS,CACpB,yBACA,oBACA,6BACA,mBACA,oBACA,4BACA,8FACA,yFACA,wFACA,wFACA,wFACA,uFACA,uFACA,uFACA,uFACA,uFACA,wFACA,wFACA,wFACA,yFACA,8FACA,KACA,KAAK;AAAA,GAIP,EAAQ,SAAW,SAAU,EAAM,CACjC,GAAM,GAAa,EAAQ,EACrB,EAAa,EAAQ,EACrB,EAAU,EAAe,EAAQ,SAAS,QAEhD,EAAG,UAAU,EAAQ,QAAQ,KAAM,EAAW,GAC9C,KAGF,EAAQ,SAAS,OAAS,CACxB,yBACA,oBACA,qBACA,6BACA,yCACA,uCACA,IACA,oBACA,4BACA,oCACA,6CACA,KACA,KAAK;GCvgBT,GAAM,IAAU,KAEZ,EACA,EAEA,EAKG,YAAiB,EAAc,EAAwF,CAC5H,GAAI,GACJ,GAAI,CAAC,EAAO,KAAM,IAAI,OAAM,2BAE5B,GACE,CAAE,aAAoB,YACnB,CAAE,OAAO,QAAU,aAAe,YAAiB,SACnD,CAAE,OAAO,YAAc,aAAe,YAAiB,aACvD,CAAE,OAAO,cAAgB,aAAe,YAAiB,eACzD,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,oBAAsB,aAAe,YAAiB,qBAC/D,CAAE,OAAO,kBAAoB,aAAe,YAAiB,kBAEhE,KAAM,IAAI,OAAM,uCAElB,GAAI,YAAoB,UAEtB,GAAI,EAAM,OAAS,EAAM,MAAM,SAAW,GAAK,EAAM,MAAM,KAAO,GAAK,EAAM,MAAM,KAAO,EAAG,EAAS,AAAG,QAAM,OAC1G,MAAM,IAAI,OAAM,2EAA2E,EAAM,aACjG,CAEL,GAAM,GAAgB,EAAM,cAAmB,EAAM,YAAiB,EAAM,OAAa,EAAM,OAAa,EAAM,MAAS,GAAK,EAC1H,EAAiB,EAAM,eAAoB,EAAM,aAAkB,EAAM,QAAc,EAAM,OAAa,EAAM,MAAS,GAAK,EACpI,GAAI,CAAC,GAAiB,CAAC,EAAgB,MAAO,CAAE,OAAQ,KAAM,OAAQ,GACtE,GAAI,GAAc,EACd,EAAe,EAenB,GAdI,EAAc,IAChB,GAAc,GACd,EAAe,EAAc,EAAiB,GAE5C,EAAe,IACjB,GAAe,GACf,EAAc,EAAe,EAAgB,GAI/C,AAAI,EAAO,OAAO,MAAQ,EAAG,EAAc,EAAO,OAAO,MAChD,EAAO,OAAO,OAAS,GAAG,GAAc,EAAiB,GAAO,OAAO,OAAS,IACzF,AAAI,EAAO,OAAO,OAAS,EAAG,EAAe,EAAO,OAAO,OAClD,EAAO,OAAO,MAAQ,GAAG,GAAe,EAAkB,GAAO,OAAO,MAAQ,IACrF,CAAC,GAAe,CAAC,EAAc,KAAM,IAAI,OAAM,2CACnD,AAAI,EAAC,GAAa,kBAAU,SAAU,GAAiB,kBAAU,UAAW,IAC1E,GAAY,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UAC1H,kBAAU,SAAU,GAAa,GAAS,MAAQ,GAClD,kBAAU,UAAW,GAAc,GAAS,OAAS,IAI3D,GAAM,GAAM,EAAS,WAAW,MAehC,GAdA,AAAI,YAAiB,WACnB,EAAI,aAAa,EAAO,EAAG,GAE3B,AAAI,EAAO,OAAO,MAAQ,MAAO,GAAI,WAAc,YACjD,GAAI,UAAU,EAAe,GAC7B,EAAI,MAAM,GAAI,GACd,EAAI,UAAU,EAAO,EAAG,EAAG,EAAe,EAAgB,EAAG,EAAG,iBAAU,MAAO,iBAAU,QAC3F,EAAI,aAAa,EAAG,EAAG,EAAG,EAAG,EAAG,IAEhC,EAAI,UAAU,EAAO,EAAG,EAAG,EAAe,EAAgB,EAAG,EAAG,iBAAU,MAAO,iBAAU,QAK3F,EAAO,OAAO,QAAS,CAQzB,GAPI,EAAC,GAAM,CAAC,GAAc,EAAS,QAAU,EAAU,OAAW,kBAAU,UAAW,kBAAW,UAChG,GAAa,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,iBAAU,MAAO,iBAAU,QAAU,SAAS,cAAc,UACnI,kBAAW,SAAU,kBAAU,QAAO,GAAU,MAAQ,iBAAU,OAClE,kBAAW,UAAW,kBAAU,SAAQ,GAAU,OAAS,iBAAU,QAEzE,EAAK,AAAG,MAAI,MAAM,WAAa,GAAY,IAAc,CAAE,OAAQ,IAAe,MAEhF,CAAC,EAAI,MAAO,CAAE,OAAQ,KAAM,OAAQ,GACxC,EAAG,QACH,EAAG,UAAU,aAAc,EAAO,OAAO,YACrC,EAAO,OAAO,WAAa,GAAG,EAAG,UAAU,WAAY,EAAO,OAAO,UACrE,EAAO,OAAO,YAAc,GAAG,EAAG,UAAU,UAAW,EAAO,OAAO,WACrE,EAAO,OAAO,OAAS,GAAG,EAAG,UAAU,OAAQ,EAAO,OAAO,MAC7D,EAAO,OAAO,aAAe,GAAG,EAAG,UAAU,aAAc,EAAO,OAAO,YACzE,EAAO,OAAO,MAAQ,GAAG,EAAG,UAAU,MAAO,EAAO,OAAO,KAC3D,EAAO,OAAO,UAAU,EAAG,UAAU,YACrC,EAAO,OAAO,OAAO,EAAG,UAAU,SAClC,EAAO,OAAO,SAAS,EAAG,UAAU,WACpC,EAAO,OAAO,OAAO,EAAG,UAAU,SAClC,EAAO,OAAO,YAAY,EAAG,UAAU,cACvC,EAAO,OAAO,aAAa,EAAG,UAAU,eACxC,EAAO,OAAO,UAAU,EAAG,UAAU,YACrC,EAAO,OAAO,WAAa,GAAG,EAAG,UAAU,WAAY,EAAO,OAAO,UACzE,EAAG,MAAM,OA2BT,GAAY,EACR,GAAI,GAAK,MAIf,GAAI,CAAC,EAAQ,CACX,GAAI,GACJ,GAAI,EAAU,KAAM,CAClB,GAAM,GAAQ,CAAC,EAAU,OAAQ,EAAU,MAAO,GAClD,EAAS,AAAG,WAAS,EAAU,KAAM,EAAO,iBACnC,YAAqB,WAC9B,EAAS,AAAG,UAAU,AAAG,UAAQ,WAAW,GAAa,aAChD,EAAO,UAAY,SAAW,EAAO,UAAY,UAAW,CAErE,GAAM,GAAc,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UACtI,EAAW,MAAQ,EACnB,EAAW,OAAS,EACpB,GAAM,GAAU,EAAW,WAAW,MACtC,WAAS,UAAU,EAAW,EAAG,GACjC,EAAS,AAAG,UAAU,AAAG,UAAQ,WAAW,GAAc,SACrD,CAEL,GAAM,GAAc,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UACtI,EAAW,MAAQ,EACnB,EAAW,OAAS,EACpB,GAAM,GAAU,EAAW,WAAW,MACtC,WAAS,UAAU,EAAW,EAAG,GACjC,GAAM,GAAO,iBAAS,aAAa,EAAG,EAAG,EAAa,GACtD,EAAS,AAAG,UAAU,AAAG,UAAQ,WAAW,GAAQ,KAEtD,GAAI,EAAQ,CACV,GAAM,GAAS,AAAG,OAAK,EAAQ,WAC/B,EAAS,AAAG,aAAW,EAAQ,GAC/B,AAAG,UAAQ,GACX,AAAG,UAAQ,KAIjB,GAAM,GAAS,EAAO,OAAO,OAAS,EAAY,KAClD,MAAO,CAAE,SAAQ,UCpKnB,GAAI,GACA,GAAO,GAEX,kBAA2B,EAAqC,CAC9D,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,aAAa,YAC/E,AAAI,CAAC,GAAS,CAAC,EAAM,SAAa,EAAI,qBAAsB,EAAO,aAAa,WACvE,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGT,kBAA8B,EAAkH,CAxBhJ,QAyBE,GAAM,GAAQ,MAAM,SAAN,cAAc,MAAM,KAAM,EAClC,EAAS,MAAM,SAAN,cAAc,MAAM,KAAM,EAEzC,GADI,CAAC,EAAM,QACP,CAAC,GAAS,CAAC,EAAM,OAAO,GAAG,MAAO,MAAO,MAC7C,GAAM,GAAc,AAAG,QAAM,eAAe,EAAM,OAAQ,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,IAAK,IAC1G,EAAO,AAAG,MAAI,EAAa,KAC3B,EAAM,EAAM,QAAQ,GAG1B,AAAG,UAAQ,GACX,AAAG,UAAQ,GAEX,GAAM,GAAU,AAAG,UAAQ,EAAK,GAC5B,EACJ,GAAI,EAAQ,MAAM,KAAO,EAAG,CAE1B,GAAM,GAAU,EAAQ,UAClB,CAAC,EAAI,GAAM,AAAG,UAAQ,EAAS,GAC/B,EAAS,AAAG,aAAW,EAAI,GAC3B,EAAM,AAAG,aAAW,EAAQ,GAClC,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,AAAG,UAAQ,GAEX,GAAM,GAAO,AAAG,QAAM,cAAc,EAAK,CAAC,CAAC,EAAG,EAAG,GAAK,KAAO,CAAC,GAAI,CAAC,EAAO,IAG1E,EAAe,AAAG,UAAQ,EAAM,GAChC,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,AAAG,UAAQ,OAEX,GAAe,AAAG,QAAM,eAAe,EAAS,CAAC,EAAO,IAG1D,GAAI,MAAO,WAAa,YAAa,MAAO,GAAa,OAEzD,GAAM,GAAW,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAO,GAAU,SAAS,cAAc,UACvH,EAAQ,MAAQ,EAChB,EAAQ,OAAS,EACV,WAAS,KAAM,AAAG,WAAQ,SAAS,EAAc,GACxD,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,AAAG,UAAQ,GAGX,GAAM,GAAe,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAO,GAAU,SAAS,cAAc,UAC3H,EAAY,MAAQ,EACpB,EAAY,OAAS,EACrB,GAAM,GAAW,EAAY,WAAW,MACxC,EAAS,OAAS,WAClB,KAAM,GAAS,UAAU,EAAS,EAAG,GACrC,GAAM,GAAQ,EAAS,aAAa,EAAG,EAAG,EAAO,GAAQ,KAGnD,EAAY,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAO,GAAU,SAAS,cAAc,UACxH,EAAS,MAAQ,EACjB,EAAS,OAAS,EAClB,GAAM,GAAM,EAAS,WAAW,MAChC,MAAI,GAAM,QAAQ,KAAM,GAAI,UAAU,EAAM,OAAQ,EAAG,GAEvD,EAAI,yBAA2B,SAC/B,EAAI,OAAS,YACb,KAAM,GAAI,UAAU,EAAS,EAAG,GAChC,EAAI,yBAA2B,cAC/B,EAAI,OAAS,OAEb,EAAM,OAAS,EAER,EAGT,kBAA8B,EAAc,EAA+B,EAAqE,CAjGhJ,MAkGE,GAAI,GAAM,MAAO,MACjB,GAAO,GACF,GAAO,KAAM,IAAK,GACvB,GAAM,GAAM,AAAM,GAAQ,EAAO,GAC3B,EAAQ,KAAM,IAAQ,GAG5B,GAFA,AAAG,UAAQ,EAAI,QAEX,GAAc,EAAO,CACvB,GAAM,GAAM,AAAM,GAAQ,EAAY,GAChC,EAAK,EAAI,OACf,AAAG,UAAQ,EAAI,QACf,GAAM,GAAK,EAAI,OACT,EAAS,KAAG,WAAW,QAAd,cAAqB,aAAa,EAAG,EAAG,EAAG,MAAO,EAAG,QAAQ,KAEtE,EAAK,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAG,MAAO,EAAG,QAAU,SAAS,cAAc,UACvH,EAAE,MAAQ,EAAG,MACb,EAAE,OAAS,EAAG,OACd,GAAM,GAAM,EAAE,WAAW,MAEzB,EAAI,yBAA2B,OAC/B,EAAI,UAAU,EAAI,EAAG,EAAG,EAAE,MAAO,EAAE,QACnC,GAAM,GAAQ,EAAI,aAAa,EAAG,EAAG,EAAE,MAAO,EAAE,QAChD,OAAS,GAAI,EAAG,EAAI,EAAE,MAAQ,EAAE,OAAQ,IACtC,EAAM,KAAK,EAAI,EAAI,GAAO,KAAM,EAAM,EAAI,EAAI,IAAM,IAAQ,EAAM,KAAK,EAAI,EAAI,GAAO,EAAM,EAAI,EAAI,GAAK,IAAQ,EAAO,EAAI,EAAI,GAChI,EAAM,KAAK,EAAI,EAAI,GAAO,KAAM,EAAM,EAAI,EAAI,IAAM,IAAQ,EAAM,KAAK,EAAI,EAAI,GAAO,EAAM,EAAI,EAAI,GAAK,IAAQ,EAAO,EAAI,EAAI,GAChI,EAAM,KAAK,EAAI,EAAI,GAAO,KAAM,EAAM,EAAI,EAAI,IAAM,IAAQ,EAAM,KAAK,EAAI,EAAI,GAAO,EAAM,EAAI,EAAI,GAAK,IAAQ,EAAO,EAAI,EAAI,GAChI,EAAM,KAAK,EAAI,EAAI,GAAO,KAAM,EAAM,EAAI,EAAI,IAAM,IAAQ,EAAM,KAAK,EAAI,EAAI,GAAO,EAAM,EAAI,EAAI,GAAK,IAAQ,EAAO,EAAI,EAAI,GAElI,EAAI,aAAa,EAAO,EAAG,GAC3B,EAAI,OAAS,EAEf,UAAO,GACA,EAAI,OCjHb,kBAA2B,EAAU,CACnC,AAAI,EAAS,OAAO,MAClB,CACE,EAAS,OAAO,KAChB,EAAS,OAAO,QAChB,EAAS,OAAO,SAChB,EAAS,OAAO,QAChB,EAAS,OAAO,UAChB,EAAS,OAAO,cAChB,EAAS,OAAO,QAChB,EAAS,OAAO,QAChB,EAAS,OAAO,UAChB,EAAS,OAAO,QAChB,EAAS,OAAO,cAEd,KAAM,SAAQ,IAAI,CACpB,EAAS,OAAO,MAAS,GAAS,OAAO,KAAK,QAAU,AAAS,GAAK,EAAS,QAAU,MACzF,EAAS,OAAO,SAAa,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,QAAQ,QAAW,AAAQ,GAAK,EAAS,QAAU,MACrI,EAAS,OAAO,UAAa,GAAS,OAAO,KAAK,QAAU,AAAS,GAAK,EAAS,QAAU,MAC7F,EAAS,OAAO,SAAY,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,WAAa,AAAQ,GAAK,EAAS,QAAU,MACjJ,EAAS,OAAO,WAAc,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,aAAe,AAAU,GAAK,EAAS,QAAU,MACvJ,EAAS,OAAO,eAAkB,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,iBAAmB,AAAc,GAAK,EAAS,QAAU,MACnK,EAAS,OAAO,SAAY,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,WAAa,AAAQ,GAAK,EAAS,QAAU,MACjJ,EAAS,OAAO,SAAY,GAAS,OAAO,OAAO,SAAW,EAAS,OAAO,OAAO,UAAU,SAAS,WAAa,AAAQ,GAAK,EAAS,QAAU,MACrJ,EAAS,OAAO,WAAc,GAAS,OAAO,OAAO,SAAW,EAAS,OAAO,OAAO,UAAU,SAAS,aAAe,AAAU,GAAK,EAAS,QAAU,MAC3J,EAAS,OAAO,SAAa,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,YAAY,QAAW,AAAQ,GAAK,EAAS,QAAU,MACzI,EAAS,OAAO,cAAiB,GAAS,OAAO,aAAa,QAAU,AAAa,GAAK,EAAS,QAAU,QAI3G,GAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,MAAM,GAAS,OAAO,KAAO,KAAM,AAAS,IAAK,EAAS,SAC3G,EAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,QAAQ,SAAW,CAAC,EAAS,OAAO,SAAS,GAAS,OAAO,QAAU,KAAM,AAAQ,IAAK,EAAS,SACxJ,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,UAAU,GAAS,OAAO,SAAW,KAAM,AAAS,IAAK,EAAS,SACnH,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,YAAY,GAAS,OAAO,QAAU,KAAM,AAAQ,IAAK,EAAS,SACtK,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,WAAa,EAAS,OAAO,KAAK,UAAU,SAAS,cAAc,GAAS,OAAO,UAAY,KAAM,AAAU,IAAK,EAAS,SAC9K,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,eAAiB,EAAS,OAAO,KAAK,UAAU,SAAS,kBAAkB,GAAS,OAAO,cAAgB,KAAM,AAAU,IAAK,EAAS,SAC1L,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,YAAY,GAAS,OAAO,QAAU,KAAM,AAAQ,IAAK,EAAS,SACtK,EAAS,OAAO,OAAO,SAAW,CAAC,EAAS,OAAO,SAAW,EAAS,OAAO,OAAO,UAAU,SAAS,YAAY,GAAS,OAAO,QAAU,KAAM,AAAQ,IAAK,EAAS,SAC1K,EAAS,OAAO,OAAO,SAAW,CAAC,EAAS,OAAO,WAAa,EAAS,OAAO,OAAO,UAAU,SAAS,cAAc,GAAS,OAAO,UAAY,KAAM,AAAU,IAAK,EAAS,SAClL,EAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,YAAY,SAAW,CAAC,EAAS,OAAO,SAAS,GAAS,OAAO,QAAU,KAAM,AAAQ,IAAK,EAAS,SAC5J,EAAS,OAAO,aAAa,SAAW,CAAC,EAAS,OAAO,cAAc,GAAS,OAAO,aAAe,KAAM,AAAa,IAAK,EAAS,UCzC/I,GAAM,IAAgB,AAAC,GAAgD,CACrE,GAAM,GAAU,CAAC,EAAK,IAAQ,KAAK,MAAM,EAAI,GAAK,EAAI,GAAI,EAAI,GAAK,EAAI,IACvE,GAAI,CAAC,EAAK,YAAY,cAAmB,CAAC,EAAK,YAAY,YAAgB,MAAO,CAAE,QAAS,EAAG,SAAU,GAE1G,GAAM,GAAa,CAAC,EAAG,KACjB,EAAW,EAEX,EAAO,EAAK,KAAK,IAAI,GAAK,EAAK,KAAK,KAAK,GACzC,EAAa,EAAO,EAAK,KAAK,KAAO,EAAK,KAAK,KAC/C,EAAY,EACd,CAAE,GAAK,KAAK,KAAK,GAAK,EAAK,KAAK,IAAI,IAAM,EAAI,GAAK,KAAK,KAAK,GAAK,EAAK,KAAK,IAAI,IAAM,GACtF,CAAE,GAAK,KAAK,KAAK,GAAK,EAAK,KAAK,KAAK,IAAM,EAAI,GAAK,KAAK,KAAK,GAAK,EAAK,KAAK,KAAK,IAAM,GACtF,EAAU,EACZ,CAAC,EAAK,KAAK,KAAK,GAAK,EAAK,KAAK,IAAI,GAAI,EAAK,KAAK,IAAI,GAAK,EAAK,KAAK,IAAI,IACxE,CAAC,EAAK,KAAK,KAAK,GAAK,EAAK,KAAK,KAAK,GAAI,EAAK,KAAK,KAAK,GAAK,EAAK,KAAK,KAAK,IAEzE,EAAU,CACb,GAAU,GAAK,EAAW,IAAM,EAAQ,GAAK,EAAW,GACzD,EAAY,GAAW,GAAK,EAAU,IAAM,EAAQ,GAAK,EAAW,IAElE,EAAW,KAAK,KAAM,EAAQ,IAAM,EAAM,EAAQ,IAAM,GAC5D,SAAW,KAAK,IAAI,EAAU,EAAK,OAAO,GAAK,EAAG,EAAK,OAAO,GAAK,GAG5D,CAAE,QAFQ,GAAQ,CAAC,EAAG,GAAI,GAAY,KAAK,GAAK,GAAM,KAAK,GAEhD,aAGd,GAAqB,CAAC,EAAM,IAI7B,CAEH,GAAM,GAAY,AAAC,GAAM,CACvB,GAAM,GAAS,KAAK,KAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,IAC9D,SAAE,IAAM,EACR,EAAE,IAAM,EACR,EAAE,IAAM,EACD,GAEH,EAAa,CAAC,EAAG,IAAM,CAC3B,GAAM,GAAI,EAAE,GAAK,EAAE,GACb,EAAI,EAAE,GAAK,EAAE,GACb,EAAI,EAAE,GAAK,EAAE,GACnB,MAAO,CAAC,EAAG,EAAG,IAEV,EAAe,CAAC,EAAG,IAAM,CAC7B,GAAM,GAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAC3B,EAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAC3B,EAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GACjC,MAAO,CAAC,EAAG,EAAG,IAGV,EAA6B,AAAC,GAAM,CAExC,GAAM,CAAC,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,GAAO,EAClD,EACA,EACA,EACJ,MAAI,GAAM,EACR,AAAI,EAAM,GACR,GAAS,KAAK,KAAK,GACnB,EAAS,KAAK,MAAM,CAAC,EAAK,GAC1B,EAAS,KAAK,MAAM,CAAC,EAAK,IAE1B,GAAS,CAAC,KAAK,GAAK,EACpB,EAAS,CAAC,KAAK,MAAM,EAAK,GAC1B,EAAS,GAGX,GAAS,KAAK,GAAK,EACnB,EAAS,KAAK,MAAM,EAAK,GACzB,EAAS,GAEP,MAAM,IAAS,GAAS,GACxB,MAAM,IAAS,GAAS,GACxB,MAAM,IAAS,GAAS,GACrB,CAAE,MAAO,EAAI,CAAC,EAAQ,IAAK,EAAI,CAAC,EAAQ,KAAM,EAAI,CAAC,IAItD,EAAmB,AAAC,GAAS,CACjC,GAAM,GAAU,CAAC,EAAI,EAAI,EAAI,IAAO,KAAK,MAAM,EAAK,EAAI,EAAK,GAW7D,MATc,CAGZ,MAAO,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,IAEjE,IAAK,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,IAE/D,KAAM,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,MAM9D,EAAO,EAAK,QAClB,GAAI,CAAC,GAAQ,EAAK,OAAS,IAAK,MAAO,CAAE,MAAO,CAAE,MAAO,EAAG,IAAK,EAAG,KAAM,GAAK,OAAQ,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,GAAI,KAAM,CAAE,QAAS,EAAG,SAAU,IAElJ,GAAM,GAAO,KAAK,IAAI,EAAK,OAAO,GAAK,EAAU,GAAI,EAAK,OAAO,GAAK,EAAU,IAAM,IAEhF,EAAM,CAAC,EAAK,IAAK,EAAK,KAAM,EAAK,KAAM,EAAK,MAAM,IAAI,AAAC,GAAO,CAElE,EAAG,GAAK,EAAU,GAAK,EACvB,EAAG,GAAK,EAAU,GAAK,EACvB,EAAG,KAGC,EAAS,EAAU,EAAW,EAAI,GAAI,EAAI,KAC5C,EAAS,EAAU,EAAW,EAAI,GAAI,EAAI,KACxC,EAAS,EAAU,EAAa,EAAQ,IAE9C,EAAS,EAAa,EAAQ,GAI9B,GAAM,GAAmF,CACvF,EAAO,GAAI,EAAO,GAAI,EAAO,GAC7B,EAAO,GAAI,EAAO,GAAI,EAAO,GAC7B,EAAO,GAAI,EAAO,GAAI,EAAO,IAEzB,EAAQ,EAA2B,GAInC,EAAO,EAAK,SAAW,IAAM,GAAc,GAAQ,CAAE,QAAS,EAAG,SAAU,GAEjF,MAAO,CAAE,QAAO,SAAQ,SAGb,GAAa,MAAO,EAAgC,IAAmC,CAnJpG,gBAsJE,GAAI,GACA,EACA,EACA,EACA,EACA,EACA,EACE,EAAuB,GAC7B,EAAO,MAAQ,WACf,EAAY,IACZ,GAAM,GAAQ,KAAM,AAAS,IAAQ,EAAO,EAAO,QAEnD,GADA,EAAO,YAAY,KAAO,KAAK,MAAM,IAAQ,GACzC,CAAC,EAAM,OAAS,EAAM,MAAM,SAAW,EAAG,MAAO,GACrD,GAAI,CAAC,EAAO,MAAO,GAEnB,OAAS,GAAI,EAAG,EAAI,EAAM,OAAQ,IAAK,CAKrC,GAJA,EAAO,QAAQ,YAIX,CAAC,EAAM,GAAG,QAAU,EAAM,GAAG,OAAO,mBAAuB,CAC7D,EAAI,2BAA4B,EAAM,GAAG,QACzC,SAGF,GAAM,GAAW,GAAmB,EAAM,GAAI,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,KAG3E,EAAO,QAAQ,kBACf,AAAI,EAAO,OAAO,MAChB,EAAa,EAAO,OAAO,KAAK,QAAQ,QAAU,AAAQ,GAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,IAAK,EAAO,OAAQ,EAAG,EAAM,QAAU,GAEtI,GAAO,MAAQ,cACf,EAAY,IACZ,EAAa,EAAO,OAAO,KAAK,QAAQ,QAAU,KAAM,AAAQ,IAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,IAAK,EAAO,OAAQ,EAAG,EAAM,QAAU,GAC5I,EAAO,YAAY,QAAU,KAAK,MAAM,IAAQ,IAElD,EAAO,QAAQ,gBAiBf,EAAO,QAAQ,sBACf,AAAI,EAAO,OAAO,MAChB,EAAU,EAAO,OAAO,KAAK,YAAY,QAAU,AAAQ,GAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,IAAK,EAAO,OAAQ,EAAG,EAAM,QAAU,GAEvI,GAAO,MAAQ,kBACf,EAAY,IACZ,EAAU,EAAO,OAAO,KAAK,YAAY,QAAU,KAAM,AAAQ,IAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,IAAK,EAAO,OAAQ,EAAG,EAAM,QAAU,GAC7I,EAAO,YAAY,UAAY,KAAK,MAAM,IAAQ,IAEpD,EAAO,QAAQ,oBAGX,EAAO,OAAO,OAChB,EAAC,EAAQ,EAAW,EAAY,EAAc,EAAS,GAAW,KAAM,SAAQ,IAAI,CAAC,EAAQ,EAAW,EAAY,EAAc,EAAS,KAG7I,EAAO,QAAQ,gBAIX,CAAC,EAAO,OAAO,KAAK,KAAK,SAAW,SAAM,KAAN,cAAU,cAAV,cAAuB,cAAe,SAAM,KAAN,cAAU,cAAV,cAAuB,eACnG,OAAO,GAAM,GAAG,YAAY,YAC5B,MAAO,GAAM,GAAG,YAAY,cAE9B,GAAM,GAAY,MAAM,GAAG,cAAT,cAAsB,cAAe,MAAM,GAAG,cAAT,cAAsB,cAEzE,KAAK,IAAI,KAAK,IAAI,EAAM,GAAG,YAAY,YAAY,GAAG,GAAK,EAAM,GAAG,YAAY,YAAY,GAAG,IAAK,KAAK,IAAI,EAAM,GAAG,YAAY,aAAa,GAAG,GAAK,EAAM,GAAG,YAAY,aAAa,GAAG,KAAO,EAAM,MAAM,GAC/M,EAGE,EAAS,EAAO,OAAO,KAAK,SAAS,OAAS,AAAG,UAAQ,EAAM,GAAG,QAAU,KAElF,AAAG,UAAQ,EAAM,GAAG,QAEhB,EAAM,GAAG,QAAQ,MAAO,GAAM,GAAG,OAErC,EAAQ,KAAK,IACR,EAAM,GACT,GAAI,EACJ,IAAK,EAAQ,IACb,OAAQ,EAAQ,OAChB,YAAa,EAAQ,YACrB,UAAW,EAAQ,WACnB,QAAS,EACT,KAAM,IAAa,EAAI,KAAK,MAAM,IAAM,EAAW,MAAQ,IAAM,EACjE,WACA,WAGF,EAAO,QAAQ,YAEjB,SAAO,QAAQ,iBACX,EAAO,OAAO,OACZ,GAAO,YAAY,MAAM,MAAO,GAAO,YAAY,KACnD,EAAO,YAAY,KAAK,MAAO,GAAO,YAAY,IAClD,EAAO,YAAY,QAAQ,MAAO,GAAO,YAAY,OACrD,EAAO,YAAY,SAAS,MAAO,GAAO,YAAY,SAErD,GChOF,GAAM,IAAO,AAAC,GAAmB,CACtC,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAA0D,GAChE,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CAEnC,GAAM,GAAY,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,aACrD,EAAa,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,cACtD,EAAO,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,QACtD,AAAI,GAAQ,GAAa,GAAe,EAAU,SAAS,EAAI,EAAK,SAAS,GAAO,EAAW,SAAS,EAAI,EAAK,SAAS,EAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,cAC3J,AAAI,GAAQ,GAAc,EAAU,SAAS,EAAI,EAAK,SAAS,EAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,oBACjG,GAAQ,GAAe,EAAW,SAAS,EAAI,EAAK,SAAS,GAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,qBAG5G,GAAM,GAAe,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,gBACxD,EAAgB,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,iBAC/D,AAAI,GAAgB,GAAe,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,WAAY,EAAa,SAAS,EAAI,EAAc,SAAS,EAAK,OAAS,YAElJ,MAAO,IAGI,GAAO,AAAC,GAAmB,CACtC,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAA0D,GAChE,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,GAAI,EAAI,GAAG,MAAQ,EAAI,GAAG,KAAK,OAAS,EAAG,CACzC,GAAM,GAAY,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,KAAK,GACxD,AAAI,KAAK,IAAI,GAAa,GAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,kBAC3D,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,UAAU,EAAY,EAAI,OAAS,YAEtE,AADa,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IACxG,IAAK,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAElD,AADc,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IACxG,IAAK,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,oBACvD,GAAM,GAAY,KAAK,IAAI,IAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,IAAI,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,KAAK,KACzI,AAAI,EAAY,IAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,SAAS,KAAK,MAAM,aAC1E,GAAM,GAAY,EAAI,GAAG,KAAK,KAAK,GACnC,AAAI,KAAK,IAAI,GAAa,IAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,QAAQ,EAAY,EAAI,KAAO,WAGnG,MAAO,IAGI,GAAO,AAAC,GAAmB,CACtC,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAA0D,GAChE,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAI,CAAC,EAAI,GAAG,aAAe,CAAC,EAAI,GAAG,YAAY,aAAe,CAAC,EAAI,GAAG,YAAY,aAAc,SAChG,GAAM,GAAY,EAAI,GAAG,YAAY,YAAY,GAAG,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,GACrF,EAAY,EAAI,GAAG,YAAY,YAAY,GAAG,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,GACrF,EAAW,KAAK,IAAI,EAAY,GAEhC,EAAa,EAAI,GAAG,YAAY,aAAa,GAAG,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,GACxF,EAAa,EAAI,GAAG,YAAY,aAAa,GAAG,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,GACxF,EAAY,KAAK,IAAI,EAAa,GAEpC,EAAS,GAEb,AAAI,AADe,KAAK,IAAI,EAAW,GAAa,KAAK,IAAI,EAAU,GACtD,KACf,GAAS,GACT,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAGpC,GAAM,GAAmB,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,IAAM,EAAI,GAAG,IAAI,GACrG,EAAkB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,IAAM,EAAI,GAAG,IAAI,GAC1G,AAAI,GAAkB,KAAQ,EAAmB,MAAM,GAAS,IAC5D,EAAkB,KAAM,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,kBAC1D,EAAmB,KAAM,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,iBAE/D,GAAM,GAAmB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,IAAM,EAAI,GAAG,IAAI,GACtG,EAAkB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,IAAM,EAAI,GAAG,IAAI,GAC1G,AAAI,GAAkB,KAAQ,EAAmB,KAAQ,EAAkB,MAAS,EAAmB,OAAO,GAAS,IACnH,GAAkB,KAAQ,EAAmB,MAAM,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,iBACrF,GAAkB,MAAS,EAAmB,OAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,eAGvF,GAAQ,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAEhD,MAAO,IAGI,GAAO,AAAC,GAAmB,CACtC,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAA0D,GAChE,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAM,GAAqD,GAC3D,OAAW,CAAC,EAAQ,IAAQ,QAAO,QAAQ,EAAI,GAAG,aAChD,AAAI,IAAW,YAAc,MAAM,QAAQ,IAAM,EAAQ,KAAK,CAAE,KAAM,EAAO,cAAe,SAAU,EAAI,KAE5G,GAAI,GAAW,EAAQ,OAAS,EAAG,CACjC,GAAM,GAAU,EAAQ,OAAO,CAAC,EAAM,IAAO,EAAK,SAAS,GAAK,EAAE,SAAS,GAAK,EAAO,GACvF,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,GAAG,EAAQ,iBAC7C,GAAM,GAAU,EAAQ,OAAO,CAAC,EAAM,IAAO,EAAK,SAAS,GAAK,EAAE,SAAS,GAAK,EAAO,GACvF,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,GAAG,EAAQ,aAGjD,MAAO,ICpIT,0IAgDO,GAAM,IAAuB,CAClC,MAAe,2BACf,WAAoB,yBACpB,YAAqB,QACrB,KAAc,6BACd,WAAoB,GACpB,UAAmB,EACnB,UAAmB,EACnB,UAAmB,EACnB,WAAqB,GACrB,WAAqB,GACrB,UAAoB,GACpB,aAAuB,GACvB,SAAmB,GACnB,aAAuB,GACvB,SAAmB,GACnB,UAAoB,GACpB,eAAyB,IAGrB,GAAU,AAAC,GAAU,KAAK,MAAO,EAAQ,IAAO,KAAK,IAE3D,YAAe,EAAK,EAAG,EAAG,EAAI,EAAG,EAAc,CAC7C,EAAI,UAAY,EAAa,UAAY,EAAI,QAAQ,MAAS,EAAI,MAAO,MAAS,EAAI,eAAkB,EAAa,MACrH,EAAI,YACJ,EAAI,IAAI,EAAG,EAAG,EAAa,UAAW,EAAG,EAAI,KAAK,IAClD,EAAI,OAGN,YAAc,EAAK,EAAG,EAAG,EAAO,EAAQ,EAAc,CAEpD,GADA,EAAI,YACA,EAAa,UAAW,CAC1B,GAAM,GAAM,GAAI,EAAI,GAAS,EACvB,EAAM,GAAI,EAAI,GAAU,EAC9B,EAAI,QAAQ,EAAI,EAAI,EAAQ,EAAG,EAAS,EAAG,EAAG,EAAG,EAAI,KAAK,QAE1D,GAAI,UAAY,EAAa,UAC7B,EAAI,OAAO,EAAI,EAAa,UAAW,GACvC,EAAI,OAAO,EAAI,EAAQ,EAAa,UAAW,GAC/C,EAAI,iBAAiB,EAAI,EAAO,EAAG,EAAI,EAAO,EAAI,EAAa,WAC/D,EAAI,OAAO,EAAI,EAAO,EAAI,EAAS,EAAa,WAChD,EAAI,iBAAiB,EAAI,EAAO,EAAI,EAAQ,EAAI,EAAQ,EAAa,UAAW,EAAI,GACpF,EAAI,OAAO,EAAI,EAAa,UAAW,EAAI,GAC3C,EAAI,iBAAiB,EAAG,EAAI,EAAQ,EAAG,EAAI,EAAS,EAAa,WACjE,EAAI,OAAO,EAAG,EAAI,EAAa,WAC/B,EAAI,iBAAiB,EAAG,EAAG,EAAI,EAAa,UAAW,GACvD,EAAI,YAEN,EAAI,SAGN,YAAe,EAAK,EAAsC,GAAI,EAAc,CAC1E,GAAI,MAAW,QAAa,EAAO,SAAW,GAC9C,GAAI,YACJ,EAAI,OAAO,EAAO,GAAG,GAAI,EAAO,GAAG,IACnC,OAAW,KAAM,GAAQ,CACvB,GAAM,GAAI,EAAG,IAAM,EACnB,EAAI,YAAc,EAAa,UAAY,EAAI,QAAQ,MAAS,EAAI,MAAO,MAAS,EAAI,eAAkB,EAAa,MACvH,EAAI,UAAY,EAAa,UAAY,EAAI,QAAQ,MAAS,EAAI,MAAO,MAAS,EAAI,eAAkB,EAAa,MACrH,EAAI,OAAO,EAAG,GAAI,KAAK,MAAM,EAAG,KAElC,EAAI,SACA,EAAa,cACf,GAAI,YACJ,EAAI,SAIR,YAAgB,EAAK,EAAsC,GAAI,EAAc,CAC3E,GAAI,MAAW,QAAa,EAAO,SAAW,GAC9C,IAAI,CAAC,EAAa,WAAa,EAAO,QAAU,EAAG,CACjD,GAAM,EAAK,EAAQ,GACnB,OAEF,EAAI,OAAO,EAAO,GAAG,GAAI,EAAO,GAAG,IACnC,OAAS,GAAI,EAAG,EAAI,EAAO,OAAS,EAAG,IAAK,CAC1C,GAAM,GAAM,GAAO,GAAG,GAAK,EAAO,EAAI,GAAG,IAAM,EACzC,EAAM,GAAO,GAAG,GAAK,EAAO,EAAI,GAAG,IAAM,EAC/C,EAAI,iBAAiB,EAAO,GAAG,GAAI,EAAO,GAAG,GAAI,EAAI,GAEvD,EAAI,iBAAiB,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,IACzI,EAAI,SACA,EAAa,cACf,GAAI,YACJ,EAAI,SAIR,kBAA8B,EAA6B,EAAwB,EAA2B,CAC5G,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,CAAC,EAAK,OACV,EAAI,KAAO,EAAa,KACxB,EAAI,UAAY,EAAa,MAC7B,GAAI,GAAI,EACR,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IAAK,CACtC,GAAI,GAAmB,GACnB,EAAkB,GAEtB,GADA,CAAC,EAAO,GAAQ,OAAO,QAAQ,EAAO,IACjC,EAAK,OAAS,GAAQ,EAAK,GAAc,OAAS,EAAI,CACzD,GAAM,GAAM,EAAM,GAAe,EAAI,IAAI,EAAM,KAAO,GAChD,EAAQ,GAAG,EAAM,MAAM,MAAQ,EAAK,KAC1C,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAG,EAAK,EAAI,EAAa,aAE/C,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAG,EAAK,EAAI,EAAa,YAC7C,GAAK,IAKX,kBAA2B,EAA6B,EAAqB,EAA2B,CAnKxG,YAoKE,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,OAAW,KAAK,GAAQ,CACtB,EAAI,KAAO,EAAa,KACxB,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MACzB,EAAa,WAAW,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,GAE9E,GAAM,GAAkB,GAKxB,GAJA,EAAO,KAAK,SAAS,KAAK,MAAM,IAAM,EAAE,WACpC,EAAE,aAAa,EAAO,KAAK,GAAG,EAAE,QAAU,MAAM,KAAK,MAAM,IAAM,EAAE,iBACnE,EAAE,KAAK,EAAO,KAAK,QAAQ,EAAE,KAAO,MACpC,EAAE,MAAM,EAAO,KAAK,aAAa,EAAE,QACnC,EAAE,SAAW,EAAE,QAAQ,OAAS,EAAG,CACrC,GAAM,GAAU,EAAE,QAAQ,IAAI,AAAC,GAAM,GAAG,KAAK,MAAM,IAAM,EAAE,WAAW,EAAE,WACxE,AAAI,EAAQ,OAAS,GAAG,GAAQ,OAAS,GACzC,EAAO,KAAK,EAAQ,KAAK,MAE3B,AAAI,EAAE,UAAY,EAAE,SAAS,OAAS,EAAE,SAAS,MAC3C,GAAE,SAAS,MAAM,MAAM,EAAO,KAAK,SAAS,GAAQ,EAAE,SAAS,MAAM,iBAAc,GAAQ,EAAE,SAAS,MAAM,kBAAe,GAAQ,EAAE,SAAS,MAAM,cACpJ,EAAE,SAAS,KAAK,SAAS,EAAO,KAAK,SAAS,GAAQ,EAAE,SAAS,KAAK,iBAExE,EAAO,SAAW,GAAG,EAAO,KAAK,QACrC,EAAI,UAAY,EAAa,MAC7B,OAAS,GAAI,EAAO,OAAS,EAAG,GAAK,EAAG,IAAK,CAC3C,GAAM,GAAI,KAAK,IAAI,EAAE,IAAI,GAAI,GACvB,EAAI,EAAI,EAAa,WAAa,EAAE,IAAI,GAC9C,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,GAAI,EAAI,EAAG,EAAI,KAErC,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,GAAI,EAAI,EAAG,EAAI,IAGrC,GADA,EAAI,UAAY,EACZ,EAAE,MAAQ,EAAE,KAAK,OAAS,EAAG,CAC/B,GAAI,EAAa,WACf,OAAW,KAAM,GAAE,KAAM,GAAM,EAAK,EAAG,GAAI,EAAG,GAAI,EAAG,GAAI,GAG3D,GAAI,EAAa,aAAc,CAC7B,EAAI,UAAY,EAChB,OAAS,GAAI,EAAG,EAAI,GAAc,OAAS,EAAG,IAAK,CACjD,GAAM,GAAS,CACb,GAAc,EAAI,EAAI,GACtB,GAAc,EAAI,EAAI,GACtB,GAAc,EAAI,EAAI,IACtB,IAAI,AAAC,GAAU,EAAE,KAAK,IACxB,GAAM,EAAK,EAAQ,GAGrB,GAAI,EAAE,aAAe,EAAE,YAAY,YAAgB,CACjD,EAAI,YAAc,EAAa,SAAW,2BAA6B,EAAa,MACpF,EAAI,YACJ,GAAM,GAAQ,KAAK,IAAI,EAAE,YAAY,YAAe,GAAG,GAAK,EAAE,YAAY,YAAe,GAAG,IAAM,EAC5F,EAAQ,KAAK,IAAI,EAAE,YAAY,YAAe,GAAG,GAAK,EAAE,YAAY,YAAe,GAAG,IAAM,EAClG,EAAI,QAAQ,EAAE,YAAY,YAAe,GAAG,GAAI,EAAE,YAAY,YAAe,GAAG,GAAI,EAAO,EAAO,EAAG,EAAG,EAAI,KAAK,IACjH,EAAI,SACA,EAAa,cACf,GAAI,UAAY,EAAa,SAAW,2BAA6B,EAAa,MAClF,EAAI,QAGR,GAAI,EAAE,aAAe,EAAE,YAAY,aAAiB,CAClD,EAAI,YAAc,EAAa,SAAW,2BAA6B,EAAa,MACpF,EAAI,YACJ,GAAM,GAAQ,KAAK,IAAI,EAAE,YAAY,aAAgB,GAAG,GAAK,EAAE,YAAY,aAAgB,GAAG,IAAM,EAC9F,EAAQ,KAAK,IAAI,EAAE,YAAY,aAAgB,GAAG,GAAK,EAAE,YAAY,aAAgB,GAAG,IAAM,EACpG,EAAI,QAAQ,EAAE,YAAY,aAAgB,GAAG,GAAI,EAAE,YAAY,aAAgB,GAAG,GAAI,EAAO,EAAO,EAAG,EAAG,EAAI,KAAK,IACnH,EAAI,SACA,EAAa,cACf,GAAI,UAAY,EAAa,SAAW,2BAA6B,EAAa,MAClF,EAAI,QAGR,GAAI,EAAa,UAAY,SAAE,WAAF,cAAY,OAAZ,cAAkB,WAAY,SAAE,WAAF,cAAY,OAAZ,cAAkB,UAAW,EAAE,YAAY,aAAkB,EAAE,YAAY,cAAmB,EAAE,YAAY,YAAe,IAAM,EAAE,YAAY,aAAgB,GAAI,CAC5N,EAAI,YAAc,OAClB,EAAI,YAEJ,GAAM,GAAW,CACf,EAAE,YAAY,YAAe,GAAG,GAAM,KAAK,IAAI,EAAE,SAAS,KAAK,SAAW,EAAE,SAAS,KAAK,SAAW,EAAE,IAAI,GAC3G,EAAE,YAAY,YAAe,GAAG,GAAM,KAAK,IAAI,EAAE,SAAS,KAAK,SAAW,EAAE,SAAS,KAAK,SAAW,EAAE,IAAI,IAE7G,EAAI,OAAO,EAAE,YAAY,YAAe,GAAG,GAAI,EAAE,YAAY,YAAe,GAAG,IAC/E,EAAI,OAAO,EAAS,GAAI,EAAS,IAEjC,GAAM,GAAY,CAChB,EAAE,YAAY,aAAgB,GAAG,GAAM,KAAK,IAAI,EAAE,SAAS,KAAK,SAAW,EAAE,SAAS,KAAK,SAAW,EAAE,IAAI,GAC5G,EAAE,YAAY,aAAgB,GAAG,GAAM,KAAK,IAAI,EAAE,SAAS,KAAK,SAAW,EAAE,SAAS,KAAK,SAAW,EAAE,IAAI,IAE9G,EAAI,OAAO,EAAE,YAAY,aAAgB,GAAG,GAAI,EAAE,YAAY,aAAgB,GAAG,IACjF,EAAI,OAAO,EAAU,GAAI,EAAU,IAEnC,EAAI,aAOd,kBAA2B,EAA6B,EAAqB,EAA2B,CA3QxG,MA4QE,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IAAK,CAgBtC,GAfA,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,EAAI,UAAY,EAAa,UAC7B,EAAI,KAAO,EAAa,KACpB,EAAa,WAAa,EAAO,GAAG,KAAO,MAAO,GAAG,MAAV,cAAe,UAAW,GACvE,IAAK,EAAK,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,GAC9E,EAAa,YACX,GAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,QAAQ,IAAM,EAAO,GAAG,SAAU,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,KAErI,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,QAAQ,IAAM,EAAO,GAAG,SAAU,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,MAGnI,EAAa,WACf,OAAS,GAAK,EAAG,EAAK,EAAO,GAAG,UAAU,OAAQ,IAChD,EAAI,UAAY,EAAa,UAAY,EAAO,GAAG,UAAU,GAAI,SAAS,GAAK,QAAQ,MAAS,EAAK,GAAO,GAAG,UAAU,GAAI,SAAS,IAAM,OAAQ,MAAS,EAAK,GAAO,GAAG,UAAU,GAAI,SAAS,IAAM,gBAAmB,EAAa,MACzO,GAAM,EAAK,EAAO,GAAG,UAAU,GAAI,SAAS,GAAI,EAAO,GAAG,UAAU,GAAI,SAAS,GAAI,EAAG,GAG5F,GAAI,EAAa,YACf,GAAI,KAAO,EAAa,KACpB,EAAO,GAAG,WACZ,OAAW,KAAM,GAAO,GAAG,UACzB,EAAI,UAAY,EAAa,UAAY,EAAG,SAAS,GAAK,QAAQ,MAAS,EAAI,EAAG,SAAS,OAAQ,MAAS,EAAI,EAAG,SAAS,gBAAmB,EAAa,MAC5J,EAAI,SAAS,GAAG,EAAG,QAAQ,KAAK,MAAM,IAAM,EAAG,UAAW,EAAG,SAAS,GAAK,EAAG,EAAG,SAAS,GAAK,GAIrG,GAAI,EAAa,cAAgB,EAAO,GAAG,UAAW,CACpD,GAAI,GACE,EAAsC,GAE5C,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,WAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACnD,EAAO,SAAW,GAAG,GAAM,EAAK,EAAQ,GAE5C,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,WAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,GAAO,EAAK,EAAQ,MAM1B,kBAA2B,EAA6B,EAAqB,EAA2B,CACtG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KACxB,OAAW,KAAK,GAAQ,CAetB,GAdI,EAAa,WACf,GAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,GAC9C,EAAa,YACX,GAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,OAAQ,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,KAEnF,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,OAAQ,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,KAEnF,EAAI,UAEF,EAAa,YACX,EAAE,WAAa,EAAE,UAAU,OAAS,EACtC,OAAW,KAAM,GAAE,UACjB,EAAI,UAAY,EAAa,SAAW,QAAQ,MAAS,EAAI,EAAG,OAAQ,MAAS,EAAI,EAAG,gBAAmB,EAAa,MACxH,GAAM,EAAK,EAAG,GAAI,EAAG,GAAI,EAAG,GAIlC,GAAI,EAAa,WAAY,CAC3B,GAAM,GAAe,CAAC,EAAM,IAAU,CACpC,EAAI,UAAY,EAAa,SAAW,QAAQ,MAAS,EAAI,EAAK,EAAK,OAAS,GAAG,OAAQ,MAAS,EAAI,EAAK,EAAK,OAAS,GAAG,gBAAmB,EAAa,MAC9J,EAAI,SAAS,EAAO,EAAK,EAAK,OAAS,GAAG,GAAK,EAAG,EAAK,EAAK,OAAS,GAAG,GAAK,IAE/E,EAAI,KAAO,EAAa,KACxB,EAAa,EAAE,YAAY,YAAgB,SAC3C,EAAa,EAAE,YAAY,aAAiB,UAC5C,EAAa,EAAE,YAAY,WAAe,QAC1C,EAAa,EAAE,YAAY,MAAU,SACrC,EAAa,EAAE,YAAY,MAAU,SACrC,EAAa,EAAE,YAAY,SAAa,QAE1C,GAAI,EAAa,aAAc,CAC7B,GAAM,GAAc,AAAC,GAAS,CAC5B,GAAI,EAAC,EACL,OAAS,GAAI,EAAG,EAAI,EAAK,OAAQ,IAC/B,EAAI,YACJ,EAAI,YAAc,EAAa,SAAW,QAAQ,MAAS,EAAI,EAAK,GAAG,OAAQ,MAAS,EAAI,EAAK,GAAG,gBAAmB,EAAa,MACpI,EAAI,OAAO,EAAK,EAAI,EAAI,EAAI,EAAI,GAAG,GAAI,EAAK,EAAI,EAAI,EAAI,EAAI,GAAG,IAC/D,EAAI,OAAO,EAAK,GAAG,GAAI,EAAK,GAAG,IAC/B,EAAI,UAGR,EAAI,UAAY,EAAa,UAC7B,EAAY,EAAE,YAAY,aAC1B,EAAY,EAAE,YAAY,cAC1B,EAAY,EAAE,YAAY,YAC1B,EAAY,EAAE,YAAY,OAC1B,EAAY,EAAE,YAAY,UAMhC,kBAA6B,EAA6B,EAAqB,EAA2B,CACxG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KACxB,OAAW,KAAK,GACd,GAAI,EAAa,UAAW,CAI1B,GAHA,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,GAC9C,EAAa,WAAY,CAC3B,GAAM,GAAQ,GAAG,EAAE,SAAS,KAAK,MAAM,IAAM,EAAE,UAC/C,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,KAElF,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,IAElF,EAAI,WAKV,kBAA6B,EAA6B,EAAuB,EAA2B,CAC1G,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KAExB,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IACjC,GAAI,EAAa,UAAW,CAI1B,GAHA,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,GAAK,EAAK,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,GAC9E,EAAa,WAAY,CAC3B,GAAM,GAAQ,WAAW,IACzB,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,KAE1G,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,IAE1G,EAAI,WAKV,kBAA6B,EAA6B,EAA8B,CAEtF,GADI,CAAC,GAAY,CAAC,GACd,CAAE,aAAoB,qBAAsB,CAAE,aAAqB,oBAAoB,OAC3F,GAAM,GAAS,EAAS,WAAW,MACnC,WAAQ,UAAU,EAAU,EAAG,GAGjC,kBAA0B,EAA6B,EAAgB,EAA2B,CAChG,GAAM,GAAY,IACZ,EAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,MAAO,MAErD,GAAM,GAAU,QAAQ,IAAI,CAC1B,GAAK,EAAU,EAAO,KAAM,GAC5B,GAAK,EAAU,EAAO,KAAM,GAC5B,GAAK,EAAU,EAAO,KAAM,GAC5B,GAAO,EAAU,EAAO,OAAQ,GAEhC,GAAQ,EAAU,EAAO,QAAS,KAepC,SAAO,YAAY,KAAO,KAAK,MAAM,IAAQ,GACtC,ECjhBF,YAAc,EAAoB,EAAqB,EAAoB,EAA0B,EAAiD,CAN7J,oCAOE,GAAI,GAAK,EACH,EAAyB,GAC/B,OAAW,KAAQ,GAAO,CACxB,GAAM,GAAiB,CAAE,GAAI,IAAM,OAAM,KAAM,KAAM,MAAO,CAAE,KAAM,KAAM,MAAO,MAAQ,SAAU,GAAI,IAAK,CAAC,EAAG,EAAG,EAAG,IACtH,OAAW,KAAQ,GACjB,AAAI,EAAK,IAAI,GAAK,EAAK,IAAI,IACtB,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAK,IAAI,IACrC,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAK,IAAI,IACrC,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAK,IAAI,IACtD,GAAO,KAAO,GAGlB,GAAI,EAAO,KACT,OAAW,KAAQ,GACjB,AAAI,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAC3C,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IACjE,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAC5C,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAChE,EAAO,OAAO,GAAO,MAAM,KAAO,GAEpC,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAClD,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAC9B,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAC5C,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAChE,EAAO,OAAO,GAAO,MAAM,MAAQ,GAI7C,OAAW,KAAW,GACpB,AAAI,EAAQ,OAAY,QAAa,EAAQ,OAAY,EAAK,GAAI,KAAO,WAAP,QAAiB,KAAK,GACnF,AAAI,EAAQ,OAAY,QAAa,EAAQ,OAAY,EAAK,GAAI,KAAO,WAAP,QAAiB,KAAK,GACxF,AAAI,EAAQ,OAAY,QAAa,EAAQ,OAAY,MAAO,OAAP,cAAa,IAAI,KAAO,WAAP,QAAiB,KAAK,GAChG,AAAI,EAAQ,OAAY,QAAa,EAAQ,OAAY,SAAO,QAAP,cAAc,OAAd,cAAoB,IAAI,KAAO,WAAP,QAAiB,KAAK,GACnG,EAAQ,OAAY,QAAa,EAAQ,OAAY,SAAO,QAAP,cAAc,QAAd,cAAqB,KAAI,MAAO,WAAP,QAAiB,KAAK,IAI/G,GAAM,GAAc,GACd,EAAc,GACd,EAAY,AAAC,GAAsD,CACvE,AAAI,GAAO,EAAI,SAAW,GACxB,GAAE,KAAK,EAAI,GAAI,EAAI,GAAK,EAAI,IAC5B,EAAE,KAAK,EAAI,GAAI,EAAI,GAAK,EAAI,MAGhC,EAAU,KAAO,OAAP,cAAa,KACvB,EAAU,KAAO,OAAP,cAAa,KACvB,EAAU,QAAO,QAAP,cAAc,OAAd,cAAoB,KAC9B,EAAU,QAAO,QAAP,cAAc,QAAd,cAAqB,KAC/B,GAAM,GAAO,KAAK,IAAI,GAAG,GACnB,EAAO,KAAK,IAAI,GAAG,GACzB,EAAO,IAAM,CAAC,EAAM,EAAM,KAAK,IAAI,GAAG,GAAK,EAAM,KAAK,IAAI,GAAG,GAAK,GAG9D,GAAS,EAAM,IAAM,EAAM,IAAI,GAAO,OAAS,CAAC,EAAO,IAAI,GAAK,EAAM,GAAI,EAAO,IAAI,GAAK,EAAM,GAAI,EAAO,IAAI,GAAK,EAAM,GAAI,EAAO,IAAI,GAAK,EAAM,KAExJ,EAAQ,KAAK,GAEf,MAAO,GC3DT,GAAM,GAAyB,CAAE,KAAM,GAAI,KAAM,GAAI,KAAM,GAAI,QAAS,GAAI,OAAQ,GAAI,QAAS,GAAI,YAAa,GAAI,UAAW,GAE1H,YAAc,EAA2B,CARhD,8CASE,GAAI,CAAC,EAAW,MAAO,CAAE,KAAM,GAAI,KAAM,GAAI,KAAM,GAAI,QAAS,GAAI,OAAQ,GAAI,QAAS,GAAI,YAAa,GAAI,UAAW,GAKzH,GAAM,GAAU,KAAK,MAAQ,EAAU,UAQjC,EAAiB,EAAU,IAAO,EAAI,KAAK,IAAI,EAAU,GAAK,EAKpE,GAHA,EAAe,OAAS,EAAU,OAG9B,CAAC,EAAe,MAAS,EAAU,KAAK,SAAW,EAAe,KAAK,OACzE,EAAe,KAAO,KAAK,MAAM,KAAK,UAAU,EAAU,WAE1D,QAAS,GAAI,EAAG,EAAI,EAAU,KAAK,OAAQ,IAAK,CAC9C,GAAM,GAAM,EAAU,KAAK,GAAG,IAC3B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,IAAI,GAAK,GAAK,GACxE,EAAS,EAAU,KAAK,GAAG,OAC9B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,OAAO,GAAK,GAAK,GAC3E,EAAa,EAAU,KAAK,GAAG,UAClC,IAAI,CAAC,EAAU,IAAO,EACrB,MAAO,EAAS,MAChB,KAAM,EAAS,KACf,SAAU,CACR,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAK,EAAe,KAAK,GAAG,UAAU,GAAG,SAAS,GAAK,EAAS,SAAS,IAAM,EAAiB,EAAS,SAAS,GAC3K,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAK,EAAe,KAAK,GAAG,UAAU,GAAG,SAAS,GAAK,EAAS,SAAS,IAAM,EAAiB,EAAS,SAAS,IAE7K,YAAa,CACX,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAK,EAAe,KAAK,GAAG,UAAU,GAAG,YAAY,GAAK,EAAS,YAAY,IAAM,EAAiB,EAAS,SAAS,GACjL,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAK,EAAe,KAAK,GAAG,UAAU,GAAG,YAAY,GAAK,EAAS,YAAY,IAAM,EAAiB,EAAS,SAAS,OAGvL,EAAe,KAAK,GAAK,IAAK,EAAU,KAAK,GAAI,MAAK,SAAQ,aAKlE,GAAI,CAAC,EAAe,MAAS,EAAU,KAAK,SAAW,EAAe,KAAK,OACzE,EAAe,KAAO,KAAK,MAAM,KAAK,UAAU,EAAU,WAE1D,QAAS,GAAI,EAAG,EAAI,EAAU,KAAK,OAAQ,IAAK,CAC9C,GAAM,GAAO,EAAU,KAAK,GAAG,IAC5B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,IAAI,GAAK,GAAK,GACxE,EAAU,EAAU,KAAK,GAAG,OAC/B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,OAAO,GAAK,GAAK,GAC3E,EAAY,EAAU,KAAK,GAAG,UACjC,IAAI,CAAC,EAAU,IAAM,EACnB,IAAI,CAAC,GAAO,KAAS,IAAiB,GAAK,EAAe,KAAK,GAAG,UAAU,GAAG,IAAK,IAAS,IAC5F,EAAO,OAAO,KAAK,EAAU,KAAK,GAAG,aACrC,EAAc,GACpB,OAAW,KAAO,GAChB,EAAY,GAAO,EAAU,KAAK,GAAG,YAAY,GAC9C,IAAI,CAAC,EAAK,KAAM,EAAI,IAAI,CAAC,GAAO,KAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,YAAY,GAAK,IAAG,IAAK,IAAS,IAE5H,EAAe,KAAK,GAAK,IAAK,EAAU,KAAK,GAAI,MAAK,SAAQ,YAAW,eAK7E,GAAI,CAAC,EAAe,MAAS,EAAU,KAAK,SAAW,EAAe,KAAK,OACzE,EAAe,KAAO,KAAK,MAAM,KAAK,UAAU,EAAU,WAE1D,QAAS,GAAI,EAAG,EAAI,EAAU,KAAK,OAAQ,IAAK,CAC9C,GAAM,GAAO,EAAU,KAAK,GAAG,IAC5B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,IAAI,GAAK,GAAK,GACxE,EAAU,EAAU,KAAK,GAAG,OAC/B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,OAAO,GAAK,GAAK,GAC3E,EAIF,CAAE,OAAQ,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,GAAI,MAAO,CAAE,KAAM,EAAG,IAAK,EAAG,MAAO,GAAK,KAAM,CAAE,QAAS,EAAG,SAAU,IAC/G,EAAS,OAAS,KAAU,KAAK,GAAG,WAAlB,cAA4B,OAC9C,EAAS,MAAQ,CACf,KAAQ,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,QAAjC,cAAwC,OAAQ,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,QAA5B,cAAmC,OAAQ,IAAM,EACtI,IAAO,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,QAAjC,cAAwC,MAAO,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,QAA5B,cAAmC,MAAO,IAAM,EACnI,MAAS,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,QAAjC,cAAwC,QAAS,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,QAA5B,cAAmC,QAAS,IAAM,GAE3I,EAAS,KAAO,CAEd,QAAW,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,OAAjC,cAAuC,UAAW,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,OAA5B,cAAkC,UAAW,IAAM,EAC7I,SAAY,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,OAAjC,cAAuC,WAAY,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,OAA5B,cAAkC,WAAY,IAAM,GAElJ,EAAe,KAAK,GAAK,IAAK,EAAU,KAAK,GAAI,WAAU,MAAK,UAKpE,GAAI,CAAC,EAAe,QAAW,EAAU,OAAO,SAAW,EAAe,OAAO,OAC/E,EAAe,OAAS,KAAK,MAAM,KAAK,UAAU,EAAU,aAE5D,QAAS,GAAI,EAAG,EAAI,EAAU,OAAO,OAAQ,IAAK,CAChD,GAAM,GAAO,EAAU,OAAO,GAAG,IAC9B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,OAAO,GAAG,IAAI,GAAK,GAAK,GAC1E,EAAU,EAAU,OAAO,GAAG,OACjC,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,OAAO,GAAG,OAAO,GAAK,GAAK,GACnF,EAAe,OAAO,GAAK,IAAK,EAAU,OAAO,GAAI,MAAK,UAK9D,GAAI,EAAU,QAAS,CACrB,GAAM,GAAa,EAAU,QAC7B,GAAI,CAAC,EAAe,SAAY,EAAW,SAAW,EAAe,QAAQ,OAC3E,EAAe,QAAU,KAAK,MAAM,KAAK,UAAU,QAEnD,QAAS,GAAI,EAAG,EAAI,EAAW,OAAQ,IACrC,EAAe,QAAQ,GAAG,IAAO,EAAW,GAAG,IAC5C,IAAI,CAAC,EAAK,IAAQ,IAAiB,GAAK,EAAe,QAAQ,GAAG,IAAI,GAAK,GAAO,GAM3F,MAAI,GAAU,SAAS,GAAe,QAAU,EAAU,SACtD,EAAU,aAAa,GAAe,YAAc,EAAU,aAE3D,EChIF,GAAM,IAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kEA0JP,GAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;qBC/JpB,wCA8DO,QAAY,CAuFjB,YAAY,EAA+C,CAb3D,kBACA,kBACA,kBACA,kBACA,kBACA,kBAmDA,aAAU,IAAI,IAAkB,CAC9B,GAAI,CAAC,OAAK,IAAqB,OAC/B,GAAM,GAAiB,KAAK,GAAG,SAAS,MAAM,WACxC,EAAkB,OAAK,IAC7B,OAAK,GAAc,GACnB,GAAM,GAAS,EAAiB,EAChC,AAAI,IAAW,GAAG,EAAI,GAAG,EAAK,IAKhC,UAAU,AAAC,GAAgC,CACzC,GAAI,CAAC,OAAK,IAAc,MAAO,MAC/B,GAAI,CAAC,EAAO,MAAO,uBACnB,GAAI,KAAK,GAAG,IAAI,MAAM,SAAW,CAAE,aAAoB,WAAS,MAAO,yBACvE,GAAI,CACF,KAAK,GAAG,mBACF,EAAN,CACA,MAAO,qBAET,MAAO,QAmFT,UAAgB,MAAO,EAAQ,KAAU,CAvS3C,MAwSI,GAAI,KAAK,OAAO,SAAY,KAAK,OAAO,QAAQ,OAAS,GAAM,GAAU,KAAK,GAAG,eAAiB,KAAK,OAAO,QAAU,CACtH,GAAM,GAAY,IAYlB,GAXA,KAAK,MAAQ,UAWT,KAAK,OAAO,SAAW,KAAK,OAAO,QAAQ,OAAS,EAAG,CAkBzD,GAfI,MAAO,SAAW,aAAe,MAAO,oBAAsB,aAAe,KAAK,OAAO,OAC3F,EAAI,6BAIF,KAAK,GAAG,IAAI,MAAM,YAAc,KAAK,OAAO,UAAY,cAC1D,GAAI,gEACJ,KAAK,OAAO,QAAU,WAEpB,KAAK,GAAG,IAAI,MAAM,SAAY,MAAK,OAAO,UAAY,SAAW,KAAK,OAAO,UAAY,YAC3F,GAAI,0DACJ,KAAK,OAAO,QAAU,cAIpB,KAAK,GAAG,IAAI,MAAM,YAAc,KAAK,OAAO,UAAY,SAC1D,GAAI,MAAO,YAAc,aAAe,MAAO,WAAU,KAAW,YAClE,EAAI,uEACJ,KAAK,OAAO,QAAU,cACjB,CACL,GAAM,GAAU,KAAM,WAAU,IAAO,iBACvC,AAAI,KAAK,OAAO,OAAO,EAAI,6BAA8B,GAK7D,AAAI,KAAK,OAAO,UAAY,WAAW,AAAQ,KAC/C,GAAM,GAAY,OAAO,KAAK,KAAK,GAAG,SAAS,iBAY/C,GAXI,KAAK,OAAO,OAAO,EAAI,sBAAuB,GAE7C,EAAU,SAAS,KAAK,OAAO,UAClC,GAAI,kBAAkB,KAAK,OAAO,iCAClC,KAAK,OAAO,QAAU,KAAK,GAAG,IAAI,MAAM,QAAU,aAAe,UACjE,EAAI,2BAA2B,KAAK,OAAO,oBAGzC,KAAK,OAAO,OAAO,EAAI,mBAAoB,KAAK,OAAO,SAGvD,KAAK,OAAO,UAAY,OAAQ,CAElC,GADI,KAAK,OAAO,OAAO,EAAI,aAAc,KAAK,OAAO,UACjD,MAAO,SAAK,KAAL,cAAS,eAAiB,YAAa,KAAK,GAAG,aAAa,KAAK,OAAO,cAC9E,MAAM,IAAI,OAAM,qCACrB,GAAM,GAAO,KAAM,MAAK,GAAG,MAAM,SAAS,yBACpC,EAAK,KAAM,MAAK,GAAG,MAAM,SAAS,gCACxC,AAAI,KAAK,OAAO,OAAO,EAAI,mBAAmB,EAAO,OAAS,aAAa,EAAK,gBAAkB,oBAC9F,KAAK,OAAO,OAAS,CAAC,GAAM,EAAI,6CAItC,GAAI,CACF,KAAM,MAAK,GAAG,WAAW,KAAK,OAAO,eAC9B,EAAP,CACA,EAAI,6BAA8B,KAAK,OAAO,QAAS,IAK3D,GAAI,KAAK,GAAG,eAAiB,SAAW,KAAK,GAAG,eAAiB,UAAW,CAC1E,KAAK,GAAG,IAAI,IAAI,+BAAgC,IAChD,KAAK,GAAG,IAAI,IAAI,oBAAqB,IACrC,KAAK,GAAG,IAAI,IAAI,2BAA4B,IAC5C,KAAK,GAAG,IAAI,IAAI,4BAA6B,IAEzC,MAAO,MAAK,OAAO,YAAkB,aAAe,KAAK,OAAO,YAClE,GAAI,kDAAmD,IACvD,KAAK,GAAG,IAAI,IAAI,iCAAkC,IAGpD,GAAM,GAAK,KAAM,MAAK,GAAG,UAAU,kBAAkB,GACrD,AAAI,KAAK,OAAO,OAAO,EAAI,cAAc,EAAG,aAAa,EAAG,qBAAqB,EAAG,aAAa,EAAG,aAItG,KAAK,GAAG,iBACR,KAAM,MAAK,GAAG,QACd,KAAK,YAAY,QAAU,KAAK,MAAM,IAAQ,MAWlD,UAAO,AAAC,GAAoB,AAAY,GAAK,GAAU,KAAK,QAI5D,UAAa,KAAO,IAAkB,CACpC,GAAI,KAAK,OAAO,mBAAqB,EAAG,MAAO,GAC/C,GAAM,GAAa,GACnB,GAAI,CAAC,EAAM,MAAM,IAAM,CAAC,EAAM,MAAM,GAAI,MAAO,GAC/C,GAAM,GAAkB,AAAG,QAAM,eAAe,EAAO,CAAC,KAAK,MAAM,EAAM,MAAM,GAAK,GAAa,KAAK,MAAM,EAAM,MAAM,GAAK,KAQvH,EAAc,KAAM,GAAQ,OAC9B,EAAM,EACV,OAAS,GAAI,EAAG,EAAI,EAAY,OAAS,EAAG,IAAK,GAAO,EAAY,EAAI,EAAI,GAE5E,EAAQ,UACR,GAAM,GAAO,IAAO,MAAK,IAAI,EAAK,OAAK,KAAiB,KAAK,IAAI,EAAK,OAAK,KAAiB,GAC5F,OAAK,GAAgB,GAGrB,GAAM,GAAY,EAAO,KAAK,IAAI,KAAK,OAAO,iBAAkB,OAAK,KAErE,cAAK,GAAiB,EAAO,GAAK,KAAK,OAAO,iBAAmB,EAAI,GAC9D,IAmLT,UAAgB,SAAY,CAC1B,GAAM,GAAY,CAAC,EAAgB,EAAO,6BAA+B,MAAM,QAAQ,YAAe,KAAU,KAAK,AAAC,GAAQ,EAAI,QAC9H,EACA,EACJ,OAAQ,KAAK,OAAO,YACb,OAAQ,EAAO,KAAM,GAAiB,IAAO,UAC7C,OAAQ,EAAO,KAAM,GAAiB,IAAO,cACzC,EAAO,KAElB,GAAI,EAAM,CACR,GAAM,GAAS,KAAM,mBAAkB,GACvC,EAAM,KAAM,MAAK,OAAO,EAAQ,KAAK,QACrC,EAAO,QAET,MAAO,KAIT,UAAgB,SAAY,GAAI,SAAQ,AAAC,GAAY,CACnD,GAAI,GACA,EAAO,EACX,OAAQ,KAAK,OAAO,YACb,OACH,EAAO,IACP,EAAM,0BAAmC,GACzC,UACG,WACA,OACH,EAAO,KACP,EAAM,0BAAmC,GACzC,cAEA,EAAM,KAGV,GAAM,GAAM,GAAI,OAChB,EAAI,OAAS,SAAY,CACvB,GAAM,GAAU,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAM,GAAQ,SAAS,cAAc,UACnH,EAAO,MAAQ,EAAI,aACnB,EAAO,OAAS,EAAI,cACpB,GAAM,GAAM,EAAO,WAAW,MAC9B,WAAK,UAAU,EAAK,EAAG,GAEvB,GAAM,GAAM,KAAM,MAAK,OAAO,EAAQ,KAAK,QAC3C,EAAQ,IAEV,AAAI,EAAK,EAAI,IAAM,EACd,EAAQ,SAIf,UAAc,SAAY,CACxB,GAAM,GAAO,AAAC,GAAgB,OAAO,KAAK,EAAK,UAC3C,EAGJ,GAFI,KAAK,OAAO,SAAW,QAAQ,GAAM,EAAY,KACjD,MAAK,OAAO,SAAW,QAAU,KAAK,OAAO,SAAW,SAAQ,GAAM,EAAY,KAClF,CAAC,EAAK,MAAO,MACjB,GAAI,GACJ,GAAI,MAAU,SAAY,YAAa,CACrC,GAAM,GAAO,AAAG,OAAQ,WAAW,GAC7B,EAAW,EAAK,WAAW,GACjC,KAAK,GAAG,QAAQ,GAEhB,EAAM,KAAM,MAAK,OAAO,EAAU,KAAK,QACvC,KAAK,GAAG,QAAQ,OAEhB,AAAI,MAAK,OAAO,OAAO,EAAI,+BAS7B,MAAO,KAnhBP,KAAK,OAAS,EAAU,GAAU,GAAc,IAChD,KAAK,GAAK,EACV,KAAK,KAAO,GACZ,KAAK,QAAc,GACnB,KAAK,MAAQ,OACb,OAAK,GAAc,GACnB,OAAK,GAAsB,IAC3B,OAAK,GAAe,IACpB,OAAK,GAAY,IACjB,OAAK,GAAiB,GACtB,KAAK,YAAc,CAAE,QAAS,EAAG,KAAM,EAAG,MAAO,EAAG,OAAQ,EAAG,OAAQ,EAAG,QAAS,EAAG,MAAO,EAAG,KAAM,GAEtG,KAAK,OAAS,CACZ,KAAM,KACN,QAAS,KACT,UAAW,KACX,cAAe,KACf,QAAS,KACT,SAAU,KACV,IAAK,KACL,OAAQ,KACR,QAAS,KACT,UAAW,KACX,QAAS,KACT,UAAW,KACX,QAAS,KACT,aAAc,MAEhB,KAAK,OAAS,CAAE,KAAM,GAAI,KAAM,GAAI,KAAM,GAAI,QAAS,GAAI,OAAQ,GAAI,YAAa,GAAI,UAAW,EAAG,QAAS,IAG/G,KAAK,MAAQ,AAAC,GAAiB,AAAM,GAAQ,EAAO,KAAK,QAEzD,KAAK,kBAA6B,GAClC,KAAK,UAAqB,GAE1B,KAAK,QAAU,AAAQ,KACvB,OAAK,GAAgB,GAoCvB,WAAW,EAA2B,EAAmC,CACvE,MAAO,AAAQ,IAAW,EAAY,GAYxC,aAAa,EAAc,EAAoB,CAC7C,MAAO,AAAa,IAAQ,EAAO,EAAY,KAAK,QAQtD,QAAQ,EAA8B,CACpC,MAAO,AAAQ,IAAQ,GAUzB,MAAM,EAA8B,EAAkE,EAAY,EAA8E,CAC9L,MAAO,AAAQ,IAAM,EAAe,EAAI,QAOpC,MAAK,EAA+C,CACxD,KAAK,MAAQ,OACb,GAAM,GAAY,IAClB,AAAI,GAAY,MAAK,OAAS,EAAU,KAAK,OAAQ,IAEjD,OAAK,KACH,MAAK,OAAO,OAAO,EAAI,YAAY,KAAK,WACxC,KAAK,OAAO,OAAO,EAAI,iBAAiB,KAAK,GAAG,gBAChD,KAAK,OAAO,OAAO,EAAI,YAAa,KAAK,QAAQ,UACjD,KAAK,OAAO,OAAO,EAAI,SAAU,KAAK,QAAQ,OAElD,KAAM,QAAK,IAAL,UAAmB,IACrB,KAAK,GAAG,IAAI,MAAM,YAChB,MAAK,OAAO,OAAO,EAAI,iBAAkB,KAAK,QAC9C,KAAK,OAAO,OAAO,EAAI,YAAa,KAAK,GAAG,IAAI,SAIxD,KAAM,AAAO,IAAK,MAEd,OAAK,KACH,MAAK,OAAO,OAAO,EAAI,mBAAoB,KAAK,GAAG,SAAS,MAAM,SAAU,QAAS,KAAK,GAAG,SAAS,MAAM,WAAY,WAC5H,OAAK,GAAY,KAGnB,GAAM,GAAU,KAAK,MAAM,IAAQ,GACnC,AAAI,EAAW,MAAK,YAAY,MAAkB,IAAI,MAAK,YAAY,KAAO,QAsJ1E,QAAO,EAAc,EAAwE,CAEjG,MAAO,IAAI,SAAQ,KAAO,IAAY,CACpC,KAAK,MAAQ,SACb,GAAI,GACA,EAGJ,KAAK,OAAS,EAAU,KAAK,OAAQ,GAGrC,KAAK,MAAQ,QACb,GAAM,GAAQ,OAAK,IAAL,UAAa,GAC3B,AAAI,GACF,GAAI,EAAO,GACX,EAAQ,CAAE,WAGZ,GAAM,GAAY,IAGlB,KAAM,QAAK,IAAL,WAGN,KAAM,MAAK,OAEX,EAAY,IACZ,GAAI,GAAU,AAAM,GAAQ,EAAO,KAAK,QAoBxC,GAnBA,KAAK,YAAY,MAAQ,KAAK,MAAM,IAAQ,GAC5C,KAAK,QAAQ,cAGT,KAAK,OAAO,aAAa,SAAW,GAAW,EAAQ,QACzD,MAAK,QAAQ,uBACb,KAAK,MAAQ,mBACb,EAAY,IACZ,KAAM,AAAa,IAAQ,GAC3B,EAAc,KAAK,MAAM,IAAQ,GAC7B,EAAc,GAAG,MAAK,YAAY,aAAe,GACjD,EAAQ,QAEV,CAAG,UAAQ,EAAQ,QACnB,EAAU,AAAM,GAAQ,EAAQ,OAAQ,KAAK,SAE/C,KAAK,QAAQ,sBAGX,CAAC,GAAW,CAAC,EAAQ,OAAQ,CAC/B,EAAI,qCACJ,EAAQ,CAAE,MAAO,sCACjB,OAGF,EAAY,IACZ,KAAK,OAAO,UAAY,KAAM,QAAK,IAAL,UAAgB,EAAQ,QACjD,KAAK,YAAY,QAAQ,MAAK,YAAY,OAAS,GACnD,KAAK,YAAY,QAAQ,MAAK,YAAY,OAAS,GACvD,KAAK,YAAY,SACd,KAAK,OAAO,WAAW,KAAK,YAAY,SAC5C,KAAK,YAAY,QAAU,KAAK,MAAM,IAAQ,GAC9C,KAAK,QAAQ,kBAIb,GAAI,GAA8C,GAC9C,EAA8C,GAC9C,EAA8C,GAC9C,EAAgD,GAGpD,AAAI,KAAK,OAAO,MACd,GAAU,KAAK,OAAO,KAAK,QAAU,AAAK,GAAW,KAAM,EAAQ,QAAU,GACzE,KAAK,YAAY,MAAM,MAAO,MAAK,YAAY,MAEnD,MAAK,MAAQ,WACb,EAAY,IACZ,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAK,IAAW,KAAM,EAAQ,QAAU,GACnF,EAAc,KAAK,MAAM,IAAQ,GAC7B,EAAc,GAAG,MAAK,YAAY,KAAO,IAI/C,KAAK,QAAQ,eACb,AAAI,KAAK,OAAO,MACd,CAAI,KAAK,OAAO,KAAK,UAAU,SAAS,WAAY,EAAU,KAAK,OAAO,KAAK,QAAU,AAAQ,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GACnI,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,aAAc,EAAU,KAAK,OAAO,KAAK,QAAU,AAAU,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GAC5I,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,iBAAkB,EAAU,KAAK,OAAO,KAAK,QAAU,AAAc,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GAChJ,KAAK,OAAO,KAAK,UAAU,SAAS,YAAY,GAAU,KAAK,OAAO,KAAK,QAAU,AAAQ,GAAQ,EAAQ,OAAQ,KAAK,QAAU,IACzI,KAAK,YAAY,MAAM,MAAO,MAAK,YAAY,MAEnD,MAAK,MAAQ,WACb,EAAY,IACZ,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,WAAY,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAQ,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GACzI,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,aAAc,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAU,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GAClJ,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,iBAAkB,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAc,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GACtJ,KAAK,OAAO,KAAK,UAAU,SAAS,YAAY,GAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAQ,IAAQ,EAAQ,OAAQ,KAAK,QAAU,IACnJ,EAAc,KAAK,MAAM,IAAQ,GAC7B,EAAc,GAAG,MAAK,YAAY,KAAO,IAE/C,KAAK,QAAQ,aAGb,KAAK,QAAQ,eACb,AAAI,KAAK,OAAO,MACd,GAAU,KAAK,OAAO,KAAK,QAAU,AAAS,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GACjF,KAAK,YAAY,MAAM,MAAO,MAAK,YAAY,MAEnD,MAAK,MAAQ,WACb,EAAY,IACZ,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAS,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GAC3F,EAAc,KAAK,MAAM,IAAQ,GAC7B,EAAc,GAAG,MAAK,YAAY,KAAO,IAE/C,KAAK,QAAQ,aAGb,KAAK,QAAQ,iBACb,AAAI,KAAK,OAAO,MACd,CAAI,KAAK,OAAO,OAAO,UAAU,SAAS,WAAY,EAAY,KAAK,OAAO,OAAO,QAAU,AAAQ,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GACrI,KAAK,OAAO,OAAO,UAAU,SAAS,cAAc,GAAY,KAAK,OAAO,OAAO,QAAU,AAAU,GAAQ,EAAQ,OAAQ,KAAK,QAAU,IACnJ,KAAK,YAAY,QAAQ,MAAO,MAAK,YAAY,QAErD,MAAK,MAAQ,aACb,EAAY,IACZ,AAAI,KAAK,OAAO,OAAO,UAAU,SAAS,WAAY,EAAY,KAAK,OAAO,OAAO,QAAU,KAAM,AAAQ,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GAC3I,KAAK,OAAO,OAAO,UAAU,SAAS,cAAc,GAAY,KAAK,OAAO,OAAO,QAAU,KAAM,AAAU,IAAQ,EAAQ,OAAQ,KAAK,QAAU,IAC7J,EAAc,KAAK,MAAM,IAAQ,GAC7B,EAAc,GAAG,MAAK,YAAY,OAAS,IAEjD,KAAK,QAAQ,eAGT,KAAK,OAAO,OAAO,EAAC,EAAS,EAAS,EAAS,GAAa,KAAM,SAAQ,IAAI,CAAC,EAAS,EAAS,EAAS,KAG9G,GAAI,GAAwB,GAC5B,AAAI,KAAK,OAAO,QAAQ,SACtB,GAAY,IACZ,EAAa,CAAC,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,IAC5G,AAAK,KAAK,OAAO,MACR,KAAK,YAAY,SAAS,MAAO,MAAK,YAAY,QADnC,KAAK,YAAY,QAAU,KAAK,MAAM,IAAQ,IAIxE,KAAK,YAAY,MAAQ,KAAK,MAAM,IAAQ,GAC5C,KAAK,MAAQ,OACb,KAAK,OAAS,CACZ,KAAM,EACN,KAAM,EACN,KAAM,EACN,QAAS,EACT,OAAQ,EACR,YAAa,KAAK,YAClB,OAAQ,EAAQ,OAChB,UAAW,KAAK,SACZ,UAAU,CAllBtB,MAklBwB,MAAO,AAAQ,IAAK,EAAmB,EAAmB,EAAmB,EAAY,oBAAS,SAAT,cAAiB,SAI5H,AAAG,UAAQ,EAAQ,QAGnB,EAAQ,KAAK,eAwFX,QAAO,EAA4E,CACvF,GAAM,GAAK,IAEX,GADI,GAAY,MAAK,OAAS,EAAU,KAAK,OAAQ,IACjD,CAAC,KAAK,OAAO,QAAU,KAAK,OAAO,SAAW,OAAQ,MAAO,CAAE,MAAO,QAC1E,GAAI,GACJ,AAAI,MAAO,oBAAsB,WAAY,EAAM,KAAM,QAAK,IAAL,WACpD,AAAI,MAAO,QAAU,YAAa,EAAM,KAAM,QAAK,IAAL,WAC9C,EAAM,KAAM,QAAK,IAAL,WACjB,GAAM,GAAK,IACX,MAAI,MAAK,OAAO,OAAO,EAAI,SAAU,KAAK,OAAO,OAAQ,KAAK,MAAM,EAAK,GAAK,KAAM,GAC7E,IAnjBT,eACA,eACA,eACA,eACA,eACA,eA8DA,eA4FA,eA4GA,eA2MA,eAkBA,eAiCA", + "sources": ["../src/helpers.ts", "../src/config.ts", "../src/sysinfo.ts", "../tfjs/tf-browser.ts", "../src/tfjs/backend.ts", "../src/blazeface/box.ts", "../src/blazeface/util.ts", "../src/blazeface/blazeface.ts", "../src/blazeface/coords.ts", "../src/blazeface/facepipeline.ts", "../src/blazeface/facemesh.ts", "../src/faceres/faceres.ts", "../src/emotion/emotion.ts", "../src/posenet/keypoints.ts", "../src/posenet/utils.ts", "../src/posenet/poses.ts", "../src/posenet/posenet.ts", "../src/handpose/box.ts", "../src/handpose/anchors.ts", "../src/handpose/handdetector.ts", "../src/handpose/util.ts", "../src/handpose/handpipeline.ts", "../src/fingerpose/description.ts", "../src/fingerpose/estimator.ts", "../src/fingerpose/gesture.ts", "../src/fingerpose/gestures.ts", "../src/fingerpose/fingerpose.ts", "../src/handpose/handpose.ts", "../src/blazepose/annotations.ts", "../src/blazepose/blazepose.ts", "../src/efficientpose/efficientpose.ts", "../src/movenet/movenet.ts", "../src/object/labels.ts", "../src/object/nanodet.ts", "../src/object/centernet.ts", "../src/image/imagefx.js", "../src/image/image.ts", "../src/segmentation/segmentation.ts", "../src/models.ts", "../src/face.ts", "../src/gesture/gesture.ts", "../src/draw/draw.ts", "../src/persons.ts", "../src/interpolate.ts", "../src/sample.ts", "../src/human.ts"], + "sourcesContent": ["/**\n * Simple helper functions used accross codebase\n */\n\n// helper function: join two paths\nexport function join(folder: string, file: string): string {\n const separator = folder.endsWith('/') ? '' : '/';\n const skipJoin = file.startsWith('.') || file.startsWith('/') || file.startsWith('http:') || file.startsWith('https:') || file.startsWith('file:');\n const path = skipJoin ? `${file}` : `${folder}${separator}${file}`;\n if (!path.toLocaleLowerCase().includes('.json')) throw new Error(`Human: ModelPath Error: ${path} Expecting JSON file`);\n return path;\n}\n\n// helper function: wrapper around console output\nexport function log(...msg): void {\n const dt = new Date();\n const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;\n // eslint-disable-next-line no-console\n if (msg) console.log(ts, 'Human:', ...msg);\n}\n\n// helper function: gets elapsed time on both browser and nodejs\nexport const now = () => {\n if (typeof performance !== 'undefined') return performance.now();\n return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());\n};\n\n// helper function: perform deep merge of multiple objects so it allows full inheriance with overrides\nexport function mergeDeep(...objects) {\n const isObject = (obj) => obj && typeof obj === 'object';\n return objects.reduce((prev, obj) => {\n Object.keys(obj || {}).forEach((key) => {\n const pVal = prev[key];\n const oVal = obj[key];\n if (Array.isArray(pVal) && Array.isArray(oVal)) prev[key] = pVal.concat(...oVal);\n else if (isObject(pVal) && isObject(oVal)) prev[key] = mergeDeep(pVal, oVal);\n else prev[key] = oVal;\n });\n return prev;\n }, {});\n}\n\n// helper function: return min and max from input array\nexport const minmax = (data: Array) => data.reduce((acc: Array, val) => {\n acc[0] = (acc[0] === undefined || val < acc[0]) ? val : acc[0];\n acc[1] = (acc[1] === undefined || val > acc[1]) ? val : acc[1];\n return acc;\n}, []);\n", "/* eslint-disable indent */\n/* eslint-disable no-multi-spaces */\n\n/**\n * Configuration interface definition for **Human** library\n *\n * Contains all configurable parameters\n * @typedef Config\n */\nexport interface Config {\n /** Backend used for TFJS operations */\n backend: null | '' | 'cpu' | 'wasm' | 'webgl' | 'humangl' | 'tensorflow' | 'webgpu',\n\n /** Path to *.wasm files if backend is set to `wasm` */\n wasmPath: string,\n\n /** Print debug statements to console */\n debug: boolean,\n\n /** Perform model loading and inference concurrently or sequentially */\n async: boolean,\n\n /** What to use for `human.warmup()`\n * - warmup pre-initializes all models for faster inference but can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n */\n warmup: 'none' | 'face' | 'full' | 'body',\n\n /** Base model path (typically starting with file://, http:// or https://) for all models\n * - individual modelPath values are relative to this path\n */\n modelBasePath: string,\n\n /** Cache sensitivity\n * - values 0..1 where 0.01 means reset cache if input changed more than 1%\n * - set to 0 to disable caching\n */\n cacheSensitivity: number;\n\n /** Cache sensitivity\n * - values 0..1 where 0.01 means reset cache if input changed more than 1%\n * - set to 0 to disable caching\n */\n skipFrame: boolean;\n\n /** Run input through image filters before inference\n * - image filters run with near-zero latency as they are executed on the GPU\n */\n filter: {\n enabled: boolean,\n /** Resize input width\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n width: number,\n /** Resize input height\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n height: number,\n /** Return processed canvas imagedata in result */\n return: boolean,\n /** Flip input as mirror image */\n flip: boolean,\n /** Range: -1 (darken) to 1 (lighten) */\n brightness: number,\n /** Range: -1 (reduce contrast) to 1 (increase contrast) */\n contrast: number,\n /** Range: 0 (no sharpening) to 1 (maximum sharpening) */\n sharpness: number,\n /** Range: 0 (no blur) to N (blur radius in pixels) */\n blur: number\n /** Range: -1 (reduce saturation) to 1 (increase saturation) */\n saturation: number,\n /** Range: 0 (no change) to 360 (hue rotation in degrees) */\n hue: number,\n /** Image negative */\n negative: boolean,\n /** Image sepia colors */\n sepia: boolean,\n /** Image vintage colors */\n vintage: boolean,\n /** Image kodachrome colors */\n kodachrome: boolean,\n /** Image technicolor colors */\n technicolor: boolean,\n /** Image polaroid camera effect */\n polaroid: boolean,\n /** Range: 0 (no pixelate) to N (number of pixels to pixelate) */\n pixelate: number,\n },\n // type definition end\n\n /** Controlls gesture detection */\n gesture: {\n enabled: boolean,\n },\n\n /** Controlls and configures all face-specific options:\n * - face detection, face mesh detection, age, gender, emotion detection and face description\n * Parameters:\n * - enabled: true/false\n * - modelPath: path for each of face models\n * - minConfidence: threshold for discarding a prediction\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxDetected: maximum number of faces detected in the input, should be set to the minimum number for performance\n * - rotation: use calculated rotated face image or just box with rotation as-is, false means higher performance, but incorrect mesh mapping on higher face angles\n * - return: return extracted face as tensor for futher user processing, in which case user is reponsible for manually disposing the tensor\n */\n face: {\n enabled: boolean,\n detector: {\n modelPath: string,\n rotation: boolean,\n maxDetected: number,\n skipFrames: number,\n minConfidence: number,\n iouThreshold: number,\n return: boolean,\n },\n mesh: {\n enabled: boolean,\n modelPath: string,\n },\n iris: {\n enabled: boolean,\n modelPath: string,\n },\n description: {\n enabled: boolean,\n modelPath: string,\n skipFrames: number,\n minConfidence: number,\n },\n emotion: {\n enabled: boolean,\n minConfidence: number,\n skipFrames: number,\n modelPath: string,\n },\n },\n\n /** Controlls and configures all body detection specific options\n * - enabled: true/false\n * - modelPath: body pose model, can be absolute path or relative to modelBasePath\n * - minConfidence: threshold for discarding a prediction\n * - maxDetected: maximum number of people detected in the input, should be set to the minimum number for performance\n */\n body: {\n enabled: boolean,\n modelPath: string,\n maxDetected: number,\n minConfidence: number,\n skipFrames: number,\n },\n\n /** Controlls and configures all hand detection specific options\n * - enabled: true/false\n * - landmarks: detect hand landmarks or just hand boundary box\n * - modelPath: paths for hand detector and hand skeleton models, can be absolute path or relative to modelBasePath\n * - minConfidence: threshold for discarding a prediction\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxDetected: maximum number of hands detected in the input, should be set to the minimum number for performance\n * - rotation: use best-guess rotated hand image or just box with rotation as-is, false means higher performance, but incorrect finger mapping if hand is inverted\n */\n hand: {\n enabled: boolean,\n rotation: boolean,\n skipFrames: number,\n minConfidence: number,\n iouThreshold: number,\n maxDetected: number,\n landmarks: boolean,\n detector: {\n modelPath: string,\n },\n skeleton: {\n modelPath: string,\n },\n },\n\n /** Controlls and configures all object detection specific options\n * - enabled: true/false\n * - modelPath: object detection model, can be absolute path or relative to modelBasePath\n * - minConfidence: minimum score that detection must have to return as valid object\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxDetected: maximum number of detections to return\n */\n object: {\n enabled: boolean,\n modelPath: string,\n minConfidence: number,\n iouThreshold: number,\n maxDetected: number,\n skipFrames: number,\n },\n\n /** Controlls and configures all body segmentation module\n * removes background from input containing person\n * if segmentation is enabled it will run as preprocessing task before any other model\n * alternatively leave it disabled and use it on-demand using human.segmentation method which can\n * remove background or replace it with user-provided background\n *\n * - enabled: true/false\n * - modelPath: object detection model, can be absolute path or relative to modelBasePath\n */\n segmentation: {\n enabled: boolean,\n modelPath: string,\n },\n}\n\nconst config: Config = {\n backend: 'webgl', // select tfjs backend to use, leave empty to use default backend\n // can be 'webgl', 'wasm', 'cpu', or 'humangl' which is a custom version of webgl\n modelBasePath: '../models/', // base path for all models\n wasmPath: '../node_modules/@tensorflow/tfjs-backend-wasm/dist/', // path for wasm binaries, only used for backend: wasm\n debug: true, // print additional status messages to console\n async: true, // execute enabled models in parallel\n warmup: 'full', // what to use for human.warmup(), can be 'none', 'face', 'full'\n // warmup pre-initializes all models for faster inference but can take\n // significant time on startup\n // only used for `webgl` and `humangl` backends\n cacheSensitivity: 0.75, // cache sensitivity\n // values 0..1 where 0.01 means reset cache if input changed more than 1%\n // set to 0 to disable caching\n skipFrame: false, // internal & dynamic\n filter: { // run input through image filters before inference\n // image filters run with near-zero latency as they are executed on the GPU\n enabled: true, // enable image pre-processing filters\n width: 0, // resize input width\n height: 0, // resize input height\n // if both width and height are set to 0, there is no resizing\n // if just one is set, second one is scaled automatically\n // if both are set, values are used as-is\n flip: false, // flip input as mirror image\n return: true, // return processed canvas imagedata in result\n brightness: 0, // range: -1 (darken) to 1 (lighten)\n contrast: 0, // range: -1 (reduce contrast) to 1 (increase contrast)\n sharpness: 0, // range: 0 (no sharpening) to 1 (maximum sharpening)\n blur: 0, // range: 0 (no blur) to N (blur radius in pixels)\n saturation: 0, // range: -1 (reduce saturation) to 1 (increase saturation)\n hue: 0, // range: 0 (no change) to 360 (hue rotation in degrees)\n negative: false, // image negative\n sepia: false, // image sepia colors\n vintage: false, // image vintage colors\n kodachrome: false, // image kodachrome colors\n technicolor: false, // image technicolor colors\n polaroid: false, // image polaroid camera effect\n pixelate: 0, // range: 0 (no pixelate) to N (number of pixels to pixelate)\n },\n\n gesture: {\n enabled: true, // enable gesture recognition based on model results\n },\n\n face: {\n enabled: true, // controls if specified modul is enabled\n // face.enabled is required for all face models:\n // detector, mesh, iris, age, gender, emotion\n // (note: module is not loaded until it is required)\n detector: {\n modelPath: 'blazeface.json', // detector model, can be absolute path or relative to modelBasePath\n rotation: true, // use best-guess rotated face image or just box with rotation as-is\n // false means higher performance, but incorrect mesh mapping if face angle is above 20 degrees\n // this parameter is not valid in nodejs\n maxDetected: 15, // maximum number of faces detected in the input\n // should be set to the minimum number for performance\n skipFrames: 15, // how many max frames to go without re-running the face bounding box detector\n // only used when cacheSensitivity is not zero\n // e.g., if model is running st 25 FPS, we can re-use existing bounding\n // box for updated face analysis as the head probably hasn't moved much\n // in short time (10 * 1/25 = 0.25 sec)\n minConfidence: 0.2, // threshold for discarding a prediction\n iouThreshold: 0.1, // ammount of overlap between two detected objects before one object is removed\n return: false, // return extracted face as tensor\n // in which case user is reponsible for disposing the tensor\n },\n\n mesh: {\n enabled: true,\n modelPath: 'facemesh.json', // facemesh model, can be absolute path or relative to modelBasePath\n },\n\n iris: {\n enabled: true,\n modelPath: 'iris.json', // face iris model\n // can be either absolute path or relative to modelBasePath\n },\n\n description: {\n enabled: true, // to improve accuracy of face description extraction it is\n // recommended to enable detector.rotation and mesh.enabled\n modelPath: 'faceres.json', // face description model\n // can be either absolute path or relative to modelBasePath\n skipFrames: 11, // how many max frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n minConfidence: 0.1, // threshold for discarding a prediction\n },\n\n emotion: {\n enabled: true,\n minConfidence: 0.1, // threshold for discarding a prediction\n skipFrames: 17, // how max many frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n modelPath: 'emotion.json', // face emotion model, can be absolute path or relative to modelBasePath\n },\n },\n\n body: {\n enabled: true,\n modelPath: 'movenet-lightning.json', // body model, can be absolute path or relative to modelBasePath\n // can be 'posenet', 'blazepose', 'efficientpose', 'movenet-lightning', 'movenet-thunder'\n maxDetected: 1, // maximum number of people detected in the input\n // should be set to the minimum number for performance\n // only valid for posenet as other models detects single pose\n minConfidence: 0.2, // threshold for discarding a prediction\n skipFrames: 1, // how many max frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n},\n\n hand: {\n enabled: true,\n rotation: true, // use best-guess rotated hand image or just box with rotation as-is\n // false means higher performance, but incorrect finger mapping if hand is inverted\n skipFrames: 18, // how many max frames to go without re-running the hand bounding box detector\n // only used when cacheSensitivity is not zero\n // e.g., if model is running st 25 FPS, we can re-use existing bounding\n // box for updated hand skeleton analysis as the hand probably\n // hasn't moved much in short time (10 * 1/25 = 0.25 sec)\n minConfidence: 0.1, // threshold for discarding a prediction\n iouThreshold: 0.1, // ammount of overlap between two detected objects before one object is removed\n maxDetected: 2, // maximum number of hands detected in the input\n // should be set to the minimum number for performance\n landmarks: true, // detect hand landmarks or just hand boundary box\n detector: {\n modelPath: 'handdetect.json', // hand detector model, can be absolute path or relative to modelBasePath\n },\n skeleton: {\n modelPath: 'handskeleton.json', // hand skeleton model, can be absolute path or relative to modelBasePath\n },\n },\n\n object: {\n enabled: false,\n modelPath: 'mb3-centernet.json', // experimental: object detection model, can be absolute path or relative to modelBasePath\n // can be 'mb3-centernet' or 'nanodet'\n minConfidence: 0.2, // threshold for discarding a prediction\n iouThreshold: 0.4, // ammount of overlap between two detected objects before one object is removed\n maxDetected: 10, // maximum number of objects detected in the input\n skipFrames: 19, // how many max frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n },\n\n segmentation: {\n enabled: false, // controlls and configures all body segmentation module\n // removes background from input containing person\n // if segmentation is enabled it will run as preprocessing task before any other model\n // alternatively leave it disabled and use it on-demand using human.segmentation method which can\n // remove background or replace it with user-provided background\n modelPath: 'selfie.json', // experimental: object detection model, can be absolute path or relative to modelBasePath\n // can be 'selfie' or 'meet'\n },\n};\nexport { config as defaults };\n", "/**\n * Helper function that returns basic system info\n */\nexport function info(): { platform: string, agent: string } {\n let platform = '';\n let agent = '';\n if (typeof navigator !== 'undefined') {\n const raw = navigator.userAgent.match(/\\(([^()]+)\\)/g);\n if (raw && raw[0]) {\n const platformMatch = raw[0].match(/\\(([^()]+)\\)/g);\n platform = (platformMatch && platformMatch[0]) ? platformMatch[0].replace(/\\(|\\)/g, '') : '';\n agent = navigator.userAgent.replace(raw[0], '');\n if (platform[1]) agent = agent.replace(raw[1], '');\n agent = agent.replace(/ /g, ' ');\n }\n } else if (typeof process !== 'undefined') {\n platform = `${process.platform} ${process.arch}`;\n agent = `NodeJS ${process.version}`;\n }\n return { platform, agent };\n}\n", "/**\n * Creates tfjs bundle used by Human browser build target\n * @external\n */\n\n// get versions of all packages\nimport { version as tfjsVersion } from '@tensorflow/tfjs/package.json';\nimport { version as tfjsCoreVersion } from '@tensorflow/tfjs-core/package.json';\nimport { version as tfjsDataVersion } from '@tensorflow/tfjs-data/package.json';\nimport { version as tfjsLayersVersion } from '@tensorflow/tfjs-layers/package.json';\nimport { version as tfjsConverterVersion } from '@tensorflow/tfjs-converter/package.json';\nimport { version as tfjsBackendCPUVersion } from '@tensorflow/tfjs-backend-cpu/package.json';\nimport { version as tfjsBackendWebGLVersion } from '@tensorflow/tfjs-backend-webgl/package.json';\nimport { version as tfjsBackendWASMVersion } from '@tensorflow/tfjs-backend-wasm/package.json';\n\n// export all from sources\n// requires treeShaking:ignore-annotations due to tfjs misconfiguration\n/*\nexport * from '@tensorflow/tfjs-core/src/index';\nexport * from '@tensorflow/tfjs-layers/src/index';\nexport * from '@tensorflow/tfjs-converter/src/index';\nexport * as data from '@tensorflow/tfjs-data/src/index';\nexport * from '@tensorflow/tfjs-backend-cpu/src/index';\nexport * from '@tensorflow/tfjs-backend-webgl/src/index';\nexport * from '@tensorflow/tfjs-backend-wasm/src/index';\n*/\n\n// export all from build\nexport * from '@tensorflow/tfjs-core/dist/index.js';\nexport * from '@tensorflow/tfjs-layers/dist/index.js';\nexport * from '@tensorflow/tfjs-converter/dist/index.js';\nexport * as data from '@tensorflow/tfjs-data/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-cpu/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-webgl/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-wasm/dist/index.js';\n// export * from '@tensorflow/tfjs-backend-webgpu/dist/index.js'; // experimental\n\n// export versions\nexport const version = {\n tfjs: tfjsVersion,\n 'tfjs-core': tfjsCoreVersion,\n 'tfjs-data': tfjsDataVersion,\n 'tfjs-layers': tfjsLayersVersion,\n 'tfjs-converter': tfjsConverterVersion,\n 'tfjs-backend-cpu': tfjsBackendCPUVersion,\n 'tfjs-backend-webgl': tfjsBackendWebGLVersion,\n 'tfjs-backend-wasm': tfjsBackendWASMVersion,\n};\n", "/**\n * Custom TFJS backend for Human based on WebGL\n * Not used by default\n */\n\nimport { log } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\n\nexport const config = {\n name: 'humangl',\n priority: 99,\n canvas: null,\n gl: null,\n width: 1024,\n height: 1024,\n extensions: [],\n webGLattr: { // https://www.khronos.org/registry/webgl/specs/latest/1.0/#5.2\n alpha: false,\n antialias: false,\n premultipliedAlpha: false,\n preserveDrawingBuffer: false,\n depth: false,\n stencil: false,\n failIfMajorPerformanceCaveat: false,\n desynchronized: true,\n },\n};\n\nfunction extensions(): void {\n /*\n https://www.khronos.org/registry/webgl/extensions/\n https://webglreport.com/?v=2\n */\n const gl = config.gl;\n if (!gl) return;\n config.extensions = gl.getSupportedExtensions() as string[];\n // gl.getExtension('KHR_parallel_shader_compile');\n}\n\n/**\n * Registers custom WebGL2 backend to be used by Human library\n *\n * @returns void\n */\nexport function register(): void {\n if (!tf.findBackend(config.name)) {\n // log('backend registration:', config.name);\n try {\n config.canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(config.width, config.height) : document.createElement('canvas');\n } catch (err) {\n log('error: cannot create canvas:', err);\n return;\n }\n try {\n config.gl = config.canvas.getContext('webgl2', config.webGLattr) as WebGL2RenderingContext;\n } catch (err) {\n log('error: cannot get WebGL2 context:', err);\n return;\n }\n try {\n tf.setWebGLContext(2, config.gl);\n } catch (err) {\n log('error: cannot set WebGL2 context:', err);\n return;\n }\n try {\n const ctx = new tf.GPGPUContext(config.gl);\n tf.registerBackend(config.name, () => new tf.MathBackendWebGL(ctx), config.priority);\n } catch (err) {\n log('error: cannot register WebGL backend:', err);\n return;\n }\n try {\n const kernels = tf.getKernelsForBackend('webgl');\n kernels.forEach((kernelConfig) => {\n const newKernelConfig = { ...kernelConfig, backendName: config.name };\n tf.registerKernel(newKernelConfig);\n });\n } catch (err) {\n log('error: cannot update WebGL backend registration:', err);\n return;\n }\n try {\n tf.ENV.set('WEBGL_VERSION', 2);\n } catch (err) {\n log('error: cannot set WebGL backend flags:', err);\n return;\n }\n extensions();\n log('backend registered:', config.name);\n }\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n return { startPoint, endPoint };\n}\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]];\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]];\n return { startPoint, endPoint, landmarks: box.landmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [Math.round(centers[0] - halfSize), Math.round(centers[1] - halfSize)];\n const endPoint = [Math.round(centers[0] + halfSize), Math.round(centers[1] + halfSize)];\n return { startPoint, endPoint, landmarks: box.landmarks };\n}\n\nexport function calculateLandmarksBoundingBox(landmarks) {\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint, landmarks };\n}\n\nexport const disposeBox = (t) => {\n tf.dispose(t.startPoint);\n tf.dispose(t.endPoint);\n};\n\nexport const createBox = (startEndTensor) => ({\n startPoint: tf.slice(startEndTensor, [0, 0], [-1, 2]),\n endPoint: tf.slice(startEndTensor, [0, 2], [-1, 2]),\n});\n", "export const IDENTITY_MATRIX = [[1, 0, 0], [0, 1, 0], [0, 0, 1]];\n/**\n * Normalizes the provided angle to the range -pi to pi.\n * @param angle The angle in radians to be normalized.\n */\nexport function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\n/**\n * Computes the angle of rotation between two anchor points.\n * @param point1 First anchor point\n * @param point2 Second anchor point\n */\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport function radToDegrees(rad) {\n return rad * 180 / Math.PI;\n}\n\nexport function buildTranslationMatrix(x, y) {\n return [[1, 0, x], [0, 1, y], [0, 0, 1]];\n}\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: Array = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: Array = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n\nexport function xyDistanceBetweenPoints(a, b) {\n return Math.sqrt(((a[0] - b[0]) ** 2) + ((a[1] - b[1]) ** 2));\n}\n\nexport function generateAnchors(inputSize) {\n const spec = { strides: [inputSize / 16, inputSize / 8], anchors: [2, 6] };\n const anchors: Array<[number, number]> = [];\n for (let i = 0; i < spec.strides.length; i++) {\n const stride = spec.strides[i];\n const gridRows = Math.floor((inputSize + stride - 1) / stride);\n const gridCols = Math.floor((inputSize + stride - 1) / stride);\n const anchorsNum = spec.anchors[i];\n for (let gridY = 0; gridY < gridRows; gridY++) {\n const anchorY = stride * (gridY + 0.5);\n for (let gridX = 0; gridX < gridCols; gridX++) {\n const anchorX = stride * (gridX + 0.5);\n for (let n = 0; n < anchorsNum; n++) {\n anchors.push([anchorX, anchorY]);\n }\n }\n }\n }\n return anchors;\n}\n", "import { log, join, mergeDeep } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as box from './box';\nimport * as util from './util';\nimport { Config } from '../config';\nimport { Tensor, GraphModel } from '../tfjs/types';\n\nconst keypointsCount = 6;\n\nfunction decodeBounds(boxOutputs, anchors, inputSize) {\n const boxStarts = tf.slice(boxOutputs, [0, 1], [-1, 2]);\n const centers = tf.add(boxStarts, anchors);\n const boxSizes = tf.slice(boxOutputs, [0, 3], [-1, 2]);\n const boxSizesNormalized = tf.div(boxSizes, inputSize);\n const centersNormalized = tf.div(centers, inputSize);\n const halfBoxSize = tf.div(boxSizesNormalized, 2);\n const starts = tf.sub(centersNormalized, halfBoxSize);\n const ends = tf.add(centersNormalized, halfBoxSize);\n const startNormalized = tf.mul(starts, inputSize);\n const endNormalized = tf.mul(ends, inputSize);\n const concatAxis = 1;\n return tf.concat2d([startNormalized, endNormalized], concatAxis);\n}\n\nexport class BlazeFaceModel {\n model: GraphModel;\n anchorsData: [number, number][];\n anchors: Tensor;\n inputSize: number;\n config: Config;\n\n constructor(model, config: Config) {\n this.model = model;\n this.anchorsData = util.generateAnchors(model.inputs[0].shape[1]);\n this.anchors = tf.tensor2d(this.anchorsData);\n this.inputSize = model.inputs[0].shape[2];\n this.config = config;\n }\n\n async getBoundingBoxes(inputImage: Tensor, userConfig: Config) {\n // sanity check on input\n if ((!inputImage) || (inputImage['isDisposedInternal']) || (inputImage.shape.length !== 4) || (inputImage.shape[1] < 1) || (inputImage.shape[2] < 1)) return null;\n const [batch, boxes, scores] = tf.tidy(() => {\n const resizedImage = tf.image.resizeBilinear(inputImage, [this.inputSize, this.inputSize]);\n const normalizedImage = tf.sub(tf.div(resizedImage, 127.5), 0.5);\n const res = this.model.execute(normalizedImage);\n let batchOut;\n if (Array.isArray(res)) { // are we using tfhub or pinto converted model?\n const sorted = res.sort((a, b) => a.size - b.size);\n const concat384 = tf.concat([sorted[0], sorted[2]], 2); // dim: 384, 1 + 16\n const concat512 = tf.concat([sorted[1], sorted[3]], 2); // dim: 512, 1 + 16\n const concat = tf.concat([concat512, concat384], 1);\n batchOut = tf.squeeze(concat, 0);\n } else {\n batchOut = tf.squeeze(res); // when using tfhub model\n }\n const boxesOut = decodeBounds(batchOut, this.anchors, [this.inputSize, this.inputSize]);\n const logits = tf.slice(batchOut, [0, 0], [-1, 1]);\n const scoresOut = tf.squeeze(tf.sigmoid(logits)); // inside tf.tidy\n return [batchOut, boxesOut, scoresOut];\n });\n\n this.config = mergeDeep(this.config, userConfig) as Config;\n\n const nmsTensor = await tf.image.nonMaxSuppressionAsync(boxes, scores, this.config.face.detector.maxDetected, this.config.face.detector.iouThreshold, this.config.face.detector.minConfidence);\n const nms = await nmsTensor.array();\n tf.dispose(nmsTensor);\n const annotatedBoxes: Array<{ box: { startPoint: Tensor, endPoint: Tensor }, landmarks: Tensor, anchor: number[], confidence: number }> = [];\n const scoresData = await scores.data();\n for (let i = 0; i < nms.length; i++) {\n const confidence = scoresData[nms[i]];\n if (confidence > this.config.face.detector.minConfidence) {\n const boundingBox = tf.slice(boxes, [nms[i], 0], [1, -1]);\n const localBox = box.createBox(boundingBox);\n tf.dispose(boundingBox);\n const anchor = this.anchorsData[nms[i]];\n const landmarks = tf.tidy(() => tf.reshape(tf.squeeze(tf.slice(batch, [nms[i], keypointsCount - 1], [1, -1])), [keypointsCount, -1]));\n annotatedBoxes.push({ box: localBox, landmarks, anchor, confidence });\n }\n }\n tf.dispose(batch);\n tf.dispose(boxes);\n tf.dispose(scores);\n return {\n boxes: annotatedBoxes,\n scaleFactor: [inputImage.shape[2] / this.inputSize, inputImage.shape[1] / this.inputSize],\n };\n }\n}\n\nexport async function load(config: Config) {\n const model = await tf.loadGraphModel(join(config.modelBasePath, config.face.detector.modelPath), { fromTFHub: config.face.detector.modelPath.includes('tfhub.dev') });\n const blazeFace = new BlazeFaceModel(model, config);\n if (!model || !model.modelUrl) log('load model failed:', config.face.detector.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n return blazeFace;\n}\n", "export const MESH_ANNOTATIONS = {\n silhouette: [\n 10, 338, 297, 332, 284, 251, 389, 356, 454, 323, 361, 288,\n 397, 365, 379, 378, 400, 377, 152, 148, 176, 149, 150, 136,\n 172, 58, 132, 93, 234, 127, 162, 21, 54, 103, 67, 109,\n ],\n lipsUpperOuter: [61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291],\n lipsLowerOuter: [146, 91, 181, 84, 17, 314, 405, 321, 375, 291],\n lipsUpperInner: [78, 191, 80, 81, 82, 13, 312, 311, 310, 415, 308],\n lipsLowerInner: [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308],\n rightEyeUpper0: [246, 161, 160, 159, 158, 157, 173],\n rightEyeLower0: [33, 7, 163, 144, 145, 153, 154, 155, 133],\n rightEyeUpper1: [247, 30, 29, 27, 28, 56, 190],\n rightEyeLower1: [130, 25, 110, 24, 23, 22, 26, 112, 243],\n rightEyeUpper2: [113, 225, 224, 223, 222, 221, 189],\n rightEyeLower2: [226, 31, 228, 229, 230, 231, 232, 233, 244],\n rightEyeLower3: [143, 111, 117, 118, 119, 120, 121, 128, 245],\n rightEyebrowUpper: [156, 70, 63, 105, 66, 107, 55, 193],\n rightEyebrowLower: [35, 124, 46, 53, 52, 65],\n rightEyeIris: [473, 474, 475, 476, 477],\n leftEyeUpper0: [466, 388, 387, 386, 385, 384, 398],\n leftEyeLower0: [263, 249, 390, 373, 374, 380, 381, 382, 362],\n leftEyeUpper1: [467, 260, 259, 257, 258, 286, 414],\n leftEyeLower1: [359, 255, 339, 254, 253, 252, 256, 341, 463],\n leftEyeUpper2: [342, 445, 444, 443, 442, 441, 413],\n leftEyeLower2: [446, 261, 448, 449, 450, 451, 452, 453, 464],\n leftEyeLower3: [372, 340, 346, 347, 348, 349, 350, 357, 465],\n leftEyebrowUpper: [383, 300, 293, 334, 296, 336, 285, 417],\n leftEyebrowLower: [265, 353, 276, 283, 282, 295],\n leftEyeIris: [468, 469, 470, 471, 472],\n midwayBetweenEyes: [168],\n noseTip: [1],\n noseBottom: [2],\n noseRightCorner: [98],\n noseLeftCorner: [327],\n rightCheek: [205],\n leftCheek: [425],\n};\n\nexport const MESH_TO_IRIS_INDICES_MAP = [ // A mapping from facemesh model keypoints to iris model keypoints.\n { key: 'EyeUpper0', indices: [9, 10, 11, 12, 13, 14, 15] },\n { key: 'EyeUpper1', indices: [25, 26, 27, 28, 29, 30, 31] },\n { key: 'EyeUpper2', indices: [41, 42, 43, 44, 45, 46, 47] },\n { key: 'EyeLower0', indices: [0, 1, 2, 3, 4, 5, 6, 7, 8] },\n { key: 'EyeLower1', indices: [16, 17, 18, 19, 20, 21, 22, 23, 24] },\n { key: 'EyeLower2', indices: [32, 33, 34, 35, 36, 37, 38, 39, 40] },\n { key: 'EyeLower3', indices: [54, 55, 56, 57, 58, 59, 60, 61, 62] },\n // { key: 'EyebrowUpper', indices: [63, 64, 65, 66, 67, 68, 69, 70] },\n // { key: 'EyebrowLower', indices: [48, 49, 50, 51, 52, 53] },\n];\n\nexport const UV468 = [\n [0.499976992607117, 0.652534008026123],\n [0.500025987625122, 0.547487020492554],\n [0.499974012374878, 0.602371990680695],\n [0.482113003730774, 0.471979022026062],\n [0.500150978565216, 0.527155995368958],\n [0.499909996986389, 0.498252987861633],\n [0.499523013830185, 0.40106201171875],\n [0.289712011814117, 0.380764007568359],\n [0.499954998493195, 0.312398016452789],\n [0.499987006187439, 0.269918978214264],\n [0.500023007392883, 0.107050001621246],\n [0.500023007392883, 0.666234016418457],\n [0.5000159740448, 0.679224014282227],\n [0.500023007392883, 0.692348003387451],\n [0.499976992607117, 0.695277988910675],\n [0.499976992607117, 0.70593398809433],\n [0.499976992607117, 0.719385027885437],\n [0.499976992607117, 0.737019002437592],\n [0.499967992305756, 0.781370997428894],\n [0.499816000461578, 0.562981009483337],\n [0.473773002624512, 0.573909997940063],\n [0.104906998574734, 0.254140973091125],\n [0.365929991006851, 0.409575998783112],\n [0.338757991790771, 0.41302502155304],\n [0.311120003461838, 0.409460008144379],\n [0.274657994508743, 0.389131009578705],\n [0.393361985683441, 0.403706014156342],\n [0.345234006643295, 0.344011008739471],\n [0.370094001293182, 0.346076011657715],\n [0.319321990013123, 0.347265005111694],\n [0.297903001308441, 0.353591024875641],\n [0.24779200553894, 0.410809993743896],\n [0.396889001131058, 0.842755019664764],\n [0.280097991228104, 0.375599980354309],\n [0.106310002505779, 0.399955987930298],\n [0.2099249958992, 0.391353011131287],\n [0.355807989835739, 0.534406006336212],\n [0.471751004457474, 0.65040397644043],\n [0.474155008792877, 0.680191993713379],\n [0.439785003662109, 0.657229006290436],\n [0.414617002010345, 0.66654098033905],\n [0.450374007225037, 0.680860996246338],\n [0.428770989179611, 0.682690978050232],\n [0.374971002340317, 0.727805018424988],\n [0.486716985702515, 0.547628998756409],\n [0.485300987958908, 0.527395009994507],\n [0.257764995098114, 0.314490020275116],\n [0.401223003864288, 0.455172002315521],\n [0.429818987846375, 0.548614978790283],\n [0.421351999044418, 0.533740997314453],\n [0.276895999908447, 0.532056987285614],\n [0.483370006084442, 0.499586999416351],\n [0.33721199631691, 0.282882988452911],\n [0.296391993761063, 0.293242990970612],\n [0.169294998049736, 0.193813979625702],\n [0.447580009698868, 0.302609980106354],\n [0.392390012741089, 0.353887975215912],\n [0.354490011930466, 0.696784019470215],\n [0.067304998636246, 0.730105042457581],\n [0.442739009857178, 0.572826027870178],\n [0.457098007202148, 0.584792017936707],\n [0.381974011659622, 0.694710969924927],\n [0.392388999462128, 0.694203019142151],\n [0.277076005935669, 0.271932005882263],\n [0.422551989555359, 0.563233017921448],\n [0.385919004678726, 0.281364023685455],\n [0.383103013038635, 0.255840003490448],\n [0.331431001424789, 0.119714021682739],\n [0.229923993349075, 0.232002973556519],\n [0.364500999450684, 0.189113974571228],\n [0.229622006416321, 0.299540996551514],\n [0.173287004232407, 0.278747975826263],\n [0.472878992557526, 0.666198015213013],\n [0.446828007698059, 0.668527007102966],\n [0.422762006521225, 0.673889994621277],\n [0.445307999849319, 0.580065965652466],\n [0.388103008270264, 0.693961024284363],\n [0.403039008378983, 0.706539988517761],\n [0.403629004955292, 0.693953037261963],\n [0.460041999816895, 0.557139039039612],\n [0.431158006191254, 0.692366003990173],\n [0.452181994915009, 0.692366003990173],\n [0.475387006998062, 0.692366003990173],\n [0.465828001499176, 0.779190003871918],\n [0.472328990697861, 0.736225962638855],\n [0.473087012767792, 0.717857003211975],\n [0.473122000694275, 0.704625964164734],\n [0.473033010959625, 0.695277988910675],\n [0.427942007780075, 0.695277988910675],\n [0.426479011774063, 0.703539967536926],\n [0.423162013292313, 0.711845993995667],\n [0.4183090031147, 0.720062971115112],\n [0.390094995498657, 0.639572978019714],\n [0.013953999616206, 0.560034036636353],\n [0.499913990497589, 0.58014702796936],\n [0.413199990987778, 0.69539999961853],\n [0.409626007080078, 0.701822996139526],\n [0.468080013990402, 0.601534962654114],\n [0.422728985548019, 0.585985004901886],\n [0.463079988956451, 0.593783974647522],\n [0.37211999297142, 0.47341400384903],\n [0.334562003612518, 0.496073007583618],\n [0.411671012639999, 0.546965003013611],\n [0.242175996303558, 0.14767599105835],\n [0.290776997804642, 0.201445996761322],\n [0.327338010072708, 0.256527006626129],\n [0.399509996175766, 0.748921036720276],\n [0.441727995872498, 0.261676013469696],\n [0.429764986038208, 0.187834024429321],\n [0.412198007106781, 0.108901023864746],\n [0.288955003023148, 0.398952007293701],\n [0.218936994671822, 0.435410976409912],\n [0.41278201341629, 0.398970007896423],\n [0.257135003805161, 0.355440020561218],\n [0.427684992551804, 0.437960982322693],\n [0.448339998722076, 0.536936044692993],\n [0.178560003638268, 0.45755398273468],\n [0.247308000922203, 0.457193970680237],\n [0.286267012357712, 0.467674970626831],\n [0.332827985286713, 0.460712015628815],\n [0.368755996227264, 0.447206974029541],\n [0.398963987827301, 0.432654976844788],\n [0.476410001516342, 0.405806005001068],\n [0.189241006970406, 0.523923993110657],\n [0.228962004184723, 0.348950982093811],\n [0.490725994110107, 0.562400996685028],\n [0.404670000076294, 0.485132992267609],\n [0.019469000399113, 0.401564002037048],\n [0.426243007183075, 0.420431017875671],\n [0.396993011236191, 0.548797011375427],\n [0.266469985246658, 0.376977026462555],\n [0.439121007919312, 0.51895797252655],\n [0.032313998788595, 0.644356966018677],\n [0.419054001569748, 0.387154996395111],\n [0.462783008813858, 0.505746960639954],\n [0.238978996872902, 0.779744982719421],\n [0.198220998048782, 0.831938028335571],\n [0.107550002634525, 0.540755033493042],\n [0.183610007166862, 0.740257024765015],\n [0.134409993886948, 0.333683013916016],\n [0.385764002799988, 0.883153975009918],\n [0.490967005491257, 0.579378008842468],\n [0.382384985685349, 0.508572995662689],\n [0.174399003386497, 0.397670984268188],\n [0.318785011768341, 0.39623498916626],\n [0.343364000320435, 0.400596976280212],\n [0.396100014448166, 0.710216999053955],\n [0.187885001301765, 0.588537991046906],\n [0.430987000465393, 0.944064974784851],\n [0.318993002176285, 0.898285031318665],\n [0.266247987747192, 0.869701027870178],\n [0.500023007392883, 0.190576016902924],\n [0.499976992607117, 0.954452991485596],\n [0.366169989109039, 0.398822009563446],\n [0.393207013607025, 0.39553701877594],\n [0.410373002290726, 0.391080021858215],\n [0.194993004202843, 0.342101991176605],\n [0.388664990663528, 0.362284004688263],\n [0.365961998701096, 0.355970978736877],\n [0.343364000320435, 0.355356991291046],\n [0.318785011768341, 0.35834002494812],\n [0.301414996385574, 0.363156020641327],\n [0.058132998645306, 0.319076001644135],\n [0.301414996385574, 0.387449026107788],\n [0.499987989664078, 0.618434011936188],\n [0.415838003158569, 0.624195992946625],\n [0.445681989192963, 0.566076993942261],\n [0.465844005346298, 0.620640993118286],\n [0.49992299079895, 0.351523995399475],\n [0.288718998432159, 0.819945991039276],\n [0.335278987884521, 0.852819979190826],\n [0.440512001514435, 0.902418971061707],\n [0.128294005990028, 0.791940987110138],\n [0.408771991729736, 0.373893976211548],\n [0.455606997013092, 0.451801002025604],\n [0.499877005815506, 0.908990025520325],\n [0.375436991453171, 0.924192011356354],\n [0.11421000212431, 0.615022003650665],\n [0.448662012815475, 0.695277988910675],\n [0.4480200111866, 0.704632043838501],\n [0.447111994028091, 0.715808033943176],\n [0.444831997156143, 0.730794012546539],\n [0.430011987686157, 0.766808986663818],\n [0.406787008047104, 0.685672998428345],\n [0.400738000869751, 0.681069016456604],\n [0.392399996519089, 0.677703022956848],\n [0.367855995893478, 0.663918972015381],\n [0.247923001646996, 0.601333022117615],\n [0.452769994735718, 0.420849978923798],\n [0.43639200925827, 0.359887003898621],\n [0.416164010763168, 0.368713974952698],\n [0.413385987281799, 0.692366003990173],\n [0.228018000721931, 0.683571994304657],\n [0.468268007040024, 0.352671027183533],\n [0.411361992359161, 0.804327011108398],\n [0.499989002943039, 0.469825029373169],\n [0.479153990745544, 0.442654013633728],\n [0.499974012374878, 0.439637005329132],\n [0.432112008333206, 0.493588984012604],\n [0.499886006116867, 0.866917014122009],\n [0.49991300702095, 0.821729004383087],\n [0.456548988819122, 0.819200992584229],\n [0.344549000263214, 0.745438992977142],\n [0.37890899181366, 0.574010014533997],\n [0.374292999505997, 0.780184984207153],\n [0.319687992334366, 0.570737957954407],\n [0.357154995203018, 0.604269981384277],\n [0.295284003019333, 0.621580958366394],\n [0.447750002145767, 0.862477004528046],\n [0.410986006259918, 0.508723020553589],\n [0.31395098567009, 0.775308012962341],\n [0.354128003120422, 0.812552988529205],\n [0.324548006057739, 0.703992962837219],\n [0.189096003770828, 0.646299958229065],\n [0.279776990413666, 0.71465802192688],\n [0.1338230073452, 0.682700991630554],\n [0.336768001317978, 0.644733011722565],\n [0.429883986711502, 0.466521978378296],\n [0.455527991056442, 0.548622965812683],\n [0.437114000320435, 0.558896005153656],\n [0.467287987470627, 0.529924988746643],\n [0.414712011814117, 0.335219979286194],\n [0.37704598903656, 0.322777986526489],\n [0.344107985496521, 0.320150971412659],\n [0.312875986099243, 0.32233202457428],\n [0.283526003360748, 0.333190023899078],\n [0.241245999932289, 0.382785975933075],\n [0.102986000478268, 0.468762993812561],\n [0.267612010240555, 0.424560010433197],\n [0.297879010438919, 0.433175981044769],\n [0.333433985710144, 0.433878004550934],\n [0.366427004337311, 0.426115989685059],\n [0.396012008190155, 0.416696012020111],\n [0.420121014118195, 0.41022801399231],\n [0.007561000064015, 0.480777025222778],\n [0.432949006557465, 0.569517970085144],\n [0.458638995885849, 0.479089021682739],\n [0.473466008901596, 0.545744001865387],\n [0.476087987422943, 0.563830018043518],\n [0.468472003936768, 0.555056989192963],\n [0.433990985155106, 0.582361996173859],\n [0.483518004417419, 0.562983989715576],\n [0.482482999563217, 0.57784903049469],\n [0.42645001411438, 0.389798998832703],\n [0.438998997211456, 0.39649498462677],\n [0.450067013502121, 0.400434017181396],\n [0.289712011814117, 0.368252992630005],\n [0.276670008897781, 0.363372981548309],\n [0.517862021923065, 0.471948027610779],\n [0.710287988185883, 0.380764007568359],\n [0.526226997375488, 0.573909997940063],\n [0.895093023777008, 0.254140973091125],\n [0.634069979190826, 0.409575998783112],\n [0.661242008209229, 0.41302502155304],\n [0.688880026340485, 0.409460008144379],\n [0.725341975688934, 0.389131009578705],\n [0.606630027294159, 0.40370500087738],\n [0.654766023159027, 0.344011008739471],\n [0.629905998706818, 0.346076011657715],\n [0.680678009986877, 0.347265005111694],\n [0.702096998691559, 0.353591024875641],\n [0.75221198797226, 0.410804986953735],\n [0.602918028831482, 0.842862963676453],\n [0.719901978969574, 0.375599980354309],\n [0.893692970275879, 0.399959981441498],\n [0.790081977844238, 0.391354024410248],\n [0.643998026847839, 0.534487962722778],\n [0.528249025344849, 0.65040397644043],\n [0.525849997997284, 0.680191040039062],\n [0.560214996337891, 0.657229006290436],\n [0.585384011268616, 0.66654098033905],\n [0.549625992774963, 0.680860996246338],\n [0.57122802734375, 0.682691991329193],\n [0.624852001667023, 0.72809898853302],\n [0.513050019741058, 0.547281980514526],\n [0.51509702205658, 0.527251958847046],\n [0.742246985435486, 0.314507007598877],\n [0.598631024360657, 0.454979002475739],\n [0.570338010787964, 0.548575043678284],\n [0.578631997108459, 0.533622980117798],\n [0.723087012767792, 0.532054007053375],\n [0.516445994377136, 0.499638974666595],\n [0.662801027297974, 0.282917976379395],\n [0.70362401008606, 0.293271005153656],\n [0.830704987049103, 0.193813979625702],\n [0.552385985851288, 0.302568018436432],\n [0.607609987258911, 0.353887975215912],\n [0.645429015159607, 0.696707010269165],\n [0.932694971561432, 0.730105042457581],\n [0.557260990142822, 0.572826027870178],\n [0.542901992797852, 0.584792017936707],\n [0.6180260181427, 0.694710969924927],\n [0.607590973377228, 0.694203019142151],\n [0.722943007946014, 0.271963000297546],\n [0.577413976192474, 0.563166975975037],\n [0.614082992076874, 0.281386971473694],\n [0.616907000541687, 0.255886018276215],\n [0.668509006500244, 0.119913995265961],\n [0.770092010498047, 0.232020974159241],\n [0.635536015033722, 0.189248979091644],\n [0.77039098739624, 0.299556016921997],\n [0.826722025871277, 0.278755009174347],\n [0.527121007442474, 0.666198015213013],\n [0.553171992301941, 0.668527007102966],\n [0.577238023281097, 0.673889994621277],\n [0.554691970348358, 0.580065965652466],\n [0.611896991729736, 0.693961024284363],\n [0.59696102142334, 0.706539988517761],\n [0.596370995044708, 0.693953037261963],\n [0.539958000183105, 0.557139039039612],\n [0.568841993808746, 0.692366003990173],\n [0.547818005084991, 0.692366003990173],\n [0.52461302280426, 0.692366003990173],\n [0.534089982509613, 0.779141008853912],\n [0.527670979499817, 0.736225962638855],\n [0.526912987232208, 0.717857003211975],\n [0.526877999305725, 0.704625964164734],\n [0.526966989040375, 0.695277988910675],\n [0.572058022022247, 0.695277988910675],\n [0.573521018028259, 0.703539967536926],\n [0.57683801651001, 0.711845993995667],\n [0.581691026687622, 0.720062971115112],\n [0.609944999217987, 0.639909982681274],\n [0.986046016216278, 0.560034036636353],\n [0.5867999792099, 0.69539999961853],\n [0.590372025966644, 0.701822996139526],\n [0.531915009021759, 0.601536989212036],\n [0.577268004417419, 0.585934996604919],\n [0.536915004253387, 0.593786001205444],\n [0.627542972564697, 0.473352015018463],\n [0.665585994720459, 0.495950996875763],\n [0.588353991508484, 0.546862006187439],\n [0.757824003696442, 0.14767599105835],\n [0.709249973297119, 0.201507985591888],\n [0.672684013843536, 0.256581008434296],\n [0.600408971309662, 0.74900496006012],\n [0.55826598405838, 0.261672019958496],\n [0.570303976535797, 0.187870979309082],\n [0.588165998458862, 0.109044015407562],\n [0.711045026779175, 0.398952007293701],\n [0.781069993972778, 0.435405015945435],\n [0.587247014045715, 0.398931980133057],\n [0.742869973182678, 0.355445981025696],\n [0.572156012058258, 0.437651991844177],\n [0.55186802148819, 0.536570012569427],\n [0.821442008018494, 0.457556009292603],\n [0.752701997756958, 0.457181990146637],\n [0.71375697851181, 0.467626988887787],\n [0.66711300611496, 0.460672974586487],\n [0.631101012229919, 0.447153985500336],\n [0.6008620262146, 0.432473003864288],\n [0.523481011390686, 0.405627012252808],\n [0.810747981071472, 0.523926019668579],\n [0.771045982837677, 0.348959028720856],\n [0.509127020835876, 0.562718033790588],\n [0.595292985439301, 0.485023975372314],\n [0.980530977249146, 0.401564002037048],\n [0.573499977588654, 0.420000016689301],\n [0.602994978427887, 0.548687994480133],\n [0.733529984951019, 0.376977026462555],\n [0.560611009597778, 0.519016981124878],\n [0.967685997486115, 0.644356966018677],\n [0.580985009670258, 0.387160003185272],\n [0.537728011608124, 0.505385041236877],\n [0.760966002941132, 0.779752969741821],\n [0.801778972148895, 0.831938028335571],\n [0.892440974712372, 0.54076099395752],\n [0.816350996494293, 0.740260004997253],\n [0.865594983100891, 0.333687007427216],\n [0.614073991775513, 0.883246004581451],\n [0.508952975273132, 0.579437971115112],\n [0.617941975593567, 0.508316040039062],\n [0.825608015060425, 0.397674977779388],\n [0.681214988231659, 0.39623498916626],\n [0.656635999679565, 0.400596976280212],\n [0.603900015354156, 0.710216999053955],\n [0.81208598613739, 0.588539004325867],\n [0.56801301240921, 0.944564998149872],\n [0.681007981300354, 0.898285031318665],\n [0.733752012252808, 0.869701027870178],\n [0.633830010890961, 0.398822009563446],\n [0.606792986392975, 0.39553701877594],\n [0.589659988880157, 0.391062021255493],\n [0.805015981197357, 0.342108011245728],\n [0.611334979534149, 0.362284004688263],\n [0.634037971496582, 0.355970978736877],\n [0.656635999679565, 0.355356991291046],\n [0.681214988231659, 0.35834002494812],\n [0.698584973812103, 0.363156020641327],\n [0.941866993904114, 0.319076001644135],\n [0.698584973812103, 0.387449026107788],\n [0.584177017211914, 0.624107003211975],\n [0.554318010807037, 0.566076993942261],\n [0.534153997898102, 0.62064003944397],\n [0.711217999458313, 0.819975018501282],\n [0.664629995822906, 0.852871000766754],\n [0.559099972248077, 0.902631998062134],\n [0.871706008911133, 0.791940987110138],\n [0.591234028339386, 0.373893976211548],\n [0.544341027736664, 0.451583981513977],\n [0.624562978744507, 0.924192011356354],\n [0.88577002286911, 0.615028977394104],\n [0.551338016986847, 0.695277988910675],\n [0.551980018615723, 0.704632043838501],\n [0.552887976169586, 0.715808033943176],\n [0.555167973041534, 0.730794012546539],\n [0.569944024085999, 0.767035007476807],\n [0.593203008174896, 0.685675978660583],\n [0.599261999130249, 0.681069016456604],\n [0.607599973678589, 0.677703022956848],\n [0.631937980651855, 0.663500010967255],\n [0.752032995223999, 0.601315021514893],\n [0.547226011753082, 0.420395016670227],\n [0.563543975353241, 0.359827995300293],\n [0.583841025829315, 0.368713974952698],\n [0.586614012718201, 0.692366003990173],\n [0.771915018558502, 0.683578014373779],\n [0.531597018241882, 0.352482974529266],\n [0.588370978832245, 0.804440975189209],\n [0.52079701423645, 0.442565023899078],\n [0.567984998226166, 0.493479013442993],\n [0.543282985687256, 0.819254994392395],\n [0.655317008495331, 0.745514988899231],\n [0.621008992195129, 0.574018001556396],\n [0.625559985637665, 0.78031200170517],\n [0.680198013782501, 0.570719003677368],\n [0.64276397228241, 0.604337990283966],\n [0.704662978649139, 0.621529996395111],\n [0.552012026309967, 0.862591981887817],\n [0.589071989059448, 0.508637011051178],\n [0.685944974422455, 0.775357007980347],\n [0.645735025405884, 0.812640011310577],\n [0.675342977046967, 0.703978002071381],\n [0.810858011245728, 0.646304965019226],\n [0.72012197971344, 0.714666962623596],\n [0.866151988506317, 0.682704985141754],\n [0.663187026977539, 0.644596993923187],\n [0.570082008838654, 0.466325998306274],\n [0.544561982154846, 0.548375964164734],\n [0.562758982181549, 0.558784961700439],\n [0.531987011432648, 0.530140042304993],\n [0.585271000862122, 0.335177004337311],\n [0.622952997684479, 0.32277899980545],\n [0.655896008014679, 0.320163011550903],\n [0.687132000923157, 0.322345972061157],\n [0.716481983661652, 0.333200991153717],\n [0.758756995201111, 0.382786989212036],\n [0.897013008594513, 0.468769013881683],\n [0.732392013072968, 0.424547016620636],\n [0.70211398601532, 0.433162987232208],\n [0.66652500629425, 0.433866024017334],\n [0.633504986763, 0.426087975502014],\n [0.603875994682312, 0.416586995124817],\n [0.579657971858978, 0.409945011138916],\n [0.992439985275269, 0.480777025222778],\n [0.567192018032074, 0.569419980049133],\n [0.54136598110199, 0.478899002075195],\n [0.526564002037048, 0.546118021011353],\n [0.523913025856018, 0.563830018043518],\n [0.531529009342194, 0.555056989192963],\n [0.566035985946655, 0.582329034805298],\n [0.51631098985672, 0.563053965568542],\n [0.5174720287323, 0.577877044677734],\n [0.573594987392426, 0.389806985855103],\n [0.560697972774506, 0.395331978797913],\n [0.549755990505219, 0.399751007556915],\n [0.710287988185883, 0.368252992630005],\n [0.723330020904541, 0.363372981548309],\n];\n\nexport const TRI468 = [\n 127, 34, 139, 11, 0, 37, 232, 231, 120, 72, 37, 39, 128, 121, 47, 232, 121, 128, 104, 69, 67, 175, 171, 148, 157, 154, 155, 118, 50, 101, 73, 39, 40, 9,\n 151, 108, 48, 115, 131, 194, 204, 211, 74, 40, 185, 80, 42, 183, 40, 92, 186, 230, 229, 118, 202, 212, 214, 83, 18, 17, 76, 61, 146, 160, 29, 30, 56,\n 157, 173, 106, 204, 194, 135, 214, 192, 203, 165, 98, 21, 71, 68, 51, 45, 4, 144, 24, 23, 77, 146, 91, 205, 50, 187, 201, 200, 18, 91, 106, 182, 90, 91,\n 181, 85, 84, 17, 206, 203, 36, 148, 171, 140, 92, 40, 39, 193, 189, 244, 159, 158, 28, 247, 246, 161, 236, 3, 196, 54, 68, 104, 193, 168, 8, 117,\n 228, 31, 189, 193, 55, 98, 97, 99, 126, 47, 100, 166, 79, 218, 155, 154, 26, 209, 49, 131, 135, 136, 150, 47, 126, 217, 223, 52, 53, 45, 51, 134, 211,\n 170, 140, 67, 69, 108, 43, 106, 91, 230, 119, 120, 226, 130, 247, 63, 53, 52, 238, 20, 242, 46, 70, 156, 78, 62, 96, 46, 53, 63, 143, 34, 227, 173,\n 155, 133, 123, 117, 111, 44, 125, 19, 236, 134, 51, 216, 206, 205, 154, 153, 22, 39, 37, 167, 200, 201, 208, 36, 142, 100, 57, 212, 202, 20, 60, 99, 28,\n 158, 157, 35, 226, 113, 160, 159, 27, 204, 202, 210, 113, 225, 46, 43, 202, 204, 62, 76, 77, 137, 123, 116, 41, 38, 72, 203, 129, 142, 64, 98, 240, 49,\n 102, 64, 41, 73, 74, 212, 216, 207, 42, 74, 184, 169, 170, 211, 170, 149, 176, 105, 66, 69, 122, 6, 168, 123, 147, 187, 96, 77, 90, 65, 55, 107, 89,\n 90, 180, 101, 100, 120, 63, 105, 104, 93, 137, 227, 15, 86, 85, 129, 102, 49, 14, 87, 86, 55, 8, 9, 100, 47, 121, 145, 23, 22, 88, 89, 179, 6, 122,\n 196, 88, 95, 96, 138, 172, 136, 215, 58, 172, 115, 48, 219, 42, 80, 81, 195, 3, 51, 43, 146, 61, 171, 175, 199, 81, 82, 38, 53, 46, 225, 144, 163, 110,\n 246, 33, 7, 52, 65, 66, 229, 228, 117, 34, 127, 234, 107, 108, 69, 109, 108, 151, 48, 64, 235, 62, 78, 191, 129, 209, 126, 111, 35, 143, 163, 161, 246,\n 117, 123, 50, 222, 65, 52, 19, 125, 141, 221, 55, 65, 3, 195, 197, 25, 7, 33, 220, 237, 44, 70, 71, 139, 122, 193, 245, 247, 130, 33, 71, 21, 162,\n 153, 158, 159, 170, 169, 150, 188, 174, 196, 216, 186, 92, 144, 160, 161, 2, 97, 167, 141, 125, 241, 164, 167, 37, 72, 38, 12, 145, 159, 160, 38, 82, 13,\n 63, 68, 71, 226, 35, 111, 158, 153, 154, 101, 50, 205, 206, 92, 165, 209, 198, 217, 165, 167, 97, 220, 115, 218, 133, 112, 243, 239, 238, 241, 214,\n 135, 169, 190, 173, 133, 171, 208, 32, 125, 44, 237, 86, 87, 178, 85, 86, 179, 84, 85, 180, 83, 84, 181, 201, 83, 182, 137, 93, 132, 76, 62, 183, 61,\n 76, 184, 57, 61, 185, 212, 57, 186, 214, 207, 187, 34, 143, 156, 79, 239, 237, 123, 137, 177, 44, 1, 4, 201, 194, 32, 64, 102, 129, 213, 215, 138, 59,\n 166, 219, 242, 99, 97, 2, 94, 141, 75, 59, 235, 24, 110, 228, 25, 130, 226, 23, 24, 229, 22, 23, 230, 26, 22, 231, 112, 26, 232, 189, 190, 243, 221, 56,\n 190, 28, 56, 221, 27, 28, 222, 29, 27, 223, 30, 29, 224, 247, 30, 225, 238, 79, 20, 166, 59, 75, 60, 75, 240, 147, 177, 215, 20, 79, 166, 187, 147, 213,\n 112, 233, 244, 233, 128, 245, 128, 114, 188, 114, 217, 174, 131, 115, 220, 217, 198, 236, 198, 131, 134, 177, 132, 58, 143, 35, 124, 110, 163, 7, 228,\n 110, 25, 356, 389, 368, 11, 302, 267, 452, 350, 349, 302, 303, 269, 357, 343, 277, 452, 453, 357, 333, 332, 297, 175, 152, 377, 384, 398, 382, 347,\n 348, 330, 303, 304, 270, 9, 336, 337, 278, 279, 360, 418, 262, 431, 304, 408, 409, 310, 415, 407, 270, 409, 410, 450, 348, 347, 422, 430, 434, 313,\n 314, 17, 306, 307, 375, 387, 388, 260, 286, 414, 398, 335, 406, 418, 364, 367, 416, 423, 358, 327, 251, 284, 298, 281, 5, 4, 373, 374, 253, 307, 320,\n 321, 425, 427, 411, 421, 313, 18, 321, 405, 406, 320, 404, 405, 315, 16, 17, 426, 425, 266, 377, 400, 369, 322, 391, 269, 417, 465, 464, 386, 257, 258,\n 466, 260, 388, 456, 399, 419, 284, 332, 333, 417, 285, 8, 346, 340, 261, 413, 441, 285, 327, 460, 328, 355, 371, 329, 392, 439, 438, 382, 341, 256,\n 429, 420, 360, 364, 394, 379, 277, 343, 437, 443, 444, 283, 275, 440, 363, 431, 262, 369, 297, 338, 337, 273, 375, 321, 450, 451, 349, 446, 342, 467,\n 293, 334, 282, 458, 461, 462, 276, 353, 383, 308, 324, 325, 276, 300, 293, 372, 345, 447, 382, 398, 362, 352, 345, 340, 274, 1, 19, 456, 248, 281, 436,\n 427, 425, 381, 256, 252, 269, 391, 393, 200, 199, 428, 266, 330, 329, 287, 273, 422, 250, 462, 328, 258, 286, 384, 265, 353, 342, 387, 259, 257, 424,\n 431, 430, 342, 353, 276, 273, 335, 424, 292, 325, 307, 366, 447, 345, 271, 303, 302, 423, 266, 371, 294, 455, 460, 279, 278, 294, 271, 272, 304, 432,\n 434, 427, 272, 407, 408, 394, 430, 431, 395, 369, 400, 334, 333, 299, 351, 417, 168, 352, 280, 411, 325, 319, 320, 295, 296, 336, 319, 403, 404, 330,\n 348, 349, 293, 298, 333, 323, 454, 447, 15, 16, 315, 358, 429, 279, 14, 15, 316, 285, 336, 9, 329, 349, 350, 374, 380, 252, 318, 402, 403, 6, 197, 419,\n 318, 319, 325, 367, 364, 365, 435, 367, 397, 344, 438, 439, 272, 271, 311, 195, 5, 281, 273, 287, 291, 396, 428, 199, 311, 271, 268, 283, 444, 445,\n 373, 254, 339, 263, 466, 249, 282, 334, 296, 449, 347, 346, 264, 447, 454, 336, 296, 299, 338, 10, 151, 278, 439, 455, 292, 407, 415, 358, 371, 355,\n 340, 345, 372, 390, 249, 466, 346, 347, 280, 442, 443, 282, 19, 94, 370, 441, 442, 295, 248, 419, 197, 263, 255, 359, 440, 275, 274, 300, 383, 368,\n 351, 412, 465, 263, 467, 466, 301, 368, 389, 380, 374, 386, 395, 378, 379, 412, 351, 419, 436, 426, 322, 373, 390, 388, 2, 164, 393, 370, 462, 461,\n 164, 0, 267, 302, 11, 12, 374, 373, 387, 268, 12, 13, 293, 300, 301, 446, 261, 340, 385, 384, 381, 330, 266, 425, 426, 423, 391, 429, 355, 437, 391,\n 327, 326, 440, 457, 438, 341, 382, 362, 459, 457, 461, 434, 430, 394, 414, 463, 362, 396, 369, 262, 354, 461, 457, 316, 403, 402, 315, 404, 403, 314,\n 405, 404, 313, 406, 405, 421, 418, 406, 366, 401, 361, 306, 408, 407, 291, 409, 408, 287, 410, 409, 432, 436, 410, 434, 416, 411, 264, 368, 383, 309,\n 438, 457, 352, 376, 401, 274, 275, 4, 421, 428, 262, 294, 327, 358, 433, 416, 367, 289, 455, 439, 462, 370, 326, 2, 326, 370, 305, 460, 455, 254,\n 449, 448, 255, 261, 446, 253, 450, 449, 252, 451, 450, 256, 452, 451, 341, 453, 452, 413, 464, 463, 441, 413, 414, 258, 442, 441, 257, 443, 442, 259,\n 444, 443, 260, 445, 444, 467, 342, 445, 459, 458, 250, 289, 392, 290, 290, 328, 460, 376, 433, 435, 250, 290, 392, 411, 416, 433, 341, 463, 464, 453,\n 464, 465, 357, 465, 412, 343, 412, 399, 360, 363, 440, 437, 399, 456, 420, 456, 363, 401, 435, 288, 372, 383, 353, 339, 255, 249, 448, 261, 255, 133,\n 243, 190, 133, 155, 112, 33, 246, 247, 33, 130, 25, 398, 384, 286, 362, 398, 414, 362, 463, 341, 263, 359, 467, 263, 249, 255, 466, 467, 260, 75, 60,\n 166, 238, 239, 79, 162, 127, 139, 72, 11, 37, 121, 232, 120, 73, 72, 39, 114, 128, 47, 233, 232, 128, 103, 104, 67, 152, 175, 148, 173, 157, 155,\n 119, 118, 101, 74, 73, 40, 107, 9, 108, 49, 48, 131, 32, 194, 211, 184, 74, 185, 191, 80, 183, 185, 40, 186, 119, 230, 118, 210, 202, 214, 84, 83, 17,\n 77, 76, 146, 161, 160, 30, 190, 56, 173, 182, 106, 194, 138, 135, 192, 129, 203, 98, 54, 21, 68, 5, 51, 4, 145, 144, 23, 90, 77, 91, 207, 205, 187, 83,\n 201, 18, 181, 91, 182, 180, 90, 181, 16, 85, 17, 205, 206, 36, 176, 148, 140, 165, 92, 39, 245, 193, 244, 27, 159, 28, 30, 247, 161, 174, 236, 196,\n 103, 54, 104, 55, 193, 8, 111, 117, 31, 221, 189, 55, 240, 98, 99, 142, 126, 100, 219, 166, 218, 112, 155, 26, 198, 209, 131, 169, 135, 150, 114, 47,\n 217, 224, 223, 53, 220, 45, 134, 32, 211, 140, 109, 67, 108, 146, 43, 91, 231, 230, 120, 113, 226, 247, 105, 63, 52, 241, 238, 242, 124, 46, 156, 95,\n 78, 96, 70, 46, 63, 116, 143, 227, 116, 123, 111, 1, 44, 19, 3, 236, 51, 207, 216, 205, 26, 154, 22, 165, 39, 167, 199, 200, 208, 101, 36, 100, 43,\n 57, 202, 242, 20, 99, 56, 28, 157, 124, 35, 113, 29, 160, 27, 211, 204, 210, 124, 113, 46, 106, 43, 204, 96, 62, 77, 227, 137, 116, 73, 41, 72, 36, 203,\n 142, 235, 64, 240, 48, 49, 64, 42, 41, 74, 214, 212, 207, 183, 42, 184, 210, 169, 211, 140, 170, 176, 104, 105, 69, 193, 122, 168, 50, 123, 187, 89, 96,\n 90, 66, 65, 107, 179, 89, 180, 119, 101, 120, 68, 63, 104, 234, 93, 227, 16, 15, 85, 209, 129, 49, 15, 14, 86, 107, 55, 9, 120, 100, 121, 153, 145, 22,\n 178, 88, 179, 197, 6, 196, 89, 88, 96, 135, 138, 136, 138, 215, 172, 218, 115, 219, 41, 42, 81, 5, 195, 51, 57, 43, 61, 208, 171, 199, 41, 81, 38,\n 224, 53, 225, 24, 144, 110, 105, 52, 66, 118, 229, 117, 227, 34, 234, 66, 107, 69, 10, 109, 151, 219, 48, 235, 183, 62, 191, 142, 129, 126, 116, 111,\n 143, 7, 163, 246, 118, 117, 50, 223, 222, 52, 94, 19, 141, 222, 221, 65, 196, 3, 197, 45, 220, 44, 156, 70, 139, 188, 122, 245, 139, 71, 162, 145,\n 153, 159, 149, 170, 150, 122, 188, 196, 206, 216, 92, 163, 144, 161, 164, 2, 167, 242, 141, 241, 0, 164, 37, 11, 72, 12, 144, 145, 160, 12, 38, 13, 70,\n 63, 71, 31, 226, 111, 157, 158, 154, 36, 101, 205, 203, 206, 165, 126, 209, 217, 98, 165, 97, 237, 220, 218, 237, 239, 241, 210, 214, 169, 140, 171, 32,\n 241, 125, 237, 179, 86, 178, 180, 85, 179, 181, 84, 180, 182, 83, 181, 194, 201, 182, 177, 137, 132, 184, 76, 183, 185, 61, 184, 186, 57, 185, 216, 212,\n 186, 192, 214, 187, 139, 34, 156, 218, 79, 237, 147, 123, 177, 45, 44, 4, 208, 201, 32, 98, 64, 129, 192, 213, 138, 235, 59, 219, 141, 242, 97, 97, 2,\n 141, 240, 75, 235, 229, 24, 228, 31, 25, 226, 230, 23, 229, 231, 22, 230, 232, 26, 231, 233, 112, 232, 244, 189, 243, 189, 221, 190, 222, 28, 221,\n 223, 27, 222, 224, 29, 223, 225, 30, 224, 113, 247, 225, 99, 60, 240, 213, 147, 215, 60, 20, 166, 192, 187, 213, 243, 112, 244, 244, 233, 245, 245,\n 128, 188, 188, 114, 174, 134, 131, 220, 174, 217, 236, 236, 198, 134, 215, 177, 58, 156, 143, 124, 25, 110, 7, 31, 228, 25, 264, 356, 368, 0, 11, 267,\n 451, 452, 349, 267, 302, 269, 350, 357, 277, 350, 452, 357, 299, 333, 297, 396, 175, 377, 381, 384, 382, 280, 347, 330, 269, 303, 270, 151, 9, 337,\n 344, 278, 360, 424, 418, 431, 270, 304, 409, 272, 310, 407, 322, 270, 410, 449, 450, 347, 432, 422, 434, 18, 313, 17, 291, 306, 375, 259, 387, 260,\n 424, 335, 418, 434, 364, 416, 391, 423, 327, 301, 251, 298, 275, 281, 4, 254, 373, 253, 375, 307, 321, 280, 425, 411, 200, 421, 18, 335, 321, 406,\n 321, 320, 405, 314, 315, 17, 423, 426, 266, 396, 377, 369, 270, 322, 269, 413, 417, 464, 385, 386, 258, 248, 456, 419, 298, 284, 333, 168, 417, 8,\n 448, 346, 261, 417, 413, 285, 326, 327, 328, 277, 355, 329, 309, 392, 438, 381, 382, 256, 279, 429, 360, 365, 364, 379, 355, 277, 437, 282, 443, 283,\n 281, 275, 363, 395, 431, 369, 299, 297, 337, 335, 273, 321, 348, 450, 349, 359, 446, 467, 283, 293, 282, 250, 458, 462, 300, 276, 383, 292, 308, 325,\n 283, 276, 293, 264, 372, 447, 346, 352, 340, 354, 274, 19, 363, 456, 281, 426, 436, 425, 380, 381, 252, 267, 269, 393, 421, 200, 428, 371, 266, 329,\n 432, 287, 422, 290, 250, 328, 385, 258, 384, 446, 265, 342, 386, 387, 257, 422, 424, 430, 445, 342, 276, 422, 273, 424, 306, 292, 307, 352, 366, 345,\n 268, 271, 302, 358, 423, 371, 327, 294, 460, 331, 279, 294, 303, 271, 304, 436, 432, 427, 304, 272, 408, 395, 394, 431, 378, 395, 400, 296, 334, 299,\n 6, 351, 168, 376, 352, 411, 307, 325, 320, 285, 295, 336, 320, 319, 404, 329, 330, 349, 334, 293, 333, 366, 323, 447, 316, 15, 315, 331, 358, 279,\n 317, 14, 316, 8, 285, 9, 277, 329, 350, 253, 374, 252, 319, 318, 403, 351, 6, 419, 324, 318, 325, 397, 367, 365, 288, 435, 397, 278, 344, 439, 310,\n 272, 311, 248, 195, 281, 375, 273, 291, 175, 396, 199, 312, 311, 268, 276, 283, 445, 390, 373, 339, 295, 282, 296, 448, 449, 346, 356, 264, 454, 337,\n 336, 299, 337, 338, 151, 294, 278, 455, 308, 292, 415, 429, 358, 355, 265, 340, 372, 388, 390, 466, 352, 346, 280, 295, 442, 282, 354, 19, 370, 285,\n 441, 295, 195, 248, 197, 457, 440, 274, 301, 300, 368, 417, 351, 465, 251, 301, 389, 385, 380, 386, 394, 395, 379, 399, 412, 419, 410, 436, 322, 387,\n 373, 388, 326, 2, 393, 354, 370, 461, 393, 164, 267, 268, 302, 12, 386, 374, 387, 312, 268, 13, 298, 293, 301, 265, 446, 340, 380, 385, 381, 280, 330,\n 425, 322, 426, 391, 420, 429, 437, 393, 391, 326, 344, 440, 438, 458, 459, 461, 364, 434, 394, 428, 396, 262, 274, 354, 457, 317, 316, 402, 316, 315,\n 403, 315, 314, 404, 314, 313, 405, 313, 421, 406, 323, 366, 361, 292, 306, 407, 306, 291, 408, 291, 287, 409, 287, 432, 410, 427, 434, 411, 372, 264,\n 383, 459, 309, 457, 366, 352, 401, 1, 274, 4, 418, 421, 262, 331, 294, 358, 435, 433, 367, 392, 289, 439, 328, 462, 326, 94, 2, 370, 289, 305, 455, 339,\n 254, 448, 359, 255, 446, 254, 253, 449, 253, 252, 450, 252, 256, 451, 256, 341, 452, 414, 413, 463, 286, 441, 414, 286, 258, 441, 258, 257, 442, 257,\n 259, 443, 259, 260, 444, 260, 467, 445, 309, 459, 250, 305, 289, 290, 305, 290, 460, 401, 376, 435, 309, 250, 392, 376, 411, 433, 453, 341, 464, 357,\n 453, 465, 343, 357, 412, 437, 343, 399, 344, 360, 440, 420, 437, 456, 360, 420, 363, 361, 401, 288, 265, 372, 353, 390, 339, 249, 339, 448, 255];\n\nexport const TRI68 = [0, 1, 36, 0, 36, 17, 1, 2, 41, 1, 41, 36, 2, 3, 31, 2, 31, 41, 3, 4, 48, 3, 48, 31, 4, 5, 48, 5, 6, 48, 6, 7, 59, 6, 59, 48, 7, 8, 58, 7, 58, 59,\n 8, 9, 56, 8, 56, 57, 8, 57, 58, 9, 10, 55, 9, 55, 56, 10, 11, 54, 10, 54, 55, 11, 12, 54, 12, 13, 54, 13, 14, 35, 13, 35, 54, 14, 15, 46, 14, 46, 35, 15, 16,\n 45, 15, 45, 46, 16, 26, 45, 17, 36, 18, 18, 37, 19, 18, 36, 37, 19, 38, 20, 19, 37, 38, 20, 39, 21, 20, 38, 39, 21, 39, 27, 22, 42, 23, 22, 27, 42, 23, 43, 24,\n 23, 42, 43, 24, 44, 25, 24, 43, 44, 25, 45, 26, 25, 44, 45, 27, 39, 28, 27, 28, 42, 28, 39, 29, 28, 29, 42, 29, 31, 30, 29, 30, 35, 29, 40, 31, 29, 35, 47, 29,\n 39, 40, 29, 47, 42, 30, 31, 32, 30, 32, 33, 30, 33, 34, 30, 34, 35, 31, 50, 32, 31, 40, 41, 31, 48, 49, 31, 49, 50, 32, 51, 33, 32, 50, 51, 33, 51, 34, 34, 52,\n 35, 34, 51, 52, 35, 46, 47, 35, 52, 53, 35, 53, 54, 36, 41, 37, 37, 40, 38, 37, 41, 40, 38, 40, 39, 42, 47, 43, 43, 47, 44, 44, 46, 45, 44, 47, 46, 48, 60, 49,\n 48, 59, 60, 49, 61, 50, 49, 60, 61, 50, 62, 51, 50, 61, 62, 51, 62, 52, 52, 63, 53, 52, 62, 63, 53, 64, 54, 53, 63, 64, 54, 64, 55, 55, 65, 56, 55, 64, 65, 56,\n 66, 57, 56, 65, 66, 57, 66, 58, 58, 67, 59, 58, 66, 67, 59, 67, 60, 60, 67, 61, 61, 66, 62, 61, 67, 66, 62, 66, 63, 63, 65, 64, 63, 66, 65, 21, 27, 22];\n\nexport const TRI33 = [\n /* eyes */ 0, 8, 7, 7, 8, 1, 2, 10, 9, 9, 10, 3,\n /* brows */ 17, 0, 18, 18, 0, 7, 18, 7, 19, 19, 7, 1, 19, 1, 11, 19, 11, 20, 21, 3, 22, 21, 9, 3, 20, 9, 21, 20, 2, 9, 20, 11, 2,\n /* 4head */ 23, 17, 18, 25, 21, 22, 24, 19, 20, 24, 18, 19, 24, 20, 21, 24, 23, 18, 24, 21, 25,\n /* nose */ 11, 12, 4, 11, 4, 13, 1, 12, 11, 11, 13, 2, 12, 14, 4, 4, 14, 13,\n /* up-lip */ 14, 5, 15, 14, 15, 6, 12, 5, 14, 14, 6, 13,\n /* cheeks */ 8, 12, 1, 2, 13, 10, 8, 26, 12, 10, 13, 27, 26, 5, 12, 13, 6, 27, 0, 26, 8, 10, 27, 3,\n /* chin */ 5, 32, 16, 16, 32, 6, 5, 30, 32, 6, 32, 31,\n /* cont */ 26, 30, 5, 27, 6, 31, 0, 28, 26, 3, 27, 29, 17, 28, 0, 3, 29, 22, 23, 28, 17, 22, 29, 25, 28, 30, 26, 27, 31, 29,\n];\n\nexport const TRI7 = [0, 4, 1, 2, 4, 3, 4, 5, 6];\n\nexport const VTX68 = [\n /* cont */ 127, 234, 132, 58, 172, 150, 149, 148, 152, 377, 378, 379, 397, 288, 361, 454, 356,\n /* brows */ 70, 63, 105, 66, 107, 336, 296, 334, 293, 300,\n /* nose */ 168, 6, 195, 4, 98, 97, 2, 326, 327,\n /* eyes */ 33, 160, 158, 133, 153, 144, 362, 385, 387, 263, 373, 380,\n /* lip */ 57, 40, 37, 0, 267, 270, 287, 321, 314, 17, 84, 91,\n /* mouth */ 78, 81, 13, 311, 308, 402, 14, 178,\n];\n\nexport const VTX33 = [33, 133, 362, 263, 1, 62, 308, 159, 145, 386, 374, 6, 102, 331, 2, 13, 14, 70, 105, 107, 336, 334, 300, 54, 10, 284, 50, 280, 234, 454, 58, 288, 152];\n\nexport const VTX7 = [33, 133, 362, 263, 1, 78, 308];\n\nexport const UV68 = VTX68.map((x) => UV468[x]);\n\nexport const UV33 = VTX33.map((x) => UV468[x]);\n\nexport const UV7 = VTX7.map((x) => UV468[x]);\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as bounding from './box';\nimport * as util from './util';\nimport * as coords from './coords';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport { BlazeFaceModel } from './blazeface';\n\nconst leftOutline = coords.MESH_ANNOTATIONS['leftEyeLower0'];\nconst rightOutline = coords.MESH_ANNOTATIONS['rightEyeLower0'];\n\nconst eyeLandmarks = {\n leftBounds: [leftOutline[0], leftOutline[leftOutline.length - 1]],\n rightBounds: [rightOutline[0], rightOutline[rightOutline.length - 1]],\n};\n\nconst meshLandmarks = {\n count: 468,\n mouth: 13,\n symmetryLine: [13, coords.MESH_ANNOTATIONS['midwayBetweenEyes'][0]],\n};\n\nconst blazeFaceLandmarks = {\n leftEye: 0,\n rightEye: 1,\n nose: 2,\n mouth: 3,\n leftEar: 4,\n rightEar: 5,\n symmetryLine: [3, 2],\n};\n\nconst irisLandmarks = {\n upperCenter: 3,\n lowerCenter: 4,\n index: 71,\n numCoordinates: 76,\n};\n\n// Replace the raw coordinates returned by facemesh with refined iris model coordinates\n// Update the z coordinate to be an average of the original and the new.\nfunction replaceRawCoordinates(rawCoords, newCoords, prefix, keys) {\n for (let i = 0; i < coords.MESH_TO_IRIS_INDICES_MAP.length; i++) {\n const { key, indices } = coords.MESH_TO_IRIS_INDICES_MAP[i];\n const originalIndices = coords.MESH_ANNOTATIONS[`${prefix}${key}`];\n if (!keys || keys.includes(key)) {\n for (let j = 0; j < indices.length; j++) {\n const index = indices[j];\n rawCoords[originalIndices[j]] = [\n newCoords[index][0], newCoords[index][1],\n (newCoords[index][2] + rawCoords[originalIndices[j]][2]) / 2,\n ];\n }\n }\n }\n}\n// The Pipeline coordinates between the bounding box and skeleton models.\nexport class Pipeline {\n storedBoxes: Array<{ startPoint: number[], endPoint: number[], landmarks: Array, confidence: number, faceConfidence?: number }>;\n boundingBoxDetector: BlazeFaceModel; // tf.GraphModel\n meshDetector: GraphModel; // tf.GraphModel\n irisModel: GraphModel; // tf.GraphModel\n boxSize: number;\n meshSize: number;\n irisSize: number;\n irisEnlarge: number;\n skipped: number;\n detectedFaces: number;\n\n constructor(boundingBoxDetector, meshDetector, irisModel) {\n // An array of facial bounding boxes.\n this.storedBoxes = [];\n this.boundingBoxDetector = boundingBoxDetector;\n this.meshDetector = meshDetector;\n this.irisModel = irisModel;\n this.boxSize = boundingBoxDetector?.model?.inputs[0].shape[2] || 0;\n this.meshSize = meshDetector?.inputs[0].shape[2] || boundingBoxDetector?.model?.inputs[0].shape[2];\n this.irisSize = irisModel?.inputs[0].shape[1] || 0;\n this.irisEnlarge = 2.3;\n this.skipped = 0;\n this.detectedFaces = 0;\n }\n\n transformRawCoords(rawCoords, box, angle, rotationMatrix) {\n const boxSize = bounding.getBoxSize({ startPoint: box.startPoint, endPoint: box.endPoint });\n const coordsScaled = rawCoords.map((coord) => ([\n boxSize[0] / this.meshSize * (coord[0] - this.meshSize / 2),\n boxSize[1] / this.meshSize * (coord[1] - this.meshSize / 2),\n coord[2],\n ]));\n const coordsRotationMatrix = (angle !== 0) ? util.buildRotationMatrix(angle, [0, 0]) : util.IDENTITY_MATRIX;\n const coordsRotated = (angle !== 0) ? coordsScaled.map((coord) => ([...util.rotatePoint(coord, coordsRotationMatrix), coord[2]])) : coordsScaled;\n const inverseRotationMatrix = (angle !== 0) ? util.invertTransformMatrix(rotationMatrix) : util.IDENTITY_MATRIX;\n const boxCenter = [...bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint }), 1];\n return coordsRotated.map((coord) => ([\n Math.round(coord[0] + util.dot(boxCenter, inverseRotationMatrix[0])),\n Math.round(coord[1] + util.dot(boxCenter, inverseRotationMatrix[1])),\n Math.round(coord[2]),\n ]));\n }\n\n // eslint-disable-next-line class-methods-use-this\n getLeftToRightEyeDepthDifference(rawCoords) {\n const leftEyeZ = rawCoords[eyeLandmarks.leftBounds[0]][2];\n const rightEyeZ = rawCoords[eyeLandmarks.rightBounds[0]][2];\n return leftEyeZ - rightEyeZ;\n }\n\n // Returns a box describing a cropped region around the eye fit for passing to the iris model.\n getEyeBox(rawCoords, face, eyeInnerCornerIndex, eyeOuterCornerIndex, flip = false) {\n const box = bounding.squarifyBox(bounding.enlargeBox(bounding.calculateLandmarksBoundingBox([rawCoords[eyeInnerCornerIndex], rawCoords[eyeOuterCornerIndex]]), this.irisEnlarge));\n const boxSize = bounding.getBoxSize(box);\n let crop = tf.image.cropAndResize(face, [[\n box.startPoint[1] / this.meshSize,\n box.startPoint[0] / this.meshSize, box.endPoint[1] / this.meshSize,\n box.endPoint[0] / this.meshSize,\n ]], [0], [this.irisSize, this.irisSize]);\n if (flip && tf.ENV.flags.IS_BROWSER) {\n const flipped = tf.image.flipLeftRight(crop); // flipLeftRight is not defined for tfjs-node\n tf.dispose(crop);\n crop = flipped;\n }\n return { box, boxSize, crop };\n }\n\n // Given a cropped image of an eye, returns the coordinates of the contours surrounding the eye and the iris.\n getEyeCoords(eyeData, eyeBox, eyeBoxSize, flip = false) {\n const eyeRawCoords: Array<[number, number, number]> = [];\n for (let i = 0; i < irisLandmarks.numCoordinates; i++) {\n const x = eyeData[i * 3];\n const y = eyeData[i * 3 + 1];\n const z = eyeData[i * 3 + 2];\n eyeRawCoords.push([\n (flip ? (1 - (x / this.irisSize)) : (x / this.irisSize)) * eyeBoxSize[0] + eyeBox.startPoint[0],\n (y / this.irisSize) * eyeBoxSize[1] + eyeBox.startPoint[1], z,\n ]);\n }\n return { rawCoords: eyeRawCoords, iris: eyeRawCoords.slice(irisLandmarks.index) };\n }\n\n // The z-coordinates returned for the iris are unreliable, so we take the z values from the surrounding keypoints.\n // eslint-disable-next-line class-methods-use-this\n getAdjustedIrisCoords(rawCoords, irisCoords, direction) {\n const upperCenterZ = rawCoords[coords.MESH_ANNOTATIONS[`${direction}EyeUpper0`][irisLandmarks.upperCenter]][2];\n const lowerCenterZ = rawCoords[coords.MESH_ANNOTATIONS[`${direction}EyeLower0`][irisLandmarks.lowerCenter]][2];\n const averageZ = (upperCenterZ + lowerCenterZ) / 2;\n // Iris indices: 0: center | 1: right | 2: above | 3: left | 4: below\n return irisCoords.map((coord, i) => {\n let z = averageZ;\n if (i === 2) {\n z = upperCenterZ;\n } else if (i === 4) {\n z = lowerCenterZ;\n }\n return [coord[0], coord[1], z];\n });\n }\n\n correctFaceRotation(config, box, input) {\n const [indexOfMouth, indexOfForehead] = (box.landmarks.length >= meshLandmarks.count) ? meshLandmarks.symmetryLine : blazeFaceLandmarks.symmetryLine;\n const angle = util.computeRotation(box.landmarks[indexOfMouth], box.landmarks[indexOfForehead]);\n const faceCenter = bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint });\n const faceCenterNormalized = [faceCenter[0] / input.shape[2], faceCenter[1] / input.shape[1]];\n const rotatedImage = tf.image.rotateWithOffset(input, angle, 0, faceCenterNormalized); // rotateWithOffset is not defined for tfjs-node\n const rotationMatrix = util.buildRotationMatrix(-angle, faceCenter);\n const cut = config.face.mesh.enabled\n ? bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.meshSize, this.meshSize])\n : bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.boxSize, this.boxSize]);\n const face = tf.div(cut, 255);\n tf.dispose(cut);\n tf.dispose(rotatedImage);\n return [angle, rotationMatrix, face];\n }\n\n async augmentIris(rawCoords, face) {\n const { box: leftEyeBox, boxSize: leftEyeBoxSize, crop: leftEyeCrop } = this.getEyeBox(rawCoords, face, eyeLandmarks.leftBounds[0], eyeLandmarks.leftBounds[1], true);\n const { box: rightEyeBox, boxSize: rightEyeBoxSize, crop: rightEyeCrop } = this.getEyeBox(rawCoords, face, eyeLandmarks.rightBounds[0], eyeLandmarks.rightBounds[1]);\n const combined = tf.concat([leftEyeCrop, rightEyeCrop]);\n tf.dispose(leftEyeCrop);\n tf.dispose(rightEyeCrop);\n const eyePredictions = this.irisModel.predict(combined) as Tensor;\n tf.dispose(combined);\n const eyePredictionsData = await eyePredictions.data(); // inside tf.tidy\n tf.dispose(eyePredictions);\n const leftEyeData = eyePredictionsData.slice(0, irisLandmarks.numCoordinates * 3);\n const { rawCoords: leftEyeRawCoords, iris: leftIrisRawCoords } = this.getEyeCoords(leftEyeData, leftEyeBox, leftEyeBoxSize, true);\n const rightEyeData = eyePredictionsData.slice(irisLandmarks.numCoordinates * 3);\n const { rawCoords: rightEyeRawCoords, iris: rightIrisRawCoords } = this.getEyeCoords(rightEyeData, rightEyeBox, rightEyeBoxSize);\n const leftToRightEyeDepthDifference = this.getLeftToRightEyeDepthDifference(rawCoords);\n if (Math.abs(leftToRightEyeDepthDifference) < 30) { // User is looking straight ahead.\n replaceRawCoordinates(rawCoords, leftEyeRawCoords, 'left', null);\n replaceRawCoordinates(rawCoords, rightEyeRawCoords, 'right', null);\n // If the user is looking to the left or to the right, the iris coordinates tend to diverge too much from the mesh coordinates for them to be merged\n // So we only update a single contour line above and below the eye.\n } else if (leftToRightEyeDepthDifference < 1) { // User is looking towards the right.\n replaceRawCoordinates(rawCoords, leftEyeRawCoords, 'left', ['EyeUpper0', 'EyeLower0']);\n } else { // User is looking towards the left.\n replaceRawCoordinates(rawCoords, rightEyeRawCoords, 'right', ['EyeUpper0', 'EyeLower0']);\n }\n const adjustedLeftIrisCoords = this.getAdjustedIrisCoords(rawCoords, leftIrisRawCoords, 'left');\n const adjustedRightIrisCoords = this.getAdjustedIrisCoords(rawCoords, rightIrisRawCoords, 'right');\n const newCoords = rawCoords.concat(adjustedLeftIrisCoords).concat(adjustedRightIrisCoords);\n return newCoords;\n }\n\n async predict(input, config) {\n let useFreshBox = false;\n // run new detector every skipFrames unless we only want box to start with\n let detector;\n if ((this.skipped === 0) || (this.skipped > config.face.detector.skipFrames) || !config.face.mesh.enabled || !config.skipFrame) {\n detector = await this.boundingBoxDetector.getBoundingBoxes(input, config);\n this.skipped = 0;\n }\n if (config.skipFrame) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (!config.skipFrame || (detector && detector.boxes && (!config.face.mesh.enabled || (detector.boxes.length !== this.detectedFaces) && (this.detectedFaces !== config.face.detector.maxDetected)))) {\n this.storedBoxes = [];\n this.detectedFaces = 0;\n for (const possible of detector.boxes) {\n const startPoint = await possible.box.startPoint.data();\n const endPoint = await possible.box.endPoint.data();\n const landmarks = await possible.landmarks.array();\n this.storedBoxes.push({ startPoint, endPoint, landmarks, confidence: possible.confidence });\n }\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n\n if (useFreshBox) {\n if (!detector || !detector.boxes || (detector.boxes.length === 0)) {\n this.storedBoxes = [];\n this.detectedFaces = 0;\n return null;\n }\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const scaledBox = bounding.scaleBoxCoordinates({ startPoint: this.storedBoxes[i].startPoint, endPoint: this.storedBoxes[i].endPoint }, detector.scaleFactor);\n const enlargedBox = bounding.enlargeBox(scaledBox);\n const squarifiedBox = bounding.squarifyBox(enlargedBox);\n const landmarks = this.storedBoxes[i].landmarks;\n const confidence = this.storedBoxes[i].confidence;\n this.storedBoxes[i] = { ...squarifiedBox, confidence, landmarks };\n }\n }\n if (detector && detector.boxes) {\n detector.boxes.forEach((prediction) => {\n tf.dispose(prediction.box.startPoint);\n tf.dispose(prediction.box.endPoint);\n tf.dispose(prediction.landmarks);\n });\n }\n\n const results: Array<{ mesh, box, faceConfidence, boxConfidence, confidence, image }> = [];\n // for (let i = 0; i < this.storedBoxes.length; i++) {\n const newBoxes: Array<{ startPoint: number[]; endPoint: number[]; landmarks: number[]; confidence: number; faceConfidence?: number | undefined; }> = [];\n for (let box of this.storedBoxes) {\n // let box = this.storedBoxes[i]; // The facial bounding box landmarks could come either from blazeface (if we are using a fresh box), or from the mesh model (if we are reusing an old box).\n let face;\n let angle = 0;\n let rotationMatrix;\n\n if (config.face.detector.rotation && config.face.mesh.enabled && tf.ENV.flags.IS_BROWSER) {\n [angle, rotationMatrix, face] = this.correctFaceRotation(config, box, input);\n } else {\n rotationMatrix = util.IDENTITY_MATRIX;\n const clonedImage = input.clone();\n const cut = config.face.mesh.enabled\n ? bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, clonedImage, [this.meshSize, this.meshSize])\n : bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, clonedImage, [this.boxSize, this.boxSize]);\n face = tf.div(cut, 255);\n tf.dispose(cut);\n tf.dispose(clonedImage);\n }\n\n // if we're not going to produce mesh, don't spend time with further processing\n if (!config.face.mesh.enabled) {\n results.push({\n mesh: [],\n box,\n faceConfidence: null,\n boxConfidence: box.confidence,\n confidence: box.confidence,\n image: face,\n });\n } else {\n const [contours, confidence, contourCoords] = this.meshDetector.execute(face) as Array; // The first returned tensor represents facial contours which are already included in the coordinates.\n tf.dispose(contours);\n const faceConfidence = (await confidence.data())[0] as number; // inside tf.tidy\n tf.dispose(confidence);\n const coordsReshaped = tf.reshape(contourCoords, [-1, 3]);\n let rawCoords = await coordsReshaped.array();\n tf.dispose(contourCoords);\n tf.dispose(coordsReshaped);\n if (faceConfidence < config.face.detector.minConfidence) {\n // if (!this.storedBoxes[i]) console.log('2', i, this.storedBoxes.length, this.storedBoxes[i], box, this.storedBoxes);\n // this.storedBoxes[i].confidence = faceConfidence; // reset confidence of cached box\n box.confidence = faceConfidence; // reset confidence of cached box\n tf.dispose(face);\n } else {\n if (config.face.iris.enabled) rawCoords = await this.augmentIris(rawCoords, face);\n\n // override box from detection with one calculated from mesh\n const mesh = this.transformRawCoords(rawCoords, box, angle, rotationMatrix);\n box = { ...bounding.enlargeBox(bounding.calculateLandmarksBoundingBox(mesh), 1.5), confidence: box.confidence }; // redefine box with mesh calculated one\n\n // do rotation one more time with mesh keypoints if we want to return perfect image\n if (config.face.detector.rotation && config.face.mesh.enabled && config.face.description.enabled && tf.ENV.flags.IS_BROWSER) {\n [angle, rotationMatrix, face] = this.correctFaceRotation(config, box, input);\n }\n\n results.push({\n mesh,\n box,\n faceConfidence,\n boxConfidence: box.confidence,\n confidence: faceConfidence,\n image: face,\n });\n\n // updated stored cache values\n // this.storedBoxes[i] = { ...bounding.squarifyBox(box), confidence: box.confidence, faceConfidence };\n box = { ...bounding.squarifyBox(box), confidence: box.confidence, faceConfidence };\n }\n }\n newBoxes.push(box);\n }\n\n // results = results.filter((a) => a !== null);\n // remove cache entries for detected boxes on low confidence\n if (config.face.mesh.enabled) this.storedBoxes = newBoxes.filter((a) => a.confidence > config.face.detector.minConfidence);\n this.detectedFaces = results.length;\n\n return results;\n }\n}\n", "/**\n * FaceMesh & BlazeFace Module entry point\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as blazeface from './blazeface';\nimport * as facepipeline from './facepipeline';\nimport * as coords from './coords';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Face } from '../result';\nimport { Config } from '../config';\n\nlet faceModels: [blazeface.BlazeFaceModel | null, GraphModel | null, GraphModel | null] = [null, null, null];\nlet facePipeline;\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const predictions = await facePipeline.predict(input, config);\n const results: Array = [];\n let id = 0;\n for (const prediction of (predictions || [])) {\n if (!prediction || prediction.isDisposedInternal) continue; // guard against disposed tensors on long running operations such as pause in middle of processing\n const meshRaw = prediction.mesh.map((pt) => [\n pt[0] / (input.shape[2] || 0),\n pt[1] / (input.shape[1] || 0),\n pt[2] / facePipeline.meshSize,\n ]);\n const annotations = {};\n if (prediction.mesh && prediction.mesh.length > 0) {\n for (const key of Object.keys(coords.MESH_ANNOTATIONS)) annotations[key] = coords.MESH_ANNOTATIONS[key].map((index) => prediction.mesh[index]);\n }\n const clampedBox: [number, number, number, number] = prediction.box ? [\n Math.trunc(Math.max(0, prediction.box.startPoint[0])),\n Math.trunc(Math.max(0, prediction.box.startPoint[1])),\n Math.trunc(Math.min((input.shape[2] || 0), prediction.box.endPoint[0]) - Math.max(0, prediction.box.startPoint[0])),\n Math.trunc(Math.min((input.shape[1] || 0), prediction.box.endPoint[1]) - Math.max(0, prediction.box.startPoint[1])),\n ] : [0, 0, 0, 0];\n const boxRaw: [number, number, number, number] = prediction.box ? [\n prediction.box.startPoint[0] / (input.shape[2] || 0),\n prediction.box.startPoint[1] / (input.shape[1] || 0),\n (prediction.box.endPoint[0] - prediction.box.startPoint[0]) / (input.shape[2] || 0),\n (prediction.box.endPoint[1] - prediction.box.startPoint[1]) / (input.shape[1] || 0),\n ] : [0, 0, 0, 0];\n results.push({\n id: id++,\n score: Math.round(100 * prediction.faceConfidence || 100 * prediction.boxConfidence || 0) / 100,\n boxScore: Math.round(100 * prediction.boxConfidence) / 100,\n faceScore: Math.round(100 * prediction.faceConfidence) / 100,\n box: clampedBox,\n boxRaw,\n mesh: prediction.mesh,\n meshRaw,\n annotations,\n tensor: prediction.image,\n });\n if (prediction.coords) tf.dispose(prediction.coords);\n }\n return results;\n}\n\nexport async function load(config): Promise<[unknown, GraphModel | null, GraphModel | null]> {\n if ((!faceModels[0] && config.face.enabled) || (!faceModels[1] && config.face.mesh.enabled) || (!faceModels[2] && config.face.iris.enabled)) {\n faceModels = await Promise.all([\n (!faceModels[0] && config.face.enabled) ? blazeface.load(config) : null,\n (!faceModels[1] && config.face.mesh.enabled) ? tf.loadGraphModel(join(config.modelBasePath, config.face.mesh.modelPath), { fromTFHub: config.face.mesh.modelPath.includes('tfhub.dev') }) as unknown as GraphModel : null,\n (!faceModels[2] && config.face.iris.enabled) ? tf.loadGraphModel(join(config.modelBasePath, config.face.iris.modelPath), { fromTFHub: config.face.iris.modelPath.includes('tfhub.dev') }) as unknown as GraphModel : null,\n ]);\n if (config.face.mesh.enabled) {\n if (!faceModels[1] || !faceModels[1]['modelUrl']) log('load model failed:', config.face.mesh.modelPath);\n else if (config.debug) log('load model:', faceModels[1]['modelUrl']);\n }\n if (config.face.iris.enabled) {\n if (!faceModels[2] || !faceModels[2]['modelUrl']) log('load model failed:', config.face.iris.modelPath);\n else if (config.debug) log('load model:', faceModels[2]['modelUrl']);\n }\n } else if (config.debug) {\n if (faceModels[0]) log('cached model:', faceModels[0].model['modelUrl']);\n if (faceModels[1]) log('cached model:', faceModels[1]['modelUrl']);\n if (faceModels[2]) log('cached model:', faceModels[2]['modelUrl']);\n }\n facePipeline = new facepipeline.Pipeline(faceModels[0], faceModels[1], faceModels[2]);\n return faceModels;\n}\n\nexport const triangulation = coords.TRI468;\nexport const uvmap = coords.UV468;\n", "/**\n * HSE-FaceRes Module\n * Returns Age, Gender, Descriptor\n * Implements Face simmilarity function\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model: GraphModel;\nconst last: Array<{\n age: number,\n gender: string,\n genderScore: number,\n descriptor: number[],\n}> = [];\n\nlet lastCount = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\ntype DB = Array<{ name: string, source: string, embedding: number[] }>;\n\nexport async function load(config: Config): Promise {\n const modelUrl = join(config.modelBasePath, config.face.description.modelPath);\n if (!model) {\n model = await tf.loadGraphModel(modelUrl) as unknown as GraphModel;\n if (!model) log('load model failed:', config.face.description.modelPath);\n else if (config.debug) log('load model:', modelUrl);\n } else if (config.debug) log('cached model:', modelUrl);\n return model;\n}\n\nexport function similarity(embedding1: Array, embedding2: Array, order = 2): number {\n if (!embedding1 || !embedding2) return 0;\n if (embedding1?.length === 0 || embedding2?.length === 0) return 0;\n if (embedding1?.length !== embedding2?.length) return 0;\n // general minkowski distance, euclidean distance is limited case where order is 2\n const distance = 5.0 * embedding1\n .map((_val, i) => (Math.abs(embedding1[i] - embedding2[i]) ** order)) // distance squared\n .reduce((sum, now) => (sum + now), 0) // sum all distances\n ** (1 / order); // get root of\n const res = Math.max(0, 100 - distance) / 100.0;\n return res;\n}\n\nexport function match(embedding: Array, db: DB, threshold = 0) {\n let best = { similarity: 0, name: '', source: '', embedding: [] as number[] };\n if (!embedding || !db || !Array.isArray(embedding) || !Array.isArray(db)) return best;\n for (const f of db) {\n if (f.embedding && f.name) {\n const perc = similarity(embedding, f.embedding);\n if (perc > threshold && perc > best.similarity) best = { ...f, similarity: perc };\n }\n }\n return best;\n}\n\nexport function enhance(input): Tensor {\n const image = tf.tidy(() => {\n // input received from detector is already normalized to 0..1\n // input is also assumed to be straightened\n const tensor = input.image || input.tensor || input;\n if (!(tensor instanceof tf.Tensor)) return null;\n // do a tight crop of image and resize it to fit the model\n const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // const box = [[0.0, 0.0, 1.0, 1.0]]; // basically no crop for test\n if (!model.inputs[0].shape) return null; // model has no shape so no point continuing\n const crop = (tensor.shape.length === 3)\n ? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing\n : tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n\n /*\n // just resize to fit the embedding model instead of cropping\n const crop = tf.image.resizeBilinear(tensor, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n */\n\n /*\n // convert to black&white to avoid colorization impact\n const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const [red, green, blue] = tf.split(crop, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n */\n\n /*\n // increase image pseudo-contrast 100%\n // (or do it per-channel so mean is done on each channel)\n // (or calculate histogram and do it based on histogram)\n const mean = merge.mean();\n const factor = 2;\n const contrast = merge.sub(mean).mul(factor).add(mean);\n */\n\n /*\n // normalize brightness from 0..1\n // silly way of creating pseudo-hdr of image\n const darken = crop.sub(crop.min());\n const lighten = darken.div(darken.max());\n */\n\n const norm = tf.mul(crop, 255);\n\n return norm;\n });\n return image;\n}\n\nexport async function predict(image: Tensor, config: Config, idx, count) {\n if (!model) return null;\n if ((skipped < config.face.description.skipFrames) && config.skipFrame && (lastCount === count) && last[idx]?.age && (last[idx]?.age > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const enhanced = enhance(image);\n\n let resT;\n const obj = {\n age: 0,\n gender: 'unknown',\n genderScore: 0,\n descriptor: [],\n };\n\n if (config.face.description.enabled) resT = await model.predict(enhanced);\n tf.dispose(enhanced);\n\n if (resT) {\n const gender = await resT.find((t) => t.shape[1] === 1).data();\n const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;\n if (confidence > config.face.description.minConfidence) {\n obj.gender = gender[0] <= 0.5 ? 'female' : 'male';\n obj.genderScore = Math.min(0.99, confidence);\n }\n const argmax = tf.argMax(resT.find((t) => t.shape[1] === 100), 1);\n const age = (await argmax.data())[0];\n const all = await resT.find((t) => t.shape[1] === 100).data(); // inside tf.tidy\n obj.age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;\n\n const desc = resT.find((t) => t.shape[1] === 1024);\n // const reshape = desc.reshape([128, 8]); // reshape large 1024-element descriptor to 128 x 8\n // const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it which leaves us with 128-element descriptor\n\n const descriptor = await desc.data();\n obj.descriptor = [...descriptor];\n resT.forEach((t) => tf.dispose(t));\n }\n\n last[idx] = obj;\n lastCount = count;\n resolve(obj);\n });\n}\n", "/**\n * Emotion Module\n */\n\nimport { log, join } from '../helpers';\nimport { Config } from '../config';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\n\nconst annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'];\nlet model;\n// let last: Array<{ score: number, emotion: string }> = [];\nconst last: Array> = [];\nlet lastCount = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\n// tuning values\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.face.emotion.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.face.emotion.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx, count) {\n if (!model) return null;\n if ((skipped < config.face.emotion.skipFrames) && config.skipFrame && (lastCount === count) && last[idx] && (last[idx].length > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const [red, green, blue] = tf.split(resize, 3, 3);\n tf.dispose(resize);\n // weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n tf.dispose(red);\n tf.dispose(green);\n tf.dispose(blue);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n tf.dispose(redNorm);\n tf.dispose(greenNorm);\n tf.dispose(blueNorm);\n const normalize = tf.tidy(() => tf.mul(tf.sub(grayscale, 0.5), 2));\n tf.dispose(grayscale);\n const obj: Array<{ score: number, emotion: string }> = [];\n if (config.face.emotion.enabled) {\n const emotionT = await model.predict(normalize); // result is already in range 0..1, no need for additional activation\n const data = await emotionT.data();\n tf.dispose(emotionT);\n for (let i = 0; i < data.length; i++) {\n if (data[i] > config.face.emotion.minConfidence) obj.push({ score: Math.min(0.99, Math.trunc(100 * data[i]) / 100), emotion: annotations[i] });\n }\n obj.sort((a, b) => b.score - a.score);\n }\n tf.dispose(normalize);\n last[idx] = obj;\n lastCount = count;\n resolve(obj);\n });\n}\n", "export const partNames = [\n 'nose', 'leftEye', 'rightEye', 'leftEar', 'rightEar', 'leftShoulder',\n 'rightShoulder', 'leftElbow', 'rightElbow', 'leftWrist', 'rightWrist',\n 'leftHip', 'rightHip', 'leftKnee', 'rightKnee', 'leftAnkle', 'rightAnkle',\n];\n\nexport const count = partNames.length; // 17 keypoints\n\nexport const partIds = partNames.reduce((result, jointName, i) => {\n result[jointName] = i;\n return result;\n}, {});\n\nconst connectedPartNames = [\n ['leftHip', 'leftShoulder'], ['leftElbow', 'leftShoulder'],\n ['leftElbow', 'leftWrist'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['rightHip', 'rightShoulder'],\n ['rightElbow', 'rightShoulder'], ['rightElbow', 'rightWrist'],\n ['rightHip', 'rightKnee'], ['rightKnee', 'rightAnkle'],\n ['leftShoulder', 'rightShoulder'], ['leftHip', 'rightHip'],\n];\nexport const connectedPartIndices = connectedPartNames.map(([jointNameA, jointNameB]) => ([partIds[jointNameA], partIds[jointNameB]]));\n\nexport const poseChain = [\n ['nose', 'leftEye'], ['leftEye', 'leftEar'], ['nose', 'rightEye'],\n ['rightEye', 'rightEar'], ['nose', 'leftShoulder'],\n ['leftShoulder', 'leftElbow'], ['leftElbow', 'leftWrist'],\n ['leftShoulder', 'leftHip'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['nose', 'rightShoulder'],\n ['rightShoulder', 'rightElbow'], ['rightElbow', 'rightWrist'],\n ['rightShoulder', 'rightHip'], ['rightHip', 'rightKnee'],\n ['rightKnee', 'rightAnkle'],\n];\n", "import * as kpt from './keypoints';\nimport { Body } from '../result';\n\nexport function eitherPointDoesntMeetConfidence(a: number, b: number, minConfidence: number) {\n return (a < minConfidence || b < minConfidence);\n}\n\nexport function getAdjacentKeyPoints(keypoints, minConfidence: number) {\n return kpt.connectedPartIndices.reduce((result, [leftJoint, rightJoint]) => {\n if (eitherPointDoesntMeetConfidence(keypoints[leftJoint].score, keypoints[rightJoint].score, minConfidence)) {\n return result;\n }\n result.push([keypoints[leftJoint], keypoints[rightJoint]]);\n return result;\n }, []);\n}\n\nexport function getBoundingBox(keypoints): [number, number, number, number] {\n const coord = keypoints.reduce(({ maxX, maxY, minX, minY }, { position: { x, y } }) => ({\n maxX: Math.max(maxX, x),\n maxY: Math.max(maxY, y),\n minX: Math.min(minX, x),\n minY: Math.min(minY, y),\n }), {\n maxX: Number.NEGATIVE_INFINITY,\n maxY: Number.NEGATIVE_INFINITY,\n minX: Number.POSITIVE_INFINITY,\n minY: Number.POSITIVE_INFINITY,\n });\n return [coord.minX, coord.minY, coord.maxX - coord.minX, coord.maxY - coord.minY];\n}\n\nexport function scalePoses(poses, [height, width], [inputResolutionHeight, inputResolutionWidth]): Array {\n const scaleY = height / inputResolutionHeight;\n const scaleX = width / inputResolutionWidth;\n const scalePose = (pose, i) => ({\n id: i,\n score: pose.score,\n boxRaw: [pose.box[0] / inputResolutionWidth, pose.box[1] / inputResolutionHeight, pose.box[2] / inputResolutionWidth, pose.box[3] / inputResolutionHeight],\n box: [Math.trunc(pose.box[0] * scaleX), Math.trunc(pose.box[1] * scaleY), Math.trunc(pose.box[2] * scaleX), Math.trunc(pose.box[3] * scaleY)],\n keypoints: pose.keypoints.map(({ score, part, position }) => ({\n score,\n part,\n position: [Math.trunc(position.x * scaleX), Math.trunc(position.y * scaleY)],\n positionRaw: [position.x / inputResolutionHeight, position.y / inputResolutionHeight],\n })),\n });\n const scaledPoses = poses.map((pose, i) => scalePose(pose, i));\n return scaledPoses;\n}\n\n// algorithm based on Coursera Lecture from Algorithms, Part 1: https://www.coursera.org/learn/algorithms-part1/lecture/ZjoSM/heapsort\nexport class MaxHeap {\n priorityQueue: Array; // don't touch\n numberOfElements: number;\n getElementValue: unknown; // function call\n\n constructor(maxSize, getElementValue) {\n this.priorityQueue = new Array(maxSize);\n this.numberOfElements = -1;\n this.getElementValue = getElementValue;\n }\n\n enqueue(x) {\n this.priorityQueue[++this.numberOfElements] = x;\n this.swim(this.numberOfElements);\n }\n\n dequeue() {\n const max = this.priorityQueue[0];\n this.exchange(0, this.numberOfElements--);\n this.sink(0);\n this.priorityQueue[this.numberOfElements + 1] = null;\n return max;\n }\n\n empty() { return this.numberOfElements === -1; }\n\n size() { return this.numberOfElements + 1; }\n\n all() { return this.priorityQueue.slice(0, this.numberOfElements + 1); }\n\n max() { return this.priorityQueue[0]; }\n\n swim(k) {\n while (k > 0 && this.less(Math.floor(k / 2), k)) {\n this.exchange(k, Math.floor(k / 2));\n k = Math.floor(k / 2);\n }\n }\n\n sink(k) {\n while (2 * k <= this.numberOfElements) {\n let j = 2 * k;\n if (j < this.numberOfElements && this.less(j, j + 1)) j++;\n if (!this.less(k, j)) break;\n this.exchange(k, j);\n k = j;\n }\n }\n\n getValueAt(i) {\n // @ts-ignore getter is of unknown type\n return this.getElementValue(this.priorityQueue[i]);\n }\n\n less(i, j) {\n return this.getValueAt(i) < this.getValueAt(j);\n }\n\n exchange(i, j) {\n const t = this.priorityQueue[i];\n this.priorityQueue[i] = this.priorityQueue[j];\n this.priorityQueue[j] = t;\n }\n}\n\nexport function getOffsetPoint(y, x, keypoint, offsets) {\n return {\n y: offsets.get(y, x, keypoint),\n x: offsets.get(y, x, keypoint + kpt.count),\n };\n}\n\nexport function getImageCoords(part, outputStride, offsets) {\n const { heatmapY, heatmapX, id: keypoint } = part;\n const { y, x } = getOffsetPoint(heatmapY, heatmapX, keypoint, offsets);\n return {\n x: part.heatmapX * outputStride + x,\n y: part.heatmapY * outputStride + y,\n };\n}\n\nexport function fillArray(element, size) {\n const result = new Array(size);\n for (let i = 0; i < size; i++) {\n result[i] = element;\n }\n return result;\n}\n\nexport function clamp(a, min, max) {\n if (a < min) return min;\n if (a > max) return max;\n return a;\n}\n\nexport function squaredDistance(y1, x1, y2, x2) {\n const dy = y2 - y1;\n const dx = x2 - x1;\n return dy * dy + dx * dx;\n}\n\nexport function addVectors(a, b) {\n return { x: a.x + b.x, y: a.y + b.y };\n}\n\nexport function clampVector(a, min, max) {\n return { y: clamp(a.y, min, max), x: clamp(a.x, min, max) };\n}\n", "import * as utils from './utils';\nimport * as kpt from './keypoints';\n\nconst localMaximumRadius = 1;\nconst outputStride = 16;\nconst squaredNmsRadius = 50 ** 2;\n\nfunction traverse(edgeId, sourceKeypoint, targetId, scores, offsets, displacements, offsetRefineStep = 2) {\n const getDisplacement = (point) => ({\n y: displacements.get(point.y, point.x, edgeId),\n x: displacements.get(point.y, point.x, (displacements.shape[2] / 2) + edgeId),\n });\n const getStridedIndexNearPoint = (point, height, width) => ({\n y: utils.clamp(Math.round(point.y / outputStride), 0, height - 1),\n x: utils.clamp(Math.round(point.x / outputStride), 0, width - 1),\n });\n\n const [height, width] = scores.shape;\n // Nearest neighbor interpolation for the source->target displacements.\n const sourceKeypointIndices = getStridedIndexNearPoint(sourceKeypoint.position, height, width);\n const displacement = getDisplacement(sourceKeypointIndices);\n const displacedPoint = utils.addVectors(sourceKeypoint.position, displacement);\n let targetKeypoint = displacedPoint;\n for (let i = 0; i < offsetRefineStep; i++) {\n const targetKeypointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const offsetPoint = utils.getOffsetPoint(targetKeypointIndices.y, targetKeypointIndices.x, targetId, offsets);\n targetKeypoint = utils.addVectors(\n { x: targetKeypointIndices.x * outputStride, y: targetKeypointIndices.y * outputStride },\n { x: offsetPoint.x, y: offsetPoint.y },\n );\n }\n const targetKeyPointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const score = scores.get(targetKeyPointIndices.y, targetKeyPointIndices.x, targetId);\n return { position: targetKeypoint, part: kpt.partNames[targetId], score };\n}\n\nexport function decodePose(root, scores, offsets, displacementsFwd, displacementsBwd) {\n const tuples = kpt.poseChain.map(([parentJoinName, childJoinName]) => ([kpt.partIds[parentJoinName], kpt.partIds[childJoinName]]));\n const edgesFwd = tuples.map(([, childJointId]) => childJointId);\n const edgesBwd = tuples.map(([parentJointId]) => parentJointId);\n const numParts = scores.shape[2]; // [21,21,17]\n const numEdges = edgesFwd.length;\n const keypoints = new Array(numParts);\n // Start a new detection instance at the position of the root.\n const rootPoint = utils.getImageCoords(root.part, outputStride, offsets);\n keypoints[root.part.id] = {\n score: root.score,\n part: kpt.partNames[root.part.id],\n position: rootPoint,\n };\n // Decode the part positions upwards in the tree, following the backward displacements.\n for (let edge = numEdges - 1; edge >= 0; --edge) {\n const sourceId = edgesFwd[edge];\n const targetId = edgesBwd[edge];\n if (keypoints[sourceId] && !keypoints[targetId]) {\n keypoints[targetId] = traverse(edge, keypoints[sourceId], targetId, scores, offsets, displacementsBwd);\n }\n }\n // Decode the part positions downwards in the tree, following the forward displacements.\n for (let edge = 0; edge < numEdges; ++edge) {\n const sourceId = edgesBwd[edge];\n const targetId = edgesFwd[edge];\n if (keypoints[sourceId] && !keypoints[targetId]) {\n keypoints[targetId] = traverse(edge, keypoints[sourceId], targetId, scores, offsets, displacementsFwd);\n }\n }\n return keypoints;\n}\n\nfunction scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores) {\n const [height, width] = scores.shape;\n let localMaximum = true;\n const yStart = Math.max(heatmapY - localMaximumRadius, 0);\n const yEnd = Math.min(heatmapY + localMaximumRadius + 1, height);\n for (let yCurrent = yStart; yCurrent < yEnd; ++yCurrent) {\n const xStart = Math.max(heatmapX - localMaximumRadius, 0);\n const xEnd = Math.min(heatmapX + localMaximumRadius + 1, width);\n for (let xCurrent = xStart; xCurrent < xEnd; ++xCurrent) {\n if (scores.get(yCurrent, xCurrent, keypointId) > score) {\n localMaximum = false;\n break;\n }\n }\n if (!localMaximum) break;\n }\n return localMaximum;\n}\n\nexport function buildPartWithScoreQueue(minConfidence, scores) {\n const [height, width, numKeypoints] = scores.shape;\n const queue = new utils.MaxHeap(height * width * numKeypoints, ({ score }) => score);\n for (let heatmapY = 0; heatmapY < height; ++heatmapY) {\n for (let heatmapX = 0; heatmapX < width; ++heatmapX) {\n for (let keypointId = 0; keypointId < numKeypoints; ++keypointId) {\n const score = scores.get(heatmapY, heatmapX, keypointId);\n // Only consider parts with score greater or equal to threshold as root candidates.\n if (score < minConfidence) continue;\n // Only consider keypoints whose score is maximum in a local window.\n if (scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores)) queue.enqueue({ score, part: { heatmapY, heatmapX, id: keypointId } });\n }\n }\n }\n return queue;\n}\n\nfunction withinRadius(poses, { x, y }, keypointId) {\n return poses.some(({ keypoints }) => {\n const correspondingKeypoint = keypoints[keypointId]?.position;\n if (!correspondingKeypoint) return false;\n return utils.squaredDistance(y, x, correspondingKeypoint.y, correspondingKeypoint.x) <= squaredNmsRadius;\n });\n}\n\nfunction getInstanceScore(existingPoses, keypoints) {\n const notOverlappedKeypointScores = keypoints.reduce((result, { position, score }, keypointId) => {\n if (!withinRadius(existingPoses, position, keypointId)) result += score;\n return result;\n }, 0.0);\n return notOverlappedKeypointScores / keypoints.length;\n}\n\nexport function decode(offsets, scores, displacementsFwd, displacementsBwd, maxDetected, minConfidence) {\n const poses: Array<{ keypoints, box: [number, number, number, number], score: number }> = [];\n const queue = buildPartWithScoreQueue(minConfidence, scores);\n // Generate at most maxDetected object instances per image in decreasing root part score order.\n while (poses.length < maxDetected && !queue.empty()) {\n // The top element in the queue is the next root candidate.\n const root = queue.dequeue();\n // Part-based non-maximum suppression: We reject a root candidate if it is within a disk of `nmsRadius` pixels from the corresponding part of a previously detected instance.\n // @ts-ignore this one is tree walk\n const rootImageCoords = utils.getImageCoords(root.part, outputStride, offsets);\n // @ts-ignore this one is tree walk\n if (withinRadius(poses, rootImageCoords, root.part.id)) continue;\n // Else start a new detection instance at the position of the root.\n let keypoints = decodePose(root, scores, offsets, displacementsFwd, displacementsBwd);\n keypoints = keypoints.filter((a) => a.score > minConfidence);\n const score = getInstanceScore(poses, keypoints);\n const box = utils.getBoundingBox(keypoints);\n if (score > minConfidence) poses.push({ keypoints, box, score: Math.round(100 * score) / 100 });\n }\n return poses;\n}\n", "/**\n * PoseNet module entry point\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as poses from './poses';\nimport * as util from './utils';\nimport { Body } from '../result';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model: GraphModel;\nconst poseNetOutputs = ['MobilenetV1/offset_2/BiasAdd'/* offsets */, 'MobilenetV1/heatmap_2/BiasAdd'/* heatmapScores */, 'MobilenetV1/displacement_fwd_2/BiasAdd'/* displacementFwd */, 'MobilenetV1/displacement_bwd_2/BiasAdd'/* displacementBwd */];\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const res = tf.tidy(() => {\n if (!model.inputs[0].shape) return [];\n const resized = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n const normalized = tf.sub(tf.div(tf.cast(resized, 'float32'), 127.5), 1.0);\n const results: Array = model.execute(normalized, poseNetOutputs) as Array;\n const results3d = results.map((y) => tf.squeeze(y, [0]));\n results3d[1] = results3d[1].sigmoid(); // apply sigmoid on scores\n return results3d;\n });\n\n const buffers = await Promise.all(res.map((tensor: Tensor) => tensor.buffer()));\n for (const t of res) tf.dispose(t);\n\n const decoded = await poses.decode(buffers[0], buffers[1], buffers[2], buffers[3], config.body.maxDetected, config.body.minConfidence);\n if (!model.inputs[0].shape) return [];\n const scaled = util.scalePoses(decoded, [input.shape[1], input.shape[2]], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) as Body[];\n return scaled;\n}\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath)) as unknown as GraphModel;\n if (!model || !model['modelUrl']) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model['modelUrl']);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n const palmLandmarks = box.palmLandmarks.map((coord) => {\n const scaledCoord = [coord[0] * factor[0], coord[1] * factor[1]];\n return scaledCoord;\n });\n return { startPoint, endPoint, palmLandmarks, confidence: box.confidence };\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]];\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [centers[0] - halfSize, centers[1] - halfSize];\n const endPoint = [centers[0] + halfSize, centers[1] + halfSize];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function shiftBox(box, shiftFactor) {\n const boxSize = [\n box.endPoint[0] - box.startPoint[0],\n box.endPoint[1] - box.startPoint[1],\n ];\n const shiftVector = [boxSize[0] * shiftFactor[0], boxSize[1] * shiftFactor[1]];\n const startPoint = [box.startPoint[0] + shiftVector[0], box.startPoint[1] + shiftVector[1]];\n const endPoint = [box.endPoint[0] + shiftVector[0], box.endPoint[1] + shiftVector[1]];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n", "export const anchors = [\n { x: 0.015625, y: 0.015625 },\n { x: 0.015625, y: 0.015625 },\n { x: 0.046875, y: 0.015625 },\n { x: 0.046875, y: 0.015625 },\n { x: 0.078125, y: 0.015625 },\n { x: 0.078125, y: 0.015625 },\n { x: 0.109375, y: 0.015625 },\n { x: 0.109375, y: 0.015625 },\n { x: 0.140625, y: 0.015625 },\n { x: 0.140625, y: 0.015625 },\n { x: 0.171875, y: 0.015625 },\n { x: 0.171875, y: 0.015625 },\n { x: 0.203125, y: 0.015625 },\n { x: 0.203125, y: 0.015625 },\n { x: 0.234375, y: 0.015625 },\n { x: 0.234375, y: 0.015625 },\n { x: 0.265625, y: 0.015625 },\n { x: 0.265625, y: 0.015625 },\n { x: 0.296875, y: 0.015625 },\n { x: 0.296875, y: 0.015625 },\n { x: 0.328125, y: 0.015625 },\n { x: 0.328125, y: 0.015625 },\n { x: 0.359375, y: 0.015625 },\n { x: 0.359375, y: 0.015625 },\n { x: 0.390625, y: 0.015625 },\n { x: 0.390625, y: 0.015625 },\n { x: 0.421875, y: 0.015625 },\n { x: 0.421875, y: 0.015625 },\n { x: 0.453125, y: 0.015625 },\n { x: 0.453125, y: 0.015625 },\n { x: 0.484375, y: 0.015625 },\n { x: 0.484375, y: 0.015625 },\n { x: 0.515625, y: 0.015625 },\n { x: 0.515625, y: 0.015625 },\n { x: 0.546875, y: 0.015625 },\n { x: 0.546875, y: 0.015625 },\n { x: 0.578125, y: 0.015625 },\n { x: 0.578125, y: 0.015625 },\n { x: 0.609375, y: 0.015625 },\n { x: 0.609375, y: 0.015625 },\n { x: 0.640625, y: 0.015625 },\n { x: 0.640625, y: 0.015625 },\n { x: 0.671875, y: 0.015625 },\n { x: 0.671875, y: 0.015625 },\n { x: 0.703125, y: 0.015625 },\n { x: 0.703125, y: 0.015625 },\n { x: 0.734375, y: 0.015625 },\n { x: 0.734375, y: 0.015625 },\n { x: 0.765625, y: 0.015625 },\n { x: 0.765625, y: 0.015625 },\n { x: 0.796875, y: 0.015625 },\n { x: 0.796875, y: 0.015625 },\n { x: 0.828125, y: 0.015625 },\n { x: 0.828125, y: 0.015625 },\n { x: 0.859375, y: 0.015625 },\n { x: 0.859375, y: 0.015625 },\n { x: 0.890625, y: 0.015625 },\n { x: 0.890625, y: 0.015625 },\n { x: 0.921875, y: 0.015625 },\n { x: 0.921875, y: 0.015625 },\n { x: 0.953125, y: 0.015625 },\n { x: 0.953125, y: 0.015625 },\n { x: 0.984375, y: 0.015625 },\n { x: 0.984375, y: 0.015625 },\n { x: 0.015625, y: 0.046875 },\n { x: 0.015625, y: 0.046875 },\n { x: 0.046875, y: 0.046875 },\n { x: 0.046875, y: 0.046875 },\n { x: 0.078125, y: 0.046875 },\n { x: 0.078125, y: 0.046875 },\n { x: 0.109375, y: 0.046875 },\n { x: 0.109375, y: 0.046875 },\n { x: 0.140625, y: 0.046875 },\n { x: 0.140625, y: 0.046875 },\n { x: 0.171875, y: 0.046875 },\n { x: 0.171875, y: 0.046875 },\n { x: 0.203125, y: 0.046875 },\n { x: 0.203125, y: 0.046875 },\n { x: 0.234375, y: 0.046875 },\n { x: 0.234375, y: 0.046875 },\n { x: 0.265625, y: 0.046875 },\n { x: 0.265625, y: 0.046875 },\n { x: 0.296875, y: 0.046875 },\n { x: 0.296875, y: 0.046875 },\n { x: 0.328125, y: 0.046875 },\n { x: 0.328125, y: 0.046875 },\n { x: 0.359375, y: 0.046875 },\n { x: 0.359375, y: 0.046875 },\n { x: 0.390625, y: 0.046875 },\n { x: 0.390625, y: 0.046875 },\n { x: 0.421875, y: 0.046875 },\n { x: 0.421875, y: 0.046875 },\n { x: 0.453125, y: 0.046875 },\n { x: 0.453125, y: 0.046875 },\n { x: 0.484375, y: 0.046875 },\n { x: 0.484375, y: 0.046875 },\n { x: 0.515625, y: 0.046875 },\n { x: 0.515625, y: 0.046875 },\n { x: 0.546875, y: 0.046875 },\n { x: 0.546875, y: 0.046875 },\n { x: 0.578125, y: 0.046875 },\n { x: 0.578125, y: 0.046875 },\n { x: 0.609375, y: 0.046875 },\n { x: 0.609375, y: 0.046875 },\n { x: 0.640625, y: 0.046875 },\n { x: 0.640625, y: 0.046875 },\n { x: 0.671875, y: 0.046875 },\n { x: 0.671875, y: 0.046875 },\n { x: 0.703125, y: 0.046875 },\n { x: 0.703125, y: 0.046875 },\n { x: 0.734375, y: 0.046875 },\n { x: 0.734375, y: 0.046875 },\n { x: 0.765625, y: 0.046875 },\n { x: 0.765625, y: 0.046875 },\n { x: 0.796875, y: 0.046875 },\n { x: 0.796875, y: 0.046875 },\n { x: 0.828125, y: 0.046875 },\n { x: 0.828125, y: 0.046875 },\n { x: 0.859375, y: 0.046875 },\n { x: 0.859375, y: 0.046875 },\n { x: 0.890625, y: 0.046875 },\n { x: 0.890625, y: 0.046875 },\n { x: 0.921875, y: 0.046875 },\n { x: 0.921875, y: 0.046875 },\n { x: 0.953125, y: 0.046875 },\n { x: 0.953125, y: 0.046875 },\n { x: 0.984375, y: 0.046875 },\n { x: 0.984375, y: 0.046875 },\n { x: 0.015625, y: 0.078125 },\n { x: 0.015625, y: 0.078125 },\n { x: 0.046875, y: 0.078125 },\n { x: 0.046875, y: 0.078125 },\n { x: 0.078125, y: 0.078125 },\n { x: 0.078125, y: 0.078125 },\n { x: 0.109375, y: 0.078125 },\n { x: 0.109375, y: 0.078125 },\n { x: 0.140625, y: 0.078125 },\n { x: 0.140625, y: 0.078125 },\n { x: 0.171875, y: 0.078125 },\n { x: 0.171875, y: 0.078125 },\n { x: 0.203125, y: 0.078125 },\n { x: 0.203125, y: 0.078125 },\n { x: 0.234375, y: 0.078125 },\n { x: 0.234375, y: 0.078125 },\n { x: 0.265625, y: 0.078125 },\n { x: 0.265625, y: 0.078125 },\n { x: 0.296875, y: 0.078125 },\n { x: 0.296875, y: 0.078125 },\n { x: 0.328125, y: 0.078125 },\n { x: 0.328125, y: 0.078125 },\n { x: 0.359375, y: 0.078125 },\n { x: 0.359375, y: 0.078125 },\n { x: 0.390625, y: 0.078125 },\n { x: 0.390625, y: 0.078125 },\n { x: 0.421875, y: 0.078125 },\n { x: 0.421875, y: 0.078125 },\n { x: 0.453125, y: 0.078125 },\n { x: 0.453125, y: 0.078125 },\n { x: 0.484375, y: 0.078125 },\n { x: 0.484375, y: 0.078125 },\n { x: 0.515625, y: 0.078125 },\n { x: 0.515625, y: 0.078125 },\n { x: 0.546875, y: 0.078125 },\n { x: 0.546875, y: 0.078125 },\n { x: 0.578125, y: 0.078125 },\n { x: 0.578125, y: 0.078125 },\n { x: 0.609375, y: 0.078125 },\n { x: 0.609375, y: 0.078125 },\n { x: 0.640625, y: 0.078125 },\n { x: 0.640625, y: 0.078125 },\n { x: 0.671875, y: 0.078125 },\n { x: 0.671875, y: 0.078125 },\n { x: 0.703125, y: 0.078125 },\n { x: 0.703125, y: 0.078125 },\n { x: 0.734375, y: 0.078125 },\n { x: 0.734375, y: 0.078125 },\n { x: 0.765625, y: 0.078125 },\n { x: 0.765625, y: 0.078125 },\n { x: 0.796875, y: 0.078125 },\n { x: 0.796875, y: 0.078125 },\n { x: 0.828125, y: 0.078125 },\n { x: 0.828125, y: 0.078125 },\n { x: 0.859375, y: 0.078125 },\n { x: 0.859375, y: 0.078125 },\n { x: 0.890625, y: 0.078125 },\n { x: 0.890625, y: 0.078125 },\n { x: 0.921875, y: 0.078125 },\n { x: 0.921875, y: 0.078125 },\n { x: 0.953125, y: 0.078125 },\n { x: 0.953125, y: 0.078125 },\n { x: 0.984375, y: 0.078125 },\n { x: 0.984375, y: 0.078125 },\n { x: 0.015625, y: 0.109375 },\n { x: 0.015625, y: 0.109375 },\n { x: 0.046875, y: 0.109375 },\n { x: 0.046875, y: 0.109375 },\n { x: 0.078125, y: 0.109375 },\n { x: 0.078125, y: 0.109375 },\n { x: 0.109375, y: 0.109375 },\n { x: 0.109375, y: 0.109375 },\n { x: 0.140625, y: 0.109375 },\n { x: 0.140625, y: 0.109375 },\n { x: 0.171875, y: 0.109375 },\n { x: 0.171875, y: 0.109375 },\n { x: 0.203125, y: 0.109375 },\n { x: 0.203125, y: 0.109375 },\n { x: 0.234375, y: 0.109375 },\n { x: 0.234375, y: 0.109375 },\n { x: 0.265625, y: 0.109375 },\n { x: 0.265625, y: 0.109375 },\n { x: 0.296875, y: 0.109375 },\n { x: 0.296875, y: 0.109375 },\n { x: 0.328125, y: 0.109375 },\n { x: 0.328125, y: 0.109375 },\n { x: 0.359375, y: 0.109375 },\n { x: 0.359375, y: 0.109375 },\n { x: 0.390625, y: 0.109375 },\n { x: 0.390625, y: 0.109375 },\n { x: 0.421875, y: 0.109375 },\n { x: 0.421875, y: 0.109375 },\n { x: 0.453125, y: 0.109375 },\n { x: 0.453125, y: 0.109375 },\n { x: 0.484375, y: 0.109375 },\n { x: 0.484375, y: 0.109375 },\n { x: 0.515625, y: 0.109375 },\n { x: 0.515625, y: 0.109375 },\n { x: 0.546875, y: 0.109375 },\n { x: 0.546875, y: 0.109375 },\n { x: 0.578125, y: 0.109375 },\n { x: 0.578125, y: 0.109375 },\n { x: 0.609375, y: 0.109375 },\n { x: 0.609375, y: 0.109375 },\n { x: 0.640625, y: 0.109375 },\n { x: 0.640625, y: 0.109375 },\n { x: 0.671875, y: 0.109375 },\n { x: 0.671875, y: 0.109375 },\n { x: 0.703125, y: 0.109375 },\n { x: 0.703125, y: 0.109375 },\n { x: 0.734375, y: 0.109375 },\n { x: 0.734375, y: 0.109375 },\n { x: 0.765625, y: 0.109375 },\n { x: 0.765625, y: 0.109375 },\n { x: 0.796875, y: 0.109375 },\n { x: 0.796875, y: 0.109375 },\n { x: 0.828125, y: 0.109375 },\n { x: 0.828125, y: 0.109375 },\n { x: 0.859375, y: 0.109375 },\n { x: 0.859375, y: 0.109375 },\n { x: 0.890625, y: 0.109375 },\n { x: 0.890625, y: 0.109375 },\n { x: 0.921875, y: 0.109375 },\n { x: 0.921875, y: 0.109375 },\n { x: 0.953125, y: 0.109375 },\n { x: 0.953125, y: 0.109375 },\n { x: 0.984375, y: 0.109375 },\n { x: 0.984375, y: 0.109375 },\n { x: 0.015625, y: 0.140625 },\n { x: 0.015625, y: 0.140625 },\n { x: 0.046875, y: 0.140625 },\n { x: 0.046875, y: 0.140625 },\n { x: 0.078125, y: 0.140625 },\n { x: 0.078125, y: 0.140625 },\n { x: 0.109375, y: 0.140625 },\n { x: 0.109375, y: 0.140625 },\n { x: 0.140625, y: 0.140625 },\n { x: 0.140625, y: 0.140625 },\n { x: 0.171875, y: 0.140625 },\n { x: 0.171875, y: 0.140625 },\n { x: 0.203125, y: 0.140625 },\n { x: 0.203125, y: 0.140625 },\n { x: 0.234375, y: 0.140625 },\n { x: 0.234375, y: 0.140625 },\n { x: 0.265625, y: 0.140625 },\n { x: 0.265625, y: 0.140625 },\n { x: 0.296875, y: 0.140625 },\n { x: 0.296875, y: 0.140625 },\n { x: 0.328125, y: 0.140625 },\n { x: 0.328125, y: 0.140625 },\n { x: 0.359375, y: 0.140625 },\n { x: 0.359375, y: 0.140625 },\n { x: 0.390625, y: 0.140625 },\n { x: 0.390625, y: 0.140625 },\n { x: 0.421875, y: 0.140625 },\n { x: 0.421875, y: 0.140625 },\n { x: 0.453125, y: 0.140625 },\n { x: 0.453125, y: 0.140625 },\n { x: 0.484375, y: 0.140625 },\n { x: 0.484375, y: 0.140625 },\n { x: 0.515625, y: 0.140625 },\n { x: 0.515625, y: 0.140625 },\n { x: 0.546875, y: 0.140625 },\n { x: 0.546875, y: 0.140625 },\n { x: 0.578125, y: 0.140625 },\n { x: 0.578125, y: 0.140625 },\n { x: 0.609375, y: 0.140625 },\n { x: 0.609375, y: 0.140625 },\n { x: 0.640625, y: 0.140625 },\n { x: 0.640625, y: 0.140625 },\n { x: 0.671875, y: 0.140625 },\n { x: 0.671875, y: 0.140625 },\n { x: 0.703125, y: 0.140625 },\n { x: 0.703125, y: 0.140625 },\n { x: 0.734375, y: 0.140625 },\n { x: 0.734375, y: 0.140625 },\n { x: 0.765625, y: 0.140625 },\n { x: 0.765625, y: 0.140625 },\n { x: 0.796875, y: 0.140625 },\n { x: 0.796875, y: 0.140625 },\n { x: 0.828125, y: 0.140625 },\n { x: 0.828125, y: 0.140625 },\n { x: 0.859375, y: 0.140625 },\n { x: 0.859375, y: 0.140625 },\n { x: 0.890625, y: 0.140625 },\n { x: 0.890625, y: 0.140625 },\n { x: 0.921875, y: 0.140625 },\n { x: 0.921875, y: 0.140625 },\n { x: 0.953125, y: 0.140625 },\n { x: 0.953125, y: 0.140625 },\n { x: 0.984375, y: 0.140625 },\n { x: 0.984375, y: 0.140625 },\n { x: 0.015625, y: 0.171875 },\n { x: 0.015625, y: 0.171875 },\n { x: 0.046875, y: 0.171875 },\n { x: 0.046875, y: 0.171875 },\n { x: 0.078125, y: 0.171875 },\n { x: 0.078125, y: 0.171875 },\n { x: 0.109375, y: 0.171875 },\n { x: 0.109375, y: 0.171875 },\n { x: 0.140625, y: 0.171875 },\n { x: 0.140625, y: 0.171875 },\n { x: 0.171875, y: 0.171875 },\n { x: 0.171875, y: 0.171875 },\n { x: 0.203125, y: 0.171875 },\n { x: 0.203125, y: 0.171875 },\n { x: 0.234375, y: 0.171875 },\n { x: 0.234375, y: 0.171875 },\n { x: 0.265625, y: 0.171875 },\n { x: 0.265625, y: 0.171875 },\n { x: 0.296875, y: 0.171875 },\n { x: 0.296875, y: 0.171875 },\n { x: 0.328125, y: 0.171875 },\n { x: 0.328125, y: 0.171875 },\n { x: 0.359375, y: 0.171875 },\n { x: 0.359375, y: 0.171875 },\n { x: 0.390625, y: 0.171875 },\n { x: 0.390625, y: 0.171875 },\n { x: 0.421875, y: 0.171875 },\n { x: 0.421875, y: 0.171875 },\n { x: 0.453125, y: 0.171875 },\n { x: 0.453125, y: 0.171875 },\n { x: 0.484375, y: 0.171875 },\n { x: 0.484375, y: 0.171875 },\n { x: 0.515625, y: 0.171875 },\n { x: 0.515625, y: 0.171875 },\n { x: 0.546875, y: 0.171875 },\n { x: 0.546875, y: 0.171875 },\n { x: 0.578125, y: 0.171875 },\n { x: 0.578125, y: 0.171875 },\n { x: 0.609375, y: 0.171875 },\n { x: 0.609375, y: 0.171875 },\n { x: 0.640625, y: 0.171875 },\n { x: 0.640625, y: 0.171875 },\n { x: 0.671875, y: 0.171875 },\n { x: 0.671875, y: 0.171875 },\n { x: 0.703125, y: 0.171875 },\n { x: 0.703125, y: 0.171875 },\n { x: 0.734375, y: 0.171875 },\n { x: 0.734375, y: 0.171875 },\n { x: 0.765625, y: 0.171875 },\n { x: 0.765625, y: 0.171875 },\n { x: 0.796875, y: 0.171875 },\n { x: 0.796875, y: 0.171875 },\n { x: 0.828125, y: 0.171875 },\n { x: 0.828125, y: 0.171875 },\n { x: 0.859375, y: 0.171875 },\n { x: 0.859375, y: 0.171875 },\n { x: 0.890625, y: 0.171875 },\n { x: 0.890625, y: 0.171875 },\n { x: 0.921875, y: 0.171875 },\n { x: 0.921875, y: 0.171875 },\n { x: 0.953125, y: 0.171875 },\n { x: 0.953125, y: 0.171875 },\n { x: 0.984375, y: 0.171875 },\n { x: 0.984375, y: 0.171875 },\n { x: 0.015625, y: 0.203125 },\n { x: 0.015625, y: 0.203125 },\n { x: 0.046875, y: 0.203125 },\n { x: 0.046875, y: 0.203125 },\n { x: 0.078125, y: 0.203125 },\n { x: 0.078125, y: 0.203125 },\n { x: 0.109375, y: 0.203125 },\n { x: 0.109375, y: 0.203125 },\n { x: 0.140625, y: 0.203125 },\n { x: 0.140625, y: 0.203125 },\n { x: 0.171875, y: 0.203125 },\n { x: 0.171875, y: 0.203125 },\n { x: 0.203125, y: 0.203125 },\n { x: 0.203125, y: 0.203125 },\n { x: 0.234375, y: 0.203125 },\n { x: 0.234375, y: 0.203125 },\n { x: 0.265625, y: 0.203125 },\n { x: 0.265625, y: 0.203125 },\n { x: 0.296875, y: 0.203125 },\n { x: 0.296875, y: 0.203125 },\n { x: 0.328125, y: 0.203125 },\n { x: 0.328125, y: 0.203125 },\n { x: 0.359375, y: 0.203125 },\n { x: 0.359375, y: 0.203125 },\n { x: 0.390625, y: 0.203125 },\n { x: 0.390625, y: 0.203125 },\n { x: 0.421875, y: 0.203125 },\n { x: 0.421875, y: 0.203125 },\n { x: 0.453125, y: 0.203125 },\n { x: 0.453125, y: 0.203125 },\n { x: 0.484375, y: 0.203125 },\n { x: 0.484375, y: 0.203125 },\n { x: 0.515625, y: 0.203125 },\n { x: 0.515625, y: 0.203125 },\n { x: 0.546875, y: 0.203125 },\n { x: 0.546875, y: 0.203125 },\n { x: 0.578125, y: 0.203125 },\n { x: 0.578125, y: 0.203125 },\n { x: 0.609375, y: 0.203125 },\n { x: 0.609375, y: 0.203125 },\n { x: 0.640625, y: 0.203125 },\n { x: 0.640625, y: 0.203125 },\n { x: 0.671875, y: 0.203125 },\n { x: 0.671875, y: 0.203125 },\n { x: 0.703125, y: 0.203125 },\n { x: 0.703125, y: 0.203125 },\n { x: 0.734375, y: 0.203125 },\n { x: 0.734375, y: 0.203125 },\n { x: 0.765625, y: 0.203125 },\n { x: 0.765625, y: 0.203125 },\n { x: 0.796875, y: 0.203125 },\n { x: 0.796875, y: 0.203125 },\n { x: 0.828125, y: 0.203125 },\n { x: 0.828125, y: 0.203125 },\n { x: 0.859375, y: 0.203125 },\n { x: 0.859375, y: 0.203125 },\n { x: 0.890625, y: 0.203125 },\n { x: 0.890625, y: 0.203125 },\n { x: 0.921875, y: 0.203125 },\n { x: 0.921875, y: 0.203125 },\n { x: 0.953125, y: 0.203125 },\n { x: 0.953125, y: 0.203125 },\n { x: 0.984375, y: 0.203125 },\n { x: 0.984375, y: 0.203125 },\n { x: 0.015625, y: 0.234375 },\n { x: 0.015625, y: 0.234375 },\n { x: 0.046875, y: 0.234375 },\n { x: 0.046875, y: 0.234375 },\n { x: 0.078125, y: 0.234375 },\n { x: 0.078125, y: 0.234375 },\n { x: 0.109375, y: 0.234375 },\n { x: 0.109375, y: 0.234375 },\n { x: 0.140625, y: 0.234375 },\n { x: 0.140625, y: 0.234375 },\n { x: 0.171875, y: 0.234375 },\n { x: 0.171875, y: 0.234375 },\n { x: 0.203125, y: 0.234375 },\n { x: 0.203125, y: 0.234375 },\n { x: 0.234375, y: 0.234375 },\n { x: 0.234375, y: 0.234375 },\n { x: 0.265625, y: 0.234375 },\n { x: 0.265625, y: 0.234375 },\n { x: 0.296875, y: 0.234375 },\n { x: 0.296875, y: 0.234375 },\n { x: 0.328125, y: 0.234375 },\n { x: 0.328125, y: 0.234375 },\n { x: 0.359375, y: 0.234375 },\n { x: 0.359375, y: 0.234375 },\n { x: 0.390625, y: 0.234375 },\n { x: 0.390625, y: 0.234375 },\n { x: 0.421875, y: 0.234375 },\n { x: 0.421875, y: 0.234375 },\n { x: 0.453125, y: 0.234375 },\n { x: 0.453125, y: 0.234375 },\n { x: 0.484375, y: 0.234375 },\n { x: 0.484375, y: 0.234375 },\n { x: 0.515625, y: 0.234375 },\n { x: 0.515625, y: 0.234375 },\n { x: 0.546875, y: 0.234375 },\n { x: 0.546875, y: 0.234375 },\n { x: 0.578125, y: 0.234375 },\n { x: 0.578125, y: 0.234375 },\n { x: 0.609375, y: 0.234375 },\n { x: 0.609375, y: 0.234375 },\n { x: 0.640625, y: 0.234375 },\n { x: 0.640625, y: 0.234375 },\n { x: 0.671875, y: 0.234375 },\n { x: 0.671875, y: 0.234375 },\n { x: 0.703125, y: 0.234375 },\n { x: 0.703125, y: 0.234375 },\n { x: 0.734375, y: 0.234375 },\n { x: 0.734375, y: 0.234375 },\n { x: 0.765625, y: 0.234375 },\n { x: 0.765625, y: 0.234375 },\n { x: 0.796875, y: 0.234375 },\n { x: 0.796875, y: 0.234375 },\n { x: 0.828125, y: 0.234375 },\n { x: 0.828125, y: 0.234375 },\n { x: 0.859375, y: 0.234375 },\n { x: 0.859375, y: 0.234375 },\n { x: 0.890625, y: 0.234375 },\n { x: 0.890625, y: 0.234375 },\n { x: 0.921875, y: 0.234375 },\n { x: 0.921875, y: 0.234375 },\n { x: 0.953125, y: 0.234375 },\n { x: 0.953125, y: 0.234375 },\n { x: 0.984375, y: 0.234375 },\n { x: 0.984375, y: 0.234375 },\n { x: 0.015625, y: 0.265625 },\n { x: 0.015625, y: 0.265625 },\n { x: 0.046875, y: 0.265625 },\n { x: 0.046875, y: 0.265625 },\n { x: 0.078125, y: 0.265625 },\n { x: 0.078125, y: 0.265625 },\n { x: 0.109375, y: 0.265625 },\n { x: 0.109375, y: 0.265625 },\n { x: 0.140625, y: 0.265625 },\n { x: 0.140625, y: 0.265625 },\n { x: 0.171875, y: 0.265625 },\n { x: 0.171875, y: 0.265625 },\n { x: 0.203125, y: 0.265625 },\n { x: 0.203125, y: 0.265625 },\n { x: 0.234375, y: 0.265625 },\n { x: 0.234375, y: 0.265625 },\n { x: 0.265625, y: 0.265625 },\n { x: 0.265625, y: 0.265625 },\n { x: 0.296875, y: 0.265625 },\n { x: 0.296875, y: 0.265625 },\n { x: 0.328125, y: 0.265625 },\n { x: 0.328125, y: 0.265625 },\n { x: 0.359375, y: 0.265625 },\n { x: 0.359375, y: 0.265625 },\n { x: 0.390625, y: 0.265625 },\n { x: 0.390625, y: 0.265625 },\n { x: 0.421875, y: 0.265625 },\n { x: 0.421875, y: 0.265625 },\n { x: 0.453125, y: 0.265625 },\n { x: 0.453125, y: 0.265625 },\n { x: 0.484375, y: 0.265625 },\n { x: 0.484375, y: 0.265625 },\n { x: 0.515625, y: 0.265625 },\n { x: 0.515625, y: 0.265625 },\n { x: 0.546875, y: 0.265625 },\n { x: 0.546875, y: 0.265625 },\n { x: 0.578125, y: 0.265625 },\n { x: 0.578125, y: 0.265625 },\n { x: 0.609375, y: 0.265625 },\n { x: 0.609375, y: 0.265625 },\n { x: 0.640625, y: 0.265625 },\n { x: 0.640625, y: 0.265625 },\n { x: 0.671875, y: 0.265625 },\n { x: 0.671875, y: 0.265625 },\n { x: 0.703125, y: 0.265625 },\n { x: 0.703125, y: 0.265625 },\n { x: 0.734375, y: 0.265625 },\n { x: 0.734375, y: 0.265625 },\n { x: 0.765625, y: 0.265625 },\n { x: 0.765625, y: 0.265625 },\n { x: 0.796875, y: 0.265625 },\n { x: 0.796875, y: 0.265625 },\n { x: 0.828125, y: 0.265625 },\n { x: 0.828125, y: 0.265625 },\n { x: 0.859375, y: 0.265625 },\n { x: 0.859375, y: 0.265625 },\n { x: 0.890625, y: 0.265625 },\n { x: 0.890625, y: 0.265625 },\n { x: 0.921875, y: 0.265625 },\n { x: 0.921875, y: 0.265625 },\n { x: 0.953125, y: 0.265625 },\n { x: 0.953125, y: 0.265625 },\n { x: 0.984375, y: 0.265625 },\n { x: 0.984375, y: 0.265625 },\n { x: 0.015625, y: 0.296875 },\n { x: 0.015625, y: 0.296875 },\n { x: 0.046875, y: 0.296875 },\n { x: 0.046875, y: 0.296875 },\n { x: 0.078125, y: 0.296875 },\n { x: 0.078125, y: 0.296875 },\n { x: 0.109375, y: 0.296875 },\n { x: 0.109375, y: 0.296875 },\n { x: 0.140625, y: 0.296875 },\n { x: 0.140625, y: 0.296875 },\n { x: 0.171875, y: 0.296875 },\n { x: 0.171875, y: 0.296875 },\n { x: 0.203125, y: 0.296875 },\n { x: 0.203125, y: 0.296875 },\n { x: 0.234375, y: 0.296875 },\n { x: 0.234375, y: 0.296875 },\n { x: 0.265625, y: 0.296875 },\n { x: 0.265625, y: 0.296875 },\n { x: 0.296875, y: 0.296875 },\n { x: 0.296875, y: 0.296875 },\n { x: 0.328125, y: 0.296875 },\n { x: 0.328125, y: 0.296875 },\n { x: 0.359375, y: 0.296875 },\n { x: 0.359375, y: 0.296875 },\n { x: 0.390625, y: 0.296875 },\n { x: 0.390625, y: 0.296875 },\n { x: 0.421875, y: 0.296875 },\n { x: 0.421875, y: 0.296875 },\n { x: 0.453125, y: 0.296875 },\n { x: 0.453125, y: 0.296875 },\n { x: 0.484375, y: 0.296875 },\n { x: 0.484375, y: 0.296875 },\n { x: 0.515625, y: 0.296875 },\n { x: 0.515625, y: 0.296875 },\n { x: 0.546875, y: 0.296875 },\n { x: 0.546875, y: 0.296875 },\n { x: 0.578125, y: 0.296875 },\n { x: 0.578125, y: 0.296875 },\n { x: 0.609375, y: 0.296875 },\n { x: 0.609375, y: 0.296875 },\n { x: 0.640625, y: 0.296875 },\n { x: 0.640625, y: 0.296875 },\n { x: 0.671875, y: 0.296875 },\n { x: 0.671875, y: 0.296875 },\n { x: 0.703125, y: 0.296875 },\n { x: 0.703125, y: 0.296875 },\n { x: 0.734375, y: 0.296875 },\n { x: 0.734375, y: 0.296875 },\n { x: 0.765625, y: 0.296875 },\n { x: 0.765625, y: 0.296875 },\n { x: 0.796875, y: 0.296875 },\n { x: 0.796875, y: 0.296875 },\n { x: 0.828125, y: 0.296875 },\n { x: 0.828125, y: 0.296875 },\n { x: 0.859375, y: 0.296875 },\n { x: 0.859375, y: 0.296875 },\n { x: 0.890625, y: 0.296875 },\n { x: 0.890625, y: 0.296875 },\n { x: 0.921875, y: 0.296875 },\n { x: 0.921875, y: 0.296875 },\n { x: 0.953125, y: 0.296875 },\n { x: 0.953125, y: 0.296875 },\n { x: 0.984375, y: 0.296875 },\n { x: 0.984375, y: 0.296875 },\n { x: 0.015625, y: 0.328125 },\n { x: 0.015625, y: 0.328125 },\n { x: 0.046875, y: 0.328125 },\n { x: 0.046875, y: 0.328125 },\n { x: 0.078125, y: 0.328125 },\n { x: 0.078125, y: 0.328125 },\n { x: 0.109375, y: 0.328125 },\n { x: 0.109375, y: 0.328125 },\n { x: 0.140625, y: 0.328125 },\n { x: 0.140625, y: 0.328125 },\n { x: 0.171875, y: 0.328125 },\n { x: 0.171875, y: 0.328125 },\n { x: 0.203125, y: 0.328125 },\n { x: 0.203125, y: 0.328125 },\n { x: 0.234375, y: 0.328125 },\n { x: 0.234375, y: 0.328125 },\n { x: 0.265625, y: 0.328125 },\n { x: 0.265625, y: 0.328125 },\n { x: 0.296875, y: 0.328125 },\n { x: 0.296875, y: 0.328125 },\n { x: 0.328125, y: 0.328125 },\n { x: 0.328125, y: 0.328125 },\n { x: 0.359375, y: 0.328125 },\n { x: 0.359375, y: 0.328125 },\n { x: 0.390625, y: 0.328125 },\n { x: 0.390625, y: 0.328125 },\n { x: 0.421875, y: 0.328125 },\n { x: 0.421875, y: 0.328125 },\n { x: 0.453125, y: 0.328125 },\n { x: 0.453125, y: 0.328125 },\n { x: 0.484375, y: 0.328125 },\n { x: 0.484375, y: 0.328125 },\n { x: 0.515625, y: 0.328125 },\n { x: 0.515625, y: 0.328125 },\n { x: 0.546875, y: 0.328125 },\n { x: 0.546875, y: 0.328125 },\n { x: 0.578125, y: 0.328125 },\n { x: 0.578125, y: 0.328125 },\n { x: 0.609375, y: 0.328125 },\n { x: 0.609375, y: 0.328125 },\n { x: 0.640625, y: 0.328125 },\n { x: 0.640625, y: 0.328125 },\n { x: 0.671875, y: 0.328125 },\n { x: 0.671875, y: 0.328125 },\n { x: 0.703125, y: 0.328125 },\n { x: 0.703125, y: 0.328125 },\n { x: 0.734375, y: 0.328125 },\n { x: 0.734375, y: 0.328125 },\n { x: 0.765625, y: 0.328125 },\n { x: 0.765625, y: 0.328125 },\n { x: 0.796875, y: 0.328125 },\n { x: 0.796875, y: 0.328125 },\n { x: 0.828125, y: 0.328125 },\n { x: 0.828125, y: 0.328125 },\n { x: 0.859375, y: 0.328125 },\n { x: 0.859375, y: 0.328125 },\n { x: 0.890625, y: 0.328125 },\n { x: 0.890625, y: 0.328125 },\n { x: 0.921875, y: 0.328125 },\n { x: 0.921875, y: 0.328125 },\n { x: 0.953125, y: 0.328125 },\n { x: 0.953125, y: 0.328125 },\n { x: 0.984375, y: 0.328125 },\n { x: 0.984375, y: 0.328125 },\n { x: 0.015625, y: 0.359375 },\n { x: 0.015625, y: 0.359375 },\n { x: 0.046875, y: 0.359375 },\n { x: 0.046875, y: 0.359375 },\n { x: 0.078125, y: 0.359375 },\n { x: 0.078125, y: 0.359375 },\n { x: 0.109375, y: 0.359375 },\n { x: 0.109375, y: 0.359375 },\n { x: 0.140625, y: 0.359375 },\n { x: 0.140625, y: 0.359375 },\n { x: 0.171875, y: 0.359375 },\n { x: 0.171875, y: 0.359375 },\n { x: 0.203125, y: 0.359375 },\n { x: 0.203125, y: 0.359375 },\n { x: 0.234375, y: 0.359375 },\n { x: 0.234375, y: 0.359375 },\n { x: 0.265625, y: 0.359375 },\n { x: 0.265625, y: 0.359375 },\n { x: 0.296875, y: 0.359375 },\n { x: 0.296875, y: 0.359375 },\n { x: 0.328125, y: 0.359375 },\n { x: 0.328125, y: 0.359375 },\n { x: 0.359375, y: 0.359375 },\n { x: 0.359375, y: 0.359375 },\n { x: 0.390625, y: 0.359375 },\n { x: 0.390625, y: 0.359375 },\n { x: 0.421875, y: 0.359375 },\n { x: 0.421875, y: 0.359375 },\n { x: 0.453125, y: 0.359375 },\n { x: 0.453125, y: 0.359375 },\n { x: 0.484375, y: 0.359375 },\n { x: 0.484375, y: 0.359375 },\n { x: 0.515625, y: 0.359375 },\n { x: 0.515625, y: 0.359375 },\n { x: 0.546875, y: 0.359375 },\n { x: 0.546875, y: 0.359375 },\n { x: 0.578125, y: 0.359375 },\n { x: 0.578125, y: 0.359375 },\n { x: 0.609375, y: 0.359375 },\n { x: 0.609375, y: 0.359375 },\n { x: 0.640625, y: 0.359375 },\n { x: 0.640625, y: 0.359375 },\n { x: 0.671875, y: 0.359375 },\n { x: 0.671875, y: 0.359375 },\n { x: 0.703125, y: 0.359375 },\n { x: 0.703125, y: 0.359375 },\n { x: 0.734375, y: 0.359375 },\n { x: 0.734375, y: 0.359375 },\n { x: 0.765625, y: 0.359375 },\n { x: 0.765625, y: 0.359375 },\n { x: 0.796875, y: 0.359375 },\n { x: 0.796875, y: 0.359375 },\n { x: 0.828125, y: 0.359375 },\n { x: 0.828125, y: 0.359375 },\n { x: 0.859375, y: 0.359375 },\n { x: 0.859375, y: 0.359375 },\n { x: 0.890625, y: 0.359375 },\n { x: 0.890625, y: 0.359375 },\n { x: 0.921875, y: 0.359375 },\n { x: 0.921875, y: 0.359375 },\n { x: 0.953125, y: 0.359375 },\n { x: 0.953125, y: 0.359375 },\n { x: 0.984375, y: 0.359375 },\n { x: 0.984375, y: 0.359375 },\n { x: 0.015625, y: 0.390625 },\n { x: 0.015625, y: 0.390625 },\n { x: 0.046875, y: 0.390625 },\n { x: 0.046875, y: 0.390625 },\n { x: 0.078125, y: 0.390625 },\n { x: 0.078125, y: 0.390625 },\n { x: 0.109375, y: 0.390625 },\n { x: 0.109375, y: 0.390625 },\n { x: 0.140625, y: 0.390625 },\n { x: 0.140625, y: 0.390625 },\n { x: 0.171875, y: 0.390625 },\n { x: 0.171875, y: 0.390625 },\n { x: 0.203125, y: 0.390625 },\n { x: 0.203125, y: 0.390625 },\n { x: 0.234375, y: 0.390625 },\n { x: 0.234375, y: 0.390625 },\n { x: 0.265625, y: 0.390625 },\n { x: 0.265625, y: 0.390625 },\n { x: 0.296875, y: 0.390625 },\n { x: 0.296875, y: 0.390625 },\n { x: 0.328125, y: 0.390625 },\n { x: 0.328125, y: 0.390625 },\n { x: 0.359375, y: 0.390625 },\n { x: 0.359375, y: 0.390625 },\n { x: 0.390625, y: 0.390625 },\n { x: 0.390625, y: 0.390625 },\n { x: 0.421875, y: 0.390625 },\n { x: 0.421875, y: 0.390625 },\n { x: 0.453125, y: 0.390625 },\n { x: 0.453125, y: 0.390625 },\n { x: 0.484375, y: 0.390625 },\n { x: 0.484375, y: 0.390625 },\n { x: 0.515625, y: 0.390625 },\n { x: 0.515625, y: 0.390625 },\n { x: 0.546875, y: 0.390625 },\n { x: 0.546875, y: 0.390625 },\n { x: 0.578125, y: 0.390625 },\n { x: 0.578125, y: 0.390625 },\n { x: 0.609375, y: 0.390625 },\n { x: 0.609375, y: 0.390625 },\n { x: 0.640625, y: 0.390625 },\n { x: 0.640625, y: 0.390625 },\n { x: 0.671875, y: 0.390625 },\n { x: 0.671875, y: 0.390625 },\n { x: 0.703125, y: 0.390625 },\n { x: 0.703125, y: 0.390625 },\n { x: 0.734375, y: 0.390625 },\n { x: 0.734375, y: 0.390625 },\n { x: 0.765625, y: 0.390625 },\n { x: 0.765625, y: 0.390625 },\n { x: 0.796875, y: 0.390625 },\n { x: 0.796875, y: 0.390625 },\n { x: 0.828125, y: 0.390625 },\n { x: 0.828125, y: 0.390625 },\n { x: 0.859375, y: 0.390625 },\n { x: 0.859375, y: 0.390625 },\n { x: 0.890625, y: 0.390625 },\n { x: 0.890625, y: 0.390625 },\n { x: 0.921875, y: 0.390625 },\n { x: 0.921875, y: 0.390625 },\n { x: 0.953125, y: 0.390625 },\n { x: 0.953125, y: 0.390625 },\n { x: 0.984375, y: 0.390625 },\n { x: 0.984375, y: 0.390625 },\n { x: 0.015625, y: 0.421875 },\n { x: 0.015625, y: 0.421875 },\n { x: 0.046875, y: 0.421875 },\n { x: 0.046875, y: 0.421875 },\n { x: 0.078125, y: 0.421875 },\n { x: 0.078125, y: 0.421875 },\n { x: 0.109375, y: 0.421875 },\n { x: 0.109375, y: 0.421875 },\n { x: 0.140625, y: 0.421875 },\n { x: 0.140625, y: 0.421875 },\n { x: 0.171875, y: 0.421875 },\n { x: 0.171875, y: 0.421875 },\n { x: 0.203125, y: 0.421875 },\n { x: 0.203125, y: 0.421875 },\n { x: 0.234375, y: 0.421875 },\n { x: 0.234375, y: 0.421875 },\n { x: 0.265625, y: 0.421875 },\n { x: 0.265625, y: 0.421875 },\n { x: 0.296875, y: 0.421875 },\n { x: 0.296875, y: 0.421875 },\n { x: 0.328125, y: 0.421875 },\n { x: 0.328125, y: 0.421875 },\n { x: 0.359375, y: 0.421875 },\n { x: 0.359375, y: 0.421875 },\n { x: 0.390625, y: 0.421875 },\n { x: 0.390625, y: 0.421875 },\n { x: 0.421875, y: 0.421875 },\n { x: 0.421875, y: 0.421875 },\n { x: 0.453125, y: 0.421875 },\n { x: 0.453125, y: 0.421875 },\n { x: 0.484375, y: 0.421875 },\n { x: 0.484375, y: 0.421875 },\n { x: 0.515625, y: 0.421875 },\n { x: 0.515625, y: 0.421875 },\n { x: 0.546875, y: 0.421875 },\n { x: 0.546875, y: 0.421875 },\n { x: 0.578125, y: 0.421875 },\n { x: 0.578125, y: 0.421875 },\n { x: 0.609375, y: 0.421875 },\n { x: 0.609375, y: 0.421875 },\n { x: 0.640625, y: 0.421875 },\n { x: 0.640625, y: 0.421875 },\n { x: 0.671875, y: 0.421875 },\n { x: 0.671875, y: 0.421875 },\n { x: 0.703125, y: 0.421875 },\n { x: 0.703125, y: 0.421875 },\n { x: 0.734375, y: 0.421875 },\n { x: 0.734375, y: 0.421875 },\n { x: 0.765625, y: 0.421875 },\n { x: 0.765625, y: 0.421875 },\n { x: 0.796875, y: 0.421875 },\n { x: 0.796875, y: 0.421875 },\n { x: 0.828125, y: 0.421875 },\n { x: 0.828125, y: 0.421875 },\n { x: 0.859375, y: 0.421875 },\n { x: 0.859375, y: 0.421875 },\n { x: 0.890625, y: 0.421875 },\n { x: 0.890625, y: 0.421875 },\n { x: 0.921875, y: 0.421875 },\n { x: 0.921875, y: 0.421875 },\n { x: 0.953125, y: 0.421875 },\n { x: 0.953125, y: 0.421875 },\n { x: 0.984375, y: 0.421875 },\n { x: 0.984375, y: 0.421875 },\n { x: 0.015625, y: 0.453125 },\n { x: 0.015625, y: 0.453125 },\n { x: 0.046875, y: 0.453125 },\n { x: 0.046875, y: 0.453125 },\n { x: 0.078125, y: 0.453125 },\n { x: 0.078125, y: 0.453125 },\n { x: 0.109375, y: 0.453125 },\n { x: 0.109375, y: 0.453125 },\n { x: 0.140625, y: 0.453125 },\n { x: 0.140625, y: 0.453125 },\n { x: 0.171875, y: 0.453125 },\n { x: 0.171875, y: 0.453125 },\n { x: 0.203125, y: 0.453125 },\n { x: 0.203125, y: 0.453125 },\n { x: 0.234375, y: 0.453125 },\n { x: 0.234375, y: 0.453125 },\n { x: 0.265625, y: 0.453125 },\n { x: 0.265625, y: 0.453125 },\n { x: 0.296875, y: 0.453125 },\n { x: 0.296875, y: 0.453125 },\n { x: 0.328125, y: 0.453125 },\n { x: 0.328125, y: 0.453125 },\n { x: 0.359375, y: 0.453125 },\n { x: 0.359375, y: 0.453125 },\n { x: 0.390625, y: 0.453125 },\n { x: 0.390625, y: 0.453125 },\n { x: 0.421875, y: 0.453125 },\n { x: 0.421875, y: 0.453125 },\n { x: 0.453125, y: 0.453125 },\n { x: 0.453125, y: 0.453125 },\n { x: 0.484375, y: 0.453125 },\n { x: 0.484375, y: 0.453125 },\n { x: 0.515625, y: 0.453125 },\n { x: 0.515625, y: 0.453125 },\n { x: 0.546875, y: 0.453125 },\n { x: 0.546875, y: 0.453125 },\n { x: 0.578125, y: 0.453125 },\n { x: 0.578125, y: 0.453125 },\n { x: 0.609375, y: 0.453125 },\n { x: 0.609375, y: 0.453125 },\n { x: 0.640625, y: 0.453125 },\n { x: 0.640625, y: 0.453125 },\n { x: 0.671875, y: 0.453125 },\n { x: 0.671875, y: 0.453125 },\n { x: 0.703125, y: 0.453125 },\n { x: 0.703125, y: 0.453125 },\n { x: 0.734375, y: 0.453125 },\n { x: 0.734375, y: 0.453125 },\n { x: 0.765625, y: 0.453125 },\n { x: 0.765625, y: 0.453125 },\n { x: 0.796875, y: 0.453125 },\n { x: 0.796875, y: 0.453125 },\n { x: 0.828125, y: 0.453125 },\n { x: 0.828125, y: 0.453125 },\n { x: 0.859375, y: 0.453125 },\n { x: 0.859375, y: 0.453125 },\n { x: 0.890625, y: 0.453125 },\n { x: 0.890625, y: 0.453125 },\n { x: 0.921875, y: 0.453125 },\n { x: 0.921875, y: 0.453125 },\n { x: 0.953125, y: 0.453125 },\n { x: 0.953125, y: 0.453125 },\n { x: 0.984375, y: 0.453125 },\n { x: 0.984375, y: 0.453125 },\n { x: 0.015625, y: 0.484375 },\n { x: 0.015625, y: 0.484375 },\n { x: 0.046875, y: 0.484375 },\n { x: 0.046875, y: 0.484375 },\n { x: 0.078125, y: 0.484375 },\n { x: 0.078125, y: 0.484375 },\n { x: 0.109375, y: 0.484375 },\n { x: 0.109375, y: 0.484375 },\n { x: 0.140625, y: 0.484375 },\n { x: 0.140625, y: 0.484375 },\n { x: 0.171875, y: 0.484375 },\n { x: 0.171875, y: 0.484375 },\n { x: 0.203125, y: 0.484375 },\n { x: 0.203125, y: 0.484375 },\n { x: 0.234375, y: 0.484375 },\n { x: 0.234375, y: 0.484375 },\n { x: 0.265625, y: 0.484375 },\n { x: 0.265625, y: 0.484375 },\n { x: 0.296875, y: 0.484375 },\n { x: 0.296875, y: 0.484375 },\n { x: 0.328125, y: 0.484375 },\n { x: 0.328125, y: 0.484375 },\n { x: 0.359375, y: 0.484375 },\n { x: 0.359375, y: 0.484375 },\n { x: 0.390625, y: 0.484375 },\n { x: 0.390625, y: 0.484375 },\n { x: 0.421875, y: 0.484375 },\n { x: 0.421875, y: 0.484375 },\n { x: 0.453125, y: 0.484375 },\n { x: 0.453125, y: 0.484375 },\n { x: 0.484375, y: 0.484375 },\n { x: 0.484375, y: 0.484375 },\n { x: 0.515625, y: 0.484375 },\n { x: 0.515625, y: 0.484375 },\n { x: 0.546875, y: 0.484375 },\n { x: 0.546875, y: 0.484375 },\n { x: 0.578125, y: 0.484375 },\n { x: 0.578125, y: 0.484375 },\n { x: 0.609375, y: 0.484375 },\n { x: 0.609375, y: 0.484375 },\n { x: 0.640625, y: 0.484375 },\n { x: 0.640625, y: 0.484375 },\n { x: 0.671875, y: 0.484375 },\n { x: 0.671875, y: 0.484375 },\n { x: 0.703125, y: 0.484375 },\n { x: 0.703125, y: 0.484375 },\n { x: 0.734375, y: 0.484375 },\n { x: 0.734375, y: 0.484375 },\n { x: 0.765625, y: 0.484375 },\n { x: 0.765625, y: 0.484375 },\n { x: 0.796875, y: 0.484375 },\n { x: 0.796875, y: 0.484375 },\n { x: 0.828125, y: 0.484375 },\n { x: 0.828125, y: 0.484375 },\n { x: 0.859375, y: 0.484375 },\n { x: 0.859375, y: 0.484375 },\n { x: 0.890625, y: 0.484375 },\n { x: 0.890625, y: 0.484375 },\n { x: 0.921875, y: 0.484375 },\n { x: 0.921875, y: 0.484375 },\n { x: 0.953125, y: 0.484375 },\n { x: 0.953125, y: 0.484375 },\n { x: 0.984375, y: 0.484375 },\n { x: 0.984375, y: 0.484375 },\n { x: 0.015625, y: 0.515625 },\n { x: 0.015625, y: 0.515625 },\n { x: 0.046875, y: 0.515625 },\n { x: 0.046875, y: 0.515625 },\n { x: 0.078125, y: 0.515625 },\n { x: 0.078125, y: 0.515625 },\n { x: 0.109375, y: 0.515625 },\n { x: 0.109375, y: 0.515625 },\n { x: 0.140625, y: 0.515625 },\n { x: 0.140625, y: 0.515625 },\n { x: 0.171875, y: 0.515625 },\n { x: 0.171875, y: 0.515625 },\n { x: 0.203125, y: 0.515625 },\n { x: 0.203125, y: 0.515625 },\n { x: 0.234375, y: 0.515625 },\n { x: 0.234375, y: 0.515625 },\n { x: 0.265625, y: 0.515625 },\n { x: 0.265625, y: 0.515625 },\n { x: 0.296875, y: 0.515625 },\n { x: 0.296875, y: 0.515625 },\n { x: 0.328125, y: 0.515625 },\n { x: 0.328125, y: 0.515625 },\n { x: 0.359375, y: 0.515625 },\n { x: 0.359375, y: 0.515625 },\n { x: 0.390625, y: 0.515625 },\n { x: 0.390625, y: 0.515625 },\n { x: 0.421875, y: 0.515625 },\n { x: 0.421875, y: 0.515625 },\n { x: 0.453125, y: 0.515625 },\n { x: 0.453125, y: 0.515625 },\n { x: 0.484375, y: 0.515625 },\n { x: 0.484375, y: 0.515625 },\n { x: 0.515625, y: 0.515625 },\n { x: 0.515625, y: 0.515625 },\n { x: 0.546875, y: 0.515625 },\n { x: 0.546875, y: 0.515625 },\n { x: 0.578125, y: 0.515625 },\n { x: 0.578125, y: 0.515625 },\n { x: 0.609375, y: 0.515625 },\n { x: 0.609375, y: 0.515625 },\n { x: 0.640625, y: 0.515625 },\n { x: 0.640625, y: 0.515625 },\n { x: 0.671875, y: 0.515625 },\n { x: 0.671875, y: 0.515625 },\n { x: 0.703125, y: 0.515625 },\n { x: 0.703125, y: 0.515625 },\n { x: 0.734375, y: 0.515625 },\n { x: 0.734375, y: 0.515625 },\n { x: 0.765625, y: 0.515625 },\n { x: 0.765625, y: 0.515625 },\n { x: 0.796875, y: 0.515625 },\n { x: 0.796875, y: 0.515625 },\n { x: 0.828125, y: 0.515625 },\n { x: 0.828125, y: 0.515625 },\n { x: 0.859375, y: 0.515625 },\n { x: 0.859375, y: 0.515625 },\n { x: 0.890625, y: 0.515625 },\n { x: 0.890625, y: 0.515625 },\n { x: 0.921875, y: 0.515625 },\n { x: 0.921875, y: 0.515625 },\n { x: 0.953125, y: 0.515625 },\n { x: 0.953125, y: 0.515625 },\n { x: 0.984375, y: 0.515625 },\n { x: 0.984375, y: 0.515625 },\n { x: 0.015625, y: 0.546875 },\n { x: 0.015625, y: 0.546875 },\n { x: 0.046875, y: 0.546875 },\n { x: 0.046875, y: 0.546875 },\n { x: 0.078125, y: 0.546875 },\n { x: 0.078125, y: 0.546875 },\n { x: 0.109375, y: 0.546875 },\n { x: 0.109375, y: 0.546875 },\n { x: 0.140625, y: 0.546875 },\n { x: 0.140625, y: 0.546875 },\n { x: 0.171875, y: 0.546875 },\n { x: 0.171875, y: 0.546875 },\n { x: 0.203125, y: 0.546875 },\n { x: 0.203125, y: 0.546875 },\n { x: 0.234375, y: 0.546875 },\n { x: 0.234375, y: 0.546875 },\n { x: 0.265625, y: 0.546875 },\n { x: 0.265625, y: 0.546875 },\n { x: 0.296875, y: 0.546875 },\n { x: 0.296875, y: 0.546875 },\n { x: 0.328125, y: 0.546875 },\n { x: 0.328125, y: 0.546875 },\n { x: 0.359375, y: 0.546875 },\n { x: 0.359375, y: 0.546875 },\n { x: 0.390625, y: 0.546875 },\n { x: 0.390625, y: 0.546875 },\n { x: 0.421875, y: 0.546875 },\n { x: 0.421875, y: 0.546875 },\n { x: 0.453125, y: 0.546875 },\n { x: 0.453125, y: 0.546875 },\n { x: 0.484375, y: 0.546875 },\n { x: 0.484375, y: 0.546875 },\n { x: 0.515625, y: 0.546875 },\n { x: 0.515625, y: 0.546875 },\n { x: 0.546875, y: 0.546875 },\n { x: 0.546875, y: 0.546875 },\n { x: 0.578125, y: 0.546875 },\n { x: 0.578125, y: 0.546875 },\n { x: 0.609375, y: 0.546875 },\n { x: 0.609375, y: 0.546875 },\n { x: 0.640625, y: 0.546875 },\n { x: 0.640625, y: 0.546875 },\n { x: 0.671875, y: 0.546875 },\n { x: 0.671875, y: 0.546875 },\n { x: 0.703125, y: 0.546875 },\n { x: 0.703125, y: 0.546875 },\n { x: 0.734375, y: 0.546875 },\n { x: 0.734375, y: 0.546875 },\n { x: 0.765625, y: 0.546875 },\n { x: 0.765625, y: 0.546875 },\n { x: 0.796875, y: 0.546875 },\n { x: 0.796875, y: 0.546875 },\n { x: 0.828125, y: 0.546875 },\n { x: 0.828125, y: 0.546875 },\n { x: 0.859375, y: 0.546875 },\n { x: 0.859375, y: 0.546875 },\n { x: 0.890625, y: 0.546875 },\n { x: 0.890625, y: 0.546875 },\n { x: 0.921875, y: 0.546875 },\n { x: 0.921875, y: 0.546875 },\n { x: 0.953125, y: 0.546875 },\n { x: 0.953125, y: 0.546875 },\n { x: 0.984375, y: 0.546875 },\n { x: 0.984375, y: 0.546875 },\n { x: 0.015625, y: 0.578125 },\n { x: 0.015625, y: 0.578125 },\n { x: 0.046875, y: 0.578125 },\n { x: 0.046875, y: 0.578125 },\n { x: 0.078125, y: 0.578125 },\n { x: 0.078125, y: 0.578125 },\n { x: 0.109375, y: 0.578125 },\n { x: 0.109375, y: 0.578125 },\n { x: 0.140625, y: 0.578125 },\n { x: 0.140625, y: 0.578125 },\n { x: 0.171875, y: 0.578125 },\n { x: 0.171875, y: 0.578125 },\n { x: 0.203125, y: 0.578125 },\n { x: 0.203125, y: 0.578125 },\n { x: 0.234375, y: 0.578125 },\n { x: 0.234375, y: 0.578125 },\n { x: 0.265625, y: 0.578125 },\n { x: 0.265625, y: 0.578125 },\n { x: 0.296875, y: 0.578125 },\n { x: 0.296875, y: 0.578125 },\n { x: 0.328125, y: 0.578125 },\n { x: 0.328125, y: 0.578125 },\n { x: 0.359375, y: 0.578125 },\n { x: 0.359375, y: 0.578125 },\n { x: 0.390625, y: 0.578125 },\n { x: 0.390625, y: 0.578125 },\n { x: 0.421875, y: 0.578125 },\n { x: 0.421875, y: 0.578125 },\n { x: 0.453125, y: 0.578125 },\n { x: 0.453125, y: 0.578125 },\n { x: 0.484375, y: 0.578125 },\n { x: 0.484375, y: 0.578125 },\n { x: 0.515625, y: 0.578125 },\n { x: 0.515625, y: 0.578125 },\n { x: 0.546875, y: 0.578125 },\n { x: 0.546875, y: 0.578125 },\n { x: 0.578125, y: 0.578125 },\n { x: 0.578125, y: 0.578125 },\n { x: 0.609375, y: 0.578125 },\n { x: 0.609375, y: 0.578125 },\n { x: 0.640625, y: 0.578125 },\n { x: 0.640625, y: 0.578125 },\n { x: 0.671875, y: 0.578125 },\n { x: 0.671875, y: 0.578125 },\n { x: 0.703125, y: 0.578125 },\n { x: 0.703125, y: 0.578125 },\n { x: 0.734375, y: 0.578125 },\n { x: 0.734375, y: 0.578125 },\n { x: 0.765625, y: 0.578125 },\n { x: 0.765625, y: 0.578125 },\n { x: 0.796875, y: 0.578125 },\n { x: 0.796875, y: 0.578125 },\n { x: 0.828125, y: 0.578125 },\n { x: 0.828125, y: 0.578125 },\n { x: 0.859375, y: 0.578125 },\n { x: 0.859375, y: 0.578125 },\n { x: 0.890625, y: 0.578125 },\n { x: 0.890625, y: 0.578125 },\n { x: 0.921875, y: 0.578125 },\n { x: 0.921875, y: 0.578125 },\n { x: 0.953125, y: 0.578125 },\n { x: 0.953125, y: 0.578125 },\n { x: 0.984375, y: 0.578125 },\n { x: 0.984375, y: 0.578125 },\n { x: 0.015625, y: 0.609375 },\n { x: 0.015625, y: 0.609375 },\n { x: 0.046875, y: 0.609375 },\n { x: 0.046875, y: 0.609375 },\n { x: 0.078125, y: 0.609375 },\n { x: 0.078125, y: 0.609375 },\n { x: 0.109375, y: 0.609375 },\n { x: 0.109375, y: 0.609375 },\n { x: 0.140625, y: 0.609375 },\n { x: 0.140625, y: 0.609375 },\n { x: 0.171875, y: 0.609375 },\n { x: 0.171875, y: 0.609375 },\n { x: 0.203125, y: 0.609375 },\n { x: 0.203125, y: 0.609375 },\n { x: 0.234375, y: 0.609375 },\n { x: 0.234375, y: 0.609375 },\n { x: 0.265625, y: 0.609375 },\n { x: 0.265625, y: 0.609375 },\n { x: 0.296875, y: 0.609375 },\n { x: 0.296875, y: 0.609375 },\n { x: 0.328125, y: 0.609375 },\n { x: 0.328125, y: 0.609375 },\n { x: 0.359375, y: 0.609375 },\n { x: 0.359375, y: 0.609375 },\n { x: 0.390625, y: 0.609375 },\n { x: 0.390625, y: 0.609375 },\n { x: 0.421875, y: 0.609375 },\n { x: 0.421875, y: 0.609375 },\n { x: 0.453125, y: 0.609375 },\n { x: 0.453125, y: 0.609375 },\n { x: 0.484375, y: 0.609375 },\n { x: 0.484375, y: 0.609375 },\n { x: 0.515625, y: 0.609375 },\n { x: 0.515625, y: 0.609375 },\n { x: 0.546875, y: 0.609375 },\n { x: 0.546875, y: 0.609375 },\n { x: 0.578125, y: 0.609375 },\n { x: 0.578125, y: 0.609375 },\n { x: 0.609375, y: 0.609375 },\n { x: 0.609375, y: 0.609375 },\n { x: 0.640625, y: 0.609375 },\n { x: 0.640625, y: 0.609375 },\n { x: 0.671875, y: 0.609375 },\n { x: 0.671875, y: 0.609375 },\n { x: 0.703125, y: 0.609375 },\n { x: 0.703125, y: 0.609375 },\n { x: 0.734375, y: 0.609375 },\n { x: 0.734375, y: 0.609375 },\n { x: 0.765625, y: 0.609375 },\n { x: 0.765625, y: 0.609375 },\n { x: 0.796875, y: 0.609375 },\n { x: 0.796875, y: 0.609375 },\n { x: 0.828125, y: 0.609375 },\n { x: 0.828125, y: 0.609375 },\n { x: 0.859375, y: 0.609375 },\n { x: 0.859375, y: 0.609375 },\n { x: 0.890625, y: 0.609375 },\n { x: 0.890625, y: 0.609375 },\n { x: 0.921875, y: 0.609375 },\n { x: 0.921875, y: 0.609375 },\n { x: 0.953125, y: 0.609375 },\n { x: 0.953125, y: 0.609375 },\n { x: 0.984375, y: 0.609375 },\n { x: 0.984375, y: 0.609375 },\n { x: 0.015625, y: 0.640625 },\n { x: 0.015625, y: 0.640625 },\n { x: 0.046875, y: 0.640625 },\n { x: 0.046875, y: 0.640625 },\n { x: 0.078125, y: 0.640625 },\n { x: 0.078125, y: 0.640625 },\n { x: 0.109375, y: 0.640625 },\n { x: 0.109375, y: 0.640625 },\n { x: 0.140625, y: 0.640625 },\n { x: 0.140625, y: 0.640625 },\n { x: 0.171875, y: 0.640625 },\n { x: 0.171875, y: 0.640625 },\n { x: 0.203125, y: 0.640625 },\n { x: 0.203125, y: 0.640625 },\n { x: 0.234375, y: 0.640625 },\n { x: 0.234375, y: 0.640625 },\n { x: 0.265625, y: 0.640625 },\n { x: 0.265625, y: 0.640625 },\n { x: 0.296875, y: 0.640625 },\n { x: 0.296875, y: 0.640625 },\n { x: 0.328125, y: 0.640625 },\n { x: 0.328125, y: 0.640625 },\n { x: 0.359375, y: 0.640625 },\n { x: 0.359375, y: 0.640625 },\n { x: 0.390625, y: 0.640625 },\n { x: 0.390625, y: 0.640625 },\n { x: 0.421875, y: 0.640625 },\n { x: 0.421875, y: 0.640625 },\n { x: 0.453125, y: 0.640625 },\n { x: 0.453125, y: 0.640625 },\n { x: 0.484375, y: 0.640625 },\n { x: 0.484375, y: 0.640625 },\n { x: 0.515625, y: 0.640625 },\n { x: 0.515625, y: 0.640625 },\n { x: 0.546875, y: 0.640625 },\n { x: 0.546875, y: 0.640625 },\n { x: 0.578125, y: 0.640625 },\n { x: 0.578125, y: 0.640625 },\n { x: 0.609375, y: 0.640625 },\n { x: 0.609375, y: 0.640625 },\n { x: 0.640625, y: 0.640625 },\n { x: 0.640625, y: 0.640625 },\n { x: 0.671875, y: 0.640625 },\n { x: 0.671875, y: 0.640625 },\n { x: 0.703125, y: 0.640625 },\n { x: 0.703125, y: 0.640625 },\n { x: 0.734375, y: 0.640625 },\n { x: 0.734375, y: 0.640625 },\n { x: 0.765625, y: 0.640625 },\n { x: 0.765625, y: 0.640625 },\n { x: 0.796875, y: 0.640625 },\n { x: 0.796875, y: 0.640625 },\n { x: 0.828125, y: 0.640625 },\n { x: 0.828125, y: 0.640625 },\n { x: 0.859375, y: 0.640625 },\n { x: 0.859375, y: 0.640625 },\n { x: 0.890625, y: 0.640625 },\n { x: 0.890625, y: 0.640625 },\n { x: 0.921875, y: 0.640625 },\n { x: 0.921875, y: 0.640625 },\n { x: 0.953125, y: 0.640625 },\n { x: 0.953125, y: 0.640625 },\n { x: 0.984375, y: 0.640625 },\n { x: 0.984375, y: 0.640625 },\n { x: 0.015625, y: 0.671875 },\n { x: 0.015625, y: 0.671875 },\n { x: 0.046875, y: 0.671875 },\n { x: 0.046875, y: 0.671875 },\n { x: 0.078125, y: 0.671875 },\n { x: 0.078125, y: 0.671875 },\n { x: 0.109375, y: 0.671875 },\n { x: 0.109375, y: 0.671875 },\n { x: 0.140625, y: 0.671875 },\n { x: 0.140625, y: 0.671875 },\n { x: 0.171875, y: 0.671875 },\n { x: 0.171875, y: 0.671875 },\n { x: 0.203125, y: 0.671875 },\n { x: 0.203125, y: 0.671875 },\n { x: 0.234375, y: 0.671875 },\n { x: 0.234375, y: 0.671875 },\n { x: 0.265625, y: 0.671875 },\n { x: 0.265625, y: 0.671875 },\n { x: 0.296875, y: 0.671875 },\n { x: 0.296875, y: 0.671875 },\n { x: 0.328125, y: 0.671875 },\n { x: 0.328125, y: 0.671875 },\n { x: 0.359375, y: 0.671875 },\n { x: 0.359375, y: 0.671875 },\n { x: 0.390625, y: 0.671875 },\n { x: 0.390625, y: 0.671875 },\n { x: 0.421875, y: 0.671875 },\n { x: 0.421875, y: 0.671875 },\n { x: 0.453125, y: 0.671875 },\n { x: 0.453125, y: 0.671875 },\n { x: 0.484375, y: 0.671875 },\n { x: 0.484375, y: 0.671875 },\n { x: 0.515625, y: 0.671875 },\n { x: 0.515625, y: 0.671875 },\n { x: 0.546875, y: 0.671875 },\n { x: 0.546875, y: 0.671875 },\n { x: 0.578125, y: 0.671875 },\n { x: 0.578125, y: 0.671875 },\n { x: 0.609375, y: 0.671875 },\n { x: 0.609375, y: 0.671875 },\n { x: 0.640625, y: 0.671875 },\n { x: 0.640625, y: 0.671875 },\n { x: 0.671875, y: 0.671875 },\n { x: 0.671875, y: 0.671875 },\n { x: 0.703125, y: 0.671875 },\n { x: 0.703125, y: 0.671875 },\n { x: 0.734375, y: 0.671875 },\n { x: 0.734375, y: 0.671875 },\n { x: 0.765625, y: 0.671875 },\n { x: 0.765625, y: 0.671875 },\n { x: 0.796875, y: 0.671875 },\n { x: 0.796875, y: 0.671875 },\n { x: 0.828125, y: 0.671875 },\n { x: 0.828125, y: 0.671875 },\n { x: 0.859375, y: 0.671875 },\n { x: 0.859375, y: 0.671875 },\n { x: 0.890625, y: 0.671875 },\n { x: 0.890625, y: 0.671875 },\n { x: 0.921875, y: 0.671875 },\n { x: 0.921875, y: 0.671875 },\n { x: 0.953125, y: 0.671875 },\n { x: 0.953125, y: 0.671875 },\n { x: 0.984375, y: 0.671875 },\n { x: 0.984375, y: 0.671875 },\n { x: 0.015625, y: 0.703125 },\n { x: 0.015625, y: 0.703125 },\n { x: 0.046875, y: 0.703125 },\n { x: 0.046875, y: 0.703125 },\n { x: 0.078125, y: 0.703125 },\n { x: 0.078125, y: 0.703125 },\n { x: 0.109375, y: 0.703125 },\n { x: 0.109375, y: 0.703125 },\n { x: 0.140625, y: 0.703125 },\n { x: 0.140625, y: 0.703125 },\n { x: 0.171875, y: 0.703125 },\n { x: 0.171875, y: 0.703125 },\n { x: 0.203125, y: 0.703125 },\n { x: 0.203125, y: 0.703125 },\n { x: 0.234375, y: 0.703125 },\n { x: 0.234375, y: 0.703125 },\n { x: 0.265625, y: 0.703125 },\n { x: 0.265625, y: 0.703125 },\n { x: 0.296875, y: 0.703125 },\n { x: 0.296875, y: 0.703125 },\n { x: 0.328125, y: 0.703125 },\n { x: 0.328125, y: 0.703125 },\n { x: 0.359375, y: 0.703125 },\n { x: 0.359375, y: 0.703125 },\n { x: 0.390625, y: 0.703125 },\n { x: 0.390625, y: 0.703125 },\n { x: 0.421875, y: 0.703125 },\n { x: 0.421875, y: 0.703125 },\n { x: 0.453125, y: 0.703125 },\n { x: 0.453125, y: 0.703125 },\n { x: 0.484375, y: 0.703125 },\n { x: 0.484375, y: 0.703125 },\n { x: 0.515625, y: 0.703125 },\n { x: 0.515625, y: 0.703125 },\n { x: 0.546875, y: 0.703125 },\n { x: 0.546875, y: 0.703125 },\n { x: 0.578125, y: 0.703125 },\n { x: 0.578125, y: 0.703125 },\n { x: 0.609375, y: 0.703125 },\n { x: 0.609375, y: 0.703125 },\n { x: 0.640625, y: 0.703125 },\n { x: 0.640625, y: 0.703125 },\n { x: 0.671875, y: 0.703125 },\n { x: 0.671875, y: 0.703125 },\n { x: 0.703125, y: 0.703125 },\n { x: 0.703125, y: 0.703125 },\n { x: 0.734375, y: 0.703125 },\n { x: 0.734375, y: 0.703125 },\n { x: 0.765625, y: 0.703125 },\n { x: 0.765625, y: 0.703125 },\n { x: 0.796875, y: 0.703125 },\n { x: 0.796875, y: 0.703125 },\n { x: 0.828125, y: 0.703125 },\n { x: 0.828125, y: 0.703125 },\n { x: 0.859375, y: 0.703125 },\n { x: 0.859375, y: 0.703125 },\n { x: 0.890625, y: 0.703125 },\n { x: 0.890625, y: 0.703125 },\n { x: 0.921875, y: 0.703125 },\n { x: 0.921875, y: 0.703125 },\n { x: 0.953125, y: 0.703125 },\n { x: 0.953125, y: 0.703125 },\n { x: 0.984375, y: 0.703125 },\n { x: 0.984375, y: 0.703125 },\n { x: 0.015625, y: 0.734375 },\n { x: 0.015625, y: 0.734375 },\n { x: 0.046875, y: 0.734375 },\n { x: 0.046875, y: 0.734375 },\n { x: 0.078125, y: 0.734375 },\n { x: 0.078125, y: 0.734375 },\n { x: 0.109375, y: 0.734375 },\n { x: 0.109375, y: 0.734375 },\n { x: 0.140625, y: 0.734375 },\n { x: 0.140625, y: 0.734375 },\n { x: 0.171875, y: 0.734375 },\n { x: 0.171875, y: 0.734375 },\n { x: 0.203125, y: 0.734375 },\n { x: 0.203125, y: 0.734375 },\n { x: 0.234375, y: 0.734375 },\n { x: 0.234375, y: 0.734375 },\n { x: 0.265625, y: 0.734375 },\n { x: 0.265625, y: 0.734375 },\n { x: 0.296875, y: 0.734375 },\n { x: 0.296875, y: 0.734375 },\n { x: 0.328125, y: 0.734375 },\n { x: 0.328125, y: 0.734375 },\n { x: 0.359375, y: 0.734375 },\n { x: 0.359375, y: 0.734375 },\n { x: 0.390625, y: 0.734375 },\n { x: 0.390625, y: 0.734375 },\n { x: 0.421875, y: 0.734375 },\n { x: 0.421875, y: 0.734375 },\n { x: 0.453125, y: 0.734375 },\n { x: 0.453125, y: 0.734375 },\n { x: 0.484375, y: 0.734375 },\n { x: 0.484375, y: 0.734375 },\n { x: 0.515625, y: 0.734375 },\n { x: 0.515625, y: 0.734375 },\n { x: 0.546875, y: 0.734375 },\n { x: 0.546875, y: 0.734375 },\n { x: 0.578125, y: 0.734375 },\n { x: 0.578125, y: 0.734375 },\n { x: 0.609375, y: 0.734375 },\n { x: 0.609375, y: 0.734375 },\n { x: 0.640625, y: 0.734375 },\n { x: 0.640625, y: 0.734375 },\n { x: 0.671875, y: 0.734375 },\n { x: 0.671875, y: 0.734375 },\n { x: 0.703125, y: 0.734375 },\n { x: 0.703125, y: 0.734375 },\n { x: 0.734375, y: 0.734375 },\n { x: 0.734375, y: 0.734375 },\n { x: 0.765625, y: 0.734375 },\n { x: 0.765625, y: 0.734375 },\n { x: 0.796875, y: 0.734375 },\n { x: 0.796875, y: 0.734375 },\n { x: 0.828125, y: 0.734375 },\n { x: 0.828125, y: 0.734375 },\n { x: 0.859375, y: 0.734375 },\n { x: 0.859375, y: 0.734375 },\n { x: 0.890625, y: 0.734375 },\n { x: 0.890625, y: 0.734375 },\n { x: 0.921875, y: 0.734375 },\n { x: 0.921875, y: 0.734375 },\n { x: 0.953125, y: 0.734375 },\n { x: 0.953125, y: 0.734375 },\n { x: 0.984375, y: 0.734375 },\n { x: 0.984375, y: 0.734375 },\n { x: 0.015625, y: 0.765625 },\n { x: 0.015625, y: 0.765625 },\n { x: 0.046875, y: 0.765625 },\n { x: 0.046875, y: 0.765625 },\n { x: 0.078125, y: 0.765625 },\n { x: 0.078125, y: 0.765625 },\n { x: 0.109375, y: 0.765625 },\n { x: 0.109375, y: 0.765625 },\n { x: 0.140625, y: 0.765625 },\n { x: 0.140625, y: 0.765625 },\n { x: 0.171875, y: 0.765625 },\n { x: 0.171875, y: 0.765625 },\n { x: 0.203125, y: 0.765625 },\n { x: 0.203125, y: 0.765625 },\n { x: 0.234375, y: 0.765625 },\n { x: 0.234375, y: 0.765625 },\n { x: 0.265625, y: 0.765625 },\n { x: 0.265625, y: 0.765625 },\n { x: 0.296875, y: 0.765625 },\n { x: 0.296875, y: 0.765625 },\n { x: 0.328125, y: 0.765625 },\n { x: 0.328125, y: 0.765625 },\n { x: 0.359375, y: 0.765625 },\n { x: 0.359375, y: 0.765625 },\n { x: 0.390625, y: 0.765625 },\n { x: 0.390625, y: 0.765625 },\n { x: 0.421875, y: 0.765625 },\n { x: 0.421875, y: 0.765625 },\n { x: 0.453125, y: 0.765625 },\n { x: 0.453125, y: 0.765625 },\n { x: 0.484375, y: 0.765625 },\n { x: 0.484375, y: 0.765625 },\n { x: 0.515625, y: 0.765625 },\n { x: 0.515625, y: 0.765625 },\n { x: 0.546875, y: 0.765625 },\n { x: 0.546875, y: 0.765625 },\n { x: 0.578125, y: 0.765625 },\n { x: 0.578125, y: 0.765625 },\n { x: 0.609375, y: 0.765625 },\n { x: 0.609375, y: 0.765625 },\n { x: 0.640625, y: 0.765625 },\n { x: 0.640625, y: 0.765625 },\n { x: 0.671875, y: 0.765625 },\n { x: 0.671875, y: 0.765625 },\n { x: 0.703125, y: 0.765625 },\n { x: 0.703125, y: 0.765625 },\n { x: 0.734375, y: 0.765625 },\n { x: 0.734375, y: 0.765625 },\n { x: 0.765625, y: 0.765625 },\n { x: 0.765625, y: 0.765625 },\n { x: 0.796875, y: 0.765625 },\n { x: 0.796875, y: 0.765625 },\n { x: 0.828125, y: 0.765625 },\n { x: 0.828125, y: 0.765625 },\n { x: 0.859375, y: 0.765625 },\n { x: 0.859375, y: 0.765625 },\n { x: 0.890625, y: 0.765625 },\n { x: 0.890625, y: 0.765625 },\n { x: 0.921875, y: 0.765625 },\n { x: 0.921875, y: 0.765625 },\n { x: 0.953125, y: 0.765625 },\n { x: 0.953125, y: 0.765625 },\n { x: 0.984375, y: 0.765625 },\n { x: 0.984375, y: 0.765625 },\n { x: 0.015625, y: 0.796875 },\n { x: 0.015625, y: 0.796875 },\n { x: 0.046875, y: 0.796875 },\n { x: 0.046875, y: 0.796875 },\n { x: 0.078125, y: 0.796875 },\n { x: 0.078125, y: 0.796875 },\n { x: 0.109375, y: 0.796875 },\n { x: 0.109375, y: 0.796875 },\n { x: 0.140625, y: 0.796875 },\n { x: 0.140625, y: 0.796875 },\n { x: 0.171875, y: 0.796875 },\n { x: 0.171875, y: 0.796875 },\n { x: 0.203125, y: 0.796875 },\n { x: 0.203125, y: 0.796875 },\n { x: 0.234375, y: 0.796875 },\n { x: 0.234375, y: 0.796875 },\n { x: 0.265625, y: 0.796875 },\n { x: 0.265625, y: 0.796875 },\n { x: 0.296875, y: 0.796875 },\n { x: 0.296875, y: 0.796875 },\n { x: 0.328125, y: 0.796875 },\n { x: 0.328125, y: 0.796875 },\n { x: 0.359375, y: 0.796875 },\n { x: 0.359375, y: 0.796875 },\n { x: 0.390625, y: 0.796875 },\n { x: 0.390625, y: 0.796875 },\n { x: 0.421875, y: 0.796875 },\n { x: 0.421875, y: 0.796875 },\n { x: 0.453125, y: 0.796875 },\n { x: 0.453125, y: 0.796875 },\n { x: 0.484375, y: 0.796875 },\n { x: 0.484375, y: 0.796875 },\n { x: 0.515625, y: 0.796875 },\n { x: 0.515625, y: 0.796875 },\n { x: 0.546875, y: 0.796875 },\n { x: 0.546875, y: 0.796875 },\n { x: 0.578125, y: 0.796875 },\n { x: 0.578125, y: 0.796875 },\n { x: 0.609375, y: 0.796875 },\n { x: 0.609375, y: 0.796875 },\n { x: 0.640625, y: 0.796875 },\n { x: 0.640625, y: 0.796875 },\n { x: 0.671875, y: 0.796875 },\n { x: 0.671875, y: 0.796875 },\n { x: 0.703125, y: 0.796875 },\n { x: 0.703125, y: 0.796875 },\n { x: 0.734375, y: 0.796875 },\n { x: 0.734375, y: 0.796875 },\n { x: 0.765625, y: 0.796875 },\n { x: 0.765625, y: 0.796875 },\n { x: 0.796875, y: 0.796875 },\n { x: 0.796875, y: 0.796875 },\n { x: 0.828125, y: 0.796875 },\n { x: 0.828125, y: 0.796875 },\n { x: 0.859375, y: 0.796875 },\n { x: 0.859375, y: 0.796875 },\n { x: 0.890625, y: 0.796875 },\n { x: 0.890625, y: 0.796875 },\n { x: 0.921875, y: 0.796875 },\n { x: 0.921875, y: 0.796875 },\n { x: 0.953125, y: 0.796875 },\n { x: 0.953125, y: 0.796875 },\n { x: 0.984375, y: 0.796875 },\n { x: 0.984375, y: 0.796875 },\n { x: 0.015625, y: 0.828125 },\n { x: 0.015625, y: 0.828125 },\n { x: 0.046875, y: 0.828125 },\n { x: 0.046875, y: 0.828125 },\n { x: 0.078125, y: 0.828125 },\n { x: 0.078125, y: 0.828125 },\n { x: 0.109375, y: 0.828125 },\n { x: 0.109375, y: 0.828125 },\n { x: 0.140625, y: 0.828125 },\n { x: 0.140625, y: 0.828125 },\n { x: 0.171875, y: 0.828125 },\n { x: 0.171875, y: 0.828125 },\n { x: 0.203125, y: 0.828125 },\n { x: 0.203125, y: 0.828125 },\n { x: 0.234375, y: 0.828125 },\n { x: 0.234375, y: 0.828125 },\n { x: 0.265625, y: 0.828125 },\n { x: 0.265625, y: 0.828125 },\n { x: 0.296875, y: 0.828125 },\n { x: 0.296875, y: 0.828125 },\n { x: 0.328125, y: 0.828125 },\n { x: 0.328125, y: 0.828125 },\n { x: 0.359375, y: 0.828125 },\n { x: 0.359375, y: 0.828125 },\n { x: 0.390625, y: 0.828125 },\n { x: 0.390625, y: 0.828125 },\n { x: 0.421875, y: 0.828125 },\n { x: 0.421875, y: 0.828125 },\n { x: 0.453125, y: 0.828125 },\n { x: 0.453125, y: 0.828125 },\n { x: 0.484375, y: 0.828125 },\n { x: 0.484375, y: 0.828125 },\n { x: 0.515625, y: 0.828125 },\n { x: 0.515625, y: 0.828125 },\n { x: 0.546875, y: 0.828125 },\n { x: 0.546875, y: 0.828125 },\n { x: 0.578125, y: 0.828125 },\n { x: 0.578125, y: 0.828125 },\n { x: 0.609375, y: 0.828125 },\n { x: 0.609375, y: 0.828125 },\n { x: 0.640625, y: 0.828125 },\n { x: 0.640625, y: 0.828125 },\n { x: 0.671875, y: 0.828125 },\n { x: 0.671875, y: 0.828125 },\n { x: 0.703125, y: 0.828125 },\n { x: 0.703125, y: 0.828125 },\n { x: 0.734375, y: 0.828125 },\n { x: 0.734375, y: 0.828125 },\n { x: 0.765625, y: 0.828125 },\n { x: 0.765625, y: 0.828125 },\n { x: 0.796875, y: 0.828125 },\n { x: 0.796875, y: 0.828125 },\n { x: 0.828125, y: 0.828125 },\n { x: 0.828125, y: 0.828125 },\n { x: 0.859375, y: 0.828125 },\n { x: 0.859375, y: 0.828125 },\n { x: 0.890625, y: 0.828125 },\n { x: 0.890625, y: 0.828125 },\n { x: 0.921875, y: 0.828125 },\n { x: 0.921875, y: 0.828125 },\n { x: 0.953125, y: 0.828125 },\n { x: 0.953125, y: 0.828125 },\n { x: 0.984375, y: 0.828125 },\n { x: 0.984375, y: 0.828125 },\n { x: 0.015625, y: 0.859375 },\n { x: 0.015625, y: 0.859375 },\n { x: 0.046875, y: 0.859375 },\n { x: 0.046875, y: 0.859375 },\n { x: 0.078125, y: 0.859375 },\n { x: 0.078125, y: 0.859375 },\n { x: 0.109375, y: 0.859375 },\n { x: 0.109375, y: 0.859375 },\n { x: 0.140625, y: 0.859375 },\n { x: 0.140625, y: 0.859375 },\n { x: 0.171875, y: 0.859375 },\n { x: 0.171875, y: 0.859375 },\n { x: 0.203125, y: 0.859375 },\n { x: 0.203125, y: 0.859375 },\n { x: 0.234375, y: 0.859375 },\n { x: 0.234375, y: 0.859375 },\n { x: 0.265625, y: 0.859375 },\n { x: 0.265625, y: 0.859375 },\n { x: 0.296875, y: 0.859375 },\n { x: 0.296875, y: 0.859375 },\n { x: 0.328125, y: 0.859375 },\n { x: 0.328125, y: 0.859375 },\n { x: 0.359375, y: 0.859375 },\n { x: 0.359375, y: 0.859375 },\n { x: 0.390625, y: 0.859375 },\n { x: 0.390625, y: 0.859375 },\n { x: 0.421875, y: 0.859375 },\n { x: 0.421875, y: 0.859375 },\n { x: 0.453125, y: 0.859375 },\n { x: 0.453125, y: 0.859375 },\n { x: 0.484375, y: 0.859375 },\n { x: 0.484375, y: 0.859375 },\n { x: 0.515625, y: 0.859375 },\n { x: 0.515625, y: 0.859375 },\n { x: 0.546875, y: 0.859375 },\n { x: 0.546875, y: 0.859375 },\n { x: 0.578125, y: 0.859375 },\n { x: 0.578125, y: 0.859375 },\n { x: 0.609375, y: 0.859375 },\n { x: 0.609375, y: 0.859375 },\n { x: 0.640625, y: 0.859375 },\n { x: 0.640625, y: 0.859375 },\n { x: 0.671875, y: 0.859375 },\n { x: 0.671875, y: 0.859375 },\n { x: 0.703125, y: 0.859375 },\n { x: 0.703125, y: 0.859375 },\n { x: 0.734375, y: 0.859375 },\n { x: 0.734375, y: 0.859375 },\n { x: 0.765625, y: 0.859375 },\n { x: 0.765625, y: 0.859375 },\n { x: 0.796875, y: 0.859375 },\n { x: 0.796875, y: 0.859375 },\n { x: 0.828125, y: 0.859375 },\n { x: 0.828125, y: 0.859375 },\n { x: 0.859375, y: 0.859375 },\n { x: 0.859375, y: 0.859375 },\n { x: 0.890625, y: 0.859375 },\n { x: 0.890625, y: 0.859375 },\n { x: 0.921875, y: 0.859375 },\n { x: 0.921875, y: 0.859375 },\n { x: 0.953125, y: 0.859375 },\n { x: 0.953125, y: 0.859375 },\n { x: 0.984375, y: 0.859375 },\n { x: 0.984375, y: 0.859375 },\n { x: 0.015625, y: 0.890625 },\n { x: 0.015625, y: 0.890625 },\n { x: 0.046875, y: 0.890625 },\n { x: 0.046875, y: 0.890625 },\n { x: 0.078125, y: 0.890625 },\n { x: 0.078125, y: 0.890625 },\n { x: 0.109375, y: 0.890625 },\n { x: 0.109375, y: 0.890625 },\n { x: 0.140625, y: 0.890625 },\n { x: 0.140625, y: 0.890625 },\n { x: 0.171875, y: 0.890625 },\n { x: 0.171875, y: 0.890625 },\n { x: 0.203125, y: 0.890625 },\n { x: 0.203125, y: 0.890625 },\n { x: 0.234375, y: 0.890625 },\n { x: 0.234375, y: 0.890625 },\n { x: 0.265625, y: 0.890625 },\n { x: 0.265625, y: 0.890625 },\n { x: 0.296875, y: 0.890625 },\n { x: 0.296875, y: 0.890625 },\n { x: 0.328125, y: 0.890625 },\n { x: 0.328125, y: 0.890625 },\n { x: 0.359375, y: 0.890625 },\n { x: 0.359375, y: 0.890625 },\n { x: 0.390625, y: 0.890625 },\n { x: 0.390625, y: 0.890625 },\n { x: 0.421875, y: 0.890625 },\n { x: 0.421875, y: 0.890625 },\n { x: 0.453125, y: 0.890625 },\n { x: 0.453125, y: 0.890625 },\n { x: 0.484375, y: 0.890625 },\n { x: 0.484375, y: 0.890625 },\n { x: 0.515625, y: 0.890625 },\n { x: 0.515625, y: 0.890625 },\n { x: 0.546875, y: 0.890625 },\n { x: 0.546875, y: 0.890625 },\n { x: 0.578125, y: 0.890625 },\n { x: 0.578125, y: 0.890625 },\n { x: 0.609375, y: 0.890625 },\n { x: 0.609375, y: 0.890625 },\n { x: 0.640625, y: 0.890625 },\n { x: 0.640625, y: 0.890625 },\n { x: 0.671875, y: 0.890625 },\n { x: 0.671875, y: 0.890625 },\n { x: 0.703125, y: 0.890625 },\n { x: 0.703125, y: 0.890625 },\n { x: 0.734375, y: 0.890625 },\n { x: 0.734375, y: 0.890625 },\n { x: 0.765625, y: 0.890625 },\n { x: 0.765625, y: 0.890625 },\n { x: 0.796875, y: 0.890625 },\n { x: 0.796875, y: 0.890625 },\n { x: 0.828125, y: 0.890625 },\n { x: 0.828125, y: 0.890625 },\n { x: 0.859375, y: 0.890625 },\n { x: 0.859375, y: 0.890625 },\n { x: 0.890625, y: 0.890625 },\n { x: 0.890625, y: 0.890625 },\n { x: 0.921875, y: 0.890625 },\n { x: 0.921875, y: 0.890625 },\n { x: 0.953125, y: 0.890625 },\n { x: 0.953125, y: 0.890625 },\n { x: 0.984375, y: 0.890625 },\n { x: 0.984375, y: 0.890625 },\n { x: 0.015625, y: 0.921875 },\n { x: 0.015625, y: 0.921875 },\n { x: 0.046875, y: 0.921875 },\n { x: 0.046875, y: 0.921875 },\n { x: 0.078125, y: 0.921875 },\n { x: 0.078125, y: 0.921875 },\n { x: 0.109375, y: 0.921875 },\n { x: 0.109375, y: 0.921875 },\n { x: 0.140625, y: 0.921875 },\n { x: 0.140625, y: 0.921875 },\n { x: 0.171875, y: 0.921875 },\n { x: 0.171875, y: 0.921875 },\n { x: 0.203125, y: 0.921875 },\n { x: 0.203125, y: 0.921875 },\n { x: 0.234375, y: 0.921875 },\n { x: 0.234375, y: 0.921875 },\n { x: 0.265625, y: 0.921875 },\n { x: 0.265625, y: 0.921875 },\n { x: 0.296875, y: 0.921875 },\n { x: 0.296875, y: 0.921875 },\n { x: 0.328125, y: 0.921875 },\n { x: 0.328125, y: 0.921875 },\n { x: 0.359375, y: 0.921875 },\n { x: 0.359375, y: 0.921875 },\n { x: 0.390625, y: 0.921875 },\n { x: 0.390625, y: 0.921875 },\n { x: 0.421875, y: 0.921875 },\n { x: 0.421875, y: 0.921875 },\n { x: 0.453125, y: 0.921875 },\n { x: 0.453125, y: 0.921875 },\n { x: 0.484375, y: 0.921875 },\n { x: 0.484375, y: 0.921875 },\n { x: 0.515625, y: 0.921875 },\n { x: 0.515625, y: 0.921875 },\n { x: 0.546875, y: 0.921875 },\n { x: 0.546875, y: 0.921875 },\n { x: 0.578125, y: 0.921875 },\n { x: 0.578125, y: 0.921875 },\n { x: 0.609375, y: 0.921875 },\n { x: 0.609375, y: 0.921875 },\n { x: 0.640625, y: 0.921875 },\n { x: 0.640625, y: 0.921875 },\n { x: 0.671875, y: 0.921875 },\n { x: 0.671875, y: 0.921875 },\n { x: 0.703125, y: 0.921875 },\n { x: 0.703125, y: 0.921875 },\n { x: 0.734375, y: 0.921875 },\n { x: 0.734375, y: 0.921875 },\n { x: 0.765625, y: 0.921875 },\n { x: 0.765625, y: 0.921875 },\n { x: 0.796875, y: 0.921875 },\n { x: 0.796875, y: 0.921875 },\n { x: 0.828125, y: 0.921875 },\n { x: 0.828125, y: 0.921875 },\n { x: 0.859375, y: 0.921875 },\n { x: 0.859375, y: 0.921875 },\n { x: 0.890625, y: 0.921875 },\n { x: 0.890625, y: 0.921875 },\n { x: 0.921875, y: 0.921875 },\n { x: 0.921875, y: 0.921875 },\n { x: 0.953125, y: 0.921875 },\n { x: 0.953125, y: 0.921875 },\n { x: 0.984375, y: 0.921875 },\n { x: 0.984375, y: 0.921875 },\n { x: 0.015625, y: 0.953125 },\n { x: 0.015625, y: 0.953125 },\n { x: 0.046875, y: 0.953125 },\n { x: 0.046875, y: 0.953125 },\n { x: 0.078125, y: 0.953125 },\n { x: 0.078125, y: 0.953125 },\n { x: 0.109375, y: 0.953125 },\n { x: 0.109375, y: 0.953125 },\n { x: 0.140625, y: 0.953125 },\n { x: 0.140625, y: 0.953125 },\n { x: 0.171875, y: 0.953125 },\n { x: 0.171875, y: 0.953125 },\n { x: 0.203125, y: 0.953125 },\n { x: 0.203125, y: 0.953125 },\n { x: 0.234375, y: 0.953125 },\n { x: 0.234375, y: 0.953125 },\n { x: 0.265625, y: 0.953125 },\n { x: 0.265625, y: 0.953125 },\n { x: 0.296875, y: 0.953125 },\n { x: 0.296875, y: 0.953125 },\n { x: 0.328125, y: 0.953125 },\n { x: 0.328125, y: 0.953125 },\n { x: 0.359375, y: 0.953125 },\n { x: 0.359375, y: 0.953125 },\n { x: 0.390625, y: 0.953125 },\n { x: 0.390625, y: 0.953125 },\n { x: 0.421875, y: 0.953125 },\n { x: 0.421875, y: 0.953125 },\n { x: 0.453125, y: 0.953125 },\n { x: 0.453125, y: 0.953125 },\n { x: 0.484375, y: 0.953125 },\n { x: 0.484375, y: 0.953125 },\n { x: 0.515625, y: 0.953125 },\n { x: 0.515625, y: 0.953125 },\n { x: 0.546875, y: 0.953125 },\n { x: 0.546875, y: 0.953125 },\n { x: 0.578125, y: 0.953125 },\n { x: 0.578125, y: 0.953125 },\n { x: 0.609375, y: 0.953125 },\n { x: 0.609375, y: 0.953125 },\n { x: 0.640625, y: 0.953125 },\n { x: 0.640625, y: 0.953125 },\n { x: 0.671875, y: 0.953125 },\n { x: 0.671875, y: 0.953125 },\n { x: 0.703125, y: 0.953125 },\n { x: 0.703125, y: 0.953125 },\n { x: 0.734375, y: 0.953125 },\n { x: 0.734375, y: 0.953125 },\n { x: 0.765625, y: 0.953125 },\n { x: 0.765625, y: 0.953125 },\n { x: 0.796875, y: 0.953125 },\n { x: 0.796875, y: 0.953125 },\n { x: 0.828125, y: 0.953125 },\n { x: 0.828125, y: 0.953125 },\n { x: 0.859375, y: 0.953125 },\n { x: 0.859375, y: 0.953125 },\n { x: 0.890625, y: 0.953125 },\n { x: 0.890625, y: 0.953125 },\n { x: 0.921875, y: 0.953125 },\n { x: 0.921875, y: 0.953125 },\n { x: 0.953125, y: 0.953125 },\n { x: 0.953125, y: 0.953125 },\n { x: 0.984375, y: 0.953125 },\n { x: 0.984375, y: 0.953125 },\n { x: 0.015625, y: 0.984375 },\n { x: 0.015625, y: 0.984375 },\n { x: 0.046875, y: 0.984375 },\n { x: 0.046875, y: 0.984375 },\n { x: 0.078125, y: 0.984375 },\n { x: 0.078125, y: 0.984375 },\n { x: 0.109375, y: 0.984375 },\n { x: 0.109375, y: 0.984375 },\n { x: 0.140625, y: 0.984375 },\n { x: 0.140625, y: 0.984375 },\n { x: 0.171875, y: 0.984375 },\n { x: 0.171875, y: 0.984375 },\n { x: 0.203125, y: 0.984375 },\n { x: 0.203125, y: 0.984375 },\n { x: 0.234375, y: 0.984375 },\n { x: 0.234375, y: 0.984375 },\n { x: 0.265625, y: 0.984375 },\n { x: 0.265625, y: 0.984375 },\n { x: 0.296875, y: 0.984375 },\n { x: 0.296875, y: 0.984375 },\n { x: 0.328125, y: 0.984375 },\n { x: 0.328125, y: 0.984375 },\n { x: 0.359375, y: 0.984375 },\n { x: 0.359375, y: 0.984375 },\n { x: 0.390625, y: 0.984375 },\n { x: 0.390625, y: 0.984375 },\n { x: 0.421875, y: 0.984375 },\n { x: 0.421875, y: 0.984375 },\n { x: 0.453125, y: 0.984375 },\n { x: 0.453125, y: 0.984375 },\n { x: 0.484375, y: 0.984375 },\n { x: 0.484375, y: 0.984375 },\n { x: 0.515625, y: 0.984375 },\n { x: 0.515625, y: 0.984375 },\n { x: 0.546875, y: 0.984375 },\n { x: 0.546875, y: 0.984375 },\n { x: 0.578125, y: 0.984375 },\n { x: 0.578125, y: 0.984375 },\n { x: 0.609375, y: 0.984375 },\n { x: 0.609375, y: 0.984375 },\n { x: 0.640625, y: 0.984375 },\n { x: 0.640625, y: 0.984375 },\n { x: 0.671875, y: 0.984375 },\n { x: 0.671875, y: 0.984375 },\n { x: 0.703125, y: 0.984375 },\n { x: 0.703125, y: 0.984375 },\n { x: 0.734375, y: 0.984375 },\n { x: 0.734375, y: 0.984375 },\n { x: 0.765625, y: 0.984375 },\n { x: 0.765625, y: 0.984375 },\n { x: 0.796875, y: 0.984375 },\n { x: 0.796875, y: 0.984375 },\n { x: 0.828125, y: 0.984375 },\n { x: 0.828125, y: 0.984375 },\n { x: 0.859375, y: 0.984375 },\n { x: 0.859375, y: 0.984375 },\n { x: 0.890625, y: 0.984375 },\n { x: 0.890625, y: 0.984375 },\n { x: 0.921875, y: 0.984375 },\n { x: 0.921875, y: 0.984375 },\n { x: 0.953125, y: 0.984375 },\n { x: 0.953125, y: 0.984375 },\n { x: 0.984375, y: 0.984375 },\n { x: 0.984375, y: 0.984375 },\n { x: 0.03125, y: 0.03125 },\n { x: 0.03125, y: 0.03125 },\n { x: 0.09375, y: 0.03125 },\n { x: 0.09375, y: 0.03125 },\n { x: 0.15625, y: 0.03125 },\n { x: 0.15625, y: 0.03125 },\n { x: 0.21875, y: 0.03125 },\n { x: 0.21875, y: 0.03125 },\n { x: 0.28125, y: 0.03125 },\n { x: 0.28125, y: 0.03125 },\n { x: 0.34375, y: 0.03125 },\n { x: 0.34375, y: 0.03125 },\n { x: 0.40625, y: 0.03125 },\n { x: 0.40625, y: 0.03125 },\n { x: 0.46875, y: 0.03125 },\n { x: 0.46875, y: 0.03125 },\n { x: 0.53125, y: 0.03125 },\n { x: 0.53125, y: 0.03125 },\n { x: 0.59375, y: 0.03125 },\n { x: 0.59375, y: 0.03125 },\n { x: 0.65625, y: 0.03125 },\n { x: 0.65625, y: 0.03125 },\n { x: 0.71875, y: 0.03125 },\n { x: 0.71875, y: 0.03125 },\n { x: 0.78125, y: 0.03125 },\n { x: 0.78125, y: 0.03125 },\n { x: 0.84375, y: 0.03125 },\n { x: 0.84375, y: 0.03125 },\n { x: 0.90625, y: 0.03125 },\n { x: 0.90625, y: 0.03125 },\n { x: 0.96875, y: 0.03125 },\n { x: 0.96875, y: 0.03125 },\n { x: 0.03125, y: 0.09375 },\n { x: 0.03125, y: 0.09375 },\n { x: 0.09375, y: 0.09375 },\n { x: 0.09375, y: 0.09375 },\n { x: 0.15625, y: 0.09375 },\n { x: 0.15625, y: 0.09375 },\n { x: 0.21875, y: 0.09375 },\n { x: 0.21875, y: 0.09375 },\n { x: 0.28125, y: 0.09375 },\n { x: 0.28125, y: 0.09375 },\n { x: 0.34375, y: 0.09375 },\n { x: 0.34375, y: 0.09375 },\n { x: 0.40625, y: 0.09375 },\n { x: 0.40625, y: 0.09375 },\n { x: 0.46875, y: 0.09375 },\n { x: 0.46875, y: 0.09375 },\n { x: 0.53125, y: 0.09375 },\n { x: 0.53125, y: 0.09375 },\n { x: 0.59375, y: 0.09375 },\n { x: 0.59375, y: 0.09375 },\n { x: 0.65625, y: 0.09375 },\n { x: 0.65625, y: 0.09375 },\n { x: 0.71875, y: 0.09375 },\n { x: 0.71875, y: 0.09375 },\n { x: 0.78125, y: 0.09375 },\n { x: 0.78125, y: 0.09375 },\n { x: 0.84375, y: 0.09375 },\n { x: 0.84375, y: 0.09375 },\n { x: 0.90625, y: 0.09375 },\n { x: 0.90625, y: 0.09375 },\n { x: 0.96875, y: 0.09375 },\n { x: 0.96875, y: 0.09375 },\n { x: 0.03125, y: 0.15625 },\n { x: 0.03125, y: 0.15625 },\n { x: 0.09375, y: 0.15625 },\n { x: 0.09375, y: 0.15625 },\n { x: 0.15625, y: 0.15625 },\n { x: 0.15625, y: 0.15625 },\n { x: 0.21875, y: 0.15625 },\n { x: 0.21875, y: 0.15625 },\n { x: 0.28125, y: 0.15625 },\n { x: 0.28125, y: 0.15625 },\n { x: 0.34375, y: 0.15625 },\n { x: 0.34375, y: 0.15625 },\n { x: 0.40625, y: 0.15625 },\n { x: 0.40625, y: 0.15625 },\n { x: 0.46875, y: 0.15625 },\n { x: 0.46875, y: 0.15625 },\n { x: 0.53125, y: 0.15625 },\n { x: 0.53125, y: 0.15625 },\n { x: 0.59375, y: 0.15625 },\n { x: 0.59375, y: 0.15625 },\n { x: 0.65625, y: 0.15625 },\n { x: 0.65625, y: 0.15625 },\n { x: 0.71875, y: 0.15625 },\n { x: 0.71875, y: 0.15625 },\n { x: 0.78125, y: 0.15625 },\n { x: 0.78125, y: 0.15625 },\n { x: 0.84375, y: 0.15625 },\n { x: 0.84375, y: 0.15625 },\n { x: 0.90625, y: 0.15625 },\n { x: 0.90625, y: 0.15625 },\n { x: 0.96875, y: 0.15625 },\n { x: 0.96875, y: 0.15625 },\n { x: 0.03125, y: 0.21875 },\n { x: 0.03125, y: 0.21875 },\n { x: 0.09375, y: 0.21875 },\n { x: 0.09375, y: 0.21875 },\n { x: 0.15625, y: 0.21875 },\n { x: 0.15625, y: 0.21875 },\n { x: 0.21875, y: 0.21875 },\n { x: 0.21875, y: 0.21875 },\n { x: 0.28125, y: 0.21875 },\n { x: 0.28125, y: 0.21875 },\n { x: 0.34375, y: 0.21875 },\n { x: 0.34375, y: 0.21875 },\n { x: 0.40625, y: 0.21875 },\n { x: 0.40625, y: 0.21875 },\n { x: 0.46875, y: 0.21875 },\n { x: 0.46875, y: 0.21875 },\n { x: 0.53125, y: 0.21875 },\n { x: 0.53125, y: 0.21875 },\n { x: 0.59375, y: 0.21875 },\n { x: 0.59375, y: 0.21875 },\n { x: 0.65625, y: 0.21875 },\n { x: 0.65625, y: 0.21875 },\n { x: 0.71875, y: 0.21875 },\n { x: 0.71875, y: 0.21875 },\n { x: 0.78125, y: 0.21875 },\n { x: 0.78125, y: 0.21875 },\n { x: 0.84375, y: 0.21875 },\n { x: 0.84375, y: 0.21875 },\n { x: 0.90625, y: 0.21875 },\n { x: 0.90625, y: 0.21875 },\n { x: 0.96875, y: 0.21875 },\n { x: 0.96875, y: 0.21875 },\n { x: 0.03125, y: 0.28125 },\n { x: 0.03125, y: 0.28125 },\n { x: 0.09375, y: 0.28125 },\n { x: 0.09375, y: 0.28125 },\n { x: 0.15625, y: 0.28125 },\n { x: 0.15625, y: 0.28125 },\n { x: 0.21875, y: 0.28125 },\n { x: 0.21875, y: 0.28125 },\n { x: 0.28125, y: 0.28125 },\n { x: 0.28125, y: 0.28125 },\n { x: 0.34375, y: 0.28125 },\n { x: 0.34375, y: 0.28125 },\n { x: 0.40625, y: 0.28125 },\n { x: 0.40625, y: 0.28125 },\n { x: 0.46875, y: 0.28125 },\n { x: 0.46875, y: 0.28125 },\n { x: 0.53125, y: 0.28125 },\n { x: 0.53125, y: 0.28125 },\n { x: 0.59375, y: 0.28125 },\n { x: 0.59375, y: 0.28125 },\n { x: 0.65625, y: 0.28125 },\n { x: 0.65625, y: 0.28125 },\n { x: 0.71875, y: 0.28125 },\n { x: 0.71875, y: 0.28125 },\n { x: 0.78125, y: 0.28125 },\n { x: 0.78125, y: 0.28125 },\n { x: 0.84375, y: 0.28125 },\n { x: 0.84375, y: 0.28125 },\n { x: 0.90625, y: 0.28125 },\n { x: 0.90625, y: 0.28125 },\n { x: 0.96875, y: 0.28125 },\n { x: 0.96875, y: 0.28125 },\n { x: 0.03125, y: 0.34375 },\n { x: 0.03125, y: 0.34375 },\n { x: 0.09375, y: 0.34375 },\n { x: 0.09375, y: 0.34375 },\n { x: 0.15625, y: 0.34375 },\n { x: 0.15625, y: 0.34375 },\n { x: 0.21875, y: 0.34375 },\n { x: 0.21875, y: 0.34375 },\n { x: 0.28125, y: 0.34375 },\n { x: 0.28125, y: 0.34375 },\n { x: 0.34375, y: 0.34375 },\n { x: 0.34375, y: 0.34375 },\n { x: 0.40625, y: 0.34375 },\n { x: 0.40625, y: 0.34375 },\n { x: 0.46875, y: 0.34375 },\n { x: 0.46875, y: 0.34375 },\n { x: 0.53125, y: 0.34375 },\n { x: 0.53125, y: 0.34375 },\n { x: 0.59375, y: 0.34375 },\n { x: 0.59375, y: 0.34375 },\n { x: 0.65625, y: 0.34375 },\n { x: 0.65625, y: 0.34375 },\n { x: 0.71875, y: 0.34375 },\n { x: 0.71875, y: 0.34375 },\n { x: 0.78125, y: 0.34375 },\n { x: 0.78125, y: 0.34375 },\n { x: 0.84375, y: 0.34375 },\n { x: 0.84375, y: 0.34375 },\n { x: 0.90625, y: 0.34375 },\n { x: 0.90625, y: 0.34375 },\n { x: 0.96875, y: 0.34375 },\n { x: 0.96875, y: 0.34375 },\n { x: 0.03125, y: 0.40625 },\n { x: 0.03125, y: 0.40625 },\n { x: 0.09375, y: 0.40625 },\n { x: 0.09375, y: 0.40625 },\n { x: 0.15625, y: 0.40625 },\n { x: 0.15625, y: 0.40625 },\n { x: 0.21875, y: 0.40625 },\n { x: 0.21875, y: 0.40625 },\n { x: 0.28125, y: 0.40625 },\n { x: 0.28125, y: 0.40625 },\n { x: 0.34375, y: 0.40625 },\n { x: 0.34375, y: 0.40625 },\n { x: 0.40625, y: 0.40625 },\n { x: 0.40625, y: 0.40625 },\n { x: 0.46875, y: 0.40625 },\n { x: 0.46875, y: 0.40625 },\n { x: 0.53125, y: 0.40625 },\n { x: 0.53125, y: 0.40625 },\n { x: 0.59375, y: 0.40625 },\n { x: 0.59375, y: 0.40625 },\n { x: 0.65625, y: 0.40625 },\n { x: 0.65625, y: 0.40625 },\n { x: 0.71875, y: 0.40625 },\n { x: 0.71875, y: 0.40625 },\n { x: 0.78125, y: 0.40625 },\n { x: 0.78125, y: 0.40625 },\n { x: 0.84375, y: 0.40625 },\n { x: 0.84375, y: 0.40625 },\n { x: 0.90625, y: 0.40625 },\n { x: 0.90625, y: 0.40625 },\n { x: 0.96875, y: 0.40625 },\n { x: 0.96875, y: 0.40625 },\n { x: 0.03125, y: 0.46875 },\n { x: 0.03125, y: 0.46875 },\n { x: 0.09375, y: 0.46875 },\n { x: 0.09375, y: 0.46875 },\n { x: 0.15625, y: 0.46875 },\n { x: 0.15625, y: 0.46875 },\n { x: 0.21875, y: 0.46875 },\n { x: 0.21875, y: 0.46875 },\n { x: 0.28125, y: 0.46875 },\n { x: 0.28125, y: 0.46875 },\n { x: 0.34375, y: 0.46875 },\n { x: 0.34375, y: 0.46875 },\n { x: 0.40625, y: 0.46875 },\n { x: 0.40625, y: 0.46875 },\n { x: 0.46875, y: 0.46875 },\n { x: 0.46875, y: 0.46875 },\n { x: 0.53125, y: 0.46875 },\n { x: 0.53125, y: 0.46875 },\n { x: 0.59375, y: 0.46875 },\n { x: 0.59375, y: 0.46875 },\n { x: 0.65625, y: 0.46875 },\n { x: 0.65625, y: 0.46875 },\n { x: 0.71875, y: 0.46875 },\n { x: 0.71875, y: 0.46875 },\n { x: 0.78125, y: 0.46875 },\n { x: 0.78125, y: 0.46875 },\n { x: 0.84375, y: 0.46875 },\n { x: 0.84375, y: 0.46875 },\n { x: 0.90625, y: 0.46875 },\n { x: 0.90625, y: 0.46875 },\n { x: 0.96875, y: 0.46875 },\n { x: 0.96875, y: 0.46875 },\n { x: 0.03125, y: 0.53125 },\n { x: 0.03125, y: 0.53125 },\n { x: 0.09375, y: 0.53125 },\n { x: 0.09375, y: 0.53125 },\n { x: 0.15625, y: 0.53125 },\n { x: 0.15625, y: 0.53125 },\n { x: 0.21875, y: 0.53125 },\n { x: 0.21875, y: 0.53125 },\n { x: 0.28125, y: 0.53125 },\n { x: 0.28125, y: 0.53125 },\n { x: 0.34375, y: 0.53125 },\n { x: 0.34375, y: 0.53125 },\n { x: 0.40625, y: 0.53125 },\n { x: 0.40625, y: 0.53125 },\n { x: 0.46875, y: 0.53125 },\n { x: 0.46875, y: 0.53125 },\n { x: 0.53125, y: 0.53125 },\n { x: 0.53125, y: 0.53125 },\n { x: 0.59375, y: 0.53125 },\n { x: 0.59375, y: 0.53125 },\n { x: 0.65625, y: 0.53125 },\n { x: 0.65625, y: 0.53125 },\n { x: 0.71875, y: 0.53125 },\n { x: 0.71875, y: 0.53125 },\n { x: 0.78125, y: 0.53125 },\n { x: 0.78125, y: 0.53125 },\n { x: 0.84375, y: 0.53125 },\n { x: 0.84375, y: 0.53125 },\n { x: 0.90625, y: 0.53125 },\n { x: 0.90625, y: 0.53125 },\n { x: 0.96875, y: 0.53125 },\n { x: 0.96875, y: 0.53125 },\n { x: 0.03125, y: 0.59375 },\n { x: 0.03125, y: 0.59375 },\n { x: 0.09375, y: 0.59375 },\n { x: 0.09375, y: 0.59375 },\n { x: 0.15625, y: 0.59375 },\n { x: 0.15625, y: 0.59375 },\n { x: 0.21875, y: 0.59375 },\n { x: 0.21875, y: 0.59375 },\n { x: 0.28125, y: 0.59375 },\n { x: 0.28125, y: 0.59375 },\n { x: 0.34375, y: 0.59375 },\n { x: 0.34375, y: 0.59375 },\n { x: 0.40625, y: 0.59375 },\n { x: 0.40625, y: 0.59375 },\n { x: 0.46875, y: 0.59375 },\n { x: 0.46875, y: 0.59375 },\n { x: 0.53125, y: 0.59375 },\n { x: 0.53125, y: 0.59375 },\n { x: 0.59375, y: 0.59375 },\n { x: 0.59375, y: 0.59375 },\n { x: 0.65625, y: 0.59375 },\n { x: 0.65625, y: 0.59375 },\n { x: 0.71875, y: 0.59375 },\n { x: 0.71875, y: 0.59375 },\n { x: 0.78125, y: 0.59375 },\n { x: 0.78125, y: 0.59375 },\n { x: 0.84375, y: 0.59375 },\n { x: 0.84375, y: 0.59375 },\n { x: 0.90625, y: 0.59375 },\n { x: 0.90625, y: 0.59375 },\n { x: 0.96875, y: 0.59375 },\n { x: 0.96875, y: 0.59375 },\n { x: 0.03125, y: 0.65625 },\n { x: 0.03125, y: 0.65625 },\n { x: 0.09375, y: 0.65625 },\n { x: 0.09375, y: 0.65625 },\n { x: 0.15625, y: 0.65625 },\n { x: 0.15625, y: 0.65625 },\n { x: 0.21875, y: 0.65625 },\n { x: 0.21875, y: 0.65625 },\n { x: 0.28125, y: 0.65625 },\n { x: 0.28125, y: 0.65625 },\n { x: 0.34375, y: 0.65625 },\n { x: 0.34375, y: 0.65625 },\n { x: 0.40625, y: 0.65625 },\n { x: 0.40625, y: 0.65625 },\n { x: 0.46875, y: 0.65625 },\n { x: 0.46875, y: 0.65625 },\n { x: 0.53125, y: 0.65625 },\n { x: 0.53125, y: 0.65625 },\n { x: 0.59375, y: 0.65625 },\n { x: 0.59375, y: 0.65625 },\n { x: 0.65625, y: 0.65625 },\n { x: 0.65625, y: 0.65625 },\n { x: 0.71875, y: 0.65625 },\n { x: 0.71875, y: 0.65625 },\n { x: 0.78125, y: 0.65625 },\n { x: 0.78125, y: 0.65625 },\n { x: 0.84375, y: 0.65625 },\n { x: 0.84375, y: 0.65625 },\n { x: 0.90625, y: 0.65625 },\n { x: 0.90625, y: 0.65625 },\n { x: 0.96875, y: 0.65625 },\n { x: 0.96875, y: 0.65625 },\n { x: 0.03125, y: 0.71875 },\n { x: 0.03125, y: 0.71875 },\n { x: 0.09375, y: 0.71875 },\n { x: 0.09375, y: 0.71875 },\n { x: 0.15625, y: 0.71875 },\n { x: 0.15625, y: 0.71875 },\n { x: 0.21875, y: 0.71875 },\n { x: 0.21875, y: 0.71875 },\n { x: 0.28125, y: 0.71875 },\n { x: 0.28125, y: 0.71875 },\n { x: 0.34375, y: 0.71875 },\n { x: 0.34375, y: 0.71875 },\n { x: 0.40625, y: 0.71875 },\n { x: 0.40625, y: 0.71875 },\n { x: 0.46875, y: 0.71875 },\n { x: 0.46875, y: 0.71875 },\n { x: 0.53125, y: 0.71875 },\n { x: 0.53125, y: 0.71875 },\n { x: 0.59375, y: 0.71875 },\n { x: 0.59375, y: 0.71875 },\n { x: 0.65625, y: 0.71875 },\n { x: 0.65625, y: 0.71875 },\n { x: 0.71875, y: 0.71875 },\n { x: 0.71875, y: 0.71875 },\n { x: 0.78125, y: 0.71875 },\n { x: 0.78125, y: 0.71875 },\n { x: 0.84375, y: 0.71875 },\n { x: 0.84375, y: 0.71875 },\n { x: 0.90625, y: 0.71875 },\n { x: 0.90625, y: 0.71875 },\n { x: 0.96875, y: 0.71875 },\n { x: 0.96875, y: 0.71875 },\n { x: 0.03125, y: 0.78125 },\n { x: 0.03125, y: 0.78125 },\n { x: 0.09375, y: 0.78125 },\n { x: 0.09375, y: 0.78125 },\n { x: 0.15625, y: 0.78125 },\n { x: 0.15625, y: 0.78125 },\n { x: 0.21875, y: 0.78125 },\n { x: 0.21875, y: 0.78125 },\n { x: 0.28125, y: 0.78125 },\n { x: 0.28125, y: 0.78125 },\n { x: 0.34375, y: 0.78125 },\n { x: 0.34375, y: 0.78125 },\n { x: 0.40625, y: 0.78125 },\n { x: 0.40625, y: 0.78125 },\n { x: 0.46875, y: 0.78125 },\n { x: 0.46875, y: 0.78125 },\n { x: 0.53125, y: 0.78125 },\n { x: 0.53125, y: 0.78125 },\n { x: 0.59375, y: 0.78125 },\n { x: 0.59375, y: 0.78125 },\n { x: 0.65625, y: 0.78125 },\n { x: 0.65625, y: 0.78125 },\n { x: 0.71875, y: 0.78125 },\n { x: 0.71875, y: 0.78125 },\n { x: 0.78125, y: 0.78125 },\n { x: 0.78125, y: 0.78125 },\n { x: 0.84375, y: 0.78125 },\n { x: 0.84375, y: 0.78125 },\n { x: 0.90625, y: 0.78125 },\n { x: 0.90625, y: 0.78125 },\n { x: 0.96875, y: 0.78125 },\n { x: 0.96875, y: 0.78125 },\n { x: 0.03125, y: 0.84375 },\n { x: 0.03125, y: 0.84375 },\n { x: 0.09375, y: 0.84375 },\n { x: 0.09375, y: 0.84375 },\n { x: 0.15625, y: 0.84375 },\n { x: 0.15625, y: 0.84375 },\n { x: 0.21875, y: 0.84375 },\n { x: 0.21875, y: 0.84375 },\n { x: 0.28125, y: 0.84375 },\n { x: 0.28125, y: 0.84375 },\n { x: 0.34375, y: 0.84375 },\n { x: 0.34375, y: 0.84375 },\n { x: 0.40625, y: 0.84375 },\n { x: 0.40625, y: 0.84375 },\n { x: 0.46875, y: 0.84375 },\n { x: 0.46875, y: 0.84375 },\n { x: 0.53125, y: 0.84375 },\n { x: 0.53125, y: 0.84375 },\n { x: 0.59375, y: 0.84375 },\n { x: 0.59375, y: 0.84375 },\n { x: 0.65625, y: 0.84375 },\n { x: 0.65625, y: 0.84375 },\n { x: 0.71875, y: 0.84375 },\n { x: 0.71875, y: 0.84375 },\n { x: 0.78125, y: 0.84375 },\n { x: 0.78125, y: 0.84375 },\n { x: 0.84375, y: 0.84375 },\n { x: 0.84375, y: 0.84375 },\n { x: 0.90625, y: 0.84375 },\n { x: 0.90625, y: 0.84375 },\n { x: 0.96875, y: 0.84375 },\n { x: 0.96875, y: 0.84375 },\n { x: 0.03125, y: 0.90625 },\n { x: 0.03125, y: 0.90625 },\n { x: 0.09375, y: 0.90625 },\n { x: 0.09375, y: 0.90625 },\n { x: 0.15625, y: 0.90625 },\n { x: 0.15625, y: 0.90625 },\n { x: 0.21875, y: 0.90625 },\n { x: 0.21875, y: 0.90625 },\n { x: 0.28125, y: 0.90625 },\n { x: 0.28125, y: 0.90625 },\n { x: 0.34375, y: 0.90625 },\n { x: 0.34375, y: 0.90625 },\n { x: 0.40625, y: 0.90625 },\n { x: 0.40625, y: 0.90625 },\n { x: 0.46875, y: 0.90625 },\n { x: 0.46875, y: 0.90625 },\n { x: 0.53125, y: 0.90625 },\n { x: 0.53125, y: 0.90625 },\n { x: 0.59375, y: 0.90625 },\n { x: 0.59375, y: 0.90625 },\n { x: 0.65625, y: 0.90625 },\n { x: 0.65625, y: 0.90625 },\n { x: 0.71875, y: 0.90625 },\n { x: 0.71875, y: 0.90625 },\n { x: 0.78125, y: 0.90625 },\n { x: 0.78125, y: 0.90625 },\n { x: 0.84375, y: 0.90625 },\n { x: 0.84375, y: 0.90625 },\n { x: 0.90625, y: 0.90625 },\n { x: 0.90625, y: 0.90625 },\n { x: 0.96875, y: 0.90625 },\n { x: 0.96875, y: 0.90625 },\n { x: 0.03125, y: 0.96875 },\n { x: 0.03125, y: 0.96875 },\n { x: 0.09375, y: 0.96875 },\n { x: 0.09375, y: 0.96875 },\n { x: 0.15625, y: 0.96875 },\n { x: 0.15625, y: 0.96875 },\n { x: 0.21875, y: 0.96875 },\n { x: 0.21875, y: 0.96875 },\n { x: 0.28125, y: 0.96875 },\n { x: 0.28125, y: 0.96875 },\n { x: 0.34375, y: 0.96875 },\n { x: 0.34375, y: 0.96875 },\n { x: 0.40625, y: 0.96875 },\n { x: 0.40625, y: 0.96875 },\n { x: 0.46875, y: 0.96875 },\n { x: 0.46875, y: 0.96875 },\n { x: 0.53125, y: 0.96875 },\n { x: 0.53125, y: 0.96875 },\n { x: 0.59375, y: 0.96875 },\n { x: 0.59375, y: 0.96875 },\n { x: 0.65625, y: 0.96875 },\n { x: 0.65625, y: 0.96875 },\n { x: 0.71875, y: 0.96875 },\n { x: 0.71875, y: 0.96875 },\n { x: 0.78125, y: 0.96875 },\n { x: 0.78125, y: 0.96875 },\n { x: 0.84375, y: 0.96875 },\n { x: 0.84375, y: 0.96875 },\n { x: 0.90625, y: 0.96875 },\n { x: 0.90625, y: 0.96875 },\n { x: 0.96875, y: 0.96875 },\n { x: 0.96875, y: 0.96875 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n];\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as box from './box';\nimport * as anchors from './anchors';\nimport { Tensor, GraphModel } from '../tfjs/types';\n\nexport class HandDetector {\n model: GraphModel;\n anchors: number[][];\n anchorsTensor: Tensor;\n inputSize: number;\n inputSizeTensor: Tensor;\n doubleInputSizeTensor: Tensor;\n\n constructor(model) {\n this.model = model;\n this.anchors = anchors.anchors.map((anchor) => [anchor.x, anchor.y]);\n this.anchorsTensor = tf.tensor2d(this.anchors);\n this.inputSize = (this.model && this.model.inputs && this.model.inputs[0].shape) ? this.model.inputs[0].shape[2] : 0;\n this.inputSizeTensor = tf.tensor1d([this.inputSize, this.inputSize]);\n this.doubleInputSizeTensor = tf.tensor1d([this.inputSize * 2, this.inputSize * 2]);\n }\n\n normalizeBoxes(boxes) {\n return tf.tidy(() => {\n const boxOffsets = tf.slice(boxes, [0, 0], [-1, 2]);\n const boxSizes = tf.slice(boxes, [0, 2], [-1, 2]);\n const boxCenterPoints = tf.add(tf.div(boxOffsets, this.inputSizeTensor), this.anchorsTensor);\n const halfBoxSizes = tf.div(boxSizes, this.doubleInputSizeTensor);\n const startPoints = tf.mul(tf.sub(boxCenterPoints, halfBoxSizes), this.inputSizeTensor);\n const endPoints = tf.mul(tf.add(boxCenterPoints, halfBoxSizes), this.inputSizeTensor);\n return tf.concat2d([startPoints, endPoints], 1);\n });\n }\n\n normalizeLandmarks(rawPalmLandmarks, index) {\n return tf.tidy(() => {\n const landmarks = tf.add(tf.div(tf.reshape(rawPalmLandmarks, [-1, 7, 2]), this.inputSizeTensor), this.anchors[index]);\n return tf.mul(landmarks, this.inputSizeTensor);\n });\n }\n\n async getBoxes(input, config) {\n const batched = this.model.predict(input) as Tensor;\n const predictions = tf.squeeze(batched);\n tf.dispose(batched);\n const scoresT = tf.tidy(() => tf.squeeze(tf.sigmoid(tf.slice(predictions, [0, 0], [-1, 1]))));\n const scores = await scoresT.data();\n const rawBoxes = tf.slice(predictions, [0, 1], [-1, 4]);\n const boxes = this.normalizeBoxes(rawBoxes);\n tf.dispose(rawBoxes);\n const filteredT = await tf.image.nonMaxSuppressionAsync(boxes, scores, config.hand.maxDetected, config.hand.iouThreshold, config.hand.minConfidence);\n const filtered = await filteredT.array();\n\n tf.dispose(scoresT);\n tf.dispose(filteredT);\n const hands: Array<{ box: Tensor, palmLandmarks: Tensor, confidence: number }> = [];\n for (const index of filtered) {\n if (scores[index] >= config.hand.minConfidence) {\n const matchingBox = tf.slice(boxes, [index, 0], [1, -1]);\n const rawPalmLandmarks = tf.slice(predictions, [index, 5], [1, 14]);\n const palmLandmarks = tf.tidy(() => tf.reshape(this.normalizeLandmarks(rawPalmLandmarks, index), [-1, 2]));\n tf.dispose(rawPalmLandmarks);\n hands.push({ box: matchingBox, palmLandmarks, confidence: scores[index] });\n }\n }\n tf.dispose(predictions);\n tf.dispose(boxes);\n return hands;\n }\n\n async estimateHandBounds(input, config): Promise<{ startPoint: number[]; endPoint: number[]; palmLandmarks: number[]; confidence: number }[]> {\n const inputHeight = input.shape[1];\n const inputWidth = input.shape[2];\n const image = tf.tidy(() => tf.sub(tf.div(tf.image.resizeBilinear(input, [this.inputSize, this.inputSize]), 127.5), 1));\n const predictions = await this.getBoxes(image, config);\n tf.dispose(image);\n const hands: Array<{ startPoint: number[]; endPoint: number[]; palmLandmarks: number[]; confidence: number }> = [];\n if (!predictions || predictions.length === 0) return hands;\n for (const prediction of predictions) {\n const boxes = await prediction.box.data();\n const startPoint = boxes.slice(0, 2);\n const endPoint = boxes.slice(2, 4);\n const palmLandmarks = await prediction.palmLandmarks.array();\n tf.dispose(prediction.box);\n tf.dispose(prediction.palmLandmarks);\n hands.push(box.scaleBoxCoordinates({ startPoint, endPoint, palmLandmarks, confidence: prediction.confidence }, [inputWidth / this.inputSize, inputHeight / this.inputSize]));\n }\n return hands;\n }\n}\n", "export function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport const buildTranslationMatrix = (x, y) => [[1, 0, x], [0, 1, y], [0, 0, 1]];\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: Array = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: Array = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as box from './box';\nimport * as util from './util';\nimport * as detector from './handdetector';\nimport { Tensor, GraphModel } from '../tfjs/types';\n\nconst palmBoxEnlargeFactor = 5; // default 3\nconst handBoxEnlargeFactor = 1.65; // default 1.65\nconst palmLandmarkIds = [0, 5, 9, 13, 17, 1, 2];\nconst palmLandmarksPalmBase = 0;\nconst palmLandmarksMiddleFingerBase = 2;\n\nexport class HandPipeline {\n handDetector: detector.HandDetector;\n handPoseModel: GraphModel;\n inputSize: number;\n storedBoxes: Array<{ startPoint: number[]; endPoint: number[]; palmLandmarks: number[]; confidence: number } | null>;\n skipped: number;\n detectedHands: number;\n\n constructor(handDetector, handPoseModel) {\n this.handDetector = handDetector;\n this.handPoseModel = handPoseModel;\n // @ts-ignore model is not undefined here\n this.inputSize = this.handPoseModel?.inputs[0].shape[2];\n this.storedBoxes = [];\n this.skipped = 0;\n this.detectedHands = 0;\n }\n\n // eslint-disable-next-line class-methods-use-this\n calculateLandmarksBoundingBox(landmarks) {\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint };\n }\n\n getBoxForPalmLandmarks(palmLandmarks, rotationMatrix) {\n const rotatedPalmLandmarks = palmLandmarks.map((coord) => util.rotatePoint([...coord, 1], rotationMatrix));\n const boxAroundPalm = this.calculateLandmarksBoundingBox(rotatedPalmLandmarks);\n return box.enlargeBox(box.squarifyBox(boxAroundPalm), palmBoxEnlargeFactor);\n }\n\n getBoxForHandLandmarks(landmarks) {\n const boundingBox = this.calculateLandmarksBoundingBox(landmarks);\n const boxAroundHand = box.enlargeBox(box.squarifyBox(boundingBox), handBoxEnlargeFactor);\n boxAroundHand.palmLandmarks = [];\n for (let i = 0; i < palmLandmarkIds.length; i++) {\n boxAroundHand.palmLandmarks.push(landmarks[palmLandmarkIds[i]].slice(0, 2));\n }\n return boxAroundHand;\n }\n\n transformRawCoords(rawCoords, box2, angle, rotationMatrix) {\n const boxSize = box.getBoxSize(box2);\n const scaleFactor = [boxSize[0] / this.inputSize, boxSize[1] / this.inputSize, (boxSize[0] + boxSize[1]) / this.inputSize / 2];\n const coordsScaled = rawCoords.map((coord) => [\n scaleFactor[0] * (coord[0] - this.inputSize / 2),\n scaleFactor[1] * (coord[1] - this.inputSize / 2),\n scaleFactor[2] * coord[2],\n ]);\n const coordsRotationMatrix = util.buildRotationMatrix(angle, [0, 0]);\n const coordsRotated = coordsScaled.map((coord) => {\n const rotated = util.rotatePoint(coord, coordsRotationMatrix);\n return [...rotated, coord[2]];\n });\n const inverseRotationMatrix = util.invertTransformMatrix(rotationMatrix);\n const boxCenter = [...box.getBoxCenter(box2), 1];\n const originalBoxCenter = [\n util.dot(boxCenter, inverseRotationMatrix[0]),\n util.dot(boxCenter, inverseRotationMatrix[1]),\n ];\n return coordsRotated.map((coord) => [\n Math.trunc(coord[0] + originalBoxCenter[0]),\n Math.trunc(coord[1] + originalBoxCenter[1]),\n Math.trunc(coord[2]),\n ]);\n }\n\n async estimateHands(image, config) {\n let useFreshBox = false;\n\n // run new detector every skipFrames unless we only want box to start with\n let boxes;\n\n // console.log(this.skipped, config.hand.skipFrames, !config.hand.landmarks, !config.skipFrame);\n if ((this.skipped === 0) || (this.skipped > config.hand.skipFrames) || !config.hand.landmarks || !config.skipFrame) {\n boxes = await this.handDetector.estimateHandBounds(image, config);\n this.skipped = 0;\n }\n if (config.skipFrame) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (boxes && (boxes.length > 0) && ((boxes.length !== this.detectedHands) && (this.detectedHands !== config.hand.maxDetected) || !config.hand.landmarks)) {\n this.detectedHands = 0;\n this.storedBoxes = [...boxes];\n // for (const possible of boxes) this.storedBoxes.push(possible);\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n const hands: Array<{ landmarks?: number[], confidence: number, box: { topLeft: number[], bottomRight: number[] } }> = [];\n\n // go through working set of boxes\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const currentBox = this.storedBoxes[i];\n if (!currentBox) continue;\n if (config.hand.landmarks) {\n const angle = config.hand.rotation ? util.computeRotation(currentBox.palmLandmarks[palmLandmarksPalmBase], currentBox.palmLandmarks[palmLandmarksMiddleFingerBase]) : 0;\n const palmCenter = box.getBoxCenter(currentBox);\n const palmCenterNormalized = [palmCenter[0] / image.shape[2], palmCenter[1] / image.shape[1]];\n const rotatedImage = config.hand.rotation && tf.ENV.flags.IS_BROWSER ? tf.image.rotateWithOffset(image, angle, 0, palmCenterNormalized) : image.clone();\n const rotationMatrix = util.buildRotationMatrix(-angle, palmCenter);\n const newBox = useFreshBox ? this.getBoxForPalmLandmarks(currentBox.palmLandmarks, rotationMatrix) : currentBox;\n const croppedInput = box.cutBoxFromImageAndResize(newBox, rotatedImage, [this.inputSize, this.inputSize]);\n const handImage = tf.div(croppedInput, 255);\n tf.dispose(croppedInput);\n tf.dispose(rotatedImage);\n const [confidenceT, keypoints] = await this.handPoseModel.predict(handImage) as Array;\n tf.dispose(handImage);\n const confidence = (await confidenceT.data())[0];\n tf.dispose(confidenceT);\n if (confidence >= config.hand.minConfidence) {\n const keypointsReshaped = tf.reshape(keypoints, [-1, 3]);\n const rawCoords = await keypointsReshaped.array();\n tf.dispose(keypoints);\n tf.dispose(keypointsReshaped);\n const coords = this.transformRawCoords(rawCoords, newBox, angle, rotationMatrix);\n const nextBoundingBox = this.getBoxForHandLandmarks(coords);\n this.storedBoxes[i] = { ...nextBoundingBox, confidence };\n const result = {\n landmarks: coords,\n confidence,\n box: { topLeft: nextBoundingBox.startPoint, bottomRight: nextBoundingBox.endPoint },\n };\n hands.push(result);\n } else {\n this.storedBoxes[i] = null;\n }\n tf.dispose(keypoints);\n } else {\n // const enlarged = box.enlargeBox(box.squarifyBox(box.shiftBox(currentBox, HAND_BOX_SHIFT_VECTOR)), handBoxEnlargeFactor);\n const enlarged = box.enlargeBox(box.squarifyBox(currentBox), handBoxEnlargeFactor);\n const result = {\n confidence: currentBox.confidence,\n box: { topLeft: enlarged.startPoint, bottomRight: enlarged.endPoint },\n };\n hands.push(result);\n }\n }\n this.storedBoxes = this.storedBoxes.filter((a) => a !== null);\n this.detectedHands = hands.length;\n return hands;\n }\n}\n", "const Finger = {\n thumb: 0,\n index: 1,\n middle: 2,\n ring: 3,\n pinky: 4,\n all: [0, 1, 2, 3, 4], // just for convenience\n nameMapping: { 0: 'thumb', 1: 'index', 2: 'middle', 3: 'ring', 4: 'pinky' },\n // Describes mapping of joints based on the 21 points returned by handpose.\n // [0] Palm\n // [1-4] Thumb\n // [5-8] Index\n // [9-12] Middle\n // [13-16] Ring\n // [17-20] Pinky\n pointsMapping: {\n 0: [[0, 1], [1, 2], [2, 3], [3, 4]],\n 1: [[0, 5], [5, 6], [6, 7], [7, 8]],\n 2: [[0, 9], [9, 10], [10, 11], [11, 12]],\n 3: [[0, 13], [13, 14], [14, 15], [15, 16]],\n 4: [[0, 17], [17, 18], [18, 19], [19, 20]],\n },\n getName: (value) => Finger.nameMapping[value],\n getPoints: (value) => Finger.pointsMapping[value],\n};\n\nconst FingerCurl = {\n none: 0,\n half: 1,\n full: 2,\n nameMapping: { 0: 'none', 1: 'half', 2: 'full' },\n getName: (value) => FingerCurl.nameMapping[value],\n};\n\nconst FingerDirection = {\n verticalUp: 0,\n verticalDown: 1,\n horizontalLeft: 2,\n horizontalRight: 3,\n diagonalUpRight: 4,\n diagonalUpLeft: 5,\n diagonalDownRight: 6,\n diagonalDownLeft: 7,\n nameMapping: { 0: 'verticalUp', 1: 'verticalDown', 2: 'horizontalLeft', 3: 'horizontalRight', 4: 'diagonalUpRight', 5: 'diagonalUpLeft', 6: 'diagonalDownRight', 7: 'diagonalDownLeft' },\n getName: (value) => FingerDirection.nameMapping[value],\n};\n\nexport { Finger, FingerCurl, FingerDirection };\n", "import { Finger, FingerCurl, FingerDirection } from './description';\n\nconst options = {\n // curl estimation\n HALF_CURL_START_LIMIT: 60.0,\n NO_CURL_START_LIMIT: 130.0,\n // direction estimation\n DISTANCE_VOTE_POWER: 1.1,\n SINGLE_ANGLE_VOTE_POWER: 0.9,\n TOTAL_ANGLE_VOTE_POWER: 1.6,\n};\n\nfunction calculateSlope(point1x, point1y, point2x, point2y) {\n const value = (point1y - point2y) / (point1x - point2x);\n let slope = Math.atan(value) * 180 / Math.PI;\n if (slope <= 0) slope = -slope;\n else if (slope > 0) slope = 180 - slope;\n return slope;\n}\n\n// point1, point2 are 2d or 3d point arrays (xy[z])\n// returns either a single scalar (2d) or array of two slopes (3d)\nfunction getSlopes(point1, point2) {\n const slopeXY = calculateSlope(point1[0], point1[1], point2[0], point2[1]);\n if (point1.length === 2) return slopeXY;\n const slopeYZ = calculateSlope(point1[1], point1[2], point2[1], point2[2]);\n return [slopeXY, slopeYZ];\n}\n\nfunction angleOrientationAt(angle, weightageAt = 1.0) {\n let isVertical = 0;\n let isDiagonal = 0;\n let isHorizontal = 0;\n if (angle >= 75.0 && angle <= 105.0) isVertical = 1 * weightageAt;\n else if (angle >= 25.0 && angle <= 155.0) isDiagonal = 1 * weightageAt;\n else isHorizontal = 1 * weightageAt;\n return [isVertical, isDiagonal, isHorizontal];\n}\n\nfunction estimateFingerCurl(startPoint, midPoint, endPoint) {\n const start_mid_x_dist = startPoint[0] - midPoint[0];\n const start_end_x_dist = startPoint[0] - endPoint[0];\n const mid_end_x_dist = midPoint[0] - endPoint[0];\n const start_mid_y_dist = startPoint[1] - midPoint[1];\n const start_end_y_dist = startPoint[1] - endPoint[1];\n const mid_end_y_dist = midPoint[1] - endPoint[1];\n const start_mid_z_dist = startPoint[2] - midPoint[2];\n const start_end_z_dist = startPoint[2] - endPoint[2];\n const mid_end_z_dist = midPoint[2] - endPoint[2];\n const start_mid_dist = Math.sqrt(start_mid_x_dist * start_mid_x_dist + start_mid_y_dist * start_mid_y_dist + start_mid_z_dist * start_mid_z_dist);\n const start_end_dist = Math.sqrt(start_end_x_dist * start_end_x_dist + start_end_y_dist * start_end_y_dist + start_end_z_dist * start_end_z_dist);\n const mid_end_dist = Math.sqrt(mid_end_x_dist * mid_end_x_dist + mid_end_y_dist * mid_end_y_dist + mid_end_z_dist * mid_end_z_dist);\n let cos_in = (mid_end_dist * mid_end_dist + start_mid_dist * start_mid_dist - start_end_dist * start_end_dist) / (2 * mid_end_dist * start_mid_dist);\n if (cos_in > 1.0) cos_in = 1.0;\n else if (cos_in < -1.0) cos_in = -1.0;\n let angleOfCurve = Math.acos(cos_in);\n angleOfCurve = (57.2958 * angleOfCurve) % 180;\n let fingerCurl;\n if (angleOfCurve > options.NO_CURL_START_LIMIT) fingerCurl = FingerCurl.none;\n else if (angleOfCurve > options.HALF_CURL_START_LIMIT) fingerCurl = FingerCurl.half;\n else fingerCurl = FingerCurl.full;\n return fingerCurl;\n}\n\nfunction estimateHorizontalDirection(start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x) {\n let estimatedDirection;\n if (max_dist_x === Math.abs(start_end_x_dist)) {\n if (start_end_x_dist > 0) estimatedDirection = FingerDirection.horizontalLeft;\n else estimatedDirection = FingerDirection.horizontalRight;\n } else if (max_dist_x === Math.abs(start_mid_x_dist)) {\n if (start_mid_x_dist > 0) estimatedDirection = FingerDirection.horizontalLeft;\n else estimatedDirection = FingerDirection.horizontalRight;\n } else {\n if (mid_end_x_dist > 0) estimatedDirection = FingerDirection.horizontalLeft;\n else estimatedDirection = FingerDirection.horizontalRight;\n }\n return estimatedDirection;\n}\n\nfunction estimateVerticalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y) {\n let estimatedDirection;\n if (max_dist_y === Math.abs(start_end_y_dist)) {\n if (start_end_y_dist < 0) estimatedDirection = FingerDirection.verticalDown;\n else estimatedDirection = FingerDirection.verticalUp;\n } else if (max_dist_y === Math.abs(start_mid_y_dist)) {\n if (start_mid_y_dist < 0) estimatedDirection = FingerDirection.verticalDown;\n else estimatedDirection = FingerDirection.verticalUp;\n } else {\n if (mid_end_y_dist < 0) estimatedDirection = FingerDirection.verticalDown;\n else estimatedDirection = FingerDirection.verticalUp;\n }\n return estimatedDirection;\n}\n\nfunction estimateDiagonalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y, start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x) {\n let estimatedDirection;\n const reqd_vertical_direction = estimateVerticalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y);\n const reqd_horizontal_direction = estimateHorizontalDirection(start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x);\n if (reqd_vertical_direction === FingerDirection.verticalUp) {\n if (reqd_horizontal_direction === FingerDirection.horizontalLeft) estimatedDirection = FingerDirection.diagonalUpLeft;\n else estimatedDirection = FingerDirection.diagonalUpRight;\n } else {\n if (reqd_horizontal_direction === FingerDirection.horizontalLeft) estimatedDirection = FingerDirection.diagonalDownLeft;\n else estimatedDirection = FingerDirection.diagonalDownRight;\n }\n return estimatedDirection;\n}\n\nfunction calculateFingerDirection(startPoint, midPoint, endPoint, fingerSlopes) {\n const start_mid_x_dist = startPoint[0] - midPoint[0];\n const start_end_x_dist = startPoint[0] - endPoint[0];\n const mid_end_x_dist = midPoint[0] - endPoint[0];\n const start_mid_y_dist = startPoint[1] - midPoint[1];\n const start_end_y_dist = startPoint[1] - endPoint[1];\n const mid_end_y_dist = midPoint[1] - endPoint[1];\n const max_dist_x = Math.max(Math.abs(start_mid_x_dist), Math.abs(start_end_x_dist), Math.abs(mid_end_x_dist));\n const max_dist_y = Math.max(Math.abs(start_mid_y_dist), Math.abs(start_end_y_dist), Math.abs(mid_end_y_dist));\n let voteVertical = 0.0;\n let voteDiagonal = 0.0;\n let voteHorizontal = 0.0;\n const start_end_x_y_dist_ratio = max_dist_y / (max_dist_x + 0.00001);\n if (start_end_x_y_dist_ratio > 1.5) voteVertical += options.DISTANCE_VOTE_POWER;\n else if (start_end_x_y_dist_ratio > 0.66) voteDiagonal += options.DISTANCE_VOTE_POWER;\n else voteHorizontal += options.DISTANCE_VOTE_POWER;\n const start_mid_dist = Math.sqrt(start_mid_x_dist * start_mid_x_dist + start_mid_y_dist * start_mid_y_dist);\n const start_end_dist = Math.sqrt(start_end_x_dist * start_end_x_dist + start_end_y_dist * start_end_y_dist);\n const mid_end_dist = Math.sqrt(mid_end_x_dist * mid_end_x_dist + mid_end_y_dist * mid_end_y_dist);\n const max_dist = Math.max(start_mid_dist, start_end_dist, mid_end_dist);\n let calc_start_point_x = startPoint[0];\n let calc_start_point_y = startPoint[1];\n let calc_end_point_x = endPoint[0];\n let calc_end_point_y = endPoint[1];\n if (max_dist === start_mid_dist) {\n calc_end_point_x = endPoint[0];\n calc_end_point_y = endPoint[1];\n } else if (max_dist === mid_end_dist) {\n calc_start_point_x = midPoint[0];\n calc_start_point_y = midPoint[1];\n }\n const calcStartPoint = [calc_start_point_x, calc_start_point_y];\n const calcEndPoint = [calc_end_point_x, calc_end_point_y];\n const totalAngle = getSlopes(calcStartPoint, calcEndPoint);\n const votes = angleOrientationAt(totalAngle, options.TOTAL_ANGLE_VOTE_POWER);\n voteVertical += votes[0];\n voteDiagonal += votes[1];\n voteHorizontal += votes[2];\n for (const fingerSlope of fingerSlopes) {\n const fingerVotes = angleOrientationAt(fingerSlope, options.SINGLE_ANGLE_VOTE_POWER);\n voteVertical += fingerVotes[0];\n voteDiagonal += fingerVotes[1];\n voteHorizontal += fingerVotes[2];\n }\n // in case of tie, highest preference goes to Vertical,\n // followed by horizontal and then diagonal\n let estimatedDirection;\n if (voteVertical === Math.max(voteVertical, voteDiagonal, voteHorizontal)) {\n estimatedDirection = estimateVerticalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y);\n } else if (voteHorizontal === Math.max(voteDiagonal, voteHorizontal)) {\n estimatedDirection = estimateHorizontalDirection(start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x);\n } else {\n estimatedDirection = estimateDiagonalDirection(start_end_y_dist, start_mid_y_dist, mid_end_y_dist, max_dist_y, start_end_x_dist, start_mid_x_dist, mid_end_x_dist, max_dist_x);\n }\n return estimatedDirection;\n}\n\nexport function estimate(landmarks) {\n // step 1: calculate slopes\n const slopesXY: Array = [];\n const slopesYZ: Array = [];\n for (const finger of Finger.all) {\n const points = Finger.getPoints(finger);\n const slopeAtXY: Array = [];\n const slopeAtYZ: Array = [];\n for (const point of points) {\n const point1 = landmarks[point[0]];\n const point2 = landmarks[point[1]];\n // calculate single slope\n const slopes = getSlopes(point1, point2);\n const slopeXY = slopes[0];\n const slopeYZ = slopes[1];\n slopeAtXY.push(slopeXY);\n slopeAtYZ.push(slopeYZ);\n }\n slopesXY.push(slopeAtXY);\n slopesYZ.push(slopeAtYZ);\n }\n\n // step 2: calculate orientations\n const fingerCurls: Array = [];\n const fingerDirections: Array = [];\n for (const finger of Finger.all) {\n // start finger predictions from palm - except for thumb\n const pointIndexAt = (finger === Finger.thumb) ? 1 : 0;\n const fingerPointsAt = Finger.getPoints(finger);\n const startPoint = landmarks[fingerPointsAt[pointIndexAt][0]];\n const midPoint = landmarks[fingerPointsAt[pointIndexAt + 1][1]];\n const endPoint = landmarks[fingerPointsAt[3][1]];\n // check if finger is curled\n const fingerCurled = estimateFingerCurl(startPoint, midPoint, endPoint);\n const fingerPosition = calculateFingerDirection(startPoint, midPoint, endPoint, slopesXY[finger].slice(pointIndexAt));\n fingerCurls[finger] = fingerCurled;\n fingerDirections[finger] = fingerPosition;\n }\n return { curls: fingerCurls, directions: fingerDirections };\n}\n", "export default class Gesture {\n name;\n curls;\n directions;\n weights;\n weightsRelative;\n\n constructor(name) {\n // name (should be unique)\n this.name = name;\n this.curls = {};\n this.directions = {};\n this.weights = [1.0, 1.0, 1.0, 1.0, 1.0];\n this.weightsRelative = [1.0, 1.0, 1.0, 1.0, 1.0];\n }\n\n addCurl(finger, curl, confidence) {\n if (typeof this.curls[finger] === 'undefined') this.curls[finger] = [];\n this.curls[finger].push([curl, confidence]);\n }\n\n addDirection(finger, position, confidence) {\n if (!this.directions[finger]) this.directions[finger] = [];\n this.directions[finger].push([position, confidence]);\n }\n\n setWeight(finger, weight) {\n this.weights[finger] = weight;\n // recalculate relative weights\n const total = this.weights.reduce((a, b) => a + b, 0);\n this.weightsRelative = this.weights.map((el) => el * 5 / total);\n }\n\n matchAgainst(detectedCurls, detectedDirections) {\n let confidence = 0.0;\n // look at the detected curl of each finger and compare with\n // the expected curl of this finger inside current gesture\n for (const fingerIdx in detectedCurls) {\n const detectedCurl = detectedCurls[fingerIdx];\n const expectedCurls = this.curls[fingerIdx];\n if (typeof expectedCurls === 'undefined') {\n // no curl description available for this finger\n // add default confidence of \"1\"\n confidence += this.weightsRelative[fingerIdx];\n continue;\n }\n // compare to each possible curl of this specific finger\n for (const [expectedCurl, score] of expectedCurls) {\n if (detectedCurl === expectedCurl) {\n confidence += score * this.weightsRelative[fingerIdx];\n break;\n }\n }\n }\n // same for detected direction of each finger\n for (const fingerIdx in detectedDirections) {\n const detectedDirection = detectedDirections[fingerIdx];\n const expectedDirections = this.directions[fingerIdx];\n if (typeof expectedDirections === 'undefined') {\n // no direction description available for this finger\n // add default confidence of \"1\"\n confidence += this.weightsRelative[fingerIdx];\n continue;\n }\n // compare to each possible direction of this specific finger\n for (const [expectedDirection, score] of expectedDirections) {\n if (detectedDirection === expectedDirection) {\n confidence += score * this.weightsRelative[fingerIdx];\n break;\n }\n }\n }\n return confidence / 10;\n }\n}\n", "import { Finger, FingerCurl, FingerDirection } from './description';\nimport Gesture from './gesture';\n\n// describe thumbs up gesture \uD83D\uDC4D\nconst ThumbsUp = new Gesture('thumbs up');\nThumbsUp.addCurl(Finger.thumb, FingerCurl.none, 1.0);\nThumbsUp.addDirection(Finger.thumb, FingerDirection.verticalUp, 1.0);\nThumbsUp.addDirection(Finger.thumb, FingerDirection.diagonalUpLeft, 0.25);\nThumbsUp.addDirection(Finger.thumb, FingerDirection.diagonalUpRight, 0.25);\nfor (const finger of [Finger.index, Finger.middle, Finger.ring, Finger.pinky]) {\n ThumbsUp.addCurl(finger, FingerCurl.full, 1.0);\n ThumbsUp.addDirection(finger, FingerDirection.horizontalLeft, 1.0);\n ThumbsUp.addDirection(finger, FingerDirection.horizontalRight, 1.0);\n}\n\n// describe Victory gesture \u270C\uFE0F\nconst Victory = new Gesture('victory');\nVictory.addCurl(Finger.thumb, FingerCurl.half, 0.5);\nVictory.addCurl(Finger.thumb, FingerCurl.none, 0.5);\nVictory.addDirection(Finger.thumb, FingerDirection.verticalUp, 1.0);\nVictory.addDirection(Finger.thumb, FingerDirection.diagonalUpLeft, 1.0);\nVictory.addCurl(Finger.index, FingerCurl.none, 1.0);\nVictory.addDirection(Finger.index, FingerDirection.verticalUp, 0.75);\nVictory.addDirection(Finger.index, FingerDirection.diagonalUpLeft, 1.0);\nVictory.addCurl(Finger.middle, FingerCurl.none, 1.0);\nVictory.addDirection(Finger.middle, FingerDirection.verticalUp, 1.0);\nVictory.addDirection(Finger.middle, FingerDirection.diagonalUpLeft, 0.75);\nVictory.addCurl(Finger.ring, FingerCurl.full, 1.0);\nVictory.addDirection(Finger.ring, FingerDirection.verticalUp, 0.2);\nVictory.addDirection(Finger.ring, FingerDirection.diagonalUpLeft, 1.0);\nVictory.addDirection(Finger.ring, FingerDirection.horizontalLeft, 0.2);\nVictory.addCurl(Finger.pinky, FingerCurl.full, 1.0);\nVictory.addDirection(Finger.pinky, FingerDirection.verticalUp, 0.2);\nVictory.addDirection(Finger.pinky, FingerDirection.diagonalUpLeft, 1.0);\nVictory.addDirection(Finger.pinky, FingerDirection.horizontalLeft, 0.2);\nVictory.setWeight(Finger.index, 2);\nVictory.setWeight(Finger.middle, 2);\n\nexport default [ThumbsUp, Victory];\n", "// based on \n\nimport * as estimator from './estimator';\nimport { Finger, FingerCurl, FingerDirection } from './description';\nimport Gestures from './gestures';\n\nconst minConfidence = 0.7;\n\nexport function analyze(keypoints) { // get estimations of curl / direction for each finger\n const estimatorRes = estimator.estimate(keypoints);\n const landmarks = {};\n for (const fingerIdx of Finger.all) {\n landmarks[Finger.getName(fingerIdx)] = {\n curl: FingerCurl.getName(estimatorRes.curls[fingerIdx]),\n direction: FingerDirection.getName(estimatorRes.directions[fingerIdx]),\n };\n }\n // console.log('finger landmarks', landmarks);\n return landmarks;\n}\n\nexport function match(keypoints) { // compare gesture description to each known gesture\n const estimatorRes = estimator.estimate(keypoints);\n const poses: Array<{ name: string, confidence: number }> = [];\n for (const gesture of Gestures) {\n const confidence = gesture.matchAgainst(estimatorRes.curls, estimatorRes.directions);\n if (confidence >= minConfidence) poses.push({ name: gesture.name, confidence });\n }\n // console.log('finger poses', poses);\n return poses;\n}\n", "/**\n * HandPose module entry point\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as handdetector from './handdetector';\nimport * as handpipeline from './handpipeline';\nimport * as fingerPose from '../fingerpose/fingerpose';\nimport { Hand } from '../result';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport { Config } from '../config';\n\nconst meshAnnotations = {\n thumb: [1, 2, 3, 4],\n index: [5, 6, 7, 8],\n middle: [9, 10, 11, 12],\n ring: [13, 14, 15, 16],\n pinky: [17, 18, 19, 20],\n palm: [0],\n};\n\nlet handDetectorModel: GraphModel | null;\nlet handPoseModel: GraphModel | null;\nlet handPipeline: handpipeline.HandPipeline;\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const predictions = await handPipeline.estimateHands(input, config);\n if (!predictions) return [];\n const hands: Array = [];\n for (let i = 0; i < predictions.length; i++) {\n const annotations = {};\n if (predictions[i].landmarks) {\n for (const key of Object.keys(meshAnnotations)) {\n // @ts-ignore landmarks are not undefined\n annotations[key] = meshAnnotations[key].map((index) => predictions[i].landmarks[index]);\n }\n }\n\n const keypoints = predictions[i].landmarks as unknown as Array<[number, number, number]>;\n\n let box: [number, number, number, number] = [Number.MAX_SAFE_INTEGER, Number.MAX_SAFE_INTEGER, 0, 0]; // maximums so conditionals work\n let boxRaw: [number, number, number, number] = [0, 0, 0, 0];\n if (keypoints && keypoints.length > 0) { // if we have landmarks, calculate box based on landmarks\n for (const pt of keypoints) {\n if (pt[0] < box[0]) box[0] = pt[0];\n if (pt[1] < box[1]) box[1] = pt[1];\n if (pt[0] > box[2]) box[2] = pt[0];\n if (pt[1] > box[3]) box[3] = pt[1];\n }\n box[2] -= box[0];\n box[3] -= box[1];\n boxRaw = [box[0] / (input.shape[2] || 0), box[1] / (input.shape[1] || 0), box[2] / (input.shape[2] || 0), box[3] / (input.shape[1] || 0)];\n } else { // otherwise use box from prediction\n box = predictions[i].box ? [\n Math.trunc(Math.max(0, predictions[i].box.topLeft[0])),\n Math.trunc(Math.max(0, predictions[i].box.topLeft[1])),\n Math.trunc(Math.min((input.shape[2] || 0), predictions[i].box.bottomRight[0]) - Math.max(0, predictions[i].box.topLeft[0])),\n Math.trunc(Math.min((input.shape[1] || 0), predictions[i].box.bottomRight[1]) - Math.max(0, predictions[i].box.topLeft[1])),\n ] : [0, 0, 0, 0];\n boxRaw = [\n (predictions[i].box.topLeft[0]) / (input.shape[2] || 0),\n (predictions[i].box.topLeft[1]) / (input.shape[1] || 0),\n (predictions[i].box.bottomRight[0] - predictions[i].box.topLeft[0]) / (input.shape[2] || 0),\n (predictions[i].box.bottomRight[1] - predictions[i].box.topLeft[1]) / (input.shape[1] || 0),\n ];\n }\n const landmarks = fingerPose.analyze(keypoints);\n hands.push({\n id: i,\n score: Math.round(100 * predictions[i].confidence) / 100,\n box,\n boxRaw,\n keypoints,\n annotations: annotations as Hand['annotations'],\n landmarks: landmarks as Hand['landmarks'],\n });\n }\n return hands;\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (!handDetectorModel || !handPoseModel) {\n [handDetectorModel, handPoseModel] = await Promise.all([\n config.hand.enabled ? tf.loadGraphModel(join(config.modelBasePath, config.hand.detector.modelPath), { fromTFHub: config.hand.detector.modelPath.includes('tfhub.dev') }) as unknown as GraphModel : null,\n config.hand.landmarks ? tf.loadGraphModel(join(config.modelBasePath, config.hand.skeleton.modelPath), { fromTFHub: config.hand.skeleton.modelPath.includes('tfhub.dev') }) as unknown as GraphModel : null,\n ]);\n if (config.hand.enabled) {\n if (!handDetectorModel || !handDetectorModel['modelUrl']) log('load model failed:', config.hand.detector.modelPath);\n else if (config.debug) log('load model:', handDetectorModel['modelUrl']);\n if (!handPoseModel || !handPoseModel['modelUrl']) log('load model failed:', config.hand.skeleton.modelPath);\n else if (config.debug) log('load model:', handPoseModel['modelUrl']);\n }\n } else {\n if (config.debug) log('cached model:', handDetectorModel['modelUrl']);\n if (config.debug) log('cached model:', handPoseModel['modelUrl']);\n }\n const handDetector = new handdetector.HandDetector(handDetectorModel);\n handPipeline = new handpipeline.HandPipeline(handDetector, handPoseModel);\n return [handDetectorModel, handPoseModel];\n}\n", "export const full = [\n 'nose',\n 'leftEyeInside',\n 'leftEye',\n 'leftEyeOutside',\n 'rightEyeInside',\n 'rightEye',\n 'rightEyeOutside',\n 'leftEar',\n 'rightEar',\n 'leftMouth',\n 'rightMouth',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'leftWrist',\n 'rightWrist',\n 'leftPalm',\n 'rightPalm',\n 'leftIndex',\n 'rightIndex',\n 'leftPinky',\n 'rightPinky',\n 'leftHip',\n 'rightHip',\n 'leftKnee',\n 'rightKnee',\n 'leftAnkle',\n 'rightAnkle',\n 'leftHeel',\n 'rightHeel',\n 'leftFoot',\n 'rightFoot',\n 'midHip',\n 'forehead',\n 'leftThumb',\n 'leftHand',\n 'rightThumb',\n 'rightHand',\n];\n\nexport const upper = [\n 'nose',\n 'leftEyeInside',\n 'leftEye',\n 'leftEyeOutside',\n 'rightEyeInside',\n 'rightEye',\n 'rightEyeOutside',\n 'leftEar',\n 'rightEar',\n 'leftMouth',\n 'rightMouth',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'left:15',\n 'right:16',\n 'left:17',\n 'right:18',\n 'left:19',\n 'right:20',\n 'left:21',\n 'right:22',\n 'leftChest',\n 'rightChest',\n 'neck',\n 'forehead',\n 'left:27',\n 'right:28',\n 'left:29',\n 'right:30',\n];\n", "/**\n * BlazePose Module\n */\n\n// paper: https://ai.googleblog.com/2020/08/on-device-real-time-body-pose-tracking.html\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as annotations from './annotations';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport { Body } from '../result';\nimport { Config } from '../config';\n\nlet model: GraphModel;\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath)) as unknown as GraphModel;\n model['width'] = parseInt(model['signature'].inputs['input_1:0'].tensorShape.dim[2].size);\n model['height'] = parseInt(model['signature'].inputs['input_1:0'].tensorShape.dim[1].size);\n if (!model || !model['modelUrl']) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model['modelUrl']);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if (!model) return [];\n if (!config.body.enabled) return [];\n const imgSize = { width: (image.shape[2] || 0), height: (image.shape[1] || 0) };\n const resize = tf.image.resizeBilinear(image, [model['width'], model['height']], false);\n const normalize = tf.div(resize, [255.0]);\n tf.dispose(resize);\n const resT = await model.predict(normalize) as Array;\n const findT = resT.find((t) => (t.size === 195 || t.size === 155));\n const points = await findT?.data() || []; // order of output tensors may change between models, full has 195 and upper has 155 items\n resT.forEach((t) => tf.dispose(t));\n tf.dispose(normalize);\n const keypoints: Array<{ id, part, position: [number, number, number], positionRaw: [number, number, number], score, presence }> = [];\n const labels = points?.length === 195 ? annotations.full : annotations.upper; // full model has 39 keypoints, upper has 31 keypoints\n const depth = 5; // each points has x,y,z,visibility,presence\n for (let i = 0; i < points.length / depth; i++) {\n keypoints.push({\n id: i,\n part: labels[i],\n position: [\n Math.trunc(imgSize.width * points[depth * i + 0] / 255), // return normalized x value istead of 0..255\n Math.trunc(imgSize.height * points[depth * i + 1] / 255), // return normalized y value istead of 0..255\n Math.trunc(points[depth * i + 2]) + 0, // fix negative zero\n ],\n positionRaw: [\n points[depth * i + 0] / 255, // return x value normalized to 0..1\n points[depth * i + 1] / 255, // return y value normalized to 0..1\n points[depth * i + 2] + 0, // fix negative zero\n ],\n score: (100 - Math.trunc(100 / (1 + Math.exp(points[depth * i + 3])))) / 100, // reverse sigmoid value\n presence: (100 - Math.trunc(100 / (1 + Math.exp(points[depth * i + 4])))) / 100, // reverse sigmoid value\n });\n }\n const x = keypoints.map((a) => a.position[0]);\n const y = keypoints.map((a) => a.position[1]);\n const box: [number, number, number, number] = [\n Math.min(...x),\n Math.min(...y),\n Math.max(...x) - Math.min(...x),\n Math.max(...y) - Math.min(...x),\n ];\n const boxRaw: [number, number, number, number] = [0, 0, 0, 0]; // not yet implemented\n const score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n return [{ id: 0, score, box, boxRaw, keypoints }];\n}\n", "/**\n * EfficientPose Module\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { Body } from '../result';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model: GraphModel;\n\ntype Keypoints = { score: number, part: string, position: [number, number], positionRaw: [number, number] };\n\nconst keypoints: Array = [];\nlet box: [number, number, number, number] = [0, 0, 0, 0];\nlet boxRaw: [number, number, number, number] = [0, 0, 0, 0];\nlet score = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nconst bodyParts = ['head', 'neck', 'rightShoulder', 'rightElbow', 'rightWrist', 'chest', 'leftShoulder', 'leftElbow', 'leftWrist', 'pelvis', 'rightHip', 'rightKnee', 'rightAnkle', 'leftHip', 'leftKnee', 'leftAnkle'];\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath)) as unknown as GraphModel;\n if (!model || !model['modelUrl']) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model['modelUrl']);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n// performs argmax and max functions on a 2d tensor\nfunction max2d(inputs, minScore) {\n const [width, height] = inputs.shape;\n return tf.tidy(() => {\n const mod = (a, b) => tf.sub(a, tf.mul(tf.div(a, tf.scalar(b, 'int32')), tf.scalar(b, 'int32'))); // modulus op implemented in tf\n const reshaped = tf.reshape(inputs, [height * width]); // combine all data\n const newScore = tf.max(reshaped, 0).dataSync()[0]; // get highest score // inside tf.tidy\n if (newScore > minScore) { // skip coordinate calculation is score is too low\n const coords = tf.argMax(reshaped, 0);\n const x = mod(coords, width).dataSync()[0]; // inside tf.tidy\n const y = tf.div(coords, tf.scalar(width, 'int32')).dataSync()[0]; // inside tf.tidy\n return [x, y, newScore];\n }\n return [0, 0, newScore];\n });\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if ((skipped < config.body.skipFrames) && config.skipFrame && Object.keys(keypoints).length > 0) {\n skipped++;\n return [{ id: 0, score, box, boxRaw, keypoints }];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const tensor = tf.tidy(() => {\n if (!model.inputs[0].shape) return null;\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const enhance = tf.mul(resize, 2);\n const norm = enhance.sub(1);\n return norm;\n });\n\n let resT;\n if (config.body.enabled) resT = await model.predict(tensor);\n tf.dispose(tensor);\n\n if (resT) {\n keypoints.length = 0;\n const squeeze = resT.squeeze();\n tf.dispose(resT);\n // body parts are basically just a stack of 2d tensors\n const stack = squeeze.unstack(2);\n tf.dispose(squeeze);\n // process each unstacked tensor as a separate body part\n for (let id = 0; id < stack.length; id++) {\n // actual processing to get coordinates and score\n const [x, y, partScore] = max2d(stack[id], config.body.minConfidence);\n if (score > config.body.minConfidence) {\n keypoints.push({\n score: Math.round(100 * partScore) / 100,\n part: bodyParts[id],\n positionRaw: [ // normalized to 0..1\n // @ts-ignore model is not undefined here\n x / model.inputs[0].shape[2], y / model.inputs[0].shape[1],\n ],\n position: [ // normalized to input image size\n // @ts-ignore model is not undefined here\n Math.round(image.shape[2] * x / model.inputs[0].shape[2]), Math.round(image.shape[1] * y / model.inputs[0].shape[1]),\n ],\n });\n }\n }\n stack.forEach((s) => tf.dispose(s));\n }\n score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n const x = keypoints.map((a) => a.position[0]);\n const y = keypoints.map((a) => a.position[1]);\n box = [\n Math.min(...x),\n Math.min(...y),\n Math.max(...x) - Math.min(...x),\n Math.max(...y) - Math.min(...y),\n ];\n const xRaw = keypoints.map((a) => a.positionRaw[0]);\n const yRaw = keypoints.map((a) => a.positionRaw[1]);\n boxRaw = [\n Math.min(...xRaw),\n Math.min(...yRaw),\n Math.max(...xRaw) - Math.min(...xRaw),\n Math.max(...yRaw) - Math.min(...yRaw),\n ];\n resolve([{ id: 0, score, box, boxRaw, keypoints }]);\n });\n}\n", "/**\n * EfficientPose Module\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { Body } from '../result';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model: GraphModel;\n\ntype Keypoints = { score: number, part: string, position: [number, number], positionRaw: [number, number] };\nconst keypoints: Array = [];\ntype Person = { id: number, score: number, box: [number, number, number, number], boxRaw: [number, number, number, number], keypoints: Array }\n\nlet box: [number, number, number, number] = [0, 0, 0, 0];\nlet boxRaw: [number, number, number, number] = [0, 0, 0, 0];\nlet score = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nconst bodyParts = ['nose', 'leftEye', 'rightEye', 'leftEar', 'rightEar', 'leftShoulder', 'rightShoulder', 'leftElbow', 'rightElbow', 'leftWrist', 'rightWrist', 'leftHip', 'rightHip', 'leftKnee', 'rightKnee', 'leftAnkle', 'rightAnkle'];\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath)) as unknown as GraphModel;\n if (!model || !model['modelUrl']) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model['modelUrl']);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nasync function parseSinglePose(res, config, image) {\n keypoints.length = 0;\n const kpt = res[0][0];\n for (let id = 0; id < kpt.length; id++) {\n score = kpt[id][2];\n if (score > config.body.minConfidence) {\n keypoints.push({\n score: Math.round(100 * score) / 100,\n part: bodyParts[id],\n positionRaw: [ // normalized to 0..1\n kpt[id][1],\n kpt[id][0],\n ],\n position: [ // normalized to input image size\n Math.round((image.shape[2] || 0) * kpt[id][1]),\n Math.round((image.shape[1] || 0) * kpt[id][0]),\n ],\n });\n }\n }\n score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n const x = keypoints.map((a) => a.position[0]);\n const y = keypoints.map((a) => a.position[1]);\n box = [\n Math.min(...x),\n Math.min(...y),\n Math.max(...x) - Math.min(...x),\n Math.max(...y) - Math.min(...y),\n ];\n const xRaw = keypoints.map((a) => a.positionRaw[0]);\n const yRaw = keypoints.map((a) => a.positionRaw[1]);\n boxRaw = [\n Math.min(...xRaw),\n Math.min(...yRaw),\n Math.max(...xRaw) - Math.min(...xRaw),\n Math.max(...yRaw) - Math.min(...yRaw),\n ];\n const persons: Array = [];\n persons.push({ id: 0, score, box, boxRaw, keypoints });\n return persons;\n}\n\nasync function parseMultiPose(res, config, image) {\n const persons: Array = [];\n for (let p = 0; p < res[0].length; p++) {\n const kpt = res[0][p];\n score = Math.round(100 * kpt[51 + 4]) / 100;\n // eslint-disable-next-line no-continue\n if (score < config.body.minConfidence) continue;\n keypoints.length = 0;\n for (let i = 0; i < 17; i++) {\n const partScore = Math.round(100 * kpt[3 * i + 2]) / 100;\n if (partScore > config.body.minConfidence) {\n keypoints.push({\n part: bodyParts[i],\n score: partScore,\n positionRaw: [\n kpt[3 * i + 1],\n kpt[3 * i + 0],\n ],\n position: [\n Math.trunc(kpt[3 * i + 1] * (image.shape[2] || 0)),\n Math.trunc(kpt[3 * i + 0] * (image.shape[1] || 0)),\n ],\n });\n }\n }\n boxRaw = [kpt[51 + 1], kpt[51 + 0], kpt[51 + 3] - kpt[51 + 1], kpt[51 + 2] - kpt[51 + 0]];\n persons.push({\n id: p,\n score,\n boxRaw,\n box: [\n Math.trunc(boxRaw[0] * (image.shape[2] || 0)),\n Math.trunc(boxRaw[1] * (image.shape[1] || 0)),\n Math.trunc(boxRaw[2] * (image.shape[2] || 0)),\n Math.trunc(boxRaw[3] * (image.shape[1] || 0)),\n ],\n keypoints,\n });\n }\n return persons;\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if ((skipped < config.body.skipFrames) && config.skipFrame && Object.keys(keypoints).length > 0) {\n skipped++;\n return [{ id: 0, score, box, boxRaw, keypoints }];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const tensor = tf.tidy(() => {\n if (!model.inputs[0].shape) return null;\n let inputSize = model.inputs[0].shape[2];\n if (inputSize === -1) inputSize = 256;\n const resize = tf.image.resizeBilinear(image, [inputSize, inputSize], false);\n const cast = tf.cast(resize, 'int32');\n return cast;\n });\n\n let resT;\n if (config.body.enabled) resT = await model.predict(tensor);\n tf.dispose(tensor);\n\n if (!resT) resolve([]);\n const res = await resT.array();\n let persons;\n if (resT.shape[2] === 17) persons = await parseSinglePose(res, config, image);\n else if (resT.shape[2] === 56) persons = await parseMultiPose(res, config, image);\n tf.dispose(resT);\n\n resolve(persons);\n });\n}\n", "/**\n * CoCo Labels used by object detection modules\n */\nexport const labels = [\n { class: 1, label: 'person' },\n { class: 2, label: 'bicycle' },\n { class: 3, label: 'car' },\n { class: 4, label: 'motorcycle' },\n { class: 5, label: 'airplane' },\n { class: 6, label: 'bus' },\n { class: 7, label: 'train' },\n { class: 8, label: 'truck' },\n { class: 9, label: 'boat' },\n { class: 10, label: 'traffic light' },\n { class: 11, label: 'fire hydrant' },\n { class: 12, label: 'stop sign' },\n { class: 13, label: 'parking meter' },\n { class: 14, label: 'bench' },\n { class: 15, label: 'bird' },\n { class: 16, label: 'cat' },\n { class: 17, label: 'dog' },\n { class: 18, label: 'horse' },\n { class: 19, label: 'sheep' },\n { class: 20, label: 'cow' },\n { class: 21, label: 'elephant' },\n { class: 22, label: 'bear' },\n { class: 23, label: 'zebra' },\n { class: 24, label: 'giraffe' },\n { class: 25, label: 'backpack' },\n { class: 26, label: 'umbrella' },\n { class: 27, label: 'handbag' },\n { class: 28, label: 'tie' },\n { class: 29, label: 'suitcase' },\n { class: 30, label: 'frisbee' },\n { class: 31, label: 'skis' },\n { class: 32, label: 'snowboard' },\n { class: 33, label: 'sports ball' },\n { class: 34, label: 'kite' },\n { class: 35, label: 'baseball bat' },\n { class: 36, label: 'baseball glove' },\n { class: 37, label: 'skateboard' },\n { class: 38, label: 'surfboard' },\n { class: 39, label: 'tennis racket' },\n { class: 40, label: 'bottle' },\n { class: 41, label: 'wine glass' },\n { class: 42, label: 'cup' },\n { class: 43, label: 'fork' },\n { class: 44, label: 'knife' },\n { class: 45, label: 'spoon' },\n { class: 46, label: 'bowl' },\n { class: 47, label: 'banana' },\n { class: 48, label: 'apple' },\n { class: 49, label: 'sandwich' },\n { class: 50, label: 'orange' },\n { class: 51, label: 'broccoli' },\n { class: 52, label: 'carrot' },\n { class: 53, label: 'hot dog' },\n { class: 54, label: 'pizza' },\n { class: 55, label: 'donut' },\n { class: 56, label: 'cake' },\n { class: 57, label: 'chair' },\n { class: 58, label: 'couch' },\n { class: 59, label: 'potted plant' },\n { class: 60, label: 'bed' },\n { class: 61, label: 'dining table' },\n { class: 62, label: 'toilet' },\n { class: 63, label: 'tv' },\n { class: 64, label: 'laptop' },\n { class: 65, label: 'mouse' },\n { class: 66, label: 'remote' },\n { class: 67, label: 'keyboard' },\n { class: 68, label: 'cell phone' },\n { class: 69, label: 'microwave' },\n { class: 70, label: 'oven' },\n { class: 71, label: 'toaster' },\n { class: 72, label: 'sink' },\n { class: 73, label: 'refrigerator' },\n { class: 74, label: 'book' },\n { class: 75, label: 'clock' },\n { class: 76, label: 'vase' },\n { class: 77, label: 'scissors' },\n { class: 78, label: 'teddy bear' },\n { class: 79, label: 'hair drier' },\n { class: 80, label: 'toothbrush' },\n];\n", "/**\n * NanoDet object detection module\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { labels } from './labels';\nimport { Item } from '../result';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model;\nlet last: Array = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nconst scaleBox = 2.5; // increase box size\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.object.modelPath));\n const inputs = Object.values(model.modelSignature['inputs']);\n model.inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : null;\n if (!model.inputSize) throw new Error(`Human: Cannot determine model inputSize: ${config.object.modelPath}`);\n if (!model || !model.modelUrl) log('load model failed:', config.object.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nasync function process(res, inputSize, outputShape, config) {\n let id = 0;\n let results: Array = [];\n for (const strideSize of [1, 2, 4]) { // try each stride size as it detects large/medium/small objects\n // find scores, boxes, classes\n tf.tidy(async () => { // wrap in tidy to automatically deallocate temp tensors\n const baseSize = strideSize * 13; // 13x13=169, 26x26=676, 52x52=2704\n // find boxes and scores output depending on stride\n const scoresT = res.find((a) => (a.shape[1] === (baseSize ** 2) && a.shape[2] === labels.length))?.squeeze();\n const featuresT = res.find((a) => (a.shape[1] === (baseSize ** 2) && a.shape[2] < labels.length))?.squeeze();\n const boxesMax = featuresT.reshape([-1, 4, featuresT.shape[1] / 4]); // reshape [output] to [4, output / 4] where number is number of different features inside each stride\n const boxIdx = await boxesMax.argMax(2).array(); // what we need is indexes of features with highest scores, not values itself\n const scores = await scoresT.array(); // optionally use exponential scores or just as-is\n for (let i = 0; i < scoresT.shape[0]; i++) { // total strides (x * y matrix)\n for (let j = 0; j < scoresT.shape[1]; j++) { // one score for each class\n const score = scores[i][j]; // get score for current position\n if (score > config.object.minConfidence && j !== 61) {\n const cx = (0.5 + Math.trunc(i % baseSize)) / baseSize; // center.x normalized to range 0..1\n const cy = (0.5 + Math.trunc(i / baseSize)) / baseSize; // center.y normalized to range 0..1\n const boxOffset = boxIdx[i].map((a) => a * (baseSize / strideSize / inputSize)); // just grab indexes of features with highest scores\n const [x, y] = [\n cx - (scaleBox / strideSize * boxOffset[0]),\n cy - (scaleBox / strideSize * boxOffset[1]),\n ];\n const [w, h] = [\n cx + (scaleBox / strideSize * boxOffset[2]) - x,\n cy + (scaleBox / strideSize * boxOffset[3]) - y,\n ];\n let boxRaw = [x, y, w, h]; // results normalized to range 0..1\n boxRaw = boxRaw.map((a) => Math.max(0, Math.min(a, 1))); // fix out-of-bounds coords\n const box = [ // results normalized to input image pixels\n boxRaw[0] * outputShape[0],\n boxRaw[1] * outputShape[1],\n boxRaw[2] * outputShape[0],\n boxRaw[3] * outputShape[1],\n ];\n const result = {\n id: id++,\n // strideSize,\n score: Math.round(100 * score) / 100,\n class: j + 1,\n label: labels[j].label,\n // center: [Math.trunc(outputShape[0] * cx), Math.trunc(outputShape[1] * cy)],\n // centerRaw: [cx, cy],\n box: (box.map((a) => Math.trunc(a))) as [number, number, number, number],\n boxRaw: boxRaw as [number, number, number, number],\n };\n results.push(result);\n }\n }\n }\n });\n }\n // deallocate tensors\n res.forEach((t) => tf.dispose(t));\n\n // normally nms is run on raw results, but since boxes need to be calculated this way we skip calulcation of\n // unnecessary boxes and run nms only on good candidates (basically it just does IOU analysis as scores are already filtered)\n const nmsBoxes = results.map((a) => [a.boxRaw[1], a.boxRaw[0], a.boxRaw[3], a.boxRaw[2]]); // switches coordinates from x,y to y,x as expected by tf.nms\n const nmsScores = results.map((a) => a.score);\n let nmsIdx: Array = [];\n if (nmsBoxes && nmsBoxes.length > 0) {\n const nms = await tf.image.nonMaxSuppressionAsync(nmsBoxes, nmsScores, config.object.maxDetected, config.object.iouThreshold, config.object.minConfidence);\n nmsIdx = await nms.data();\n tf.dispose(nms);\n }\n\n // filter & sort results\n results = results\n .filter((_val, idx) => nmsIdx.includes(idx))\n .sort((a, b) => (b.score - a.score));\n\n return results;\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if ((skipped < config.object.skipFrames) && config.skipFrame && (last.length > 0)) {\n skipped++;\n return last;\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const outputSize = [image.shape[2], image.shape[1]];\n const resize = tf.image.resizeBilinear(image, [model.inputSize, model.inputSize], false);\n const norm = tf.div(resize, 255);\n const transpose = norm.transpose([0, 3, 1, 2]);\n tf.dispose(norm);\n tf.dispose(resize);\n\n let objectT;\n if (config.object.enabled) objectT = await model.predict(transpose);\n tf.dispose(transpose);\n\n const obj = await process(objectT, model.inputSize, outputSize, config);\n last = obj;\n resolve(obj);\n });\n}\n", "/**\n * CenterNet object detection module\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { labels } from './labels';\nimport { Item } from '../result';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model;\nlet last: Item[] = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.object.modelPath));\n const inputs = Object.values(model.modelSignature['inputs']);\n model.inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : null;\n if (!model.inputSize) throw new Error(`Human: Cannot determine model inputSize: ${config.object.modelPath}`);\n if (!model || !model.modelUrl) log('load model failed:', config.object.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nasync function process(res: Tensor, inputSize, outputShape, config: Config) {\n if (!res) return [];\n const results: Array = [];\n const detections = await res.array();\n const squeezeT = tf.squeeze(res);\n tf.dispose(res);\n const arr = tf.split(squeezeT, 6, 1); // x1, y1, x2, y2, score, class\n tf.dispose(squeezeT);\n const stackT = tf.stack([arr[1], arr[0], arr[3], arr[2]], 1); // reorder dims as tf.nms expects y, x\n const boxesT = tf.squeeze(stackT);\n const scoresT = tf.squeeze(arr[4]);\n const classesT = tf.squeeze(arr[5]);\n arr.forEach((t) => tf.dispose(t));\n const nmsT = await tf.image.nonMaxSuppressionAsync(boxesT, scoresT, config.object.maxDetected, config.object.iouThreshold, config.object.minConfidence);\n tf.dispose(boxesT);\n tf.dispose(scoresT);\n tf.dispose(classesT);\n const nms = await nmsT.data();\n tf.dispose(nmsT);\n let i = 0;\n for (const id of nms) {\n const score = Math.trunc(100 * detections[0][id][4]) / 100;\n const classVal = detections[0][id][5];\n const label = labels[classVal].label;\n const [x, y] = [\n detections[0][id][0] / inputSize,\n detections[0][id][1] / inputSize,\n ];\n const boxRaw = [\n x,\n y,\n detections[0][id][2] / inputSize - x,\n detections[0][id][3] / inputSize - y,\n ] as [number, number, number, number];\n const box = [\n Math.trunc(boxRaw[0] * outputShape[0]),\n Math.trunc(boxRaw[1] * outputShape[1]),\n Math.trunc(boxRaw[2] * outputShape[0]),\n Math.trunc(boxRaw[3] * outputShape[1]),\n ] as [number, number, number, number];\n results.push({ id: i++, score, class: classVal, label, box, boxRaw });\n }\n return results;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if ((skipped < config.object.skipFrames) && config.skipFrame && (last.length > 0)) {\n skipped++;\n return last;\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const outputSize = [input.shape[2], input.shape[1]];\n const resize = tf.image.resizeBilinear(input, [model.inputSize, model.inputSize]);\n const objectT = config.object.enabled ? model.execute(resize, ['tower_0/detections']) : null;\n tf.dispose(resize);\n\n const obj = await process(objectT, model.inputSize, outputSize, config);\n last = obj;\n resolve(obj);\n });\n}\n", "/*\nWebGLImageFilter by Dominic Szablewski: \n*/\n\nfunction GLProgram(gl, vertexSource, fragmentSource) {\n const _collect = function (source, prefix, collection) {\n const r = new RegExp('\\\\b' + prefix + ' \\\\w+ (\\\\w+)', 'ig');\n source.replace(r, (match, name) => {\n collection[name] = 0;\n return match;\n });\n };\n\n const _compile = function (source, type) {\n const shader = gl.createShader(type);\n gl.shaderSource(shader, source);\n gl.compileShader(shader);\n if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) throw new Error('Filter: GL compile failed', gl.getShaderInfoLog(shader));\n return shader;\n };\n\n this.uniform = {};\n this.attribute = {};\n const _vsh = _compile(vertexSource, gl.VERTEX_SHADER);\n const _fsh = _compile(fragmentSource, gl.FRAGMENT_SHADER);\n this.id = gl.createProgram();\n gl.attachShader(this.id, _vsh);\n gl.attachShader(this.id, _fsh);\n gl.linkProgram(this.id);\n\n if (!gl.getProgramParameter(this.id, gl.LINK_STATUS)) throw new Error('Filter: GL link failed', gl.getProgramInfoLog(this.id));\n\n gl.useProgram(this.id);\n // Collect attributes\n _collect(vertexSource, 'attribute', this.attribute);\n for (const a in this.attribute) this.attribute[a] = gl.getAttribLocation(this.id, a);\n // Collect uniforms\n _collect(vertexSource, 'uniform', this.uniform);\n _collect(fragmentSource, 'uniform', this.uniform);\n for (const u in this.uniform) this.uniform[u] = gl.getUniformLocation(this.id, u);\n}\n\n// export const GLImageFilter = function (params) {\nexport function GLImageFilter(params) {\n if (!params) params = { };\n let _drawCount = 0;\n let _sourceTexture = null;\n let _lastInChain = false;\n let _currentFramebufferIndex = -1;\n let _tempFramebuffers = [null, null];\n let _filterChain = [];\n let _width = -1;\n let _height = -1;\n let _vertexBuffer = null;\n let _currentProgram = null;\n const _filter = {};\n const _canvas = params.canvas || document.createElement('canvas');\n // key is the shader program source, value is the compiled program\n const _shaderProgramCache = { };\n const DRAW = { INTERMEDIATE: 1 };\n const gl = _canvas.getContext('webgl');\n if (!gl) throw new Error('Filter: getContext() failed');\n\n this.addFilter = function (name) {\n // eslint-disable-next-line prefer-rest-params\n const args = Array.prototype.slice.call(arguments, 1);\n const filter = _filter[name];\n _filterChain.push({ func: filter, args });\n };\n\n this.reset = function () {\n _filterChain = [];\n };\n\n const _resize = function (width, height) {\n // Same width/height? Nothing to do here\n if (width === _width && height === _height) { return; }\n _canvas.width = width;\n _width = width;\n _canvas.height = height;\n _height = height;\n // Create the context if we don't have it yet\n if (!_vertexBuffer) {\n // Create the vertex buffer for the two triangles [x, y, u, v] * 6\n const vertices = new Float32Array([\n -1, -1, 0, 1, 1, -1, 1, 1, -1, 1, 0, 0,\n -1, 1, 0, 0, 1, -1, 1, 1, 1, 1, 1, 0,\n ]);\n // eslint-disable-next-line no-unused-expressions\n (_vertexBuffer = gl.createBuffer(), gl.bindBuffer(gl.ARRAY_BUFFER, _vertexBuffer));\n gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);\n gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, true);\n }\n gl.viewport(0, 0, _width, _height);\n // Delete old temp framebuffers\n _tempFramebuffers = [null, null];\n };\n\n const _createFramebufferTexture = function (width, height) {\n const fbo = gl.createFramebuffer();\n gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);\n const renderbuffer = gl.createRenderbuffer();\n gl.bindRenderbuffer(gl.RENDERBUFFER, renderbuffer);\n const texture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, texture);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, width, height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0);\n gl.bindTexture(gl.TEXTURE_2D, null);\n gl.bindFramebuffer(gl.FRAMEBUFFER, null);\n return { fbo, texture };\n };\n\n const _getTempFramebuffer = function (index) {\n _tempFramebuffers[index] = _tempFramebuffers[index] || _createFramebufferTexture(_width, _height);\n return _tempFramebuffers[index];\n };\n\n const _draw = function (flags = null) {\n let source = null;\n let target = null;\n let flipY = false;\n // Set up the source\n if (_drawCount === 0) {\n // First draw call - use the source texture\n source = _sourceTexture;\n } else {\n // All following draw calls use the temp buffer last drawn to\n source = _getTempFramebuffer(_currentFramebufferIndex)?.texture;\n }\n _drawCount++;\n // Set up the target\n if (_lastInChain && !(flags & DRAW.INTERMEDIATE)) {\n // Last filter in our chain - draw directly to the WebGL Canvas. We may\n // also have to flip the image vertically now\n target = null;\n flipY = _drawCount % 2 === 0;\n } else {\n // Intermediate draw call - get a temp buffer to draw to\n _currentFramebufferIndex = (_currentFramebufferIndex + 1) % 2;\n target = _getTempFramebuffer(_currentFramebufferIndex)?.fbo;\n }\n // Bind the source and target and draw the two triangles\n gl.bindTexture(gl.TEXTURE_2D, source);\n gl.bindFramebuffer(gl.FRAMEBUFFER, target);\n gl.uniform1f(_currentProgram.uniform.flipY, (flipY ? -1 : 1));\n gl.drawArrays(gl.TRIANGLES, 0, 6);\n };\n\n this.apply = function (image) {\n _resize(image.width, image.height);\n _drawCount = 0;\n // Create the texture for the input image if we haven't yet\n if (!_sourceTexture) _sourceTexture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, _sourceTexture);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);\n // No filters? Just draw\n if (_filterChain.length === 0) {\n // const program = _compileShader(SHADER.FRAGMENT_IDENTITY);\n _draw();\n return _canvas;\n }\n for (let i = 0; i < _filterChain.length; i++) {\n _lastInChain = (i === _filterChain.length - 1);\n const f = _filterChain[i];\n f.func.apply(this, f.args || []);\n }\n return _canvas;\n };\n\n const _compileShader = function (fragmentSource) {\n if (_shaderProgramCache[fragmentSource]) {\n _currentProgram = _shaderProgramCache[fragmentSource];\n gl.useProgram(_currentProgram.id);\n return _currentProgram;\n }\n // Compile shaders\n const SHADER = {};\n SHADER.VERTEX_IDENTITY = [\n 'precision highp float;',\n 'attribute vec2 pos;',\n 'attribute vec2 uv;',\n 'varying vec2 vUv;',\n 'uniform float flipY;',\n 'void main(void) {',\n 'vUv = uv;',\n 'gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);',\n '}',\n ].join('\\n');\n SHADER.FRAGMENT_IDENTITY = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'void main(void) {',\n 'gl_FragColor = texture2D(texture, vUv);',\n '}',\n ].join('\\n');\n _currentProgram = new GLProgram(gl, SHADER.VERTEX_IDENTITY, fragmentSource);\n const floatSize = Float32Array.BYTES_PER_ELEMENT;\n const vertSize = 4 * floatSize;\n gl.enableVertexAttribArray(_currentProgram.attribute.pos);\n gl.vertexAttribPointer(_currentProgram.attribute.pos, 2, gl.FLOAT, false, vertSize, 0 * floatSize);\n gl.enableVertexAttribArray(_currentProgram.attribute.uv);\n gl.vertexAttribPointer(_currentProgram.attribute.uv, 2, gl.FLOAT, false, vertSize, 2 * floatSize);\n _shaderProgramCache[fragmentSource] = _currentProgram;\n return _currentProgram;\n };\n\n // -------------------------------------------------------------------------\n // Color Matrix Filter\n _filter.colorMatrix = function (matrix) {\n // Create a Float32 Array and normalize the offset component to 0-1\n const m = new Float32Array(matrix);\n m[4] /= 255;\n m[9] /= 255;\n m[14] /= 255;\n m[19] /= 255;\n // Can we ignore the alpha value? Makes things a bit faster.\n const shader = (m[18] === 1 && m[3] === 0 && m[8] === 0 && m[13] === 0 && m[15] === 0 && m[16] === 0 && m[17] === 0 && m[19] === 0)\n ? _filter.colorMatrix.SHADER.WITHOUT_ALPHA\n : _filter.colorMatrix.SHADER.WITH_ALPHA;\n const program = _compileShader(shader);\n gl.uniform1fv(program.uniform.m, m);\n _draw();\n };\n _filter.colorMatrix.SHADER = {};\n _filter.colorMatrix.SHADER.WITH_ALPHA = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform float m[20];',\n 'void main(void) {',\n 'vec4 c = texture2D(texture, vUv);',\n 'gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];',\n 'gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];',\n 'gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];',\n 'gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];',\n '}',\n ].join('\\n');\n _filter.colorMatrix.SHADER.WITHOUT_ALPHA = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform float m[20];',\n 'void main(void) {',\n 'vec4 c = texture2D(texture, vUv);',\n 'gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];',\n 'gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];',\n 'gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];',\n 'gl_FragColor.a = c.a;',\n '}',\n ].join('\\n');\n\n _filter.brightness = function (brightness) {\n const b = (brightness || 0) + 1;\n _filter.colorMatrix([\n b, 0, 0, 0, 0,\n 0, b, 0, 0, 0,\n 0, 0, b, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.saturation = function (amount) {\n const x = (amount || 0) * 2 / 3 + 1;\n const y = ((x - 1) * -0.5);\n _filter.colorMatrix([\n x, y, y, 0, 0,\n y, x, y, 0, 0,\n y, y, x, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.desaturate = function () {\n _filter.saturation(-1);\n };\n\n _filter.contrast = function (amount) {\n const v = (amount || 0) + 1;\n const o = -128 * (v - 1);\n\n _filter.colorMatrix([\n v, 0, 0, 0, o,\n 0, v, 0, 0, o,\n 0, 0, v, 0, o,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.negative = function () {\n _filter.contrast(-2);\n };\n\n _filter.hue = function (rotation) {\n rotation = (rotation || 0) / 180 * Math.PI;\n const cos = Math.cos(rotation);\n const sin = Math.sin(rotation);\n const lumR = 0.213;\n const lumG = 0.715;\n const lumB = 0.072;\n\n _filter.colorMatrix([\n lumR + cos * (1 - lumR) + sin * (-lumR), lumG + cos * (-lumG) + sin * (-lumG), lumB + cos * (-lumB) + sin * (1 - lumB), 0, 0,\n lumR + cos * (-lumR) + sin * (0.143), lumG + cos * (1 - lumG) + sin * (0.140), lumB + cos * (-lumB) + sin * (-0.283), 0, 0,\n lumR + cos * (-lumR) + sin * (-(1 - lumR)), lumG + cos * (-lumG) + sin * (lumG), lumB + cos * (1 - lumB) + sin * (lumB), 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.desaturateLuminance = function () {\n _filter.colorMatrix([\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.sepia = function () {\n _filter.colorMatrix([\n 0.393, 0.7689999, 0.18899999, 0, 0,\n 0.349, 0.6859999, 0.16799999, 0, 0,\n 0.272, 0.5339999, 0.13099999, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.brownie = function () {\n _filter.colorMatrix([\n 0.5997023498159715, 0.34553243048391263, -0.2708298674538042, 0, 47.43192855600873,\n -0.037703249837783157, 0.8609577587992641, 0.15059552388459913, 0, -36.96841498319127,\n 0.24113635128153335, -0.07441037908422492, 0.44972182064877153, 0, -7.562075277591283,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.vintagePinhole = function () {\n _filter.colorMatrix([\n 0.6279345635605994, 0.3202183420819367, -0.03965408211312453, 0, 9.651285835294123,\n 0.02578397704808868, 0.6441188644374771, 0.03259127616149294, 0, 7.462829176470591,\n 0.0466055556782719, -0.0851232987247891, 0.5241648018700465, 0, 5.159190588235296,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.kodachrome = function () {\n _filter.colorMatrix([\n 1.1285582396593525, -0.3967382283601348, -0.03992559172921793, 0, 63.72958762196502,\n -0.16404339962244616, 1.0835251566291304, -0.05498805115633132, 0, 24.732407896706203,\n -0.16786010706155763, -0.5603416277695248, 1.6014850761964943, 0, 35.62982807460946,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.technicolor = function () {\n _filter.colorMatrix([\n 1.9125277891456083, -0.8545344976951645, -0.09155508482755585, 0, 11.793603434377337,\n -0.3087833385928097, 1.7658908555458428, -0.10601743074722245, 0, -70.35205161461398,\n -0.231103377548616, -0.7501899197440212, 1.847597816108189, 0, 30.950940869491138,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.polaroid = function () {\n _filter.colorMatrix([\n 1.438, -0.062, -0.062, 0, 0,\n -0.122, 1.378, -0.122, 0, 0,\n -0.016, -0.016, 1.483, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.shiftToBGR = function () {\n _filter.colorMatrix([\n 0, 0, 1, 0, 0,\n 0, 1, 0, 0, 0,\n 1, 0, 0, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n // -------------------------------------------------------------------------\n // Convolution Filter\n _filter.convolution = function (matrix) {\n const m = new Float32Array(matrix);\n const pixelSizeX = 1 / _width;\n const pixelSizeY = 1 / _height;\n const program = _compileShader(_filter.convolution.SHADER);\n gl.uniform1fv(program.uniform.m, m);\n gl.uniform2f(program.uniform.px, pixelSizeX, pixelSizeY);\n _draw();\n };\n\n _filter.convolution.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform vec2 px;',\n 'uniform float m[9];',\n 'void main(void) {',\n 'vec4 c11 = texture2D(texture, vUv - px);', // top left\n 'vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));', // top center\n 'vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));', // top right\n 'vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );', // mid left\n 'vec4 c22 = texture2D(texture, vUv);', // mid center\n 'vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );', // mid right\n 'vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );', // bottom left\n 'vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );', // bottom center\n 'vec4 c33 = texture2D(texture, vUv + px );', // bottom right\n 'gl_FragColor = ',\n 'c11 * m[0] + c12 * m[1] + c22 * m[2] +',\n 'c21 * m[3] + c22 * m[4] + c23 * m[5] +',\n 'c31 * m[6] + c32 * m[7] + c33 * m[8];',\n 'gl_FragColor.a = c22.a;',\n '}',\n ].join('\\n');\n\n _filter.detectEdges = function () {\n _filter.convolution.call(this, [\n 0, 1, 0,\n 1, -4, 1,\n 0, 1, 0,\n ]);\n };\n\n _filter.sobelX = function () {\n _filter.convolution.call(this, [\n -1, 0, 1,\n -2, 0, 2,\n -1, 0, 1,\n ]);\n };\n\n _filter.sobelY = function () {\n _filter.convolution.call(this, [\n -1, -2, -1,\n 0, 0, 0,\n 1, 2, 1,\n ]);\n };\n\n _filter.sharpen = function (amount) {\n const a = amount || 1;\n _filter.convolution.call(this, [\n 0, -1 * a, 0,\n -1 * a, 1 + 4 * a, -1 * a,\n 0, -1 * a, 0,\n ]);\n };\n\n _filter.emboss = function (size) {\n const s = size || 1;\n _filter.convolution.call(this, [\n -2 * s, -1 * s, 0,\n -1 * s, 1, 1 * s,\n 0, 1 * s, 2 * s,\n ]);\n };\n\n // -------------------------------------------------------------------------\n // Blur Filter\n _filter.blur = function (size) {\n const blurSizeX = (size / 7) / _width;\n const blurSizeY = (size / 7) / _height;\n const program = _compileShader(_filter.blur.SHADER);\n // Vertical\n gl.uniform2f(program.uniform.px, 0, blurSizeY);\n _draw(DRAW.INTERMEDIATE);\n // Horizontal\n gl.uniform2f(program.uniform.px, blurSizeX, 0);\n _draw();\n };\n\n _filter.blur.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform vec2 px;',\n 'void main(void) {',\n 'gl_FragColor = vec4(0.0);',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;',\n 'gl_FragColor += texture2D(texture, vUv )*0.159576912161;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;',\n '}',\n ].join('\\n');\n\n // -------------------------------------------------------------------------\n // Pixelate Filter\n _filter.pixelate = function (size) {\n const blurSizeX = (size) / _width;\n const blurSizeY = (size) / _height;\n const program = _compileShader(_filter.pixelate.SHADER);\n // Horizontal\n gl.uniform2f(program.uniform.size, blurSizeX, blurSizeY);\n _draw();\n };\n\n _filter.pixelate.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform vec2 size;',\n 'uniform sampler2D texture;',\n 'vec2 pixelate(vec2 coord, vec2 size) {',\n 'return floor( coord / size ) * size;',\n '}',\n 'void main(void) {',\n 'gl_FragColor = vec4(0.0);',\n 'vec2 coord = pixelate(vUv, size);',\n 'gl_FragColor += texture2D(texture, coord);',\n '}',\n ].join('\\n');\n}\n", "/**\n * Image Processing module used by Human\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as fxImage from './imagefx';\nimport { Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\ntype Input = Tensor | typeof Image | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas;\n\nconst maxSize = 2048;\n// internal temp canvases\nlet inCanvas;\nlet outCanvas;\n// instance of fximage\nlet fx: fxImage.GLImageFilter | null;\n\n// process input image and return tensor\n// input can be tensor, imagedata, htmlimageelement, htmlvideoelement\n// input is resized and run through imagefx filter\nexport function process(input: Input, config: Config): { tensor: Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement } {\n let tensor;\n if (!input) throw new Error('Human: Input is missing');\n // sanity checks since different browsers do not implement all dom elements\n if (\n !(input instanceof tf.Tensor)\n && !(typeof Image !== 'undefined' && input instanceof Image)\n && !(typeof ImageData !== 'undefined' && input instanceof ImageData)\n && !(typeof ImageBitmap !== 'undefined' && input instanceof ImageBitmap)\n && !(typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n && !(typeof HTMLMediaElement !== 'undefined' && input instanceof HTMLMediaElement)\n && !(typeof HTMLVideoElement !== 'undefined' && input instanceof HTMLVideoElement)\n && !(typeof HTMLCanvasElement !== 'undefined' && input instanceof HTMLCanvasElement)\n && !(typeof OffscreenCanvas !== 'undefined' && input instanceof OffscreenCanvas)\n ) {\n throw new Error('Human: Input type is not recognized');\n }\n if (input instanceof tf.Tensor) {\n // if input is tensor, use as-is\n if (input.shape && input.shape.length === 4 && input.shape[0] === 1 && input.shape[3] === 3) tensor = tf.clone(input);\n else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${input.shape}`);\n } else {\n // check if resizing will be needed\n const originalWidth = input['naturalWidth'] || input['videoWidth'] || input['width'] || (input['shape'] && (input['shape'][1] > 0));\n const originalHeight = input['naturalHeight'] || input['videoHeight'] || input['height'] || (input['shape'] && (input['shape'][2] > 0));\n if (!originalWidth || !originalHeight) return { tensor: null, canvas: inCanvas }; // video may become temporarily unavailable due to onresize\n let targetWidth = originalWidth;\n let targetHeight = originalHeight;\n if (targetWidth > maxSize) {\n targetWidth = maxSize;\n targetHeight = targetWidth * originalHeight / originalWidth;\n }\n if (targetHeight > maxSize) {\n targetHeight = maxSize;\n targetWidth = targetHeight * originalWidth / originalHeight;\n }\n\n // create our canvas and resize it if needed\n if (config.filter.width > 0) targetWidth = config.filter.width;\n else if (config.filter.height > 0) targetWidth = originalWidth * (config.filter.height / originalHeight);\n if (config.filter.height > 0) targetHeight = config.filter.height;\n else if (config.filter.width > 0) targetHeight = originalHeight * (config.filter.width / originalWidth);\n if (!targetWidth || !targetHeight) throw new Error('Human: Input cannot determine dimension');\n if (!inCanvas || (inCanvas?.width !== targetWidth) || (inCanvas?.height !== targetHeight)) {\n inCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n if (inCanvas?.width !== targetWidth) inCanvas.width = targetWidth;\n if (inCanvas?.height !== targetHeight) inCanvas.height = targetHeight;\n }\n\n // draw input to our canvas\n const ctx = inCanvas.getContext('2d');\n if (input instanceof ImageData) {\n ctx.putImageData(input, 0, 0);\n } else {\n if (config.filter.flip && typeof ctx.translate !== 'undefined') {\n ctx.translate(originalWidth, 0);\n ctx.scale(-1, 1);\n ctx.drawImage(input, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height);\n ctx.setTransform(1, 0, 0, 1, 0, 0); // resets transforms to defaults\n } else {\n ctx.drawImage(input, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height);\n }\n }\n\n // imagefx transforms using gl\n if (config.filter.enabled) {\n if (!fx || !outCanvas || (inCanvas.width !== outCanvas.width) || (inCanvas?.height !== outCanvas?.height)) {\n outCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(inCanvas?.width, inCanvas?.height) : document.createElement('canvas');\n if (outCanvas?.width !== inCanvas?.width) outCanvas.width = inCanvas?.width;\n if (outCanvas?.height !== inCanvas?.height) outCanvas.height = inCanvas?.height;\n // log('created FX filter');\n fx = tf.ENV.flags.IS_BROWSER ? new fxImage.GLImageFilter({ canvas: outCanvas }) : null; // && (typeof document !== 'undefined')\n }\n if (!fx) return { tensor: null, canvas: inCanvas };\n fx.reset();\n fx.addFilter('brightness', config.filter.brightness); // must have at least one filter enabled\n if (config.filter.contrast !== 0) fx.addFilter('contrast', config.filter.contrast);\n if (config.filter.sharpness !== 0) fx.addFilter('sharpen', config.filter.sharpness);\n if (config.filter.blur !== 0) fx.addFilter('blur', config.filter.blur);\n if (config.filter.saturation !== 0) fx.addFilter('saturation', config.filter.saturation);\n if (config.filter.hue !== 0) fx.addFilter('hue', config.filter.hue);\n if (config.filter.negative) fx.addFilter('negative');\n if (config.filter.sepia) fx.addFilter('sepia');\n if (config.filter.vintage) fx.addFilter('brownie');\n if (config.filter.sepia) fx.addFilter('sepia');\n if (config.filter.kodachrome) fx.addFilter('kodachrome');\n if (config.filter.technicolor) fx.addFilter('technicolor');\n if (config.filter.polaroid) fx.addFilter('polaroid');\n if (config.filter.pixelate !== 0) fx.addFilter('pixelate', config.filter.pixelate);\n fx.apply(inCanvas);\n // read pixel data\n /*\n const gl = outCanvas.getContext('webgl');\n if (gl) {\n const glBuffer = new Uint8Array(outCanvas.width * outCanvas.height * 4);\n const pixBuffer = new Uint8Array(outCanvas.width * outCanvas.height * 3);\n gl.readPixels(0, 0, outCanvas.width, outCanvas.height, gl.RGBA, gl.UNSIGNED_BYTE, glBuffer);\n // gl returns rbga while we only need rgb, so discarding alpha channel\n // gl returns starting point as lower left, so need to invert vertical\n let i = 0;\n for (let y = outCanvas.height - 1; y >= 0; y--) {\n for (let x = 0; x < outCanvas.width; x++) {\n const index = (x + y * outCanvas.width) * 4;\n pixBuffer[i++] = glBuffer[index + 0];\n pixBuffer[i++] = glBuffer[index + 1];\n pixBuffer[i++] = glBuffer[index + 2];\n }\n }\n outCanvas.data = pixBuffer;\n const shape = [outCanvas.height, outCanvas.width, 3];\n const pixels = tf.tensor3d(outCanvas.data, shape, 'float32');\n tensor = tf.expandDims(pixels, 0);\n tf.dispose(pixels);\n }\n */\n } else {\n outCanvas = inCanvas;\n if (fx) fx = null;\n }\n\n // create tensor from image if tensor is not already defined\n if (!tensor) {\n let pixels;\n if (outCanvas.data) { // if we have data, just convert to tensor\n const shape = [outCanvas.height, outCanvas.width, 3];\n pixels = tf.tensor3d(outCanvas.data, shape, 'int32');\n } else if (outCanvas instanceof ImageData) { // if input is imagedata, just use it\n pixels = tf.browser ? tf.browser.fromPixels(outCanvas) : null;\n } else if (config.backend === 'webgl' || config.backend === 'humangl') { // tf kernel-optimized method to get imagedata\n // we cant use canvas as-is as it already has a context, so we do a silly one more canvas\n const tempCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n tempCanvas.width = targetWidth;\n tempCanvas.height = targetHeight;\n const tempCtx = tempCanvas.getContext('2d');\n tempCtx?.drawImage(outCanvas, 0, 0);\n pixels = tf.browser ? tf.browser.fromPixels(tempCanvas) : null;\n } else { // cpu and wasm kernel does not implement efficient fromPixels method\n // we cant use canvas as-is as it already has a context, so we do a silly one more canvas and do fromPixels on ImageData instead\n const tempCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n tempCanvas.width = targetWidth;\n tempCanvas.height = targetHeight;\n const tempCtx = tempCanvas.getContext('2d');\n tempCtx?.drawImage(outCanvas, 0, 0);\n const data = tempCtx?.getImageData(0, 0, targetWidth, targetHeight);\n pixels = tf.browser ? tf.browser.fromPixels(data) : null;\n }\n if (pixels) {\n const casted = tf.cast(pixels, 'float32');\n tensor = tf.expandDims(casted, 0);\n tf.dispose(pixels);\n tf.dispose(casted);\n }\n }\n }\n const canvas = config.filter.return ? outCanvas : null;\n return { tensor, canvas };\n}\n", "/**\n * EfficientPose Module\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as image from '../image/image';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\ntype Input = Tensor | typeof Image | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas;\n\nlet model: GraphModel;\nlet busy = false;\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.segmentation.modelPath)) as unknown as GraphModel;\n if (!model || !model['modelUrl']) log('load model failed:', config.segmentation.modelPath);\n else if (config.debug) log('load model:', model['modelUrl']);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(input: { tensor: Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement }): Promise {\n const width = input.tensor?.shape[1] || 0;\n const height = input.tensor?.shape[2] || 0;\n if (!input.tensor) return null;\n if (!model || !model.inputs[0].shape) return null;\n const resizeInput = tf.image.resizeBilinear(input.tensor, [model.inputs[0].shape[1], model.inputs[0].shape[2]], false);\n const norm = tf.div(resizeInput, 255);\n const res = model.predict(norm) as Tensor;\n // meet output: 1,256,256,1\n // selfie output: 1,144,256,2\n tf.dispose(resizeInput);\n tf.dispose(norm);\n\n const squeeze = tf.squeeze(res, 0);\n let resizeOutput;\n if (squeeze.shape[2] === 2) {\n // model meet has two channels for fg and bg\n const softmax = squeeze.softmax();\n const [bg, fg] = tf.unstack(softmax, 2);\n const expand = tf.expandDims(fg, 2);\n const pad = tf.expandDims(expand, 0);\n tf.dispose(softmax);\n tf.dispose(bg);\n tf.dispose(fg);\n // running sofmax before unstack creates 2x2 matrix so we only take upper-left quadrant\n const crop = tf.image.cropAndResize(pad, [[0, 0, 0.5, 0.5]], [0], [width, height]);\n // otherwise run softmax after unstack and use standard resize\n // resizeOutput = tf.image.resizeBilinear(expand, [input.tensor?.shape[1], input.tensor?.shape[2]]);\n resizeOutput = tf.squeeze(crop, 0);\n tf.dispose(crop);\n tf.dispose(expand);\n tf.dispose(pad);\n } else { // model selfie has a single channel that we can use directly\n resizeOutput = tf.image.resizeBilinear(squeeze, [width, height]);\n }\n\n if (typeof document === 'undefined') return resizeOutput.data(); // we're running in nodejs so return alpha array as-is\n\n const overlay = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(width, height) : document.createElement('canvas');\n overlay.width = width;\n overlay.height = height;\n if (tf.browser) await tf.browser.toPixels(resizeOutput, overlay);\n tf.dispose(resizeOutput);\n tf.dispose(squeeze);\n tf.dispose(res);\n\n // get alpha channel data\n const alphaCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(width, height) : document.createElement('canvas'); // need one more copy since input may already have gl context so 2d context fails\n alphaCanvas.width = width;\n alphaCanvas.height = height;\n const ctxAlpha = alphaCanvas.getContext('2d') as CanvasRenderingContext2D;\n ctxAlpha.filter = 'blur(8px';\n await ctxAlpha.drawImage(overlay, 0, 0);\n const alpha = ctxAlpha.getImageData(0, 0, width, height).data;\n\n // get original canvas merged with overlay\n const original = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(width, height) : document.createElement('canvas'); // need one more copy since input may already have gl context so 2d context fails\n original.width = width;\n original.height = height;\n const ctx = original.getContext('2d') as CanvasRenderingContext2D;\n if (input.canvas) await ctx.drawImage(input.canvas, 0, 0);\n // https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/globalCompositeOperation // best options are: darken, color-burn, multiply\n ctx.globalCompositeOperation = 'darken';\n ctx.filter = 'blur(8px)'; // use css filter for bluring, can be done with gaussian blur manually instead\n await ctx.drawImage(overlay, 0, 0);\n ctx.globalCompositeOperation = 'source-over'; // reset\n ctx.filter = 'none'; // reset\n\n input.canvas = original;\n\n return alpha;\n}\n\nexport async function process(input: Input, background: Input | undefined, config: Config): Promise {\n if (busy) return null;\n busy = true;\n if (!model) await load(config);\n const img = image.process(input, config);\n const alpha = await predict(img);\n tf.dispose(img.tensor);\n\n if (background && alpha) {\n const tmp = image.process(background, config);\n const bg = tmp.canvas;\n tf.dispose(tmp.tensor);\n const fg = img.canvas;\n const fgData = fg.getContext('2d')?.getImageData(0, 0, fg.width, fg.height).data as Uint8ClampedArray;\n\n const c = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(fg.width, fg.height) : document.createElement('canvas');\n c.width = fg.width;\n c.height = fg.height;\n const ctx = c.getContext('2d') as CanvasRenderingContext2D;\n\n ctx.globalCompositeOperation = 'copy'; // reset\n ctx.drawImage(bg, 0, 0, c.width, c.height);\n const cData = ctx.getImageData(0, 0, c.width, c.height) as ImageData;\n for (let i = 0; i < c.width * c.height; i++) { // this should be done with globalCompositeOperation instead of looping through image data\n cData.data[4 * i + 0] = ((255 - alpha[4 * i + 0]) / 255.0 * cData.data[4 * i + 0]) + (alpha[4 * i + 0] / 255.0 * fgData[4 * i + 0]);\n cData.data[4 * i + 1] = ((255 - alpha[4 * i + 1]) / 255.0 * cData.data[4 * i + 1]) + (alpha[4 * i + 1] / 255.0 * fgData[4 * i + 1]);\n cData.data[4 * i + 2] = ((255 - alpha[4 * i + 2]) / 255.0 * cData.data[4 * i + 2]) + (alpha[4 * i + 2] / 255.0 * fgData[4 * i + 2]);\n cData.data[4 * i + 3] = ((255 - alpha[4 * i + 3]) / 255.0 * cData.data[4 * i + 3]) + (alpha[4 * i + 3] / 255.0 * fgData[4 * i + 3]);\n }\n ctx.putImageData(cData, 0, 0);\n img.canvas = c;\n }\n busy = false;\n return img.canvas;\n}\n", "import * as facemesh from './blazeface/facemesh';\nimport * as faceres from './faceres/faceres';\nimport * as emotion from './emotion/emotion';\nimport * as posenet from './posenet/posenet';\nimport * as handpose from './handpose/handpose';\nimport * as blazepose from './blazepose/blazepose';\nimport * as efficientpose from './efficientpose/efficientpose';\nimport * as movenet from './movenet/movenet';\nimport * as nanodet from './object/nanodet';\nimport * as centernet from './object/centernet';\nimport * as segmentation from './segmentation/segmentation';\n// import * as agegenderrace from './gear/agegenderrace';\n\n/** Load method preloads all instance.configured models on-demand\n * - Not explicitly required as any required model is load implicitly on it's first run\n * @param userinstance.config?: {@link instance.config}\n*/\nexport async function load(instance) {\n if (instance.config.async) { // load models concurrently\n [\n instance.models.face,\n instance.models.emotion,\n instance.models.handpose,\n instance.models.posenet,\n instance.models.blazepose,\n instance.models.efficientpose,\n instance.models.movenet,\n instance.models.nanodet,\n instance.models.centernet,\n instance.models.faceres,\n instance.models.segmentation,\n // instance.models.agegenderrace,\n ] = await Promise.all([\n instance.models.face || (instance.config.face.enabled ? facemesh.load(instance.config) : null),\n instance.models.emotion || ((instance.config.face.enabled && instance.config.face.emotion.enabled) ? emotion.load(instance.config) : null),\n instance.models.handpose || (instance.config.hand.enabled ? handpose.load(instance.config) : null),\n instance.models.posenet || (instance.config.body.enabled && instance.config.body.modelPath.includes('posenet') ? posenet.load(instance.config) : null),\n instance.models.blazepose || (instance.config.body.enabled && instance.config.body.modelPath.includes('blazepose') ? blazepose.load(instance.config) : null),\n instance.models.efficientpose || (instance.config.body.enabled && instance.config.body.modelPath.includes('efficientpose') ? efficientpose.load(instance.config) : null),\n instance.models.movenet || (instance.config.body.enabled && instance.config.body.modelPath.includes('movenet') ? movenet.load(instance.config) : null),\n instance.models.nanodet || (instance.config.object.enabled && instance.config.object.modelPath.includes('nanodet') ? nanodet.load(instance.config) : null),\n instance.models.centernet || (instance.config.object.enabled && instance.config.object.modelPath.includes('centernet') ? centernet.load(instance.config) : null),\n instance.models.faceres || ((instance.config.face.enabled && instance.config.face.description.enabled) ? faceres.load(instance.config) : null),\n instance.models.segmentation || (instance.config.segmentation.enabled ? segmentation.load(instance.config) : null),\n // instance.models.agegenderrace || ((instance.config.face.enabled && instance.config.face.agegenderrace.enabled) ? agegenderrace.load(instance.config) : null),\n ]);\n } else { // load models sequentially\n if (instance.config.face.enabled && !instance.models.face) instance.models.face = await facemesh.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.emotion.enabled && !instance.models.emotion) instance.models.emotion = await emotion.load(instance.config);\n if (instance.config.hand.enabled && !instance.models.handpose) instance.models.handpose = await handpose.load(instance.config);\n if (instance.config.body.enabled && !instance.models.posenet && instance.config.body.modelPath.includes('posenet')) instance.models.posenet = await posenet.load(instance.config);\n if (instance.config.body.enabled && !instance.models.blazepose && instance.config.body.modelPath.includes('blazepose')) instance.models.blazepose = await blazepose.load(instance.config);\n if (instance.config.body.enabled && !instance.models.efficientpose && instance.config.body.modelPath.includes('efficientpose')) instance.models.efficientpose = await blazepose.load(instance.config);\n if (instance.config.body.enabled && !instance.models.movenet && instance.config.body.modelPath.includes('movenet')) instance.models.movenet = await movenet.load(instance.config);\n if (instance.config.object.enabled && !instance.models.nanodet && instance.config.object.modelPath.includes('nanodet')) instance.models.nanodet = await nanodet.load(instance.config);\n if (instance.config.object.enabled && !instance.models.centernet && instance.config.object.modelPath.includes('centernet')) instance.models.centernet = await centernet.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.description.enabled && !instance.models.faceres) instance.models.faceres = await faceres.load(instance.config);\n if (instance.config.segmentation.enabled && !instance.models.segmentation) instance.models.segmentation = await segmentation.load(instance.config);\n // if (instance.config.face.enabled && instance.config.face.agegenderrace.enabled && !instance.models.agegenderrace) instance.models.agegenderrace = await agegenderrace.load(instance.config);\n }\n}\n", "/**\n * Module that analyzes person age\n * Obsolete\n */\n\nimport { log, now } from './helpers';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as facemesh from './blazeface/facemesh';\nimport * as emotion from './emotion/emotion';\nimport * as faceres from './faceres/faceres';\nimport { Face } from './result';\nimport { Tensor } from './tfjs/types';\n\n// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\nconst rad2deg = (theta) => Math.round((theta * 180) / Math.PI);\n\nconst calculateGaze = (face): { bearing: number, strength: number } => {\n const radians = (pt1, pt2) => Math.atan2(pt1[1] - pt2[1], pt1[0] - pt2[0]); // function to calculate angle between any two points\n if (!face.annotations['rightEyeIris'] || !face.annotations['leftEyeIris']) return { bearing: 0, strength: 0 };\n\n const offsetIris = [0, -0.1]; // iris center may not align with average of eye extremes\n const eyeRatio = 1; // factor to normalize changes x vs y\n\n const left = face.mesh[33][2] > face.mesh[263][2]; // pick left or right eye depending which one is closer bazed on outsize point z axis\n const irisCenter = left ? face.mesh[473] : face.mesh[468];\n const eyeCenter = left // eye center is average of extreme points on x axis for both x and y, ignoring y extreme points as eyelids naturally open/close more when gazing up/down so relative point is less precise\n ? [(face.mesh[133][0] + face.mesh[33][0]) / 2, (face.mesh[133][1] + face.mesh[33][1]) / 2]\n : [(face.mesh[263][0] + face.mesh[362][0]) / 2, (face.mesh[263][1] + face.mesh[362][1]) / 2];\n const eyeSize = left // eye size is difference between extreme points for both x and y, used to normalize & squarify eye dimensions\n ? [face.mesh[133][0] - face.mesh[33][0], face.mesh[23][1] - face.mesh[27][1]]\n : [face.mesh[263][0] - face.mesh[362][0], face.mesh[253][1] - face.mesh[257][1]];\n\n const eyeDiff = [ // x distance between extreme point and center point normalized with eye size\n (eyeCenter[0] - irisCenter[0]) / eyeSize[0] - offsetIris[0],\n eyeRatio * (irisCenter[1] - eyeCenter[1]) / eyeSize[1] - offsetIris[1],\n ];\n let strength = Math.sqrt((eyeDiff[0] ** 2) + (eyeDiff[1] ** 2)); // vector length is a diagonal between two differences\n strength = Math.min(strength, face.boxRaw[2] / 2, face.boxRaw[3] / 2); // limit strength to half of box size to avoid clipping due to low precision\n const bearing = (radians([0, 0], eyeDiff) + (Math.PI / 2)) % Math.PI; // using eyeDiff instead eyeCenter/irisCenter combo due to manual adjustments and rotate clockwise 90degrees\n\n return { bearing, strength };\n};\n\nconst calculateFaceAngle = (face, imageSize): {\n angle: { pitch: number, yaw: number, roll: number },\n matrix: [number, number, number, number, number, number, number, number, number],\n gaze: { bearing: number, strength: number },\n} => {\n // const degrees = (theta) => Math.abs(((theta * 180) / Math.PI) % 360);\n const normalize = (v) => { // normalize vector\n const length = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);\n v[0] /= length;\n v[1] /= length;\n v[2] /= length;\n return v;\n };\n const subVectors = (a, b) => { // vector subtraction (a - b)\n const x = a[0] - b[0];\n const y = a[1] - b[1];\n const z = a[2] - b[2];\n return [x, y, z];\n };\n const crossVectors = (a, b) => { // vector cross product (a x b)\n const x = a[1] * b[2] - a[2] * b[1];\n const y = a[2] * b[0] - a[0] * b[2];\n const z = a[0] * b[1] - a[1] * b[0];\n return [x, y, z];\n };\n // 3x3 rotation matrix to Euler angles based on https://www.geometrictools.com/Documentation/EulerAngles.pdf\n const rotationMatrixToEulerAngle = (r) => {\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const [r00, r01, r02, r10, r11, r12, r20, r21, r22] = r;\n let thetaX: number;\n let thetaY: number;\n let thetaZ: number;\n if (r10 < 1) { // YZX calculation\n if (r10 > -1) {\n thetaZ = Math.asin(r10);\n thetaY = Math.atan2(-r20, r00);\n thetaX = Math.atan2(-r12, r11);\n } else {\n thetaZ = -Math.PI / 2;\n thetaY = -Math.atan2(r21, r22);\n thetaX = 0;\n }\n } else {\n thetaZ = Math.PI / 2;\n thetaY = Math.atan2(r21, r22);\n thetaX = 0;\n }\n if (isNaN(thetaX)) thetaX = 0;\n if (isNaN(thetaY)) thetaY = 0;\n if (isNaN(thetaZ)) thetaZ = 0;\n return { pitch: 2 * -thetaX, yaw: 2 * -thetaY, roll: 2 * -thetaZ };\n };\n // simple Euler angle calculation based existing 3D mesh\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const meshToEulerAngle = (mesh) => {\n const radians = (a1, a2, b1, b2) => Math.atan2(b2 - a2, b1 - a1);\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const angle = {\n // values are in radians in range of -pi/2 to pi/2 which is -90 to +90 degrees, value of 0 means center\n // pitch is face move up/down\n pitch: radians(mesh[10][1], mesh[10][2], mesh[152][1], mesh[152][2]), // looking at y,z of top and bottom points of the face\n // yaw is face turn left/right\n yaw: radians(mesh[33][0], mesh[33][2], mesh[263][0], mesh[263][2]), // looking at x,z of outside corners of leftEye and rightEye\n // roll is face lean left/right\n roll: radians(mesh[33][0], mesh[33][1], mesh[263][0], mesh[263][1]), // looking at x,y of outside corners of leftEye and rightEye\n };\n return angle;\n };\n\n // initialize gaze and mesh\n const mesh = face.meshRaw;\n if (!mesh || mesh.length < 300) return { angle: { pitch: 0, yaw: 0, roll: 0 }, matrix: [1, 0, 0, 0, 1, 0, 0, 0, 1], gaze: { bearing: 0, strength: 0 } };\n\n const size = Math.max(face.boxRaw[2] * imageSize[0], face.boxRaw[3] * imageSize[1]) / 1.5;\n // top, bottom, left, right\n const pts = [mesh[10], mesh[152], mesh[234], mesh[454]].map((pt) => [\n // make the xyz coordinates proportional, independent of the image/box size\n pt[0] * imageSize[0] / size,\n pt[1] * imageSize[1] / size,\n pt[2],\n ]);\n\n const y_axis = normalize(subVectors(pts[1], pts[0]));\n let x_axis = normalize(subVectors(pts[3], pts[2]));\n const z_axis = normalize(crossVectors(x_axis, y_axis));\n // adjust x_axis to make sure that all axes are perpendicular to each other\n x_axis = crossVectors(y_axis, z_axis);\n\n // Rotation Matrix from Axis Vectors - http://renderdan.blogspot.com/2006/05/rotation-matrix-from-axis-vectors.html\n // 3x3 rotation matrix is flatten to array in row-major order. Note that the rotation represented by this matrix is inverted.\n const matrix: [number, number, number, number, number, number, number, number, number] = [\n x_axis[0], x_axis[1], x_axis[2],\n y_axis[0], y_axis[1], y_axis[2],\n z_axis[0], z_axis[1], z_axis[2],\n ];\n const angle = rotationMatrixToEulerAngle(matrix);\n // const angle = meshToEulerAngle(mesh);\n\n // we have iris keypoints so we can calculate gaze direction\n const gaze = mesh.length === 478 ? calculateGaze(face) : { bearing: 0, strength: 0 };\n\n return { angle, matrix, gaze };\n};\n\nexport const detectFace = async (parent /* instance of human */, input: Tensor): Promise => {\n // run facemesh, includes blazeface and iris\n // eslint-disable-next-line no-async-promise-executor\n let timeStamp;\n let ageRes;\n let gearRes;\n let genderRes;\n let emotionRes;\n let embeddingRes;\n let descRes;\n const faceRes: Array = [];\n parent.state = 'run:face';\n timeStamp = now();\n const faces = await facemesh.predict(input, parent.config);\n parent.performance.face = Math.trunc(now() - timeStamp);\n if (!input.shape || input.shape.length !== 4) return [];\n if (!faces) return [];\n // for (const face of faces) {\n for (let i = 0; i < faces.length; i++) {\n parent.analyze('Get Face');\n\n // is something went wrong, skip the face\n // @ts-ignore possibly undefied\n if (!faces[i].tensor || faces[i].tensor['isDisposedInternal']) {\n log('Face object is disposed:', faces[i].tensor);\n continue;\n }\n\n const rotation = calculateFaceAngle(faces[i], [input.shape[2], input.shape[1]]);\n\n // run emotion, inherits face from blazeface\n parent.analyze('Start Emotion:');\n if (parent.config.async) {\n emotionRes = parent.config.face.emotion.enabled ? emotion.predict(faces[i].tensor || tf.tensor([]), parent.config, i, faces.length) : {};\n } else {\n parent.state = 'run:emotion';\n timeStamp = now();\n emotionRes = parent.config.face.emotion.enabled ? await emotion.predict(faces[i].tensor || tf.tensor([]), parent.config, i, faces.length) : {};\n parent.performance.emotion = Math.trunc(now() - timeStamp);\n }\n parent.analyze('End Emotion:');\n\n // run gear, inherits face from blazeface\n /*\n parent.analyze('Start GEAR:');\n if (parent.config.async) {\n gearRes = parent.config.face.agegenderrace.enabled ? agegenderrace.predict(faces[i].tensor || tf.tensor([]), parent.config, i, faces.length) : {};\n } else {\n parent.state = 'run:gear';\n timeStamp = now();\n gearRes = parent.config.face.agegenderrace.enabled ? await agegenderrace.predict(faces[i].tensor || tf.tensor([]), parent.config, i, faces.length) : {};\n parent.performance.emotion = Math.trunc(now() - timeStamp);\n }\n parent.analyze('End GEAR:');\n */\n\n // run emotion, inherits face from blazeface\n parent.analyze('Start Description:');\n if (parent.config.async) {\n descRes = parent.config.face.description.enabled ? faceres.predict(faces[i].tensor || tf.tensor([]), parent.config, i, faces.length) : [];\n } else {\n parent.state = 'run:description';\n timeStamp = now();\n descRes = parent.config.face.description.enabled ? await faceres.predict(faces[i].tensor || tf.tensor([]), parent.config, i, faces.length) : [];\n parent.performance.embedding = Math.trunc(now() - timeStamp);\n }\n parent.analyze('End Description:');\n\n // if async wait for results\n if (parent.config.async) {\n [ageRes, genderRes, emotionRes, embeddingRes, descRes, gearRes] = await Promise.all([ageRes, genderRes, emotionRes, embeddingRes, descRes, gearRes]);\n }\n\n parent.analyze('Finish Face:');\n\n // calculate iris distance\n // iris: array[ center, left, top, right, bottom]\n if (!parent.config.face.iris.enabled && faces[i]?.annotations?.leftEyeIris && faces[i]?.annotations?.rightEyeIris) {\n delete faces[i].annotations.leftEyeIris;\n delete faces[i].annotations.rightEyeIris;\n }\n const irisSize = (faces[i].annotations?.leftEyeIris && faces[i].annotations?.rightEyeIris)\n /* note: average human iris size is 11.7mm */\n ? Math.max(Math.abs(faces[i].annotations.leftEyeIris[3][0] - faces[i].annotations.leftEyeIris[1][0]), Math.abs(faces[i].annotations.rightEyeIris[4][1] - faces[i].annotations.rightEyeIris[2][1])) / input.shape[2]\n : 0;\n\n // optionally return tensor\n const tensor = parent.config.face.detector.return ? tf.squeeze(faces[i].tensor) : null;\n // dispose original face tensor\n tf.dispose(faces[i].tensor);\n // delete temp face image\n if (faces[i].tensor) delete faces[i].tensor;\n // combine results\n faceRes.push({\n ...faces[i],\n id: i,\n age: descRes.age,\n gender: descRes.gender,\n genderScore: descRes.genderScore,\n embedding: descRes.descriptor,\n emotion: emotionRes,\n iris: irisSize !== 0 ? Math.trunc(500 / irisSize / 11.7) / 100 : 0,\n rotation,\n tensor,\n });\n\n parent.analyze('End Face');\n }\n parent.analyze('End FaceMesh:');\n if (parent.config.async) {\n if (parent.performance.face) delete parent.performance.face;\n if (parent.performance.age) delete parent.performance.age;\n if (parent.performance.gender) delete parent.performance.gender;\n if (parent.performance.emotion) delete parent.performance.emotion;\n }\n return faceRes;\n};\n", "/**\n * Gesture detection module\n */\n\nimport { Gesture } from '../result';\nimport * as fingerPose from '../fingerpose/fingerpose';\n\n/**\n * @typedef FaceGesture\n */\nexport type FaceGesture =\n `facing ${'left' | 'center' | 'right'}`\n | `blink ${'left' | 'right'} eye`\n | `mouth ${number}% open`\n | `head ${'up' | 'down'}`;\n\n/**\n * @typedef IrisGesture\n */\nexport type IrisGesture =\n 'facing center'\n | `looking ${'left' | 'right' | 'up' | 'down'}`\n | 'looking center';\n\n/**\n * @typedef BodyGesture\n */\nexport type BodyGesture =\n `leaning ${'left' | 'right'}`\n | `raise ${'left' | 'right'} hand`\n | 'i give up';\n\n/**\n * @typedef BodyGesture\n */\nexport type HandGesture =\n `${'thumb' | 'index' | 'middle' | 'ring' | 'pinky'} forward`\n | `${'thumb' | 'index' | 'middle' | 'ring' | 'pinky'} up`\n | 'victory'\n | 'thumbs up';\n\nexport const body = (res): Gesture[] => {\n if (!res) return [];\n const gestures: Array<{ body: number, gesture: BodyGesture }> = [];\n for (let i = 0; i < res.length; i++) {\n // raising hands\n const leftWrist = res[i].keypoints.find((a) => (a.part === 'leftWrist'));\n const rightWrist = res[i].keypoints.find((a) => (a.part === 'rightWrist'));\n const nose = res[i].keypoints.find((a) => (a.part === 'nose'));\n if (nose && leftWrist && rightWrist && (leftWrist.position.y < nose.position.y) && (rightWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'i give up' });\n else if (nose && leftWrist && (leftWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'raise left hand' });\n else if (nose && rightWrist && (rightWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'raise right hand' });\n\n // leaning\n const leftShoulder = res[i].keypoints.find((a) => (a.part === 'leftShoulder'));\n const rightShoulder = res[i].keypoints.find((a) => (a.part === 'rightShoulder'));\n if (leftShoulder && rightShoulder) gestures.push({ body: i, gesture: `leaning ${(leftShoulder.position.y > rightShoulder.position.y) ? 'left' : 'right'}` });\n }\n return gestures;\n};\n\nexport const face = (res): Gesture[] => {\n if (!res) return [];\n const gestures: Array<{ face: number, gesture: FaceGesture }> = [];\n for (let i = 0; i < res.length; i++) {\n if (res[i].mesh && res[i].mesh.length > 0) {\n const eyeFacing = res[i].mesh[33][2] - res[i].mesh[263][2];\n if (Math.abs(eyeFacing) < 10) gestures.push({ face: i, gesture: 'facing center' });\n else gestures.push({ face: i, gesture: `facing ${eyeFacing < 0 ? 'left' : 'right'}` });\n const openLeft = Math.abs(res[i].mesh[374][1] - res[i].mesh[386][1]) / Math.abs(res[i].mesh[443][1] - res[i].mesh[450][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openLeft < 0.2) gestures.push({ face: i, gesture: 'blink left eye' });\n const openRight = Math.abs(res[i].mesh[145][1] - res[i].mesh[159][1]) / Math.abs(res[i].mesh[223][1] - res[i].mesh[230][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openRight < 0.2) gestures.push({ face: i, gesture: 'blink right eye' });\n const mouthOpen = Math.min(100, 500 * Math.abs(res[i].mesh[13][1] - res[i].mesh[14][1]) / Math.abs(res[i].mesh[10][1] - res[i].mesh[152][1]));\n if (mouthOpen > 10) gestures.push({ face: i, gesture: `mouth ${Math.trunc(mouthOpen)}% open` });\n const chinDepth = res[i].mesh[152][2];\n if (Math.abs(chinDepth) > 10) gestures.push({ face: i, gesture: `head ${chinDepth < 0 ? 'up' : 'down'}` });\n }\n }\n return gestures;\n};\n\nexport const iris = (res): Gesture[] => {\n if (!res) return [];\n const gestures: Array<{ iris: number, gesture: IrisGesture }> = [];\n for (let i = 0; i < res.length; i++) {\n if (!res[i].annotations || !res[i].annotations.leftEyeIris || !res[i].annotations.rightEyeIris) continue;\n const sizeXLeft = res[i].annotations.leftEyeIris[3][0] - res[i].annotations.leftEyeIris[1][0];\n const sizeYLeft = res[i].annotations.leftEyeIris[4][1] - res[i].annotations.leftEyeIris[2][1];\n const areaLeft = Math.abs(sizeXLeft * sizeYLeft);\n\n const sizeXRight = res[i].annotations.rightEyeIris[3][0] - res[i].annotations.rightEyeIris[1][0];\n const sizeYRight = res[i].annotations.rightEyeIris[4][1] - res[i].annotations.rightEyeIris[2][1];\n const areaRight = Math.abs(sizeXRight * sizeYRight);\n\n let center = false;\n const difference = Math.abs(areaLeft - areaRight) / Math.max(areaLeft, areaRight);\n if (difference < 0.25) {\n center = true;\n gestures.push({ iris: i, gesture: 'facing center' });\n }\n\n const rightIrisCenterX = Math.abs(res[i].mesh[33][0] - res[i].annotations.rightEyeIris[0][0]) / res[i].box[2];\n const leftIrisCenterX = Math.abs(res[i].mesh[263][0] - res[i].annotations.leftEyeIris[0][0]) / res[i].box[2];\n if (leftIrisCenterX > 0.06 || rightIrisCenterX > 0.06) center = false;\n if (leftIrisCenterX > 0.06) gestures.push({ iris: i, gesture: 'looking right' });\n if (rightIrisCenterX > 0.06) gestures.push({ iris: i, gesture: 'looking left' });\n\n const rightIrisCenterY = Math.abs(res[i].mesh[145][1] - res[i].annotations.rightEyeIris[0][1]) / res[i].box[3];\n const leftIrisCenterY = Math.abs(res[i].mesh[374][1] - res[i].annotations.leftEyeIris[0][1]) / res[i].box[3];\n if (leftIrisCenterY < 0.01 || rightIrisCenterY < 0.01 || leftIrisCenterY > 0.022 || rightIrisCenterY > 0.022) center = false;\n if (leftIrisCenterY < 0.01 || rightIrisCenterY < 0.01) gestures.push({ iris: i, gesture: 'looking down' });\n if (leftIrisCenterY > 0.022 || rightIrisCenterY > 0.022) gestures.push({ iris: i, gesture: 'looking up' });\n\n // still center;\n if (center) gestures.push({ iris: i, gesture: 'looking center' });\n }\n return gestures;\n};\n\nexport const hand = (res): Gesture[] => {\n if (!res) return [];\n const gestures: Array<{ hand: number, gesture: HandGesture }> = [];\n for (let i = 0; i < res.length; i++) {\n const fingers: Array<{ name: string, position: number }> = [];\n for (const [finger, pos] of Object.entries(res[i]['annotations'])) {\n if (finger !== 'palmBase' && Array.isArray(pos)) fingers.push({ name: finger.toLowerCase(), position: pos[0] }); // get tip of each finger\n }\n if (fingers && fingers.length > 0) {\n const closest = fingers.reduce((best, a) => (best.position[2] < a.position[2] ? best : a));\n gestures.push({ hand: i, gesture: `${closest.name} forward` as HandGesture });\n const highest = fingers.reduce((best, a) => (best.position[1] < a.position[1] ? best : a));\n gestures.push({ hand: i, gesture: `${highest.name} up` as HandGesture });\n }\n const poses = fingerPose.match(res[i]['keypoints']);\n for (const pose of poses) gestures.push({ hand: i, gesture: pose.name as HandGesture });\n }\n return gestures;\n};\n", "/**\n * Module that implements helper draw functions, exposed as human.draw\n */\n\nimport { TRI468 as triangulation } from '../blazeface/coords';\nimport { mergeDeep, now } from '../helpers';\nimport type { Result, Face, Body, Hand, Item, Gesture, Person } from '../result';\n\n/**\n * Draw Options\n * Accessed via `human.draw.options` or provided per each draw method as the drawOptions optional parameter\n * -color: draw color\n * -labelColor: color for labels\n * -shadowColor: optional shadow color for labels\n * -font: font for labels\n * -lineHeight: line height for labels, used for multi-line labels,\n * -lineWidth: width of any lines,\n * -pointSize: size of any point,\n * -roundRect: for boxes, round corners by this many pixels,\n * -drawPoints: should points be drawn,\n * -drawLabels: should labels be drawn,\n * -drawBoxes: should boxes be drawn,\n * -drawPolygons: should polygons be drawn,\n * -fillPolygons: should drawn polygons be filled,\n * -useDepth: use z-axis coordinate as color shade,\n * -useCurves: draw polygons as cures or as lines,\n * -bufferedOutput: experimental: allows to call draw methods multiple times for each detection and interpolate results between results thus achieving smoother animations\n */\nexport interface DrawOptions {\n color: string,\n labelColor: string,\n shadowColor: string,\n font: string,\n lineHeight: number,\n lineWidth: number,\n pointSize: number,\n roundRect: number,\n drawPoints: boolean,\n drawLabels: boolean,\n drawBoxes: boolean,\n drawPolygons: boolean,\n drawGaze: boolean,\n fillPolygons: boolean,\n useDepth: boolean,\n useCurves: boolean,\n bufferedOutput: boolean,\n}\n\nexport const options: DrawOptions = {\n color: 'rgba(173, 216, 230, 0.6)', // 'lightblue' with light alpha channel\n labelColor: 'rgba(173, 216, 230, 1)', // 'lightblue' with dark alpha channel\n shadowColor: 'black',\n font: 'small-caps 14px \"Segoe UI\"',\n lineHeight: 18,\n lineWidth: 4,\n pointSize: 2,\n roundRect: 8,\n drawPoints: false,\n drawLabels: true,\n drawBoxes: true,\n drawPolygons: true,\n drawGaze: true,\n fillPolygons: false,\n useDepth: true,\n useCurves: false,\n bufferedOutput: true,\n};\n\nconst rad2deg = (theta) => Math.round((theta * 180) / Math.PI);\n\nfunction point(ctx, x, y, z = 0, localOptions) {\n ctx.fillStyle = localOptions.useDepth && z ? `rgba(${127.5 + (2 * z)}, ${127.5 - (2 * z)}, 255, 0.3)` : localOptions.color;\n ctx.beginPath();\n ctx.arc(x, y, localOptions.pointSize, 0, 2 * Math.PI);\n ctx.fill();\n}\n\nfunction rect(ctx, x, y, width, height, localOptions) {\n ctx.beginPath();\n if (localOptions.useCurves) {\n const cx = (x + x + width) / 2;\n const cy = (y + y + height) / 2;\n ctx.ellipse(cx, cy, width / 2, height / 2, 0, 0, 2 * Math.PI);\n } else {\n ctx.lineWidth = localOptions.lineWidth;\n ctx.moveTo(x + localOptions.roundRect, y);\n ctx.lineTo(x + width - localOptions.roundRect, y);\n ctx.quadraticCurveTo(x + width, y, x + width, y + localOptions.roundRect);\n ctx.lineTo(x + width, y + height - localOptions.roundRect);\n ctx.quadraticCurveTo(x + width, y + height, x + width - localOptions.roundRect, y + height);\n ctx.lineTo(x + localOptions.roundRect, y + height);\n ctx.quadraticCurveTo(x, y + height, x, y + height - localOptions.roundRect);\n ctx.lineTo(x, y + localOptions.roundRect);\n ctx.quadraticCurveTo(x, y, x + localOptions.roundRect, y);\n ctx.closePath();\n }\n ctx.stroke();\n}\n\nfunction lines(ctx, points: [number, number, number?][] = [], localOptions) {\n if (points === undefined || points.length === 0) return;\n ctx.beginPath();\n ctx.moveTo(points[0][0], points[0][1]);\n for (const pt of points) {\n const z = pt[2] || 0;\n ctx.strokeStyle = localOptions.useDepth && z ? `rgba(${127.5 + (2 * z)}, ${127.5 - (2 * z)}, 255, 0.3)` : localOptions.color;\n ctx.fillStyle = localOptions.useDepth && z ? `rgba(${127.5 + (2 * z)}, ${127.5 - (2 * z)}, 255, 0.3)` : localOptions.color;\n ctx.lineTo(pt[0], Math.round(pt[1]));\n }\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nfunction curves(ctx, points: [number, number, number?][] = [], localOptions) {\n if (points === undefined || points.length === 0) return;\n if (!localOptions.useCurves || points.length <= 2) {\n lines(ctx, points, localOptions);\n return;\n }\n ctx.moveTo(points[0][0], points[0][1]);\n for (let i = 0; i < points.length - 2; i++) {\n const xc = (points[i][0] + points[i + 1][0]) / 2;\n const yc = (points[i][1] + points[i + 1][1]) / 2;\n ctx.quadraticCurveTo(points[i][0], points[i][1], xc, yc);\n }\n ctx.quadraticCurveTo(points[points.length - 2][0], points[points.length - 2][1], points[points.length - 1][0], points[points.length - 1][1]);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nexport async function gesture(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.font = localOptions.font;\n ctx.fillStyle = localOptions.color;\n let i = 1;\n for (let j = 0; j < result.length; j++) {\n let where: unknown[] = []; // what&where is a record\n let what: unknown[] = []; // what&where is a record\n [where, what] = Object.entries(result[j]);\n if ((what.length > 1) && ((what[1] as string).length > 0)) {\n const who = where[1] as number > 0 ? `#${where[1]}` : '';\n const label = `${where[0]} ${who}: ${what[1]}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, 8, 2 + (i * localOptions.lineHeight));\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, 6, 0 + (i * localOptions.lineHeight));\n i += 1;\n }\n }\n}\n\nexport async function face(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n for (const f of result) {\n ctx.font = localOptions.font;\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n if (localOptions.drawBoxes) rect(ctx, f.box[0], f.box[1], f.box[2], f.box[3], localOptions);\n // silly hack since fillText does not suport new line\n const labels:string[] = [];\n labels.push(`face: ${Math.trunc(100 * f.score)}%`);\n if (f.genderScore) labels.push(`${f.gender || ''} ${Math.trunc(100 * f.genderScore)}%`);\n if (f.age) labels.push(`age: ${f.age || ''}`);\n if (f.iris) labels.push(`distance: ${f.iris}`);\n if (f.emotion && f.emotion.length > 0) {\n const emotion = f.emotion.map((a) => `${Math.trunc(100 * a.score)}% ${a.emotion}`);\n if (emotion.length > 3) emotion.length = 3;\n labels.push(emotion.join(' '));\n }\n if (f.rotation && f.rotation.angle && f.rotation.gaze) {\n if (f.rotation.angle.roll) labels.push(`roll: ${rad2deg(f.rotation.angle.roll)}\u00B0 yaw:${rad2deg(f.rotation.angle.yaw)}\u00B0 pitch:${rad2deg(f.rotation.angle.pitch)}\u00B0`);\n if (f.rotation.gaze.bearing) labels.push(`gaze: ${rad2deg(f.rotation.gaze.bearing)}\u00B0`);\n }\n if (labels.length === 0) labels.push('face');\n ctx.fillStyle = localOptions.color;\n for (let i = labels.length - 1; i >= 0; i--) {\n const x = Math.max(f.box[0], 0);\n const y = i * localOptions.lineHeight + f.box[1];\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(labels[i], x + 5, y + 16);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(labels[i], x + 4, y + 15);\n }\n ctx.lineWidth = 1;\n if (f.mesh && f.mesh.length > 0) {\n if (localOptions.drawPoints) {\n for (const pt of f.mesh) point(ctx, pt[0], pt[1], pt[2], localOptions);\n // for (const pt of f.meshRaw) point(ctx, pt[0] * inCanvas.offsetWidth, pt[1] * inCanvas.offsetHeight, pt[2]);\n }\n if (localOptions.drawPolygons) {\n ctx.lineWidth = 1;\n for (let i = 0; i < triangulation.length / 3; i++) {\n const points = [\n triangulation[i * 3 + 0],\n triangulation[i * 3 + 1],\n triangulation[i * 3 + 2],\n ].map((index) => f.mesh[index]);\n lines(ctx, points, localOptions);\n }\n // iris: array[center, left, top, right, bottom]\n if (f.annotations && f.annotations['leftEyeIris']) {\n ctx.strokeStyle = localOptions.useDepth ? 'rgba(255, 200, 255, 0.3)' : localOptions.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations['leftEyeIris'][3][0] - f.annotations['leftEyeIris'][1][0]) / 2;\n const sizeY = Math.abs(f.annotations['leftEyeIris'][4][1] - f.annotations['leftEyeIris'][2][1]) / 2;\n ctx.ellipse(f.annotations['leftEyeIris'][0][0], f.annotations['leftEyeIris'][0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.fillStyle = localOptions.useDepth ? 'rgba(255, 255, 200, 0.3)' : localOptions.color;\n ctx.fill();\n }\n }\n if (f.annotations && f.annotations['rightEyeIris']) {\n ctx.strokeStyle = localOptions.useDepth ? 'rgba(255, 200, 255, 0.3)' : localOptions.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations['rightEyeIris'][3][0] - f.annotations['rightEyeIris'][1][0]) / 2;\n const sizeY = Math.abs(f.annotations['rightEyeIris'][4][1] - f.annotations['rightEyeIris'][2][1]) / 2;\n ctx.ellipse(f.annotations['rightEyeIris'][0][0], f.annotations['rightEyeIris'][0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.fillStyle = localOptions.useDepth ? 'rgba(255, 255, 200, 0.3)' : localOptions.color;\n ctx.fill();\n }\n }\n if (localOptions.drawGaze && f.rotation?.gaze?.strength && f.rotation?.gaze?.bearing && f.annotations['leftEyeIris'] && f.annotations['rightEyeIris'] && f.annotations['leftEyeIris'][0] && f.annotations['rightEyeIris'][0]) {\n ctx.strokeStyle = 'pink';\n ctx.beginPath();\n\n const leftGaze = [\n f.annotations['leftEyeIris'][0][0] + (Math.sin(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[3]),\n f.annotations['leftEyeIris'][0][1] + (Math.cos(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[2]),\n ];\n ctx.moveTo(f.annotations['leftEyeIris'][0][0], f.annotations['leftEyeIris'][0][1]);\n ctx.lineTo(leftGaze[0], leftGaze[1]);\n\n const rightGaze = [\n f.annotations['rightEyeIris'][0][0] + (Math.sin(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[3]),\n f.annotations['rightEyeIris'][0][1] + (Math.cos(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[2]),\n ];\n ctx.moveTo(f.annotations['rightEyeIris'][0][0], f.annotations['rightEyeIris'][0][1]);\n ctx.lineTo(rightGaze[0], rightGaze[1]);\n\n ctx.stroke();\n }\n }\n }\n }\n}\n\nexport async function body(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n for (let i = 0; i < result.length; i++) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n ctx.lineWidth = localOptions.lineWidth;\n ctx.font = localOptions.font;\n if (localOptions.drawBoxes && result[i].box && result[i].box?.length === 4) {\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n }\n if (localOptions.drawPoints) {\n for (let pt = 0; pt < result[i].keypoints.length; pt++) {\n ctx.fillStyle = localOptions.useDepth && result[i].keypoints[pt].position[2] ? `rgba(${127.5 + (2 * (result[i].keypoints[pt].position[2] || 0))}, ${127.5 - (2 * (result[i].keypoints[pt].position[2] || 0))}, 255, 0.5)` : localOptions.color;\n point(ctx, result[i].keypoints[pt].position[0], result[i].keypoints[pt].position[1], 0, localOptions);\n }\n }\n if (localOptions.drawLabels) {\n ctx.font = localOptions.font;\n if (result[i].keypoints) {\n for (const pt of result[i].keypoints) {\n ctx.fillStyle = localOptions.useDepth && pt.position[2] ? `rgba(${127.5 + (2 * pt.position[2])}, ${127.5 - (2 * pt.position[2])}, 255, 0.5)` : localOptions.color;\n ctx.fillText(`${pt.part} ${Math.trunc(100 * pt.score)}%`, pt.position[0] + 4, pt.position[1] + 4);\n }\n }\n }\n if (localOptions.drawPolygons && result[i].keypoints) {\n let part;\n const points: [number, number, number?][] = [];\n // shoulder line\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n curves(ctx, points, localOptions);\n // torso main\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightHip');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftHip');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n if (points.length === 4) lines(ctx, points, localOptions); // only draw if we have complete torso\n // leg left\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftHip');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftKnee');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftAnkle');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftHeel');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftFoot');\n if (part) points.push([part.position[0], part.position[1]]);\n curves(ctx, points, localOptions);\n // leg right\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightHip');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightKnee');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightAnkle');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightHeel');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightFoot');\n if (part) points.push([part.position[0], part.position[1]]);\n curves(ctx, points, localOptions);\n // arm left\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftElbow');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftWrist');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftPalm');\n if (part) points.push([part.position[0], part.position[1]]);\n curves(ctx, points, localOptions);\n // arm right\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightElbow');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightWrist');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightPalm');\n if (part) points.push([part.position[0], part.position[1]]);\n curves(ctx, points, localOptions);\n // draw all\n }\n }\n}\n\nexport async function hand(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText('hand', h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText('hand', h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.stroke();\n }\n if (localOptions.drawPoints) {\n if (h.keypoints && h.keypoints.length > 0) {\n for (const pt of h.keypoints) {\n ctx.fillStyle = localOptions.useDepth ? `rgba(${127.5 + (2 * pt[2])}, ${127.5 - (2 * pt[2])}, 255, 0.5)` : localOptions.color;\n point(ctx, pt[0], pt[1], 0, localOptions);\n }\n }\n }\n if (localOptions.drawLabels) {\n const addHandLabel = (part, title) => {\n ctx.fillStyle = localOptions.useDepth ? `rgba(${127.5 + (2 * part[part.length - 1][2])}, ${127.5 - (2 * part[part.length - 1][2])}, 255, 0.5)` : localOptions.color;\n ctx.fillText(title, part[part.length - 1][0] + 4, part[part.length - 1][1] + 4);\n };\n ctx.font = localOptions.font;\n addHandLabel(h.annotations['index'], 'index');\n addHandLabel(h.annotations['middle'], 'middle');\n addHandLabel(h.annotations['ring'], 'ring');\n addHandLabel(h.annotations['pinky'], 'pinky');\n addHandLabel(h.annotations['thumb'], 'thumb');\n addHandLabel(h.annotations['palm'], 'palm');\n }\n if (localOptions.drawPolygons) {\n const addHandLine = (part) => {\n if (!part) return;\n for (let i = 0; i < part.length; i++) {\n ctx.beginPath();\n ctx.strokeStyle = localOptions.useDepth ? `rgba(${127.5 + (2 * part[i][2])}, ${127.5 - (2 * part[i][2])}, 255, 0.5)` : localOptions.color;\n ctx.moveTo(part[i > 0 ? i - 1 : 0][0], part[i > 0 ? i - 1 : 0][1]);\n ctx.lineTo(part[i][0], part[i][1]);\n ctx.stroke();\n }\n };\n ctx.lineWidth = localOptions.lineWidth;\n addHandLine(h.annotations['index']);\n addHandLine(h.annotations['middle']);\n addHandLine(h.annotations['ring']);\n addHandLine(h.annotations['pinky']);\n addHandLine(h.annotations['thumb']);\n // addPart(h.annotations.palm);\n }\n }\n}\n\nexport async function object(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `${h.label} ${Math.round(100 * h.score)}%`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.stroke();\n }\n }\n}\n\nexport async function person(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n\n for (let i = 0; i < result.length; i++) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `person #${i}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.stroke();\n }\n }\n}\n\nexport async function canvas(inCanvas: HTMLCanvasElement, outCanvas: HTMLCanvasElement) {\n if (!inCanvas || !outCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement) || !(outCanvas instanceof HTMLCanvasElement)) return;\n const outCtx = inCanvas.getContext('2d');\n outCtx?.drawImage(inCanvas, 0, 0);\n}\n\nexport async function all(inCanvas: HTMLCanvasElement, result: Result, drawOptions?: DrawOptions) {\n const timestamp = now();\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return null;\n if (!(inCanvas instanceof HTMLCanvasElement)) return null;\n\n const promise = Promise.all([\n face(inCanvas, result.face, localOptions),\n body(inCanvas, result.body, localOptions),\n hand(inCanvas, result.hand, localOptions),\n object(inCanvas, result.object, localOptions),\n // person(inCanvas, result.persons, localOptions);\n gesture(inCanvas, result.gesture, localOptions), // gestures do not have buffering\n ]);\n /*\n if (!bufferedResult) bufferedResult = result; // first pass\n else if (localOptions.bufferedOutput) calcBuffered(result); // do results interpolation\n else bufferedResult = result; // or just use results as-is\n const promises: Promise[] = [];\n promises.push(face(inCanvas, bufferedResult.face, localOptions));\n promises.push(body(inCanvas, bufferedResult.body, localOptions));\n promises.push(hand(inCanvas, bufferedResult.hand, localOptions));\n promises.push(object(inCanvas, bufferedResult.object, localOptions));\n // promises.push(person(inCanvas, bufferedResult.persons, localOptions));\n promises.push(gesture(inCanvas, result.gesture, localOptions)); // gestures do not have buffering\n // await Promise.all(promises);\n */\n result.performance.draw = Math.trunc(now() - timestamp);\n return promise;\n}\n", "/**\n * Module that analyzes existing results and recombines them into a unified person object\n */\n\nimport { Face, Body, Hand, Gesture, Person } from './result';\n\nexport function join(faces: Array, bodies: Array, hands: Array, gestures: Array, shape: Array | undefined): Array {\n let id = 0;\n const persons: Array = [];\n for (const face of faces) { // person is defined primarily by face and then we append other objects as found\n const person: Person = { id: id++, face, body: null, hands: { left: null, right: null }, gestures: [], box: [0, 0, 0, 0] };\n for (const body of bodies) {\n if (face.box[0] > body.box[0] // x within body\n && face.box[0] < body.box[0] + body.box[2]\n && face.box[1] + face.box[3] > body.box[1] // y within body\n && face.box[1] + face.box[3] < body.box[1] + body.box[3]) {\n person.body = body;\n }\n }\n if (person.body) { // only try to join hands if body is found\n for (const hand of hands) {\n if (hand.box[0] + hand.box[2] > person.body.box[0] // x within body for left hand\n && hand.box[0] + hand.box[2] < person.body.box[0] + person.body.box[2]\n && hand.box[1] + hand.box[3] > person.body.box[1] // x within body for left hand\n && hand.box[1] + hand.box[3] < person.body.box[1] + person.body.box[3]) {\n if (person.hands) person.hands.left = hand;\n }\n if (hand.box[0] < person.body.box[0] + person.body.box[2] // x within body for right hand\n && hand.box[0] > person.body.box[0]\n && hand.box[1] + hand.box[3] > person.body.box[1] // x within body for right hand\n && hand.box[1] + hand.box[3] < person.body.box[1] + person.body.box[3]) {\n if (person.hands) person.hands.right = hand;\n }\n }\n }\n for (const gesture of gestures) { // append all gestures according to ids\n if (gesture['face'] !== undefined && gesture['face'] === face.id) person.gestures?.push(gesture);\n else if (gesture['iris'] !== undefined && gesture['iris'] === face.id) person.gestures?.push(gesture);\n else if (gesture['body'] !== undefined && gesture['body'] === person.body?.id) person.gestures?.push(gesture);\n else if (gesture['hand'] !== undefined && gesture['hand'] === person.hands?.left?.id) person.gestures?.push(gesture);\n else if (gesture['hand'] !== undefined && gesture['hand'] === person.hands?.right?.id) person.gestures?.push(gesture);\n }\n\n // create new overarching box from all boxes beloning to person\n const x: number[] = [];\n const y: number[] = [];\n const extractXY = (box: [number, number, number, number] | undefined) => { // extract all [x, y] coordinates from boxes [x, y, width, height]\n if (box && box.length === 4) {\n x.push(box[0], box[0] + box[2]);\n y.push(box[1], box[1] + box[3]);\n }\n };\n extractXY(person.face?.box);\n extractXY(person.body?.box);\n extractXY(person.hands?.left?.box);\n extractXY(person.hands?.right?.box);\n const minX = Math.min(...x);\n const minY = Math.min(...y);\n person.box = [minX, minY, Math.max(...x) - minX, Math.max(...y) - minY]; // create new overarching box\n\n // shape is known so we calculate boxRaw as well\n if (shape && shape[1] && shape[2]) person.boxRaw = [person.box[0] / shape[2], person.box[1] / shape[1], person.box[2] / shape[2], person.box[3] / shape[1]];\n\n persons.push(person);\n }\n return persons;\n}\n", "/**\n * Module that interpolates results for smoother animations\n */\n\nimport type { Result, Face, Body, Hand, Item, Gesture, Person } from './result';\n\nconst bufferedResult: Result = { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0 };\n\nexport function calc(newResult: Result): Result {\n if (!newResult) return { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0 };\n // each record is only updated using deep clone when number of detected record changes, otherwise it will converge by itself\n // otherwise bufferedResult is a shallow clone of result plus updated local calculated values\n // thus mixing by-reference and by-value assignments to minimize memory operations\n\n const elapsed = Date.now() - newResult.timestamp;\n // curve fitted: buffer = 8 - ln(delay)\n // interpolation formula: current = ((buffer - 1) * previous + live) / buffer\n // - at 50ms delay buffer = ~4.1 => 28% towards live data\n // - at 250ms delay buffer = ~2.5 => 40% towards live data\n // - at 500ms delay buffer = ~1.8 => 55% towards live data\n // - at 750ms delay buffer = ~1.4 => 71% towards live data\n // - at 1sec delay buffer = 1 which means live data is used\n const bufferedFactor = elapsed < 1000 ? 8 - Math.log(elapsed + 1) : 1;\n\n bufferedResult.canvas = newResult.canvas;\n\n // interpolate body results\n if (!bufferedResult.body || (newResult.body.length !== bufferedResult.body.length)) {\n bufferedResult.body = JSON.parse(JSON.stringify(newResult.body as Body[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.body.length; i++) {\n const box = newResult.body[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.body[i].box[j] + b) / bufferedFactor) as [number, number, number, number];\n const boxRaw = newResult.body[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.body[i].boxRaw[j] + b) / bufferedFactor) as [number, number, number, number];\n const keypoints = (newResult.body[i].keypoints // update keypoints\n .map((keypoint, j) => ({\n score: keypoint.score,\n part: keypoint.part,\n position: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * bufferedResult.body[i].keypoints[j].position[0] + keypoint.position[0]) / bufferedFactor : keypoint.position[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * bufferedResult.body[i].keypoints[j].position[1] + keypoint.position[1]) / bufferedFactor : keypoint.position[1],\n ],\n positionRaw: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * bufferedResult.body[i].keypoints[j].positionRaw[0] + keypoint.positionRaw[0]) / bufferedFactor : keypoint.position[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * bufferedResult.body[i].keypoints[j].positionRaw[1] + keypoint.positionRaw[1]) / bufferedFactor : keypoint.position[1],\n ],\n }))) as Array<{ score: number, part: string, position: [number, number, number?], positionRaw: [number, number, number?] }>;\n bufferedResult.body[i] = { ...newResult.body[i], box, boxRaw, keypoints }; // shallow clone plus updated values\n }\n }\n\n // interpolate hand results\n if (!bufferedResult.hand || (newResult.hand.length !== bufferedResult.hand.length)) {\n bufferedResult.hand = JSON.parse(JSON.stringify(newResult.hand as Hand[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.hand.length; i++) {\n const box = (newResult.hand[i].box// update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].box[j] + b) / bufferedFactor)) as [number, number, number, number];\n const boxRaw = (newResult.hand[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].boxRaw[j] + b) / bufferedFactor)) as [number, number, number, number];\n const keypoints = newResult.hand[i].keypoints // update landmarks\n .map((landmark, j) => landmark\n .map((coord, k) => (((bufferedFactor - 1) * bufferedResult.hand[i].keypoints[j][k] + coord) / bufferedFactor)) as [number, number, number]);\n const keys = Object.keys(newResult.hand[i].annotations); // update annotations\n const annotations = {};\n for (const key of keys) {\n annotations[key] = newResult.hand[i].annotations[key]\n .map((val, j) => val.map((coord, k) => ((bufferedFactor - 1) * bufferedResult.hand[i].annotations[key][j][k] + coord) / bufferedFactor));\n }\n bufferedResult.hand[i] = { ...newResult.hand[i], box, boxRaw, keypoints, annotations: annotations as Hand['annotations'] }; // shallow clone plus updated values\n }\n }\n\n // interpolate face results\n if (!bufferedResult.face || (newResult.face.length !== bufferedResult.face.length)) {\n bufferedResult.face = JSON.parse(JSON.stringify(newResult.face as Face[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.face.length; i++) {\n const box = (newResult.face[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].box[j] + b) / bufferedFactor)) as [number, number, number, number];\n const boxRaw = (newResult.face[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].boxRaw[j] + b) / bufferedFactor)) as [number, number, number, number];\n const rotation: {\n matrix: [number, number, number, number, number, number, number, number, number],\n angle: { roll: number, yaw: number, pitch: number },\n gaze: { bearing: number, strength: number }\n } = { matrix: [0, 0, 0, 0, 0, 0, 0, 0, 0], angle: { roll: 0, yaw: 0, pitch: 0 }, gaze: { bearing: 0, strength: 0 } };\n rotation.matrix = newResult.face[i].rotation?.matrix as [number, number, number, number, number, number, number, number, number];\n rotation.angle = {\n roll: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle?.roll || 0) + (newResult.face[i].rotation?.angle?.roll || 0)) / bufferedFactor,\n yaw: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle?.yaw || 0) + (newResult.face[i].rotation?.angle?.yaw || 0)) / bufferedFactor,\n pitch: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle?.pitch || 0) + (newResult.face[i].rotation?.angle?.pitch || 0)) / bufferedFactor,\n };\n rotation.gaze = {\n // not fully correct due projection on circle, also causes wrap-around draw on jump from negative to positive\n bearing: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.gaze?.bearing || 0) + (newResult.face[i].rotation?.gaze?.bearing || 0)) / bufferedFactor,\n strength: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.gaze?.strength || 0) + (newResult.face[i].rotation?.gaze?.strength || 0)) / bufferedFactor,\n };\n bufferedResult.face[i] = { ...newResult.face[i], rotation, box, boxRaw }; // shallow clone plus updated values\n }\n }\n\n // interpolate object detection results\n if (!bufferedResult.object || (newResult.object.length !== bufferedResult.object.length)) {\n bufferedResult.object = JSON.parse(JSON.stringify(newResult.object as Item[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.object.length; i++) {\n const box = (newResult.object[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].box[j] + b) / bufferedFactor)) as [number, number, number, number];\n const boxRaw = (newResult.object[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].boxRaw[j] + b) / bufferedFactor)) as [number, number, number, number];\n bufferedResult.object[i] = { ...newResult.object[i], box, boxRaw }; // shallow clone plus updated values\n }\n }\n\n // interpolate person results\n if (newResult.persons) {\n const newPersons = newResult.persons; // trigger getter function\n if (!bufferedResult.persons || (newPersons.length !== bufferedResult.persons.length)) {\n bufferedResult.persons = JSON.parse(JSON.stringify(newPersons as Person[]));\n } else {\n for (let i = 0; i < newPersons.length; i++) { // update person box, we don't update the rest as it's updated as reference anyhow\n bufferedResult.persons[i].box = (newPersons[i].box\n .map((box, j) => ((bufferedFactor - 1) * bufferedResult.persons[i].box[j] + box) / bufferedFactor)) as [number, number, number, number];\n }\n }\n }\n\n // just copy latest gestures without interpolation\n if (newResult.gesture) bufferedResult.gesture = newResult.gesture as Gesture[];\n if (newResult.performance) bufferedResult.performance = newResult.performance;\n\n return bufferedResult;\n}\n", "/**\n * Embedded sample images used during warmup in dataURL format\n */\n\n// data:image/jpeg;base64,\nexport const face = `\n/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA\nAAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu\nbmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob\nIxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo\nKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E\nAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE\nEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH\nSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1\ntre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB\nAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET\nIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla\nY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG\nx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML\nXp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF\nPUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/\nAJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z\n5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9\nzZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO\ntHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6\n8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W\nwA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk\nEtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6\nGhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT\nA7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep\nrBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb\nLCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ\nih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K\nKAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l\npBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x\nUqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4\nHaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr\nxL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS\nNO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD\n1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX\n+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3\nGBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K\nq4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0\nnhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm\nuic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH\nArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV\nwF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8\n87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P\nFQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD\nYNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv\nJmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ\nQmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el\nUJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681\nly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly\nCK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc\nUDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF\n63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x\nXY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2\nZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk\nXb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK\ncBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef\neNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4\n/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5\nrl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru\n/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A\nzviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO\nI4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1\njfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ\nGRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG\ncZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb\nWmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis\nZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH\nckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi\nlbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO\nxuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK\nJtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX\nPaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c\nW0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t\nC6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk\n4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn\nxHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW\nvHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi\nqr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV\nhamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F\nj4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6\nwqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm\noy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ\nk7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg\nnQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP\n1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1\nH1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ\n1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx\nzSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt\nfFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp\nOxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj\nVtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy\nrFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe\n5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D\nd/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69\nMlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ\nFbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ\nMA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP\nByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn\n0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU\nyOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is\npNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz\nTSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu\nuCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem\ngGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk\nHvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy\ns9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu\nm6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb\n0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz\n9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN\nDNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n\nR6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk\nnmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu\n6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd\n9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb\nSms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S\nMSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz\nFEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8\nVSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx\nY0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ\nmupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+\n5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh\n05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd\nua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ\n5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR\nMqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8\n1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4\nB9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag\nBc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA\n3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn\n3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx\n1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU\ntzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6\nf3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA\nbvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ\nzyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup\n6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM\n350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0\n/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a\nYfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ\nagBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO\nmAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl\nmOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR\nnqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo\nEPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt\n4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ\nScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p\niMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj\nPQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l\nc6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1\n8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3\nylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY\neuPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`;\n\n// data:image/jpeg;base64,\nexport const body = `\n/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk\nJyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF\nRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA\nAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA\nAQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA\nAAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA\nAhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj\n+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt\nFh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR\nPLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl\nmZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp\n+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa\nzhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D\nh1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2\nex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67\nd4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y\nRv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP\nLd3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC\nvy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi\neSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/\nMx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+\nr3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO\nO0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s\ntfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN\nTmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc\n0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj\nq83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w\n+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s\nd8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t\ncI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4\nYibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe\nbzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi\nKxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6\nrNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ\n9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf\nJvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V\nbxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q\nVbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM\nlorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/\n/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme\nE4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv\nfauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6\njkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN\n+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk\nRvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK\ncGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop\nyW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn\nE8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX\n12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW\niI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS\nRWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf\n0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx\nDS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL\nG8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK\nxC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ\na9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4\nZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6\ntvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+\nfJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE\nerk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR\nMd5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9\nlcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD\nj8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV\n5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt\nCu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/\n+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c\nvUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p\njrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0\n77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP\nSel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8\n5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe\nY0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R\nHwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV\nrWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU\nz7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8\nto6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X\ny8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt\nstcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/\nw9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT\nDpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l\nXV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t\nydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS\n34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX\ne09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn\n26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf\n3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q\n6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P\nNbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO\nyZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN\n3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8\n2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h\ndqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx\nkr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t\nDHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb\neFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc\n1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka\nc258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE\nxEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu\ns5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK\n0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9\ndM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt\nPXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T\nMd/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T\nadq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b\nSVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt\npdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm\nvfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr\nEejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N\nvwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh\nZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I\ntkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW\nd43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe\nN4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218\n8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG\nPNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY\nV1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw\nw18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT\nEx5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1\naxqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/\ntDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I\nmbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe\nXRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1\nizjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2\ncrFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4\nOadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2\nr8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx\nzc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz\n+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v\nMevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu\nryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095\nYZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE\n9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8\nmNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O\nuSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O\nfft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6\nOlty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT\nuTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3\n6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1\nMb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF\nfeH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq\nxVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v\ned7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ\nmtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz\nmWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP\nB39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0\n5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1\nmkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt\nmxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO\n1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq\nZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q\nky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7\nROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK\nGEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i\ntMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T\n+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+\nO8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO\nesd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es\nvPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz\nXV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1\n+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY\n36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL\nq555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY\n3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz\np7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr\n1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV\nxUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt\npCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS\nfP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH\nmMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z\n1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+\nn3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d\nMRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df\nzXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl\nJ2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs\nzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH\nDpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ\ndHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR\ntER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j\nadmFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC\nb2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X\nqdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh\nydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O\n8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L\nT7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0\nZa1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr\nvNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer\nrWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL\noNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq\nj/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh\nodZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8\n8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1\nlNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+\noza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL\nknU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK\nEtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N\nmtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm\n9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N\nIpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W\nMYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2\n+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql\no+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37\nO99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE\nTE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1\nL7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4\nizsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt\n1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb\nV5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum\nL37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12\nCvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE\nebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo\nGvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu\nL8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh\n5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3\n6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9\nXO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM\nfeKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj\nSZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF\nXaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr\n79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h\nyeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT\nOC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223\n2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt\nadohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y\ncnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX\nDpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p\n7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso\nS24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l\nbPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe\nvVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG\nH6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7\nx3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz\n5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY\nq+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn\nvLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2\nIjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK\nz0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ\nYYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON\nZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW\nekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf\ncjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c\nbiuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO\nCkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw\ny1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi\nQXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E\nbL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r\ntv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t\nLRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP\nRqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm\ns7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el\nXX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1\nvK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq\nqrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v\nVYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0\nZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q\nmT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm\n6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG\nf63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo\ndPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22\ngtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M\nMoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb\nc2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX\n6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn\n1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK\nfOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ\nEqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u\n7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT\nqPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa\nS2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf\nLp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU\nIiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O\n8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c\nvU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx\n5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V\nKTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm\n2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu\nj8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB\nTTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9\nRUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL\nCWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA\nAAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8\ncTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj\nqKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF\n0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK\nZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK\n66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu\nXT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9\nXOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN\nM2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv\nVrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK\n7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI\n3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m\nXY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m\n1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A\nJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC\nEgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9\n8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL\nOrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H\nM+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA\nTsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8\nelpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp\nBjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS\nCRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r\nrcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY\njbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW\nUsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB\nKUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb\nSz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL\n+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v\nT471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM\nsfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj\nFontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl\n5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q\n7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv\n6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa\n0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/\nAOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM\nd8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5\n6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP\nbFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu\nLJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy\nwt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX\n0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK\n3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn\nKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0\nvobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t\nzya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps\nuOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi\nFdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2\nO3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z\naK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz\n0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb\nT/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l\nqMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t\ntrJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn\nmvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa\neq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe\nPwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of\nTdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O\n1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG\nf/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi\n0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY\n5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc\nV2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L\n/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM\nt/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd\nVknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD\nKLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R\nfwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3\nVxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ\nDJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ\n3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv\nx7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD\nweqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI\n6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew\nPnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk\nj3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm\nOqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/\nAKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez\nN9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ\n92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp\n+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue\nV9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv\navHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0\nvQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP\n8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt\nn1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw\nnUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3\n7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P\n0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U\nx8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG\n0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L\nfaQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ\nQKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA\nBAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A\ntLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv\n9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr\njn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm\nb7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB\nACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk\ndEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1\nrMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+\nx+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA\nAAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr\nYvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4\n5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V\nkK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg\nBIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA\nAAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g\nWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx\nOEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2\nH/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF\n+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V\nh6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA\nEgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu\nZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml\nHMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl\nn0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN\n3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi\n/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00\n+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC\nUACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2\nM2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp\n5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn\nN1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS\nOjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL\n/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo\nstLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3\nGyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA\nAAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4\nqmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy\nWEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a\nfJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI\nrTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2\nrz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc\n3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3\nTur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA\nAAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx\nskA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F\no7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx\nNO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h\n2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te\npSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7\ncvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7\nmZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA\nAAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA\nhGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J\nqx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI\nXRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy\nRHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX\nqNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX\nkaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P\nya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC\nExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA\nlAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA\nAAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o\nb9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP\ny6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae\nkzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu\n9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ\nk7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1\n8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp\nDXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh\nnyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ\nAAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA\nAAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO\nyvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5\nPM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii\nIpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r\nO3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE\nyTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX\n6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2\nJgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS\nAAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA\nAAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx\nWa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI\n6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5\nK2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7\nVv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id\nPW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ\n2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4\neF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7\npiVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR\nACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ\nJQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i\nUiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61\nrZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq\nZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2\nf0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO\nIjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts\nbAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA\nAAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA\nBAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2\nSbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T\nlBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/\n2Q==`;\n", "/**\n * Human main module\n */\n\nimport { log, now, mergeDeep } from './helpers';\nimport { Config, defaults } from './config';\nimport { Result, Face, Hand, Body, Item, Gesture } from './result';\nimport * as sysinfo from './sysinfo';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as backend from './tfjs/backend';\nimport * as models from './models';\nimport * as face from './face';\nimport * as facemesh from './blazeface/facemesh';\nimport * as faceres from './faceres/faceres';\nimport * as posenet from './posenet/posenet';\nimport * as handpose from './handpose/handpose';\nimport * as blazepose from './blazepose/blazepose';\nimport * as efficientpose from './efficientpose/efficientpose';\nimport * as movenet from './movenet/movenet';\nimport * as nanodet from './object/nanodet';\nimport * as centernet from './object/centernet';\nimport * as segmentation from './segmentation/segmentation';\nimport * as gesture from './gesture/gesture';\nimport * as image from './image/image';\nimport * as draw from './draw/draw';\nimport * as persons from './persons';\nimport * as interpolate from './interpolate';\nimport * as sample from './sample';\nimport * as app from '../package.json';\nimport { Tensor, GraphModel } from './tfjs/types';\n\n// export types\nexport type { Config } from './config';\nexport type { Result, Face, Hand, Body, Item, Gesture, Person } from './result';\nexport type { DrawOptions } from './draw/draw';\n\n/** Defines all possible input types for **Human** detection\n * @typedef Input Type\n */\nexport type Input = Tensor | typeof Image | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas;\n\n/** Error message\n * @typedef Error Type\n */\nexport type Error = { error: string };\n\n/** Instance of TensorFlow/JS\n * @external\n */\nexport type TensorFlow = typeof tf;\n\n/**\n * **Human** library main class\n *\n * All methods and properties are available only as members of Human class\n *\n * - Configuration object definition: {@link Config}\n * - Results object definition: {@link Result}\n * - Possible inputs: {@link Input}\n *\n * @param userConfig: {@link Config}\n */\nexport class Human {\n /** Current version of Human library in *semver* format */\n version: string;\n /** Current configuration\n * - Details: {@link Config}\n */\n config: Config;\n /** Last known result of detect run\n * - Can be accessed anytime after initial detection\n */\n result: Result;\n /** Current state of Human library\n * - Can be polled to determine operations that are currently executed\n * - Progresses through: 'config', 'check', 'backend', 'load', 'run:', 'idle'\n */\n state: string;\n /** @internal: Instance of current image being processed */\n image: { tensor: Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement | null };\n /** @internal: Instance of TensorFlow/JS used by Human\n * - Can be embedded or externally provided\n */\n tf: TensorFlow;\n /** Draw helper classes that can draw detected objects on canvas using specified draw\n * - options: {@link DrawOptions} global settings for all draw operations, can be overriden for each draw method\n * - face: draw detected faces\n * - body: draw detected people and body parts\n * - hand: draw detected hands and hand parts\n * - canvas: draw processed canvas which is a processed copy of the input\n * - all: meta-function that performs: canvas, face, body, hand\n */\n draw: {\n options: draw.DrawOptions,\n gesture: typeof draw.gesture,\n face: typeof draw.face,\n body: typeof draw.body,\n hand: typeof draw.hand,\n canvas: typeof draw.canvas,\n all: typeof draw.all,\n };\n /** Types used by Human */\n static Config: Config;\n static Result: Result;\n static Face: Face;\n static Hand: Hand;\n static Body: Body;\n static Item: Item;\n static Gesture: Gesture;\n static Person: Gesture\n static DrawOptions: draw.DrawOptions;\n /** @internal: Currently loaded models */\n models: {\n face: [unknown, GraphModel | null, GraphModel | null] | null,\n posenet: GraphModel | null,\n blazepose: GraphModel | null,\n efficientpose: GraphModel | null,\n movenet: GraphModel | null,\n handpose: [GraphModel | null, GraphModel | null] | null,\n age: GraphModel | null,\n gender: GraphModel | null,\n emotion: GraphModel | null,\n embedding: GraphModel | null,\n nanodet: GraphModel | null,\n centernet: GraphModel | null,\n faceres: GraphModel | null,\n segmentation: GraphModel | null,\n };\n /** Reference face triangualtion array of 468 points, used for triangle references between points */\n faceTriangulation: typeof facemesh.triangulation;\n /** Refernce UV map of 468 values, used for 3D mapping of the face mesh */\n faceUVMap: typeof facemesh.uvmap;\n /** Platform and agent information detected by Human */\n sysinfo: { platform: string, agent: string };\n /** Performance object that contains values for all recently performed operations */\n performance: Record; // perf members are dynamically defined as needed\n #numTensors: number;\n #analyzeMemoryLeaks: boolean;\n #checkSanity: boolean;\n #firstRun: boolean;\n #lastInputSum: number;\n #lastCacheDiff: number;\n\n // definition end\n\n /**\n * Creates instance of Human library that is futher used for all operations\n * @param userConfig: {@link Config}\n */\n constructor(userConfig?: Config | Record) {\n this.config = mergeDeep(defaults, userConfig || {});\n this.tf = tf;\n this.draw = draw;\n this.version = app.version;\n this.state = 'idle';\n this.#numTensors = 0;\n this.#analyzeMemoryLeaks = false;\n this.#checkSanity = false;\n this.#firstRun = true;\n this.#lastCacheDiff = 0;\n this.performance = { backend: 0, load: 0, image: 0, frames: 0, cached: 0, changed: 0, total: 0, draw: 0 };\n // object that contains all initialized models\n this.models = {\n face: null,\n posenet: null,\n blazepose: null,\n efficientpose: null,\n movenet: null,\n handpose: null,\n age: null,\n gender: null,\n emotion: null,\n embedding: null,\n nanodet: null,\n centernet: null,\n faceres: null,\n segmentation: null,\n };\n this.result = { face: [], body: [], hand: [], gesture: [], object: [], performance: {}, timestamp: 0, persons: [] };\n // export access to image processing\n // @ts-ignore eslint-typescript cannot correctly infer type in anonymous function\n this.image = (input: Input) => image.process(input, this.config);\n // export raw access to underlying models\n this.faceTriangulation = facemesh.triangulation;\n this.faceUVMap = facemesh.uvmap;\n // include platform info\n this.sysinfo = sysinfo.info();\n this.#lastInputSum = 1;\n }\n\n // helper function: measure tensor leak\n /** @hidden */\n analyze = (...msg: string[]) => {\n if (!this.#analyzeMemoryLeaks) return;\n const currentTensors = this.tf.engine().state.numTensors;\n const previousTensors = this.#numTensors;\n this.#numTensors = currentTensors;\n const leaked = currentTensors - previousTensors;\n if (leaked !== 0) log(...msg, leaked);\n }\n\n // quick sanity check on inputs\n /** @hidden */\n #sanity = (input: Input): null | string => {\n if (!this.#checkSanity) return null;\n if (!input) return 'input is not defined';\n if (this.tf.ENV.flags.IS_NODE && !(input instanceof tf.Tensor)) return 'input must be a tensor';\n try {\n this.tf.getBackend();\n } catch {\n return 'backend not loaded';\n }\n return null;\n }\n\n /** Simmilarity method calculates simmilarity between two provided face descriptors (face embeddings)\n * - Calculation is based on normalized Minkowski distance between\n *\n * @param embedding1: face descriptor as array of numbers\n * @param embedding2: face descriptor as array of numbers\n * @returns similarity: number\n */\n // eslint-disable-next-line class-methods-use-this\n similarity(embedding1: Array, embedding2: Array): number {\n return faceres.similarity(embedding1, embedding2);\n }\n\n /**\n * Segmentation method takes any input and returns processed canvas with body segmentation\n * Optional parameter background is used to fill the background with specific input\n * Segmentation is not triggered as part of detect process\n *\n * @param input: {@link Input}\n * @param background?: {@link Input}\n * @returns Canvas\n */\n segmentation(input: Input, background?: Input) {\n return segmentation.process(input, background, this.config);\n }\n\n /** Enhance method performs additional enhacements to face image previously detected for futher processing\n * @param input: Tensor as provided in human.result.face[n].tensor\n * @returns Tensor\n */\n // eslint-disable-next-line class-methods-use-this\n enhance(input: Tensor): Tensor | null {\n return faceres.enhance(input);\n }\n\n /** Math method find best match between provided face descriptor and predefined database of known descriptors\n * @param faceEmbedding: face descriptor previsouly calculated on any face\n * @param db: array of mapping of face descriptors to known values\n * @param threshold: minimum score for matching to be considered in the result\n * @returns best match\n */\n // eslint-disable-next-line class-methods-use-this\n match(faceEmbedding: Array, db: Array<{ name: string, source: string, embedding: number[] }>, threshold = 0): { name: string, source: string, similarity: number, embedding: number[] } {\n return faceres.match(faceEmbedding, db, threshold);\n }\n\n /** Load method preloads all configured models on-demand\n * - Not explicitly required as any required model is load implicitly on it's first run\n * @param userConfig?: {@link Config}\n */\n async load(userConfig?: Config | Record) {\n this.state = 'load';\n const timeStamp = now();\n if (userConfig) this.config = mergeDeep(this.config, userConfig) as Config;\n\n if (this.#firstRun) { // print version info on first run and check for correct backend setup\n if (this.config.debug) log(`version: ${this.version}`);\n if (this.config.debug) log(`tfjs version: ${this.tf.version_core}`);\n if (this.config.debug) log('platform:', this.sysinfo.platform);\n if (this.config.debug) log('agent:', this.sysinfo.agent);\n\n await this.#checkBackend(true);\n if (this.tf.ENV.flags.IS_BROWSER) {\n if (this.config.debug) log('configuration:', this.config);\n if (this.config.debug) log('tf flags:', this.tf.ENV.flags);\n }\n }\n\n await models.load(this); // actually loads models\n\n if (this.#firstRun) { // print memory stats on first run\n if (this.config.debug) log('tf engine state:', this.tf.engine().state.numBytes, 'bytes', this.tf.engine().state.numTensors, 'tensors');\n this.#firstRun = false;\n }\n\n const current = Math.trunc(now() - timeStamp);\n if (current > (this.performance.load as number || 0)) this.performance.load = current;\n }\n\n // check if backend needs initialization if it changed\n /** @hidden */\n #checkBackend = async (force = false) => {\n if (this.config.backend && (this.config.backend.length > 0) && force || (this.tf.getBackend() !== this.config.backend)) {\n const timeStamp = now();\n this.state = 'backend';\n /* force backend reload\n if (this.config.backend in tf.engine().registry) {\n const backendFactory = tf.findBackendFactory(this.config.backend);\n tf.removeBackend(this.config.backend);\n tf.registerBackend(this.config.backend, backendFactory);\n } else {\n log('Backend not registred:', this.config.backend);\n }\n */\n\n if (this.config.backend && this.config.backend.length > 0) {\n // detect web worker\n // @ts-ignore ignore missing type for WorkerGlobalScope as that is the point\n if (typeof window === 'undefined' && typeof WorkerGlobalScope !== 'undefined' && this.config.debug) {\n log('running inside web worker');\n }\n\n // force browser vs node backend\n if (this.tf.ENV.flags.IS_BROWSER && this.config.backend === 'tensorflow') {\n log('override: backend set to tensorflow while running in browser');\n this.config.backend = 'humangl';\n }\n if (this.tf.ENV.flags.IS_NODE && (this.config.backend === 'webgl' || this.config.backend === 'humangl')) {\n log('override: backend set to webgl while running in nodejs');\n this.config.backend = 'tensorflow';\n }\n\n // handle webgpu\n if (this.tf.ENV.flags.IS_BROWSER && this.config.backend === 'webgpu') {\n if (typeof navigator === 'undefined' || typeof navigator['gpu'] === 'undefined') {\n log('override: backend set to webgpu but browser does not support webgpu');\n this.config.backend = 'humangl';\n } else {\n const adapter = await navigator['gpu'].requestAdapter();\n if (this.config.debug) log('enumerated webgpu adapter:', adapter);\n }\n }\n\n // check available backends\n if (this.config.backend === 'humangl') backend.register();\n const available = Object.keys(this.tf.engine().registryFactory);\n if (this.config.debug) log('available backends:', available);\n\n if (!available.includes(this.config.backend)) {\n log(`error: backend ${this.config.backend} not found in registry`);\n this.config.backend = this.tf.ENV.flags.IS_NODE ? 'tensorflow' : 'humangl';\n log(`override: using backend ${this.config.backend} instead`);\n }\n\n if (this.config.debug) log('setting backend:', this.config.backend);\n\n // handle wasm\n if (this.config.backend === 'wasm') {\n if (this.config.debug) log('wasm path:', this.config.wasmPath);\n if (typeof this.tf?.setWasmPaths !== 'undefined') this.tf.setWasmPaths(this.config.wasmPath);\n else throw new Error('Human: WASM backend is not loaded');\n const simd = await this.tf.env().getAsync('WASM_HAS_SIMD_SUPPORT');\n const mt = await this.tf.env().getAsync('WASM_HAS_MULTITHREAD_SUPPORT');\n if (this.config.debug) log(`wasm execution: ${simd ? 'SIMD' : 'no SIMD'} ${mt ? 'multithreaded' : 'singlethreaded'}`);\n if (this.config.debug && !simd) log('warning: wasm simd support is not enabled');\n }\n\n // handle humangl\n try {\n await this.tf.setBackend(this.config.backend);\n } catch (err) {\n log('error: cannot set backend:', this.config.backend, err);\n }\n }\n\n // handle webgl & humangl\n if (this.tf.getBackend() === 'webgl' || this.tf.getBackend() === 'humangl') {\n this.tf.ENV.set('CHECK_COMPUTATION_FOR_ERRORS', false);\n this.tf.ENV.set('WEBGL_CPU_FORWARD', true);\n this.tf.ENV.set('WEBGL_PACK_DEPTHWISECONV', false);\n this.tf.ENV.set('WEBGL_USE_SHAPES_UNIFORMS', true);\n // if (!this.config.object.enabled) this.tf.ENV.set('WEBGL_FORCE_F16_TEXTURES', true); // safe to use 16bit precision\n if (typeof this.config['deallocate'] !== 'undefined' && this.config['deallocate']) { // hidden param\n log('changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:', true);\n this.tf.ENV.set('WEBGL_DELETE_TEXTURE_THRESHOLD', 0);\n }\n // @ts-ignore getGPGPUContext only exists on WebGL backend\n const gl = await this.tf.backend().getGPGPUContext().gl;\n if (this.config.debug) log(`gl version:${gl.getParameter(gl.VERSION)} renderer:${gl.getParameter(gl.RENDERER)}`);\n }\n\n // wait for ready\n this.tf.enableProdMode();\n await this.tf.ready();\n this.performance.backend = Math.trunc(now() - timeStamp);\n }\n }\n\n /**\n * Runs interpolation using last known result and returns smoothened result\n * Interpolation is based on time since last known result so can be called independently\n *\n * @param result?: {@link Result} optional use specific result set to run interpolation on\n * @returns result: {@link Result}\n */\n next = (result?: Result) => interpolate.calc(result || this.result) as Result;\n\n // check if input changed sufficiently to trigger new detections\n /** @hidden */\n #skipFrame = async (input: Tensor) => {\n if (this.config.cacheSensitivity === 0) return false;\n const resizeFact = 32;\n if (!input.shape[1] || !input.shape[2]) return false;\n const reduced: Tensor = tf.image.resizeBilinear(input, [Math.trunc(input.shape[1] / resizeFact), Math.trunc(input.shape[2] / resizeFact)]);\n // use tensor sum\n /*\n const sumT = this.tf.sum(reduced);\n const sum = await sumT.data()[0] as number;\n sumT.dispose();\n */\n // use js loop sum, faster than uploading tensor to gpu calculating and downloading back\n const reducedData = await reduced.data(); // raw image rgb array\n let sum = 0;\n for (let i = 0; i < reducedData.length / 3; i++) sum += reducedData[3 * i + 2]; // look only at green value of each pixel\n\n reduced.dispose();\n const diff = 100 * (Math.max(sum, this.#lastInputSum) / Math.min(sum, this.#lastInputSum) - 1);\n this.#lastInputSum = sum;\n // if previous frame was skipped, skip this frame if changed more than cacheSensitivity\n // if previous frame was not skipped, then look for cacheSensitivity or difference larger than one in previous frame to avoid resetting cache in subsequent frames unnecessarily\n const skipFrame = diff < Math.max(this.config.cacheSensitivity, this.#lastCacheDiff);\n // if difference is above 10x threshold, don't use last value to force reset cache for significant change of scenes or images\n this.#lastCacheDiff = diff > 10 * this.config.cacheSensitivity ? 0 : diff;\n return skipFrame;\n }\n\n /** Main detection method\n * - Analyze configuration: {@link Config}\n * - Pre-process input: {@link Input}\n * - Run inference for all configured models\n * - Process and return result: {@link Result}\n *\n * @param input: Input\n * @param userConfig?: {@link Config}\n * @returns result: {@link Result}\n */\n async detect(input: Input, userConfig?: Config | Record): Promise {\n // detection happens inside a promise\n return new Promise(async (resolve) => {\n this.state = 'config';\n let timeStamp;\n let elapsedTime;\n\n // update configuration\n this.config = mergeDeep(this.config, userConfig) as Config;\n\n // sanity checks\n this.state = 'check';\n const error = this.#sanity(input);\n if (error) {\n log(error, input);\n resolve({ error });\n }\n\n const timeStart = now();\n\n // configure backend\n await this.#checkBackend();\n\n // load models if enabled\n await this.load();\n\n timeStamp = now();\n let process = image.process(input, this.config);\n this.performance.image = Math.trunc(now() - timeStamp);\n this.analyze('Get Image:');\n\n // run segmentation preprocessing\n if (this.config.segmentation.enabled && process && process.tensor) {\n this.analyze('Start Segmentation:');\n this.state = 'run:segmentation';\n timeStamp = now();\n await segmentation.predict(process);\n elapsedTime = Math.trunc(now() - timeStamp);\n if (elapsedTime > 0) this.performance.segmentation = elapsedTime;\n if (process.canvas) {\n // replace input\n tf.dispose(process.tensor);\n process = image.process(process.canvas, this.config);\n }\n this.analyze('End Segmentation:');\n }\n\n if (!process || !process.tensor) {\n log('could not convert input to tensor');\n resolve({ error: 'could not convert input to tensor' });\n return;\n }\n\n timeStamp = now();\n this.config.skipFrame = await this.#skipFrame(process.tensor);\n if (!this.performance.frames) this.performance.frames = 0;\n if (!this.performance.cached) this.performance.cached = 0;\n (this.performance.frames as number)++;\n if (this.config.skipFrame) this.performance.cached++;\n this.performance.changed = Math.trunc(now() - timeStamp);\n this.analyze('Check Changed:');\n\n // prepare where to store model results\n // keep them with weak typing as it can be promise or not\n let faceRes: Face[] | Promise | never[] = [];\n let bodyRes: Body[] | Promise | never[] = [];\n let handRes: Hand[] | Promise | never[] = [];\n let objectRes: Item[] | Promise | never[] = [];\n\n // run face detection followed by all models that rely on face bounding box: face mesh, age, gender, emotion\n if (this.config.async) {\n faceRes = this.config.face.enabled ? face.detectFace(this, process.tensor) : [];\n if (this.performance.face) delete this.performance.face;\n } else {\n this.state = 'run:face';\n timeStamp = now();\n faceRes = this.config.face.enabled ? await face.detectFace(this, process.tensor) : [];\n elapsedTime = Math.trunc(now() - timeStamp);\n if (elapsedTime > 0) this.performance.face = elapsedTime;\n }\n\n // run body: can be posenet, blazepose, efficientpose, movenet\n this.analyze('Start Body:');\n if (this.config.async) {\n if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? posenet.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? blazepose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? efficientpose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('movenet')) bodyRes = this.config.body.enabled ? movenet.predict(process.tensor, this.config) : [];\n if (this.performance.body) delete this.performance.body;\n } else {\n this.state = 'run:body';\n timeStamp = now();\n if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? await posenet.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? await blazepose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? await efficientpose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('movenet')) bodyRes = this.config.body.enabled ? await movenet.predict(process.tensor, this.config) : [];\n elapsedTime = Math.trunc(now() - timeStamp);\n if (elapsedTime > 0) this.performance.body = elapsedTime;\n }\n this.analyze('End Body:');\n\n // run handpose\n this.analyze('Start Hand:');\n if (this.config.async) {\n handRes = this.config.hand.enabled ? handpose.predict(process.tensor, this.config) : [];\n if (this.performance.hand) delete this.performance.hand;\n } else {\n this.state = 'run:hand';\n timeStamp = now();\n handRes = this.config.hand.enabled ? await handpose.predict(process.tensor, this.config) : [];\n elapsedTime = Math.trunc(now() - timeStamp);\n if (elapsedTime > 0) this.performance.hand = elapsedTime;\n }\n this.analyze('End Hand:');\n\n // run nanodet\n this.analyze('Start Object:');\n if (this.config.async) {\n if (this.config.object.modelPath.includes('nanodet')) objectRes = this.config.object.enabled ? nanodet.predict(process.tensor, this.config) : [];\n else if (this.config.object.modelPath.includes('centernet')) objectRes = this.config.object.enabled ? centernet.predict(process.tensor, this.config) : [];\n if (this.performance.object) delete this.performance.object;\n } else {\n this.state = 'run:object';\n timeStamp = now();\n if (this.config.object.modelPath.includes('nanodet')) objectRes = this.config.object.enabled ? await nanodet.predict(process.tensor, this.config) : [];\n else if (this.config.object.modelPath.includes('centernet')) objectRes = this.config.object.enabled ? await centernet.predict(process.tensor, this.config) : [];\n elapsedTime = Math.trunc(now() - timeStamp);\n if (elapsedTime > 0) this.performance.object = elapsedTime;\n }\n this.analyze('End Object:');\n\n // if async wait for results\n if (this.config.async) [faceRes, bodyRes, handRes, objectRes] = await Promise.all([faceRes, bodyRes, handRes, objectRes]);\n\n // run gesture analysis last\n let gestureRes: Gesture[] = [];\n if (this.config.gesture.enabled) {\n timeStamp = now();\n gestureRes = [...gesture.face(faceRes), ...gesture.body(bodyRes), ...gesture.hand(handRes), ...gesture.iris(faceRes)];\n if (!this.config.async) this.performance.gesture = Math.trunc(now() - timeStamp);\n else if (this.performance.gesture) delete this.performance.gesture;\n }\n\n this.performance.total = Math.trunc(now() - timeStart);\n this.state = 'idle';\n this.result = {\n face: faceRes as Face[],\n body: bodyRes as Body[],\n hand: handRes as Hand[],\n gesture: gestureRes,\n object: objectRes as Item[],\n performance: this.performance,\n canvas: process.canvas,\n timestamp: Date.now(),\n get persons() { return persons.join(faceRes as Face[], bodyRes as Body[], handRes as Hand[], gestureRes, process?.tensor?.shape); },\n };\n\n // finally dispose input tensor\n tf.dispose(process.tensor);\n\n // log('Result:', result);\n resolve(this.result);\n });\n }\n\n /** @hidden */\n #warmupBitmap = async () => {\n const b64toBlob = (base64: string, type = 'application/octet-stream') => fetch(`data:${type};base64,${base64}`).then((res) => res.blob());\n let blob;\n let res;\n switch (this.config.warmup) {\n case 'face': blob = await b64toBlob(sample.face); break;\n case 'full': blob = await b64toBlob(sample.body); break;\n default: blob = null;\n }\n if (blob) {\n const bitmap = await createImageBitmap(blob);\n res = await this.detect(bitmap, this.config);\n bitmap.close();\n }\n return res;\n }\n\n /** @hidden */\n #warmupCanvas = async () => new Promise((resolve) => {\n let src;\n let size = 0;\n switch (this.config.warmup) {\n case 'face':\n size = 256;\n src = 'data:image/jpeg;base64,' + sample.face;\n break;\n case 'full':\n case 'body':\n size = 1200;\n src = 'data:image/jpeg;base64,' + sample.body;\n break;\n default:\n src = null;\n }\n // src = encodeURI('../assets/human-sample-upper.jpg');\n const img = new Image();\n img.onload = async () => {\n const canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(size, size) : document.createElement('canvas');\n canvas.width = img.naturalWidth;\n canvas.height = img.naturalHeight;\n const ctx = canvas.getContext('2d');\n ctx?.drawImage(img, 0, 0);\n // const data = ctx?.getImageData(0, 0, canvas.height, canvas.width);\n const res = await this.detect(canvas, this.config);\n resolve(res);\n };\n if (src) img.src = src;\n else resolve(null);\n });\n\n /** @hidden */\n #warmupNode = async () => {\n const atob = (str: string) => Buffer.from(str, 'base64');\n let img;\n if (this.config.warmup === 'face') img = atob(sample.face);\n if (this.config.warmup === 'body' || this.config.warmup === 'full') img = atob(sample.body);\n if (!img) return null;\n let res;\n if (typeof tf['node'] !== 'undefined') {\n const data = tf['node'].decodeJpeg(img);\n const expanded = data.expandDims(0);\n this.tf.dispose(data);\n // log('Input:', expanded);\n res = await this.detect(expanded, this.config);\n this.tf.dispose(expanded);\n } else {\n if (this.config.debug) log('Warmup tfjs-node not loaded');\n /*\n const input = await canvasJS.loadImage(img);\n const canvas = canvasJS.createCanvas(input.width, input.height);\n const ctx = canvas.getContext('2d');\n ctx.drawImage(img, 0, 0, input.width, input.height);\n res = await this.detect(input, this.config);\n */\n }\n return res;\n }\n\n /** Warmup method pre-initializes all configured models for faster inference\n * - can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n * @param userConfig?: Config\n */\n async warmup(userConfig?: Config | Record): Promise {\n const t0 = now();\n if (userConfig) this.config = mergeDeep(this.config, userConfig) as Config;\n if (!this.config.warmup || this.config.warmup === 'none') return { error: 'null' };\n let res;\n if (typeof createImageBitmap === 'function') res = await this.#warmupBitmap();\n else if (typeof Image !== 'undefined') res = await this.#warmupCanvas();\n else res = await this.#warmupNode();\n const t1 = now();\n if (this.config.debug) log('Warmup', this.config.warmup, Math.round(t1 - t0), 'ms', res);\n return res;\n }\n}\n\n/**\n * Class Human is also available as default export\n */\nexport { Human as default };\n"], + "mappings": ";;;;;;swBAKO,WAAc,EAAgB,EAAsB,CACzD,GAAM,GAAY,EAAO,SAAS,KAAO,GAAK,IAExC,EAAO,AADI,EAAK,WAAW,MAAQ,EAAK,WAAW,MAAQ,EAAK,WAAW,UAAY,EAAK,WAAW,WAAa,EAAK,WAAW,SAClH,GAAG,IAAS,GAAG,IAAS,IAAY,IAC5D,GAAI,CAAC,EAAK,oBAAoB,SAAS,SAAU,KAAM,IAAI,OAAM,2BAA2B,yBAC5F,MAAO,GAIF,cAAgB,EAAW,CAChC,GAAM,GAAK,GAAI,MACT,EAAK,GAAG,EAAG,WAAW,WAAW,SAAS,EAAG,QAAQ,EAAG,aAAa,WAAW,SAAS,EAAG,QAAQ,EAAG,aAAa,WAAW,SAAS,EAAG,QAAQ,EAAG,kBAAkB,WAAW,SAAS,EAAG,OAErM,AAAI,GAAK,QAAQ,IAAI,EAAI,SAAU,GAAG,GAIjC,GAAM,GAAM,IACb,MAAO,cAAgB,YAAoB,YAAY,MACpD,SAAU,QAAO,QAAQ,OAAO,UAAY,IAAO,KAAM,YAI3D,cAAsB,EAAS,CACpC,GAAM,GAAW,AAAC,GAAQ,GAAO,MAAO,IAAQ,SAChD,MAAO,GAAQ,OAAO,CAAC,EAAM,IAC3B,QAAO,KAAK,GAAO,IAAI,QAAQ,AAAC,GAAQ,CACtC,GAAM,GAAO,EAAK,GACZ,EAAO,EAAI,GACjB,AAAI,MAAM,QAAQ,IAAS,MAAM,QAAQ,GAAO,EAAK,GAAO,EAAK,OAAO,GAAG,GACtE,AAAI,EAAS,IAAS,EAAS,GAAO,EAAK,GAAO,EAAU,EAAM,GAClE,EAAK,GAAO,IAEZ,GACN,IC+KL,GAAM,IAAiB,CACrB,QAAS,QAET,cAAe,aACf,SAAU,sDACV,MAAO,GACP,MAAO,GACP,OAAQ,OAIR,iBAAkB,IAGlB,UAAW,GACX,OAAQ,CAEN,QAAS,GACT,MAAO,EACP,OAAQ,EAIR,KAAM,GACN,OAAQ,GACR,WAAY,EACZ,SAAU,EACV,UAAW,EACX,KAAM,EACN,WAAY,EACZ,IAAK,EACL,SAAU,GACV,MAAO,GACP,QAAS,GACT,WAAY,GACZ,YAAa,GACb,SAAU,GACV,SAAU,GAGZ,QAAS,CACP,QAAS,IAGX,KAAM,CACJ,QAAS,GAIT,SAAU,CACR,UAAW,iBACX,SAAU,GAGV,YAAa,GAEb,WAAY,GAKZ,cAAe,GACf,aAAc,GACd,OAAQ,IAIV,KAAM,CACJ,QAAS,GACT,UAAW,iBAGb,KAAM,CACJ,QAAS,GACT,UAAW,aAIb,YAAa,CACX,QAAS,GAET,UAAW,eAEX,WAAY,GAEZ,cAAe,IAGjB,QAAS,CACP,QAAS,GACT,cAAe,GACf,WAAY,GAEZ,UAAW,iBAIf,KAAM,CACJ,QAAS,GACT,UAAW,yBAEX,YAAa,EAGb,cAAe,GACf,WAAY,GAId,KAAM,CACJ,QAAS,GACT,SAAU,GAEV,WAAY,GAKZ,cAAe,GACf,aAAc,GACd,YAAa,EAEb,UAAW,GACX,SAAU,CACR,UAAW,mBAEb,SAAU,CACR,UAAW,sBAIf,OAAQ,CACN,QAAS,GACT,UAAW,qBAEX,cAAe,GACf,aAAc,GACd,YAAa,GACb,WAAY,IAId,aAAc,CACZ,QAAS,GAKT,UAAW,gBCvWR,aAAqD,CAC1D,GAAI,GAAW,GACX,EAAQ,GACZ,GAAI,MAAO,YAAc,YAAa,CACpC,GAAM,GAAM,UAAU,UAAU,MAAM,iBACtC,GAAI,GAAO,EAAI,GAAI,CACjB,GAAM,GAAgB,EAAI,GAAG,MAAM,iBACnC,EAAY,GAAiB,EAAc,GAAM,EAAc,GAAG,QAAQ,SAAU,IAAM,GAC1F,EAAQ,UAAU,UAAU,QAAQ,EAAI,GAAI,IACxC,EAAS,IAAI,GAAQ,EAAM,QAAQ,EAAI,GAAI,KAC/C,EAAQ,EAAM,QAAQ,MAAO,UAE1B,AAAI,OAAO,UAAY,aAC5B,GAAW,GAAG,QAAQ,YAAY,QAAQ,OAC1C,EAAQ,UAAU,QAAQ,WAE5B,MAAO,CAAE,WAAU,qDCSrB,QACA,QACA,QAEA,QACA,QACA,QA5BA,yDACA,8DACA,8DACA,gEACA,mEACA,qEACA,uEACA,sEAeA,uDACA,yDACA,4DACA,uDACA,8DACA,gEACA,+DAIO,GAAM,IAAU,CACrB,KAAM,GACN,YAAa,GACb,YAAa,GACb,cAAe,GACf,iBAAkB,GAClB,mBAAoB,GACpB,qBAAsB,GACtB,oBAAqB,ICtChB,GAAM,GAAS,CACpB,KAAM,UACN,SAAU,GACV,OAAoD,KACpD,GAAmC,KACnC,MAAO,KACP,OAAQ,KACR,WAAuB,GACvB,UAAW,CACT,MAAO,GACP,UAAW,GACX,mBAAoB,GACpB,sBAAuB,GACvB,MAAO,GACP,QAAS,GACT,6BAA8B,GAC9B,eAAgB,KAIpB,aAA4B,CAK1B,GAAM,GAAK,EAAO,GAClB,AAAI,CAAC,GACL,GAAO,WAAa,EAAG,0BASlB,aAA0B,CAC/B,GAAI,CAAC,AAAG,cAAY,EAAO,MAAO,CAEhC,GAAI,CACF,EAAO,OAAU,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAO,MAAO,EAAO,QAAU,SAAS,cAAc,gBAC9H,EAAP,CACA,EAAI,+BAAgC,GACpC,OAEF,GAAI,CACF,EAAO,GAAK,EAAO,OAAO,WAAW,SAAU,EAAO,iBAC/C,EAAP,CACA,EAAI,oCAAqC,GACzC,OAEF,GAAI,CACF,AAAG,kBAAgB,EAAG,EAAO,UACtB,EAAP,CACA,EAAI,oCAAqC,GACzC,OAEF,GAAI,CACF,GAAM,GAAM,GAAO,gBAAa,EAAO,IACvC,AAAG,kBAAgB,EAAO,KAAM,IAAM,GAAO,oBAAiB,GAAM,EAAO,gBACpE,EAAP,CACA,EAAI,wCAAyC,GAC7C,OAEF,GAAI,CAEF,AADgB,AAAG,uBAAqB,SAChC,QAAQ,AAAC,GAAiB,CAChC,GAAM,GAAkB,IAAK,EAAc,YAAa,EAAO,MAC/D,AAAG,iBAAe,WAEb,EAAP,CACA,EAAI,mDAAoD,GACxD,OAEF,GAAI,CACF,AAAG,MAAI,IAAI,gBAAiB,SACrB,EAAP,CACA,EAAI,yCAA0C,GAC9C,OAEF,KACA,EAAI,sBAAuB,EAAO,OCvF/B,YAA6B,EAAK,EAAQ,CAC/C,GAAM,GAAa,CAAC,EAAI,WAAW,GAAK,EAAO,GAAI,EAAI,WAAW,GAAK,EAAO,IACxE,EAAW,CAAC,EAAI,SAAS,GAAK,EAAO,GAAI,EAAI,SAAS,GAAK,EAAO,IACxE,MAAO,CAAE,aAAY,YAGhB,YAAoB,EAAK,CAC9B,MAAO,CACL,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,IAC1C,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,KAIvC,YAAsB,EAAK,CAChC,MAAO,CACL,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAC5D,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,GAIzD,YAAkC,EAAK,EAAO,EAAU,CAC7D,GAAM,GAAI,EAAM,MAAM,GAChB,EAAI,EAAM,MAAM,GAChB,EAAQ,CAAC,CACb,EAAI,WAAW,GAAK,EACpB,EAAI,WAAW,GAAK,EACpB,EAAI,SAAS,GAAK,EAClB,EAAI,SAAS,GAAK,IAEpB,MAAO,AAAG,SAAM,cAAc,EAAO,EAAO,CAAC,GAAI,GAG5C,YAAoB,EAAK,EAAS,IAAK,CAC5C,GAAM,GAAS,GAAa,GACtB,EAAO,GAAW,GAClB,EAAc,CAAC,EAAS,EAAK,GAAK,EAAG,EAAS,EAAK,GAAK,GACxD,EAAa,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IAClE,EAAW,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IACtE,MAAO,CAAE,aAAY,WAAU,UAAW,EAAI,WAGzC,YAAqB,EAAK,CAC/B,GAAM,GAAU,GAAa,GACvB,EAAO,GAAW,GAElB,EAAW,AADD,KAAK,IAAI,GAAG,GACD,EACrB,EAAa,CAAC,KAAK,MAAM,EAAQ,GAAK,GAAW,KAAK,MAAM,EAAQ,GAAK,IACzE,EAAW,CAAC,KAAK,MAAM,EAAQ,GAAK,GAAW,KAAK,MAAM,EAAQ,GAAK,IAC7E,MAAO,CAAE,aAAY,WAAU,UAAW,EAAI,WAGzC,YAAuC,EAAW,CACvD,GAAM,GAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAa,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC3C,EAAW,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC/C,MAAO,CAAE,aAAY,WAAU,aAQ1B,GAAM,IAAY,AAAC,GAAoB,EAC5C,WAAY,AAAG,QAAM,EAAgB,CAAC,EAAG,GAAI,CAAC,GAAI,IAClD,SAAU,AAAG,QAAM,EAAgB,CAAC,EAAG,GAAI,CAAC,GAAI,MCpE3C,GAAM,IAAkB,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAKtD,YAA0B,EAAO,CACtC,MAAO,GAAQ,EAAI,KAAK,GAAK,KAAK,MAAO,GAAQ,KAAK,IAAO,GAAI,KAAK,KAQjE,YAAyB,EAAQ,EAAQ,CAC9C,GAAM,GAAU,KAAK,GAAK,EAAI,KAAK,MAAM,CAAE,GAAO,GAAK,EAAO,IAAK,EAAO,GAAK,EAAO,IACtF,MAAO,IAAiB,GAOnB,YAAgC,EAAG,EAAG,CAC3C,MAAO,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAGhC,YAAa,EAAI,EAAI,CAC1B,GAAI,GAAU,EACd,OAAS,GAAI,EAAG,EAAI,EAAG,OAAQ,IAC7B,GAAW,EAAG,GAAK,EAAG,GAExB,MAAO,GAGF,YAA4B,EAAK,EAAa,CACnD,GAAM,GAAwB,GAC9B,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,EAAO,KAAK,EAAI,GAAG,IAErB,MAAO,GAGF,YAAmC,EAAM,EAAM,CACpD,GAAM,GAA2B,GAC3B,EAAO,EAAK,OAClB,OAAS,GAAM,EAAG,EAAM,EAAM,IAAO,CACnC,EAAQ,KAAK,IACb,OAAS,GAAM,EAAG,EAAM,EAAM,IAC5B,EAAQ,GAAK,KAAK,GAAI,EAAK,GAAM,GAAmB,EAAM,KAG9D,MAAO,GAGF,YAA6B,EAAU,EAAQ,CACpD,GAAM,GAAO,KAAK,IAAI,GAChB,EAAO,KAAK,IAAI,GAChB,EAAiB,CAAC,CAAC,EAAM,CAAC,EAAM,GAAI,CAAC,EAAM,EAAM,GAAI,CAAC,EAAG,EAAG,IAC5D,EAAoB,GAAuB,EAAO,GAAI,EAAO,IAC7D,EAA2B,GAA0B,EAAmB,GACxE,EAA4B,GAAuB,CAAC,EAAO,GAAI,CAAC,EAAO,IAC7E,MAAO,IAA0B,EAA0B,GAGtD,YAA+B,EAAQ,CAC5C,GAAM,GAAoB,CAAC,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAAK,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,KAC5E,EAAuB,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAChD,EAAsB,CAC1B,CAAC,GAAI,EAAkB,GAAI,GAC3B,CAAC,GAAI,EAAkB,GAAI,IAE7B,MAAO,CACL,EAAkB,GAAG,OAAO,EAAoB,IAChD,EAAkB,GAAG,OAAO,EAAoB,IAChD,CAAC,EAAG,EAAG,IAIJ,YAAqB,EAAuB,EAAgB,CACjE,MAAO,CACL,GAAI,EAAuB,EAAe,IAC1C,GAAI,EAAuB,EAAe,KAQvC,YAAyB,EAAW,CACzC,GAAM,GAAO,CAAE,QAAS,CAAC,EAAY,GAAI,EAAY,GAAI,QAAS,CAAC,EAAG,IAChE,EAAmC,GACzC,OAAS,GAAI,EAAG,EAAI,EAAK,QAAQ,OAAQ,IAAK,CAC5C,GAAM,GAAS,EAAK,QAAQ,GACtB,EAAW,KAAK,MAAO,GAAY,EAAS,GAAK,GACjD,EAAW,KAAK,MAAO,GAAY,EAAS,GAAK,GACjD,EAAa,EAAK,QAAQ,GAChC,OAAS,GAAQ,EAAG,EAAQ,EAAU,IAAS,CAC7C,GAAM,GAAU,EAAU,GAAQ,IAClC,OAAS,GAAQ,EAAG,EAAQ,EAAU,IAAS,CAC7C,GAAM,GAAU,EAAU,GAAQ,IAClC,OAAS,GAAI,EAAG,EAAI,EAAY,IAC9B,EAAQ,KAAK,CAAC,EAAS,MAK/B,MAAO,GCrGT,GAAM,IAAiB,EAEvB,YAAsB,EAAY,EAAS,EAAW,CACpD,GAAM,GAAY,AAAG,QAAM,EAAY,CAAC,EAAG,GAAI,CAAC,GAAI,IAC9C,EAAU,AAAG,MAAI,EAAW,GAC5B,EAAW,AAAG,QAAM,EAAY,CAAC,EAAG,GAAI,CAAC,GAAI,IAC7C,EAAqB,AAAG,MAAI,EAAU,GACtC,EAAoB,AAAG,MAAI,EAAS,GACpC,EAAc,AAAG,MAAI,EAAoB,GACzC,EAAS,AAAG,MAAI,EAAmB,GACnC,EAAO,AAAG,MAAI,EAAmB,GACjC,EAAkB,AAAG,MAAI,EAAQ,GACjC,EAAgB,AAAG,MAAI,EAAM,GAEnC,MAAO,AAAG,YAAS,CAAC,EAAiB,GADlB,GAId,YAAqB,CAO1B,YAAY,EAAO,EAAgB,CACjC,KAAK,MAAQ,EACb,KAAK,YAAc,AAAK,GAAgB,EAAM,OAAO,GAAG,MAAM,IAC9D,KAAK,QAAU,AAAG,WAAS,KAAK,aAChC,KAAK,UAAY,EAAM,OAAO,GAAG,MAAM,GACvC,KAAK,OAAS,OAGV,kBAAiB,EAAoB,EAAoB,CAE7D,GAAK,CAAC,GAAgB,EAAW,oBAA2B,EAAW,MAAM,SAAW,GAAO,EAAW,MAAM,GAAK,GAAO,EAAW,MAAM,GAAK,EAAI,MAAO,MAC7J,GAAM,CAAC,EAAO,EAAO,GAAU,AAAG,OAAK,IAAM,CAC3C,GAAM,GAAe,AAAG,QAAM,eAAe,EAAY,CAAC,KAAK,UAAW,KAAK,YACzE,EAAkB,AAAG,MAAI,AAAG,MAAI,EAAc,OAAQ,IACtD,EAAM,KAAK,MAAM,QAAQ,GAC3B,EACJ,GAAI,MAAM,QAAQ,GAAM,CACtB,GAAM,GAAS,EAAI,KAAK,CAAC,EAAG,IAAM,EAAE,KAAO,EAAE,MACvC,EAAY,AAAG,SAAO,CAAC,EAAO,GAAI,EAAO,IAAK,GAC9C,EAAY,AAAG,SAAO,CAAC,EAAO,GAAI,EAAO,IAAK,GAC9C,EAAS,AAAG,SAAO,CAAC,EAAW,GAAY,GACjD,EAAW,AAAG,UAAQ,EAAQ,OAE9B,GAAW,AAAG,UAAQ,GAExB,GAAM,GAAW,GAAa,EAAU,KAAK,QAAS,CAAC,KAAK,UAAW,KAAK,YACtE,EAAS,AAAG,QAAM,EAAU,CAAC,EAAG,GAAI,CAAC,GAAI,IACzC,EAAY,AAAG,UAAQ,AAAG,UAAQ,IACxC,MAAO,CAAC,EAAU,EAAU,KAG9B,KAAK,OAAS,EAAU,KAAK,OAAQ,GAErC,GAAM,GAAY,KAAM,AAAG,SAAM,uBAAuB,EAAO,EAAQ,KAAK,OAAO,KAAK,SAAS,YAAa,KAAK,OAAO,KAAK,SAAS,aAAc,KAAK,OAAO,KAAK,SAAS,eAC1K,EAAM,KAAM,GAAU,QAC5B,AAAG,UAAQ,GACX,GAAM,GAAoI,GACpI,EAAa,KAAM,GAAO,OAChC,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAM,GAAa,EAAW,EAAI,IAClC,GAAI,EAAa,KAAK,OAAO,KAAK,SAAS,cAAe,CACxD,GAAM,GAAc,AAAG,QAAM,EAAO,CAAC,EAAI,GAAI,GAAI,CAAC,EAAG,KAC/C,EAAW,AAAI,GAAU,GAC/B,AAAG,UAAQ,GACX,GAAM,GAAS,KAAK,YAAY,EAAI,IAC9B,EAAY,AAAG,OAAK,IAAM,AAAG,UAAQ,AAAG,UAAQ,AAAG,QAAM,EAAO,CAAC,EAAI,GAAI,GAAiB,GAAI,CAAC,EAAG,MAAO,CAAC,GAAgB,MAChI,EAAe,KAAK,CAAE,IAAK,EAAU,YAAW,SAAQ,gBAG5D,MAAG,WAAQ,GACX,AAAG,UAAQ,GACX,AAAG,UAAQ,GACJ,CACL,MAAO,EACP,YAAa,CAAC,EAAW,MAAM,GAAK,KAAK,UAAW,EAAW,MAAM,GAAK,KAAK,cAKrF,kBAA2B,EAAgB,CACzC,GAAM,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eACjJ,EAAY,GAAI,IAAe,EAAO,GAC5C,MAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,SAAS,WACrE,EAAO,OAAO,EAAI,cAAe,EAAM,UACzC,EC/FF,GAAM,IAAmB,CAC9B,WAAY,CACV,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACvD,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,KAEpD,eAAgB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,KAC7D,eAAgB,CAAC,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC3D,eAAgB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC9D,eAAgB,CAAC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC9D,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC/C,eAAgB,CAAC,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACtD,eAAgB,CAAC,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,KAC1C,eAAgB,CAAC,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,KACpD,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC/C,eAAgB,CAAC,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACzD,kBAAmB,CAAC,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,KACnD,kBAAmB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,IACzC,aAAc,CAAC,IAAK,IAAK,IAAK,IAAK,KACnC,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACtD,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,KAC5C,YAAa,CAAC,IAAK,IAAK,IAAK,IAAK,KAClC,kBAAmB,CAAC,KACpB,QAAS,CAAC,GACV,WAAY,CAAC,GACb,gBAAiB,CAAC,IAClB,eAAgB,CAAC,KACjB,WAAY,CAAC,KACb,UAAW,CAAC,MAGD,GAA2B,CACtC,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,GAAI,GAAI,GAAI,GAAI,GAAI,KACrD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KACtD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KACtD,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,IACtD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KAC9D,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KAC9D,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,MAKnD,GAAQ,CACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,iBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,iBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,cAAgB,kBACjB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,mBAGT,GAAS,CACpB,IAAK,GAAI,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,EACtJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GACrJ,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAC7I,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAClJ,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GACrJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GACpJ,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GACjJ,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,EAAG,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,EAAG,IAC/I,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,GAAI,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GACtJ,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAClJ,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACnJ,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,IAClJ,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,EAAG,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GACnJ,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,EAAG,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,EAAG,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAClJ,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAChJ,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IACpJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GACrJ,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GACpJ,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EACpJ,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAC9I,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAC9I,IAAK,GAAI,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAwBvI,GAAM,IAAQ,CACP,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/E,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC1C,IAAK,EAAG,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,IAChC,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAChD,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,KAGhC,GAAQ,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,KAE1J,GAAO,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,KAElC,GAAO,GAAM,IAAI,AAAC,GAAM,GAAM,IAE9B,GAAO,GAAM,IAAI,AAAC,GAAM,GAAM,IAE9B,GAAM,GAAK,IAAI,AAAC,GAAM,GAAM,IChoBzC,GAAM,IAAc,AAAO,GAAiB,cACtC,GAAe,AAAO,GAAiB,eAEvC,GAAe,CACnB,WAAY,CAAC,GAAY,GAAI,GAAY,GAAY,OAAS,IAC9D,YAAa,CAAC,GAAa,GAAI,GAAa,GAAa,OAAS,KAG9D,GAAgB,CACpB,MAAO,IACP,MAAO,GACP,aAAc,CAAC,GAAI,AAAO,GAAiB,kBAAqB,KAG5D,GAAqB,CACzB,QAAS,EACT,SAAU,EACV,KAAM,EACN,MAAO,EACP,QAAS,EACT,SAAU,EACV,aAAc,CAAC,EAAG,IAGd,GAAgB,CACpB,YAAa,EACb,YAAa,EACb,MAAO,GACP,eAAgB,IAKlB,YAA+B,EAAW,EAAW,EAAQ,EAAM,CACjE,OAAS,GAAI,EAAG,EAAI,AAAO,GAAyB,OAAQ,IAAK,CAC/D,GAAM,CAAE,MAAK,WAAY,AAAO,GAAyB,GACnD,EAAkB,AAAO,GAAiB,GAAG,IAAS,KAC5D,GAAI,CAAC,GAAQ,EAAK,SAAS,GACzB,OAAS,GAAI,EAAG,EAAI,EAAQ,OAAQ,IAAK,CACvC,GAAM,GAAQ,EAAQ,GACtB,EAAU,EAAgB,IAAM,CAC9B,EAAU,GAAO,GAAI,EAAU,GAAO,GACrC,GAAU,GAAO,GAAK,EAAU,EAAgB,IAAI,IAAM,KAO9D,YAAe,CAYpB,YAAY,EAAqB,EAAc,EAAW,CApE5D,QAsEI,KAAK,YAAc,GACnB,KAAK,oBAAsB,EAC3B,KAAK,aAAe,EACpB,KAAK,UAAY,EACjB,KAAK,QAAU,qBAAqB,QAArB,cAA4B,OAAO,GAAG,MAAM,KAAM,EACjE,KAAK,SAAW,kBAAc,OAAO,GAAG,MAAM,KAAM,qBAAqB,QAArB,cAA4B,OAAO,GAAG,MAAM,IAChG,KAAK,SAAW,kBAAW,OAAO,GAAG,MAAM,KAAM,EACjD,KAAK,YAAc,IACnB,KAAK,QAAU,EACf,KAAK,cAAgB,EAGvB,mBAAmB,EAAW,EAAK,EAAO,EAAgB,CACxD,GAAM,GAAU,AAAS,GAAW,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC1E,EAAe,EAAU,IAAI,AAAC,GAAW,CAC7C,EAAQ,GAAK,KAAK,SAAY,GAAM,GAAK,KAAK,SAAW,GACzD,EAAQ,GAAK,KAAK,SAAY,GAAM,GAAK,KAAK,SAAW,GACzD,EAAM,KAEF,EAAwB,IAAU,EAAK,AAAK,GAAoB,EAAO,CAAC,EAAG,IAAW,GACtF,EAAiB,IAAU,EAAK,EAAa,IAAI,AAAC,GAAW,CAAC,GAAG,AAAK,GAAY,EAAO,GAAuB,EAAM,KAAQ,EAC9H,EAAyB,IAAU,EAAK,AAAK,GAAsB,GAAuB,GAC1F,EAAY,CAAC,GAAG,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAAa,GACrG,MAAO,GAAc,IAAI,AAAC,GAAW,CACnC,KAAK,MAAM,EAAM,GAAK,AAAK,GAAI,EAAW,EAAsB,KAChE,KAAK,MAAM,EAAM,GAAK,AAAK,GAAI,EAAW,EAAsB,KAChE,KAAK,MAAM,EAAM,MAKrB,iCAAiC,EAAW,CAC1C,GAAM,GAAW,EAAU,GAAa,WAAW,IAAI,GACjD,EAAY,EAAU,GAAa,YAAY,IAAI,GACzD,MAAO,GAAW,EAIpB,UAAU,EAAW,EAAM,EAAqB,EAAqB,EAAO,GAAO,CACjF,GAAM,GAAM,AAAS,GAAY,AAAS,GAAW,AAAS,GAA8B,CAAC,EAAU,GAAsB,EAAU,KAAwB,KAAK,cAC9J,EAAU,AAAS,GAAW,GAChC,EAAO,AAAG,QAAM,cAAc,EAAM,CAAC,CACvC,EAAI,WAAW,GAAK,KAAK,SACzB,EAAI,WAAW,GAAK,KAAK,SAAU,EAAI,SAAS,GAAK,KAAK,SAC1D,EAAI,SAAS,GAAK,KAAK,WACrB,CAAC,GAAI,CAAC,KAAK,SAAU,KAAK,WAC9B,GAAI,GAAQ,AAAG,MAAI,MAAM,WAAY,CACnC,GAAM,GAAU,AAAG,QAAM,cAAc,GACvC,AAAG,UAAQ,GACX,EAAO,EAET,MAAO,CAAE,MAAK,UAAS,QAIzB,aAAa,EAAS,EAAQ,EAAY,EAAO,GAAO,CACtD,GAAM,GAAgD,GACtD,OAAS,GAAI,EAAG,EAAI,GAAc,eAAgB,IAAK,CACrD,GAAM,GAAI,EAAQ,EAAI,GAChB,EAAI,EAAQ,EAAI,EAAI,GACpB,EAAI,EAAQ,EAAI,EAAI,GAC1B,EAAa,KAAK,CACf,GAAQ,EAAK,EAAI,KAAK,SAAc,EAAI,KAAK,UAAa,EAAW,GAAK,EAAO,WAAW,GAC5F,EAAI,KAAK,SAAY,EAAW,GAAK,EAAO,WAAW,GAAI,IAGhE,MAAO,CAAE,UAAW,EAAc,KAAM,EAAa,MAAM,GAAc,QAK3E,sBAAsB,EAAW,EAAY,EAAW,CACtD,GAAM,GAAe,EAAU,AAAO,GAAiB,GAAG,cAAsB,GAAc,cAAc,GACtG,EAAe,EAAU,AAAO,GAAiB,GAAG,cAAsB,GAAc,cAAc,GACtG,EAAY,GAAe,GAAgB,EAEjD,MAAO,GAAW,IAAI,CAAC,EAAO,IAAM,CAClC,GAAI,GAAI,EACR,MAAI,KAAM,EACR,EAAI,EACK,IAAM,GACf,GAAI,GAEC,CAAC,EAAM,GAAI,EAAM,GAAI,KAIhC,oBAAoB,EAAQ,EAAK,EAAO,CACtC,GAAM,CAAC,EAAc,GAAoB,EAAI,UAAU,QAAU,GAAc,MAAS,GAAc,aAAe,GAAmB,aAClI,EAAQ,AAAK,GAAgB,EAAI,UAAU,GAAe,EAAI,UAAU,IACxE,EAAa,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC/E,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,AAAG,QAAM,iBAAiB,EAAO,EAAO,EAAG,GAC1D,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,EAAM,EAAO,KAAK,KAAK,QACzB,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,SAAU,KAAK,WAC7H,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,QAAS,KAAK,UAC1H,EAAO,AAAG,MAAI,EAAK,KACzB,MAAG,WAAQ,GACX,AAAG,UAAQ,GACJ,CAAC,EAAO,EAAgB,QAG3B,aAAY,EAAW,EAAM,CACjC,GAAM,CAAE,IAAK,EAAY,QAAS,EAAgB,KAAM,GAAgB,KAAK,UAAU,EAAW,EAAM,GAAa,WAAW,GAAI,GAAa,WAAW,GAAI,IAC1J,CAAE,IAAK,EAAa,QAAS,EAAiB,KAAM,GAAiB,KAAK,UAAU,EAAW,EAAM,GAAa,YAAY,GAAI,GAAa,YAAY,IAC3J,EAAW,AAAG,SAAO,CAAC,EAAa,IACzC,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,GAAM,GAAiB,KAAK,UAAU,QAAQ,GAC9C,AAAG,UAAQ,GACX,GAAM,GAAqB,KAAM,GAAe,OAChD,AAAG,UAAQ,GACX,GAAM,GAAc,EAAmB,MAAM,EAAG,GAAc,eAAiB,GACzE,CAAE,UAAW,EAAkB,KAAM,GAAsB,KAAK,aAAa,EAAa,EAAY,EAAgB,IACtH,EAAe,EAAmB,MAAM,GAAc,eAAiB,GACvE,CAAE,UAAW,EAAmB,KAAM,GAAuB,KAAK,aAAa,EAAc,EAAa,GAC1G,EAAgC,KAAK,iCAAiC,GAC5E,AAAI,KAAK,IAAI,GAAiC,GAC5C,IAAsB,EAAW,EAAkB,OAAQ,MAC3D,GAAsB,EAAW,EAAmB,QAAS,OAGxD,AAAI,EAAgC,EACzC,GAAsB,EAAW,EAAkB,OAAQ,CAAC,YAAa,cAEzE,GAAsB,EAAW,EAAmB,QAAS,CAAC,YAAa,cAE7E,GAAM,GAAyB,KAAK,sBAAsB,EAAW,EAAmB,QAClF,EAA0B,KAAK,sBAAsB,EAAW,EAAoB,SAE1F,MADkB,GAAU,OAAO,GAAwB,OAAO,QAI9D,SAAQ,EAAO,EAAQ,CAC3B,GAAI,GAAc,GAEd,EAQJ,GAPK,MAAK,UAAY,GAAO,KAAK,QAAU,EAAO,KAAK,SAAS,YAAe,CAAC,EAAO,KAAK,KAAK,SAAW,CAAC,EAAO,YACnH,GAAW,KAAM,MAAK,oBAAoB,iBAAiB,EAAO,GAClE,KAAK,QAAU,GAEb,EAAO,WAAW,KAAK,UAGvB,CAAC,EAAO,WAAc,GAAY,EAAS,OAAU,EAAC,EAAO,KAAK,KAAK,SAAY,EAAS,MAAM,SAAW,KAAK,eAAmB,KAAK,gBAAkB,EAAO,KAAK,SAAS,aAAgB,CACnM,KAAK,YAAc,GACnB,KAAK,cAAgB,EACrB,OAAW,KAAY,GAAS,MAAO,CACrC,GAAM,GAAa,KAAM,GAAS,IAAI,WAAW,OAC3C,EAAW,KAAM,GAAS,IAAI,SAAS,OACvC,EAAY,KAAM,GAAS,UAAU,QAC3C,KAAK,YAAY,KAAK,CAAE,aAAY,WAAU,YAAW,WAAY,EAAS,aAEhF,AAAI,KAAK,YAAY,OAAS,GAAG,GAAc,IAGjD,GAAI,EAAa,CACf,GAAI,CAAC,GAAY,CAAC,EAAS,OAAU,EAAS,MAAM,SAAW,EAC7D,YAAK,YAAc,GACnB,KAAK,cAAgB,EACd,KAET,OAAS,GAAI,EAAG,EAAI,KAAK,YAAY,OAAQ,IAAK,CAChD,GAAM,GAAY,AAAS,GAAoB,CAAE,WAAY,KAAK,YAAY,GAAG,WAAY,SAAU,KAAK,YAAY,GAAG,UAAY,EAAS,aAC1I,EAAc,AAAS,GAAW,GAClC,EAAgB,AAAS,GAAY,GACrC,EAAY,KAAK,YAAY,GAAG,UAChC,EAAa,KAAK,YAAY,GAAG,WACvC,KAAK,YAAY,GAAK,IAAK,EAAe,aAAY,cAG1D,AAAI,GAAY,EAAS,OACvB,EAAS,MAAM,QAAQ,AAAC,GAAe,CACrC,AAAG,UAAQ,EAAW,IAAI,YAC1B,AAAG,UAAQ,EAAW,IAAI,UAC1B,AAAG,UAAQ,EAAW,aAI1B,GAAM,GAAkF,GAElF,EAA+I,GACrJ,OAAS,KAAO,MAAK,YAAa,CAEhC,GAAI,GACA,EAAQ,EACR,EAEJ,GAAI,EAAO,KAAK,SAAS,UAAY,EAAO,KAAK,KAAK,SAAW,AAAG,MAAI,MAAM,WAC5E,CAAC,EAAO,EAAgB,GAAQ,KAAK,oBAAoB,EAAQ,EAAK,OACjE,CACL,EAAsB,GACtB,GAAM,GAAc,EAAM,QACpB,EAAM,EAAO,KAAK,KAAK,QACzB,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAa,CAAC,KAAK,SAAU,KAAK,WAC5H,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAa,CAAC,KAAK,QAAS,KAAK,UAC/H,EAAO,AAAG,MAAI,EAAK,KACnB,AAAG,UAAQ,GACX,AAAG,UAAQ,GAIb,GAAI,CAAC,EAAO,KAAK,KAAK,QACpB,EAAQ,KAAK,CACX,KAAM,GACN,MACA,eAAgB,KAChB,cAAe,EAAI,WACnB,WAAY,EAAI,WAChB,MAAO,QAEJ,CACL,GAAM,CAAC,EAAU,EAAY,GAAiB,KAAK,aAAa,QAAQ,GACxE,AAAG,UAAQ,GACX,GAAM,GAAkB,MAAM,GAAW,QAAQ,GACjD,AAAG,UAAQ,GACX,GAAM,GAAiB,AAAG,UAAQ,EAAe,CAAC,GAAI,IAClD,EAAY,KAAM,GAAe,QAGrC,GAFA,AAAG,UAAQ,GACX,AAAG,UAAQ,GACP,EAAiB,EAAO,KAAK,SAAS,cAGxC,EAAI,WAAa,EACjB,AAAG,UAAQ,OACN,CACL,AAAI,EAAO,KAAK,KAAK,SAAS,GAAY,KAAM,MAAK,YAAY,EAAW,IAG5E,GAAM,GAAO,KAAK,mBAAmB,EAAW,EAAK,EAAO,GAC5D,EAAM,IAAK,AAAS,GAAW,AAAS,GAA8B,GAAO,KAAM,WAAY,EAAI,YAG/F,EAAO,KAAK,SAAS,UAAY,EAAO,KAAK,KAAK,SAAW,EAAO,KAAK,YAAY,SAAW,AAAG,MAAI,MAAM,YAC/G,EAAC,EAAO,EAAgB,GAAQ,KAAK,oBAAoB,EAAQ,EAAK,IAGxE,EAAQ,KAAK,CACX,OACA,MACA,iBACA,cAAe,EAAI,WACnB,WAAY,EACZ,MAAO,IAKT,EAAM,IAAK,AAAS,GAAY,GAAM,WAAY,EAAI,WAAY,mBAGtE,EAAS,KAAK,GAKhB,MAAI,GAAO,KAAK,KAAK,SAAS,MAAK,YAAc,EAAS,OAAO,AAAC,GAAM,EAAE,WAAa,EAAO,KAAK,SAAS,gBAC5G,KAAK,cAAgB,EAAQ,OAEtB,IC7TX,GAAI,GAAsF,CAAC,KAAM,KAAM,MACnG,GAEJ,kBAA8B,EAAe,EAAiC,CAC5E,GAAM,GAAc,KAAM,IAAa,QAAQ,EAAO,GAChD,EAAuB,GACzB,EAAK,EACT,OAAW,KAAe,IAAe,GAAK,CAC5C,GAAI,CAAC,GAAc,EAAW,mBAAoB,SAClD,GAAM,GAAU,EAAW,KAAK,IAAI,AAAC,GAAO,CAC1C,EAAG,GAAM,GAAM,MAAM,IAAM,GAC3B,EAAG,GAAM,GAAM,MAAM,IAAM,GAC3B,EAAG,GAAK,GAAa,WAEjB,EAAc,GACpB,GAAI,EAAW,MAAQ,EAAW,KAAK,OAAS,EAC9C,OAAW,KAAO,QAAO,KAAY,IAAmB,EAAY,GAAO,AAAO,GAAiB,GAAK,IAAI,AAAC,GAAU,EAAW,KAAK,IAEzI,GAAM,GAA+C,EAAW,IAAM,CACpE,KAAK,MAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,KACjD,KAAK,MAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,KACjD,KAAK,MAAM,KAAK,IAAK,EAAM,MAAM,IAAM,EAAI,EAAW,IAAI,SAAS,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,KAC/G,KAAK,MAAM,KAAK,IAAK,EAAM,MAAM,IAAM,EAAI,EAAW,IAAI,SAAS,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,MAC7G,CAAC,EAAG,EAAG,EAAG,GACR,EAA2C,EAAW,IAAM,CAChE,EAAW,IAAI,WAAW,GAAM,GAAM,MAAM,IAAM,GAClD,EAAW,IAAI,WAAW,GAAM,GAAM,MAAM,IAAM,GACjD,GAAW,IAAI,SAAS,GAAK,EAAW,IAAI,WAAW,IAAO,GAAM,MAAM,IAAM,GAChF,GAAW,IAAI,SAAS,GAAK,EAAW,IAAI,WAAW,IAAO,GAAM,MAAM,IAAM,IAC/E,CAAC,EAAG,EAAG,EAAG,GACd,EAAQ,KAAK,CACX,GAAI,IACJ,MAAO,KAAK,MAAM,IAAM,EAAW,gBAAkB,IAAM,EAAW,eAAiB,GAAK,IAC5F,SAAU,KAAK,MAAM,IAAM,EAAW,eAAiB,IACvD,UAAW,KAAK,MAAM,IAAM,EAAW,gBAAkB,IACzD,IAAK,EACL,SACA,KAAM,EAAW,KACjB,UACA,cACA,OAAQ,EAAW,QAEjB,EAAW,QAAQ,AAAG,UAAQ,EAAW,QAE/C,MAAO,GAGT,kBAA2B,EAAkE,CAC3F,MAAK,CAAC,EAAW,IAAM,EAAO,KAAK,SAAa,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,SAAa,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QACjI,GAAa,KAAM,SAAQ,IAAI,CAC5B,CAAC,EAAW,IAAM,EAAO,KAAK,QAAW,AAAU,GAAK,GAAU,KAClE,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QAAW,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,KAAK,WAAY,CAAE,UAAW,EAAO,KAAK,KAAK,UAAU,SAAS,eAA2C,KACpN,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QAAW,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,KAAK,WAAY,CAAE,UAAW,EAAO,KAAK,KAAK,UAAU,SAAS,eAA2C,OAEnN,EAAO,KAAK,KAAK,SACnB,CAAI,CAAC,EAAW,IAAM,CAAC,EAAW,GAAG,SAAa,EAAI,qBAAsB,EAAO,KAAK,KAAK,WACpF,EAAO,OAAO,EAAI,cAAe,EAAW,GAAG,WAEtD,EAAO,KAAK,KAAK,SACnB,CAAI,CAAC,EAAW,IAAM,CAAC,EAAW,GAAG,SAAa,EAAI,qBAAsB,EAAO,KAAK,KAAK,WACpF,EAAO,OAAO,EAAI,cAAe,EAAW,GAAG,YAEjD,EAAO,OACZ,GAAW,IAAI,EAAI,gBAAiB,EAAW,GAAG,MAAM,UACxD,EAAW,IAAI,EAAI,gBAAiB,EAAW,GAAG,UAClD,EAAW,IAAI,EAAI,gBAAiB,EAAW,GAAG,WAExD,GAAe,GAAiB,IAAS,EAAW,GAAI,EAAW,GAAI,EAAW,IAC3E,EAGF,GAAM,IAAuB,GACvB,GAAe,GC1E5B,GAAI,IACE,GAKD,GAED,GAAY,EACZ,GAAU,OAAO,iBAIrB,kBAA2B,EAAqC,CAC9D,GAAM,GAAW,EAAK,EAAO,cAAe,EAAO,KAAK,YAAY,WACpE,MAAK,IAIM,EAAO,OAAO,EAAI,gBAAiB,GAH5C,IAAQ,KAAM,AAAG,kBAAe,GAChC,AAAK,GACI,EAAO,OAAO,EAAI,cAAe,GAD9B,EAAI,qBAAsB,EAAO,KAAK,YAAY,YAGzD,GAGF,YAAoB,EAA2B,EAA2B,EAAQ,EAAW,CAGlG,GAFI,CAAC,GAAc,CAAC,GAChB,kBAAY,UAAW,GAAK,kBAAY,UAAW,GACnD,kBAAY,UAAW,kBAAY,QAAQ,MAAO,GAEtD,GAAM,GAAW,EAAM,EACpB,IAAI,CAAC,EAAM,IAAO,KAAK,IAAI,EAAW,GAAK,EAAW,KAAO,GAC7D,OAAO,CAAC,EAAK,IAAS,EAAM,EAAM,IAC/B,GAAI,GAEV,MADY,MAAK,IAAI,EAAG,IAAM,GAAY,IAIrC,YAAe,EAA0B,EAAQ,EAAY,EAAG,CACrE,GAAI,GAAO,CAAE,WAAY,EAAG,KAAM,GAAI,OAAQ,GAAI,UAAW,IAC7D,GAAI,CAAC,GAAa,CAAC,GAAM,CAAC,MAAM,QAAQ,IAAc,CAAC,MAAM,QAAQ,GAAK,MAAO,GACjF,OAAW,KAAK,GACd,GAAI,EAAE,WAAa,EAAE,KAAM,CACzB,GAAM,GAAO,GAAW,EAAW,EAAE,WACrC,AAAI,EAAO,GAAa,EAAO,EAAK,YAAY,GAAO,IAAK,EAAG,WAAY,IAG/E,MAAO,GAGF,YAAiB,EAAe,CAkDrC,MAjDc,AAAG,QAAK,IAAM,CAG1B,GAAM,GAAS,EAAM,OAAS,EAAM,QAAU,EAC9C,GAAI,CAAE,aAAqB,WAAS,MAAO,MAE3C,GAAM,GAAM,CAAC,CAAC,IAAM,IAAM,IAAM,MAEhC,GAAI,CAAC,GAAM,OAAO,GAAG,MAAO,MAAO,MACnC,GAAM,GAAQ,EAAO,MAAM,SAAW,EAClC,AAAG,QAAM,cAAc,AAAG,aAAW,EAAQ,GAAI,EAAK,CAAC,GAAI,CAAC,GAAM,OAAO,GAAG,MAAM,GAAI,GAAM,OAAO,GAAG,MAAM,KAC5G,AAAG,QAAM,cAAc,EAAQ,EAAK,CAAC,GAAI,CAAC,GAAM,OAAO,GAAG,MAAM,GAAI,GAAM,OAAO,GAAG,MAAM,KAoC9F,MAFa,AAAG,OAAI,EAAM,OAO9B,kBAA8B,EAAe,EAAgB,EAAK,EAAO,CAhHzE,QAiHE,MAAK,IACA,GAAU,EAAO,KAAK,YAAY,YAAe,EAAO,WAAc,KAAc,GAAU,OAAK,KAAL,cAAW,MAAQ,OAAK,KAAL,cAAW,KAAM,EACrI,MACO,GAAK,IAEd,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAW,GAAQ,GAErB,EACE,EAAM,CACV,IAAa,EACb,OAAgB,UAChB,YAAqB,EACrB,WAAsB,IAMxB,GAHI,EAAO,KAAK,YAAY,SAAS,GAAO,KAAM,IAAM,QAAQ,IAChE,AAAG,UAAQ,GAEP,EAAM,CACR,GAAM,GAAS,KAAM,GAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,GAAG,OAClD,EAAa,KAAK,MAAM,IAAM,KAAK,IAAK,EAAO,GAAK,KAAS,IACnE,AAAI,EAAa,EAAO,KAAK,YAAY,eACvC,GAAI,OAAS,EAAO,IAAM,GAAM,SAAW,OAC3C,EAAI,YAAc,KAAK,IAAI,IAAM,IAGnC,GAAM,GAAO,MAAM,AADJ,AAAG,UAAO,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,KAAM,GACrC,QAAQ,GAC5B,EAAM,KAAM,GAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,KAAK,OACvD,EAAI,IAAM,KAAK,MAAM,EAAI,EAAM,GAAK,EAAI,EAAM,GAAK,GAAK,EAAM,IAAM,EAAI,EAAM,GAAK,GAAK,EAAM,IAAM,EAAI,EAAM,IAAM,GAMpH,GAAM,GAAa,KAAM,AAJZ,GAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,MAIf,OAC9B,EAAI,WAAa,CAAC,GAAG,GACrB,EAAK,QAAQ,AAAC,GAAM,AAAG,UAAQ,IAGjC,GAAK,GAAO,EACZ,GAAY,EACZ,EAAQ,MA3CS,KCxGrB,GAAM,IAAc,CAAC,QAAS,UAAW,OAAQ,QAAS,MAAO,WAAY,WACzE,GAEE,GAAyD,GAC3D,GAAY,EACZ,GAAU,OAAO,iBAGf,GAAM,CAAC,MAAQ,KAAQ,MAE7B,kBAA2B,EAAqC,CAC9D,MAAK,IAIM,EAAO,OAAO,EAAI,gBAAiB,GAAM,UAHlD,IAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,QAAQ,YAC/E,AAAI,CAAC,IAAS,CAAC,GAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,QAAQ,WACpE,EAAO,OAAO,EAAI,cAAe,GAAM,WAE3C,GAGT,kBAA8B,EAAe,EAAgB,EAAK,EAAO,CACvE,MAAK,IACA,GAAU,EAAO,KAAK,QAAQ,YAAe,EAAO,WAAc,KAAc,GAAU,GAAK,IAAS,GAAK,GAAK,OAAS,EAC9H,MACO,GAAK,IAEd,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,GAAM,OAAO,GAAG,MAAM,GAAI,GAAM,OAAO,GAAG,MAAM,IAAK,IAC9F,CAAC,EAAK,EAAO,GAAQ,AAAG,QAAM,EAAQ,EAAG,GAC/C,AAAG,UAAQ,GAEX,GAAM,GAAU,AAAG,MAAI,EAAK,GAAI,IAC1B,EAAY,AAAG,MAAI,EAAO,GAAI,IAC9B,EAAW,AAAG,MAAI,EAAM,GAAI,IAClC,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,GAAM,GAAY,AAAG,OAAK,CAAC,EAAS,EAAW,IAC/C,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,GAAM,GAAY,AAAG,OAAK,IAAM,AAAG,MAAI,AAAG,MAAI,EAAW,IAAM,IAC/D,AAAG,UAAQ,GACX,GAAM,GAAiD,GACvD,GAAI,EAAO,KAAK,QAAQ,QAAS,CAC/B,GAAM,GAAW,KAAM,IAAM,QAAQ,GAC/B,EAAO,KAAM,GAAS,OAC5B,AAAG,UAAQ,GACX,OAAS,GAAI,EAAG,EAAI,EAAK,OAAQ,IAC/B,AAAI,EAAK,GAAK,EAAO,KAAK,QAAQ,eAAe,EAAI,KAAK,CAAE,MAAO,KAAK,IAAI,IAAM,KAAK,MAAM,IAAM,EAAK,IAAM,KAAM,QAAS,GAAY,KAE3I,EAAI,KAAK,CAAC,EAAG,IAAM,EAAE,MAAQ,EAAE,OAEjC,AAAG,UAAQ,GACX,GAAK,GAAO,EACZ,GAAY,EACZ,EAAQ,MApCS,KC7Bd,GAAM,IAAY,CACvB,OAAQ,UAAW,WAAY,UAAW,WAAY,eACtD,gBAAiB,YAAa,aAAc,YAAa,aACzD,UAAW,WAAY,WAAY,YAAa,YAAa,cAGlD,GAAQ,GAAU,OAElB,GAAU,GAAU,OAAO,CAAC,EAAQ,EAAW,IAC1D,GAAO,GAAa,EACb,GACN,IAEG,GAAqB,CACzB,CAAC,UAAW,gBAAiB,CAAC,YAAa,gBAC3C,CAAC,YAAa,aAAc,CAAC,UAAW,YACxC,CAAC,WAAY,aAAc,CAAC,WAAY,iBACxC,CAAC,aAAc,iBAAkB,CAAC,aAAc,cAChD,CAAC,WAAY,aAAc,CAAC,YAAa,cACzC,CAAC,eAAgB,iBAAkB,CAAC,UAAW,aAEpC,GAAuB,GAAmB,IAAI,CAAC,CAAC,EAAY,KAAiB,CAAC,GAAQ,GAAa,GAAQ,KAE3G,GAAY,CACvB,CAAC,OAAQ,WAAY,CAAC,UAAW,WAAY,CAAC,OAAQ,YACtD,CAAC,WAAY,YAAa,CAAC,OAAQ,gBACnC,CAAC,eAAgB,aAAc,CAAC,YAAa,aAC7C,CAAC,eAAgB,WAAY,CAAC,UAAW,YACzC,CAAC,WAAY,aAAc,CAAC,OAAQ,iBACpC,CAAC,gBAAiB,cAAe,CAAC,aAAc,cAChD,CAAC,gBAAiB,YAAa,CAAC,WAAY,aAC5C,CAAC,YAAa,eCdT,YAAwB,EAA6C,CAC1E,GAAM,GAAQ,EAAU,OAAO,CAAC,CAAE,OAAM,OAAM,OAAM,QAAQ,CAAE,SAAU,CAAE,IAAG,QAAW,EACtF,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,KACnB,CACF,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,oBAEf,MAAO,CAAC,EAAM,KAAM,EAAM,KAAM,EAAM,KAAO,EAAM,KAAM,EAAM,KAAO,EAAM,MAGvE,YAAoB,EAAO,CAAC,EAAQ,GAAQ,CAAC,EAAuB,GAAoC,CAC7G,GAAM,GAAS,EAAS,EAClB,EAAS,EAAQ,EACjB,EAAY,CAAC,EAAM,IAAO,EAC9B,GAAI,EACJ,MAAO,EAAK,MACZ,OAAQ,CAAC,EAAK,IAAI,GAAK,EAAsB,EAAK,IAAI,GAAK,EAAuB,EAAK,IAAI,GAAK,EAAsB,EAAK,IAAI,GAAK,GACpI,IAAK,CAAC,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,IACrI,UAAW,EAAK,UAAU,IAAI,CAAC,CAAE,QAAO,OAAM,cAAgB,EAC5D,QACA,OACA,SAAU,CAAC,KAAK,MAAM,EAAS,EAAI,GAAS,KAAK,MAAM,EAAS,EAAI,IACpE,YAAa,CAAC,EAAS,EAAI,EAAuB,EAAS,EAAI,QAInE,MADoB,GAAM,IAAI,CAAC,EAAM,IAAM,EAAU,EAAM,IAKtD,YAAc,CAKnB,YAAY,EAAS,EAAiB,CACpC,KAAK,cAAgB,GAAI,OAAM,GAC/B,KAAK,iBAAmB,GACxB,KAAK,gBAAkB,EAGzB,QAAQ,EAAG,CACT,KAAK,cAAc,EAAE,KAAK,kBAAoB,EAC9C,KAAK,KAAK,KAAK,kBAGjB,SAAU,CACR,GAAM,GAAM,KAAK,cAAc,GAC/B,YAAK,SAAS,EAAG,KAAK,oBACtB,KAAK,KAAK,GACV,KAAK,cAAc,KAAK,iBAAmB,GAAK,KACzC,EAGT,OAAQ,CAAE,MAAO,MAAK,mBAAqB,GAE3C,MAAO,CAAE,MAAO,MAAK,iBAAmB,EAExC,KAAM,CAAE,MAAO,MAAK,cAAc,MAAM,EAAG,KAAK,iBAAmB,GAEnE,KAAM,CAAE,MAAO,MAAK,cAAc,GAElC,KAAK,EAAG,CACN,KAAO,EAAI,GAAK,KAAK,KAAK,KAAK,MAAM,EAAI,GAAI,IAC3C,KAAK,SAAS,EAAG,KAAK,MAAM,EAAI,IAChC,EAAI,KAAK,MAAM,EAAI,GAIvB,KAAK,EAAG,CACN,KAAO,EAAI,GAAK,KAAK,kBAAkB,CACrC,GAAI,GAAI,EAAI,EAEZ,GADI,EAAI,KAAK,kBAAoB,KAAK,KAAK,EAAG,EAAI,IAAI,IAClD,CAAC,KAAK,KAAK,EAAG,GAAI,MACtB,KAAK,SAAS,EAAG,GACjB,EAAI,GAIR,WAAW,EAAG,CAEZ,MAAO,MAAK,gBAAgB,KAAK,cAAc,IAGjD,KAAK,EAAG,EAAG,CACT,MAAO,MAAK,WAAW,GAAK,KAAK,WAAW,GAG9C,SAAS,EAAG,EAAG,CACb,GAAM,GAAI,KAAK,cAAc,GAC7B,KAAK,cAAc,GAAK,KAAK,cAAc,GAC3C,KAAK,cAAc,GAAK,IAIrB,YAAwB,EAAG,EAAG,EAAU,EAAS,CACtD,MAAO,CACL,EAAG,EAAQ,IAAI,EAAG,EAAG,GACrB,EAAG,EAAQ,IAAI,EAAG,EAAG,EAAe,KAIjC,YAAwB,EAAM,EAAc,EAAS,CAC1D,GAAM,CAAE,WAAU,WAAU,GAAI,GAAa,EACvC,CAAE,IAAG,KAAM,GAAe,EAAU,EAAU,EAAU,GAC9D,MAAO,CACL,EAAG,EAAK,SAAW,EAAe,EAClC,EAAG,EAAK,SAAW,EAAe,GAY/B,YAAe,EAAG,EAAK,EAAK,CACjC,MAAI,GAAI,EAAY,EAChB,EAAI,EAAY,EACb,EAGF,YAAyB,EAAI,EAAI,EAAI,EAAI,CAC9C,GAAM,GAAK,EAAK,EACV,EAAK,EAAK,EAChB,MAAO,GAAK,EAAK,EAAK,EAGjB,YAAoB,EAAG,EAAG,CAC/B,MAAO,CAAE,EAAG,EAAE,EAAI,EAAE,EAAG,EAAG,EAAE,EAAI,EAAE,GCvJpC,GAAM,IAAqB,EACrB,GAAe,GACf,GAAmB,IAAM,EAE/B,YAAkB,EAAQ,EAAgB,EAAU,EAAQ,EAAS,EAAe,EAAmB,EAAG,CACxG,GAAM,GAAkB,AAAC,GAAW,EAClC,EAAG,EAAc,IAAI,EAAM,EAAG,EAAM,EAAG,GACvC,EAAG,EAAc,IAAI,EAAM,EAAG,EAAM,EAAI,EAAc,MAAM,GAAK,EAAK,KAElE,EAA2B,CAAC,EAAO,EAAQ,IAAW,EAC1D,EAAG,AAAM,GAAM,KAAK,MAAM,EAAM,EAAI,IAAe,EAAG,EAAS,GAC/D,EAAG,AAAM,GAAM,KAAK,MAAM,EAAM,EAAI,IAAe,EAAG,EAAQ,KAG1D,CAAC,EAAQ,GAAS,EAAO,MAEzB,EAAwB,EAAyB,EAAe,SAAU,EAAQ,GAClF,EAAe,EAAgB,GAEjC,EADmB,AAAM,GAAW,EAAe,SAAU,GAEjE,OAAS,GAAI,EAAG,EAAI,EAAkB,IAAK,CACzC,GAAM,GAAwB,EAAyB,EAAgB,EAAQ,GACzE,EAAc,AAAM,GAAe,EAAsB,EAAG,EAAsB,EAAG,EAAU,GACrG,EAAiB,AAAM,GACrB,CAAE,EAAG,EAAsB,EAAI,GAAc,EAAG,EAAsB,EAAI,IAC1E,CAAE,EAAG,EAAY,EAAG,EAAG,EAAY,IAGvC,GAAM,GAAwB,EAAyB,EAAgB,EAAQ,GACzE,EAAQ,EAAO,IAAI,EAAsB,EAAG,EAAsB,EAAG,GAC3E,MAAO,CAAE,SAAU,EAAgB,KAAM,AAAI,GAAU,GAAW,SAG7D,YAAoB,EAAM,EAAQ,EAAS,EAAkB,EAAkB,CACpF,GAAM,GAAS,AAAI,GAAU,IAAI,CAAC,CAAC,EAAgB,KAAoB,CAAC,AAAI,GAAQ,GAAiB,AAAI,GAAQ,KAC3G,EAAW,EAAO,IAAI,CAAC,CAAC,CAAE,KAAkB,GAC5C,EAAW,EAAO,IAAI,CAAC,CAAC,KAAmB,GAC3C,EAAW,EAAO,MAAM,GACxB,EAAW,EAAS,OACpB,EAAY,GAAI,OAAM,GAEtB,EAAY,AAAM,GAAe,EAAK,KAAM,GAAc,GAChE,EAAU,EAAK,KAAK,IAAM,CACxB,MAAO,EAAK,MACZ,KAAM,AAAI,GAAU,EAAK,KAAK,IAC9B,SAAU,GAGZ,OAAS,GAAO,EAAW,EAAG,GAAQ,EAAG,EAAE,EAAM,CAC/C,GAAM,GAAW,EAAS,GACpB,EAAW,EAAS,GAC1B,AAAI,EAAU,IAAa,CAAC,EAAU,IACpC,GAAU,GAAY,GAAS,EAAM,EAAU,GAAW,EAAU,EAAQ,EAAS,IAIzF,OAAS,GAAO,EAAG,EAAO,EAAU,EAAE,EAAM,CAC1C,GAAM,GAAW,EAAS,GACpB,EAAW,EAAS,GAC1B,AAAI,EAAU,IAAa,CAAC,EAAU,IACpC,GAAU,GAAY,GAAS,EAAM,EAAU,GAAW,EAAU,EAAQ,EAAS,IAGzF,MAAO,GAGT,YAAqC,EAAY,EAAO,EAAU,EAAU,EAAQ,CAClF,GAAM,CAAC,EAAQ,GAAS,EAAO,MAC3B,EAAe,GACb,EAAS,KAAK,IAAI,EAAW,GAAoB,GACjD,EAAO,KAAK,IAAI,EAAW,GAAqB,EAAG,GACzD,OAAS,GAAW,EAAQ,EAAW,EAAM,EAAE,EAAU,CACvD,GAAM,GAAS,KAAK,IAAI,EAAW,GAAoB,GACjD,EAAO,KAAK,IAAI,EAAW,GAAqB,EAAG,GACzD,OAAS,GAAW,EAAQ,EAAW,EAAM,EAAE,EAC7C,GAAI,EAAO,IAAI,EAAU,EAAU,GAAc,EAAO,CACtD,EAAe,GACf,MAGJ,GAAI,CAAC,EAAc,MAErB,MAAO,GAGF,YAAiC,EAAe,EAAQ,CAC7D,GAAM,CAAC,EAAQ,EAAO,GAAgB,EAAO,MACvC,EAAQ,GAAU,IAAQ,EAAS,EAAQ,EAAc,CAAC,CAAE,WAAY,GAC9E,OAAS,GAAW,EAAG,EAAW,EAAQ,EAAE,EAC1C,OAAS,GAAW,EAAG,EAAW,EAAO,EAAE,EACzC,OAAS,GAAa,EAAG,EAAa,EAAc,EAAE,EAAY,CAChE,GAAM,GAAQ,EAAO,IAAI,EAAU,EAAU,GAE7C,AAAI,EAAQ,GAER,GAA4B,EAAY,EAAO,EAAU,EAAU,IAAS,EAAM,QAAQ,CAAE,QAAO,KAAM,CAAE,WAAU,WAAU,GAAI,KAI7I,MAAO,GAGT,YAAsB,EAAO,CAAE,IAAG,KAAK,EAAY,CACjD,MAAO,GAAM,KAAK,CAAC,CAAE,eAAgB,CA1GvC,MA2GI,GAAM,GAAwB,KAAU,KAAV,cAAuB,SACrD,MAAK,GACE,AAAM,GAAgB,EAAG,EAAG,EAAsB,EAAG,EAAsB,IAAM,GADrD,KAKvC,YAA0B,EAAe,EAAW,CAKlD,MAAO,AAJ6B,GAAU,OAAO,CAAC,EAAQ,CAAE,WAAU,SAAS,IAC5E,IAAa,EAAe,EAAU,IAAa,IAAU,GAC3D,GACN,GACkC,EAAU,OAG1C,YAAgB,EAAS,EAAQ,EAAkB,EAAkB,EAAa,EAAe,CACtG,GAAM,GAAoF,GACpF,EAAQ,GAAwB,EAAe,GAErD,KAAO,EAAM,OAAS,GAAe,CAAC,EAAM,SAAS,CAEnD,GAAM,GAAO,EAAM,UAGb,EAAkB,AAAM,GAAe,EAAK,KAAM,GAAc,GAEtE,GAAI,GAAa,EAAO,EAAiB,EAAK,KAAK,IAAK,SAExD,GAAI,GAAY,GAAW,EAAM,EAAQ,EAAS,EAAkB,GACpE,EAAY,EAAU,OAAO,AAAC,GAAM,EAAE,MAAQ,GAC9C,GAAM,GAAQ,GAAiB,EAAO,GAChC,EAAM,AAAM,GAAe,GACjC,AAAI,EAAQ,GAAe,EAAM,KAAK,CAAE,YAAW,MAAK,MAAO,KAAK,MAAM,IAAM,GAAS,MAE3F,MAAO,GChIT,GAAI,GACE,GAAiB,CAAC,+BAA6C,gCAAoD,yCAA+D,0CAExL,kBAA8B,EAAe,EAAiC,CAC5E,GAAM,GAAM,AAAG,OAAK,IAAM,CACxB,GAAI,CAAC,EAAM,OAAO,GAAG,MAAO,MAAO,GACnC,GAAM,GAAU,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KAC1F,EAAa,AAAG,MAAI,AAAG,MAAI,AAAG,OAAK,EAAS,WAAY,OAAQ,GAEhE,EAAY,AADa,EAAM,QAAQ,EAAY,IAC/B,IAAI,AAAC,GAAM,AAAG,UAAQ,EAAG,CAAC,KACpD,SAAU,GAAK,EAAU,GAAG,UACrB,IAGH,EAAU,KAAM,SAAQ,IAAI,EAAI,IAAI,AAAC,GAAmB,EAAO,WACrE,OAAW,KAAK,GAAK,AAAG,UAAQ,GAEhC,GAAM,GAAU,KAAM,AAAM,IAAO,EAAQ,GAAI,EAAQ,GAAI,EAAQ,GAAI,EAAQ,GAAI,EAAO,KAAK,YAAa,EAAO,KAAK,eACxH,MAAK,GAAM,OAAO,GAAG,MACN,AAAK,GAAW,EAAS,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,IAAK,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KADxF,GAKrC,kBAA2B,EAAqC,CAC9D,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,AAAI,CAAC,GAAS,CAAC,EAAM,SAAa,EAAI,qBAAsB,EAAO,KAAK,WAC/D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,ECvCF,YAAoB,EAAK,CAC9B,MAAO,CACL,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,IAC1C,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,KAIvC,YAAsB,EAAK,CAChC,MAAO,CACL,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAC5D,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,GAIzD,YAAkC,EAAK,EAAO,EAAU,CAC7D,GAAM,GAAI,EAAM,MAAM,GAChB,EAAI,EAAM,MAAM,GAChB,EAAQ,CAAC,CACb,EAAI,WAAW,GAAK,EACpB,EAAI,WAAW,GAAK,EACpB,EAAI,SAAS,GAAK,EAClB,EAAI,SAAS,GAAK,IAEpB,MAAO,AAAG,SAAM,cAAc,EAAO,EAAO,CAAC,GAAI,GAG5C,YAA6B,EAAK,EAAQ,CAC/C,GAAM,GAAa,CAAC,EAAI,WAAW,GAAK,EAAO,GAAI,EAAI,WAAW,GAAK,EAAO,IACxE,EAAW,CAAC,EAAI,SAAS,GAAK,EAAO,GAAI,EAAI,SAAS,GAAK,EAAO,IAClE,EAAgB,EAAI,cAAc,IAAI,AAAC,GACvB,CAAC,EAAM,GAAK,EAAO,GAAI,EAAM,GAAK,EAAO,KAG/D,MAAO,CAAE,aAAY,WAAU,gBAAe,WAAY,EAAI,YAGzD,YAAoB,EAAK,EAAS,IAAK,CAC5C,GAAM,GAAS,GAAa,GACtB,EAAO,GAAW,GAClB,EAAc,CAAC,EAAS,EAAK,GAAK,EAAG,EAAS,EAAK,GAAK,GACxD,EAAa,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IAClE,EAAW,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IACtE,MAAO,CAAE,aAAY,WAAU,cAAe,EAAI,eAG7C,YAAqB,EAAK,CAC/B,GAAM,GAAU,GAAa,GACvB,EAAO,GAAW,GAElB,EAAW,AADD,KAAK,IAAI,GAAG,GACD,EACrB,EAAa,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GAClD,EAAW,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GACtD,MAAO,CAAE,aAAY,WAAU,cAAe,EAAI,eCtD7C,GAAM,IAAU,CACrB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,QC33FX,YAAmB,CAQxB,YAAY,EAAO,CACjB,KAAK,MAAQ,EACb,KAAK,QAAU,AAAQ,GAAQ,IAAI,AAAC,GAAW,CAAC,EAAO,EAAG,EAAO,IACjE,KAAK,cAAgB,AAAG,WAAS,KAAK,SACtC,KAAK,UAAa,KAAK,OAAS,KAAK,MAAM,QAAU,KAAK,MAAM,OAAO,GAAG,MAAS,KAAK,MAAM,OAAO,GAAG,MAAM,GAAK,EACnH,KAAK,gBAAkB,AAAG,WAAS,CAAC,KAAK,UAAW,KAAK,YACzD,KAAK,sBAAwB,AAAG,WAAS,CAAC,KAAK,UAAY,EAAG,KAAK,UAAY,IAGjF,eAAe,EAAO,CACpB,MAAO,AAAG,QAAK,IAAM,CACnB,GAAM,GAAa,AAAG,QAAM,EAAO,CAAC,EAAG,GAAI,CAAC,GAAI,IAC1C,EAAW,AAAG,QAAM,EAAO,CAAC,EAAG,GAAI,CAAC,GAAI,IACxC,EAAkB,AAAG,MAAI,AAAG,MAAI,EAAY,KAAK,iBAAkB,KAAK,eACxE,EAAe,AAAG,MAAI,EAAU,KAAK,uBACrC,EAAc,AAAG,MAAI,AAAG,MAAI,EAAiB,GAAe,KAAK,iBACjE,EAAY,AAAG,MAAI,AAAG,MAAI,EAAiB,GAAe,KAAK,iBACrE,MAAO,AAAG,YAAS,CAAC,EAAa,GAAY,KAIjD,mBAAmB,EAAkB,EAAO,CAC1C,MAAO,AAAG,QAAK,IAAM,CACnB,GAAM,GAAY,AAAG,MAAI,AAAG,MAAI,AAAG,UAAQ,EAAkB,CAAC,GAAI,EAAG,IAAK,KAAK,iBAAkB,KAAK,QAAQ,IAC9G,MAAO,AAAG,OAAI,EAAW,KAAK,wBAI5B,UAAS,EAAO,EAAQ,CAC5B,GAAM,GAAU,KAAK,MAAM,QAAQ,GAC7B,EAAc,AAAG,UAAQ,GAC/B,AAAG,UAAQ,GACX,GAAM,GAAU,AAAG,OAAK,IAAM,AAAG,UAAQ,AAAG,UAAQ,AAAG,QAAM,EAAa,CAAC,EAAG,GAAI,CAAC,GAAI,OACjF,EAAS,KAAM,GAAQ,OACvB,EAAW,AAAG,QAAM,EAAa,CAAC,EAAG,GAAI,CAAC,GAAI,IAC9C,EAAQ,KAAK,eAAe,GAClC,AAAG,UAAQ,GACX,GAAM,GAAY,KAAM,AAAG,SAAM,uBAAuB,EAAO,EAAQ,EAAO,KAAK,YAAa,EAAO,KAAK,aAAc,EAAO,KAAK,eAChI,EAAW,KAAM,GAAU,QAEjC,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,GAAM,GAA2E,GACjF,OAAW,KAAS,GAClB,GAAI,EAAO,IAAU,EAAO,KAAK,cAAe,CAC9C,GAAM,GAAc,AAAG,QAAM,EAAO,CAAC,EAAO,GAAI,CAAC,EAAG,KAC9C,EAAmB,AAAG,QAAM,EAAa,CAAC,EAAO,GAAI,CAAC,EAAG,KACzD,EAAgB,AAAG,OAAK,IAAM,AAAG,UAAQ,KAAK,mBAAmB,EAAkB,GAAQ,CAAC,GAAI,KACtG,AAAG,UAAQ,GACX,EAAM,KAAK,CAAE,IAAK,EAAa,gBAAe,WAAY,EAAO,KAGrE,MAAG,WAAQ,GACX,AAAG,UAAQ,GACJ,OAGH,oBAAmB,EAAO,EAA8G,CAC5I,GAAM,GAAc,EAAM,MAAM,GAC1B,EAAa,EAAM,MAAM,GACzB,EAAQ,AAAG,OAAK,IAAM,AAAG,MAAI,AAAG,MAAI,AAAG,QAAM,eAAe,EAAO,CAAC,KAAK,UAAW,KAAK,YAAa,OAAQ,IAC9G,EAAc,KAAM,MAAK,SAAS,EAAO,GAC/C,AAAG,UAAQ,GACX,GAAM,GAA0G,GAChH,GAAI,CAAC,GAAe,EAAY,SAAW,EAAG,MAAO,GACrD,OAAW,KAAc,GAAa,CACpC,GAAM,GAAQ,KAAM,GAAW,IAAI,OAC7B,EAAa,EAAM,MAAM,EAAG,GAC5B,EAAW,EAAM,MAAM,EAAG,GAC1B,EAAgB,KAAM,GAAW,cAAc,QACrD,AAAG,UAAQ,EAAW,KACtB,AAAG,UAAQ,EAAW,eACtB,EAAM,KAAK,AAAI,GAAoB,CAAE,aAAY,WAAU,gBAAe,WAAY,EAAW,YAAc,CAAC,EAAa,KAAK,UAAW,EAAc,KAAK,aAElK,MAAO,KCvFJ,YAA0B,EAAO,CACtC,MAAO,GAAQ,EAAI,KAAK,GAAK,KAAK,MAAO,GAAQ,KAAK,IAAO,GAAI,KAAK,KAGjE,YAAyB,EAAQ,EAAQ,CAC9C,GAAM,GAAU,KAAK,GAAK,EAAI,KAAK,MAAM,CAAE,GAAO,GAAK,EAAO,IAAK,EAAO,GAAK,EAAO,IACtF,MAAO,IAAiB,GAGnB,GAAM,IAAyB,CAAC,EAAG,IAAM,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAEvE,YAAa,EAAI,EAAI,CAC1B,GAAI,GAAU,EACd,OAAS,GAAI,EAAG,EAAI,EAAG,OAAQ,IAC7B,GAAW,EAAG,GAAK,EAAG,GAExB,MAAO,GAGF,YAA4B,EAAK,EAAa,CACnD,GAAM,GAAwB,GAC9B,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,EAAO,KAAK,EAAI,GAAG,IAErB,MAAO,GAGF,YAAmC,EAAM,EAAM,CACpD,GAAM,GAA2B,GAC3B,EAAO,EAAK,OAClB,OAAS,GAAM,EAAG,EAAM,EAAM,IAAO,CACnC,EAAQ,KAAK,IACb,OAAS,GAAM,EAAG,EAAM,EAAM,IAC5B,EAAQ,GAAK,KAAK,GAAI,EAAK,GAAM,GAAmB,EAAM,KAG9D,MAAO,GAGF,YAA6B,EAAU,EAAQ,CACpD,GAAM,GAAO,KAAK,IAAI,GAChB,EAAO,KAAK,IAAI,GAChB,EAAiB,CAAC,CAAC,EAAM,CAAC,EAAM,GAAI,CAAC,EAAM,EAAM,GAAI,CAAC,EAAG,EAAG,IAC5D,EAAoB,GAAuB,EAAO,GAAI,EAAO,IAC7D,EAA2B,GAA0B,EAAmB,GACxE,EAA4B,GAAuB,CAAC,EAAO,GAAI,CAAC,EAAO,IAC7E,MAAO,IAA0B,EAA0B,GAGtD,YAA+B,EAAQ,CAC5C,GAAM,GAAoB,CAAC,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAAK,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,KAC5E,EAAuB,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAChD,EAAsB,CAC1B,CAAC,GAAI,EAAkB,GAAI,GAC3B,CAAC,GAAI,EAAkB,GAAI,IAE7B,MAAO,CACL,EAAkB,GAAG,OAAO,EAAoB,IAChD,EAAkB,GAAG,OAAO,EAAoB,IAChD,CAAC,EAAG,EAAG,IAIJ,YAAqB,EAAuB,EAAgB,CACjE,MAAO,CACL,GAAI,EAAuB,EAAe,IAC1C,GAAI,EAAuB,EAAe,KC5D9C,GAAM,IAAuB,EACvB,GAAuB,KACvB,GAAkB,CAAC,EAAG,EAAG,EAAG,GAAI,GAAI,EAAG,GACvC,GAAwB,EACxB,GAAgC,EAE/B,QAAmB,CAQxB,YAAY,EAAc,EAAe,CApB3C,MAqBI,KAAK,aAAe,EACpB,KAAK,cAAgB,EAErB,KAAK,UAAY,QAAK,gBAAL,cAAoB,OAAO,GAAG,MAAM,GACrD,KAAK,YAAc,GACnB,KAAK,QAAU,EACf,KAAK,cAAgB,EAIvB,8BAA8B,EAAW,CACvC,GAAM,GAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAa,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC3C,EAAW,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC/C,MAAO,CAAE,aAAY,YAGvB,uBAAuB,EAAe,EAAgB,CACpD,GAAM,GAAuB,EAAc,IAAI,AAAC,GAAU,AAAK,GAAY,CAAC,GAAG,EAAO,GAAI,IACpF,EAAgB,KAAK,8BAA8B,GACzD,MAAO,AAAI,IAAW,AAAI,GAAY,GAAgB,IAGxD,uBAAuB,EAAW,CAChC,GAAM,GAAc,KAAK,8BAA8B,GACjD,EAAgB,AAAI,GAAW,AAAI,GAAY,GAAc,IACnE,EAAc,cAAgB,GAC9B,OAAS,GAAI,EAAG,EAAI,GAAgB,OAAQ,IAC1C,EAAc,cAAc,KAAK,EAAU,GAAgB,IAAI,MAAM,EAAG,IAE1E,MAAO,GAGT,mBAAmB,EAAW,EAAM,EAAO,EAAgB,CACzD,GAAM,GAAU,AAAI,GAAW,GACzB,EAAc,CAAC,EAAQ,GAAK,KAAK,UAAW,EAAQ,GAAK,KAAK,UAAY,GAAQ,GAAK,EAAQ,IAAM,KAAK,UAAY,GACtH,EAAe,EAAU,IAAI,AAAC,GAAU,CAC5C,EAAY,GAAM,GAAM,GAAK,KAAK,UAAY,GAC9C,EAAY,GAAM,GAAM,GAAK,KAAK,UAAY,GAC9C,EAAY,GAAK,EAAM,KAEnB,EAAuB,AAAK,GAAoB,EAAO,CAAC,EAAG,IAC3D,EAAgB,EAAa,IAAI,AAAC,GAE/B,CAAC,GADQ,AAAK,GAAY,EAAO,GACpB,EAAM,KAEtB,EAAwB,AAAK,GAAsB,GACnD,EAAY,CAAC,GAAG,AAAI,GAAa,GAAO,GACxC,EAAoB,CACxB,AAAK,GAAI,EAAW,EAAsB,IAC1C,AAAK,GAAI,EAAW,EAAsB,KAE5C,MAAO,GAAc,IAAI,AAAC,GAAU,CAClC,KAAK,MAAM,EAAM,GAAK,EAAkB,IACxC,KAAK,MAAM,EAAM,GAAK,EAAkB,IACxC,KAAK,MAAM,EAAM,WAIf,eAAc,EAAO,EAAQ,CACjC,GAAI,GAAc,GAGd,EAGJ,AAAK,MAAK,UAAY,GAAO,KAAK,QAAU,EAAO,KAAK,YAAe,CAAC,EAAO,KAAK,WAAa,CAAC,EAAO,YACvG,GAAQ,KAAM,MAAK,aAAa,mBAAmB,EAAO,GAC1D,KAAK,QAAU,GAEb,EAAO,WAAW,KAAK,UAGvB,GAAU,EAAM,OAAS,GAAQ,GAAM,SAAW,KAAK,eAAmB,KAAK,gBAAkB,EAAO,KAAK,aAAgB,CAAC,EAAO,KAAK,YAC5I,MAAK,cAAgB,EACrB,KAAK,YAAc,CAAC,GAAG,GAEnB,KAAK,YAAY,OAAS,GAAG,GAAc,KAEjD,GAAM,GAAgH,GAGtH,OAAS,GAAI,EAAG,EAAI,KAAK,YAAY,OAAQ,IAAK,CAChD,GAAM,GAAa,KAAK,YAAY,GACpC,GAAI,EAAC,EACL,GAAI,EAAO,KAAK,UAAW,CACzB,GAAM,GAAQ,EAAO,KAAK,SAAW,AAAK,GAAgB,EAAW,cAAc,IAAwB,EAAW,cAAc,KAAkC,EAChK,EAAa,AAAI,GAAa,GAC9B,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,EAAO,KAAK,UAAY,AAAG,MAAI,MAAM,WAAa,AAAG,QAAM,iBAAiB,EAAO,EAAO,EAAG,GAAwB,EAAM,QAC1I,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,EAAS,EAAc,KAAK,uBAAuB,EAAW,cAAe,GAAkB,EAC/F,EAAe,AAAI,GAAyB,EAAQ,EAAc,CAAC,KAAK,UAAW,KAAK,YACxF,EAAY,AAAG,MAAI,EAAc,KACvC,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,GAAM,CAAC,EAAa,GAAa,KAAM,MAAK,cAAc,QAAQ,GAClE,AAAG,UAAQ,GACX,GAAM,GAAc,MAAM,GAAY,QAAQ,GAE9C,GADA,AAAG,UAAQ,GACP,GAAc,EAAO,KAAK,cAAe,CAC3C,GAAM,GAAoB,AAAG,UAAQ,EAAW,CAAC,GAAI,IAC/C,EAAY,KAAM,GAAkB,QAC1C,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,GAAM,GAAS,KAAK,mBAAmB,EAAW,EAAQ,EAAO,GAC3D,EAAkB,KAAK,uBAAuB,GACpD,KAAK,YAAY,GAAK,IAAK,EAAiB,cAC5C,GAAM,GAAS,CACb,UAAW,EACX,aACA,IAAK,CAAE,QAAS,EAAgB,WAAY,YAAa,EAAgB,WAE3E,EAAM,KAAK,OAEX,MAAK,YAAY,GAAK,KAExB,AAAG,UAAQ,OACN,CAEL,GAAM,GAAW,AAAI,GAAW,AAAI,GAAY,GAAa,IACvD,EAAS,CACb,WAAY,EAAW,WACvB,IAAK,CAAE,QAAS,EAAS,WAAY,YAAa,EAAS,WAE7D,EAAM,KAAK,IAGf,YAAK,YAAc,KAAK,YAAY,OAAO,AAAC,GAAM,IAAM,MACxD,KAAK,cAAgB,EAAM,OACpB,ICxJX,GAAM,GAAS,CACb,MAAO,EACP,MAAO,EACP,OAAQ,EACR,KAAM,EACN,MAAO,EACP,IAAK,CAAC,EAAG,EAAG,EAAG,EAAG,GAClB,YAAa,CAAE,EAAG,QAAS,EAAG,QAAS,EAAG,SAAU,EAAG,OAAQ,EAAG,SAQlE,cAAe,CACb,EAAG,CAAC,CAAC,EAAG,GAAI,CAAC,EAAG,GAAI,CAAC,EAAG,GAAI,CAAC,EAAG,IAChC,EAAG,CAAC,CAAC,EAAG,GAAI,CAAC,EAAG,GAAI,CAAC,EAAG,GAAI,CAAC,EAAG,IAChC,EAAG,CAAC,CAAC,EAAG,GAAI,CAAC,EAAG,IAAK,CAAC,GAAI,IAAK,CAAC,GAAI,KACpC,EAAG,CAAC,CAAC,EAAG,IAAK,CAAC,GAAI,IAAK,CAAC,GAAI,IAAK,CAAC,GAAI,KACtC,EAAG,CAAC,CAAC,EAAG,IAAK,CAAC,GAAI,IAAK,CAAC,GAAI,IAAK,CAAC,GAAI,MAExC,QAAS,AAAC,GAAU,EAAO,YAAY,GACvC,UAAW,AAAC,GAAU,EAAO,cAAc,IAGvC,EAAa,CACjB,KAAM,EACN,KAAM,EACN,KAAM,EACN,YAAa,CAAE,EAAG,OAAQ,EAAG,OAAQ,EAAG,QACxC,QAAS,AAAC,GAAU,EAAW,YAAY,IAGvC,EAAkB,CACtB,WAAY,EACZ,aAAc,EACd,eAAgB,EAChB,gBAAiB,EACjB,gBAAiB,EACjB,eAAgB,EAChB,kBAAmB,EACnB,iBAAkB,EAClB,YAAa,CAAE,EAAG,aAAc,EAAG,eAAgB,EAAG,iBAAkB,EAAG,kBAAmB,EAAG,kBAAmB,EAAG,iBAAkB,EAAG,oBAAqB,EAAG,oBACpK,QAAS,AAAC,GAAU,EAAgB,YAAY,IC1ClD,GAAM,IAAU,CAEd,sBAAuB,GACvB,oBAAqB,IAErB,oBAAqB,IACrB,wBAAyB,GACzB,uBAAwB,KAG1B,YAAwB,EAAS,EAAS,EAAS,EAAS,CAC1D,GAAM,GAAS,GAAU,GAAY,GAAU,GAC3C,EAAQ,KAAK,KAAK,GAAS,IAAM,KAAK,GAC1C,MAAI,IAAS,EAAG,EAAQ,CAAC,EAChB,EAAQ,GAAG,GAAQ,IAAM,GAC3B,EAKT,YAAmB,EAAQ,EAAQ,CACjC,GAAM,GAAU,GAAe,EAAO,GAAI,EAAO,GAAI,EAAO,GAAI,EAAO,IACvE,GAAI,EAAO,SAAW,EAAG,MAAO,GAChC,GAAM,GAAU,GAAe,EAAO,GAAI,EAAO,GAAI,EAAO,GAAI,EAAO,IACvE,MAAO,CAAC,EAAS,GAGnB,YAA4B,EAAO,EAAc,EAAK,CACpD,GAAI,GAAa,EACb,EAAa,EACb,EAAe,EACnB,MAAI,IAAS,IAAQ,GAAS,IAAO,EAAa,EAAI,EACjD,AAAI,GAAS,IAAQ,GAAS,IAAO,EAAa,EAAI,EACtD,EAAe,EAAI,EACjB,CAAC,EAAY,EAAY,GAGlC,YAA4B,EAAY,EAAU,EAAU,CAC1D,GAAM,GAAmB,EAAW,GAAK,EAAS,GAC5C,EAAmB,EAAW,GAAK,EAAS,GAC5C,EAAiB,EAAS,GAAK,EAAS,GACxC,EAAmB,EAAW,GAAK,EAAS,GAC5C,EAAmB,EAAW,GAAK,EAAS,GAC5C,EAAiB,EAAS,GAAK,EAAS,GACxC,EAAmB,EAAW,GAAK,EAAS,GAC5C,EAAmB,EAAW,GAAK,EAAS,GAC5C,EAAiB,EAAS,GAAK,EAAS,GACxC,EAAiB,KAAK,KAAK,EAAmB,EAAmB,EAAmB,EAAmB,EAAmB,GAC1H,EAAiB,KAAK,KAAK,EAAmB,EAAmB,EAAmB,EAAmB,EAAmB,GAC1H,EAAe,KAAK,KAAK,EAAiB,EAAiB,EAAiB,EAAiB,EAAiB,GAChH,EAAU,GAAe,EAAe,EAAiB,EAAiB,EAAiB,GAAmB,GAAI,EAAe,GACrI,AAAI,EAAS,EAAK,EAAS,EAClB,EAAS,IAAM,GAAS,IACjC,GAAI,GAAe,KAAK,KAAK,GAC7B,EAAgB,QAAU,EAAgB,IAC1C,GAAI,GACJ,MAAI,GAAe,GAAQ,oBAAqB,EAAa,EAAW,KACnE,AAAI,EAAe,GAAQ,sBAAuB,EAAa,EAAW,KAC1E,EAAa,EAAW,KACtB,EAGT,YAAqC,EAAkB,EAAkB,EAAgB,EAAY,CACnG,GAAI,GACJ,MAAI,KAAe,KAAK,IAAI,GAC1B,AAAI,EAAmB,EAAG,EAAqB,EAAgB,eAC1D,EAAqB,EAAgB,gBACrC,AAAI,IAAe,KAAK,IAAI,GACjC,AAAI,EAAmB,EAAG,EAAqB,EAAgB,eAC1D,EAAqB,EAAgB,gBAE1C,AAAI,EAAiB,EAAG,EAAqB,EAAgB,eACxD,EAAqB,EAAgB,gBAErC,EAGT,YAAmC,EAAkB,EAAkB,EAAgB,EAAY,CACjG,GAAI,GACJ,MAAI,KAAe,KAAK,IAAI,GAC1B,AAAI,EAAmB,EAAG,EAAqB,EAAgB,aAC1D,EAAqB,EAAgB,WACrC,AAAI,IAAe,KAAK,IAAI,GACjC,AAAI,EAAmB,EAAG,EAAqB,EAAgB,aAC1D,EAAqB,EAAgB,WAE1C,AAAI,EAAiB,EAAG,EAAqB,EAAgB,aACxD,EAAqB,EAAgB,WAErC,EAGT,YAAmC,EAAkB,EAAkB,EAAgB,EAAY,EAAkB,EAAkB,EAAgB,EAAY,CACjK,GAAI,GACE,EAA0B,GAA0B,EAAkB,EAAkB,EAAgB,GACxG,EAA4B,GAA4B,EAAkB,EAAkB,EAAgB,GAClH,MAAI,KAA4B,EAAgB,WAC9C,AAAI,IAA8B,EAAgB,eAAgB,EAAqB,EAAgB,eAClG,EAAqB,EAAgB,gBAE1C,AAAI,IAA8B,EAAgB,eAAgB,EAAqB,EAAgB,iBAClG,EAAqB,EAAgB,kBAErC,EAGT,YAAkC,EAAY,EAAU,EAAU,EAAc,CAC9E,GAAM,GAAmB,EAAW,GAAK,EAAS,GAC5C,EAAmB,EAAW,GAAK,EAAS,GAC5C,EAAiB,EAAS,GAAK,EAAS,GACxC,EAAmB,EAAW,GAAK,EAAS,GAC5C,EAAmB,EAAW,GAAK,EAAS,GAC5C,EAAiB,EAAS,GAAK,EAAS,GACxC,EAAa,KAAK,IAAI,KAAK,IAAI,GAAmB,KAAK,IAAI,GAAmB,KAAK,IAAI,IACvF,EAAa,KAAK,IAAI,KAAK,IAAI,GAAmB,KAAK,IAAI,GAAmB,KAAK,IAAI,IACzF,EAAe,EACf,EAAe,EACf,EAAiB,EACf,EAA2B,EAAc,GAAa,MAC5D,AAAI,EAA2B,IAAK,GAAgB,GAAQ,oBACvD,AAAI,EAA2B,IAAM,GAAgB,GAAQ,oBAC7D,GAAkB,GAAQ,oBAC/B,GAAM,GAAiB,KAAK,KAAK,EAAmB,EAAmB,EAAmB,GACpF,EAAiB,KAAK,KAAK,EAAmB,EAAmB,EAAmB,GACpF,EAAe,KAAK,KAAK,EAAiB,EAAiB,EAAiB,GAC5E,EAAW,KAAK,IAAI,EAAgB,EAAgB,GACtD,EAAqB,EAAW,GAChC,EAAqB,EAAW,GAChC,EAAmB,EAAS,GAC5B,EAAmB,EAAS,GAChC,AAAI,IAAa,EACf,GAAmB,EAAS,GAC5B,EAAmB,EAAS,IACnB,IAAa,GACtB,GAAqB,EAAS,GAC9B,EAAqB,EAAS,IAIhC,GAAM,GAAa,GAFI,CAAC,EAAoB,GACvB,CAAC,EAAkB,IAElC,EAAQ,GAAmB,EAAY,GAAQ,wBACrD,GAAgB,EAAM,GACtB,GAAgB,EAAM,GACtB,GAAkB,EAAM,GACxB,OAAW,KAAe,GAAc,CACtC,GAAM,GAAc,GAAmB,EAAa,GAAQ,yBAC5D,GAAgB,EAAY,GAC5B,GAAgB,EAAY,GAC5B,GAAkB,EAAY,GAIhC,GAAI,GACJ,MAAI,KAAiB,KAAK,IAAI,EAAc,EAAc,GACxD,EAAqB,GAA0B,EAAkB,EAAkB,EAAgB,GAC9F,AAAI,IAAmB,KAAK,IAAI,EAAc,GACnD,EAAqB,GAA4B,EAAkB,EAAkB,EAAgB,GAErG,EAAqB,GAA0B,EAAkB,EAAkB,EAAgB,EAAY,EAAkB,EAAkB,EAAgB,GAE9J,EAGF,YAAkB,EAAW,CAElC,GAAM,GAA4B,GAC5B,EAA4B,GAClC,OAAW,KAAU,GAAO,IAAK,CAC/B,GAAM,GAAS,EAAO,UAAU,GAC1B,EAA2B,GAC3B,EAA2B,GACjC,OAAW,KAAS,GAAQ,CAC1B,GAAM,GAAS,EAAU,EAAM,IACzB,EAAS,EAAU,EAAM,IAEzB,EAAS,GAAU,EAAQ,GAC3B,EAAU,EAAO,GACjB,EAAU,EAAO,GACvB,EAAU,KAAK,GACf,EAAU,KAAK,GAEjB,EAAS,KAAK,GACd,EAAS,KAAK,GAIhB,GAAM,GAA6B,GAC7B,EAAkC,GACxC,OAAW,KAAU,GAAO,IAAK,CAE/B,GAAM,GAAgB,IAAW,EAAO,MAAS,EAAI,EAC/C,EAAiB,EAAO,UAAU,GAClC,EAAa,EAAU,EAAe,GAAc,IACpD,EAAW,EAAU,EAAe,EAAe,GAAG,IACtD,EAAW,EAAU,EAAe,GAAG,IAEvC,EAAe,GAAmB,EAAY,EAAU,GACxD,EAAiB,GAAyB,EAAY,EAAU,EAAU,EAAS,GAAQ,MAAM,IACvG,EAAY,GAAU,EACtB,EAAiB,GAAU,EAE7B,MAAO,CAAE,MAAO,EAAa,WAAY,GC3M3C,YAA6B,CAO3B,YAAY,EAAM,CAEhB,KAAK,KAAO,EACZ,KAAK,MAAQ,GACb,KAAK,WAAa,GAClB,KAAK,QAAU,CAAC,EAAK,EAAK,EAAK,EAAK,GACpC,KAAK,gBAAkB,CAAC,EAAK,EAAK,EAAK,EAAK,GAG9C,QAAQ,EAAQ,EAAM,EAAY,CAChC,AAAI,MAAO,MAAK,MAAM,IAAY,aAAa,MAAK,MAAM,GAAU,IACpE,KAAK,MAAM,GAAQ,KAAK,CAAC,EAAM,IAGjC,aAAa,EAAQ,EAAU,EAAY,CACzC,AAAK,KAAK,WAAW,IAAS,MAAK,WAAW,GAAU,IACxD,KAAK,WAAW,GAAQ,KAAK,CAAC,EAAU,IAG1C,UAAU,EAAQ,EAAQ,CACxB,KAAK,QAAQ,GAAU,EAEvB,GAAM,GAAQ,KAAK,QAAQ,OAAO,CAAC,EAAG,IAAM,EAAI,EAAG,GACnD,KAAK,gBAAkB,KAAK,QAAQ,IAAI,AAAC,GAAO,EAAK,EAAI,GAG3D,aAAa,EAAe,EAAoB,CAC9C,GAAI,GAAa,EAGjB,OAAW,KAAa,GAAe,CACrC,GAAM,GAAe,EAAc,GAC7B,EAAgB,KAAK,MAAM,GACjC,GAAI,MAAO,IAAkB,YAAa,CAGxC,GAAc,KAAK,gBAAgB,GACnC,SAGF,OAAW,CAAC,EAAc,IAAU,GAClC,GAAI,IAAiB,EAAc,CACjC,GAAc,EAAQ,KAAK,gBAAgB,GAC3C,OAKN,OAAW,KAAa,GAAoB,CAC1C,GAAM,GAAoB,EAAmB,GACvC,EAAqB,KAAK,WAAW,GAC3C,GAAI,MAAO,IAAuB,YAAa,CAG7C,GAAc,KAAK,gBAAgB,GACnC,SAGF,OAAW,CAAC,EAAmB,IAAU,GACvC,GAAI,IAAsB,EAAmB,CAC3C,GAAc,EAAQ,KAAK,gBAAgB,GAC3C,OAIN,MAAO,GAAa,KCpExB,GAAM,IAAW,GAAI,IAAQ,aAC7B,GAAS,QAAQ,EAAO,MAAO,EAAW,KAAM,GAChD,GAAS,aAAa,EAAO,MAAO,EAAgB,WAAY,GAChE,GAAS,aAAa,EAAO,MAAO,EAAgB,eAAgB,KACpE,GAAS,aAAa,EAAO,MAAO,EAAgB,gBAAiB,KACrE,OAAW,KAAU,CAAC,EAAO,MAAO,EAAO,OAAQ,EAAO,KAAM,EAAO,OACrE,GAAS,QAAQ,EAAQ,EAAW,KAAM,GAC1C,GAAS,aAAa,EAAQ,EAAgB,eAAgB,GAC9D,GAAS,aAAa,EAAQ,EAAgB,gBAAiB,GAIjE,GAAM,GAAU,GAAI,IAAQ,WAC5B,EAAQ,QAAQ,EAAO,MAAO,EAAW,KAAM,IAC/C,EAAQ,QAAQ,EAAO,MAAO,EAAW,KAAM,IAC/C,EAAQ,aAAa,EAAO,MAAO,EAAgB,WAAY,GAC/D,EAAQ,aAAa,EAAO,MAAO,EAAgB,eAAgB,GACnE,EAAQ,QAAQ,EAAO,MAAO,EAAW,KAAM,GAC/C,EAAQ,aAAa,EAAO,MAAO,EAAgB,WAAY,KAC/D,EAAQ,aAAa,EAAO,MAAO,EAAgB,eAAgB,GACnE,EAAQ,QAAQ,EAAO,OAAQ,EAAW,KAAM,GAChD,EAAQ,aAAa,EAAO,OAAQ,EAAgB,WAAY,GAChE,EAAQ,aAAa,EAAO,OAAQ,EAAgB,eAAgB,KACpE,EAAQ,QAAQ,EAAO,KAAM,EAAW,KAAM,GAC9C,EAAQ,aAAa,EAAO,KAAM,EAAgB,WAAY,IAC9D,EAAQ,aAAa,EAAO,KAAM,EAAgB,eAAgB,GAClE,EAAQ,aAAa,EAAO,KAAM,EAAgB,eAAgB,IAClE,EAAQ,QAAQ,EAAO,MAAO,EAAW,KAAM,GAC/C,EAAQ,aAAa,EAAO,MAAO,EAAgB,WAAY,IAC/D,EAAQ,aAAa,EAAO,MAAO,EAAgB,eAAgB,GACnE,EAAQ,aAAa,EAAO,MAAO,EAAgB,eAAgB,IACnE,EAAQ,UAAU,EAAO,MAAO,GAChC,EAAQ,UAAU,EAAO,OAAQ,GAEjC,GAAO,IAAQ,CAAC,GAAU,GChC1B,GAAM,IAAgB,GAEf,YAAiB,EAAW,CACjC,GAAM,GAAe,AAAU,GAAS,GAClC,EAAY,GAClB,OAAW,KAAa,GAAO,IAC7B,EAAU,EAAO,QAAQ,IAAc,CACrC,KAAM,EAAW,QAAQ,EAAa,MAAM,IAC5C,UAAW,EAAgB,QAAQ,EAAa,WAAW,KAI/D,MAAO,GAGF,YAAe,EAAW,CAC/B,GAAM,GAAe,AAAU,GAAS,GAClC,EAAqD,GAC3D,OAAW,KAAW,IAAU,CAC9B,GAAM,GAAa,EAAQ,aAAa,EAAa,MAAO,EAAa,YACzE,AAAI,GAAc,IAAe,EAAM,KAAK,CAAE,KAAM,EAAQ,KAAM,eAGpE,MAAO,GChBT,GAAM,IAAkB,CACtB,MAAO,CAAC,EAAG,EAAG,EAAG,GACjB,MAAO,CAAC,EAAG,EAAG,EAAG,GACjB,OAAQ,CAAC,EAAG,GAAI,GAAI,IACpB,KAAM,CAAC,GAAI,GAAI,GAAI,IACnB,MAAO,CAAC,GAAI,GAAI,GAAI,IACpB,KAAM,CAAC,IAGL,GACA,GACA,GAEJ,kBAA8B,EAAe,EAAiC,CAC5E,GAAM,GAAc,KAAM,IAAa,cAAc,EAAO,GAC5D,GAAI,CAAC,EAAa,MAAO,GACzB,GAAM,GAAqB,GAC3B,OAAS,GAAI,EAAG,EAAI,EAAY,OAAQ,IAAK,CAC3C,GAAM,GAAc,GACpB,GAAI,EAAY,GAAG,UACjB,OAAW,KAAO,QAAO,KAAK,IAE5B,EAAY,GAAO,GAAgB,GAAK,IAAI,AAAC,GAAU,EAAY,GAAG,UAAU,IAIpF,GAAM,GAAY,EAAY,GAAG,UAE7B,EAAwC,CAAC,OAAO,iBAAkB,OAAO,iBAAkB,EAAG,GAC9F,EAA2C,CAAC,EAAG,EAAG,EAAG,GACzD,GAAI,GAAa,EAAU,OAAS,EAAG,CACrC,OAAW,KAAM,GACf,AAAI,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAElC,EAAI,IAAM,EAAI,GACd,EAAI,IAAM,EAAI,GACd,EAAS,CAAC,EAAI,GAAM,GAAM,MAAM,IAAM,GAAI,EAAI,GAAM,GAAM,MAAM,IAAM,GAAI,EAAI,GAAM,GAAM,MAAM,IAAM,GAAI,EAAI,GAAM,GAAM,MAAM,IAAM,QAEtI,GAAM,EAAY,GAAG,IAAM,CACzB,KAAK,MAAM,KAAK,IAAI,EAAG,EAAY,GAAG,IAAI,QAAQ,KAClD,KAAK,MAAM,KAAK,IAAI,EAAG,EAAY,GAAG,IAAI,QAAQ,KAClD,KAAK,MAAM,KAAK,IAAK,EAAM,MAAM,IAAM,EAAI,EAAY,GAAG,IAAI,YAAY,IAAM,KAAK,IAAI,EAAG,EAAY,GAAG,IAAI,QAAQ,KACvH,KAAK,MAAM,KAAK,IAAK,EAAM,MAAM,IAAM,EAAI,EAAY,GAAG,IAAI,YAAY,IAAM,KAAK,IAAI,EAAG,EAAY,GAAG,IAAI,QAAQ,MACrH,CAAC,EAAG,EAAG,EAAG,GACd,EAAS,CACN,EAAY,GAAG,IAAI,QAAQ,GAAO,GAAM,MAAM,IAAM,GACpD,EAAY,GAAG,IAAI,QAAQ,GAAO,GAAM,MAAM,IAAM,GACpD,GAAY,GAAG,IAAI,YAAY,GAAK,EAAY,GAAG,IAAI,QAAQ,IAAO,GAAM,MAAM,IAAM,GACxF,GAAY,GAAG,IAAI,YAAY,GAAK,EAAY,GAAG,IAAI,QAAQ,IAAO,GAAM,MAAM,IAAM,IAG7F,GAAM,GAAY,AAAW,GAAQ,GACrC,EAAM,KAAK,CACT,GAAI,EACJ,MAAO,KAAK,MAAM,IAAM,EAAY,GAAG,YAAc,IACrD,MACA,SACA,YACA,YAAa,EACb,UAAW,IAGf,MAAO,GAGT,kBAA2B,EAAiE,CAC1F,AAAI,CAAC,IAAqB,CAAC,GACzB,EAAC,GAAmB,IAAiB,KAAM,SAAQ,IAAI,CACrD,EAAO,KAAK,QAAU,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eAA2C,KACpM,EAAO,KAAK,UAAY,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eAA2C,OAEpM,EAAO,KAAK,SACd,CAAI,CAAC,IAAqB,CAAC,GAAkB,SAAa,EAAI,qBAAsB,EAAO,KAAK,SAAS,WAChG,EAAO,OAAO,EAAI,cAAe,GAAkB,UAC5D,AAAI,CAAC,IAAiB,CAAC,GAAc,SAAa,EAAI,qBAAsB,EAAO,KAAK,SAAS,WACxF,EAAO,OAAO,EAAI,cAAe,GAAc,YAGtD,GAAO,OAAO,EAAI,gBAAiB,GAAkB,UACrD,EAAO,OAAO,EAAI,gBAAiB,GAAc,WAEvD,GAAM,GAAe,GAAiB,IAAa,IACnD,UAAe,GAAiB,IAAa,EAAc,IACpD,CAAC,GAAmB,ICnGtB,GAAM,IAAO,CAClB,OACA,gBACA,UACA,iBACA,iBACA,WACA,kBACA,UACA,WACA,YACA,aACA,eACA,gBACA,YACA,aACA,YACA,aACA,WACA,YACA,YACA,aACA,YACA,aACA,UACA,WACA,WACA,YACA,YACA,aACA,WACA,YACA,WACA,YACA,SACA,WACA,YACA,WACA,aACA,aAGW,GAAQ,CACnB,OACA,gBACA,UACA,iBACA,iBACA,WACA,kBACA,UACA,WACA,YACA,aACA,eACA,gBACA,YACA,aACA,UACA,WACA,UACA,WACA,UACA,WACA,UACA,WACA,YACA,aACA,OACA,WACA,UACA,WACA,UACA,YC5DF,GAAI,GAEJ,kBAA2B,EAAqC,CAC9D,MAAK,GAMM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UALlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,EAAM,MAAW,SAAS,EAAM,UAAa,OAAO,aAAa,YAAY,IAAI,GAAG,MACpF,EAAM,OAAY,SAAS,EAAM,UAAa,OAAO,aAAa,YAAY,IAAI,GAAG,MACrF,AAAI,CAAC,GAAS,CAAC,EAAM,SAAa,EAAI,qBAAsB,EAAO,KAAK,WAC/D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGT,kBAA8B,EAAe,EAAiC,CAC5E,GAAI,CAAC,EAAO,MAAO,GACnB,GAAI,CAAC,EAAO,KAAK,QAAS,MAAO,GACjC,GAAM,GAAU,CAAE,MAAQ,EAAM,MAAM,IAAM,EAAI,OAAS,EAAM,MAAM,IAAM,GACrE,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,MAAU,EAAM,QAAY,IAC3E,EAAY,AAAG,MAAI,EAAQ,CAAC,MAClC,AAAG,UAAQ,GACX,GAAM,GAAO,KAAM,GAAM,QAAQ,GAC3B,EAAQ,EAAK,KAAK,AAAC,GAAO,EAAE,OAAS,KAAO,EAAE,OAAS,KACvD,EAAS,KAAM,kBAAO,SAAU,GACtC,EAAK,QAAQ,AAAC,GAAM,AAAG,UAAQ,IAC/B,AAAG,UAAQ,GACX,GAAM,GAA6H,GAC7H,EAAS,kBAAQ,UAAW,IAAkB,GAAmB,GACjE,EAAQ,EACd,OAAS,GAAI,EAAG,EAAI,EAAO,OAAS,EAAO,IACzC,EAAU,KAAK,CACb,GAAI,EACJ,KAAM,EAAO,GACb,SAAU,CACR,KAAK,MAAM,EAAQ,MAAQ,EAAO,EAAQ,EAAI,GAAK,KACnD,KAAK,MAAM,EAAQ,OAAS,EAAO,EAAQ,EAAI,GAAK,KACpD,KAAK,MAAM,EAAO,EAAQ,EAAI,IAAM,GAEtC,YAAa,CACX,EAAO,EAAQ,EAAI,GAAK,IACxB,EAAO,EAAQ,EAAI,GAAK,IACxB,EAAO,EAAQ,EAAI,GAAK,GAE1B,MAAQ,KAAM,KAAK,MAAM,IAAO,GAAI,KAAK,IAAI,EAAO,EAAQ,EAAI,OAAS,IACzE,SAAW,KAAM,KAAK,MAAM,IAAO,GAAI,KAAK,IAAI,EAAO,EAAQ,EAAI,OAAS,MAGhF,GAAM,GAAI,EAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IACpC,EAAI,EAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IACpC,EAAwC,CAC5C,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,GAC7B,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAEzB,EAA2C,CAAC,EAAG,EAAG,EAAG,GACrD,EAAQ,EAAU,OAAO,CAAC,EAAM,IAAU,EAAK,MAAQ,EAAO,EAAK,MAAQ,EAAO,GACxF,MAAO,CAAC,CAAE,GAAI,EAAG,QAAO,MAAK,SAAQ,cC3DvC,GAAI,GAIE,GAA8B,GAChC,GAAwC,CAAC,EAAG,EAAG,EAAG,GAClD,GAA2C,CAAC,EAAG,EAAG,EAAG,GACrD,GAAQ,EACR,GAAU,OAAO,iBAEf,GAAY,CAAC,OAAQ,OAAQ,gBAAiB,aAAc,aAAc,QAAS,eAAgB,YAAa,YAAa,SAAU,WAAY,YAAa,aAAc,UAAW,WAAY,aAE3M,kBAA2B,EAAqC,CAC9D,MAAK,GAIM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,AAAI,CAAC,GAAS,CAAC,EAAM,SAAa,EAAI,qBAAsB,EAAO,KAAK,WAC/D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAIT,YAAe,EAAQ,EAAU,CAC/B,GAAM,CAAC,EAAO,GAAU,EAAO,MAC/B,MAAO,AAAG,QAAK,IAAM,CACnB,GAAM,GAAM,CAAC,EAAG,IAAM,AAAG,MAAI,EAAG,AAAG,MAAI,AAAG,MAAI,EAAG,AAAG,SAAO,EAAG,UAAW,AAAG,SAAO,EAAG,WAChF,EAAW,AAAG,UAAQ,EAAQ,CAAC,EAAS,IACxC,EAAW,AAAG,MAAI,EAAU,GAAG,WAAW,GAChD,GAAI,EAAW,EAAU,CACvB,GAAM,GAAS,AAAG,SAAO,EAAU,GAC7B,EAAI,EAAI,EAAQ,GAAO,WAAW,GAClC,EAAI,AAAG,MAAI,EAAQ,AAAG,SAAO,EAAO,UAAU,WAAW,GAC/D,MAAO,CAAC,EAAG,EAAG,GAEhB,MAAO,CAAC,EAAG,EAAG,KAIlB,kBAA8B,EAAe,EAAiC,CAC5E,MAAK,IAAU,EAAO,KAAK,YAAe,EAAO,WAAa,OAAO,KAAK,IAAW,OAAS,EAC5F,MACO,CAAC,CAAE,GAAI,EAAG,SAAO,OAAK,UAAQ,gBAEvC,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,OAAK,IAAM,CAC3B,GAAI,CAAC,EAAM,OAAO,GAAG,MAAO,MAAO,MACnC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,IAAK,IAGpG,MADa,AADG,AAAG,OAAI,EAAQ,GACV,IAAI,KAIvB,EAIJ,GAHI,EAAO,KAAK,SAAS,GAAO,KAAM,GAAM,QAAQ,IACpD,AAAG,UAAQ,GAEP,EAAM,CACR,GAAU,OAAS,EACnB,GAAM,GAAU,EAAK,UACrB,AAAG,UAAQ,GAEX,GAAM,GAAQ,EAAQ,QAAQ,GAC9B,AAAG,UAAQ,GAEX,OAAS,GAAK,EAAG,EAAK,EAAM,OAAQ,IAAM,CAExC,GAAM,CAAC,EAAG,EAAG,GAAa,GAAM,EAAM,GAAK,EAAO,KAAK,eACvD,AAAI,GAAQ,EAAO,KAAK,eACtB,GAAU,KAAK,CACb,MAAO,KAAK,MAAM,IAAM,GAAa,IACrC,KAAM,GAAU,GAChB,YAAa,CAEX,EAAI,EAAM,OAAO,GAAG,MAAM,GAAI,EAAI,EAAM,OAAO,GAAG,MAAM,IAE1D,SAAU,CAER,KAAK,MAAM,EAAM,MAAM,GAAK,EAAI,EAAM,OAAO,GAAG,MAAM,IAAK,KAAK,MAAM,EAAM,MAAM,GAAK,EAAI,EAAM,OAAO,GAAG,MAAM,OAKzH,EAAM,QAAQ,AAAC,GAAM,AAAG,UAAQ,IAElC,GAAQ,GAAU,OAAO,CAAC,EAAM,IAAU,EAAK,MAAQ,EAAO,EAAK,MAAQ,EAAO,GAClF,GAAM,GAAI,GAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IACpC,EAAI,GAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IAC1C,GAAM,CACJ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,GAC7B,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAE/B,GAAM,GAAO,GAAU,IAAI,AAAC,GAAM,EAAE,YAAY,IAC1C,EAAO,GAAU,IAAI,AAAC,GAAM,EAAE,YAAY,IAChD,GAAS,CACP,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GAAQ,KAAK,IAAI,GAAG,GAChC,KAAK,IAAI,GAAG,GAAQ,KAAK,IAAI,GAAG,IAElC,EAAQ,CAAC,CAAE,GAAI,EAAG,SAAO,OAAK,UAAQ,mBCtG1C,GAAI,IAGE,GAA8B,GAGhC,GAAwC,CAAC,EAAG,EAAG,EAAG,GAClD,GAA2C,CAAC,EAAG,EAAG,EAAG,GACrD,GAAQ,EACR,GAAU,OAAO,iBAEf,GAAY,CAAC,OAAQ,UAAW,WAAY,UAAW,WAAY,eAAgB,gBAAiB,YAAa,aAAc,YAAa,aAAc,UAAW,WAAY,WAAY,YAAa,YAAa,cAE7N,kBAA2B,EAAqC,CAC9D,MAAK,IAIM,EAAO,OAAO,EAAI,gBAAiB,GAAM,UAHlD,IAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,AAAI,CAAC,IAAS,CAAC,GAAM,SAAa,EAAI,qBAAsB,EAAO,KAAK,WAC/D,EAAO,OAAO,EAAI,cAAe,GAAM,WAE3C,GAGT,kBAA+B,EAAK,EAAQ,EAAO,CACjD,GAAU,OAAS,EACnB,GAAM,GAAM,EAAI,GAAG,GACnB,OAAS,GAAK,EAAG,EAAK,EAAI,OAAQ,IAChC,GAAQ,EAAI,GAAI,GACZ,GAAQ,EAAO,KAAK,eACtB,GAAU,KAAK,CACb,MAAO,KAAK,MAAM,IAAM,IAAS,IACjC,KAAM,GAAU,GAChB,YAAa,CACX,EAAI,GAAI,GACR,EAAI,GAAI,IAEV,SAAU,CACR,KAAK,MAAO,GAAM,MAAM,IAAM,GAAK,EAAI,GAAI,IAC3C,KAAK,MAAO,GAAM,MAAM,IAAM,GAAK,EAAI,GAAI,OAKnD,GAAQ,GAAU,OAAO,CAAC,EAAM,IAAU,EAAK,MAAQ,EAAO,EAAK,MAAQ,EAAO,GAClF,GAAM,GAAI,GAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IACpC,EAAI,GAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IAC1C,GAAM,CACJ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,GAC7B,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAE/B,GAAM,GAAO,GAAU,IAAI,AAAC,GAAM,EAAE,YAAY,IAC1C,EAAO,GAAU,IAAI,AAAC,GAAM,EAAE,YAAY,IAChD,GAAS,CACP,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GAAQ,KAAK,IAAI,GAAG,GAChC,KAAK,IAAI,GAAG,GAAQ,KAAK,IAAI,GAAG,IAElC,GAAM,GAAyB,GAC/B,SAAQ,KAAK,CAAE,GAAI,EAAG,SAAO,OAAK,UAAQ,eACnC,EAGT,kBAA8B,EAAK,EAAQ,EAAO,CAChD,GAAM,GAAyB,GAC/B,OAAS,GAAI,EAAG,EAAI,EAAI,GAAG,OAAQ,IAAK,CACtC,GAAM,GAAM,EAAI,GAAG,GAGnB,GAFA,GAAQ,KAAK,MAAM,IAAM,EAAI,GAAK,IAAM,IAEpC,KAAQ,EAAO,KAAK,eACxB,IAAU,OAAS,EACnB,OAAS,GAAI,EAAG,EAAI,GAAI,IAAK,CAC3B,GAAM,GAAY,KAAK,MAAM,IAAM,EAAI,EAAI,EAAI,IAAM,IACrD,AAAI,EAAY,EAAO,KAAK,eAC1B,GAAU,KAAK,CACb,KAAM,GAAU,GAChB,MAAO,EACP,YAAa,CACX,EAAI,EAAI,EAAI,GACZ,EAAI,EAAI,EAAI,IAEd,SAAU,CACR,KAAK,MAAM,EAAI,EAAI,EAAI,GAAM,GAAM,MAAM,IAAM,IAC/C,KAAK,MAAM,EAAI,EAAI,EAAI,GAAM,GAAM,MAAM,IAAM,OAKvD,GAAS,CAAC,EAAI,GAAK,GAAI,EAAI,GAAK,GAAI,EAAI,GAAK,GAAK,EAAI,GAAK,GAAI,EAAI,GAAK,GAAK,EAAI,GAAK,IACtF,EAAQ,KAAK,CACX,GAAI,EACJ,SACA,UACA,IAAK,CACH,KAAK,MAAM,GAAO,GAAM,GAAM,MAAM,IAAM,IAC1C,KAAK,MAAM,GAAO,GAAM,GAAM,MAAM,IAAM,IAC1C,KAAK,MAAM,GAAO,GAAM,GAAM,MAAM,IAAM,IAC1C,KAAK,MAAM,GAAO,GAAM,GAAM,MAAM,IAAM,KAE5C,gBAGJ,MAAO,GAGT,kBAA8B,EAAe,EAAiC,CAC5E,MAAK,IAAU,EAAO,KAAK,YAAe,EAAO,WAAa,OAAO,KAAK,IAAW,OAAS,EAC5F,MACO,CAAC,CAAE,GAAI,EAAG,SAAO,OAAK,UAAQ,gBAEvC,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,OAAK,IAAM,CAC3B,GAAI,CAAC,GAAM,OAAO,GAAG,MAAO,MAAO,MACnC,GAAI,GAAY,GAAM,OAAO,GAAG,MAAM,GACtC,AAAI,IAAc,IAAI,GAAY,KAClC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAW,GAAY,IAEtE,MADa,AAAG,QAAK,EAAQ,WAI3B,EACJ,AAAI,EAAO,KAAK,SAAS,GAAO,KAAM,IAAM,QAAQ,IACpD,AAAG,UAAQ,GAEN,GAAM,EAAQ,IACnB,GAAM,GAAM,KAAM,GAAK,QACnB,EACJ,AAAI,EAAK,MAAM,KAAO,GAAI,EAAU,KAAM,IAAgB,EAAK,EAAQ,GAC9D,EAAK,MAAM,KAAO,IAAI,GAAU,KAAM,IAAe,EAAK,EAAQ,IAC3E,AAAG,UAAQ,GAEX,EAAQ,MC5IL,GAAM,IAAS,CACpB,CAAE,MAAO,EAAG,MAAO,UACnB,CAAE,MAAO,EAAG,MAAO,WACnB,CAAE,MAAO,EAAG,MAAO,OACnB,CAAE,MAAO,EAAG,MAAO,cACnB,CAAE,MAAO,EAAG,MAAO,YACnB,CAAE,MAAO,EAAG,MAAO,OACnB,CAAE,MAAO,EAAG,MAAO,SACnB,CAAE,MAAO,EAAG,MAAO,SACnB,CAAE,MAAO,EAAG,MAAO,QACnB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,eACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,kBACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,MACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,eCxEtB,GAAI,GACA,GAAoB,GACpB,GAAU,OAAO,iBAEf,GAAW,IAEjB,kBAA2B,EAAqC,CAC9D,GAAK,EAOE,AAAI,EAAO,OAAO,EAAI,gBAAiB,EAAM,cAPxC,CACV,EAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,OAAO,YACzE,GAAM,GAAS,OAAO,OAAO,EAAM,eAAe,QAElD,GADA,EAAM,UAAY,MAAM,QAAQ,GAAU,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,MAAQ,KACpF,CAAC,EAAM,UAAW,KAAM,IAAI,OAAM,4CAA4C,EAAO,OAAO,aAChG,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,OAAO,WAC9D,EAAO,OAAO,EAAI,cAAe,EAAM,UAElD,MAAO,GAGT,kBAAuB,EAAK,EAAW,EAAa,EAAQ,CAC1D,GAAI,GAAK,EACL,EAAuB,GAC3B,OAAW,KAAc,CAAC,EAAG,EAAG,GAE9B,AAAG,OAAK,SAAY,CAlCxB,QAmCM,GAAM,GAAW,EAAa,GAExB,EAAU,KAAI,KAAK,AAAC,GAAO,EAAE,MAAM,KAAQ,GAAY,GAAM,EAAE,MAAM,KAAO,GAAO,UAAzE,cAAmF,UAC7F,EAAY,KAAI,KAAK,AAAC,GAAO,EAAE,MAAM,KAAQ,GAAY,GAAM,EAAE,MAAM,GAAK,GAAO,UAAvE,cAAiF,UAE7F,EAAS,KAAM,AADJ,GAAU,QAAQ,CAAC,GAAI,EAAG,EAAU,MAAM,GAAK,IAClC,OAAO,GAAG,QAClC,EAAS,KAAM,GAAQ,QAC7B,OAAS,GAAI,EAAG,EAAI,EAAQ,MAAM,GAAI,IACpC,OAAS,GAAI,EAAG,EAAI,EAAQ,MAAM,GAAI,IAAK,CACzC,GAAM,GAAQ,EAAO,GAAG,GACxB,GAAI,EAAQ,EAAO,OAAO,eAAiB,IAAM,GAAI,CACnD,GAAM,GAAM,IAAM,KAAK,MAAM,EAAI,IAAa,EACxC,EAAM,IAAM,KAAK,MAAM,EAAI,IAAa,EACxC,EAAY,EAAO,GAAG,IAAI,AAAC,GAAM,EAAK,GAAW,EAAa,IAC9D,CAAC,EAAG,GAAK,CACb,EAAM,GAAW,EAAa,EAAU,GACxC,EAAM,GAAW,EAAa,EAAU,IAEpC,CAAC,EAAG,GAAK,CACb,EAAM,GAAW,EAAa,EAAU,GAAM,EAC9C,EAAM,GAAW,EAAa,EAAU,GAAM,GAE5C,EAAS,CAAC,EAAG,EAAG,EAAG,GACvB,EAAS,EAAO,IAAI,AAAC,GAAM,KAAK,IAAI,EAAG,KAAK,IAAI,EAAG,KACnD,GAAM,GAAM,CACV,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,IAEpB,EAAS,CACb,GAAI,IAEJ,MAAO,KAAK,MAAM,IAAM,GAAS,IACjC,MAAO,EAAI,EACX,MAAO,GAAO,GAAG,MAGjB,IAAM,EAAI,IAAI,AAAC,GAAM,KAAK,MAAM,IAChC,OAAQ,GAEV,EAAQ,KAAK,OAOvB,EAAI,QAAQ,AAAC,GAAM,AAAG,UAAQ,IAI9B,GAAM,GAAW,EAAQ,IAAI,AAAC,GAAM,CAAC,EAAE,OAAO,GAAI,EAAE,OAAO,GAAI,EAAE,OAAO,GAAI,EAAE,OAAO,KAC/E,EAAY,EAAQ,IAAI,AAAC,GAAM,EAAE,OACnC,EAAwB,GAC5B,GAAI,GAAY,EAAS,OAAS,EAAG,CACnC,GAAM,GAAM,KAAM,AAAG,SAAM,uBAAuB,EAAU,EAAW,EAAO,OAAO,YAAa,EAAO,OAAO,aAAc,EAAO,OAAO,eAC5I,EAAS,KAAM,GAAI,OACnB,AAAG,UAAQ,GAIb,SAAU,EACP,OAAO,CAAC,EAAM,IAAQ,EAAO,SAAS,IACtC,KAAK,CAAC,EAAG,IAAO,EAAE,MAAQ,EAAE,OAExB,EAGT,kBAA8B,EAAe,EAAiC,CAC5E,MAAK,IAAU,EAAO,OAAO,YAAe,EAAO,WAAc,GAAK,OAAS,EAC7E,MACO,IAET,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAa,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,IAC1C,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,UAAW,EAAM,WAAY,IAC5E,EAAO,AAAG,MAAI,EAAQ,KACtB,EAAY,EAAK,UAAU,CAAC,EAAG,EAAG,EAAG,IAC3C,AAAG,UAAQ,GACX,AAAG,UAAQ,GAEX,GAAI,GACJ,AAAI,EAAO,OAAO,SAAS,GAAU,KAAM,GAAM,QAAQ,IACzD,AAAG,UAAQ,GAEX,GAAM,GAAM,KAAM,IAAQ,EAAS,EAAM,UAAW,EAAY,GAChE,GAAO,EACP,EAAQ,MCjHZ,GAAI,GACA,GAAe,GACf,GAAU,OAAO,iBAErB,kBAA2B,EAAqC,CAC9D,GAAK,EAOE,AAAI,EAAO,OAAO,EAAI,gBAAiB,EAAM,cAPxC,CACV,EAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,OAAO,YACzE,GAAM,GAAS,OAAO,OAAO,EAAM,eAAe,QAElD,GADA,EAAM,UAAY,MAAM,QAAQ,GAAU,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,MAAQ,KACpF,CAAC,EAAM,UAAW,KAAM,IAAI,OAAM,4CAA4C,EAAO,OAAO,aAChG,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,OAAO,WAC9D,EAAO,OAAO,EAAI,cAAe,EAAM,UAElD,MAAO,GAGT,kBAAuB,EAAa,EAAW,EAAa,EAAgB,CAC1E,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAuB,GACvB,EAAa,KAAM,GAAI,QACvB,EAAW,AAAG,UAAQ,GAC5B,AAAG,UAAQ,GACX,GAAM,GAAM,AAAG,QAAM,EAAU,EAAG,GAClC,AAAG,UAAQ,GACX,GAAM,GAAS,AAAG,QAAM,CAAC,EAAI,GAAI,EAAI,GAAI,EAAI,GAAI,EAAI,IAAK,GACpD,EAAS,AAAG,UAAQ,GACpB,EAAU,AAAG,UAAQ,EAAI,IACzB,EAAW,AAAG,UAAQ,EAAI,IAChC,EAAI,QAAQ,AAAC,GAAM,AAAG,UAAQ,IAC9B,GAAM,GAAO,KAAM,AAAG,SAAM,uBAAuB,EAAQ,EAAS,EAAO,OAAO,YAAa,EAAO,OAAO,aAAc,EAAO,OAAO,eACzI,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,GAAM,GAAM,KAAM,GAAK,OACvB,AAAG,UAAQ,GACX,GAAI,GAAI,EACR,OAAW,KAAM,GAAK,CACpB,GAAM,GAAQ,KAAK,MAAM,IAAM,EAAW,GAAG,GAAI,IAAM,IACjD,EAAW,EAAW,GAAG,GAAI,GAC7B,EAAQ,GAAO,GAAU,MACzB,CAAC,EAAG,GAAK,CACb,EAAW,GAAG,GAAI,GAAK,EACvB,EAAW,GAAG,GAAI,GAAK,GAEnB,EAAS,CACb,EACA,EACA,EAAW,GAAG,GAAI,GAAK,EAAY,EACnC,EAAW,GAAG,GAAI,GAAK,EAAY,GAE/B,EAAM,CACV,KAAK,MAAM,EAAO,GAAK,EAAY,IACnC,KAAK,MAAM,EAAO,GAAK,EAAY,IACnC,KAAK,MAAM,EAAO,GAAK,EAAY,IACnC,KAAK,MAAM,EAAO,GAAK,EAAY,KAErC,EAAQ,KAAK,CAAE,GAAI,IAAK,QAAO,MAAO,EAAU,QAAO,MAAK,WAE9D,MAAO,GAGT,kBAA8B,EAAe,EAAiC,CAC5E,MAAK,IAAU,EAAO,OAAO,YAAe,EAAO,WAAc,GAAK,OAAS,EAC7E,MACO,IAET,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAa,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,IAC1C,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,UAAW,EAAM,YAChE,EAAU,EAAO,OAAO,QAAU,EAAM,QAAQ,EAAQ,CAAC,uBAAyB,KACxF,AAAG,UAAQ,GAEX,GAAM,GAAM,KAAM,IAAQ,EAAS,EAAM,UAAW,EAAY,GAChE,GAAO,EACP,EAAQ,MClFZ,YAAmB,EAAI,EAAc,EAAgB,CACnD,GAAM,GAAW,SAAU,EAAQ,EAAQ,EAAY,CACrD,GAAM,GAAI,GAAI,QAAO,MAAQ,EAAS,eAAgB,MACtD,EAAO,QAAQ,EAAG,CAAC,EAAO,IACxB,GAAW,GAAQ,EACZ,KAIL,EAAW,SAAU,EAAQ,EAAM,CACvC,GAAM,GAAS,EAAG,aAAa,GAG/B,GAFA,EAAG,aAAa,EAAQ,GACxB,EAAG,cAAc,GACb,CAAC,EAAG,mBAAmB,EAAQ,EAAG,gBAAiB,KAAM,IAAI,OAAM,4BAA6B,EAAG,iBAAiB,IACxH,MAAO,IAGT,KAAK,QAAU,GACf,KAAK,UAAY,GACjB,GAAM,GAAO,EAAS,EAAc,EAAG,eACjC,EAAO,EAAS,EAAgB,EAAG,iBAMzC,GALA,KAAK,GAAK,EAAG,gBACb,EAAG,aAAa,KAAK,GAAI,GACzB,EAAG,aAAa,KAAK,GAAI,GACzB,EAAG,YAAY,KAAK,IAEhB,CAAC,EAAG,oBAAoB,KAAK,GAAI,EAAG,aAAc,KAAM,IAAI,OAAM,yBAA0B,EAAG,kBAAkB,KAAK,KAE1H,EAAG,WAAW,KAAK,IAEnB,EAAS,EAAc,YAAa,KAAK,WACzC,OAAW,KAAK,MAAK,UAAW,KAAK,UAAU,GAAK,EAAG,kBAAkB,KAAK,GAAI,GAElF,EAAS,EAAc,UAAW,KAAK,SACvC,EAAS,EAAgB,UAAW,KAAK,SACzC,OAAW,KAAK,MAAK,QAAS,KAAK,QAAQ,GAAK,EAAG,mBAAmB,KAAK,GAAI,GAI1E,YAAuB,EAAQ,CACpC,AAAK,GAAQ,GAAS,IACtB,GAAI,GAAa,EACb,EAAiB,KACjB,EAAe,GACf,EAA2B,GAC3B,EAAoB,CAAC,KAAM,MAC3B,EAAe,GACf,EAAS,GACT,EAAU,GACV,EAAgB,KAChB,EAAkB,KAChB,EAAU,GACV,EAAU,EAAO,QAAU,SAAS,cAAc,UAElD,EAAsB,GACtB,EAAO,CAAE,aAAc,GACvB,EAAK,EAAQ,WAAW,SAC9B,GAAI,CAAC,EAAI,KAAM,IAAI,OAAM,+BAEzB,KAAK,UAAY,SAAU,EAAM,CAE/B,GAAM,GAAO,MAAM,UAAU,MAAM,KAAK,UAAW,GAC7C,EAAS,EAAQ,GACvB,EAAa,KAAK,CAAE,KAAM,EAAQ,UAGpC,KAAK,MAAQ,UAAY,CACvB,EAAe,IAGjB,GAAM,GAAU,SAAU,EAAO,EAAQ,CAEvC,GAAI,MAAU,GAAU,IAAW,GAMnC,IALA,EAAQ,MAAQ,EAChB,EAAS,EACT,EAAQ,OAAS,EACjB,EAAU,EAEN,CAAC,EAAe,CAElB,GAAM,GAAW,GAAI,cAAa,CAChC,GAAI,GAAI,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,GAAI,EAAG,EAAG,EACrC,GAAI,EAAG,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,EAAG,EAAG,EAAG,IAGrC,AAAC,EAAgB,EAAG,eAAgB,EAAG,WAAW,EAAG,aAAc,GACnE,EAAG,WAAW,EAAG,aAAc,EAAU,EAAG,aAC5C,EAAG,YAAY,EAAG,+BAAgC,IAEpD,EAAG,SAAS,EAAG,EAAG,EAAQ,GAE1B,EAAoB,CAAC,KAAM,QAGvB,EAA4B,SAAU,EAAO,EAAQ,CACzD,GAAM,GAAM,EAAG,oBACf,EAAG,gBAAgB,EAAG,YAAa,GACnC,GAAM,GAAe,EAAG,qBACxB,EAAG,iBAAiB,EAAG,aAAc,GACrC,GAAM,GAAU,EAAG,gBACnB,SAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,WAAW,EAAG,WAAY,EAAG,EAAG,KAAM,EAAO,EAAQ,EAAG,EAAG,KAAM,EAAG,cAAe,MACtF,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,QAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,QAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,qBAAqB,EAAG,YAAa,EAAG,kBAAmB,EAAG,WAAY,EAAS,GACtF,EAAG,YAAY,EAAG,WAAY,MAC9B,EAAG,gBAAgB,EAAG,YAAa,MAC5B,CAAE,MAAK,YAGV,EAAsB,SAAU,EAAO,CAC3C,SAAkB,GAAS,EAAkB,IAAU,EAA0B,EAAQ,GAClF,EAAkB,IAGrB,EAAQ,SAAU,EAAQ,KAAM,CAzHxC,QA0HI,GAAI,GAAS,KACT,EAAS,KACT,EAAQ,GAEZ,AAAI,IAAe,EAEjB,EAAS,EAGT,EAAS,KAAoB,KAApB,cAA+C,QAE1D,IAEA,AAAI,GAAgB,CAAE,GAAQ,EAAK,cAGjC,GAAS,KACT,EAAQ,EAAa,GAAM,GAG3B,GAA4B,GAA2B,GAAK,EAC5D,EAAS,KAAoB,KAApB,cAA+C,KAG1D,EAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,gBAAgB,EAAG,YAAa,GACnC,EAAG,UAAU,EAAgB,QAAQ,MAAQ,EAAQ,GAAK,GAC1D,EAAG,WAAW,EAAG,UAAW,EAAG,IAGjC,KAAK,MAAQ,SAAU,EAAO,CAY5B,GAXA,EAAQ,EAAM,MAAO,EAAM,QAC3B,EAAa,EAER,GAAgB,GAAiB,EAAG,iBACzC,EAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,SAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,SAC1D,EAAG,WAAW,EAAG,WAAY,EAAG,EAAG,KAAM,EAAG,KAAM,EAAG,cAAe,GAEhE,EAAa,SAAW,EAE1B,WACO,EAET,OAAS,GAAI,EAAG,EAAI,EAAa,OAAQ,IAAK,CAC5C,EAAgB,IAAM,EAAa,OAAS,EAC5C,GAAM,GAAI,EAAa,GACvB,EAAE,KAAK,MAAM,KAAM,EAAE,MAAQ,IAE/B,MAAO,IAGT,GAAM,GAAiB,SAAU,EAAgB,CAC/C,GAAI,EAAoB,GACtB,SAAkB,EAAoB,GACtC,EAAG,WAAW,EAAgB,IACvB,EAGT,GAAM,GAAS,GACf,EAAO,gBAAkB,CACvB,yBACA,sBACA,qBACA,oBACA,uBACA,oBACA,YACA,mDACA,KACA,KAAK;AAAA,GACP,EAAO,kBAAoB,CACzB,yBACA,oBACA,6BACA,oBACA,0CACA,KACA,KAAK;AAAA,GACP,EAAkB,GAAI,IAAU,EAAI,EAAO,gBAAiB,GAC5D,GAAM,GAAY,aAAa,kBACzB,EAAW,EAAI,EACrB,SAAG,wBAAwB,EAAgB,UAAU,KACrD,EAAG,oBAAoB,EAAgB,UAAU,IAAK,EAAG,EAAG,MAAO,GAAO,EAAU,EAAI,GACxF,EAAG,wBAAwB,EAAgB,UAAU,IACrD,EAAG,oBAAoB,EAAgB,UAAU,GAAI,EAAG,EAAG,MAAO,GAAO,EAAU,EAAI,GACvF,EAAoB,GAAkB,EAC/B,GAKT,EAAQ,YAAc,SAAU,EAAQ,CAEtC,GAAM,GAAI,GAAI,cAAa,GAC3B,EAAE,IAAM,IACR,EAAE,IAAM,IACR,EAAE,KAAO,IACT,EAAE,KAAO,IAET,GAAM,GAAU,EAAE,MAAQ,GAAK,EAAE,KAAO,GAAK,EAAE,KAAO,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,EAC7H,EAAQ,YAAY,OAAO,cAC3B,EAAQ,YAAY,OAAO,WACzB,EAAU,EAAe,GAC/B,EAAG,WAAW,EAAQ,QAAQ,EAAG,GACjC,KAEF,EAAQ,YAAY,OAAS,GAC7B,EAAQ,YAAY,OAAO,WAAa,CACtC,yBACA,oBACA,6BACA,uBACA,oBACA,oCACA,6EACA,6EACA,kFACA,kFACA,KACA,KAAK;AAAA,GACP,EAAQ,YAAY,OAAO,cAAgB,CACzC,yBACA,oBACA,6BACA,uBACA,oBACA,oCACA,gEACA,gEACA,oEACA,wBACA,KACA,KAAK;AAAA,GAEP,EAAQ,WAAa,SAAU,EAAY,CACzC,GAAM,GAAK,IAAc,GAAK,EAC9B,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,SAAU,EAAQ,CACrC,GAAM,GAAK,IAAU,GAAK,EAAI,EAAI,EAC5B,EAAM,GAAI,GAAK,IACrB,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,WAAW,KAGrB,EAAQ,SAAW,SAAU,EAAQ,CACnC,GAAM,GAAK,IAAU,GAAK,EACpB,EAAI,KAAQ,GAAI,GAEtB,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,SAAW,UAAY,CAC7B,EAAQ,SAAS,KAGnB,EAAQ,IAAM,SAAU,EAAU,CAChC,EAAY,IAAY,GAAK,IAAM,KAAK,GACxC,GAAM,GAAM,KAAK,IAAI,GACf,EAAM,KAAK,IAAI,GACf,EAAO,KACP,EAAO,KACP,EAAO,KAEb,EAAQ,YAAY,CAClB,EAAO,EAAO,GAAI,GAAQ,EAAO,CAAC,EAAO,EAAO,EAAO,CAAC,EAAQ,EAAO,CAAC,EAAO,EAAO,EAAO,CAAC,EAAQ,EAAO,GAAI,GAAO,EAAG,EAC3H,EAAO,EAAO,CAAC,EAAQ,EAAO,KAAQ,EAAO,EAAO,GAAI,GAAQ,EAAO,IAAQ,EAAO,EAAO,CAAC,EAAQ,EAAO,MAAS,EAAG,EACzH,EAAO,EAAO,CAAC,EAAQ,EAAO,CAAE,GAAI,GAAQ,EAAO,EAAO,CAAC,EAAQ,EAAO,EAAO,EAAO,EAAO,GAAI,GAAQ,EAAO,EAAO,EAAG,EAC5H,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,oBAAsB,UAAY,CACxC,EAAQ,YAAY,CAClB,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,MAAQ,UAAY,CAC1B,EAAQ,YAAY,CAClB,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,QAAU,UAAY,CAC5B,EAAQ,YAAY,CAClB,kBAAoB,mBAAqB,mBAAqB,EAAG,kBACjE,qBAAuB,kBAAoB,mBAAqB,EAAG,mBACnE,mBAAqB,oBAAsB,mBAAqB,EAAG,mBACnE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,eAAiB,UAAY,CACnC,EAAQ,YAAY,CAClB,kBAAoB,kBAAoB,oBAAsB,EAAG,kBACjE,mBAAqB,kBAAoB,mBAAqB,EAAG,kBACjE,kBAAoB,mBAAqB,kBAAoB,EAAG,kBAChE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,YAAY,CAClB,mBAAoB,mBAAqB,oBAAsB,EAAG,kBAClE,oBAAsB,mBAAoB,oBAAsB,EAAG,mBACnE,oBAAsB,mBAAqB,mBAAoB,EAAG,kBAClE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,YAAc,UAAY,CAChC,EAAQ,YAAY,CAClB,mBAAoB,mBAAqB,oBAAsB,EAAG,mBAClE,mBAAqB,mBAAoB,oBAAsB,EAAG,mBAClE,kBAAoB,mBAAqB,kBAAmB,EAAG,mBAC/D,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,SAAW,UAAY,CAC7B,EAAQ,YAAY,CAClB,MAAO,MAAQ,MAAQ,EAAG,EAC1B,MAAQ,MAAO,MAAQ,EAAG,EAC1B,MAAQ,MAAQ,MAAO,EAAG,EAC1B,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAMhB,EAAQ,YAAc,SAAU,EAAQ,CACtC,GAAM,GAAI,GAAI,cAAa,GACrB,EAAa,EAAI,EACjB,EAAa,EAAI,EACjB,EAAU,EAAe,EAAQ,YAAY,QACnD,EAAG,WAAW,EAAQ,QAAQ,EAAG,GACjC,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAY,GAC7C,KAGF,EAAQ,YAAY,OAAS,CAC3B,yBACA,oBACA,6BACA,mBACA,sBACA,oBACA,2CACA,4DACA,mEACA,6DACA,sCACA,6DACA,oEACA,6DACA,4CACA,kBACA,yCACA,yCACA,wCACA,0BACA,KACA,KAAK;AAAA,GAEP,EAAQ,YAAc,UAAY,CAChC,EAAQ,YAAY,KAAK,KAAM,CAC7B,EAAG,EAAG,EACN,EAAG,GAAI,EACP,EAAG,EAAG,KAIV,EAAQ,OAAS,UAAY,CAC3B,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAI,EAAG,EACP,GAAI,EAAG,EACP,GAAI,EAAG,KAIX,EAAQ,OAAS,UAAY,CAC3B,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAI,GAAI,GACR,EAAG,EAAG,EACN,EAAG,EAAG,KAIV,EAAQ,QAAU,SAAU,EAAQ,CAClC,GAAM,GAAI,GAAU,EACpB,EAAQ,YAAY,KAAK,KAAM,CAC7B,EAAG,GAAK,EAAG,EACX,GAAK,EAAG,EAAI,EAAI,EAAG,GAAK,EACxB,EAAG,GAAK,EAAG,KAIf,EAAQ,OAAS,SAAU,EAAM,CAC/B,GAAM,GAAI,GAAQ,EAClB,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAK,EAAG,GAAK,EAAG,EAChB,GAAK,EAAG,EAAG,EAAI,EACf,EAAG,EAAI,EAAG,EAAI,KAMlB,EAAQ,KAAO,SAAU,EAAM,CAC7B,GAAM,GAAa,EAAO,EAAK,EACzB,EAAa,EAAO,EAAK,EACzB,EAAU,EAAe,EAAQ,KAAK,QAE5C,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAG,GACpC,EAAM,EAAK,cAEX,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAW,GAC5C,KAGF,EAAQ,KAAK,OAAS,CACpB,yBACA,oBACA,6BACA,mBACA,oBACA,4BACA,8FACA,yFACA,wFACA,wFACA,wFACA,uFACA,uFACA,uFACA,uFACA,uFACA,wFACA,wFACA,wFACA,yFACA,8FACA,KACA,KAAK;AAAA,GAIP,EAAQ,SAAW,SAAU,EAAM,CACjC,GAAM,GAAa,EAAQ,EACrB,EAAa,EAAQ,EACrB,EAAU,EAAe,EAAQ,SAAS,QAEhD,EAAG,UAAU,EAAQ,QAAQ,KAAM,EAAW,GAC9C,KAGF,EAAQ,SAAS,OAAS,CACxB,yBACA,oBACA,qBACA,6BACA,yCACA,uCACA,IACA,oBACA,4BACA,oCACA,6CACA,KACA,KAAK;GCvgBT,GAAM,IAAU,KAEZ,EACA,EAEA,EAKG,YAAiB,EAAc,EAAwF,CAC5H,GAAI,GACJ,GAAI,CAAC,EAAO,KAAM,IAAI,OAAM,2BAE5B,GACE,CAAE,aAAoB,YACnB,CAAE,OAAO,QAAU,aAAe,YAAiB,SACnD,CAAE,OAAO,YAAc,aAAe,YAAiB,aACvD,CAAE,OAAO,cAAgB,aAAe,YAAiB,eACzD,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,oBAAsB,aAAe,YAAiB,qBAC/D,CAAE,OAAO,kBAAoB,aAAe,YAAiB,kBAEhE,KAAM,IAAI,OAAM,uCAElB,GAAI,YAAoB,UAEtB,GAAI,EAAM,OAAS,EAAM,MAAM,SAAW,GAAK,EAAM,MAAM,KAAO,GAAK,EAAM,MAAM,KAAO,EAAG,EAAS,AAAG,QAAM,OAC1G,MAAM,IAAI,OAAM,2EAA2E,EAAM,aACjG,CAEL,GAAM,GAAgB,EAAM,cAAmB,EAAM,YAAiB,EAAM,OAAa,EAAM,OAAa,EAAM,MAAS,GAAK,EAC1H,EAAiB,EAAM,eAAoB,EAAM,aAAkB,EAAM,QAAc,EAAM,OAAa,EAAM,MAAS,GAAK,EACpI,GAAI,CAAC,GAAiB,CAAC,EAAgB,MAAO,CAAE,OAAQ,KAAM,OAAQ,GACtE,GAAI,GAAc,EACd,EAAe,EAenB,GAdI,EAAc,IAChB,GAAc,GACd,EAAe,EAAc,EAAiB,GAE5C,EAAe,IACjB,GAAe,GACf,EAAc,EAAe,EAAgB,GAI/C,AAAI,EAAO,OAAO,MAAQ,EAAG,EAAc,EAAO,OAAO,MAChD,EAAO,OAAO,OAAS,GAAG,GAAc,EAAiB,GAAO,OAAO,OAAS,IACzF,AAAI,EAAO,OAAO,OAAS,EAAG,EAAe,EAAO,OAAO,OAClD,EAAO,OAAO,MAAQ,GAAG,GAAe,EAAkB,GAAO,OAAO,MAAQ,IACrF,CAAC,GAAe,CAAC,EAAc,KAAM,IAAI,OAAM,2CACnD,AAAI,EAAC,GAAa,kBAAU,SAAU,GAAiB,kBAAU,UAAW,IAC1E,GAAY,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UAC1H,kBAAU,SAAU,GAAa,GAAS,MAAQ,GAClD,kBAAU,UAAW,GAAc,GAAS,OAAS,IAI3D,GAAM,GAAM,EAAS,WAAW,MAehC,GAdA,AAAI,YAAiB,WACnB,EAAI,aAAa,EAAO,EAAG,GAE3B,AAAI,EAAO,OAAO,MAAQ,MAAO,GAAI,WAAc,YACjD,GAAI,UAAU,EAAe,GAC7B,EAAI,MAAM,GAAI,GACd,EAAI,UAAU,EAAO,EAAG,EAAG,EAAe,EAAgB,EAAG,EAAG,iBAAU,MAAO,iBAAU,QAC3F,EAAI,aAAa,EAAG,EAAG,EAAG,EAAG,EAAG,IAEhC,EAAI,UAAU,EAAO,EAAG,EAAG,EAAe,EAAgB,EAAG,EAAG,iBAAU,MAAO,iBAAU,QAK3F,EAAO,OAAO,QAAS,CAQzB,GAPI,EAAC,GAAM,CAAC,GAAc,EAAS,QAAU,EAAU,OAAW,kBAAU,UAAW,kBAAW,UAChG,GAAa,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,iBAAU,MAAO,iBAAU,QAAU,SAAS,cAAc,UACnI,kBAAW,SAAU,kBAAU,QAAO,GAAU,MAAQ,iBAAU,OAClE,kBAAW,UAAW,kBAAU,SAAQ,GAAU,OAAS,iBAAU,QAEzE,EAAK,AAAG,MAAI,MAAM,WAAa,GAAY,IAAc,CAAE,OAAQ,IAAe,MAEhF,CAAC,EAAI,MAAO,CAAE,OAAQ,KAAM,OAAQ,GACxC,EAAG,QACH,EAAG,UAAU,aAAc,EAAO,OAAO,YACrC,EAAO,OAAO,WAAa,GAAG,EAAG,UAAU,WAAY,EAAO,OAAO,UACrE,EAAO,OAAO,YAAc,GAAG,EAAG,UAAU,UAAW,EAAO,OAAO,WACrE,EAAO,OAAO,OAAS,GAAG,EAAG,UAAU,OAAQ,EAAO,OAAO,MAC7D,EAAO,OAAO,aAAe,GAAG,EAAG,UAAU,aAAc,EAAO,OAAO,YACzE,EAAO,OAAO,MAAQ,GAAG,EAAG,UAAU,MAAO,EAAO,OAAO,KAC3D,EAAO,OAAO,UAAU,EAAG,UAAU,YACrC,EAAO,OAAO,OAAO,EAAG,UAAU,SAClC,EAAO,OAAO,SAAS,EAAG,UAAU,WACpC,EAAO,OAAO,OAAO,EAAG,UAAU,SAClC,EAAO,OAAO,YAAY,EAAG,UAAU,cACvC,EAAO,OAAO,aAAa,EAAG,UAAU,eACxC,EAAO,OAAO,UAAU,EAAG,UAAU,YACrC,EAAO,OAAO,WAAa,GAAG,EAAG,UAAU,WAAY,EAAO,OAAO,UACzE,EAAG,MAAM,OA2BT,GAAY,EACR,GAAI,GAAK,MAIf,GAAI,CAAC,EAAQ,CACX,GAAI,GACJ,GAAI,EAAU,KAAM,CAClB,GAAM,GAAQ,CAAC,EAAU,OAAQ,EAAU,MAAO,GAClD,EAAS,AAAG,WAAS,EAAU,KAAM,EAAO,iBACnC,YAAqB,WAC9B,EAAS,AAAG,UAAU,AAAG,UAAQ,WAAW,GAAa,aAChD,EAAO,UAAY,SAAW,EAAO,UAAY,UAAW,CAErE,GAAM,GAAc,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UACtI,EAAW,MAAQ,EACnB,EAAW,OAAS,EACpB,GAAM,GAAU,EAAW,WAAW,MACtC,WAAS,UAAU,EAAW,EAAG,GACjC,EAAS,AAAG,UAAU,AAAG,UAAQ,WAAW,GAAc,SACrD,CAEL,GAAM,GAAc,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UACtI,EAAW,MAAQ,EACnB,EAAW,OAAS,EACpB,GAAM,GAAU,EAAW,WAAW,MACtC,WAAS,UAAU,EAAW,EAAG,GACjC,GAAM,GAAO,iBAAS,aAAa,EAAG,EAAG,EAAa,GACtD,EAAS,AAAG,UAAU,AAAG,UAAQ,WAAW,GAAQ,KAEtD,GAAI,EAAQ,CACV,GAAM,GAAS,AAAG,OAAK,EAAQ,WAC/B,EAAS,AAAG,aAAW,EAAQ,GAC/B,AAAG,UAAQ,GACX,AAAG,UAAQ,KAIjB,GAAM,GAAS,EAAO,OAAO,OAAS,EAAY,KAClD,MAAO,CAAE,SAAQ,UCpKnB,GAAI,IACA,GAAO,GAEX,kBAA2B,EAAqC,CAC9D,MAAK,IAIM,EAAO,OAAO,EAAI,gBAAiB,GAAM,UAHlD,IAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,aAAa,YAC/E,AAAI,CAAC,IAAS,CAAC,GAAM,SAAa,EAAI,qBAAsB,EAAO,aAAa,WACvE,EAAO,OAAO,EAAI,cAAe,GAAM,WAE3C,GAGT,kBAA8B,EAAkH,CAxBhJ,QAyBE,GAAM,GAAQ,MAAM,SAAN,cAAc,MAAM,KAAM,EAClC,EAAS,MAAM,SAAN,cAAc,MAAM,KAAM,EAEzC,GADI,CAAC,EAAM,QACP,CAAC,IAAS,CAAC,GAAM,OAAO,GAAG,MAAO,MAAO,MAC7C,GAAM,GAAc,AAAG,QAAM,eAAe,EAAM,OAAQ,CAAC,GAAM,OAAO,GAAG,MAAM,GAAI,GAAM,OAAO,GAAG,MAAM,IAAK,IAC1G,EAAO,AAAG,MAAI,EAAa,KAC3B,EAAM,GAAM,QAAQ,GAG1B,AAAG,UAAQ,GACX,AAAG,UAAQ,GAEX,GAAM,GAAU,AAAG,UAAQ,EAAK,GAC5B,EACJ,GAAI,EAAQ,MAAM,KAAO,EAAG,CAE1B,GAAM,GAAU,EAAQ,UAClB,CAAC,EAAI,GAAM,AAAG,UAAQ,EAAS,GAC/B,EAAS,AAAG,aAAW,EAAI,GAC3B,EAAM,AAAG,aAAW,EAAQ,GAClC,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,AAAG,UAAQ,GAEX,GAAM,GAAO,AAAG,QAAM,cAAc,EAAK,CAAC,CAAC,EAAG,EAAG,GAAK,KAAO,CAAC,GAAI,CAAC,EAAO,IAG1E,EAAe,AAAG,UAAQ,EAAM,GAChC,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,AAAG,UAAQ,OAEX,GAAe,AAAG,QAAM,eAAe,EAAS,CAAC,EAAO,IAG1D,GAAI,MAAO,WAAa,YAAa,MAAO,GAAa,OAEzD,GAAM,GAAW,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAO,GAAU,SAAS,cAAc,UACvH,EAAQ,MAAQ,EAChB,EAAQ,OAAS,EACV,WAAS,KAAM,AAAG,WAAQ,SAAS,EAAc,GACxD,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,AAAG,UAAQ,GAGX,GAAM,GAAe,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAO,GAAU,SAAS,cAAc,UAC3H,EAAY,MAAQ,EACpB,EAAY,OAAS,EACrB,GAAM,GAAW,EAAY,WAAW,MACxC,EAAS,OAAS,WAClB,KAAM,GAAS,UAAU,EAAS,EAAG,GACrC,GAAM,GAAQ,EAAS,aAAa,EAAG,EAAG,EAAO,GAAQ,KAGnD,EAAY,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAO,GAAU,SAAS,cAAc,UACxH,EAAS,MAAQ,EACjB,EAAS,OAAS,EAClB,GAAM,GAAM,EAAS,WAAW,MAChC,MAAI,GAAM,QAAQ,KAAM,GAAI,UAAU,EAAM,OAAQ,EAAG,GAEvD,EAAI,yBAA2B,SAC/B,EAAI,OAAS,YACb,KAAM,GAAI,UAAU,EAAS,EAAG,GAChC,EAAI,yBAA2B,cAC/B,EAAI,OAAS,OAEb,EAAM,OAAS,EAER,EAGT,kBAA8B,EAAc,EAA+B,EAAqE,CAjGhJ,MAkGE,GAAI,GAAM,MAAO,MACjB,GAAO,GACF,IAAO,KAAM,IAAK,GACvB,GAAM,GAAM,AAAM,GAAQ,EAAO,GAC3B,EAAQ,KAAM,IAAQ,GAG5B,GAFA,AAAG,UAAQ,EAAI,QAEX,GAAc,EAAO,CACvB,GAAM,GAAM,AAAM,GAAQ,EAAY,GAChC,EAAK,EAAI,OACf,AAAG,UAAQ,EAAI,QACf,GAAM,GAAK,EAAI,OACT,EAAS,KAAG,WAAW,QAAd,cAAqB,aAAa,EAAG,EAAG,EAAG,MAAO,EAAG,QAAQ,KAEtE,EAAK,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAG,MAAO,EAAG,QAAU,SAAS,cAAc,UACvH,EAAE,MAAQ,EAAG,MACb,EAAE,OAAS,EAAG,OACd,GAAM,GAAM,EAAE,WAAW,MAEzB,EAAI,yBAA2B,OAC/B,EAAI,UAAU,EAAI,EAAG,EAAG,EAAE,MAAO,EAAE,QACnC,GAAM,GAAQ,EAAI,aAAa,EAAG,EAAG,EAAE,MAAO,EAAE,QAChD,OAAS,GAAI,EAAG,EAAI,EAAE,MAAQ,EAAE,OAAQ,IACtC,EAAM,KAAK,EAAI,EAAI,GAAO,KAAM,EAAM,EAAI,EAAI,IAAM,IAAQ,EAAM,KAAK,EAAI,EAAI,GAAO,EAAM,EAAI,EAAI,GAAK,IAAQ,EAAO,EAAI,EAAI,GAChI,EAAM,KAAK,EAAI,EAAI,GAAO,KAAM,EAAM,EAAI,EAAI,IAAM,IAAQ,EAAM,KAAK,EAAI,EAAI,GAAO,EAAM,EAAI,EAAI,GAAK,IAAQ,EAAO,EAAI,EAAI,GAChI,EAAM,KAAK,EAAI,EAAI,GAAO,KAAM,EAAM,EAAI,EAAI,IAAM,IAAQ,EAAM,KAAK,EAAI,EAAI,GAAO,EAAM,EAAI,EAAI,GAAK,IAAQ,EAAO,EAAI,EAAI,GAChI,EAAM,KAAK,EAAI,EAAI,GAAO,KAAM,EAAM,EAAI,EAAI,IAAM,IAAQ,EAAM,KAAK,EAAI,EAAI,GAAO,EAAM,EAAI,EAAI,GAAK,IAAQ,EAAO,EAAI,EAAI,GAElI,EAAI,aAAa,EAAO,EAAG,GAC3B,EAAI,OAAS,EAEf,UAAO,GACA,EAAI,OCjHb,kBAA2B,EAAU,CACnC,AAAI,EAAS,OAAO,MAClB,CACE,EAAS,OAAO,KAChB,EAAS,OAAO,QAChB,EAAS,OAAO,SAChB,EAAS,OAAO,QAChB,EAAS,OAAO,UAChB,EAAS,OAAO,cAChB,EAAS,OAAO,QAChB,EAAS,OAAO,QAChB,EAAS,OAAO,UAChB,EAAS,OAAO,QAChB,EAAS,OAAO,cAEd,KAAM,SAAQ,IAAI,CACpB,EAAS,OAAO,MAAS,GAAS,OAAO,KAAK,QAAU,AAAS,GAAK,EAAS,QAAU,MACzF,EAAS,OAAO,SAAa,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,QAAQ,QAAW,AAAQ,GAAK,EAAS,QAAU,MACrI,EAAS,OAAO,UAAa,GAAS,OAAO,KAAK,QAAU,AAAS,GAAK,EAAS,QAAU,MAC7F,EAAS,OAAO,SAAY,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,WAAa,AAAQ,GAAK,EAAS,QAAU,MACjJ,EAAS,OAAO,WAAc,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,aAAe,AAAU,GAAK,EAAS,QAAU,MACvJ,EAAS,OAAO,eAAkB,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,iBAAmB,AAAc,GAAK,EAAS,QAAU,MACnK,EAAS,OAAO,SAAY,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,WAAa,AAAQ,GAAK,EAAS,QAAU,MACjJ,EAAS,OAAO,SAAY,GAAS,OAAO,OAAO,SAAW,EAAS,OAAO,OAAO,UAAU,SAAS,WAAa,AAAQ,GAAK,EAAS,QAAU,MACrJ,EAAS,OAAO,WAAc,GAAS,OAAO,OAAO,SAAW,EAAS,OAAO,OAAO,UAAU,SAAS,aAAe,AAAU,GAAK,EAAS,QAAU,MAC3J,EAAS,OAAO,SAAa,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,YAAY,QAAW,AAAQ,GAAK,EAAS,QAAU,MACzI,EAAS,OAAO,cAAiB,GAAS,OAAO,aAAa,QAAU,AAAa,GAAK,EAAS,QAAU,QAI3G,GAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,MAAM,GAAS,OAAO,KAAO,KAAM,AAAS,IAAK,EAAS,SAC3G,EAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,QAAQ,SAAW,CAAC,EAAS,OAAO,SAAS,GAAS,OAAO,QAAU,KAAM,AAAQ,IAAK,EAAS,SACxJ,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,UAAU,GAAS,OAAO,SAAW,KAAM,AAAS,IAAK,EAAS,SACnH,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,YAAY,GAAS,OAAO,QAAU,KAAM,AAAQ,IAAK,EAAS,SACtK,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,WAAa,EAAS,OAAO,KAAK,UAAU,SAAS,cAAc,GAAS,OAAO,UAAY,KAAM,AAAU,IAAK,EAAS,SAC9K,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,eAAiB,EAAS,OAAO,KAAK,UAAU,SAAS,kBAAkB,GAAS,OAAO,cAAgB,KAAM,AAAU,IAAK,EAAS,SAC1L,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,YAAY,GAAS,OAAO,QAAU,KAAM,AAAQ,IAAK,EAAS,SACtK,EAAS,OAAO,OAAO,SAAW,CAAC,EAAS,OAAO,SAAW,EAAS,OAAO,OAAO,UAAU,SAAS,YAAY,GAAS,OAAO,QAAU,KAAM,AAAQ,IAAK,EAAS,SAC1K,EAAS,OAAO,OAAO,SAAW,CAAC,EAAS,OAAO,WAAa,EAAS,OAAO,OAAO,UAAU,SAAS,cAAc,GAAS,OAAO,UAAY,KAAM,AAAU,IAAK,EAAS,SAClL,EAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,YAAY,SAAW,CAAC,EAAS,OAAO,SAAS,GAAS,OAAO,QAAU,KAAM,AAAQ,IAAK,EAAS,SAC5J,EAAS,OAAO,aAAa,SAAW,CAAC,EAAS,OAAO,cAAc,GAAS,OAAO,aAAe,KAAM,AAAa,IAAK,EAAS,UCzC/I,GAAM,IAAgB,AAAC,GAAgD,CACrE,GAAM,GAAU,CAAC,EAAK,IAAQ,KAAK,MAAM,EAAI,GAAK,EAAI,GAAI,EAAI,GAAK,EAAI,IACvE,GAAI,CAAC,EAAK,YAAY,cAAmB,CAAC,EAAK,YAAY,YAAgB,MAAO,CAAE,QAAS,EAAG,SAAU,GAE1G,GAAM,GAAa,CAAC,EAAG,KACjB,EAAW,EAEX,EAAO,EAAK,KAAK,IAAI,GAAK,EAAK,KAAK,KAAK,GACzC,EAAa,EAAO,EAAK,KAAK,KAAO,EAAK,KAAK,KAC/C,EAAY,EACd,CAAE,GAAK,KAAK,KAAK,GAAK,EAAK,KAAK,IAAI,IAAM,EAAI,GAAK,KAAK,KAAK,GAAK,EAAK,KAAK,IAAI,IAAM,GACtF,CAAE,GAAK,KAAK,KAAK,GAAK,EAAK,KAAK,KAAK,IAAM,EAAI,GAAK,KAAK,KAAK,GAAK,EAAK,KAAK,KAAK,IAAM,GACtF,EAAU,EACZ,CAAC,EAAK,KAAK,KAAK,GAAK,EAAK,KAAK,IAAI,GAAI,EAAK,KAAK,IAAI,GAAK,EAAK,KAAK,IAAI,IACxE,CAAC,EAAK,KAAK,KAAK,GAAK,EAAK,KAAK,KAAK,GAAI,EAAK,KAAK,KAAK,GAAK,EAAK,KAAK,KAAK,IAEzE,EAAU,CACb,GAAU,GAAK,EAAW,IAAM,EAAQ,GAAK,EAAW,GACzD,EAAY,GAAW,GAAK,EAAU,IAAM,EAAQ,GAAK,EAAW,IAElE,EAAW,KAAK,KAAM,EAAQ,IAAM,EAAM,EAAQ,IAAM,GAC5D,SAAW,KAAK,IAAI,EAAU,EAAK,OAAO,GAAK,EAAG,EAAK,OAAO,GAAK,GAG5D,CAAE,QAFQ,GAAQ,CAAC,EAAG,GAAI,GAAY,KAAK,GAAK,GAAM,KAAK,GAEhD,aAGd,GAAqB,CAAC,EAAM,IAI7B,CAEH,GAAM,GAAY,AAAC,GAAM,CACvB,GAAM,GAAS,KAAK,KAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,IAC9D,SAAE,IAAM,EACR,EAAE,IAAM,EACR,EAAE,IAAM,EACD,GAEH,EAAa,CAAC,EAAG,IAAM,CAC3B,GAAM,GAAI,EAAE,GAAK,EAAE,GACb,EAAI,EAAE,GAAK,EAAE,GACb,EAAI,EAAE,GAAK,EAAE,GACnB,MAAO,CAAC,EAAG,EAAG,IAEV,EAAe,CAAC,EAAG,IAAM,CAC7B,GAAM,GAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAC3B,EAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAC3B,EAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GACjC,MAAO,CAAC,EAAG,EAAG,IAGV,EAA6B,AAAC,GAAM,CAExC,GAAM,CAAC,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,GAAO,EAClD,EACA,EACA,EACJ,MAAI,GAAM,EACR,AAAI,EAAM,GACR,GAAS,KAAK,KAAK,GACnB,EAAS,KAAK,MAAM,CAAC,EAAK,GAC1B,EAAS,KAAK,MAAM,CAAC,EAAK,IAE1B,GAAS,CAAC,KAAK,GAAK,EACpB,EAAS,CAAC,KAAK,MAAM,EAAK,GAC1B,EAAS,GAGX,GAAS,KAAK,GAAK,EACnB,EAAS,KAAK,MAAM,EAAK,GACzB,EAAS,GAEP,MAAM,IAAS,GAAS,GACxB,MAAM,IAAS,GAAS,GACxB,MAAM,IAAS,GAAS,GACrB,CAAE,MAAO,EAAI,CAAC,EAAQ,IAAK,EAAI,CAAC,EAAQ,KAAM,EAAI,CAAC,IAItD,EAAmB,AAAC,GAAS,CACjC,GAAM,GAAU,CAAC,EAAI,EAAI,EAAI,IAAO,KAAK,MAAM,EAAK,EAAI,EAAK,GAW7D,MATc,CAGZ,MAAO,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,IAEjE,IAAK,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,IAE/D,KAAM,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,MAM9D,EAAO,EAAK,QAClB,GAAI,CAAC,GAAQ,EAAK,OAAS,IAAK,MAAO,CAAE,MAAO,CAAE,MAAO,EAAG,IAAK,EAAG,KAAM,GAAK,OAAQ,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,GAAI,KAAM,CAAE,QAAS,EAAG,SAAU,IAElJ,GAAM,GAAO,KAAK,IAAI,EAAK,OAAO,GAAK,EAAU,GAAI,EAAK,OAAO,GAAK,EAAU,IAAM,IAEhF,EAAM,CAAC,EAAK,IAAK,EAAK,KAAM,EAAK,KAAM,EAAK,MAAM,IAAI,AAAC,GAAO,CAElE,EAAG,GAAK,EAAU,GAAK,EACvB,EAAG,GAAK,EAAU,GAAK,EACvB,EAAG,KAGC,EAAS,EAAU,EAAW,EAAI,GAAI,EAAI,KAC5C,EAAS,EAAU,EAAW,EAAI,GAAI,EAAI,KACxC,EAAS,EAAU,EAAa,EAAQ,IAE9C,EAAS,EAAa,EAAQ,GAI9B,GAAM,GAAmF,CACvF,EAAO,GAAI,EAAO,GAAI,EAAO,GAC7B,EAAO,GAAI,EAAO,GAAI,EAAO,GAC7B,EAAO,GAAI,EAAO,GAAI,EAAO,IAEzB,EAAQ,EAA2B,GAInC,EAAO,EAAK,SAAW,IAAM,GAAc,GAAQ,CAAE,QAAS,EAAG,SAAU,GAEjF,MAAO,CAAE,QAAO,SAAQ,SAGb,GAAa,MAAO,EAAgC,IAAmC,CAnJpG,gBAsJE,GAAI,GACA,EACA,EACA,EACA,EACA,EACA,EACE,EAAuB,GAC7B,EAAO,MAAQ,WACf,EAAY,IACZ,GAAM,GAAQ,KAAM,AAAS,IAAQ,EAAO,EAAO,QAEnD,GADA,EAAO,YAAY,KAAO,KAAK,MAAM,IAAQ,GACzC,CAAC,EAAM,OAAS,EAAM,MAAM,SAAW,EAAG,MAAO,GACrD,GAAI,CAAC,EAAO,MAAO,GAEnB,OAAS,GAAI,EAAG,EAAI,EAAM,OAAQ,IAAK,CAKrC,GAJA,EAAO,QAAQ,YAIX,CAAC,EAAM,GAAG,QAAU,EAAM,GAAG,OAAO,mBAAuB,CAC7D,EAAI,2BAA4B,EAAM,GAAG,QACzC,SAGF,GAAM,GAAW,GAAmB,EAAM,GAAI,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,KAG3E,EAAO,QAAQ,kBACf,AAAI,EAAO,OAAO,MAChB,EAAa,EAAO,OAAO,KAAK,QAAQ,QAAU,AAAQ,GAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,IAAK,EAAO,OAAQ,EAAG,EAAM,QAAU,GAEtI,GAAO,MAAQ,cACf,EAAY,IACZ,EAAa,EAAO,OAAO,KAAK,QAAQ,QAAU,KAAM,AAAQ,IAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,IAAK,EAAO,OAAQ,EAAG,EAAM,QAAU,GAC5I,EAAO,YAAY,QAAU,KAAK,MAAM,IAAQ,IAElD,EAAO,QAAQ,gBAiBf,EAAO,QAAQ,sBACf,AAAI,EAAO,OAAO,MAChB,EAAU,EAAO,OAAO,KAAK,YAAY,QAAU,AAAQ,GAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,IAAK,EAAO,OAAQ,EAAG,EAAM,QAAU,GAEvI,GAAO,MAAQ,kBACf,EAAY,IACZ,EAAU,EAAO,OAAO,KAAK,YAAY,QAAU,KAAM,AAAQ,IAAQ,EAAM,GAAG,QAAU,AAAG,SAAO,IAAK,EAAO,OAAQ,EAAG,EAAM,QAAU,GAC7I,EAAO,YAAY,UAAY,KAAK,MAAM,IAAQ,IAEpD,EAAO,QAAQ,oBAGX,EAAO,OAAO,OAChB,EAAC,EAAQ,EAAW,EAAY,EAAc,EAAS,GAAW,KAAM,SAAQ,IAAI,CAAC,EAAQ,EAAW,EAAY,EAAc,EAAS,KAG7I,EAAO,QAAQ,gBAIX,CAAC,EAAO,OAAO,KAAK,KAAK,SAAW,SAAM,KAAN,cAAU,cAAV,cAAuB,cAAe,SAAM,KAAN,cAAU,cAAV,cAAuB,eACnG,OAAO,GAAM,GAAG,YAAY,YAC5B,MAAO,GAAM,GAAG,YAAY,cAE9B,GAAM,GAAY,MAAM,GAAG,cAAT,cAAsB,cAAe,MAAM,GAAG,cAAT,cAAsB,cAEzE,KAAK,IAAI,KAAK,IAAI,EAAM,GAAG,YAAY,YAAY,GAAG,GAAK,EAAM,GAAG,YAAY,YAAY,GAAG,IAAK,KAAK,IAAI,EAAM,GAAG,YAAY,aAAa,GAAG,GAAK,EAAM,GAAG,YAAY,aAAa,GAAG,KAAO,EAAM,MAAM,GAC/M,EAGE,EAAS,EAAO,OAAO,KAAK,SAAS,OAAS,AAAG,UAAQ,EAAM,GAAG,QAAU,KAElF,AAAG,UAAQ,EAAM,GAAG,QAEhB,EAAM,GAAG,QAAQ,MAAO,GAAM,GAAG,OAErC,EAAQ,KAAK,IACR,EAAM,GACT,GAAI,EACJ,IAAK,EAAQ,IACb,OAAQ,EAAQ,OAChB,YAAa,EAAQ,YACrB,UAAW,EAAQ,WACnB,QAAS,EACT,KAAM,IAAa,EAAI,KAAK,MAAM,IAAM,EAAW,MAAQ,IAAM,EACjE,WACA,WAGF,EAAO,QAAQ,YAEjB,SAAO,QAAQ,iBACX,EAAO,OAAO,OACZ,GAAO,YAAY,MAAM,MAAO,GAAO,YAAY,KACnD,EAAO,YAAY,KAAK,MAAO,GAAO,YAAY,IAClD,EAAO,YAAY,QAAQ,MAAO,GAAO,YAAY,OACrD,EAAO,YAAY,SAAS,MAAO,GAAO,YAAY,SAErD,GC7NF,GAAM,IAAO,AAAC,GAAmB,CACtC,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAA0D,GAChE,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CAEnC,GAAM,GAAY,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,aACrD,EAAa,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,cACtD,EAAO,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,QACtD,AAAI,GAAQ,GAAa,GAAe,EAAU,SAAS,EAAI,EAAK,SAAS,GAAO,EAAW,SAAS,EAAI,EAAK,SAAS,EAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,cAC3J,AAAI,GAAQ,GAAc,EAAU,SAAS,EAAI,EAAK,SAAS,EAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,oBACjG,GAAQ,GAAe,EAAW,SAAS,EAAI,EAAK,SAAS,GAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,qBAG5G,GAAM,GAAe,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,gBACxD,EAAgB,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,iBAC/D,AAAI,GAAgB,GAAe,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,WAAY,EAAa,SAAS,EAAI,EAAc,SAAS,EAAK,OAAS,YAElJ,MAAO,IAGI,GAAO,AAAC,GAAmB,CACtC,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAA0D,GAChE,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,GAAI,EAAI,GAAG,MAAQ,EAAI,GAAG,KAAK,OAAS,EAAG,CACzC,GAAM,GAAY,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,KAAK,GACxD,AAAI,KAAK,IAAI,GAAa,GAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,kBAC3D,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,UAAU,EAAY,EAAI,OAAS,YAEtE,AADa,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IACxG,IAAK,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAElD,AADc,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IACxG,IAAK,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,oBACvD,GAAM,GAAY,KAAK,IAAI,IAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,IAAI,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,KAAK,KACzI,AAAI,EAAY,IAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,SAAS,KAAK,MAAM,aAC1E,GAAM,GAAY,EAAI,GAAG,KAAK,KAAK,GACnC,AAAI,KAAK,IAAI,GAAa,IAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,QAAQ,EAAY,EAAI,KAAO,WAGnG,MAAO,IAGI,GAAO,AAAC,GAAmB,CACtC,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAA0D,GAChE,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAI,CAAC,EAAI,GAAG,aAAe,CAAC,EAAI,GAAG,YAAY,aAAe,CAAC,EAAI,GAAG,YAAY,aAAc,SAChG,GAAM,GAAY,EAAI,GAAG,YAAY,YAAY,GAAG,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,GACrF,EAAY,EAAI,GAAG,YAAY,YAAY,GAAG,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,GACrF,EAAW,KAAK,IAAI,EAAY,GAEhC,EAAa,EAAI,GAAG,YAAY,aAAa,GAAG,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,GACxF,EAAa,EAAI,GAAG,YAAY,aAAa,GAAG,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,GACxF,EAAY,KAAK,IAAI,EAAa,GAEpC,EAAS,GAEb,AAAI,AADe,KAAK,IAAI,EAAW,GAAa,KAAK,IAAI,EAAU,GACtD,KACf,GAAS,GACT,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAGpC,GAAM,GAAmB,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,IAAM,EAAI,GAAG,IAAI,GACrG,EAAkB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,IAAM,EAAI,GAAG,IAAI,GAC1G,AAAI,GAAkB,KAAQ,EAAmB,MAAM,GAAS,IAC5D,EAAkB,KAAM,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,kBAC1D,EAAmB,KAAM,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,iBAE/D,GAAM,GAAmB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,IAAM,EAAI,GAAG,IAAI,GACtG,EAAkB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,IAAM,EAAI,GAAG,IAAI,GAC1G,AAAI,GAAkB,KAAQ,EAAmB,KAAQ,EAAkB,MAAS,EAAmB,OAAO,GAAS,IACnH,GAAkB,KAAQ,EAAmB,MAAM,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,iBACrF,GAAkB,MAAS,EAAmB,OAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,eAGvF,GAAQ,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAEhD,MAAO,IAGI,GAAO,AAAC,GAAmB,CACtC,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAA0D,GAChE,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAM,GAAqD,GAC3D,OAAW,CAAC,EAAQ,IAAQ,QAAO,QAAQ,EAAI,GAAG,aAChD,AAAI,IAAW,YAAc,MAAM,QAAQ,IAAM,EAAQ,KAAK,CAAE,KAAM,EAAO,cAAe,SAAU,EAAI,KAE5G,GAAI,GAAW,EAAQ,OAAS,EAAG,CACjC,GAAM,GAAU,EAAQ,OAAO,CAAC,EAAM,IAAO,EAAK,SAAS,GAAK,EAAE,SAAS,GAAK,EAAO,GACvF,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,GAAG,EAAQ,iBAC7C,GAAM,GAAU,EAAQ,OAAO,CAAC,EAAM,IAAO,EAAK,SAAS,GAAK,EAAE,SAAS,GAAK,EAAO,GACvF,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,GAAG,EAAQ,YAE/C,GAAM,GAAQ,AAAW,GAAM,EAAI,GAAG,WACtC,OAAW,KAAQ,GAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,EAAK,OAEnE,MAAO,ICzIT,0IAgDO,GAAM,IAAuB,CAClC,MAAe,2BACf,WAAoB,yBACpB,YAAqB,QACrB,KAAc,6BACd,WAAoB,GACpB,UAAmB,EACnB,UAAmB,EACnB,UAAmB,EACnB,WAAqB,GACrB,WAAqB,GACrB,UAAoB,GACpB,aAAuB,GACvB,SAAmB,GACnB,aAAuB,GACvB,SAAmB,GACnB,UAAoB,GACpB,eAAyB,IAGrB,GAAU,AAAC,GAAU,KAAK,MAAO,EAAQ,IAAO,KAAK,IAE3D,YAAe,EAAK,EAAG,EAAG,EAAI,EAAG,EAAc,CAC7C,EAAI,UAAY,EAAa,UAAY,EAAI,QAAQ,MAAS,EAAI,MAAO,MAAS,EAAI,eAAkB,EAAa,MACrH,EAAI,YACJ,EAAI,IAAI,EAAG,EAAG,EAAa,UAAW,EAAG,EAAI,KAAK,IAClD,EAAI,OAGN,YAAc,EAAK,EAAG,EAAG,EAAO,EAAQ,EAAc,CAEpD,GADA,EAAI,YACA,EAAa,UAAW,CAC1B,GAAM,GAAM,GAAI,EAAI,GAAS,EACvB,EAAM,GAAI,EAAI,GAAU,EAC9B,EAAI,QAAQ,EAAI,EAAI,EAAQ,EAAG,EAAS,EAAG,EAAG,EAAG,EAAI,KAAK,QAE1D,GAAI,UAAY,EAAa,UAC7B,EAAI,OAAO,EAAI,EAAa,UAAW,GACvC,EAAI,OAAO,EAAI,EAAQ,EAAa,UAAW,GAC/C,EAAI,iBAAiB,EAAI,EAAO,EAAG,EAAI,EAAO,EAAI,EAAa,WAC/D,EAAI,OAAO,EAAI,EAAO,EAAI,EAAS,EAAa,WAChD,EAAI,iBAAiB,EAAI,EAAO,EAAI,EAAQ,EAAI,EAAQ,EAAa,UAAW,EAAI,GACpF,EAAI,OAAO,EAAI,EAAa,UAAW,EAAI,GAC3C,EAAI,iBAAiB,EAAG,EAAI,EAAQ,EAAG,EAAI,EAAS,EAAa,WACjE,EAAI,OAAO,EAAG,EAAI,EAAa,WAC/B,EAAI,iBAAiB,EAAG,EAAG,EAAI,EAAa,UAAW,GACvD,EAAI,YAEN,EAAI,SAGN,YAAe,EAAK,EAAsC,GAAI,EAAc,CAC1E,GAAI,MAAW,QAAa,EAAO,SAAW,GAC9C,GAAI,YACJ,EAAI,OAAO,EAAO,GAAG,GAAI,EAAO,GAAG,IACnC,OAAW,KAAM,GAAQ,CACvB,GAAM,GAAI,EAAG,IAAM,EACnB,EAAI,YAAc,EAAa,UAAY,EAAI,QAAQ,MAAS,EAAI,MAAO,MAAS,EAAI,eAAkB,EAAa,MACvH,EAAI,UAAY,EAAa,UAAY,EAAI,QAAQ,MAAS,EAAI,MAAO,MAAS,EAAI,eAAkB,EAAa,MACrH,EAAI,OAAO,EAAG,GAAI,KAAK,MAAM,EAAG,KAElC,EAAI,SACA,EAAa,cACf,GAAI,YACJ,EAAI,SAIR,YAAgB,EAAK,EAAsC,GAAI,EAAc,CAC3E,GAAI,MAAW,QAAa,EAAO,SAAW,GAC9C,IAAI,CAAC,EAAa,WAAa,EAAO,QAAU,EAAG,CACjD,GAAM,EAAK,EAAQ,GACnB,OAEF,EAAI,OAAO,EAAO,GAAG,GAAI,EAAO,GAAG,IACnC,OAAS,GAAI,EAAG,EAAI,EAAO,OAAS,EAAG,IAAK,CAC1C,GAAM,GAAM,GAAO,GAAG,GAAK,EAAO,EAAI,GAAG,IAAM,EACzC,EAAM,GAAO,GAAG,GAAK,EAAO,EAAI,GAAG,IAAM,EAC/C,EAAI,iBAAiB,EAAO,GAAG,GAAI,EAAO,GAAG,GAAI,EAAI,GAEvD,EAAI,iBAAiB,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,IACzI,EAAI,SACA,EAAa,cACf,GAAI,YACJ,EAAI,SAIR,kBAA8B,EAA6B,EAAwB,EAA2B,CAC5G,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,CAAC,EAAK,OACV,EAAI,KAAO,EAAa,KACxB,EAAI,UAAY,EAAa,MAC7B,GAAI,GAAI,EACR,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IAAK,CACtC,GAAI,GAAmB,GACnB,EAAkB,GAEtB,GADA,CAAC,EAAO,GAAQ,OAAO,QAAQ,EAAO,IACjC,EAAK,OAAS,GAAQ,EAAK,GAAc,OAAS,EAAI,CACzD,GAAM,GAAM,EAAM,GAAe,EAAI,IAAI,EAAM,KAAO,GAChD,EAAQ,GAAG,EAAM,MAAM,MAAQ,EAAK,KAC1C,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAG,EAAK,EAAI,EAAa,aAE/C,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAG,EAAK,EAAI,EAAa,YAC7C,GAAK,IAKX,kBAA2B,EAA6B,EAAqB,EAA2B,CAnKxG,YAoKE,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,OAAW,KAAK,GAAQ,CACtB,EAAI,KAAO,EAAa,KACxB,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MACzB,EAAa,WAAW,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,GAE9E,GAAM,GAAkB,GAKxB,GAJA,EAAO,KAAK,SAAS,KAAK,MAAM,IAAM,EAAE,WACpC,EAAE,aAAa,EAAO,KAAK,GAAG,EAAE,QAAU,MAAM,KAAK,MAAM,IAAM,EAAE,iBACnE,EAAE,KAAK,EAAO,KAAK,QAAQ,EAAE,KAAO,MACpC,EAAE,MAAM,EAAO,KAAK,aAAa,EAAE,QACnC,EAAE,SAAW,EAAE,QAAQ,OAAS,EAAG,CACrC,GAAM,GAAU,EAAE,QAAQ,IAAI,AAAC,GAAM,GAAG,KAAK,MAAM,IAAM,EAAE,WAAW,EAAE,WACxE,AAAI,EAAQ,OAAS,GAAG,GAAQ,OAAS,GACzC,EAAO,KAAK,EAAQ,KAAK,MAE3B,AAAI,EAAE,UAAY,EAAE,SAAS,OAAS,EAAE,SAAS,MAC3C,GAAE,SAAS,MAAM,MAAM,EAAO,KAAK,SAAS,GAAQ,EAAE,SAAS,MAAM,iBAAc,GAAQ,EAAE,SAAS,MAAM,kBAAe,GAAQ,EAAE,SAAS,MAAM,cACpJ,EAAE,SAAS,KAAK,SAAS,EAAO,KAAK,SAAS,GAAQ,EAAE,SAAS,KAAK,iBAExE,EAAO,SAAW,GAAG,EAAO,KAAK,QACrC,EAAI,UAAY,EAAa,MAC7B,OAAS,GAAI,EAAO,OAAS,EAAG,GAAK,EAAG,IAAK,CAC3C,GAAM,GAAI,KAAK,IAAI,EAAE,IAAI,GAAI,GACvB,EAAI,EAAI,EAAa,WAAa,EAAE,IAAI,GAC9C,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,GAAI,EAAI,EAAG,EAAI,KAErC,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,GAAI,EAAI,EAAG,EAAI,IAGrC,GADA,EAAI,UAAY,EACZ,EAAE,MAAQ,EAAE,KAAK,OAAS,EAAG,CAC/B,GAAI,EAAa,WACf,OAAW,KAAM,GAAE,KAAM,GAAM,EAAK,EAAG,GAAI,EAAG,GAAI,EAAG,GAAI,GAG3D,GAAI,EAAa,aAAc,CAC7B,EAAI,UAAY,EAChB,OAAS,GAAI,EAAG,EAAI,GAAc,OAAS,EAAG,IAAK,CACjD,GAAM,GAAS,CACb,GAAc,EAAI,EAAI,GACtB,GAAc,EAAI,EAAI,GACtB,GAAc,EAAI,EAAI,IACtB,IAAI,AAAC,GAAU,EAAE,KAAK,IACxB,GAAM,EAAK,EAAQ,GAGrB,GAAI,EAAE,aAAe,EAAE,YAAY,YAAgB,CACjD,EAAI,YAAc,EAAa,SAAW,2BAA6B,EAAa,MACpF,EAAI,YACJ,GAAM,GAAQ,KAAK,IAAI,EAAE,YAAY,YAAe,GAAG,GAAK,EAAE,YAAY,YAAe,GAAG,IAAM,EAC5F,EAAQ,KAAK,IAAI,EAAE,YAAY,YAAe,GAAG,GAAK,EAAE,YAAY,YAAe,GAAG,IAAM,EAClG,EAAI,QAAQ,EAAE,YAAY,YAAe,GAAG,GAAI,EAAE,YAAY,YAAe,GAAG,GAAI,EAAO,EAAO,EAAG,EAAG,EAAI,KAAK,IACjH,EAAI,SACA,EAAa,cACf,GAAI,UAAY,EAAa,SAAW,2BAA6B,EAAa,MAClF,EAAI,QAGR,GAAI,EAAE,aAAe,EAAE,YAAY,aAAiB,CAClD,EAAI,YAAc,EAAa,SAAW,2BAA6B,EAAa,MACpF,EAAI,YACJ,GAAM,GAAQ,KAAK,IAAI,EAAE,YAAY,aAAgB,GAAG,GAAK,EAAE,YAAY,aAAgB,GAAG,IAAM,EAC9F,EAAQ,KAAK,IAAI,EAAE,YAAY,aAAgB,GAAG,GAAK,EAAE,YAAY,aAAgB,GAAG,IAAM,EACpG,EAAI,QAAQ,EAAE,YAAY,aAAgB,GAAG,GAAI,EAAE,YAAY,aAAgB,GAAG,GAAI,EAAO,EAAO,EAAG,EAAG,EAAI,KAAK,IACnH,EAAI,SACA,EAAa,cACf,GAAI,UAAY,EAAa,SAAW,2BAA6B,EAAa,MAClF,EAAI,QAGR,GAAI,EAAa,UAAY,SAAE,WAAF,cAAY,OAAZ,cAAkB,WAAY,SAAE,WAAF,cAAY,OAAZ,cAAkB,UAAW,EAAE,YAAY,aAAkB,EAAE,YAAY,cAAmB,EAAE,YAAY,YAAe,IAAM,EAAE,YAAY,aAAgB,GAAI,CAC5N,EAAI,YAAc,OAClB,EAAI,YAEJ,GAAM,GAAW,CACf,EAAE,YAAY,YAAe,GAAG,GAAM,KAAK,IAAI,EAAE,SAAS,KAAK,SAAW,EAAE,SAAS,KAAK,SAAW,EAAE,IAAI,GAC3G,EAAE,YAAY,YAAe,GAAG,GAAM,KAAK,IAAI,EAAE,SAAS,KAAK,SAAW,EAAE,SAAS,KAAK,SAAW,EAAE,IAAI,IAE7G,EAAI,OAAO,EAAE,YAAY,YAAe,GAAG,GAAI,EAAE,YAAY,YAAe,GAAG,IAC/E,EAAI,OAAO,EAAS,GAAI,EAAS,IAEjC,GAAM,GAAY,CAChB,EAAE,YAAY,aAAgB,GAAG,GAAM,KAAK,IAAI,EAAE,SAAS,KAAK,SAAW,EAAE,SAAS,KAAK,SAAW,EAAE,IAAI,GAC5G,EAAE,YAAY,aAAgB,GAAG,GAAM,KAAK,IAAI,EAAE,SAAS,KAAK,SAAW,EAAE,SAAS,KAAK,SAAW,EAAE,IAAI,IAE9G,EAAI,OAAO,EAAE,YAAY,aAAgB,GAAG,GAAI,EAAE,YAAY,aAAgB,GAAG,IACjF,EAAI,OAAO,EAAU,GAAI,EAAU,IAEnC,EAAI,aAOd,kBAA2B,EAA6B,EAAqB,EAA2B,CA3QxG,MA4QE,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IAAK,CAgBtC,GAfA,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,EAAI,UAAY,EAAa,UAC7B,EAAI,KAAO,EAAa,KACpB,EAAa,WAAa,EAAO,GAAG,KAAO,MAAO,GAAG,MAAV,cAAe,UAAW,GACvE,IAAK,EAAK,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,GAC9E,EAAa,YACX,GAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,QAAQ,IAAM,EAAO,GAAG,SAAU,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,KAErI,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,QAAQ,IAAM,EAAO,GAAG,SAAU,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,MAGnI,EAAa,WACf,OAAS,GAAK,EAAG,EAAK,EAAO,GAAG,UAAU,OAAQ,IAChD,EAAI,UAAY,EAAa,UAAY,EAAO,GAAG,UAAU,GAAI,SAAS,GAAK,QAAQ,MAAS,EAAK,GAAO,GAAG,UAAU,GAAI,SAAS,IAAM,OAAQ,MAAS,EAAK,GAAO,GAAG,UAAU,GAAI,SAAS,IAAM,gBAAmB,EAAa,MACzO,GAAM,EAAK,EAAO,GAAG,UAAU,GAAI,SAAS,GAAI,EAAO,GAAG,UAAU,GAAI,SAAS,GAAI,EAAG,GAG5F,GAAI,EAAa,YACf,GAAI,KAAO,EAAa,KACpB,EAAO,GAAG,WACZ,OAAW,KAAM,GAAO,GAAG,UACzB,EAAI,UAAY,EAAa,UAAY,EAAG,SAAS,GAAK,QAAQ,MAAS,EAAI,EAAG,SAAS,OAAQ,MAAS,EAAI,EAAG,SAAS,gBAAmB,EAAa,MAC5J,EAAI,SAAS,GAAG,EAAG,QAAQ,KAAK,MAAM,IAAM,EAAG,UAAW,EAAG,SAAS,GAAK,EAAG,EAAG,SAAS,GAAK,GAIrG,GAAI,EAAa,cAAgB,EAAO,GAAG,UAAW,CACpD,GAAI,GACE,EAAsC,GAE5C,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,WAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACnD,EAAO,SAAW,GAAG,GAAM,EAAK,EAAQ,GAE5C,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,WAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,GAAO,EAAK,EAAQ,MAM1B,kBAA2B,EAA6B,EAAqB,EAA2B,CACtG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KACxB,OAAW,KAAK,GAAQ,CAetB,GAdI,EAAa,WACf,GAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,GAC9C,EAAa,YACX,GAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,OAAQ,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,KAEnF,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,OAAQ,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,KAEnF,EAAI,UAEF,EAAa,YACX,EAAE,WAAa,EAAE,UAAU,OAAS,EACtC,OAAW,KAAM,GAAE,UACjB,EAAI,UAAY,EAAa,SAAW,QAAQ,MAAS,EAAI,EAAG,OAAQ,MAAS,EAAI,EAAG,gBAAmB,EAAa,MACxH,GAAM,EAAK,EAAG,GAAI,EAAG,GAAI,EAAG,GAIlC,GAAI,EAAa,WAAY,CAC3B,GAAM,GAAe,CAAC,EAAM,IAAU,CACpC,EAAI,UAAY,EAAa,SAAW,QAAQ,MAAS,EAAI,EAAK,EAAK,OAAS,GAAG,OAAQ,MAAS,EAAI,EAAK,EAAK,OAAS,GAAG,gBAAmB,EAAa,MAC9J,EAAI,SAAS,EAAO,EAAK,EAAK,OAAS,GAAG,GAAK,EAAG,EAAK,EAAK,OAAS,GAAG,GAAK,IAE/E,EAAI,KAAO,EAAa,KACxB,EAAa,EAAE,YAAY,MAAU,SACrC,EAAa,EAAE,YAAY,OAAW,UACtC,EAAa,EAAE,YAAY,KAAS,QACpC,EAAa,EAAE,YAAY,MAAU,SACrC,EAAa,EAAE,YAAY,MAAU,SACrC,EAAa,EAAE,YAAY,KAAS,QAEtC,GAAI,EAAa,aAAc,CAC7B,GAAM,GAAc,AAAC,GAAS,CAC5B,GAAI,EAAC,EACL,OAAS,GAAI,EAAG,EAAI,EAAK,OAAQ,IAC/B,EAAI,YACJ,EAAI,YAAc,EAAa,SAAW,QAAQ,MAAS,EAAI,EAAK,GAAG,OAAQ,MAAS,EAAI,EAAK,GAAG,gBAAmB,EAAa,MACpI,EAAI,OAAO,EAAK,EAAI,EAAI,EAAI,EAAI,GAAG,GAAI,EAAK,EAAI,EAAI,EAAI,EAAI,GAAG,IAC/D,EAAI,OAAO,EAAK,GAAG,GAAI,EAAK,GAAG,IAC/B,EAAI,UAGR,EAAI,UAAY,EAAa,UAC7B,EAAY,EAAE,YAAY,OAC1B,EAAY,EAAE,YAAY,QAC1B,EAAY,EAAE,YAAY,MAC1B,EAAY,EAAE,YAAY,OAC1B,EAAY,EAAE,YAAY,UAMhC,kBAA6B,EAA6B,EAAqB,EAA2B,CACxG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KACxB,OAAW,KAAK,GACd,GAAI,EAAa,UAAW,CAI1B,GAHA,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,GAC9C,EAAa,WAAY,CAC3B,GAAM,GAAQ,GAAG,EAAE,SAAS,KAAK,MAAM,IAAM,EAAE,UAC/C,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,KAElF,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,IAElF,EAAI,WAKV,kBAA6B,EAA6B,EAAuB,EAA2B,CAC1G,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KAExB,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IACjC,GAAI,EAAa,UAAW,CAI1B,GAHA,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,GAAK,EAAK,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,GAC9E,EAAa,WAAY,CAC3B,GAAM,GAAQ,WAAW,IACzB,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,KAE1G,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,IAE1G,EAAI,WAKV,kBAA6B,EAA6B,EAA8B,CAEtF,GADI,CAAC,GAAY,CAAC,GACd,CAAE,aAAoB,qBAAsB,CAAE,aAAqB,oBAAoB,OAC3F,GAAM,GAAS,EAAS,WAAW,MACnC,WAAQ,UAAU,EAAU,EAAG,GAGjC,kBAA0B,EAA6B,EAAgB,EAA2B,CAChG,GAAM,GAAY,IACZ,EAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,MAAO,MAErD,GAAM,GAAU,QAAQ,IAAI,CAC1B,GAAK,EAAU,EAAO,KAAM,GAC5B,GAAK,EAAU,EAAO,KAAM,GAC5B,GAAK,EAAU,EAAO,KAAM,GAC5B,GAAO,EAAU,EAAO,OAAQ,GAEhC,GAAQ,EAAU,EAAO,QAAS,KAepC,SAAO,YAAY,KAAO,KAAK,MAAM,IAAQ,GACtC,ECjhBF,YAAc,EAAoB,EAAqB,EAAoB,EAA0B,EAAiD,CAN7J,oCAOE,GAAI,GAAK,EACH,EAAyB,GAC/B,OAAW,KAAQ,GAAO,CACxB,GAAM,GAAiB,CAAE,GAAI,IAAM,OAAM,KAAM,KAAM,MAAO,CAAE,KAAM,KAAM,MAAO,MAAQ,SAAU,GAAI,IAAK,CAAC,EAAG,EAAG,EAAG,IACtH,OAAW,KAAQ,GACjB,AAAI,EAAK,IAAI,GAAK,EAAK,IAAI,IACtB,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAK,IAAI,IACrC,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAK,IAAI,IACrC,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAK,IAAI,IACtD,GAAO,KAAO,GAGlB,GAAI,EAAO,KACT,OAAW,KAAQ,GACjB,AAAI,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAC3C,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IACjE,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAC5C,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAChE,EAAO,OAAO,GAAO,MAAM,KAAO,GAEpC,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAClD,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAC9B,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAC5C,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAChE,EAAO,OAAO,GAAO,MAAM,MAAQ,GAI7C,OAAW,KAAW,GACpB,AAAI,EAAQ,OAAY,QAAa,EAAQ,OAAY,EAAK,GAAI,KAAO,WAAP,QAAiB,KAAK,GACnF,AAAI,EAAQ,OAAY,QAAa,EAAQ,OAAY,EAAK,GAAI,KAAO,WAAP,QAAiB,KAAK,GACxF,AAAI,EAAQ,OAAY,QAAa,EAAQ,OAAY,MAAO,OAAP,cAAa,IAAI,KAAO,WAAP,QAAiB,KAAK,GAChG,AAAI,EAAQ,OAAY,QAAa,EAAQ,OAAY,SAAO,QAAP,cAAc,OAAd,cAAoB,IAAI,KAAO,WAAP,QAAiB,KAAK,GACnG,EAAQ,OAAY,QAAa,EAAQ,OAAY,SAAO,QAAP,cAAc,QAAd,cAAqB,KAAI,MAAO,WAAP,QAAiB,KAAK,IAI/G,GAAM,GAAc,GACd,EAAc,GACd,EAAY,AAAC,GAAsD,CACvE,AAAI,GAAO,EAAI,SAAW,GACxB,GAAE,KAAK,EAAI,GAAI,EAAI,GAAK,EAAI,IAC5B,EAAE,KAAK,EAAI,GAAI,EAAI,GAAK,EAAI,MAGhC,EAAU,KAAO,OAAP,cAAa,KACvB,EAAU,KAAO,OAAP,cAAa,KACvB,EAAU,QAAO,QAAP,cAAc,OAAd,cAAoB,KAC9B,EAAU,QAAO,QAAP,cAAc,QAAd,cAAqB,KAC/B,GAAM,GAAO,KAAK,IAAI,GAAG,GACnB,EAAO,KAAK,IAAI,GAAG,GACzB,EAAO,IAAM,CAAC,EAAM,EAAM,KAAK,IAAI,GAAG,GAAK,EAAM,KAAK,IAAI,GAAG,GAAK,GAG9D,GAAS,EAAM,IAAM,EAAM,IAAI,GAAO,OAAS,CAAC,EAAO,IAAI,GAAK,EAAM,GAAI,EAAO,IAAI,GAAK,EAAM,GAAI,EAAO,IAAI,GAAK,EAAM,GAAI,EAAO,IAAI,GAAK,EAAM,KAExJ,EAAQ,KAAK,GAEf,MAAO,GC3DT,GAAM,GAAyB,CAAE,KAAM,GAAI,KAAM,GAAI,KAAM,GAAI,QAAS,GAAI,OAAQ,GAAI,QAAS,GAAI,YAAa,GAAI,UAAW,GAE1H,YAAc,EAA2B,CARhD,8CASE,GAAI,CAAC,EAAW,MAAO,CAAE,KAAM,GAAI,KAAM,GAAI,KAAM,GAAI,QAAS,GAAI,OAAQ,GAAI,QAAS,GAAI,YAAa,GAAI,UAAW,GAKzH,GAAM,GAAU,KAAK,MAAQ,EAAU,UAQjC,EAAiB,EAAU,IAAO,EAAI,KAAK,IAAI,EAAU,GAAK,EAKpE,GAHA,EAAe,OAAS,EAAU,OAG9B,CAAC,EAAe,MAAS,EAAU,KAAK,SAAW,EAAe,KAAK,OACzE,EAAe,KAAO,KAAK,MAAM,KAAK,UAAU,EAAU,WAE1D,QAAS,GAAI,EAAG,EAAI,EAAU,KAAK,OAAQ,IAAK,CAC9C,GAAM,GAAM,EAAU,KAAK,GAAG,IAC3B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,IAAI,GAAK,GAAK,GACxE,EAAS,EAAU,KAAK,GAAG,OAC9B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,OAAO,GAAK,GAAK,GAC3E,EAAa,EAAU,KAAK,GAAG,UAClC,IAAI,CAAC,EAAU,IAAO,EACrB,MAAO,EAAS,MAChB,KAAM,EAAS,KACf,SAAU,CACR,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAK,EAAe,KAAK,GAAG,UAAU,GAAG,SAAS,GAAK,EAAS,SAAS,IAAM,EAAiB,EAAS,SAAS,GAC3K,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAK,EAAe,KAAK,GAAG,UAAU,GAAG,SAAS,GAAK,EAAS,SAAS,IAAM,EAAiB,EAAS,SAAS,IAE7K,YAAa,CACX,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAK,EAAe,KAAK,GAAG,UAAU,GAAG,YAAY,GAAK,EAAS,YAAY,IAAM,EAAiB,EAAS,SAAS,GACjL,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAK,EAAe,KAAK,GAAG,UAAU,GAAG,YAAY,GAAK,EAAS,YAAY,IAAM,EAAiB,EAAS,SAAS,OAGvL,EAAe,KAAK,GAAK,IAAK,EAAU,KAAK,GAAI,MAAK,SAAQ,aAKlE,GAAI,CAAC,EAAe,MAAS,EAAU,KAAK,SAAW,EAAe,KAAK,OACzE,EAAe,KAAO,KAAK,MAAM,KAAK,UAAU,EAAU,WAE1D,QAAS,GAAI,EAAG,EAAI,EAAU,KAAK,OAAQ,IAAK,CAC9C,GAAM,GAAO,EAAU,KAAK,GAAG,IAC5B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,IAAI,GAAK,GAAK,GACxE,EAAU,EAAU,KAAK,GAAG,OAC/B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,OAAO,GAAK,GAAK,GAC3E,EAAY,EAAU,KAAK,GAAG,UACjC,IAAI,CAAC,EAAU,IAAM,EACnB,IAAI,CAAC,GAAO,KAAS,IAAiB,GAAK,EAAe,KAAK,GAAG,UAAU,GAAG,IAAK,IAAS,IAC5F,EAAO,OAAO,KAAK,EAAU,KAAK,GAAG,aACrC,EAAc,GACpB,OAAW,KAAO,GAChB,EAAY,GAAO,EAAU,KAAK,GAAG,YAAY,GAC9C,IAAI,CAAC,EAAK,KAAM,EAAI,IAAI,CAAC,GAAO,KAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,YAAY,GAAK,IAAG,IAAK,IAAS,IAE5H,EAAe,KAAK,GAAK,IAAK,EAAU,KAAK,GAAI,MAAK,SAAQ,YAAW,YAAa,GAK1F,GAAI,CAAC,EAAe,MAAS,EAAU,KAAK,SAAW,EAAe,KAAK,OACzE,EAAe,KAAO,KAAK,MAAM,KAAK,UAAU,EAAU,WAE1D,QAAS,GAAI,EAAG,EAAI,EAAU,KAAK,OAAQ,IAAK,CAC9C,GAAM,GAAO,EAAU,KAAK,GAAG,IAC5B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,IAAI,GAAK,GAAK,GACxE,EAAU,EAAU,KAAK,GAAG,OAC/B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,OAAO,GAAK,GAAK,GAC3E,EAIF,CAAE,OAAQ,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,GAAI,MAAO,CAAE,KAAM,EAAG,IAAK,EAAG,MAAO,GAAK,KAAM,CAAE,QAAS,EAAG,SAAU,IAC/G,EAAS,OAAS,KAAU,KAAK,GAAG,WAAlB,cAA4B,OAC9C,EAAS,MAAQ,CACf,KAAQ,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,QAAjC,cAAwC,OAAQ,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,QAA5B,cAAmC,OAAQ,IAAM,EACtI,IAAO,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,QAAjC,cAAwC,MAAO,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,QAA5B,cAAmC,MAAO,IAAM,EACnI,MAAS,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,QAAjC,cAAwC,QAAS,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,QAA5B,cAAmC,QAAS,IAAM,GAE3I,EAAS,KAAO,CAEd,QAAW,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,OAAjC,cAAuC,UAAW,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,OAA5B,cAAkC,UAAW,IAAM,EAC7I,SAAY,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,OAAjC,cAAuC,WAAY,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,OAA5B,cAAkC,WAAY,IAAM,GAElJ,EAAe,KAAK,GAAK,IAAK,EAAU,KAAK,GAAI,WAAU,MAAK,UAKpE,GAAI,CAAC,EAAe,QAAW,EAAU,OAAO,SAAW,EAAe,OAAO,OAC/E,EAAe,OAAS,KAAK,MAAM,KAAK,UAAU,EAAU,aAE5D,QAAS,GAAI,EAAG,EAAI,EAAU,OAAO,OAAQ,IAAK,CAChD,GAAM,GAAO,EAAU,OAAO,GAAG,IAC9B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,OAAO,GAAG,IAAI,GAAK,GAAK,GAC1E,EAAU,EAAU,OAAO,GAAG,OACjC,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,OAAO,GAAG,OAAO,GAAK,GAAK,GACnF,EAAe,OAAO,GAAK,IAAK,EAAU,OAAO,GAAI,MAAK,UAK9D,GAAI,EAAU,QAAS,CACrB,GAAM,GAAa,EAAU,QAC7B,GAAI,CAAC,EAAe,SAAY,EAAW,SAAW,EAAe,QAAQ,OAC3E,EAAe,QAAU,KAAK,MAAM,KAAK,UAAU,QAEnD,QAAS,GAAI,EAAG,EAAI,EAAW,OAAQ,IACrC,EAAe,QAAQ,GAAG,IAAO,EAAW,GAAG,IAC5C,IAAI,CAAC,EAAK,IAAQ,IAAiB,GAAK,EAAe,QAAQ,GAAG,IAAI,GAAK,GAAO,GAM3F,MAAI,GAAU,SAAS,GAAe,QAAU,EAAU,SACtD,EAAU,aAAa,GAAe,YAAc,EAAU,aAE3D,EChIF,GAAM,IAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kEA0JP,GAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;qBC/JpB,wCA8DO,QAAY,CAuFjB,YAAY,EAA+C,CAb3D,mBACA,mBACA,mBACA,mBACA,mBACA,mBAmDA,aAAU,IAAI,IAAkB,CAC9B,GAAI,CAAC,OAAK,IAAqB,OAC/B,GAAM,GAAiB,KAAK,GAAG,SAAS,MAAM,WACxC,EAAkB,OAAK,IAC7B,QAAK,GAAc,GACnB,GAAM,GAAS,EAAiB,EAChC,AAAI,IAAW,GAAG,EAAI,GAAG,EAAK,IAKhC,WAAU,AAAC,GAAgC,CACzC,GAAI,CAAC,OAAK,IAAc,MAAO,MAC/B,GAAI,CAAC,EAAO,MAAO,uBACnB,GAAI,KAAK,GAAG,IAAI,MAAM,SAAW,CAAE,aAAoB,WAAS,MAAO,yBACvE,GAAI,CACF,KAAK,GAAG,mBACF,EAAN,CACA,MAAO,qBAET,MAAO,QAmFT,WAAgB,MAAO,EAAQ,KAAU,CAvS3C,MAwSI,GAAI,KAAK,OAAO,SAAY,KAAK,OAAO,QAAQ,OAAS,GAAM,GAAU,KAAK,GAAG,eAAiB,KAAK,OAAO,QAAU,CACtH,GAAM,GAAY,IAYlB,GAXA,KAAK,MAAQ,UAWT,KAAK,OAAO,SAAW,KAAK,OAAO,QAAQ,OAAS,EAAG,CAkBzD,GAfI,MAAO,SAAW,aAAe,MAAO,oBAAsB,aAAe,KAAK,OAAO,OAC3F,EAAI,6BAIF,KAAK,GAAG,IAAI,MAAM,YAAc,KAAK,OAAO,UAAY,cAC1D,GAAI,gEACJ,KAAK,OAAO,QAAU,WAEpB,KAAK,GAAG,IAAI,MAAM,SAAY,MAAK,OAAO,UAAY,SAAW,KAAK,OAAO,UAAY,YAC3F,GAAI,0DACJ,KAAK,OAAO,QAAU,cAIpB,KAAK,GAAG,IAAI,MAAM,YAAc,KAAK,OAAO,UAAY,SAC1D,GAAI,MAAO,YAAc,aAAe,MAAO,WAAU,KAAW,YAClE,EAAI,uEACJ,KAAK,OAAO,QAAU,cACjB,CACL,GAAM,GAAU,KAAM,WAAU,IAAO,iBACvC,AAAI,KAAK,OAAO,OAAO,EAAI,6BAA8B,GAK7D,AAAI,KAAK,OAAO,UAAY,WAAW,AAAQ,KAC/C,GAAM,GAAY,OAAO,KAAK,KAAK,GAAG,SAAS,iBAY/C,GAXI,KAAK,OAAO,OAAO,EAAI,sBAAuB,GAE7C,EAAU,SAAS,KAAK,OAAO,UAClC,GAAI,kBAAkB,KAAK,OAAO,iCAClC,KAAK,OAAO,QAAU,KAAK,GAAG,IAAI,MAAM,QAAU,aAAe,UACjE,EAAI,2BAA2B,KAAK,OAAO,oBAGzC,KAAK,OAAO,OAAO,EAAI,mBAAoB,KAAK,OAAO,SAGvD,KAAK,OAAO,UAAY,OAAQ,CAElC,GADI,KAAK,OAAO,OAAO,EAAI,aAAc,KAAK,OAAO,UACjD,MAAO,SAAK,KAAL,cAAS,eAAiB,YAAa,KAAK,GAAG,aAAa,KAAK,OAAO,cAC9E,MAAM,IAAI,OAAM,qCACrB,GAAM,GAAO,KAAM,MAAK,GAAG,MAAM,SAAS,yBACpC,EAAK,KAAM,MAAK,GAAG,MAAM,SAAS,gCACxC,AAAI,KAAK,OAAO,OAAO,EAAI,mBAAmB,EAAO,OAAS,aAAa,EAAK,gBAAkB,oBAC9F,KAAK,OAAO,OAAS,CAAC,GAAM,EAAI,6CAItC,GAAI,CACF,KAAM,MAAK,GAAG,WAAW,KAAK,OAAO,eAC9B,EAAP,CACA,EAAI,6BAA8B,KAAK,OAAO,QAAS,IAK3D,GAAI,KAAK,GAAG,eAAiB,SAAW,KAAK,GAAG,eAAiB,UAAW,CAC1E,KAAK,GAAG,IAAI,IAAI,+BAAgC,IAChD,KAAK,GAAG,IAAI,IAAI,oBAAqB,IACrC,KAAK,GAAG,IAAI,IAAI,2BAA4B,IAC5C,KAAK,GAAG,IAAI,IAAI,4BAA6B,IAEzC,MAAO,MAAK,OAAO,YAAkB,aAAe,KAAK,OAAO,YAClE,GAAI,kDAAmD,IACvD,KAAK,GAAG,IAAI,IAAI,iCAAkC,IAGpD,GAAM,GAAK,KAAM,MAAK,GAAG,UAAU,kBAAkB,GACrD,AAAI,KAAK,OAAO,OAAO,EAAI,cAAc,EAAG,aAAa,EAAG,qBAAqB,EAAG,aAAa,EAAG,aAItG,KAAK,GAAG,iBACR,KAAM,MAAK,GAAG,QACd,KAAK,YAAY,QAAU,KAAK,MAAM,IAAQ,MAWlD,UAAO,AAAC,GAAoB,AAAY,GAAK,GAAU,KAAK,QAI5D,WAAa,KAAO,IAAkB,CACpC,GAAI,KAAK,OAAO,mBAAqB,EAAG,MAAO,GAC/C,GAAM,GAAa,GACnB,GAAI,CAAC,EAAM,MAAM,IAAM,CAAC,EAAM,MAAM,GAAI,MAAO,GAC/C,GAAM,GAAkB,AAAG,QAAM,eAAe,EAAO,CAAC,KAAK,MAAM,EAAM,MAAM,GAAK,GAAa,KAAK,MAAM,EAAM,MAAM,GAAK,KAQvH,EAAc,KAAM,GAAQ,OAC9B,EAAM,EACV,OAAS,GAAI,EAAG,EAAI,EAAY,OAAS,EAAG,IAAK,GAAO,EAAY,EAAI,EAAI,GAE5E,EAAQ,UACR,GAAM,GAAO,IAAO,MAAK,IAAI,EAAK,OAAK,KAAiB,KAAK,IAAI,EAAK,OAAK,KAAiB,GAC5F,QAAK,GAAgB,GAGrB,GAAM,GAAY,EAAO,KAAK,IAAI,KAAK,OAAO,iBAAkB,OAAK,KAErE,eAAK,GAAiB,EAAO,GAAK,KAAK,OAAO,iBAAmB,EAAI,GAC9D,IAmLT,WAAgB,SAAY,CAC1B,GAAM,GAAY,CAAC,EAAgB,EAAO,6BAA+B,MAAM,QAAQ,YAAe,KAAU,KAAK,AAAC,GAAQ,EAAI,QAC9H,EACA,EACJ,OAAQ,KAAK,OAAO,YACb,OAAQ,EAAO,KAAM,GAAiB,IAAO,UAC7C,OAAQ,EAAO,KAAM,GAAiB,IAAO,cACzC,EAAO,KAElB,GAAI,EAAM,CACR,GAAM,GAAS,KAAM,mBAAkB,GACvC,EAAM,KAAM,MAAK,OAAO,EAAQ,KAAK,QACrC,EAAO,QAET,MAAO,KAIT,WAAgB,SAAY,GAAI,SAAQ,AAAC,GAAY,CACnD,GAAI,GACA,EAAO,EACX,OAAQ,KAAK,OAAO,YACb,OACH,EAAO,IACP,EAAM,0BAAmC,GACzC,UACG,WACA,OACH,EAAO,KACP,EAAM,0BAAmC,GACzC,cAEA,EAAM,KAGV,GAAM,GAAM,GAAI,OAChB,EAAI,OAAS,SAAY,CACvB,GAAM,GAAU,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAM,GAAQ,SAAS,cAAc,UACnH,EAAO,MAAQ,EAAI,aACnB,EAAO,OAAS,EAAI,cACpB,GAAM,GAAM,EAAO,WAAW,MAC9B,WAAK,UAAU,EAAK,EAAG,GAEvB,GAAM,GAAM,KAAM,MAAK,OAAO,EAAQ,KAAK,QAC3C,EAAQ,IAEV,AAAI,EAAK,EAAI,IAAM,EACd,EAAQ,SAIf,WAAc,SAAY,CACxB,GAAM,GAAO,AAAC,GAAgB,OAAO,KAAK,EAAK,UAC3C,EAGJ,GAFI,KAAK,OAAO,SAAW,QAAQ,GAAM,EAAY,KACjD,MAAK,OAAO,SAAW,QAAU,KAAK,OAAO,SAAW,SAAQ,GAAM,EAAY,KAClF,CAAC,EAAK,MAAO,MACjB,GAAI,GACJ,GAAI,MAAU,SAAY,YAAa,CACrC,GAAM,GAAO,AAAG,OAAQ,WAAW,GAC7B,EAAW,EAAK,WAAW,GACjC,KAAK,GAAG,QAAQ,GAEhB,EAAM,KAAM,MAAK,OAAO,EAAU,KAAK,QACvC,KAAK,GAAG,QAAQ,OAEhB,AAAI,MAAK,OAAO,OAAO,EAAI,+BAS7B,MAAO,KAnhBP,KAAK,OAAS,EAAU,GAAU,GAAc,IAChD,KAAK,GAAK,EACV,KAAK,KAAO,GACZ,KAAK,QAAc,GACnB,KAAK,MAAQ,OACb,QAAK,GAAc,GACnB,QAAK,GAAsB,IAC3B,QAAK,GAAe,IACpB,QAAK,GAAY,IACjB,QAAK,GAAiB,GACtB,KAAK,YAAc,CAAE,QAAS,EAAG,KAAM,EAAG,MAAO,EAAG,OAAQ,EAAG,OAAQ,EAAG,QAAS,EAAG,MAAO,EAAG,KAAM,GAEtG,KAAK,OAAS,CACZ,KAAM,KACN,QAAS,KACT,UAAW,KACX,cAAe,KACf,QAAS,KACT,SAAU,KACV,IAAK,KACL,OAAQ,KACR,QAAS,KACT,UAAW,KACX,QAAS,KACT,UAAW,KACX,QAAS,KACT,aAAc,MAEhB,KAAK,OAAS,CAAE,KAAM,GAAI,KAAM,GAAI,KAAM,GAAI,QAAS,GAAI,OAAQ,GAAI,YAAa,GAAI,UAAW,EAAG,QAAS,IAG/G,KAAK,MAAQ,AAAC,GAAiB,AAAM,GAAQ,EAAO,KAAK,QAEzD,KAAK,kBAA6B,GAClC,KAAK,UAAqB,GAE1B,KAAK,QAAU,AAAQ,KACvB,QAAK,GAAgB,GAoCvB,WAAW,EAA2B,EAAmC,CACvE,MAAO,AAAQ,IAAW,EAAY,GAYxC,aAAa,EAAc,EAAoB,CAC7C,MAAO,AAAa,IAAQ,EAAO,EAAY,KAAK,QAQtD,QAAQ,EAA8B,CACpC,MAAO,AAAQ,IAAQ,GAUzB,MAAM,EAA8B,EAAkE,EAAY,EAA8E,CAC9L,MAAO,AAAQ,IAAM,EAAe,EAAI,QAOpC,MAAK,EAA+C,CACxD,KAAK,MAAQ,OACb,GAAM,GAAY,IAClB,AAAI,GAAY,MAAK,OAAS,EAAU,KAAK,OAAQ,IAEjD,OAAK,KACH,MAAK,OAAO,OAAO,EAAI,YAAY,KAAK,WACxC,KAAK,OAAO,OAAO,EAAI,iBAAiB,KAAK,GAAG,gBAChD,KAAK,OAAO,OAAO,EAAI,YAAa,KAAK,QAAQ,UACjD,KAAK,OAAO,OAAO,EAAI,SAAU,KAAK,QAAQ,OAElD,KAAM,QAAK,IAAL,UAAmB,IACrB,KAAK,GAAG,IAAI,MAAM,YAChB,MAAK,OAAO,OAAO,EAAI,iBAAkB,KAAK,QAC9C,KAAK,OAAO,OAAO,EAAI,YAAa,KAAK,GAAG,IAAI,SAIxD,KAAM,AAAO,IAAK,MAEd,OAAK,KACH,MAAK,OAAO,OAAO,EAAI,mBAAoB,KAAK,GAAG,SAAS,MAAM,SAAU,QAAS,KAAK,GAAG,SAAS,MAAM,WAAY,WAC5H,QAAK,GAAY,KAGnB,GAAM,GAAU,KAAK,MAAM,IAAQ,GACnC,AAAI,EAAW,MAAK,YAAY,MAAkB,IAAI,MAAK,YAAY,KAAO,QAsJ1E,QAAO,EAAc,EAAwE,CAEjG,MAAO,IAAI,SAAQ,KAAO,IAAY,CACpC,KAAK,MAAQ,SACb,GAAI,GACA,EAGJ,KAAK,OAAS,EAAU,KAAK,OAAQ,GAGrC,KAAK,MAAQ,QACb,GAAM,GAAQ,OAAK,IAAL,UAAa,GAC3B,AAAI,GACF,GAAI,EAAO,GACX,EAAQ,CAAE,WAGZ,GAAM,GAAY,IAGlB,KAAM,QAAK,IAAL,WAGN,KAAM,MAAK,OAEX,EAAY,IACZ,GAAI,GAAU,AAAM,GAAQ,EAAO,KAAK,QAoBxC,GAnBA,KAAK,YAAY,MAAQ,KAAK,MAAM,IAAQ,GAC5C,KAAK,QAAQ,cAGT,KAAK,OAAO,aAAa,SAAW,GAAW,EAAQ,QACzD,MAAK,QAAQ,uBACb,KAAK,MAAQ,mBACb,EAAY,IACZ,KAAM,AAAa,IAAQ,GAC3B,EAAc,KAAK,MAAM,IAAQ,GAC7B,EAAc,GAAG,MAAK,YAAY,aAAe,GACjD,EAAQ,QAEV,CAAG,UAAQ,EAAQ,QACnB,EAAU,AAAM,GAAQ,EAAQ,OAAQ,KAAK,SAE/C,KAAK,QAAQ,sBAGX,CAAC,GAAW,CAAC,EAAQ,OAAQ,CAC/B,EAAI,qCACJ,EAAQ,CAAE,MAAO,sCACjB,OAGF,EAAY,IACZ,KAAK,OAAO,UAAY,KAAM,QAAK,IAAL,UAAgB,EAAQ,QACjD,KAAK,YAAY,QAAQ,MAAK,YAAY,OAAS,GACnD,KAAK,YAAY,QAAQ,MAAK,YAAY,OAAS,GACvD,KAAK,YAAY,SACd,KAAK,OAAO,WAAW,KAAK,YAAY,SAC5C,KAAK,YAAY,QAAU,KAAK,MAAM,IAAQ,GAC9C,KAAK,QAAQ,kBAIb,GAAI,GAA8C,GAC9C,EAA8C,GAC9C,EAA8C,GAC9C,EAAgD,GAGpD,AAAI,KAAK,OAAO,MACd,GAAU,KAAK,OAAO,KAAK,QAAU,AAAK,GAAW,KAAM,EAAQ,QAAU,GACzE,KAAK,YAAY,MAAM,MAAO,MAAK,YAAY,MAEnD,MAAK,MAAQ,WACb,EAAY,IACZ,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAK,IAAW,KAAM,EAAQ,QAAU,GACnF,EAAc,KAAK,MAAM,IAAQ,GAC7B,EAAc,GAAG,MAAK,YAAY,KAAO,IAI/C,KAAK,QAAQ,eACb,AAAI,KAAK,OAAO,MACd,CAAI,KAAK,OAAO,KAAK,UAAU,SAAS,WAAY,EAAU,KAAK,OAAO,KAAK,QAAU,AAAQ,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GACnI,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,aAAc,EAAU,KAAK,OAAO,KAAK,QAAU,AAAU,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GAC5I,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,iBAAkB,EAAU,KAAK,OAAO,KAAK,QAAU,AAAc,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GAChJ,KAAK,OAAO,KAAK,UAAU,SAAS,YAAY,GAAU,KAAK,OAAO,KAAK,QAAU,AAAQ,GAAQ,EAAQ,OAAQ,KAAK,QAAU,IACzI,KAAK,YAAY,MAAM,MAAO,MAAK,YAAY,MAEnD,MAAK,MAAQ,WACb,EAAY,IACZ,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,WAAY,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAQ,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GACzI,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,aAAc,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAU,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GAClJ,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,iBAAkB,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAc,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GACtJ,KAAK,OAAO,KAAK,UAAU,SAAS,YAAY,GAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAQ,IAAQ,EAAQ,OAAQ,KAAK,QAAU,IACnJ,EAAc,KAAK,MAAM,IAAQ,GAC7B,EAAc,GAAG,MAAK,YAAY,KAAO,IAE/C,KAAK,QAAQ,aAGb,KAAK,QAAQ,eACb,AAAI,KAAK,OAAO,MACd,GAAU,KAAK,OAAO,KAAK,QAAU,AAAS,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GACjF,KAAK,YAAY,MAAM,MAAO,MAAK,YAAY,MAEnD,MAAK,MAAQ,WACb,EAAY,IACZ,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAS,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GAC3F,EAAc,KAAK,MAAM,IAAQ,GAC7B,EAAc,GAAG,MAAK,YAAY,KAAO,IAE/C,KAAK,QAAQ,aAGb,KAAK,QAAQ,iBACb,AAAI,KAAK,OAAO,MACd,CAAI,KAAK,OAAO,OAAO,UAAU,SAAS,WAAY,EAAY,KAAK,OAAO,OAAO,QAAU,AAAQ,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GACrI,KAAK,OAAO,OAAO,UAAU,SAAS,cAAc,GAAY,KAAK,OAAO,OAAO,QAAU,AAAU,GAAQ,EAAQ,OAAQ,KAAK,QAAU,IACnJ,KAAK,YAAY,QAAQ,MAAO,MAAK,YAAY,QAErD,MAAK,MAAQ,aACb,EAAY,IACZ,AAAI,KAAK,OAAO,OAAO,UAAU,SAAS,WAAY,EAAY,KAAK,OAAO,OAAO,QAAU,KAAM,AAAQ,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GAC3I,KAAK,OAAO,OAAO,UAAU,SAAS,cAAc,GAAY,KAAK,OAAO,OAAO,QAAU,KAAM,AAAU,IAAQ,EAAQ,OAAQ,KAAK,QAAU,IAC7J,EAAc,KAAK,MAAM,IAAQ,GAC7B,EAAc,GAAG,MAAK,YAAY,OAAS,IAEjD,KAAK,QAAQ,eAGT,KAAK,OAAO,OAAO,EAAC,EAAS,EAAS,EAAS,GAAa,KAAM,SAAQ,IAAI,CAAC,EAAS,EAAS,EAAS,KAG9G,GAAI,GAAwB,GAC5B,AAAI,KAAK,OAAO,QAAQ,SACtB,GAAY,IACZ,EAAa,CAAC,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,IAC5G,AAAK,KAAK,OAAO,MACR,KAAK,YAAY,SAAS,MAAO,MAAK,YAAY,QADnC,KAAK,YAAY,QAAU,KAAK,MAAM,IAAQ,IAIxE,KAAK,YAAY,MAAQ,KAAK,MAAM,IAAQ,GAC5C,KAAK,MAAQ,OACb,KAAK,OAAS,CACZ,KAAM,EACN,KAAM,EACN,KAAM,EACN,QAAS,EACT,OAAQ,EACR,YAAa,KAAK,YAClB,OAAQ,EAAQ,OAChB,UAAW,KAAK,SACZ,UAAU,CAllBtB,MAklBwB,MAAO,AAAQ,IAAK,EAAmB,EAAmB,EAAmB,EAAY,oBAAS,SAAT,cAAiB,SAI5H,AAAG,UAAQ,EAAQ,QAGnB,EAAQ,KAAK,eAwFX,QAAO,EAA4E,CACvF,GAAM,GAAK,IAEX,GADI,GAAY,MAAK,OAAS,EAAU,KAAK,OAAQ,IACjD,CAAC,KAAK,OAAO,QAAU,KAAK,OAAO,SAAW,OAAQ,MAAO,CAAE,MAAO,QAC1E,GAAI,GACJ,AAAI,MAAO,oBAAsB,WAAY,EAAM,KAAM,QAAK,IAAL,WACpD,AAAI,MAAO,QAAU,YAAa,EAAM,KAAM,QAAK,IAAL,WAC9C,EAAM,KAAM,QAAK,IAAL,WACjB,GAAM,GAAK,IACX,MAAI,MAAK,OAAO,OAAO,EAAI,SAAU,KAAK,OAAO,OAAQ,KAAK,MAAM,EAAK,GAAK,KAAM,GAC7E,IAnjBT,eACA,eACA,eACA,eACA,eACA,eA8DA,eA4FA,eA4GA,eA2MA,eAkBA,eAiCA", "names": [] } diff --git a/dist/human.esm.js b/dist/human.esm.js index ecce64b7..09c71627 100644 --- a/dist/human.esm.js +++ b/dist/human.esm.js @@ -4,61 +4,61 @@ homepage: author: ' */ -var Xy=Object.defineProperty;var pI=e=>Xy(e,"__esModule",{value:!0});var vm=e=>{if(typeof require!="undefined")return require(e);throw new Error('Dynamic require of "'+e+'" is not supported')};var Ky=(e,t)=>{pI(e);for(var n in t)Xy(e,n,{get:t[n],enumerable:!0})};var Zy=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var hn=(e,t,n)=>(Zy(e,t,"read from private field"),n?n.call(e):t.get(e)),ts=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},Cs=(e,t,n,s)=>(Zy(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);function ft(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${r} Expecting JSON file`);return r}function ue(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var Ke=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function pn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=pn(a,o):n[r]=o}),n),{})}var Yy={backend:"webgl",modelBasePath:"../models/",wasmPath:"../node_modules/@tensorflow/tfjs-backend-wasm/dist/",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,skipFrame:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:15,skipFrames:15,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:11,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:17,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:1,minConfidence:.2,skipFrames:1},hand:{enabled:!0,rotation:!0,skipFrames:18,minConfidence:.1,iouThreshold:.1,maxDetected:2,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:19},segmentation:{enabled:!1,modelPath:"selfie.json"}};function Jy(){let e="",t="";if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);if(n&&n[0]){let s=n[0].match(/\(([^()]+)\)/g);e=s&&s[0]?s[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var Jc={};Ky(Jc,{Abs:()=>pi,Acos:()=>fi,Acosh:()=>mi,AdadeltaOptimizer:()=>op,AdagradOptimizer:()=>ip,AdamOptimizer:()=>lp,AdamaxOptimizer:()=>up,Add:()=>Pr,AddN:()=>xa,All:()=>Ai,Any:()=>gi,ArgMax:()=>ba,ArgMin:()=>Tu,Asin:()=>yi,Asinh:()=>xi,Atan:()=>bi,Atan2:()=>wi,Atanh:()=>vi,AvgPool:()=>va,AvgPool3D:()=>Nu,AvgPool3DGrad:()=>Bd,AvgPoolGrad:()=>Ld,BackendWasm:()=>bk,BatchMatMul:()=>wa,BatchToSpaceND:()=>ki,Bincount:()=>Wd,BroadcastTo:()=>A5,Callback:()=>bv,CallbackList:()=>h3,Cast:()=>ka,Ceil:()=>Ia,ClipByValue:()=>Mr,Complex:()=>Vd,ComplexAbs:()=>Eu,Concat:()=>Ii,Conv2D:()=>Sa,Conv2DBackpropFilter:()=>Ud,Conv2DBackpropInput:()=>Ca,Conv3D:()=>Ru,Conv3DBackpropFilterV2:()=>Hd,Conv3DBackpropInputV2:()=>Gd,Cos:()=>Ta,Cosh:()=>Na,CropAndResize:()=>Si,Cumsum:()=>Ea,CustomCallback:()=>f3,DataStorage:()=>Dd,DenseBincount:()=>jd,DepthToSpace:()=>Ci,DepthwiseConv2dNative:()=>Ra,DepthwiseConv2dNativeBackpropFilter:()=>qd,DepthwiseConv2dNativeBackpropInput:()=>Xd,Diag:()=>Kd,Dilation2D:()=>_u,Dilation2DBackpropFilter:()=>Yd,Dilation2DBackpropInput:()=>Zd,ENV:()=>ns,EarlyStopping:()=>wv,Einsum:()=>Jd,Elu:()=>Ti,EluGrad:()=>Qd,Environment:()=>f5,Equal:()=>Ei,Erf:()=>Ni,Exp:()=>$a,ExpandDims:()=>Ri,Expm1:()=>_i,FFT:()=>eh,Fill:()=>$u,FlipLeftRight:()=>$i,Floor:()=>Fa,FloorDiv:()=>Da,FromPixels:()=>vh,FusedBatchNorm:()=>Oa,FusedConv2D:()=>Ao,FusedDepthwiseConv2D:()=>go,GPGPUContext:()=>cf,GatherNd:()=>Di,GatherV2:()=>Fi,GraphModel:()=>e7,Greater:()=>Oi,GreaterEqual:()=>Pa,History:()=>p3,IFFT:()=>th,Identity:()=>Ma,Imag:()=>nh,InputSpec:()=>Pt,IsFinite:()=>Pi,IsInf:()=>Mi,IsNan:()=>zi,KernelBackend:()=>Iu,LRN:()=>Ou,LRNGrad:()=>rh,LayerVariable:()=>i3,LayersModel:()=>wr,LeakyRelu:()=>za,Less:()=>Li,LessEqual:()=>Bi,LinSpace:()=>sh,Log:()=>La,Log1p:()=>Wi,LogSoftmax:()=>g5,LogicalAnd:()=>Vi,LogicalNot:()=>Fu,LogicalOr:()=>Du,MathBackendCPU:()=>Zp,MathBackendWebGL:()=>eu,Max:()=>Ba,MaxPool:()=>Va,MaxPool3D:()=>Pu,MaxPool3DGrad:()=>oh,MaxPoolGrad:()=>ah,MaxPoolWithArgmax:()=>ih,Maximum:()=>Wa,Mean:()=>Ua,Min:()=>Ha,Minimum:()=>Ga,MirrorPad:()=>ja,Mod:()=>Ui,MomentumOptimizer:()=>cp,Multinomial:()=>lh,Multiply:()=>qa,Neg:()=>Hi,NonMaxSuppressionV3:()=>ji,NonMaxSuppressionV4:()=>qi,NonMaxSuppressionV5:()=>Xi,NotEqual:()=>Gi,OP_SCOPE_SUFFIX:()=>$5,OneHot:()=>Xa,OnesLike:()=>Ki,Optimizer:()=>xr,Pack:()=>Zi,PadV2:()=>Ka,Pool:()=>gS,Pow:()=>Za,Prelu:()=>Ya,Prod:()=>Yi,RMSPropOptimizer:()=>dp,RNN:()=>sr,Range:()=>Mu,Rank:()=>$m,Real:()=>uh,RealDiv:()=>_a,Reciprocal:()=>Ji,Reduction:()=>yn,Relu:()=>Ja,Relu6:()=>eo,Reshape:()=>Qi,ResizeBilinear:()=>Qa,ResizeBilinearGrad:()=>dh,ResizeNearestNeighbor:()=>zu,ResizeNearestNeighborGrad:()=>ch,Reverse:()=>to,RotateWithOffset:()=>fl,Round:()=>no,Rsqrt:()=>so,SGDOptimizer:()=>dc,ScatterNd:()=>el,Select:()=>tl,Selu:()=>nl,Sequential:()=>Ll,Sigmoid:()=>ao,Sign:()=>al,Sin:()=>ro,Sinh:()=>rl,Slice:()=>sl,Softmax:()=>lo,Softplus:()=>ol,SpaceToBatchND:()=>il,SparseFillEmptyRows:()=>hh,SparseReshape:()=>ph,SparseSegmentMean:()=>fh,SparseSegmentSum:()=>mh,SparseToDense:()=>Ah,SplitV:()=>ll,Sqrt:()=>oo,Square:()=>Lu,SquaredDifference:()=>uo,Step:()=>Lr,StridedSlice:()=>ul,StringNGrams:()=>gh,StringSplit:()=>yh,StringToHashBucketFast:()=>xh,Sub:()=>co,Sum:()=>io,SymbolicTensor:()=>Ms,Tan:()=>ho,Tanh:()=>po,Tensor:()=>Ue,TensorBuffer:()=>Bt,Tile:()=>zr,TopK:()=>cl,Transform:()=>dl,Transpose:()=>fo,Unique:()=>bh,Unpack:()=>hl,UnsortedSegmentSum:()=>Bu,Variable:()=>Xu,ZerosLike:()=>pl,_FusedMatMul:()=>mo,abs:()=>Wt,acos:()=>Ax,acosh:()=>gx,add:()=>ae,addN:()=>Fh,all:()=>iA,any:()=>Dh,argMax:()=>Xs,argMin:()=>yx,asin:()=>xx,asinh:()=>bx,atan:()=>vx,atan2:()=>wx,atanh:()=>kx,avgPool:()=>Ph,avgPool3d:()=>cA,backend:()=>mx,backend_util:()=>$,basicLSTMCell:()=>nT,batchNorm:()=>Sl,batchNorm2d:()=>Tx,batchNorm3d:()=>Nx,batchNorm4d:()=>Ex,batchToSpaceND:()=>Mh,bincount:()=>dA,booleanMaskAsync:()=>fR,broadcastTo:()=>tc,browser:()=>rs,buffer:()=>Be,callbacks:()=>Rz,cast:()=>ce,ceil:()=>Rx,clipByValue:()=>Wn,clone:()=>Es,complex:()=>Wr,concat:()=>ht,concat1d:()=>_x,concat2d:()=>Cl,concat3d:()=>$x,concat4d:()=>Fx,constraints:()=>Bb,conv1d:()=>hA,conv2d:()=>jr,conv2dTranspose:()=>fA,conv3d:()=>mA,conv3dTranspose:()=>Ox,copyRegisteredKernels:()=>bS,cos:()=>zh,cosh:()=>AA,cosineWindow:()=>WA,cumsum:()=>gA,customGrad:()=>Zs,data:()=>t7,denseBincount:()=>Px,deprecationWarn:()=>rA,depthToSpace:()=>Mx,depthwiseConv2d:()=>nc,deregisterOp:()=>$z,device_util:()=>Zu,diag:()=>_T,dilation2d:()=>zx,disableDeprecationWarnings:()=>mC,dispose:()=>K,disposeVariables:()=>AC,div:()=>de,divNoNan:()=>Lx,dot:()=>LT,dropout:()=>mb,einsum:()=>Bx,elu:()=>sc,enableDebugMode:()=>fC,enableProdMode:()=>pC,enclosingPowerOfTwo:()=>Ab,engine:()=>Ar,env:()=>ee,equal:()=>as,erf:()=>Wx,exp:()=>os,expandDims:()=>Ft,expm1:()=>Vx,eye:()=>yA,fft:()=>Jh,fill:()=>Tl,findBackend:()=>aA,findBackendFactory:()=>kC,floor:()=>rc,floorDiv:()=>oA,forceHalfFloat:()=>N6,fused:()=>Kr,gather:()=>Nl,gatherND:()=>fb,gather_util:()=>Ym,getBackend:()=>vC,getGradient:()=>Nm,getKernel:()=>wh,getKernelsForBackend:()=>Al,gpgpu_util:()=>Jw,grad:()=>cN,grads:()=>dN,greater:()=>Vn,greaterEqual:()=>Co,ifft:()=>lc,imag:()=>Lh,image:()=>_e,inTopKAsync:()=>SR,initializers:()=>qb,input:()=>M3,io:()=>Tn,irfft:()=>OA,isFinite:()=>eN,isInf:()=>nN,isNaN:()=>Ux,keep:()=>Kt,kernel_impls:()=>Js,layers:()=>r3,leakyRelu:()=>Bh,less:()=>xA,lessEqual:()=>To,linalg:()=>Cb,linspace:()=>Hx,loadGraphModel:()=>pt,loadLayersModel:()=>BP,localResponseNormalization:()=>Gx,log:()=>is,log1p:()=>Wh,logSigmoid:()=>gN,logSoftmax:()=>bA,logSumExp:()=>Zx,logicalAnd:()=>_s,logicalNot:()=>Uh,logicalOr:()=>kA,logicalXor:()=>EN,losses:()=>i$,matMul:()=>We,math:()=>Z5,max:()=>ls,maxPool:()=>Hh,maxPool3d:()=>IA,maxPoolWithArgmax:()=>Yx,maximum:()=>gr,mean:()=>Et,memory:()=>$h,meshgrid:()=>ON,metrics:()=>gv,min:()=>Gh,minimum:()=>ac,mirrorPad:()=>Jx,mod:()=>Qx,model:()=>zP,models:()=>yv,moments:()=>jh,movingAverage:()=>gR,mul:()=>z,multiRNNCell:()=>UN,multinomial:()=>eb,neg:()=>St,nextFrame:()=>hp,norm:()=>LA,notEqual:()=>Rl,oneHot:()=>Qu,ones:()=>Un,onesLike:()=>us,op:()=>V,outerProduct:()=>XN,pad:()=>qr,pad1d:()=>YN,pad2d:()=>QN,pad3d:()=>tE,pad4d:()=>sE,pool:()=>lE,pow:()=>Xr,prelu:()=>Xh,print:()=>H5,prod:()=>SA,profile:()=>gC,rand:()=>pE,randomGamma:()=>gE,randomNormal:()=>tb,randomUniform:()=>_l,range:()=>$l,ready:()=>bC,real:()=>oc,reciprocal:()=>nb,registerBackend:()=>wl,registerCallbackConstructor:()=>WP,registerGradient:()=>y5,registerKernel:()=>yo,registerOp:()=>_z,regularizers:()=>xv,relu:()=>Ys,relu6:()=>NA,removeBackend:()=>wC,reshape:()=>U,reverse:()=>cs,reverse1d:()=>CE,reverse2d:()=>NE,reverse3d:()=>RE,reverse4d:()=>$E,rfft:()=>Qh,round:()=>EA,rsqrt:()=>RA,scalar:()=>Ie,scatterND:()=>pb,scatter_util:()=>Jm,selu:()=>_A,separableConv2d:()=>sb,sequential:()=>LP,serialization:()=>oe,setBackend:()=>xC,setPlatform:()=>IC,setWasmPath:()=>aie,setWasmPaths:()=>oie,setWebGLContext:()=>nf,setdiff1dAsync:()=>rb,shared:()=>Y2,sigmoid:()=>Bn,sign:()=>ab,signal:()=>o$,sin:()=>$A,sinh:()=>FA,slice:()=>Re,slice1d:()=>Kh,slice2d:()=>DA,slice3d:()=>Zh,slice4d:()=>ic,slice_util:()=>An,softmax:()=>Yh,softplus:()=>El,spaceToBatchND:()=>qh,sparse:()=>cc,sparseToDense:()=>BA,spectral:()=>a$,split:()=>nn,sqrt:()=>ln,square:()=>lt,squaredDifference:()=>PA,squeeze:()=>ot,stack:()=>Nn,step:()=>uc,stridedSlice:()=>ob,string:()=>ap,sub:()=>Ae,sum:()=>ve,sumOutType:()=>Th,tan:()=>ib,tanh:()=>Il,tensor:()=>on,tensor1d:()=>Ot,tensor2d:()=>$s,tensor3d:()=>Rh,tensor4d:()=>rR,tensor5d:()=>aR,tensor6d:()=>oR,tensor_util:()=>Ts,test_util:()=>hx,tidy:()=>H,tile:()=>Rs,time:()=>yC,topk:()=>lb,train:()=>Ro,transpose:()=>je,truncatedNormal:()=>ep,unique:()=>MA,unregisterGradient:()=>xS,unregisterKernel:()=>yS,unsortedSegmentSum:()=>ub,unstack:()=>ds,upcastType:()=>vs,util:()=>I,valueAndGrad:()=>hN,valueAndGrads:()=>pN,variable:()=>cb,variableGrads:()=>jx,version:()=>uie,version_converter:()=>OL,version_core:()=>hC,version_cpu:()=>AW,version_layers:()=>wg,version_wasm:()=>iie,version_webgl:()=>BX,webgl:()=>WX,webgl_util:()=>Sw,where:()=>gn,whereAsync:()=>zA,zeros:()=>Dt,zerosLike:()=>qe});var fI=Object.create,Fd=Object.defineProperty,mI=Object.getOwnPropertyDescriptor,AI=Object.getOwnPropertyNames,gI=Object.getPrototypeOf,yI=Object.prototype.hasOwnProperty,Qy=e=>Fd(e,"__esModule",{value:!0}),ci=e=>{if(typeof vm!="undefined")return vm(e);throw new Error('Dynamic require of "'+e+'" is not supported')},xt=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},Pe=(e,t)=>{Qy(e);for(var n in t)Fd(e,n,{get:t[n],enumerable:!0})},xI=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let s of AI(t))!yI.call(e,s)&&s!=="default"&&Fd(e,s,{get:()=>t[s],enumerable:!(n=mI(t,s))||n.enumerable});return e},Aa=e=>xI(Qy(Fd(e!=null?fI(gI(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),bI=xt({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(_){}function s(_,N,P){this.low=_|0,this.high=N|0,this.unsigned=!!P}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(_){return(_&&_.__isLong__)===!0}s.isLong=r;var a={},o={};function i(_,N){var P,W,j;return N?(_>>>=0,(j=0<=_&&_<256)&&(W=o[_],W)?W:(P=u(_,(_|0)<0?-1:0,!0),j&&(o[_]=P),P)):(_|=0,(j=-128<=_&&_<128)&&(W=a[_],W)?W:(P=u(_,_<0?-1:0,!1),j&&(a[_]=P),P))}s.fromInt=i;function l(_,N){if(isNaN(_))return N?b:x;if(N){if(_<0)return b;if(_>=A)return E}else{if(_<=-g)return O;if(_+1>=g)return C}return _<0?l(-_,N).neg():u(_%m|0,_/m|0,N)}s.fromNumber=l;function u(_,N,P){return new s(_,N,P)}s.fromBits=u;var c=Math.pow;function d(_,N,P){if(_.length===0)throw Error("empty string");if(_==="NaN"||_==="Infinity"||_==="+Infinity"||_==="-Infinity")return x;if(typeof N=="number"?(P=N,N=!1):N=!!N,P=P||10,P<2||360)throw Error("interior hyphen");if(W===0)return d(_.substring(1),N,P).neg();for(var j=l(c(P,8)),q=x,X=0;X<_.length;X+=8){var Q=Math.min(8,_.length-X),ne=parseInt(_.substring(X,X+Q),P);if(Q<8){var te=l(c(P,Q));q=q.mul(te).add(l(ne))}else q=q.mul(j),q=q.add(l(ne))}return q.unsigned=N,q}s.fromString=d;function h(_,N){return typeof _=="number"?l(_,N):typeof _=="string"?d(_,N):u(_.low,_.high,typeof N=="boolean"?N:_.unsigned)}s.fromValue=h;var p=1<<16,f=1<<24,m=p*p,A=m*m,g=A/2,y=i(f),x=i(0);s.ZERO=x;var b=i(0,!0);s.UZERO=b;var v=i(1);s.ONE=v;var k=i(1,!0);s.UONE=k;var w=i(-1);s.NEG_ONE=w;var C=u(4294967295|0,2147483647|0,!1);s.MAX_VALUE=C;var E=u(4294967295|0,4294967295|0,!0);s.MAX_UNSIGNED_VALUE=E;var O=u(0,2147483648|0,!1);s.MIN_VALUE=O;var R=s.prototype;R.toInt=function(){return this.unsigned?this.low>>>0:this.low},R.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},R.toString=function(N){if(N=N||10,N<2||36>>0,se=te.toString(N);if(X=ne,X.isZero())return se+Q;for(;se.length<6;)se="0"+se;Q=""+se+Q}},R.getHighBits=function(){return this.high},R.getHighBitsUnsigned=function(){return this.high>>>0},R.getLowBits=function(){return this.low},R.getLowBitsUnsigned=function(){return this.low>>>0},R.getNumBitsAbs=function(){if(this.isNegative())return this.eq(O)?64:this.neg().getNumBitsAbs();for(var N=this.high!=0?this.high:this.low,P=31;P>0&&(N&1<=0},R.isOdd=function(){return(this.low&1)==1},R.isEven=function(){return(this.low&1)==0},R.equals=function(N){return r(N)||(N=h(N)),this.unsigned!==N.unsigned&&this.high>>>31==1&&N.high>>>31==1?!1:this.high===N.high&&this.low===N.low},R.eq=R.equals,R.notEquals=function(N){return!this.eq(N)},R.neq=R.notEquals,R.ne=R.notEquals,R.lessThan=function(N){return this.comp(N)<0},R.lt=R.lessThan,R.lessThanOrEqual=function(N){return this.comp(N)<=0},R.lte=R.lessThanOrEqual,R.le=R.lessThanOrEqual,R.greaterThan=function(N){return this.comp(N)>0},R.gt=R.greaterThan,R.greaterThanOrEqual=function(N){return this.comp(N)>=0},R.gte=R.greaterThanOrEqual,R.ge=R.greaterThanOrEqual,R.compare=function(N){if(r(N)||(N=h(N)),this.eq(N))return 0;var P=this.isNegative(),W=N.isNegative();return P&&!W?-1:!P&&W?1:this.unsigned?N.high>>>0>this.high>>>0||N.high===this.high&&N.low>>>0>this.low>>>0?-1:1:this.sub(N).isNegative()?-1:1},R.comp=R.compare,R.negate=function(){return!this.unsigned&&this.eq(O)?O:this.not().add(v)},R.neg=R.negate,R.add=function(N){r(N)||(N=h(N));var P=this.high>>>16,W=this.high&65535,j=this.low>>>16,q=this.low&65535,X=N.high>>>16,Q=N.high&65535,ne=N.low>>>16,te=N.low&65535,se=0,J=0,ie=0,le=0;return le+=q+te,ie+=le>>>16,le&=65535,ie+=j+ne,J+=ie>>>16,ie&=65535,J+=W+Q,se+=J>>>16,J&=65535,se+=P+X,se&=65535,u(ie<<16|le,se<<16|J,this.unsigned)},R.subtract=function(N){return r(N)||(N=h(N)),this.add(N.neg())},R.sub=R.subtract,R.multiply=function(N){if(this.isZero())return x;if(r(N)||(N=h(N)),n){var P=n.mul(this.low,this.high,N.low,N.high);return u(P,n.get_high(),this.unsigned)}if(N.isZero())return x;if(this.eq(O))return N.isOdd()?O:x;if(N.eq(O))return this.isOdd()?O:x;if(this.isNegative())return N.isNegative()?this.neg().mul(N.neg()):this.neg().mul(N).neg();if(N.isNegative())return this.mul(N.neg()).neg();if(this.lt(y)&&N.lt(y))return l(this.toNumber()*N.toNumber(),this.unsigned);var W=this.high>>>16,j=this.high&65535,q=this.low>>>16,X=this.low&65535,Q=N.high>>>16,ne=N.high&65535,te=N.low>>>16,se=N.low&65535,J=0,ie=0,le=0,he=0;return he+=X*se,le+=he>>>16,he&=65535,le+=q*se,ie+=le>>>16,le&=65535,le+=X*te,ie+=le>>>16,le&=65535,ie+=j*se,J+=ie>>>16,ie&=65535,ie+=q*te,J+=ie>>>16,ie&=65535,ie+=X*ne,J+=ie>>>16,ie&=65535,J+=W*se+j*te+q*ne+X*Q,J&=65535,u(le<<16|he,J<<16|ie,this.unsigned)},R.mul=R.multiply,R.divide=function(N){if(r(N)||(N=h(N)),N.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&N.low===-1&&N.high===-1)return this;var P=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,N.low,N.high);return u(P,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:x;var W,j,q;if(this.unsigned){if(N.unsigned||(N=N.toUnsigned()),N.gt(this))return b;if(N.gt(this.shru(1)))return k;q=b}else{if(this.eq(O)){if(N.eq(v)||N.eq(w))return O;if(N.eq(O))return v;var X=this.shr(1);return W=X.div(N).shl(1),W.eq(x)?N.isNegative()?v:w:(j=this.sub(N.mul(W)),q=W.add(j.div(N)),q)}else if(N.eq(O))return this.unsigned?b:x;if(this.isNegative())return N.isNegative()?this.neg().div(N.neg()):this.neg().div(N).neg();if(N.isNegative())return this.div(N.neg()).neg();q=x}for(j=this;j.gte(N);){W=Math.max(1,Math.floor(j.toNumber()/N.toNumber()));for(var Q=Math.ceil(Math.log(W)/Math.LN2),ne=Q<=48?1:c(2,Q-48),te=l(W),se=te.mul(N);se.isNegative()||se.gt(j);)W-=ne,te=l(W,this.unsigned),se=te.mul(N);te.isZero()&&(te=v),q=q.add(te),j=j.sub(se)}return q},R.div=R.divide,R.modulo=function(N){if(r(N)||(N=h(N)),n){var P=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,N.low,N.high);return u(P,n.get_high(),this.unsigned)}return this.sub(this.div(N).mul(N))},R.mod=R.modulo,R.rem=R.modulo,R.not=function(){return u(~this.low,~this.high,this.unsigned)},R.and=function(N){return r(N)||(N=h(N)),u(this.low&N.low,this.high&N.high,this.unsigned)},R.or=function(N){return r(N)||(N=h(N)),u(this.low|N.low,this.high|N.high,this.unsigned)},R.xor=function(N){return r(N)||(N=h(N)),u(this.low^N.low,this.high^N.high,this.unsigned)},R.shiftLeft=function(N){return r(N)&&(N=N.toInt()),(N&=63)===0?this:N<32?u(this.low<>>32-N,this.unsigned):u(0,this.low<>>N|this.high<<32-N,this.high>>N,this.unsigned):u(this.high>>N-32,this.high>=0?0:-1,this.unsigned)},R.shr=R.shiftRight,R.shiftRightUnsigned=function(N){if(r(N)&&(N=N.toInt()),N&=63,N===0)return this;var P=this.high;if(N<32){var W=this.low;return u(W>>>N|P<<32-N,P>>>N,this.unsigned)}else return N===32?u(P,0,this.unsigned):u(P>>>N-32,0,this.unsigned)},R.shru=R.shiftRightUnsigned,R.shr_u=R.shiftRightUnsigned,R.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},R.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},R.toBytes=function(N){return N?this.toBytesLE():this.toBytesBE()},R.toBytesLE=function(){var N=this.high,P=this.low;return[P&255,P>>>8&255,P>>>16&255,P>>>24,N&255,N>>>8&255,N>>>16&255,N>>>24]},R.toBytesBE=function(){var N=this.high,P=this.low;return[N>>>24,N>>>16&255,N>>>8&255,N&255,P>>>24,P>>>16&255,P>>>8&255,P&255]},s.fromBytes=function(N,P,W){return W?s.fromBytesLE(N,P):s.fromBytesBE(N,P)},s.fromBytesLE=function(N,P){return new s(N[0]|N[1]<<8|N[2]<<16|N[3]<<24,N[4]|N[5]<<8|N[6]<<16|N[7]<<24,P)},s.fromBytesBE=function(N,P){return new s(N[4]<<24|N[5]<<16|N[6]<<8|N[7],N[0]<<24|N[1]<<16|N[2]<<8|N[3],P)}}}),vI=xt({"(disabled):node_modules/.pnpm/node-fetch@2.6.1/node_modules/node-fetch/browser.js"(){}}),wI=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,d=l();c.next=function(){var h=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=h-(c.c=h|0)},c.c=1,c.s0=d(" "),c.s1=d(" "),c.s2=d(" "),c.s0-=d(u),c.s0<0&&(c.s0+=1),c.s1-=d(u),c.s1<0&&(c.s1+=1),c.s2-=d(u),c.s2<0&&(c.s2+=1),d=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var d=new a(u),h=c&&c.state,p=d.next;return p.int32=function(){return d.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,h&&(typeof h=="object"&&o(h,d),p.state=function(){return o(d,{})}),p}function l(){var u=4022871197,c=function(d){d=d.toString();for(var h=0;h>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),kI=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var h=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^h^h>>>8},l===(l|0)?u.x=l:c+=l;for(var d=0;d>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),II=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var h=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(h^h<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var d=0;d>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),SI=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.x,h=u.i,p,f,m;return p=d[h],p^=p>>>7,f=p^p<<24,p=d[h+1&7],f^=p^p>>>10,p=d[h+3&7],f^=p^p>>>3,p=d[h+4&7],f^=p^p<<7,p=d[h+7&7],p=p^p<<13,f^=p^p<<9,d[h]=f,u.i=h+1&7,f};function c(d,h){var p,f,m=[];if(h===(h|0))f=m[0]=h;else for(h=""+h,p=0;p0;--p)d.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.x&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),CI=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.w,h=u.X,p=u.i,f,m;return u.w=d=d+1640531527|0,m=h[p+34&127],f=h[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=h[p]=m^f,u.i=p,m+(d^d>>>16)|0};function c(d,h){var p,f,m,A,g,y=[],x=128;for(h===(h|0)?(f=h,h=null):(h=h+"\0",f=0,x=Math.max(x,h.length)),m=0,A=-32;A>>15,f^=f<<4,f^=f>>>13,A>=0&&(g=g+1640531527|0,p=y[A&127]^=f+g,m=p==0?m+1:0);for(m>=128&&(y[(h&&h.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=y[m+34&127],p=y[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,y[m]=f^p;d.w=g,d.X=y,d.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.X&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),TI=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var h=u.b,p=u.c,f=u.d,m=u.a;return h=h<<25^h>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-h|0,u.b=h=h<<20^h>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-h|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var d=0;d>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),e5=xt({"(disabled):crypto"(){}}),NI=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s){var r=this,a=256,o=6,i=52,l="random",u=s.pow(a,o),c=s.pow(2,i),d=c*2,h=a-1,p;function f(v,k,w){var C=[];k=k==!0?{entropy:!0}:k||{};var E=y(g(k.entropy?[v,b(n)]:v==null?x():v,3),C),O=new m(C),R=function(){for(var _=O.g(o),N=u,P=0;_=d;)_/=2,N/=2,P>>>=1;return(_+P)/N};return R.int32=function(){return O.g(4)|0},R.quick=function(){return O.g(4)/4294967296},R.double=R,y(b(O.S),n),(k.pass||w||function(_,N,P,W){return W&&(W.S&&A(W,O),_.state=function(){return A(O,{})}),P?(s[l]=_,N):_})(R,E,"global"in k?k.global:this==s,k.state)}s["seed"+l]=f;function m(v){var k,w=v.length,C=this,E=0,O=C.i=C.j=0,R=C.S=[];for(w||(v=[w++]);E>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),RI=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var h=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^h^h>>>8},l===(l|0)?u.x=l:c+=l;for(var d=0;d>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),_I=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var h=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(h^h<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var d=0;d>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),$I=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.x,h=u.i,p,f,m;return p=d[h],p^=p>>>7,f=p^p<<24,p=d[h+1&7],f^=p^p>>>10,p=d[h+3&7],f^=p^p>>>3,p=d[h+4&7],f^=p^p<<7,p=d[h+7&7],p=p^p<<13,f^=p^p<<9,d[h]=f,u.i=h+1&7,f};function c(d,h){var p,f,m=[];if(h===(h|0))f=m[0]=h;else for(h=""+h,p=0;p0;--p)d.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.x&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),FI=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.w,h=u.X,p=u.i,f,m;return u.w=d=d+1640531527|0,m=h[p+34&127],f=h[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=h[p]=m^f,u.i=p,m+(d^d>>>16)|0};function c(d,h){var p,f,m,A,g,y=[],x=128;for(h===(h|0)?(f=h,h=null):(h=h+"\0",f=0,x=Math.max(x,h.length)),m=0,A=-32;A>>15,f^=f<<4,f^=f>>>13,A>=0&&(g=g+1640531527|0,p=y[A&127]^=f+g,m=p==0?m+1:0);for(m>=128&&(y[(h&&h.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=y[m+34&127],p=y[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,y[m]=f^p;d.w=g,d.X=y,d.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.X&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),DI=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var h=u.b,p=u.c,f=u.d,m=u.a;return h=h<<25^h>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-h|0,u.b=h=h<<20^h>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-h|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var d=0;d>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),OI=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",u=r.pow(a,o),c=r.pow(2,i),d=c*2,h=a-1,p;function f(v,k,w){var C=[];k=k==!0?{entropy:!0}:k||{};var E=y(g(k.entropy?[v,b(s)]:v==null?x():v,3),C),O=new m(C),R=function(){for(var _=O.g(o),N=u,P=0;_=d;)_/=2,N/=2,P>>>=1;return(_+P)/N};return R.int32=function(){return O.g(4)|0},R.quick=function(){return O.g(4)/4294967296},R.double=R,y(b(O.S),s),(k.pass||w||function(_,N,P,W){return W&&(W.S&&A(W,O),_.state=function(){return A(O,{})}),P?(r[l]=_,N):_})(R,E,"global"in k?k.global:this==r,k.state)}function m(v){var k,w=v.length,C=this,E=0,O=C.i=C.j=0,R=C.S=[];for(w||(v=[w++]);E1&&(A=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(T){if(!(T instanceof wu))throw T}),process.on("unhandledRejection",dr),g=function(T){process.exit(T)},c.inspect=function(){return"[Emscripten Module object]"};var W;try{W=MI()}catch(T){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),T}global.Worker=W.Worker}else v?(typeof read!="undefined"&&(E=function(F){return read(F)}),R=function(F){var B;return typeof readbuffer=="function"?new Uint8Array(readbuffer(F)):(B=read(F,"binary"),ge(typeof B=="object"),B)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(g=function(T){quit(T)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(y||x)&&(x?w=self.location.href:typeof document!="undefined"&&document.currentScript&&(w=document.currentScript.src),typeof s!="undefined"&&s&&(w=s),w.indexOf("blob:")!==0?w=w.substr(0,w.lastIndexOf("/")+1):w="",b?(E=function(F,B){return N||(N=ci("fs")),P||(P=ku()),F=P.normalize(F),N.readFileSync(F,B?null:"utf8")},R=function(F){var B=E(F,!0);return B.buffer||(B=new Uint8Array(B)),ge(B.buffer),B}):(E=function(T){var F=new XMLHttpRequest;return F.open("GET",T,!1),F.send(null),F.responseText},x&&(R=function(T){var F=new XMLHttpRequest;return F.open("GET",T,!1),F.responseType="arraybuffer",F.send(null),new Uint8Array(F.response)}),O=function(T,F,B){var Z=new XMLHttpRequest;Z.open("GET",T,!0),Z.responseType="arraybuffer",Z.onload=function(){if(Z.status==200||Z.status==0&&Z.response){F(Z.response);return}B()},Z.onerror=B,Z.send(null)}),_=function(T){document.title=T});b&&typeof performance=="undefined"&&(global.performance=zI().performance);var j=c.print||console.log.bind(console),q=c.printErr||console.warn.bind(console);for(f in p)p.hasOwnProperty(f)&&(c[f]=p[f]);p=null,c.arguments&&(m=c.arguments),c.thisProgram&&(A=c.thisProgram),c.quit&&(g=c.quit);var X=Atomics.load,Q=Atomics.store,ne=Atomics.compareExchange,te;c.wasmBinary&&(te=c.wasmBinary);var se=c.noExitRuntime||!0;typeof WebAssembly!="object"&&dr("no native wasm support detected");var J,ie,le=!1,he;function ge(T,F){T||dr("Assertion failed: "+F)}function Ce(T){var F=c["_"+T];return ge(F,"Cannot call unknown function "+T+", make sure it is exported"),F}function Te(T,F,B,Z,me){var pe={string:function(dn){var ui=0;if(dn!=null&&dn!==0){var qy=(dn.length<<2)+1;ui=oi(qy),et(dn,ui,qy)}return ui},array:function(dn){var ui=oi(dn.length);return Je(dn,ui),ui}};function fe(dn){return F==="string"?De(dn):F==="boolean"?Boolean(dn):dn}var we=Ce(T),nt=[],jt=0;if(Z)for(var Lt=0;Lt=Z);){var pe=T[F++];if(!pe)return me;if(!(pe&128)){me+=String.fromCharCode(pe);continue}var fe=T[F++]&63;if((pe&224)==192){me+=String.fromCharCode((pe&31)<<6|fe);continue}var we=T[F++]&63;if((pe&240)==224?pe=(pe&15)<<12|fe<<6|we:pe=(pe&7)<<18|fe<<12|we<<6|T[F++]&63,pe<65536)me+=String.fromCharCode(pe);else{var nt=pe-65536;me+=String.fromCharCode(55296|nt>>10,56320|nt&1023)}}return me}function De(T,F){return T?Me(o(),T,F):""}function it(T,F,B,Z){if(!(Z>0))return 0;for(var me=B,pe=B+Z-1,fe=0;fe=55296&&we<=57343){var nt=T.charCodeAt(++fe);we=65536+((we&1023)<<10)|nt&1023}if(we<=127){if(B>=pe)break;F[B++]=we}else if(we<=2047){if(B+1>=pe)break;F[B++]=192|we>>6,F[B++]=128|we&63}else if(we<=65535){if(B+2>=pe)break;F[B++]=224|we>>12,F[B++]=128|we>>6&63,F[B++]=128|we&63}else{if(B+3>=pe)break;F[B++]=240|we>>18,F[B++]=128|we>>12&63,F[B++]=128|we>>6&63,F[B++]=128|we&63}}return F[B]=0,B-me}function et(T,F,B){return it(T,o(),F,B)}function tt(T){for(var F=0,B=0;B=55296&&Z<=57343&&(Z=65536+((Z&1023)<<10)|T.charCodeAt(++B)&1023),Z<=127?++F:Z<=2047?F+=2:Z<=65535?F+=3:F+=4}return F}function Je(T,F){a().set(T,F)}function at(T,F){return T%F>0&&(T+=F-T%F),T}var Ve,In,kt,Mn,Qt,ys,cn,Yn,Jn;function en(T){Ve=T,c.HEAP8=In=new Int8Array(T),c.HEAP16=Mn=new Int16Array(T),c.HEAP32=ys=new Int32Array(T),c.HEAPU8=kt=new Uint8Array(T),c.HEAPU16=Qt=new Uint16Array(T),c.HEAPU32=cn=new Uint32Array(T),c.HEAPF32=Yn=new Float32Array(T),c.HEAPF64=Jn=new Float64Array(T)}var Qn=c.INITIAL_MEMORY||16777216;if(k)J=c.wasmMemory,Ve=c.buffer;else if(c.wasmMemory)J=c.wasmMemory;else if(J=new WebAssembly.Memory({initial:Qn/65536,maximum:2147483648/65536,shared:!0}),!(J.buffer instanceof SharedArrayBuffer))throw q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");J&&(Ve=J.buffer),Qn=Ve.byteLength,en(Ve);var es,zn=[],Hs=[],ur=[],Nr=[],Qo=[],Gs=!1,dd=!1;k||Hs.push({func:function(){Cd()}});function Zf(){if(!k){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)pd(c.preRun.shift());ti(zn)}}function hu(){Gs=!0,!k&&ti(Hs)}function Yf(){k||ti(ur)}function hd(){k||(dd=!0)}function Sn(){if(!k){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)Jf(c.postRun.shift());ti(Qo)}}function pd(T){zn.unshift(T)}function Jf(T){Qo.unshift(T)}var cr=0,Er=null,pa=null;function Qf(T){ge(!k,"addRunDependency cannot be used in a pthread worker"),cr++,c.monitorRunDependencies&&c.monitorRunDependencies(cr)}function e0(T){if(cr--,c.monitorRunDependencies&&c.monitorRunDependencies(cr),cr==0&&(Er!==null&&(clearInterval(Er),Er=null),pa)){var F=pa;pa=null,F()}}c.preloadedImages={},c.preloadedAudios={};function dr(T){c.onAbort&&c.onAbort(T),k&&console.error("Pthread aborting at "+new Error().stack),T+="",q(T),le=!0,he=1,T="abort("+T+"). Build with -s ASSERTIONS=1 for more info.";var F=new WebAssembly.RuntimeError(T);throw h(F),F}function fd(T,F){return String.prototype.startsWith?T.startsWith(F):T.indexOf(F)===0}var ei="data:application/octet-stream;base64,";function md(T){return fd(T,ei)}var t0="file://";function Ad(T){return fd(T,t0)}var Cn="tfjs-backend-wasm-threaded-simd.wasm";md(Cn)||(Cn=C(Cn));function gd(T){try{if(T==Cn&&te)return new Uint8Array(te);if(R)return R(T);throw"both async and sync fetching of the wasm failed"}catch(F){dr(F)}}function n0(){if(!te&&(y||x)){if(typeof fetch=="function"&&!Ad(Cn))return fetch(Cn,{credentials:"same-origin"}).then(function(T){if(!T.ok)throw"failed to load wasm binary file at '"+Cn+"'";return T.arrayBuffer()}).catch(function(){return gd(Cn)});if(O)return new Promise(function(T,F){O(Cn,function(B){T(new Uint8Array(B))},F)})}return Promise.resolve().then(function(){return gd(Cn)})}function s0(){var T={a:q0};function F(fe,we){var nt=fe.exports;if(c.asm=nt,es=c.asm.F,ie=we,!k){var jt=Se.unusedWorkers.length;Se.unusedWorkers.forEach(function(Lt){Se.loadWasmModuleToWorker(Lt,function(){--jt||e0("wasm-instantiate")})})}}k||Qf("wasm-instantiate");function B(fe){F(fe.instance,fe.module)}function Z(fe){return n0().then(function(we){return WebAssembly.instantiate(we,T)}).then(fe,function(we){q("failed to asynchronously prepare wasm: "+we),dr(we)})}function me(){return!te&&typeof WebAssembly.instantiateStreaming=="function"&&!md(Cn)&&!Ad(Cn)&&typeof fetch=="function"?fetch(Cn,{credentials:"same-origin"}).then(function(fe){var we=WebAssembly.instantiateStreaming(fe,T);return we.then(B,function(nt){return q("wasm streaming compile failed: "+nt),q("falling back to ArrayBuffer instantiation"),Z(B)})}):Z(B)}if(c.instantiateWasm)try{var pe=c.instantiateWasm(T,F);return pe}catch(fe){return q("Module.instantiateWasm callback failed with error: "+fe),!1}return me().catch(h),{}}var r0={9832:function(){throw"Canceled!"},9850:function(T,F){setTimeout(function(){Wy(T,F)},0)}};function yd(){Se.initRuntime()}function ti(T){for(;T.length>0;){var F=T.shift();if(typeof F=="function"){F(c);continue}var B=F.func;typeof B=="number"?F.arg===void 0?es.get(B)():es.get(B)(F.arg):B(F.arg===void 0?null:F.arg)}}function pu(T,F){if(T<=0||T>a().length||T&!0||F<0)return-28;if(F==0)return 0;F>=2147483647&&(F=1/0);var B=Atomics.load(i(),ii>>2),Z=0;if(B==T){var me=Atomics.compareExchange(i(),ii>>2,B,0);if(me==B&&(--F,Z=1,F<=0))return 1}var pe=Atomics.notify(i(),T>>2,F);if(pe>=0)return pe+Z;throw"Atomics.notify returned an unexpected value "+pe}c._emscripten_futex_wake=pu;function a0(T){if(k)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!T)throw"Internal Error! Null pthread_ptr in killThread!";i()[T+12>>2]=0;var F=Se.pthreads[T];F.worker.terminate(),Se.freeThreadData(F),Se.runningWorkers.splice(Se.runningWorkers.indexOf(F.worker),1),F.worker.pthread=void 0}function o0(T){if(k)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!T)throw"Internal Error! Null pthread_ptr in cancelThread!";var F=Se.pthreads[T];F.worker.postMessage({cmd:"cancel"})}function i0(T){if(k)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!T)throw"Internal Error! Null pthread_ptr in cleanupThread!";var F=Se.pthreads[T];if(F){i()[T+12>>2]=0;var B=F.worker;Se.returnWorkerToPool(B)}}var Se={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var T=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),F=0;F>2]=T;var B=T+152;i()[B>>2]=B;for(var Z=ma(512),F=0;F<128;++F)l()[Z/4+F]=0;Atomics.store(l(),T+100>>2,Z),Atomics.store(l(),T+40>>2,T),xm(T,!x,1),By(T)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Se.threadExitHandlers.length>0;)Se.threadExitHandlers.pop()();k&&ri()&&Ly()},runExitHandlersAndDeinitThread:function(T,F){Atomics.store(l(),T+56>>2,1),Atomics.store(l(),T+60>>2,0),Se.runExitHandlers(),Atomics.store(l(),T+4>>2,F),Atomics.store(l(),T+0>>2,1),pu(T+0,2147483647),xm(0,0,0)},threadExit:function(T){var F=ri();F&&(Se.runExitHandlersAndDeinitThread(F,T),k&&postMessage({cmd:"exit"}))},threadCancel:function(){Se.runExitHandlersAndDeinitThread(ri(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var T in Se.pthreads){var F=Se.pthreads[T];F&&F.worker&&Se.returnWorkerToPool(F.worker)}Se.pthreads={};for(var B=0;B>2];i()[T.threadInfoStruct+100>>2]=0,bu(F),bu(T.threadInfoStruct)}T.threadInfoStruct=0,T.allocatedOwnStack&&T.stackBase&&bu(T.stackBase),T.stackBase=0,T.worker&&(T.worker.pthread=null)}},returnWorkerToPool:function(T){Se.runWithoutMainThreadQueuedCalls(function(){delete Se.pthreads[T.pthread.threadInfoStruct],Se.unusedWorkers.push(T),Se.runningWorkers.splice(Se.runningWorkers.indexOf(T),1),Se.freeThreadData(T.pthread),T.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(T){i()[jy>>2]=0;try{T()}finally{i()[jy>>2]=1}},receiveObjectTransfer:function(T){},loadWasmModuleToWorker:function(T,F){T.onmessage=function(B){var Z=B.data,me=Z.cmd;if(T.pthread&&(Se.currentProxiedOperationCallerThread=T.pthread.threadInfoStruct),Z.targetThread&&Z.targetThread!=ri()){var pe=Se.pthreads[Z.targetThread];pe?pe.worker.postMessage(B.data,Z.transferList):console.error('Internal error! Worker sent a message "'+me+'" to target pthread '+Z.targetThread+", but that thread no longer exists!"),Se.currentProxiedOperationCallerThread=void 0;return}if(me==="processQueuedMainThreadWork")gm();else if(me==="spawnThread")Id(B.data);else if(me==="cleanupThread")i0(Z.thread);else if(me==="killThread")a0(Z.thread);else if(me==="cancelThread")o0(Z.thread);else if(me==="loaded")T.loaded=!0,F&&F(T),T.runPthread&&(T.runPthread(),delete T.runPthread);else if(me==="print")j("Thread "+Z.threadId+": "+Z.text);else if(me==="printErr")q("Thread "+Z.threadId+": "+Z.text);else if(me==="alert")alert("Thread "+Z.threadId+": "+Z.text);else if(me==="exit"){var fe=T.pthread&&Atomics.load(l(),T.pthread.threadInfoStruct+64>>2);fe&&Se.returnWorkerToPool(T)}else if(me==="exitProcess")try{hI(Z.returnCode)}catch(we){if(we instanceof wu)return;throw we}else me==="cancelDone"?Se.returnWorkerToPool(T):me==="objectTransfer"?Se.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?T.postMessage(B.data):q("worker sent an unknown command "+me);Se.currentProxiedOperationCallerThread=void 0},T.onerror=function(B){q("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},b&&(T.on("message",function(B){T.onmessage({data:B})}),T.on("error",function(B){T.onerror(B)}),T.on("exit",function(B){})),T.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||s,wasmMemory:J,wasmModule:ie})},allocateUnusedWorker:function(){var T=C("tfjs-backend-wasm-threaded-simd.worker.js");Se.unusedWorkers.push(new Worker(T))},getNewWorker:function(){return Se.unusedWorkers.length==0&&(Se.allocateUnusedWorker(),Se.loadWasmModuleToWorker(Se.unusedWorkers[0])),Se.unusedWorkers.length>0?Se.unusedWorkers.pop():null},busySpinWait:function(T){for(var F=performance.now()+T;performance.now()>2]=T,T}function f0(T,F){if(k)return Rr(1,1,T,F)}function m0(T,F){if(T==F)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:T,cmd:"processThreadQueue"});else{var B=Se.pthreads[T],Z=B&&B.worker;if(!Z)return;Z.postMessage({cmd:"processThreadQueue"})}return 1}function A0(){dr()}function g0(T,F,B){var Z=w0(F,B);return r0[T].apply(null,Z)}function y0(T,F){}function x0(T,F,B){if(T<=0||T>a().length||T&!0)return-28;if(y){if(Atomics.load(i(),T>>2)!=F)return-6;for(var me=performance.now(),pe=me+B,fe=Atomics.exchange(i(),ii>>2,T);;){if(me=performance.now(),me>pe)return fe=Atomics.exchange(i(),ii>>2,0),-73;if(fe=Atomics.exchange(i(),ii>>2,0),fe==0)break;if(gm(),Atomics.load(i(),T>>2)!=F)return-6;fe=Atomics.exchange(i(),ii>>2,T)}return 0}else{var Z=Atomics.wait(i(),T>>2,F,B);if(Z==="timed-out")return-73;if(Z==="not-equal")return-6;if(Z==="ok")return 0;throw"Atomics.wait returned an unexpected value "+Z}}function b0(T,F,B){o().copyWithin(T,F,F+B)}function v0(){return b?ci("os").cpus().length:navigator.hardwareConcurrency}function Rr(T,F){for(var B=arguments.length-2,Z=vu(),me=B,pe=oi(me*8),fe=pe>>3,we=0;we>=2;B=o()[T++];){var Z=B<105;Z&&F&1&&F++,mu.push(Z?u()[F++>>1]:i()[F]),++F}return mu}function k0(T,F,B){fu.length=F;for(var Z=B>>3,me=0;me>>16),en(J.buffer),1}catch(F){}}function C0(T){var F=I0();if(T<=F)return!1;var B=2147483648;if(T>B)return!1;for(var Z=1;Z<=4;Z*=2){var me=F*(1+.2/Z);me=Math.min(me,T+100663296);var pe=Math.min(B,at(Math.max(T,me),65536)),fe=S0(pe);if(fe)return!0}return!1}var Le={inEventHandler:0,removeAllEventListeners:function(){for(var T=Le.eventHandlers.length-1;T>=0;--T)Le._removeHandler(T);Le.eventHandlers=[],Le.deferredCalls=[]},registerRemoveEventListeners:function(){Le.removeEventListenersRegistered||(Nr.push(Le.removeAllEventListeners),Le.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(T,F,B){function Z(fe,we){if(fe.length!=we.length)return!1;for(var nt in fe)if(fe[nt]!=we[nt])return!1;return!0}for(var me in Le.deferredCalls){var pe=Le.deferredCalls[me];if(pe.targetFunction==T&&Z(pe.argsList,B))return}Le.deferredCalls.push({targetFunction:T,precedence:F,argsList:B}),Le.deferredCalls.sort(function(fe,we){return fe.precedence>2]=B,i()[fe+4>>2]=Z,i()[fe+8>>2]=me,ym(0,T,637534208,F,Z,fe),ai(pe)},getTargetThreadForEventCallback:function(T){switch(T){case 1:return 0;case 2:return Se.currentProxiedOperationCallerThread;default:return T}},getNodeNameForTarget:function(T){return T?T==window?"#window":T==screen?"#screen":T&&T.nodeName?T.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function T0(T){var F=tt(T)+1,B=ma(F);return et(T,B,F),B}function N0(T,F,B,Z){var me=vu(),pe=oi(12),fe=0;F&&(fe=T0(F)),i()[pe>>2]=fe,i()[pe+4>>2]=B,i()[pe+8>>2]=Z,ym(0,T,657457152,0,fe,pe),ai(me)}function E0(T,F,B,Z){F=F?De(F):"",N0(T,F,B,Z)}function R0(T){return T>2?De(T):T}var _0=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function $0(T){T=R0(T);var F=_0[T]||(typeof document!="undefined"?document.querySelector(T):void 0);return F}function Au(T){return $0(T)}function xd(T,F,B){var Z=Au(T);if(!Z)return-4;if(Z.canvasSharedPtr&&(i()[Z.canvasSharedPtr>>2]=F,i()[Z.canvasSharedPtr+4>>2]=B),Z.offscreenCanvas||!Z.controlTransferredOffscreen){Z.offscreenCanvas&&(Z=Z.offscreenCanvas);var me=!1;if(Z.GLctxObject&&Z.GLctxObject.GLctx){var pe=Z.GLctxObject.GLctx.getParameter(2978);me=pe[0]===0&&pe[1]===0&&pe[2]===Z.width&&pe[3]===Z.height}Z.width=F,Z.height=B,me&&Z.GLctxObject.GLctx.viewport(0,0,F,B)}else if(Z.canvasSharedPtr){var fe=i()[Z.canvasSharedPtr+8>>2];return E0(fe,T,F,B),1}else return-4;return 0}function bd(T,F,B){return k?Rr(2,1,T,F,B):xd(T,F,B)}function F0(T,F,B){var Z=Au(T);return Z?xd(T,F,B):bd(T,F,B)}function D0(T){}function O0(T,F){}function P0(T){var F=T.getExtension("ANGLE_instanced_arrays");if(F)return T.vertexAttribDivisor=function(B,Z){F.vertexAttribDivisorANGLE(B,Z)},T.drawArraysInstanced=function(B,Z,me,pe){F.drawArraysInstancedANGLE(B,Z,me,pe)},T.drawElementsInstanced=function(B,Z,me,pe,fe){F.drawElementsInstancedANGLE(B,Z,me,pe,fe)},1}function M0(T){var F=T.getExtension("OES_vertex_array_object");if(F)return T.createVertexArray=function(){return F.createVertexArrayOES()},T.deleteVertexArray=function(B){F.deleteVertexArrayOES(B)},T.bindVertexArray=function(B){F.bindVertexArrayOES(B)},T.isVertexArray=function(B){return F.isVertexArrayOES(B)},1}function z0(T){var F=T.getExtension("WEBGL_draw_buffers");if(F)return T.drawBuffers=function(B,Z){F.drawBuffersWEBGL(B,Z)},1}function L0(T){return!!(T.multiDrawWebgl=T.getExtension("WEBGL_multi_draw"))}var Qe={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(F){Qe.lastError||(Qe.lastError=F)},getNewId:function(T){for(var F=Qe.counter++,B=T.length;B>2]:-1;me+=De(i()[B+pe*4>>2],fe<0?void 0:fe)}return me},createContext:function(T,F){var B=T.getContext("webgl",F);if(!B)return 0;var Z=Qe.registerContext(B,F);return Z},registerContext:function(T,F){var B=ma(8);i()[B+4>>2]=ri();var Z={handle:B,attributes:F,version:F.majorVersion,GLctx:T};return T.canvas&&(T.canvas.GLctxObject=Z),Qe.contexts[B]=Z,(typeof F.enableExtensionsByDefault=="undefined"||F.enableExtensionsByDefault)&&Qe.initExtensions(Z),B},makeContextCurrent:function(T){return Qe.currentContext=Qe.contexts[T],c.ctx=_r=Qe.currentContext&&Qe.currentContext.GLctx,!(T&&!_r)},getContext:function(T){return Qe.contexts[T]},deleteContext:function(T){Qe.currentContext===Qe.contexts[T]&&(Qe.currentContext=null),typeof Le=="object"&&Le.removeAllHandlersOnTarget(Qe.contexts[T].GLctx.canvas),Qe.contexts[T]&&Qe.contexts[T].GLctx.canvas&&(Qe.contexts[T].GLctx.canvas.GLctxObject=void 0),bu(Qe.contexts[T].handle),Qe.contexts[T]=null},initExtensions:function(T){if(T||(T=Qe.currentContext),!T.initExtensionsDone){T.initExtensionsDone=!0;var F=T.GLctx;P0(F),M0(F),z0(F),F.disjointTimerQueryExt=F.getExtension("EXT_disjoint_timer_query"),L0(F);var B=F.getSupportedExtensions()||[];B.forEach(function(Z){Z.indexOf("lose_context")<0&&Z.indexOf("debug")<0&&F.getExtension(Z)})}},populateUniformTable:function(T){for(var F=Qe.programs[T],B=Qe.programInfos[T]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},Z=B.uniforms,me=_r.getProgramParameter(F,35718),pe=0;pe>2,Z=i()[B+(24>>2)],me={alpha:!!i()[B+(0>>2)],depth:!!i()[B+(4>>2)],stencil:!!i()[B+(8>>2)],antialias:!!i()[B+(12>>2)],premultipliedAlpha:!!i()[B+(16>>2)],preserveDrawingBuffer:!!i()[B+(20>>2)],powerPreference:B0[Z],failIfMajorPerformanceCaveat:!!i()[B+(28>>2)],majorVersion:i()[B+(32>>2)],minorVersion:i()[B+(36>>2)],enableExtensionsByDefault:i()[B+(40>>2)],explicitSwapControl:i()[B+(44>>2)],proxyContextToMainThread:i()[B+(48>>2)],renderViaOffscreenBackBuffer:i()[B+(52>>2)]},pe=Au(T);if(!pe||me.explicitSwapControl)return 0;var fe=Qe.createContext(pe,me);return fe}function V0(T,F){return W0(T,F)}var ni={mappings:{},buffers:[null,[],[]],printChar:function(T,F){var B=ni.buffers[T];F===0||F===10?((T===1?j:q)(Me(B,0)),B.length=0):B.push(F)},varargs:void 0,get:function(){ni.varargs+=4;var T=i()[ni.varargs-4>>2];return T},getStr:function(T){var F=De(T);return F},get64:function(T,F){return T}};function vd(T){return k?Rr(3,1,T):0}function wd(T,F,B,Z,me){if(k)return Rr(4,1,T,F,B,Z,me)}function kd(T,F,B,Z){if(k)return Rr(5,1,T,F,B,Z);for(var me=0,pe=0;pe>2],we=i()[F+(pe*8+4)>>2],nt=0;nt>2]=me,0}function U0(T){var F=Se.threadExitHandlers.pop();T&&F()}function H0(T,F){Se.threadExitHandlers.push(function(){es.get(T)(F)})}function Id(T){if(k)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var F=Se.getNewWorker();if(F.pthread!==void 0)throw"Internal error!";if(!T.pthread_ptr)throw"Internal error, no pthread ptr!";Se.runningWorkers.push(F);for(var B=ma(128*4),Z=0;Z<128;++Z)i()[B+Z*4>>2]=0;var me=T.stackBase+T.stackSize,pe=Se.pthreads[T.pthread_ptr]={worker:F,stackBase:T.stackBase,stackSize:T.stackSize,allocatedOwnStack:T.allocatedOwnStack,threadInfoStruct:T.pthread_ptr},fe=pe.threadInfoStruct>>2;Atomics.store(l(),fe+(64>>2),T.detached),Atomics.store(l(),fe+(100>>2),B),Atomics.store(l(),fe+(40>>2),pe.threadInfoStruct),Atomics.store(l(),fe+(80>>2),T.stackSize),Atomics.store(l(),fe+(76>>2),me),Atomics.store(l(),fe+(104>>2),T.stackSize),Atomics.store(l(),fe+(104+8>>2),me),Atomics.store(l(),fe+(104+12>>2),T.detached);var we=zy(),nt=we+40;Atomics.store(l(),fe+(172>>2),nt),F.pthread=pe;var jt={cmd:"run",start_routine:T.startRoutine,arg:T.arg,threadInfoStruct:T.pthread_ptr,stackBase:T.stackBase,stackSize:T.stackSize};F.runPthread=function(){jt.time=performance.now(),F.postMessage(jt,T.transferList)},F.loaded&&(F.runPthread(),delete F.runPthread)}function G0(T,F,B,Z){if(typeof SharedArrayBuffer=="undefined")return q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!T)return q("pthread_create called with a null thread pointer!"),28;var me=[],pe=0;if(k&&(me.length===0||pe))return Vy(687865856,T,F,B,Z);if(pe)return pe;var fe=0,we=0,nt=0;F&&F!=-1?(fe=i()[F>>2],fe+=81920,we=i()[F+8>>2],nt=i()[F+12>>2]!==0):fe=2097152;var jt=we==0;jt?we=Gy(16,fe):(we-=fe,ge(we>0));for(var Lt=ma(228),Fr=0;Fr<228>>2;++Fr)l()[(Lt>>2)+Fr]=0;i()[T>>2]=Lt,i()[Lt+12>>2]=Lt;var li=Lt+152;i()[li>>2]=li;var dn={stackBase:we,stackSize:fe,allocatedOwnStack:jt,detached:nt,startRoutine:B,pthread_ptr:Lt,arg:Z,transferList:me};return k?(dn.cmd="spawnThread",postMessage(dn,me)):Id(dn),0}function Sd(T){if(k)return Rr(6,1,T);switch(T){case 30:return 16384;case 85:var F=2147483648;return F/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return p0(28),-1}k||Se.initMainThreadBlock();var _r,j0=[null,f0,bd,vd,wd,kd,Sd],q0={e:d0,r:h0,x:m0,b:A0,y:g0,j:y0,c:x0,d:pu,f:fa,p:b0,z:v0,u:k0,q:C0,v:F0,i:D0,t:O0,w:V0,m:vd,n:wd,g:kd,o:yd,a:J||c.wasmMemory,k:U0,l:H0,h:G0,s:Sd},Py=s0(),Cd=c.___wasm_call_ctors=function(){return(Cd=c.___wasm_call_ctors=c.asm.A).apply(null,arguments)},X0=c._init=function(){return(X0=c._init=c.asm.B).apply(null,arguments)},K0=c._register_tensor=function(){return(K0=c._register_tensor=c.asm.C).apply(null,arguments)},Z0=c._dispose_data=function(){return(Z0=c._dispose_data=c.asm.D).apply(null,arguments)},Y0=c._dispose=function(){return(Y0=c._dispose=c.asm.E).apply(null,arguments)},J0=c._Abs=function(){return(J0=c._Abs=c.asm.G).apply(null,arguments)},Q0=c._Add=function(){return(Q0=c._Add=c.asm.H).apply(null,arguments)},em=c._AddN=function(){return(em=c._AddN=c.asm.I).apply(null,arguments)},tm=c._All=function(){return(tm=c._All=c.asm.J).apply(null,arguments)},nm=c._Any=function(){return(nm=c._Any=c.asm.K).apply(null,arguments)},sm=c._ArgMax=function(){return(sm=c._ArgMax=c.asm.L).apply(null,arguments)},rm=c._AvgPool=function(){return(rm=c._AvgPool=c.asm.M).apply(null,arguments)},am=c._BatchMatMul=function(){return(am=c._BatchMatMul=c.asm.N).apply(null,arguments)},om=c._Ceil=function(){return(om=c._Ceil=c.asm.O).apply(null,arguments)},im=c._ClipByValue=function(){return(im=c._ClipByValue=c.asm.P).apply(null,arguments)},lm=c._Conv2D=function(){return(lm=c._Conv2D=c.asm.Q).apply(null,arguments)},um=c._Conv2DBackpropInput=function(){return(um=c._Conv2DBackpropInput=c.asm.R).apply(null,arguments)},cm=c._Cos=function(){return(cm=c._Cos=c.asm.S).apply(null,arguments)},dm=c._Cosh=function(){return(dm=c._Cosh=c.asm.T).apply(null,arguments)},hm=c._CropAndResize=function(){return(hm=c._CropAndResize=c.asm.U).apply(null,arguments)},pm=c._Cumsum=function(){return(pm=c._Cumsum=c.asm.V).apply(null,arguments)},fm=c._DepthToSpace=function(){return(fm=c._DepthToSpace=c.asm.W).apply(null,arguments)},mm=c._DepthwiseConv2dNative=function(){return(mm=c._DepthwiseConv2dNative=c.asm.X).apply(null,arguments)},Td=c._Equal=function(){return(Td=c._Equal=c.asm.Y).apply(null,arguments)},Nd=c._Exp=function(){return(Nd=c._Exp=c.asm.Z).apply(null,arguments)},Ed=c._FlipLeftRight=function(){return(Ed=c._FlipLeftRight=c.asm._).apply(null,arguments)},gu=c._Floor=function(){return(gu=c._Floor=c.asm.$).apply(null,arguments)},si=c._FloorDiv=function(){return(si=c._FloorDiv=c.asm.aa).apply(null,arguments)},Am=c._FusedBatchNorm=function(){return(Am=c._FusedBatchNorm=c.asm.ba).apply(null,arguments)},yu=c._FusedConv2D=function(){return(yu=c._FusedConv2D=c.asm.ca).apply(null,arguments)},Y=c._FusedDepthwiseConv2D=function(){return(Y=c._FusedDepthwiseConv2D=c.asm.da).apply(null,arguments)},re=c._Gather=function(){return(re=c._Gather=c.asm.ea).apply(null,arguments)},xe=c._GatherNd=function(){return(xe=c._GatherNd=c.asm.fa).apply(null,arguments)},Ye=c._Greater=function(){return(Ye=c._Greater=c.asm.ga).apply(null,arguments)},Tt=c._GreaterEqual=function(){return(Tt=c._GreaterEqual=c.asm.ha).apply(null,arguments)},yt=c._LeakyRelu=function(){return(yt=c._LeakyRelu=c.asm.ia).apply(null,arguments)},He=c._Less=function(){return(He=c._Less=c.asm.ja).apply(null,arguments)},Ge=c._LessEqual=function(){return(Ge=c._LessEqual=c.asm.ka).apply(null,arguments)},tn=c._Log=function(){return(tn=c._Log=c.asm.la).apply(null,arguments)},hr=c._LogicalAnd=function(){return(hr=c._LogicalAnd=c.asm.ma).apply(null,arguments)},pr=c._Max=function(){return(pr=c._Max=c.asm.na).apply(null,arguments)},Rd=c._MaxPool=function(){return(Rd=c._MaxPool=c.asm.oa).apply(null,arguments)},xu=c._Maximum=function(){return(xu=c._Maximum=c.asm.pa).apply(null,arguments)},Ln=c._Mean=function(){return(Ln=c._Mean=c.asm.qa).apply(null,arguments)},$r=c._Min=function(){return($r=c._Min=c.asm.ra).apply(null,arguments)},_d=c._Minimum=function(){return(_d=c._Minimum=c.asm.sa).apply(null,arguments)},S8=c._MirrorPad=function(){return(S8=c._MirrorPad=c.asm.ta).apply(null,arguments)},C8=c._Multiply=function(){return(C8=c._Multiply=c.asm.ua).apply(null,arguments)},T8=c._Neg=function(){return(T8=c._Neg=c.asm.va).apply(null,arguments)},N8=c._NonMaxSuppressionV3=function(){return(N8=c._NonMaxSuppressionV3=c.asm.wa).apply(null,arguments)},E8=c._NonMaxSuppressionV4=function(){return(E8=c._NonMaxSuppressionV4=c.asm.xa).apply(null,arguments)},R8=c._NonMaxSuppressionV5=function(){return(R8=c._NonMaxSuppressionV5=c.asm.ya).apply(null,arguments)},_8=c._NotEqual=function(){return(_8=c._NotEqual=c.asm.za).apply(null,arguments)},$8=c._OneHot=function(){return($8=c._OneHot=c.asm.Aa).apply(null,arguments)},F8=c._PadV2=function(){return(F8=c._PadV2=c.asm.Ba).apply(null,arguments)},D8=c._Pow=function(){return(D8=c._Pow=c.asm.Ca).apply(null,arguments)},O8=c._Prelu=function(){return(O8=c._Prelu=c.asm.Da).apply(null,arguments)},P8=c._Prod=function(){return(P8=c._Prod=c.asm.Ea).apply(null,arguments)},M8=c._RealDiv=function(){return(M8=c._RealDiv=c.asm.Fa).apply(null,arguments)},z8=c._Relu=function(){return(z8=c._Relu=c.asm.Ga).apply(null,arguments)},L8=c._Relu6=function(){return(L8=c._Relu6=c.asm.Ha).apply(null,arguments)},B8=c._ResizeBilinear=function(){return(B8=c._ResizeBilinear=c.asm.Ia).apply(null,arguments)},W8=c._Reverse=function(){return(W8=c._Reverse=c.asm.Ja).apply(null,arguments)},V8=c._RotateWithOffset=function(){return(V8=c._RotateWithOffset=c.asm.Ka).apply(null,arguments)},U8=c._Round=function(){return(U8=c._Round=c.asm.La).apply(null,arguments)},H8=c._Rsqrt=function(){return(H8=c._Rsqrt=c.asm.Ma).apply(null,arguments)},G8=c._ScatterNd=function(){return(G8=c._ScatterNd=c.asm.Na).apply(null,arguments)},j8=c._SelectV2=function(){return(j8=c._SelectV2=c.asm.Oa).apply(null,arguments)},q8=c._Sigmoid=function(){return(q8=c._Sigmoid=c.asm.Pa).apply(null,arguments)},X8=c._Sin=function(){return(X8=c._Sin=c.asm.Qa).apply(null,arguments)},K8=c._Softmax=function(){return(K8=c._Softmax=c.asm.Ra).apply(null,arguments)},Z8=c._Sqrt=function(){return(Z8=c._Sqrt=c.asm.Sa).apply(null,arguments)},Y8=c._Square=function(){return(Y8=c._Square=c.asm.Ta).apply(null,arguments)},J8=c._SquaredDifference=function(){return(J8=c._SquaredDifference=c.asm.Ua).apply(null,arguments)},Q8=c._Step=function(){return(Q8=c._Step=c.asm.Va).apply(null,arguments)},eI=c._StridedSlice=function(){return(eI=c._StridedSlice=c.asm.Wa).apply(null,arguments)},tI=c._Sub=function(){return(tI=c._Sub=c.asm.Xa).apply(null,arguments)},nI=c._Sum=function(){return(nI=c._Sum=c.asm.Ya).apply(null,arguments)},sI=c._Tan=function(){return(sI=c._Tan=c.asm.Za).apply(null,arguments)},rI=c._Tanh=function(){return(rI=c._Tanh=c.asm._a).apply(null,arguments)},aI=c._Tile=function(){return(aI=c._Tile=c.asm.$a).apply(null,arguments)},oI=c._TopK=function(){return(oI=c._TopK=c.asm.ab).apply(null,arguments)},iI=c._Transform=function(){return(iI=c._Transform=c.asm.bb).apply(null,arguments)},lI=c._Transpose=function(){return(lI=c._Transpose=c.asm.cb).apply(null,arguments)},uI=c.__FusedMatMul=function(){return(uI=c.__FusedMatMul=c.asm.db).apply(null,arguments)},ma=c._malloc=function(){return(ma=c._malloc=c.asm.eb).apply(null,arguments)},bu=c._free=function(){return(bu=c._free=c.asm.fb).apply(null,arguments)},My=c.___errno_location=function(){return(My=c.___errno_location=c.asm.gb).apply(null,arguments)},zy=c._emscripten_get_global_libc=function(){return(zy=c._emscripten_get_global_libc=c.asm.hb).apply(null,arguments)},ri=c._pthread_self=function(){return(ri=c._pthread_self=c.asm.ib).apply(null,arguments)},Ly=c.___pthread_tsd_run_dtors=function(){return(Ly=c.___pthread_tsd_run_dtors=c.asm.jb).apply(null,arguments)},gm=c._emscripten_main_thread_process_queued_calls=function(){return(gm=c._emscripten_main_thread_process_queued_calls=c.asm.kb).apply(null,arguments)},cI=c._emscripten_current_thread_process_queued_calls=function(){return(cI=c._emscripten_current_thread_process_queued_calls=c.asm.lb).apply(null,arguments)},By=c._emscripten_register_main_browser_thread_id=function(){return(By=c._emscripten_register_main_browser_thread_id=c.asm.mb).apply(null,arguments)},Wy=c.__emscripten_do_dispatch_to_thread=function(){return(Wy=c.__emscripten_do_dispatch_to_thread=c.asm.nb).apply(null,arguments)},Vy=c._emscripten_sync_run_in_main_thread_4=function(){return(Vy=c._emscripten_sync_run_in_main_thread_4=c.asm.ob).apply(null,arguments)},Uy=c._emscripten_run_in_main_runtime_thread_js=function(){return(Uy=c._emscripten_run_in_main_runtime_thread_js=c.asm.pb).apply(null,arguments)},ym=c.__emscripten_call_on_thread=function(){return(ym=c.__emscripten_call_on_thread=c.asm.qb).apply(null,arguments)},dI=c._emscripten_tls_init=function(){return(dI=c._emscripten_tls_init=c.asm.rb).apply(null,arguments)},xm=c.__emscripten_thread_init=function(){return(xm=c.__emscripten_thread_init=c.asm.sb).apply(null,arguments)},vu=c.stackSave=function(){return(vu=c.stackSave=c.asm.tb).apply(null,arguments)},ai=c.stackRestore=function(){return(ai=c.stackRestore=c.asm.ub).apply(null,arguments)},oi=c.stackAlloc=function(){return(oi=c.stackAlloc=c.asm.vb).apply(null,arguments)},Hy=c._emscripten_stack_set_limits=function(){return(Hy=c._emscripten_stack_set_limits=c.asm.wb).apply(null,arguments)},Gy=c._memalign=function(){return(Gy=c._memalign=c.asm.xb).apply(null,arguments)},jy=c.__emscripten_allow_main_runtime_queued_calls=9824,ii=c.__emscripten_main_thread_futex=11448;c.cwrap=$e,c.PThread=Se,c.PThread=Se,c.wasmMemory=J,c.ExitStatus=wu;var $d;function wu(T){this.name="ExitStatus",this.message="Program terminated with exit("+T+")",this.status=T}pa=function T(){$d||bm(),$d||(pa=T)};function bm(T){if(T=T||m,cr>0)return;if(k){d(c),hu(),postMessage({cmd:"loaded"});return}if(Zf(),cr>0)return;function F(){$d||($d=!0,c.calledRun=!0,!le&&(hu(),Yf(),d(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),Sn()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),F()},1)):F()}c.run=bm;function hI(T,F){if(!(F&&se&&T===0)){if(!F&&k)throw postMessage({cmd:"exitProcess",returnCode:T}),new wu(T);se||(Se.terminateAllThreads(),he=T,hd(),c.onExit&&c.onExit(T),le=!0),g(T,new wu(T))}}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();return k&&(se=!1,Se.initWorker()),bm(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),BI=xt({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(Y,re){o=Y,i=re});var l={},u;for(u in a)a.hasOwnProperty(u)&&(l[u]=a[u]);var c=[],d="./this.program",h=function(Y,re){throw re},p=!1,f=!1,m=!1,A=!1;p=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",A=!p&&!m&&!f;var g="";function y(Y){return a.locateFile?a.locateFile(Y,g):g+Y}var x,b,v,k,w,C;m?(f?g=ku().dirname(g)+"/":g=__dirname+"/",x=function(re,xe){return w||(w=ci("fs")),C||(C=ku()),re=C.normalize(re),w.readFileSync(re,xe?null:"utf8")},v=function(re){var xe=x(re,!0);return xe.buffer||(xe=new Uint8Array(xe)),j(xe.buffer),xe},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(Y){if(!(Y instanceof Am))throw Y}),process.on("unhandledRejection",Gs),h=function(Y){process.exit(Y)},a.inspect=function(){return"[Emscripten Module object]"}):A?(typeof read!="undefined"&&(x=function(re){return read(re)}),v=function(re){var xe;return typeof readbuffer=="function"?new Uint8Array(readbuffer(re)):(xe=read(re,"binary"),j(typeof xe=="object"),xe)},typeof scriptArgs!="undefined"?c=scriptArgs:typeof arguments!="undefined"&&(c=arguments),typeof quit=="function"&&(h=function(Y){quit(Y)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(p||f)&&(f?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),s&&(g=s),g.indexOf("blob:")!==0?g=g.substr(0,g.lastIndexOf("/")+1):g="",x=function(Y){var re=new XMLHttpRequest;return re.open("GET",Y,!1),re.send(null),re.responseText},f&&(v=function(Y){var re=new XMLHttpRequest;return re.open("GET",Y,!1),re.responseType="arraybuffer",re.send(null),new Uint8Array(re.response)}),b=function(Y,re,xe){var Ye=new XMLHttpRequest;Ye.open("GET",Y,!0),Ye.responseType="arraybuffer",Ye.onload=function(){if(Ye.status==200||Ye.status==0&&Ye.response){re(Ye.response);return}xe()},Ye.onerror=xe,Ye.send(null)},k=function(Y){document.title=Y});var E=a.print||console.log.bind(console),O=a.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(a[u]=l[u]);l=null,a.arguments&&(c=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(h=a.quit);var R;a.wasmBinary&&(R=a.wasmBinary);var _=a.noExitRuntime||!0;typeof WebAssembly!="object"&&Gs("no native wasm support detected");var N,P=!1,W;function j(Y,re){Y||Gs("Assertion failed: "+re)}function q(Y){var re=a["_"+Y];return j(re,"Cannot call unknown function "+Y+", make sure it is exported"),re}function X(Y,re,xe,Ye,Tt){var yt={string:function(Ln){var $r=0;if(Ln!=null&&Ln!==0){var _d=(Ln.length<<2)+1;$r=gu(_d),ie(Ln,$r,_d)}return $r},array:function(Ln){var $r=gu(Ln.length);return le(Ln,$r),$r}};function He(Ln){return re==="string"?se(Ln):re==="boolean"?Boolean(Ln):Ln}var Ge=q(Y),tn=[],hr=0;if(Ye)for(var pr=0;pr=Ye);)++Tt;if(Tt-re>16&&Y.subarray&&ne)return ne.decode(Y.subarray(re,Tt));for(var yt="";re>10,56320|hr&1023)}}return yt}function se(Y,re){return Y?te(Te,Y,re):""}function J(Y,re,xe,Ye){if(!(Ye>0))return 0;for(var Tt=xe,yt=xe+Ye-1,He=0;He=55296&&Ge<=57343){var tn=Y.charCodeAt(++He);Ge=65536+((Ge&1023)<<10)|tn&1023}if(Ge<=127){if(xe>=yt)break;re[xe++]=Ge}else if(Ge<=2047){if(xe+1>=yt)break;re[xe++]=192|Ge>>6,re[xe++]=128|Ge&63}else if(Ge<=65535){if(xe+2>=yt)break;re[xe++]=224|Ge>>12,re[xe++]=128|Ge>>6&63,re[xe++]=128|Ge&63}else{if(xe+3>=yt)break;re[xe++]=240|Ge>>18,re[xe++]=128|Ge>>12&63,re[xe++]=128|Ge>>6&63,re[xe++]=128|Ge&63}}return re[xe]=0,xe-Tt}function ie(Y,re,xe){return J(Y,Te,re,xe)}function le(Y,re){Ce.set(Y,re)}function he(Y,re){return Y%re>0&&(Y+=re-Y%re),Y}var ge,Ce,Te,$e,Me,De,it,et,tt;function Je(Y){ge=Y,a.HEAP8=Ce=new Int8Array(Y),a.HEAP16=$e=new Int16Array(Y),a.HEAP32=De=new Int32Array(Y),a.HEAPU8=Te=new Uint8Array(Y),a.HEAPU16=Me=new Uint16Array(Y),a.HEAPU32=it=new Uint32Array(Y),a.HEAPF32=et=new Float32Array(Y),a.HEAPF64=tt=new Float64Array(Y)}var at=a.INITIAL_MEMORY||16777216,Ve,In=[],kt=[],Mn=[],Qt=[],ys=!1;kt.push({func:function(){yd()}});function cn(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)Qn(a.preRun.shift());Er(In)}function Yn(){ys=!0,Er(kt)}function Jn(){Er(Mn)}function en(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)es(a.postRun.shift());Er(Qt)}function Qn(Y){In.unshift(Y)}function es(Y){Qt.unshift(Y)}var zn=0,Hs=null,ur=null;function Nr(Y){zn++,a.monitorRunDependencies&&a.monitorRunDependencies(zn)}function Qo(Y){if(zn--,a.monitorRunDependencies&&a.monitorRunDependencies(zn),zn==0&&(Hs!==null&&(clearInterval(Hs),Hs=null),ur)){var re=ur;ur=null,re()}}a.preloadedImages={},a.preloadedAudios={};function Gs(Y){a.onAbort&&a.onAbort(Y),Y+="",O(Y),P=!0,W=1,Y="abort("+Y+"). Build with -s ASSERTIONS=1 for more info.";var re=new WebAssembly.RuntimeError(Y);throw i(re),re}function dd(Y,re){return String.prototype.startsWith?Y.startsWith(re):Y.indexOf(re)===0}var Zf="data:application/octet-stream;base64,";function hu(Y){return dd(Y,Zf)}var Yf="file://";function hd(Y){return dd(Y,Yf)}var Sn="tfjs-backend-wasm.wasm";hu(Sn)||(Sn=y(Sn));function pd(Y){try{if(Y==Sn&&R)return new Uint8Array(R);if(v)return v(Y);throw"both async and sync fetching of the wasm failed"}catch(re){Gs(re)}}function Jf(){if(!R&&(p||f)){if(typeof fetch=="function"&&!hd(Sn))return fetch(Sn,{credentials:"same-origin"}).then(function(Y){if(!Y.ok)throw"failed to load wasm binary file at '"+Sn+"'";return Y.arrayBuffer()}).catch(function(){return pd(Sn)});if(b)return new Promise(function(Y,re){b(Sn,function(xe){Y(new Uint8Array(xe))},re)})}return Promise.resolve().then(function(){return pd(Sn)})}function cr(){var Y={a:s0};function re(He,Ge){var tn=He.exports;a.asm=tn,N=a.asm.i,Je(N.buffer),Ve=a.asm.o,Qo("wasm-instantiate")}Nr("wasm-instantiate");function xe(He){re(He.instance)}function Ye(He){return Jf().then(function(Ge){return WebAssembly.instantiate(Ge,Y)}).then(He,function(Ge){O("failed to asynchronously prepare wasm: "+Ge),Gs(Ge)})}function Tt(){return!R&&typeof WebAssembly.instantiateStreaming=="function"&&!hu(Sn)&&!hd(Sn)&&typeof fetch=="function"?fetch(Sn,{credentials:"same-origin"}).then(function(He){var Ge=WebAssembly.instantiateStreaming(He,Y);return Ge.then(xe,function(tn){return O("wasm streaming compile failed: "+tn),O("falling back to ArrayBuffer instantiation"),Ye(xe)})}):Ye(xe)}if(a.instantiateWasm)try{var yt=a.instantiateWasm(Y,re);return yt}catch(He){return O("Module.instantiateWasm callback failed with error: "+He),!1}return Tt().catch(i),{}}function Er(Y){for(;Y.length>0;){var re=Y.shift();if(typeof re=="function"){re(a);continue}var xe=re.func;typeof xe=="number"?re.arg===void 0?Ve.get(xe)():Ve.get(xe)(re.arg):xe(re.arg===void 0?null:re.arg)}}function pa(){Gs()}function Qf(Y,re,xe){Te.copyWithin(Y,re,re+xe)}function e0(){return Te.length}function dr(Y){try{return N.grow(Y-ge.byteLength+65535>>>16),Je(N.buffer),1}catch(re){}}function fd(Y){var re=e0(),xe=2147483648;if(Y>xe)return!1;for(var Ye=1;Ye<=4;Ye*=2){var Tt=re*(1+.2/Ye);Tt=Math.min(Tt,Y+100663296);var yt=Math.min(xe,he(Math.max(Y,Tt),65536)),He=dr(yt);if(He)return!0}return!1}var ei={mappings:{},buffers:[null,[],[]],printChar:function(Y,re){var xe=ei.buffers[Y];re===0||re===10?((Y===1?E:O)(te(xe,0)),xe.length=0):xe.push(re)},varargs:void 0,get:function(){ei.varargs+=4;var Y=De[ei.varargs-4>>2];return Y},getStr:function(Y){var re=se(Y);return re},get64:function(Y,re){return Y}};function md(Y){return 0}function t0(Y,re,xe,Ye,Tt){}function Ad(Y,re,xe,Ye){for(var Tt=0,yt=0;yt>2],Ge=De[re+(yt*8+4)>>2],tn=0;tn>2]=Tt,0}function Cn(){return 6}function gd(Y){return De[Td()>>2]=Y,Y}function n0(Y){switch(Y){case 30:return 16384;case 85:var re=2147483648;return re/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return gd(28),-1}var s0={a:pa,d:Qf,e:fd,f:md,c:t0,b:Ad,g:Cn,h:n0},r0=cr(),yd=a.___wasm_call_ctors=function(){return(yd=a.___wasm_call_ctors=a.asm.j).apply(null,arguments)},ti=a._init=function(){return(ti=a._init=a.asm.k).apply(null,arguments)},pu=a._register_tensor=function(){return(pu=a._register_tensor=a.asm.l).apply(null,arguments)},a0=a._dispose_data=function(){return(a0=a._dispose_data=a.asm.m).apply(null,arguments)},o0=a._dispose=function(){return(o0=a._dispose=a.asm.n).apply(null,arguments)},i0=a._Abs=function(){return(i0=a._Abs=a.asm.p).apply(null,arguments)},Se=a._Add=function(){return(Se=a._Add=a.asm.q).apply(null,arguments)},l0=a._AddN=function(){return(l0=a._AddN=a.asm.r).apply(null,arguments)},u0=a._All=function(){return(u0=a._All=a.asm.s).apply(null,arguments)},c0=a._Any=function(){return(c0=a._Any=a.asm.t).apply(null,arguments)},d0=a._ArgMax=function(){return(d0=a._ArgMax=a.asm.u).apply(null,arguments)},h0=a._AvgPool=function(){return(h0=a._AvgPool=a.asm.v).apply(null,arguments)},fa=a._BatchMatMul=function(){return(fa=a._BatchMatMul=a.asm.w).apply(null,arguments)},p0=a._Ceil=function(){return(p0=a._Ceil=a.asm.x).apply(null,arguments)},f0=a._ClipByValue=function(){return(f0=a._ClipByValue=a.asm.y).apply(null,arguments)},m0=a._Conv2D=function(){return(m0=a._Conv2D=a.asm.z).apply(null,arguments)},A0=a._Conv2DBackpropInput=function(){return(A0=a._Conv2DBackpropInput=a.asm.A).apply(null,arguments)},g0=a._Cos=function(){return(g0=a._Cos=a.asm.B).apply(null,arguments)},y0=a._Cosh=function(){return(y0=a._Cosh=a.asm.C).apply(null,arguments)},x0=a._CropAndResize=function(){return(x0=a._CropAndResize=a.asm.D).apply(null,arguments)},b0=a._Cumsum=function(){return(b0=a._Cumsum=a.asm.E).apply(null,arguments)},v0=a._DepthToSpace=function(){return(v0=a._DepthToSpace=a.asm.F).apply(null,arguments)},Rr=a._DepthwiseConv2dNative=function(){return(Rr=a._DepthwiseConv2dNative=a.asm.G).apply(null,arguments)},fu=a._Equal=function(){return(fu=a._Equal=a.asm.H).apply(null,arguments)},mu=a._Exp=function(){return(mu=a._Exp=a.asm.I).apply(null,arguments)},w0=a._FlipLeftRight=function(){return(w0=a._FlipLeftRight=a.asm.J).apply(null,arguments)},k0=a._Floor=function(){return(k0=a._Floor=a.asm.K).apply(null,arguments)},I0=a._FloorDiv=function(){return(I0=a._FloorDiv=a.asm.L).apply(null,arguments)},S0=a._FusedBatchNorm=function(){return(S0=a._FusedBatchNorm=a.asm.M).apply(null,arguments)},C0=a._FusedConv2D=function(){return(C0=a._FusedConv2D=a.asm.N).apply(null,arguments)},Le=a._FusedDepthwiseConv2D=function(){return(Le=a._FusedDepthwiseConv2D=a.asm.O).apply(null,arguments)},T0=a._Gather=function(){return(T0=a._Gather=a.asm.P).apply(null,arguments)},N0=a._GatherNd=function(){return(N0=a._GatherNd=a.asm.Q).apply(null,arguments)},E0=a._Greater=function(){return(E0=a._Greater=a.asm.R).apply(null,arguments)},R0=a._GreaterEqual=function(){return(R0=a._GreaterEqual=a.asm.S).apply(null,arguments)},_0=a._LeakyRelu=function(){return(_0=a._LeakyRelu=a.asm.T).apply(null,arguments)},$0=a._Less=function(){return($0=a._Less=a.asm.U).apply(null,arguments)},Au=a._LessEqual=function(){return(Au=a._LessEqual=a.asm.V).apply(null,arguments)},xd=a._Log=function(){return(xd=a._Log=a.asm.W).apply(null,arguments)},bd=a._LogicalAnd=function(){return(bd=a._LogicalAnd=a.asm.X).apply(null,arguments)},F0=a._Max=function(){return(F0=a._Max=a.asm.Y).apply(null,arguments)},D0=a._MaxPool=function(){return(D0=a._MaxPool=a.asm.Z).apply(null,arguments)},O0=a._Maximum=function(){return(O0=a._Maximum=a.asm._).apply(null,arguments)},P0=a._Mean=function(){return(P0=a._Mean=a.asm.$).apply(null,arguments)},M0=a._Min=function(){return(M0=a._Min=a.asm.aa).apply(null,arguments)},z0=a._Minimum=function(){return(z0=a._Minimum=a.asm.ba).apply(null,arguments)},L0=a._MirrorPad=function(){return(L0=a._MirrorPad=a.asm.ca).apply(null,arguments)},Qe=a._Multiply=function(){return(Qe=a._Multiply=a.asm.da).apply(null,arguments)},B0=a._Neg=function(){return(B0=a._Neg=a.asm.ea).apply(null,arguments)},W0=a._NonMaxSuppressionV3=function(){return(W0=a._NonMaxSuppressionV3=a.asm.fa).apply(null,arguments)},V0=a._NonMaxSuppressionV4=function(){return(V0=a._NonMaxSuppressionV4=a.asm.ga).apply(null,arguments)},ni=a._NonMaxSuppressionV5=function(){return(ni=a._NonMaxSuppressionV5=a.asm.ha).apply(null,arguments)},vd=a._NotEqual=function(){return(vd=a._NotEqual=a.asm.ia).apply(null,arguments)},wd=a._OneHot=function(){return(wd=a._OneHot=a.asm.ja).apply(null,arguments)},kd=a._PadV2=function(){return(kd=a._PadV2=a.asm.ka).apply(null,arguments)},U0=a._Pow=function(){return(U0=a._Pow=a.asm.la).apply(null,arguments)},H0=a._Prelu=function(){return(H0=a._Prelu=a.asm.ma).apply(null,arguments)},Id=a._Prod=function(){return(Id=a._Prod=a.asm.na).apply(null,arguments)},G0=a._RealDiv=function(){return(G0=a._RealDiv=a.asm.oa).apply(null,arguments)},Sd=a._Relu=function(){return(Sd=a._Relu=a.asm.pa).apply(null,arguments)},_r=a._Relu6=function(){return(_r=a._Relu6=a.asm.qa).apply(null,arguments)},j0=a._ResizeBilinear=function(){return(j0=a._ResizeBilinear=a.asm.ra).apply(null,arguments)},q0=a._Reverse=function(){return(q0=a._Reverse=a.asm.sa).apply(null,arguments)},Py=a._RotateWithOffset=function(){return(Py=a._RotateWithOffset=a.asm.ta).apply(null,arguments)},Cd=a._Round=function(){return(Cd=a._Round=a.asm.ua).apply(null,arguments)},X0=a._Rsqrt=function(){return(X0=a._Rsqrt=a.asm.va).apply(null,arguments)},K0=a._ScatterNd=function(){return(K0=a._ScatterNd=a.asm.wa).apply(null,arguments)},Z0=a._SelectV2=function(){return(Z0=a._SelectV2=a.asm.xa).apply(null,arguments)},Y0=a._Sigmoid=function(){return(Y0=a._Sigmoid=a.asm.ya).apply(null,arguments)},J0=a._Sin=function(){return(J0=a._Sin=a.asm.za).apply(null,arguments)},Q0=a._Softmax=function(){return(Q0=a._Softmax=a.asm.Aa).apply(null,arguments)},em=a._Sqrt=function(){return(em=a._Sqrt=a.asm.Ba).apply(null,arguments)},tm=a._Square=function(){return(tm=a._Square=a.asm.Ca).apply(null,arguments)},nm=a._SquaredDifference=function(){return(nm=a._SquaredDifference=a.asm.Da).apply(null,arguments)},sm=a._Step=function(){return(sm=a._Step=a.asm.Ea).apply(null,arguments)},rm=a._StridedSlice=function(){return(rm=a._StridedSlice=a.asm.Fa).apply(null,arguments)},am=a._Sub=function(){return(am=a._Sub=a.asm.Ga).apply(null,arguments)},om=a._Sum=function(){return(om=a._Sum=a.asm.Ha).apply(null,arguments)},im=a._Tan=function(){return(im=a._Tan=a.asm.Ia).apply(null,arguments)},lm=a._Tanh=function(){return(lm=a._Tanh=a.asm.Ja).apply(null,arguments)},um=a._Tile=function(){return(um=a._Tile=a.asm.Ka).apply(null,arguments)},cm=a._TopK=function(){return(cm=a._TopK=a.asm.La).apply(null,arguments)},dm=a._Transform=function(){return(dm=a._Transform=a.asm.Ma).apply(null,arguments)},hm=a._Transpose=function(){return(hm=a._Transpose=a.asm.Na).apply(null,arguments)},pm=a.__FusedMatMul=function(){return(pm=a.__FusedMatMul=a.asm.Oa).apply(null,arguments)},fm=a._malloc=function(){return(fm=a._malloc=a.asm.Pa).apply(null,arguments)},mm=a._free=function(){return(mm=a._free=a.asm.Qa).apply(null,arguments)},Td=a.___errno_location=function(){return(Td=a.___errno_location=a.asm.Ra).apply(null,arguments)},Nd=a.stackSave=function(){return(Nd=a.stackSave=a.asm.Sa).apply(null,arguments)},Ed=a.stackRestore=function(){return(Ed=a.stackRestore=a.asm.Ta).apply(null,arguments)},gu=a.stackAlloc=function(){return(gu=a.stackAlloc=a.asm.Ua).apply(null,arguments)};a.cwrap=Q;var si;function Am(Y){this.name="ExitStatus",this.message="Program terminated with exit("+Y+")",this.status=Y}ur=function Y(){si||yu(),si||(ur=Y)};function yu(Y){if(Y=Y||c,zn>0||(cn(),zn>0))return;function re(){si||(si=!0,a.calledRun=!0,!P&&(Yn(),Jn(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),en()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),re()},1)):re()}if(a.run=yu,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return yu(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),WI="3.8.0",VI="3.8.0",UI="3.8.0",HI="3.8.0",GI="3.8.0",jI="3.8.0",qI="3.8.0",XI="3.8.0",KI=1e-7,ZI=1e-4,Dd=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Iu=class{refCount(e){return xs("refCount")}incRef(e){return xs("incRef")}timerAvailable(){return!0}time(e){return xs("time")}read(e){return xs("read")}readSync(e){return xs("readSync")}numDataIds(){return xs("numDataIds")}disposeData(e,t){return xs("disposeData")}write(e,t,n){return xs("write")}move(e,t,n,s,r){return xs("move")}memory(){return xs("memory")}floatPrecision(){return xs("floatPrecision")}epsilon(){return this.floatPrecision()===32?KI:ZI}dispose(){return xs("dispose")}};function xs(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function s5(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Od(e,t,n)}function YI(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,Od(e,n,s),Od(t,n,s)}function Su(e,t,n){return Math.max(e,Math.min(t,n))}function JI(e){return e%2==0?e:e+1}function Od(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function QI(e){let t=0;for(let n=0;nn+` Shapes ${e} and ${t} must match`)}function ga(e){M(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ya(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||an(e)&&!n)for(let s=0;s0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function iS(e,t){let n=1,s=-1;for(let a=0;a=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function bs(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),M(e.every(s=>s>=-n&&s`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),M(e.every(s=>qt(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function r5(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:bs(t,e).sort(),o=0;for(let i=0;ii)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function a5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function o5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function i5(e,t){for(let n=0;nt+=n.length),t}function Dr(e){return typeof e=="string"||e instanceof String}function c5(e){return typeof e=="boolean"}function d5(e){return typeof e=="number"}function Pd(e){return Array.isArray(e)?Pd(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":d5(e)?"float32":Dr(e)?"string":c5(e)?"bool":"float32"}function Or(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Md(e,t){for(let n=t;n=0;--s)n[s]=n[s+1]*e[s+1];return n}function h5(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;ol*u)*(s?2:1);for(let l=0;lr*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return h5(0,e,t,n)}function km(e,t){let n=zd(e,t);for(let s=0;ss*r,1);if(t==null||t==="float32")return hi(e,new Float32Array(n));if(t==="int32")return hi(e,new Int32Array(n));if(t==="bool")return hi(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Im(e){e.forEach(t=>{M(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function cS(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r{let[s,r]=n.split(":");this.urlFlags[s]=fS(s,r)})}};function hS(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(pS(t,s[0],s[1]),s.join("="))),t}function pS(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function fS(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function ee(){return ns}var ns=null;function mS(e){ns=e}var Cm;function m5(){if(Cm==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Cm=e}return Cm}function AS(){let e=m5();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Tm(e,t){let n=AS();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var pi="Abs",fi="Acos",mi="Acosh",Pr="Add",xa="AddN",Ai="All",gi="Any",ba="ArgMax",Tu="ArgMin",yi="Asin",xi="Asinh",bi="Atan",vi="Atanh",wi="Atan2",va="AvgPool",Ld="AvgPoolGrad",Nu="AvgPool3D",Bd="AvgPool3DGrad",wa="BatchMatMul",ki="BatchToSpaceND",Wd="Bincount",A5="BroadcastTo",ka="Cast",Ia="Ceil",Mr="ClipByValue",Vd="Complex",Eu="ComplexAbs",Ii="Concat",Sa="Conv2D",Ud="Conv2DBackpropFilter",Ca="Conv2DBackpropInput",Ru="Conv3D",Hd="Conv3DBackpropFilterV2",Gd="Conv3DBackpropInputV2",Ta="Cos",Na="Cosh",Ea="Cumsum",Si="CropAndResize",jd="DenseBincount",Ci="DepthToSpace",Ra="DepthwiseConv2dNative",qd="DepthwiseConv2dNativeBackpropFilter",Xd="DepthwiseConv2dNativeBackpropInput",Kd="Diag",_u="Dilation2D",Zd="Dilation2DBackpropInput",Yd="Dilation2DBackpropFilter",_a="RealDiv",Jd="Einsum",Ti="Elu",Qd="EluGrad",Ni="Erf",Ei="Equal",$a="Exp",Ri="ExpandDims",_i="Expm1",eh="FFT",$u="Fill",$i="FlipLeftRight",Fa="Floor",Da="FloorDiv",Oa="FusedBatchNorm",Fi="GatherV2",Di="GatherNd",Oi="Greater",Pa="GreaterEqual",Ma="Identity",th="IFFT",nh="Imag",Pi="IsFinite",Mi="IsInf",zi="IsNan",za="LeakyRelu",Li="Less",Bi="LessEqual",sh="LinSpace",La="Log",Wi="Log1p",Vi="LogicalAnd",Fu="LogicalNot",Du="LogicalOr",g5="LogSoftmax",Ou="LRN",rh="LRNGrad",Ba="Max",Wa="Maximum",Va="MaxPool",ah="MaxPoolGrad",Pu="MaxPool3D",oh="MaxPool3DGrad",ih="MaxPoolWithArgmax",Ua="Mean",Ha="Min",Ga="Minimum",ja="MirrorPad",Ui="Mod",lh="Multinomial",qa="Multiply",Hi="Neg",Gi="NotEqual",ji="NonMaxSuppressionV3",qi="NonMaxSuppressionV4",Xi="NonMaxSuppressionV5",Ki="OnesLike",Xa="OneHot",Zi="Pack",Ka="PadV2",gS="Pool",Za="Pow",Ya="Prelu",Yi="Prod",Mu="Range",uh="Real",Ji="Reciprocal",Ja="Relu",Qi="Reshape",zu="ResizeNearestNeighbor",ch="ResizeNearestNeighborGrad",Qa="ResizeBilinear",dh="ResizeBilinearGrad",eo="Relu6",to="Reverse",no="Round",so="Rsqrt",el="ScatterNd",tl="Select",nl="Selu",sl="Slice",ro="Sin",rl="Sinh",al="Sign",ao="Sigmoid",ol="Softplus",oo="Sqrt",io="Sum",il="SpaceToBatchND",ll="SplitV",lo="Softmax",hh="SparseFillEmptyRows",ph="SparseReshape",fh="SparseSegmentMean",mh="SparseSegmentSum",Ah="SparseToDense",uo="SquaredDifference",Lu="Square",ul="StridedSlice",gh="StringNGrams",yh="StringSplit",xh="StringToHashBucketFast",co="Sub",ho="Tan",po="Tanh",zr="Tile",cl="TopK",dl="Transform",fo="Transpose",bh="Unique",hl="Unpack",Bu="UnsortedSegmentSum",pl="ZerosLike",Lr="Step",vh="FromPixels",fl="RotateWithOffset",mo="_FusedMatMul",Ao="FusedConv2D",go="FusedDepthwiseConv2D",ml=Tm("kernelRegistry",()=>new Map),Wu=Tm("gradRegistry",()=>new Map);function wh(e,t){let n=Em(e,t);return ml.get(n)}function Nm(e){return Wu.get(e)}function Al(e){let t=ml.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function yo(e){let{kernelName:t,backendName:n}=e,s=Em(t,n);ml.has(s)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),ml.set(s,e)}function y5(e){let{kernelName:t}=e;Wu.has(t)&&ee().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Wu.set(t,e)}function yS(e,t){let n=Em(e,t);if(!ml.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);ml.delete(n)}function xS(e){if(!Wu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Wu.delete(e)}function bS(e,t){Al(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});yo(r)})}function Em(e,t){return`${t}_${e}`}var I={};Pe(I,{arraysEqual:()=>fr,assert:()=>M,assertNonNegativeIntegerDimensions:()=>Im,assertNonNull:()=>ga,assertShapesMatch:()=>fn,bytesFromStringArray:()=>u5,bytesPerElement:()=>wm,checkConversionForErrors:()=>i5,clamp:()=>Su,computeStrides:()=>di,createScalarValue:()=>CS,createShuffledIndices:()=>aS,decodeString:()=>Sh,distSquared:()=>tS,encodeString:()=>Hu,fetch:()=>NS,fingerPrint64:()=>SS,flatten:()=>ya,getArrayFromDType:()=>o5,getTypedArrayFromDType:()=>a5,hasEncodingLoss:()=>lS,hexToLong:()=>Vu,indexToLoc:()=>dS,inferDtype:()=>Pd,inferFromImplicitShape:()=>iS,isBoolean:()=>c5,isFunction:()=>Or,isInt:()=>qt,isNumber:()=>d5,isPromise:()=>Sm,isScalarShape:()=>nS,isString:()=>Dr,isTypedArray:()=>an,isValidDtype:()=>l5,locToIndex:()=>cS,makeOnesTypedArray:()=>km,makeZerosNestedTypedArray:()=>uS,makeZerosTypedArray:()=>zd,nearestDivisor:()=>Md,nearestLargerEven:()=>JI,now:()=>Uu,parseAxisParam:()=>bs,randUniform:()=>eS,repeatedTry:()=>oS,rightPad:()=>Cu,shuffle:()=>s5,shuffleCombo:()=>YI,sizeFromShape:()=>_t,sizeToSquarishShape:()=>rS,squeezeShape:()=>r5,sum:()=>QI,swap:()=>Od,tanh:()=>sS,toNestedArray:()=>hi,toTypedArray:()=>Ih});var x5=Aa(bI()),xo=x5.default||x5;function Vu(e){return xo.fromString(e,!0,16)}var b5=Vu("c3a5c85c97cb3127"),bo=Vu("b492b66fbe98f273"),mn=Vu("9ae16a3b2f90404f");function Rm(e){return e.xor(e.shru(47))}function v5(e,t,n){let s=e.slice(t,t+n);return xo.fromBytes(Array.from(s),!0,!0)}function dt(e,t){return v5(e,t,8)}function w5(e,t){return v5(e,t,4)}function Xt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Br(e,t,n=Vu("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function vS(e,t,n,s,r,a){r=r.add(e),a=Xt(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(Xt(r,44)),[r.add(s),a.add(o)]}function kh(e,t,n,s){return vS(dt(e,t),dt(e,t+8),dt(e,t+16),dt(e,t+24),n,s)}function wS(e,t=e.length){if(t>=8){let n=mn.add(t*2),s=dt(e,0).add(mn),r=dt(e,t-8),a=Xt(r,37).mul(n).add(s),o=Xt(s,25).add(r).mul(n);return Br(a,o,n)}if(t>=4){let n=mn.add(t*2),s=w5(e,0);return Br(s.shl(3).add(t),w5(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return Rm(mn.mul(a).xor(b5.mul(o))).mul(mn)}return mn}function kS(e,t=e.length){let n=mn.add(t*2),s=dt(e,0).mul(bo),r=dt(e,8),a=dt(e,t-8).mul(n),o=dt(e,t-16).mul(mn);return Br(Xt(s.add(r),43).add(Xt(a,30)).add(o),s.add(Xt(r.add(mn),18)).add(a),n)}function IS(e,t=e.length){let n=mn.add(t*2),s=dt(e,0).mul(mn),r=dt(e,8),a=dt(e,t-8).mul(n),o=dt(e,t-16).mul(mn),i=Xt(s.add(r),43).add(Xt(a,30)).add(o),l=Br(i,s.add(Xt(r.add(mn),18)).add(a),n),u=dt(e,16).mul(n),c=dt(e,24),d=i.add(dt(e,t-32)).mul(n),h=l.add(dt(e,t-24)).mul(n);return Br(Xt(u.add(c),43).add(Xt(d,30)).add(h),u.add(Xt(c.add(s),18)).add(d),n)}function SS(e,t=e.length){let n=xo.fromNumber(81,!0);if(t<=32)return t<=16?wS(e,t):kS(e,t);if(t<=64)return IS(e,t);let s=n,r=n.mul(bo).add(113),a=Rm(r.mul(mn).add(113)).mul(mn),o=[xo.UZERO,xo.UZERO],i=[xo.UZERO,xo.UZERO];s=s.mul(mn).add(dt(e,0));let l=0,u=(t-1>>6)*64,c=u+(t-1&63)-63;do s=Xt(s.add(r).add(o[0]).add(dt(e,l+8)),37).mul(bo),r=Xt(r.add(o[1]).add(dt(e,l+48)),42).mul(bo),s=s.xor(i[1]),r=r.add(o[0]).add(dt(e,l+40)),a=Xt(a.add(i[0]),33).mul(bo),o=kh(e,l,o[1].mul(bo),s.add(i[0])),i=kh(e,l+32,a.add(i[1]),r.add(dt(e,l+16))),[a,s]=[s,a],l+=64;while(l!==u);let d=bo.add(a.and(255).shl(1));return l=c,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=Xt(s.add(r).add(o[0]).add(dt(e,l+8)),37).mul(d),r=Xt(r.add(o[1]).add(dt(e,l+48)),42).mul(d),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(dt(e,l+40))),a=Xt(a.add(i[0]),33).mul(d),o=kh(e,l,o[1].mul(d),s.add(i[0])),i=kh(e,l+32,a.add(i[1]),r.add(dt(e,l+16))),[a,s]=[s,a],Br(Br(o[0],i[0],d).add(Rm(r).mul(b5)).add(a),Br(o[1],i[1],d).add(s),d)}function CS(e,t){return t==="string"?Hu(e):Ih([e],t)}function TS(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Ih(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ya(e)),ee().getBool("DEBUG")&&i5(e,t),TS(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s{s=n()},a,o=Uu();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:Uu()-o})}if(ee().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l{RS(c,u.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function RS(e,t,n){if(t!=="float32")return!1;for(let s=0;s0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${c} %c${u} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function $S(e,t,n){let s={},r={};for(let l=0;ls[m.id]=!0),p=!0,r[u.id]=!0;break}if(p)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let d=0;d=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let u=e[l.id];u!=null?o.push(u):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=n(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=a.inputs[l];if(!fr(u.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let d=e[c.id];e[c.id]=s(d,u),d.dispose()}}}}var k5=20,Gu=3,_m=7;function DS(e,t,n,s){let r=di(t),a=OS(e,t,n,r),o=t.length,i=Ch(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(` +var n5=Object.defineProperty;var EI=e=>n5(e,"__esModule",{value:!0});var Nm=e=>{if(typeof require!="undefined")return require(e);throw new Error('Dynamic require of "'+e+'" is not supported')};var s5=(e,t)=>{EI(e);for(var n in t)n5(e,n,{get:t[n],enumerable:!0})};var r5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var mn=(e,t,n)=>(r5(e,t,"read from private field"),n?n.call(e):t.get(e)),as=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},Rs=(e,t,n,s)=>(r5(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);function gt(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${r} Expecting JSON file`);return r}function ue(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var Ye=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function gn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=gn(a,o):n[r]=o}),n),{})}var a5={backend:"webgl",modelBasePath:"../models/",wasmPath:"../node_modules/@tensorflow/tfjs-backend-wasm/dist/",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,skipFrame:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:15,skipFrames:15,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:11,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:17,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:1,minConfidence:.2,skipFrames:1},hand:{enabled:!0,rotation:!0,skipFrames:18,minConfidence:.1,iouThreshold:.1,maxDetected:2,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:19},segmentation:{enabled:!1,modelPath:"selfie.json"}};function o5(){let e="",t="";if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);if(n&&n[0]){let s=n[0].match(/\(([^()]+)\)/g);e=s&&s[0]?s[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var rd={};s5(rd,{Abs:()=>xi,Acos:()=>bi,Acosh:()=>vi,AdadeltaOptimizer:()=>pp,AdagradOptimizer:()=>fp,AdamOptimizer:()=>mp,AdamaxOptimizer:()=>gp,Add:()=>Br,AddN:()=>Ia,All:()=>wi,Any:()=>ki,ArgMax:()=>Sa,ArgMin:()=>Du,Asin:()=>Ii,Asinh:()=>Si,Atan:()=>Ci,Atan2:()=>Ni,Atanh:()=>Ti,AvgPool:()=>Ca,AvgPool3D:()=>Fu,AvgPool3DGrad:()=>qd,AvgPoolGrad:()=>jd,BackendWasm:()=>Nk,BatchMatMul:()=>Ta,BatchToSpaceND:()=>Ei,Bincount:()=>Xd,BroadcastTo:()=>I5,Callback:()=>Nv,CallbackList:()=>b3,Cast:()=>Na,Ceil:()=>Ea,ClipByValue:()=>Wr,Complex:()=>Kd,ComplexAbs:()=>Ou,Concat:()=>Ri,Conv2D:()=>Ra,Conv2DBackpropFilter:()=>Zd,Conv2DBackpropInput:()=>_a,Conv3D:()=>Pu,Conv3DBackpropFilterV2:()=>Yd,Conv3DBackpropInputV2:()=>Jd,Cos:()=>$a,Cosh:()=>Da,CropAndResize:()=>_i,Cumsum:()=>Fa,CustomCallback:()=>w3,DataStorage:()=>Wd,DenseBincount:()=>Qd,DepthToSpace:()=>$i,DepthwiseConv2dNative:()=>Oa,DepthwiseConv2dNativeBackpropFilter:()=>eh,DepthwiseConv2dNativeBackpropInput:()=>th,Diag:()=>nh,Dilation2D:()=>Mu,Dilation2DBackpropFilter:()=>rh,Dilation2DBackpropInput:()=>sh,ENV:()=>os,EarlyStopping:()=>Rv,Einsum:()=>ah,Elu:()=>Di,EluGrad:()=>oh,Environment:()=>w5,Equal:()=>Oi,Erf:()=>Fi,Exp:()=>Ma,ExpandDims:()=>Pi,Expm1:()=>Mi,FFT:()=>ih,Fill:()=>zu,FlipLeftRight:()=>zi,Floor:()=>za,FloorDiv:()=>La,FromPixels:()=>Nh,FusedBatchNorm:()=>Ba,FusedConv2D:()=>vo,FusedDepthwiseConv2D:()=>wo,GPGPUContext:()=>Af,GatherNd:()=>Bi,GatherV2:()=>Li,GraphModel:()=>l7,Greater:()=>Wi,GreaterEqual:()=>Wa,History:()=>v3,IFFT:()=>lh,Identity:()=>Va,Imag:()=>uh,InputSpec:()=>zt,IsFinite:()=>Vi,IsInf:()=>Ui,IsNan:()=>Hi,KernelBackend:()=>Ru,LRN:()=>Wu,LRNGrad:()=>dh,LayerVariable:()=>m3,LayersModel:()=>Cr,LeakyRelu:()=>Ua,Less:()=>Gi,LessEqual:()=>ji,LinSpace:()=>ch,Log:()=>Ha,Log1p:()=>qi,LogSoftmax:()=>S5,LogicalAnd:()=>Xi,LogicalNot:()=>Lu,LogicalOr:()=>Bu,MathBackendCPU:()=>sf,MathBackendWebGL:()=>ou,Max:()=>Ga,MaxPool:()=>qa,MaxPool3D:()=>Vu,MaxPool3DGrad:()=>ph,MaxPoolGrad:()=>hh,MaxPoolWithArgmax:()=>fh,Maximum:()=>ja,Mean:()=>Xa,Min:()=>Ka,Minimum:()=>Za,MirrorPad:()=>Ya,Mod:()=>Ki,MomentumOptimizer:()=>Ap,Multinomial:()=>mh,Multiply:()=>Ja,Neg:()=>Zi,NonMaxSuppressionV3:()=>Ji,NonMaxSuppressionV4:()=>Qi,NonMaxSuppressionV5:()=>el,NotEqual:()=>Yi,OP_SCOPE_SUFFIX:()=>B5,OneHot:()=>Qa,OnesLike:()=>tl,Optimizer:()=>kr,Pack:()=>nl,PadV2:()=>eo,Pool:()=>DS,Pow:()=>to,Prelu:()=>no,Prod:()=>sl,RMSPropOptimizer:()=>yp,RNN:()=>ir,Range:()=>Uu,Rank:()=>Lm,Real:()=>gh,RealDiv:()=>Pa,Reciprocal:()=>rl,Reduction:()=>vn,Relu:()=>so,Relu6:()=>ao,Reshape:()=>al,ResizeBilinear:()=>ro,ResizeBilinearGrad:()=>yh,ResizeNearestNeighbor:()=>Hu,ResizeNearestNeighborGrad:()=>Ah,Reverse:()=>oo,RotateWithOffset:()=>bl,Round:()=>io,Rsqrt:()=>lo,SGDOptimizer:()=>Ac,ScatterNd:()=>ol,Select:()=>il,Selu:()=>ll,Sequential:()=>Gl,Sigmoid:()=>co,Sign:()=>dl,Sin:()=>uo,Sinh:()=>cl,Slice:()=>ul,Softmax:()=>fo,Softplus:()=>hl,SpaceToBatchND:()=>pl,SparseFillEmptyRows:()=>xh,SparseReshape:()=>bh,SparseSegmentMean:()=>vh,SparseSegmentSum:()=>wh,SparseToDense:()=>kh,SplitV:()=>fl,Sqrt:()=>ho,Square:()=>Gu,SquaredDifference:()=>mo,Step:()=>Ur,StridedSlice:()=>ml,StringNGrams:()=>Ih,StringSplit:()=>Sh,StringToHashBucketFast:()=>Ch,Sub:()=>go,Sum:()=>po,SymbolicTensor:()=>Ws,Tan:()=>Ao,Tanh:()=>yo,Tensor:()=>Ge,TensorBuffer:()=>Ut,Tile:()=>Vr,TopK:()=>gl,Transform:()=>Al,Transpose:()=>xo,Unique:()=>Th,Unpack:()=>yl,UnsortedSegmentSum:()=>ju,Variable:()=>ec,ZerosLike:()=>xl,_FusedMatMul:()=>bo,abs:()=>Ht,acos:()=>Ix,acosh:()=>Sx,add:()=>ae,addN:()=>Bh,all:()=>fg,any:()=>Wh,argMax:()=>Js,argMin:()=>Cx,asin:()=>Tx,asinh:()=>Nx,atan:()=>Ex,atan2:()=>Rx,atanh:()=>_x,avgPool:()=>Uh,avgPool3d:()=>Ag,backend:()=>kx,backend_util:()=>$,basicLSTMCell:()=>yT,batchNorm:()=>_l,batchNorm2d:()=>Ox,batchNorm3d:()=>Px,batchNorm4d:()=>Mx,batchToSpaceND:()=>Hh,bincount:()=>yg,booleanMaskAsync:()=>RR,broadcastTo:()=>ic,browser:()=>ls,buffer:()=>We,callbacks:()=>jz,cast:()=>ce,ceil:()=>zx,clipByValue:()=>Gn,clone:()=>Ds,complex:()=>Gr,concat:()=>ft,concat1d:()=>Lx,concat2d:()=>$l,concat3d:()=>Bx,concat4d:()=>Wx,constraints:()=>Xb,conv1d:()=>xg,conv2d:()=>Zr,conv2dTranspose:()=>vg,conv3d:()=>wg,conv3dTranspose:()=>Ux,copyRegisteredKernels:()=>PS,cos:()=>Gh,cosh:()=>kg,cosineWindow:()=>Xg,cumsum:()=>Ig,customGrad:()=>er,data:()=>u7,denseBincount:()=>Hx,deprecationWarn:()=>dg,depthToSpace:()=>Gx,depthwiseConv2d:()=>lc,deregisterOp:()=>Xz,device_util:()=>nc,diag:()=>qT,dilation2d:()=>jx,disableDeprecationWarnings:()=>_9,dispose:()=>K,disposeVariables:()=>$9,div:()=>de,divNoNan:()=>qx,dot:()=>tN,dropout:()=>kb,einsum:()=>Xx,elu:()=>uc,enableDebugMode:()=>R9,enableProdMode:()=>E9,enclosingPowerOfTwo:()=>Ib,engine:()=>br,env:()=>ee,equal:()=>us,erf:()=>Kx,exp:()=>cs,expandDims:()=>Ot,expm1:()=>Zx,eye:()=>Sg,fft:()=>ap,fill:()=>Dl,findBackend:()=>hg,findBackendFactory:()=>L9,floor:()=>cc,floorDiv:()=>pg,forceHalfFloat:()=>P6,fused:()=>Qr,gather:()=>Fl,gatherND:()=>wb,gather_util:()=>rg,getBackend:()=>M9,getGradient:()=>Om,getKernel:()=>Eh,getKernelsForBackend:()=>wl,gpgpu_util:()=>o6,grad:()=>CN,grads:()=>TN,greater:()=>jn,greaterEqual:()=>_o,ifft:()=>fc,imag:()=>jh,image:()=>_e,inTopKAsync:()=>WR,initializers:()=>t3,input:()=>G3,io:()=>_n,irfft:()=>Vg,isFinite:()=>gN,isInf:()=>yN,isNaN:()=>Yx,keep:()=>Jt,kernel_impls:()=>nr,layers:()=>h3,leakyRelu:()=>qh,less:()=>Cg,lessEqual:()=>$o,linalg:()=>Fb,linspace:()=>Jx,loadGraphModel:()=>mt,loadLayersModel:()=>nM,localResponseNormalization:()=>Qx,log:()=>ds,log1p:()=>Xh,logSigmoid:()=>DN,logSoftmax:()=>Tg,logSumExp:()=>rb,logicalAnd:()=>Os,logicalNot:()=>Zh,logicalOr:()=>Rg,logicalXor:()=>GN,losses:()=>k$,matMul:()=>Ve,math:()=>rx,max:()=>hs,maxPool:()=>Yh,maxPool3d:()=>_g,maxPoolWithArgmax:()=>ab,maximum:()=>vr,mean:()=>_t,memory:()=>Lh,meshgrid:()=>YN,metrics:()=>Sv,min:()=>Jh,minimum:()=>dc,mirrorPad:()=>ob,mod:()=>ib,model:()=>eM,models:()=>Cv,moments:()=>Qh,movingAverage:()=>DR,mul:()=>z,multiRNNCell:()=>aE,multinomial:()=>lb,neg:()=>Tt,nextFrame:()=>xp,norm:()=>jg,notEqual:()=>Pl,oneHot:()=>ac,ones:()=>qn,onesLike:()=>ps,op:()=>V,outerProduct:()=>cE,pad:()=>Yr,pad1d:()=>pE,pad2d:()=>mE,pad3d:()=>AE,pad4d:()=>xE,pool:()=>IE,pow:()=>Jr,prelu:()=>tp,print:()=>J5,prod:()=>$g,profile:()=>D9,rand:()=>EE,randomGamma:()=>DE,randomNormal:()=>ub,randomUniform:()=>Ml,range:()=>zl,ready:()=>P9,real:()=>hc,reciprocal:()=>cb,registerBackend:()=>Nl,registerCallbackConstructor:()=>sM,registerGradient:()=>C5,registerKernel:()=>ko,registerOp:()=>qz,regularizers:()=>Tv,relu:()=>tr,relu6:()=>Og,removeBackend:()=>z9,reshape:()=>U,reverse:()=>fs,reverse1d:()=>VE,reverse2d:()=>HE,reverse3d:()=>jE,reverse4d:()=>XE,rfft:()=>op,round:()=>Pg,rsqrt:()=>Mg,scalar:()=>Ie,scatterND:()=>vb,scatter_util:()=>ag,selu:()=>zg,separableConv2d:()=>db,sequential:()=>tM,serialization:()=>oe,setBackend:()=>O9,setPlatform:()=>B9,setWasmPath:()=>vie,setWasmPaths:()=>wie,setWebGLContext:()=>cf,setdiff1dAsync:()=>hb,shared:()=>r1,sigmoid:()=>Hn,sign:()=>pb,signal:()=>w$,sin:()=>Lg,sinh:()=>Bg,slice:()=>Re,slice1d:()=>np,slice2d:()=>Wg,slice3d:()=>sp,slice4d:()=>pc,slice_util:()=>xn,softmax:()=>rp,softplus:()=>Ol,spaceToBatchND:()=>ep,sparse:()=>gc,sparseToDense:()=>qg,spectral:()=>v$,split:()=>an,sqrt:()=>dn,square:()=>ct,squaredDifference:()=>Ug,squeeze:()=>lt,stack:()=>$n,step:()=>mc,stridedSlice:()=>fb,string:()=>hp,sub:()=>ge,sum:()=>ve,sumOutType:()=>Fh,tan:()=>mb,tanh:()=>Rl,tensor:()=>cn,tensor1d:()=>Mt,tensor2d:()=>Ps,tensor3d:()=>Mh,tensor4d:()=>bR,tensor5d:()=>vR,tensor6d:()=>wR,tensor_util:()=>_s,test_util:()=>bx,tidy:()=>H,tile:()=>Fs,time:()=>F9,topk:()=>gb,train:()=>Oo,transpose:()=>Xe,truncatedNormal:()=>ip,unique:()=>Hg,unregisterGradient:()=>OS,unregisterKernel:()=>FS,unsortedSegmentSum:()=>Ab,unstack:()=>ms,upcastType:()=>Ss,util:()=>I,valueAndGrad:()=>NN,valueAndGrads:()=>EN,variable:()=>yb,variableGrads:()=>eb,version:()=>Sie,version_converter:()=>YL,version_core:()=>N9,version_cpu:()=>$W,version_layers:()=>EA,version_wasm:()=>kie,version_webgl:()=>nK,webgl:()=>sK,webgl_util:()=>Dw,where:()=>bn,whereAsync:()=>Gg,zeros:()=>Pt,zerosLike:()=>Ke});var RI=Object.create,Bd=Object.defineProperty,_I=Object.getOwnPropertyDescriptor,$I=Object.getOwnPropertyNames,DI=Object.getPrototypeOf,FI=Object.prototype.hasOwnProperty,i5=e=>Bd(e,"__esModule",{value:!0}),gi=e=>{if(typeof Nm!="undefined")return Nm(e);throw new Error('Dynamic require of "'+e+'" is not supported')},vt=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},Pe=(e,t)=>{i5(e);for(var n in t)Bd(e,n,{get:t[n],enumerable:!0})},OI=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let s of $I(t))!FI.call(e,s)&&s!=="default"&&Bd(e,s,{get:()=>t[s],enumerable:!(n=_I(t,s))||n.enumerable});return e},va=e=>OI(i5(Bd(e!=null?RI(DI(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),PI=vt({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(_){}function s(_,T,O){this.low=_|0,this.high=T|0,this.unsigned=!!O}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(_){return(_&&_.__isLong__)===!0}s.isLong=r;var a={},o={};function i(_,T){var O,W,j;return T?(_>>>=0,(j=0<=_&&_<256)&&(W=o[_],W)?W:(O=u(_,(_|0)<0?-1:0,!0),j&&(o[_]=O),O)):(_|=0,(j=-128<=_&&_<128)&&(W=a[_],W)?W:(O=u(_,_<0?-1:0,!1),j&&(a[_]=O),O))}s.fromInt=i;function l(_,T){if(isNaN(_))return T?b:x;if(T){if(_<0)return b;if(_>=g)return R}else{if(_<=-A)return P;if(_+1>=A)return C}return _<0?l(-_,T).neg():u(_%m|0,_/m|0,T)}s.fromNumber=l;function u(_,T,O){return new s(_,T,O)}s.fromBits=u;var c=Math.pow;function d(_,T,O){if(_.length===0)throw Error("empty string");if(_==="NaN"||_==="Infinity"||_==="+Infinity"||_==="-Infinity")return x;if(typeof T=="number"?(O=T,T=!1):T=!!T,O=O||10,O<2||360)throw Error("interior hyphen");if(W===0)return d(_.substring(1),T,O).neg();for(var j=l(c(O,8)),q=x,X=0;X<_.length;X+=8){var Q=Math.min(8,_.length-X),ne=parseInt(_.substring(X,X+Q),O);if(Q<8){var te=l(c(O,Q));q=q.mul(te).add(l(ne))}else q=q.mul(j),q=q.add(l(ne))}return q.unsigned=T,q}s.fromString=d;function h(_,T){return typeof _=="number"?l(_,T):typeof _=="string"?d(_,T):u(_.low,_.high,typeof T=="boolean"?T:_.unsigned)}s.fromValue=h;var p=1<<16,f=1<<24,m=p*p,g=m*m,A=g/2,y=i(f),x=i(0);s.ZERO=x;var b=i(0,!0);s.UZERO=b;var v=i(1);s.ONE=v;var k=i(1,!0);s.UONE=k;var w=i(-1);s.NEG_ONE=w;var C=u(4294967295|0,2147483647|0,!1);s.MAX_VALUE=C;var R=u(4294967295|0,4294967295|0,!0);s.MAX_UNSIGNED_VALUE=R;var P=u(0,2147483648|0,!1);s.MIN_VALUE=P;var E=s.prototype;E.toInt=function(){return this.unsigned?this.low>>>0:this.low},E.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},E.toString=function(T){if(T=T||10,T<2||36>>0,se=te.toString(T);if(X=ne,X.isZero())return se+Q;for(;se.length<6;)se="0"+se;Q=""+se+Q}},E.getHighBits=function(){return this.high},E.getHighBitsUnsigned=function(){return this.high>>>0},E.getLowBits=function(){return this.low},E.getLowBitsUnsigned=function(){return this.low>>>0},E.getNumBitsAbs=function(){if(this.isNegative())return this.eq(P)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,O=31;O>0&&(T&1<=0},E.isOdd=function(){return(this.low&1)==1},E.isEven=function(){return(this.low&1)==0},E.equals=function(T){return r(T)||(T=h(T)),this.unsigned!==T.unsigned&&this.high>>>31==1&&T.high>>>31==1?!1:this.high===T.high&&this.low===T.low},E.eq=E.equals,E.notEquals=function(T){return!this.eq(T)},E.neq=E.notEquals,E.ne=E.notEquals,E.lessThan=function(T){return this.comp(T)<0},E.lt=E.lessThan,E.lessThanOrEqual=function(T){return this.comp(T)<=0},E.lte=E.lessThanOrEqual,E.le=E.lessThanOrEqual,E.greaterThan=function(T){return this.comp(T)>0},E.gt=E.greaterThan,E.greaterThanOrEqual=function(T){return this.comp(T)>=0},E.gte=E.greaterThanOrEqual,E.ge=E.greaterThanOrEqual,E.compare=function(T){if(r(T)||(T=h(T)),this.eq(T))return 0;var O=this.isNegative(),W=T.isNegative();return O&&!W?-1:!O&&W?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},E.comp=E.compare,E.negate=function(){return!this.unsigned&&this.eq(P)?P:this.not().add(v)},E.neg=E.negate,E.add=function(T){r(T)||(T=h(T));var O=this.high>>>16,W=this.high&65535,j=this.low>>>16,q=this.low&65535,X=T.high>>>16,Q=T.high&65535,ne=T.low>>>16,te=T.low&65535,se=0,J=0,ie=0,le=0;return le+=q+te,ie+=le>>>16,le&=65535,ie+=j+ne,J+=ie>>>16,ie&=65535,J+=W+Q,se+=J>>>16,J&=65535,se+=O+X,se&=65535,u(ie<<16|le,se<<16|J,this.unsigned)},E.subtract=function(T){return r(T)||(T=h(T)),this.add(T.neg())},E.sub=E.subtract,E.multiply=function(T){if(this.isZero())return x;if(r(T)||(T=h(T)),n){var O=n.mul(this.low,this.high,T.low,T.high);return u(O,n.get_high(),this.unsigned)}if(T.isZero())return x;if(this.eq(P))return T.isOdd()?P:x;if(T.eq(P))return this.isOdd()?P:x;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(y)&&T.lt(y))return l(this.toNumber()*T.toNumber(),this.unsigned);var W=this.high>>>16,j=this.high&65535,q=this.low>>>16,X=this.low&65535,Q=T.high>>>16,ne=T.high&65535,te=T.low>>>16,se=T.low&65535,J=0,ie=0,le=0,he=0;return he+=X*se,le+=he>>>16,he&=65535,le+=q*se,ie+=le>>>16,le&=65535,le+=X*te,ie+=le>>>16,le&=65535,ie+=j*se,J+=ie>>>16,ie&=65535,ie+=q*te,J+=ie>>>16,ie&=65535,ie+=X*ne,J+=ie>>>16,ie&=65535,J+=W*se+j*te+q*ne+X*Q,J&=65535,u(le<<16|he,J<<16|ie,this.unsigned)},E.mul=E.multiply,E.divide=function(T){if(r(T)||(T=h(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var O=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return u(O,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:x;var W,j,q;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return b;if(T.gt(this.shru(1)))return k;q=b}else{if(this.eq(P)){if(T.eq(v)||T.eq(w))return P;if(T.eq(P))return v;var X=this.shr(1);return W=X.div(T).shl(1),W.eq(x)?T.isNegative()?v:w:(j=this.sub(T.mul(W)),q=W.add(j.div(T)),q)}else if(T.eq(P))return this.unsigned?b:x;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();q=x}for(j=this;j.gte(T);){W=Math.max(1,Math.floor(j.toNumber()/T.toNumber()));for(var Q=Math.ceil(Math.log(W)/Math.LN2),ne=Q<=48?1:c(2,Q-48),te=l(W),se=te.mul(T);se.isNegative()||se.gt(j);)W-=ne,te=l(W,this.unsigned),se=te.mul(T);te.isZero()&&(te=v),q=q.add(te),j=j.sub(se)}return q},E.div=E.divide,E.modulo=function(T){if(r(T)||(T=h(T)),n){var O=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return u(O,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},E.mod=E.modulo,E.rem=E.modulo,E.not=function(){return u(~this.low,~this.high,this.unsigned)},E.and=function(T){return r(T)||(T=h(T)),u(this.low&T.low,this.high&T.high,this.unsigned)},E.or=function(T){return r(T)||(T=h(T)),u(this.low|T.low,this.high|T.high,this.unsigned)},E.xor=function(T){return r(T)||(T=h(T)),u(this.low^T.low,this.high^T.high,this.unsigned)},E.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?u(this.low<>>32-T,this.unsigned):u(0,this.low<>>T|this.high<<32-T,this.high>>T,this.unsigned):u(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},E.shr=E.shiftRight,E.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var O=this.high;if(T<32){var W=this.low;return u(W>>>T|O<<32-T,O>>>T,this.unsigned)}else return T===32?u(O,0,this.unsigned):u(O>>>T-32,0,this.unsigned)},E.shru=E.shiftRightUnsigned,E.shr_u=E.shiftRightUnsigned,E.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},E.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},E.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},E.toBytesLE=function(){var T=this.high,O=this.low;return[O&255,O>>>8&255,O>>>16&255,O>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},E.toBytesBE=function(){var T=this.high,O=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,O>>>24,O>>>16&255,O>>>8&255,O&255]},s.fromBytes=function(T,O,W){return W?s.fromBytesLE(T,O):s.fromBytesBE(T,O)},s.fromBytesLE=function(T,O){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,O)},s.fromBytesBE=function(T,O){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],O)}}}),MI=vt({"(disabled):node_modules/.pnpm/node-fetch@2.6.1/node_modules/node-fetch/browser.js"(){}}),zI=vt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,d=l();c.next=function(){var h=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=h-(c.c=h|0)},c.c=1,c.s0=d(" "),c.s1=d(" "),c.s2=d(" "),c.s0-=d(u),c.s0<0&&(c.s0+=1),c.s1-=d(u),c.s1<0&&(c.s1+=1),c.s2-=d(u),c.s2<0&&(c.s2+=1),d=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var d=new a(u),h=c&&c.state,p=d.next;return p.int32=function(){return d.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,h&&(typeof h=="object"&&o(h,d),p.state=function(){return o(d,{})}),p}function l(){var u=4022871197,c=function(d){d=d.toString();for(var h=0;h>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),LI=vt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var h=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^h^h>>>8},l===(l|0)?u.x=l:c+=l;for(var d=0;d>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),BI=vt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var h=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(h^h<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var d=0;d>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),WI=vt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.x,h=u.i,p,f,m;return p=d[h],p^=p>>>7,f=p^p<<24,p=d[h+1&7],f^=p^p>>>10,p=d[h+3&7],f^=p^p>>>3,p=d[h+4&7],f^=p^p<<7,p=d[h+7&7],p=p^p<<13,f^=p^p<<9,d[h]=f,u.i=h+1&7,f};function c(d,h){var p,f,m=[];if(h===(h|0))f=m[0]=h;else for(h=""+h,p=0;p0;--p)d.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.x&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),VI=vt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.w,h=u.X,p=u.i,f,m;return u.w=d=d+1640531527|0,m=h[p+34&127],f=h[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=h[p]=m^f,u.i=p,m+(d^d>>>16)|0};function c(d,h){var p,f,m,g,A,y=[],x=128;for(h===(h|0)?(f=h,h=null):(h=h+"\0",f=0,x=Math.max(x,h.length)),m=0,g=-32;g>>15,f^=f<<4,f^=f>>>13,g>=0&&(A=A+1640531527|0,p=y[g&127]^=f+A,m=p==0?m+1:0);for(m>=128&&(y[(h&&h.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],p=y[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,y[m]=f^p;d.w=A,d.X=y,d.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.X&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),UI=vt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var h=u.b,p=u.c,f=u.d,m=u.a;return h=h<<25^h>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-h|0,u.b=h=h<<20^h>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-h|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var d=0;d>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),l5=vt({"(disabled):crypto"(){}}),HI=vt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s){var r=this,a=256,o=6,i=52,l="random",u=s.pow(a,o),c=s.pow(2,i),d=c*2,h=a-1,p;function f(v,k,w){var C=[];k=k==!0?{entropy:!0}:k||{};var R=y(A(k.entropy?[v,b(n)]:v==null?x():v,3),C),P=new m(C),E=function(){for(var _=P.g(o),T=u,O=0;_=d;)_/=2,T/=2,O>>>=1;return(_+O)/T};return E.int32=function(){return P.g(4)|0},E.quick=function(){return P.g(4)/4294967296},E.double=E,y(b(P.S),n),(k.pass||w||function(_,T,O,W){return W&&(W.S&&g(W,P),_.state=function(){return g(P,{})}),O?(s[l]=_,T):_})(E,R,"global"in k?k.global:this==s,k.state)}s["seed"+l]=f;function m(v){var k,w=v.length,C=this,R=0,P=C.i=C.j=0,E=C.S=[];for(w||(v=[w++]);R>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),jI=vt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var h=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^h^h>>>8},l===(l|0)?u.x=l:c+=l;for(var d=0;d>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),qI=vt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var h=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(h^h<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var d=0;d>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),XI=vt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.x,h=u.i,p,f,m;return p=d[h],p^=p>>>7,f=p^p<<24,p=d[h+1&7],f^=p^p>>>10,p=d[h+3&7],f^=p^p>>>3,p=d[h+4&7],f^=p^p<<7,p=d[h+7&7],p=p^p<<13,f^=p^p<<9,d[h]=f,u.i=h+1&7,f};function c(d,h){var p,f,m=[];if(h===(h|0))f=m[0]=h;else for(h=""+h,p=0;p0;--p)d.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.x&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),KI=vt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.w,h=u.X,p=u.i,f,m;return u.w=d=d+1640531527|0,m=h[p+34&127],f=h[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=h[p]=m^f,u.i=p,m+(d^d>>>16)|0};function c(d,h){var p,f,m,g,A,y=[],x=128;for(h===(h|0)?(f=h,h=null):(h=h+"\0",f=0,x=Math.max(x,h.length)),m=0,g=-32;g>>15,f^=f<<4,f^=f>>>13,g>=0&&(A=A+1640531527|0,p=y[g&127]^=f+A,m=p==0?m+1:0);for(m>=128&&(y[(h&&h.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],p=y[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,y[m]=f^p;d.w=A,d.X=y,d.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.X&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),ZI=vt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var h=u.b,p=u.c,f=u.d,m=u.a;return h=h<<25^h>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-h|0,u.b=h=h<<20^h>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-h|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var d=0;d>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),YI=vt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",u=r.pow(a,o),c=r.pow(2,i),d=c*2,h=a-1,p;function f(v,k,w){var C=[];k=k==!0?{entropy:!0}:k||{};var R=y(A(k.entropy?[v,b(s)]:v==null?x():v,3),C),P=new m(C),E=function(){for(var _=P.g(o),T=u,O=0;_=d;)_/=2,T/=2,O>>>=1;return(_+O)/T};return E.int32=function(){return P.g(4)|0},E.quick=function(){return P.g(4)/4294967296},E.double=E,y(b(P.S),s),(k.pass||w||function(_,T,O,W){return W&&(W.S&&g(W,P),_.state=function(){return g(P,{})}),O?(r[l]=_,T):_})(E,R,"global"in k?k.global:this==r,k.state)}function m(v){var k,w=v.length,C=this,R=0,P=C.i=C.j=0,E=C.S=[];for(w||(v=[w++]);R1&&(g=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(N){if(!(N instanceof Nu))throw N}),process.on("unhandledRejection",mr),A=function(N){process.exit(N)},c.inspect=function(){return"[Emscripten Module object]"};var W;try{W=QI()}catch(N){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),N}global.Worker=W.Worker}else v?(typeof read!="undefined"&&(R=function(D){return read(D)}),E=function(D){var B;return typeof readbuffer=="function"?new Uint8Array(readbuffer(D)):(B=read(D,"binary"),Ae(typeof B=="object"),B)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(A=function(N){quit(N)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(y||x)&&(x?w=self.location.href:typeof document!="undefined"&&document.currentScript&&(w=document.currentScript.src),typeof s!="undefined"&&s&&(w=s),w.indexOf("blob:")!==0?w=w.substr(0,w.lastIndexOf("/")+1):w="",b?(R=function(D,B){return T||(T=gi("fs")),O||(O=Eu()),D=O.normalize(D),T.readFileSync(D,B?null:"utf8")},E=function(D){var B=R(D,!0);return B.buffer||(B=new Uint8Array(B)),Ae(B.buffer),B}):(R=function(N){var D=new XMLHttpRequest;return D.open("GET",N,!1),D.send(null),D.responseText},x&&(E=function(N){var D=new XMLHttpRequest;return D.open("GET",N,!1),D.responseType="arraybuffer",D.send(null),new Uint8Array(D.response)}),P=function(N,D,B){var Z=new XMLHttpRequest;Z.open("GET",N,!0),Z.responseType="arraybuffer",Z.onload=function(){if(Z.status==200||Z.status==0&&Z.response){D(Z.response);return}B()},Z.onerror=B,Z.send(null)}),_=function(N){document.title=N});b&&typeof performance=="undefined"&&(global.performance=eS().performance);var j=c.print||console.log.bind(console),q=c.printErr||console.warn.bind(console);for(f in p)p.hasOwnProperty(f)&&(c[f]=p[f]);p=null,c.arguments&&(m=c.arguments),c.thisProgram&&(g=c.thisProgram),c.quit&&(A=c.quit);var X=Atomics.load,Q=Atomics.store,ne=Atomics.compareExchange,te;c.wasmBinary&&(te=c.wasmBinary);var se=c.noExitRuntime||!0;typeof WebAssembly!="object"&&mr("no native wasm support detected");var J,ie,le=!1,he;function Ae(N,D){N||mr("Assertion failed: "+D)}function Ce(N){var D=c["_"+N];return Ae(D,"Cannot call unknown function "+N+", make sure it is exported"),D}function Te(N,D,B,Z,me){var pe={string:function(fn){var mi=0;if(fn!=null&&fn!==0){var t5=(fn.length<<2)+1;mi=hi(t5),nt(fn,mi,t5)}return mi},array:function(fn){var mi=hi(fn.length);return et(fn,mi),mi}};function fe(fn){return D==="string"?Fe(fn):D==="boolean"?Boolean(fn):fn}var we=Ce(N),rt=[],Kt=0;if(Z)for(var Vt=0;Vt=Z);){var pe=N[D++];if(!pe)return me;if(!(pe&128)){me+=String.fromCharCode(pe);continue}var fe=N[D++]&63;if((pe&224)==192){me+=String.fromCharCode((pe&31)<<6|fe);continue}var we=N[D++]&63;if((pe&240)==224?pe=(pe&15)<<12|fe<<6|we:pe=(pe&7)<<18|fe<<12|we<<6|N[D++]&63,pe<65536)me+=String.fromCharCode(pe);else{var rt=pe-65536;me+=String.fromCharCode(55296|rt>>10,56320|rt&1023)}}return me}function Fe(N,D){return N?Me(o(),N,D):""}function ut(N,D,B,Z){if(!(Z>0))return 0;for(var me=B,pe=B+Z-1,fe=0;fe=55296&&we<=57343){var rt=N.charCodeAt(++fe);we=65536+((we&1023)<<10)|rt&1023}if(we<=127){if(B>=pe)break;D[B++]=we}else if(we<=2047){if(B+1>=pe)break;D[B++]=192|we>>6,D[B++]=128|we&63}else if(we<=65535){if(B+2>=pe)break;D[B++]=224|we>>12,D[B++]=128|we>>6&63,D[B++]=128|we&63}else{if(B+3>=pe)break;D[B++]=240|we>>18,D[B++]=128|we>>12&63,D[B++]=128|we>>6&63,D[B++]=128|we&63}}return D[B]=0,B-me}function nt(N,D,B){return ut(N,o(),D,B)}function st(N){for(var D=0,B=0;B=55296&&Z<=57343&&(Z=65536+((Z&1023)<<10)|N.charCodeAt(++B)&1023),Z<=127?++D:Z<=2047?D+=2:Z<=65535?D+=3:D+=4}return D}function et(N,D){a().set(N,D)}function it(N,D){return N%D>0&&(N+=D-N%D),N}var He,Nn,St,Wn,nn,ws,pn,ts,ns;function sn(N){He=N,c.HEAP8=Nn=new Int8Array(N),c.HEAP16=Wn=new Int16Array(N),c.HEAP32=ws=new Int32Array(N),c.HEAPU8=St=new Uint8Array(N),c.HEAPU16=nn=new Uint16Array(N),c.HEAPU32=pn=new Uint32Array(N),c.HEAPF32=ts=new Float32Array(N),c.HEAPF64=ns=new Float64Array(N)}var ss=c.INITIAL_MEMORY||16777216;if(k)J=c.wasmMemory,He=c.buffer;else if(c.wasmMemory)J=c.wasmMemory;else if(J=new WebAssembly.Memory({initial:ss/65536,maximum:2147483648/65536,shared:!0}),!(J.buffer instanceof SharedArrayBuffer))throw q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");J&&(He=J.buffer),ss=He.byteLength,sn(He);var rs,Vn=[],Xs=[],pr=[],$r=[],ai=[],Ks=!1,yd=!1;k||Xs.push({func:function(){Dd()}});function s0(){if(!k){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)bd(c.preRun.shift());ii(Vn)}}function yu(){Ks=!0,!k&&ii(Xs)}function r0(){k||ii(pr)}function xd(){k||(yd=!0)}function En(){if(!k){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)a0(c.postRun.shift());ii(ai)}}function bd(N){Vn.unshift(N)}function a0(N){ai.unshift(N)}var fr=0,Dr=null,ya=null;function o0(N){Ae(!k,"addRunDependency cannot be used in a pthread worker"),fr++,c.monitorRunDependencies&&c.monitorRunDependencies(fr)}function i0(N){if(fr--,c.monitorRunDependencies&&c.monitorRunDependencies(fr),fr==0&&(Dr!==null&&(clearInterval(Dr),Dr=null),ya)){var D=ya;ya=null,D()}}c.preloadedImages={},c.preloadedAudios={};function mr(N){c.onAbort&&c.onAbort(N),k&&console.error("Pthread aborting at "+new Error().stack),N+="",q(N),le=!0,he=1,N="abort("+N+"). Build with -s ASSERTIONS=1 for more info.";var D=new WebAssembly.RuntimeError(N);throw h(D),D}function vd(N,D){return String.prototype.startsWith?N.startsWith(D):N.indexOf(D)===0}var oi="data:application/octet-stream;base64,";function wd(N){return vd(N,oi)}var l0="file://";function kd(N){return vd(N,l0)}var Rn="tfjs-backend-wasm-threaded-simd.wasm";wd(Rn)||(Rn=C(Rn));function Id(N){try{if(N==Rn&&te)return new Uint8Array(te);if(E)return E(N);throw"both async and sync fetching of the wasm failed"}catch(D){mr(D)}}function u0(){if(!te&&(y||x)){if(typeof fetch=="function"&&!kd(Rn))return fetch(Rn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+Rn+"'";return N.arrayBuffer()}).catch(function(){return Id(Rn)});if(P)return new Promise(function(N,D){P(Rn,function(B){N(new Uint8Array(B))},D)})}return Promise.resolve().then(function(){return Id(Rn)})}function c0(){var N={a:em};function D(fe,we){var rt=fe.exports;if(c.asm=rt,rs=c.asm.F,ie=we,!k){var Kt=Se.unusedWorkers.length;Se.unusedWorkers.forEach(function(Vt){Se.loadWasmModuleToWorker(Vt,function(){--Kt||i0("wasm-instantiate")})})}}k||o0("wasm-instantiate");function B(fe){D(fe.instance,fe.module)}function Z(fe){return u0().then(function(we){return WebAssembly.instantiate(we,N)}).then(fe,function(we){q("failed to asynchronously prepare wasm: "+we),mr(we)})}function me(){return!te&&typeof WebAssembly.instantiateStreaming=="function"&&!wd(Rn)&&!kd(Rn)&&typeof fetch=="function"?fetch(Rn,{credentials:"same-origin"}).then(function(fe){var we=WebAssembly.instantiateStreaming(fe,N);return we.then(B,function(rt){return q("wasm streaming compile failed: "+rt),q("falling back to ArrayBuffer instantiation"),Z(B)})}):Z(B)}if(c.instantiateWasm)try{var pe=c.instantiateWasm(N,D);return pe}catch(fe){return q("Module.instantiateWasm callback failed with error: "+fe),!1}return me().catch(h),{}}var d0={9832:function(){throw"Canceled!"},9850:function(N,D){setTimeout(function(){Ky(N,D)},0)}};function Sd(){Se.initRuntime()}function ii(N){for(;N.length>0;){var D=N.shift();if(typeof D=="function"){D(c);continue}var B=D.func;typeof B=="number"?D.arg===void 0?rs.get(B)():rs.get(B)(D.arg):B(D.arg===void 0?null:D.arg)}}function xu(N,D){if(N<=0||N>a().length||N&!0||D<0)return-28;if(D==0)return 0;D>=2147483647&&(D=1/0);var B=Atomics.load(i(),pi>>2),Z=0;if(B==N){var me=Atomics.compareExchange(i(),pi>>2,B,0);if(me==B&&(--D,Z=1,D<=0))return 1}var pe=Atomics.notify(i(),N>>2,D);if(pe>=0)return pe+Z;throw"Atomics.notify returned an unexpected value "+pe}c._emscripten_futex_wake=xu;function h0(N){if(k)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in killThread!";i()[N+12>>2]=0;var D=Se.pthreads[N];D.worker.terminate(),Se.freeThreadData(D),Se.runningWorkers.splice(Se.runningWorkers.indexOf(D.worker),1),D.worker.pthread=void 0}function p0(N){if(k)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cancelThread!";var D=Se.pthreads[N];D.worker.postMessage({cmd:"cancel"})}function f0(N){if(k)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cleanupThread!";var D=Se.pthreads[N];if(D){i()[N+12>>2]=0;var B=D.worker;Se.returnWorkerToPool(B)}}var Se={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var N=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),D=0;D>2]=N;var B=N+152;i()[B>>2]=B;for(var Z=ba(512),D=0;D<128;++D)l()[Z/4+D]=0;Atomics.store(l(),N+100>>2,Z),Atomics.store(l(),N+40>>2,N),Cm(N,!x,1),Xy(N)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Se.threadExitHandlers.length>0;)Se.threadExitHandlers.pop()();k&&ci()&&qy()},runExitHandlersAndDeinitThread:function(N,D){Atomics.store(l(),N+56>>2,1),Atomics.store(l(),N+60>>2,0),Se.runExitHandlers(),Atomics.store(l(),N+4>>2,D),Atomics.store(l(),N+0>>2,1),xu(N+0,2147483647),Cm(0,0,0)},threadExit:function(N){var D=ci();D&&(Se.runExitHandlersAndDeinitThread(D,N),k&&postMessage({cmd:"exit"}))},threadCancel:function(){Se.runExitHandlersAndDeinitThread(ci(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var N in Se.pthreads){var D=Se.pthreads[N];D&&D.worker&&Se.returnWorkerToPool(D.worker)}Se.pthreads={};for(var B=0;B>2];i()[N.threadInfoStruct+100>>2]=0,Cu(D),Cu(N.threadInfoStruct)}N.threadInfoStruct=0,N.allocatedOwnStack&&N.stackBase&&Cu(N.stackBase),N.stackBase=0,N.worker&&(N.worker.pthread=null)}},returnWorkerToPool:function(N){Se.runWithoutMainThreadQueuedCalls(function(){delete Se.pthreads[N.pthread.threadInfoStruct],Se.unusedWorkers.push(N),Se.runningWorkers.splice(Se.runningWorkers.indexOf(N),1),Se.freeThreadData(N.pthread),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){i()[e5>>2]=0;try{N()}finally{i()[e5>>2]=1}},receiveObjectTransfer:function(N){},loadWasmModuleToWorker:function(N,D){N.onmessage=function(B){var Z=B.data,me=Z.cmd;if(N.pthread&&(Se.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),Z.targetThread&&Z.targetThread!=ci()){var pe=Se.pthreads[Z.targetThread];pe?pe.worker.postMessage(B.data,Z.transferList):console.error('Internal error! Worker sent a message "'+me+'" to target pthread '+Z.targetThread+", but that thread no longer exists!"),Se.currentProxiedOperationCallerThread=void 0;return}if(me==="processQueuedMainThreadWork")Im();else if(me==="spawnThread")_d(B.data);else if(me==="cleanupThread")f0(Z.thread);else if(me==="killThread")h0(Z.thread);else if(me==="cancelThread")p0(Z.thread);else if(me==="loaded")N.loaded=!0,D&&D(N),N.runPthread&&(N.runPthread(),delete N.runPthread);else if(me==="print")j("Thread "+Z.threadId+": "+Z.text);else if(me==="printErr")q("Thread "+Z.threadId+": "+Z.text);else if(me==="alert")alert("Thread "+Z.threadId+": "+Z.text);else if(me==="exit"){var fe=N.pthread&&Atomics.load(l(),N.pthread.threadInfoStruct+64>>2);fe&&Se.returnWorkerToPool(N)}else if(me==="exitProcess")try{NI(Z.returnCode)}catch(we){if(we instanceof Nu)return;throw we}else me==="cancelDone"?Se.returnWorkerToPool(N):me==="objectTransfer"?Se.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?N.postMessage(B.data):q("worker sent an unknown command "+me);Se.currentProxiedOperationCallerThread=void 0},N.onerror=function(B){q("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},b&&(N.on("message",function(B){N.onmessage({data:B})}),N.on("error",function(B){N.onerror(B)}),N.on("exit",function(B){})),N.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||s,wasmMemory:J,wasmModule:ie})},allocateUnusedWorker:function(){var N=C("tfjs-backend-wasm-threaded-simd.worker.js");Se.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return Se.unusedWorkers.length==0&&(Se.allocateUnusedWorker(),Se.loadWasmModuleToWorker(Se.unusedWorkers[0])),Se.unusedWorkers.length>0?Se.unusedWorkers.pop():null},busySpinWait:function(N){for(var D=performance.now()+N;performance.now()>2]=N,N}function v0(N,D){if(k)return Fr(1,1,N,D)}function w0(N,D){if(N==D)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var B=Se.pthreads[N],Z=B&&B.worker;if(!Z)return;Z.postMessage({cmd:"processThreadQueue"})}return 1}function k0(){mr()}function I0(N,D,B){var Z=E0(D,B);return d0[N].apply(null,Z)}function S0(N,D){}function C0(N,D,B){if(N<=0||N>a().length||N&!0)return-28;if(y){if(Atomics.load(i(),N>>2)!=D)return-6;for(var me=performance.now(),pe=me+B,fe=Atomics.exchange(i(),pi>>2,N);;){if(me=performance.now(),me>pe)return fe=Atomics.exchange(i(),pi>>2,0),-73;if(fe=Atomics.exchange(i(),pi>>2,0),fe==0)break;if(Im(),Atomics.load(i(),N>>2)!=D)return-6;fe=Atomics.exchange(i(),pi>>2,N)}return 0}else{var Z=Atomics.wait(i(),N>>2,D,B);if(Z==="timed-out")return-73;if(Z==="not-equal")return-6;if(Z==="ok")return 0;throw"Atomics.wait returned an unexpected value "+Z}}function T0(N,D,B){o().copyWithin(N,D,D+B)}function N0(){return b?gi("os").cpus().length:navigator.hardwareConcurrency}function Fr(N,D){for(var B=arguments.length-2,Z=Tu(),me=B,pe=hi(me*8),fe=pe>>3,we=0;we>=2;B=o()[N++];){var Z=B<105;Z&&D&1&&D++,vu.push(Z?u()[D++>>1]:i()[D]),++D}return vu}function R0(N,D,B){bu.length=D;for(var Z=B>>3,me=0;me>>16),sn(J.buffer),1}catch(D){}}function D0(N){var D=_0();if(N<=D)return!1;var B=2147483648;if(N>B)return!1;for(var Z=1;Z<=4;Z*=2){var me=D*(1+.2/Z);me=Math.min(me,N+100663296);var pe=Math.min(B,it(Math.max(N,me),65536)),fe=$0(pe);if(fe)return!0}return!1}var Le={inEventHandler:0,removeAllEventListeners:function(){for(var N=Le.eventHandlers.length-1;N>=0;--N)Le._removeHandler(N);Le.eventHandlers=[],Le.deferredCalls=[]},registerRemoveEventListeners:function(){Le.removeEventListenersRegistered||($r.push(Le.removeAllEventListeners),Le.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,D,B){function Z(fe,we){if(fe.length!=we.length)return!1;for(var rt in fe)if(fe[rt]!=we[rt])return!1;return!0}for(var me in Le.deferredCalls){var pe=Le.deferredCalls[me];if(pe.targetFunction==N&&Z(pe.argsList,B))return}Le.deferredCalls.push({targetFunction:N,precedence:D,argsList:B}),Le.deferredCalls.sort(function(fe,we){return fe.precedence>2]=B,i()[fe+4>>2]=Z,i()[fe+8>>2]=me,Sm(0,N,637534208,D,Z,fe),di(pe)},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return Se.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function F0(N){var D=st(N)+1,B=ba(D);return nt(N,B,D),B}function O0(N,D,B,Z){var me=Tu(),pe=hi(12),fe=0;D&&(fe=F0(D)),i()[pe>>2]=fe,i()[pe+4>>2]=B,i()[pe+8>>2]=Z,Sm(0,N,657457152,0,fe,pe),di(me)}function P0(N,D,B,Z){D=D?Fe(D):"",O0(N,D,B,Z)}function M0(N){return N>2?Fe(N):N}var z0=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function L0(N){N=M0(N);var D=z0[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return D}function wu(N){return L0(N)}function Cd(N,D,B){var Z=wu(N);if(!Z)return-4;if(Z.canvasSharedPtr&&(i()[Z.canvasSharedPtr>>2]=D,i()[Z.canvasSharedPtr+4>>2]=B),Z.offscreenCanvas||!Z.controlTransferredOffscreen){Z.offscreenCanvas&&(Z=Z.offscreenCanvas);var me=!1;if(Z.GLctxObject&&Z.GLctxObject.GLctx){var pe=Z.GLctxObject.GLctx.getParameter(2978);me=pe[0]===0&&pe[1]===0&&pe[2]===Z.width&&pe[3]===Z.height}Z.width=D,Z.height=B,me&&Z.GLctxObject.GLctx.viewport(0,0,D,B)}else if(Z.canvasSharedPtr){var fe=i()[Z.canvasSharedPtr+8>>2];return P0(fe,N,D,B),1}else return-4;return 0}function Td(N,D,B){return k?Fr(2,1,N,D,B):Cd(N,D,B)}function B0(N,D,B){var Z=wu(N);return Z?Cd(N,D,B):Td(N,D,B)}function W0(N){}function V0(N,D){}function U0(N){var D=N.getExtension("ANGLE_instanced_arrays");if(D)return N.vertexAttribDivisor=function(B,Z){D.vertexAttribDivisorANGLE(B,Z)},N.drawArraysInstanced=function(B,Z,me,pe){D.drawArraysInstancedANGLE(B,Z,me,pe)},N.drawElementsInstanced=function(B,Z,me,pe,fe){D.drawElementsInstancedANGLE(B,Z,me,pe,fe)},1}function H0(N){var D=N.getExtension("OES_vertex_array_object");if(D)return N.createVertexArray=function(){return D.createVertexArrayOES()},N.deleteVertexArray=function(B){D.deleteVertexArrayOES(B)},N.bindVertexArray=function(B){D.bindVertexArrayOES(B)},N.isVertexArray=function(B){return D.isVertexArrayOES(B)},1}function G0(N){var D=N.getExtension("WEBGL_draw_buffers");if(D)return N.drawBuffers=function(B,Z){D.drawBuffersWEBGL(B,Z)},1}function j0(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var tt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(D){tt.lastError||(tt.lastError=D)},getNewId:function(N){for(var D=tt.counter++,B=N.length;B>2]:-1;me+=Fe(i()[B+pe*4>>2],fe<0?void 0:fe)}return me},createContext:function(N,D){var B=N.getContext("webgl",D);if(!B)return 0;var Z=tt.registerContext(B,D);return Z},registerContext:function(N,D){var B=ba(8);i()[B+4>>2]=ci();var Z={handle:B,attributes:D,version:D.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=Z),tt.contexts[B]=Z,(typeof D.enableExtensionsByDefault=="undefined"||D.enableExtensionsByDefault)&&tt.initExtensions(Z),B},makeContextCurrent:function(N){return tt.currentContext=tt.contexts[N],c.ctx=Or=tt.currentContext&&tt.currentContext.GLctx,!(N&&!Or)},getContext:function(N){return tt.contexts[N]},deleteContext:function(N){tt.currentContext===tt.contexts[N]&&(tt.currentContext=null),typeof Le=="object"&&Le.removeAllHandlersOnTarget(tt.contexts[N].GLctx.canvas),tt.contexts[N]&&tt.contexts[N].GLctx.canvas&&(tt.contexts[N].GLctx.canvas.GLctxObject=void 0),Cu(tt.contexts[N].handle),tt.contexts[N]=null},initExtensions:function(N){if(N||(N=tt.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var D=N.GLctx;U0(D),H0(D),G0(D),D.disjointTimerQueryExt=D.getExtension("EXT_disjoint_timer_query"),j0(D);var B=D.getSupportedExtensions()||[];B.forEach(function(Z){Z.indexOf("lose_context")<0&&Z.indexOf("debug")<0&&D.getExtension(Z)})}},populateUniformTable:function(N){for(var D=tt.programs[N],B=tt.programInfos[N]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},Z=B.uniforms,me=Or.getProgramParameter(D,35718),pe=0;pe>2,Z=i()[B+(24>>2)],me={alpha:!!i()[B+(0>>2)],depth:!!i()[B+(4>>2)],stencil:!!i()[B+(8>>2)],antialias:!!i()[B+(12>>2)],premultipliedAlpha:!!i()[B+(16>>2)],preserveDrawingBuffer:!!i()[B+(20>>2)],powerPreference:q0[Z],failIfMajorPerformanceCaveat:!!i()[B+(28>>2)],majorVersion:i()[B+(32>>2)],minorVersion:i()[B+(36>>2)],enableExtensionsByDefault:i()[B+(40>>2)],explicitSwapControl:i()[B+(44>>2)],proxyContextToMainThread:i()[B+(48>>2)],renderViaOffscreenBackBuffer:i()[B+(52>>2)]},pe=wu(N);if(!pe||me.explicitSwapControl)return 0;var fe=tt.createContext(pe,me);return fe}function K0(N,D){return X0(N,D)}var li={mappings:{},buffers:[null,[],[]],printChar:function(N,D){var B=li.buffers[N];D===0||D===10?((N===1?j:q)(Me(B,0)),B.length=0):B.push(D)},varargs:void 0,get:function(){li.varargs+=4;var N=i()[li.varargs-4>>2];return N},getStr:function(N){var D=Fe(N);return D},get64:function(N,D){return N}};function Nd(N){return k?Fr(3,1,N):0}function Ed(N,D,B,Z,me){if(k)return Fr(4,1,N,D,B,Z,me)}function Rd(N,D,B,Z){if(k)return Fr(5,1,N,D,B,Z);for(var me=0,pe=0;pe>2],we=i()[D+(pe*8+4)>>2],rt=0;rt>2]=me,0}function Z0(N){var D=Se.threadExitHandlers.pop();N&&D()}function Y0(N,D){Se.threadExitHandlers.push(function(){rs.get(N)(D)})}function _d(N){if(k)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var D=Se.getNewWorker();if(D.pthread!==void 0)throw"Internal error!";if(!N.pthread_ptr)throw"Internal error, no pthread ptr!";Se.runningWorkers.push(D);for(var B=ba(128*4),Z=0;Z<128;++Z)i()[B+Z*4>>2]=0;var me=N.stackBase+N.stackSize,pe=Se.pthreads[N.pthread_ptr]={worker:D,stackBase:N.stackBase,stackSize:N.stackSize,allocatedOwnStack:N.allocatedOwnStack,threadInfoStruct:N.pthread_ptr},fe=pe.threadInfoStruct>>2;Atomics.store(l(),fe+(64>>2),N.detached),Atomics.store(l(),fe+(100>>2),B),Atomics.store(l(),fe+(40>>2),pe.threadInfoStruct),Atomics.store(l(),fe+(80>>2),N.stackSize),Atomics.store(l(),fe+(76>>2),me),Atomics.store(l(),fe+(104>>2),N.stackSize),Atomics.store(l(),fe+(104+8>>2),me),Atomics.store(l(),fe+(104+12>>2),N.detached);var we=jy(),rt=we+40;Atomics.store(l(),fe+(172>>2),rt),D.pthread=pe;var Kt={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr,stackBase:N.stackBase,stackSize:N.stackSize};D.runPthread=function(){Kt.time=performance.now(),D.postMessage(Kt,N.transferList)},D.loaded&&(D.runPthread(),delete D.runPthread)}function J0(N,D,B,Z){if(typeof SharedArrayBuffer=="undefined")return q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!N)return q("pthread_create called with a null thread pointer!"),28;var me=[],pe=0;if(k&&(me.length===0||pe))return Zy(687865856,N,D,B,Z);if(pe)return pe;var fe=0,we=0,rt=0;D&&D!=-1?(fe=i()[D>>2],fe+=81920,we=i()[D+8>>2],rt=i()[D+12>>2]!==0):fe=2097152;var Kt=we==0;Kt?we=Qy(16,fe):(we-=fe,Ae(we>0));for(var Vt=ba(228),Mr=0;Mr<228>>2;++Mr)l()[(Vt>>2)+Mr]=0;i()[N>>2]=Vt,i()[Vt+12>>2]=Vt;var fi=Vt+152;i()[fi>>2]=fi;var fn={stackBase:we,stackSize:fe,allocatedOwnStack:Kt,detached:rt,startRoutine:B,pthread_ptr:Vt,arg:Z,transferList:me};return k?(fn.cmd="spawnThread",postMessage(fn,me)):_d(fn),0}function $d(N){if(k)return Fr(6,1,N);switch(N){case 30:return 16384;case 85:var D=2147483648;return D/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return b0(28),-1}k||Se.initMainThreadBlock();var Or,Q0=[null,v0,Td,Nd,Ed,Rd,$d],em={e:y0,r:x0,x:w0,b:k0,y:I0,j:S0,c:C0,d:xu,f:xa,p:T0,z:N0,u:R0,q:D0,v:B0,i:W0,t:V0,w:K0,m:Nd,n:Ed,g:Rd,o:Sd,a:J||c.wasmMemory,k:Z0,l:Y0,h:J0,s:$d},Hy=c0(),Dd=c.___wasm_call_ctors=function(){return(Dd=c.___wasm_call_ctors=c.asm.A).apply(null,arguments)},tm=c._init=function(){return(tm=c._init=c.asm.B).apply(null,arguments)},nm=c._register_tensor=function(){return(nm=c._register_tensor=c.asm.C).apply(null,arguments)},sm=c._dispose_data=function(){return(sm=c._dispose_data=c.asm.D).apply(null,arguments)},rm=c._dispose=function(){return(rm=c._dispose=c.asm.E).apply(null,arguments)},am=c._Abs=function(){return(am=c._Abs=c.asm.G).apply(null,arguments)},om=c._Add=function(){return(om=c._Add=c.asm.H).apply(null,arguments)},im=c._AddN=function(){return(im=c._AddN=c.asm.I).apply(null,arguments)},lm=c._All=function(){return(lm=c._All=c.asm.J).apply(null,arguments)},um=c._Any=function(){return(um=c._Any=c.asm.K).apply(null,arguments)},cm=c._ArgMax=function(){return(cm=c._ArgMax=c.asm.L).apply(null,arguments)},dm=c._AvgPool=function(){return(dm=c._AvgPool=c.asm.M).apply(null,arguments)},hm=c._BatchMatMul=function(){return(hm=c._BatchMatMul=c.asm.N).apply(null,arguments)},pm=c._Ceil=function(){return(pm=c._Ceil=c.asm.O).apply(null,arguments)},fm=c._ClipByValue=function(){return(fm=c._ClipByValue=c.asm.P).apply(null,arguments)},mm=c._Conv2D=function(){return(mm=c._Conv2D=c.asm.Q).apply(null,arguments)},gm=c._Conv2DBackpropInput=function(){return(gm=c._Conv2DBackpropInput=c.asm.R).apply(null,arguments)},Am=c._Cos=function(){return(Am=c._Cos=c.asm.S).apply(null,arguments)},ym=c._Cosh=function(){return(ym=c._Cosh=c.asm.T).apply(null,arguments)},xm=c._CropAndResize=function(){return(xm=c._CropAndResize=c.asm.U).apply(null,arguments)},bm=c._Cumsum=function(){return(bm=c._Cumsum=c.asm.V).apply(null,arguments)},vm=c._DepthToSpace=function(){return(vm=c._DepthToSpace=c.asm.W).apply(null,arguments)},wm=c._DepthwiseConv2dNative=function(){return(wm=c._DepthwiseConv2dNative=c.asm.X).apply(null,arguments)},Fd=c._Equal=function(){return(Fd=c._Equal=c.asm.Y).apply(null,arguments)},Od=c._Exp=function(){return(Od=c._Exp=c.asm.Z).apply(null,arguments)},Pd=c._FlipLeftRight=function(){return(Pd=c._FlipLeftRight=c.asm._).apply(null,arguments)},ku=c._Floor=function(){return(ku=c._Floor=c.asm.$).apply(null,arguments)},ui=c._FloorDiv=function(){return(ui=c._FloorDiv=c.asm.aa).apply(null,arguments)},km=c._FusedBatchNorm=function(){return(km=c._FusedBatchNorm=c.asm.ba).apply(null,arguments)},Iu=c._FusedConv2D=function(){return(Iu=c._FusedConv2D=c.asm.ca).apply(null,arguments)},Y=c._FusedDepthwiseConv2D=function(){return(Y=c._FusedDepthwiseConv2D=c.asm.da).apply(null,arguments)},re=c._Gather=function(){return(re=c._Gather=c.asm.ea).apply(null,arguments)},xe=c._GatherNd=function(){return(xe=c._GatherNd=c.asm.fa).apply(null,arguments)},Qe=c._Greater=function(){return(Qe=c._Greater=c.asm.ga).apply(null,arguments)},Et=c._GreaterEqual=function(){return(Et=c._GreaterEqual=c.asm.ha).apply(null,arguments)},bt=c._LeakyRelu=function(){return(bt=c._LeakyRelu=c.asm.ia).apply(null,arguments)},je=c._Less=function(){return(je=c._Less=c.asm.ja).apply(null,arguments)},qe=c._LessEqual=function(){return(qe=c._LessEqual=c.asm.ka).apply(null,arguments)},rn=c._Log=function(){return(rn=c._Log=c.asm.la).apply(null,arguments)},gr=c._LogicalAnd=function(){return(gr=c._LogicalAnd=c.asm.ma).apply(null,arguments)},Ar=c._Max=function(){return(Ar=c._Max=c.asm.na).apply(null,arguments)},Md=c._MaxPool=function(){return(Md=c._MaxPool=c.asm.oa).apply(null,arguments)},Su=c._Maximum=function(){return(Su=c._Maximum=c.asm.pa).apply(null,arguments)},Un=c._Mean=function(){return(Un=c._Mean=c.asm.qa).apply(null,arguments)},Pr=c._Min=function(){return(Pr=c._Min=c.asm.ra).apply(null,arguments)},zd=c._Minimum=function(){return(zd=c._Minimum=c.asm.sa).apply(null,arguments)},W8=c._MirrorPad=function(){return(W8=c._MirrorPad=c.asm.ta).apply(null,arguments)},V8=c._Multiply=function(){return(V8=c._Multiply=c.asm.ua).apply(null,arguments)},U8=c._Neg=function(){return(U8=c._Neg=c.asm.va).apply(null,arguments)},H8=c._NonMaxSuppressionV3=function(){return(H8=c._NonMaxSuppressionV3=c.asm.wa).apply(null,arguments)},G8=c._NonMaxSuppressionV4=function(){return(G8=c._NonMaxSuppressionV4=c.asm.xa).apply(null,arguments)},j8=c._NonMaxSuppressionV5=function(){return(j8=c._NonMaxSuppressionV5=c.asm.ya).apply(null,arguments)},q8=c._NotEqual=function(){return(q8=c._NotEqual=c.asm.za).apply(null,arguments)},X8=c._OneHot=function(){return(X8=c._OneHot=c.asm.Aa).apply(null,arguments)},K8=c._PadV2=function(){return(K8=c._PadV2=c.asm.Ba).apply(null,arguments)},Z8=c._Pow=function(){return(Z8=c._Pow=c.asm.Ca).apply(null,arguments)},Y8=c._Prelu=function(){return(Y8=c._Prelu=c.asm.Da).apply(null,arguments)},J8=c._Prod=function(){return(J8=c._Prod=c.asm.Ea).apply(null,arguments)},Q8=c._RealDiv=function(){return(Q8=c._RealDiv=c.asm.Fa).apply(null,arguments)},eI=c._Relu=function(){return(eI=c._Relu=c.asm.Ga).apply(null,arguments)},tI=c._Relu6=function(){return(tI=c._Relu6=c.asm.Ha).apply(null,arguments)},nI=c._ResizeBilinear=function(){return(nI=c._ResizeBilinear=c.asm.Ia).apply(null,arguments)},sI=c._Reverse=function(){return(sI=c._Reverse=c.asm.Ja).apply(null,arguments)},rI=c._RotateWithOffset=function(){return(rI=c._RotateWithOffset=c.asm.Ka).apply(null,arguments)},aI=c._Round=function(){return(aI=c._Round=c.asm.La).apply(null,arguments)},oI=c._Rsqrt=function(){return(oI=c._Rsqrt=c.asm.Ma).apply(null,arguments)},iI=c._ScatterNd=function(){return(iI=c._ScatterNd=c.asm.Na).apply(null,arguments)},lI=c._SelectV2=function(){return(lI=c._SelectV2=c.asm.Oa).apply(null,arguments)},uI=c._Sigmoid=function(){return(uI=c._Sigmoid=c.asm.Pa).apply(null,arguments)},cI=c._Sin=function(){return(cI=c._Sin=c.asm.Qa).apply(null,arguments)},dI=c._Softmax=function(){return(dI=c._Softmax=c.asm.Ra).apply(null,arguments)},hI=c._Sqrt=function(){return(hI=c._Sqrt=c.asm.Sa).apply(null,arguments)},pI=c._Square=function(){return(pI=c._Square=c.asm.Ta).apply(null,arguments)},fI=c._SquaredDifference=function(){return(fI=c._SquaredDifference=c.asm.Ua).apply(null,arguments)},mI=c._Step=function(){return(mI=c._Step=c.asm.Va).apply(null,arguments)},gI=c._StridedSlice=function(){return(gI=c._StridedSlice=c.asm.Wa).apply(null,arguments)},AI=c._Sub=function(){return(AI=c._Sub=c.asm.Xa).apply(null,arguments)},yI=c._Sum=function(){return(yI=c._Sum=c.asm.Ya).apply(null,arguments)},xI=c._Tan=function(){return(xI=c._Tan=c.asm.Za).apply(null,arguments)},bI=c._Tanh=function(){return(bI=c._Tanh=c.asm._a).apply(null,arguments)},vI=c._Tile=function(){return(vI=c._Tile=c.asm.$a).apply(null,arguments)},wI=c._TopK=function(){return(wI=c._TopK=c.asm.ab).apply(null,arguments)},kI=c._Transform=function(){return(kI=c._Transform=c.asm.bb).apply(null,arguments)},II=c._Transpose=function(){return(II=c._Transpose=c.asm.cb).apply(null,arguments)},SI=c.__FusedMatMul=function(){return(SI=c.__FusedMatMul=c.asm.db).apply(null,arguments)},ba=c._malloc=function(){return(ba=c._malloc=c.asm.eb).apply(null,arguments)},Cu=c._free=function(){return(Cu=c._free=c.asm.fb).apply(null,arguments)},Gy=c.___errno_location=function(){return(Gy=c.___errno_location=c.asm.gb).apply(null,arguments)},jy=c._emscripten_get_global_libc=function(){return(jy=c._emscripten_get_global_libc=c.asm.hb).apply(null,arguments)},ci=c._pthread_self=function(){return(ci=c._pthread_self=c.asm.ib).apply(null,arguments)},qy=c.___pthread_tsd_run_dtors=function(){return(qy=c.___pthread_tsd_run_dtors=c.asm.jb).apply(null,arguments)},Im=c._emscripten_main_thread_process_queued_calls=function(){return(Im=c._emscripten_main_thread_process_queued_calls=c.asm.kb).apply(null,arguments)},CI=c._emscripten_current_thread_process_queued_calls=function(){return(CI=c._emscripten_current_thread_process_queued_calls=c.asm.lb).apply(null,arguments)},Xy=c._emscripten_register_main_browser_thread_id=function(){return(Xy=c._emscripten_register_main_browser_thread_id=c.asm.mb).apply(null,arguments)},Ky=c.__emscripten_do_dispatch_to_thread=function(){return(Ky=c.__emscripten_do_dispatch_to_thread=c.asm.nb).apply(null,arguments)},Zy=c._emscripten_sync_run_in_main_thread_4=function(){return(Zy=c._emscripten_sync_run_in_main_thread_4=c.asm.ob).apply(null,arguments)},Yy=c._emscripten_run_in_main_runtime_thread_js=function(){return(Yy=c._emscripten_run_in_main_runtime_thread_js=c.asm.pb).apply(null,arguments)},Sm=c.__emscripten_call_on_thread=function(){return(Sm=c.__emscripten_call_on_thread=c.asm.qb).apply(null,arguments)},TI=c._emscripten_tls_init=function(){return(TI=c._emscripten_tls_init=c.asm.rb).apply(null,arguments)},Cm=c.__emscripten_thread_init=function(){return(Cm=c.__emscripten_thread_init=c.asm.sb).apply(null,arguments)},Tu=c.stackSave=function(){return(Tu=c.stackSave=c.asm.tb).apply(null,arguments)},di=c.stackRestore=function(){return(di=c.stackRestore=c.asm.ub).apply(null,arguments)},hi=c.stackAlloc=function(){return(hi=c.stackAlloc=c.asm.vb).apply(null,arguments)},Jy=c._emscripten_stack_set_limits=function(){return(Jy=c._emscripten_stack_set_limits=c.asm.wb).apply(null,arguments)},Qy=c._memalign=function(){return(Qy=c._memalign=c.asm.xb).apply(null,arguments)},e5=c.__emscripten_allow_main_runtime_queued_calls=9824,pi=c.__emscripten_main_thread_futex=11448;c.cwrap=$e,c.PThread=Se,c.PThread=Se,c.wasmMemory=J,c.ExitStatus=Nu;var Ld;function Nu(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}ya=function N(){Ld||Tm(),Ld||(ya=N)};function Tm(N){if(N=N||m,fr>0)return;if(k){d(c),yu(),postMessage({cmd:"loaded"});return}if(s0(),fr>0)return;function D(){Ld||(Ld=!0,c.calledRun=!0,!le&&(yu(),r0(),d(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),En()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),D()},1)):D()}c.run=Tm;function NI(N,D){if(!(D&&se&&N===0)){if(!D&&k)throw postMessage({cmd:"exitProcess",returnCode:N}),new Nu(N);se||(Se.terminateAllThreads(),he=N,xd(),c.onExit&&c.onExit(N),le=!0),A(N,new Nu(N))}}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();return k&&(se=!1,Se.initWorker()),Tm(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),nS=vt({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(Y,re){o=Y,i=re});var l={},u;for(u in a)a.hasOwnProperty(u)&&(l[u]=a[u]);var c=[],d="./this.program",h=function(Y,re){throw re},p=!1,f=!1,m=!1,g=!1;p=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!p&&!m&&!f;var A="";function y(Y){return a.locateFile?a.locateFile(Y,A):A+Y}var x,b,v,k,w,C;m?(f?A=Eu().dirname(A)+"/":A=__dirname+"/",x=function(re,xe){return w||(w=gi("fs")),C||(C=Eu()),re=C.normalize(re),w.readFileSync(re,xe?null:"utf8")},v=function(re){var xe=x(re,!0);return xe.buffer||(xe=new Uint8Array(xe)),j(xe.buffer),xe},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(Y){if(!(Y instanceof km))throw Y}),process.on("unhandledRejection",Ks),h=function(Y){process.exit(Y)},a.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(x=function(re){return read(re)}),v=function(re){var xe;return typeof readbuffer=="function"?new Uint8Array(readbuffer(re)):(xe=read(re,"binary"),j(typeof xe=="object"),xe)},typeof scriptArgs!="undefined"?c=scriptArgs:typeof arguments!="undefined"&&(c=arguments),typeof quit=="function"&&(h=function(Y){quit(Y)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(p||f)&&(f?A=self.location.href:typeof document!="undefined"&&document.currentScript&&(A=document.currentScript.src),s&&(A=s),A.indexOf("blob:")!==0?A=A.substr(0,A.lastIndexOf("/")+1):A="",x=function(Y){var re=new XMLHttpRequest;return re.open("GET",Y,!1),re.send(null),re.responseText},f&&(v=function(Y){var re=new XMLHttpRequest;return re.open("GET",Y,!1),re.responseType="arraybuffer",re.send(null),new Uint8Array(re.response)}),b=function(Y,re,xe){var Qe=new XMLHttpRequest;Qe.open("GET",Y,!0),Qe.responseType="arraybuffer",Qe.onload=function(){if(Qe.status==200||Qe.status==0&&Qe.response){re(Qe.response);return}xe()},Qe.onerror=xe,Qe.send(null)},k=function(Y){document.title=Y});var R=a.print||console.log.bind(console),P=a.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(a[u]=l[u]);l=null,a.arguments&&(c=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(h=a.quit);var E;a.wasmBinary&&(E=a.wasmBinary);var _=a.noExitRuntime||!0;typeof WebAssembly!="object"&&Ks("no native wasm support detected");var T,O=!1,W;function j(Y,re){Y||Ks("Assertion failed: "+re)}function q(Y){var re=a["_"+Y];return j(re,"Cannot call unknown function "+Y+", make sure it is exported"),re}function X(Y,re,xe,Qe,Et){var bt={string:function(Un){var Pr=0;if(Un!=null&&Un!==0){var zd=(Un.length<<2)+1;Pr=ku(zd),ie(Un,Pr,zd)}return Pr},array:function(Un){var Pr=ku(Un.length);return le(Un,Pr),Pr}};function je(Un){return re==="string"?se(Un):re==="boolean"?Boolean(Un):Un}var qe=q(Y),rn=[],gr=0;if(Qe)for(var Ar=0;Ar=Qe);)++Et;if(Et-re>16&&Y.subarray&&ne)return ne.decode(Y.subarray(re,Et));for(var bt="";re>10,56320|gr&1023)}}return bt}function se(Y,re){return Y?te(Te,Y,re):""}function J(Y,re,xe,Qe){if(!(Qe>0))return 0;for(var Et=xe,bt=xe+Qe-1,je=0;je=55296&&qe<=57343){var rn=Y.charCodeAt(++je);qe=65536+((qe&1023)<<10)|rn&1023}if(qe<=127){if(xe>=bt)break;re[xe++]=qe}else if(qe<=2047){if(xe+1>=bt)break;re[xe++]=192|qe>>6,re[xe++]=128|qe&63}else if(qe<=65535){if(xe+2>=bt)break;re[xe++]=224|qe>>12,re[xe++]=128|qe>>6&63,re[xe++]=128|qe&63}else{if(xe+3>=bt)break;re[xe++]=240|qe>>18,re[xe++]=128|qe>>12&63,re[xe++]=128|qe>>6&63,re[xe++]=128|qe&63}}return re[xe]=0,xe-Et}function ie(Y,re,xe){return J(Y,Te,re,xe)}function le(Y,re){Ce.set(Y,re)}function he(Y,re){return Y%re>0&&(Y+=re-Y%re),Y}var Ae,Ce,Te,$e,Me,Fe,ut,nt,st;function et(Y){Ae=Y,a.HEAP8=Ce=new Int8Array(Y),a.HEAP16=$e=new Int16Array(Y),a.HEAP32=Fe=new Int32Array(Y),a.HEAPU8=Te=new Uint8Array(Y),a.HEAPU16=Me=new Uint16Array(Y),a.HEAPU32=ut=new Uint32Array(Y),a.HEAPF32=nt=new Float32Array(Y),a.HEAPF64=st=new Float64Array(Y)}var it=a.INITIAL_MEMORY||16777216,He,Nn=[],St=[],Wn=[],nn=[],ws=!1;St.push({func:function(){Sd()}});function pn(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)ss(a.preRun.shift());Dr(Nn)}function ts(){ws=!0,Dr(St)}function ns(){Dr(Wn)}function sn(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)rs(a.postRun.shift());Dr(nn)}function ss(Y){Nn.unshift(Y)}function rs(Y){nn.unshift(Y)}var Vn=0,Xs=null,pr=null;function $r(Y){Vn++,a.monitorRunDependencies&&a.monitorRunDependencies(Vn)}function ai(Y){if(Vn--,a.monitorRunDependencies&&a.monitorRunDependencies(Vn),Vn==0&&(Xs!==null&&(clearInterval(Xs),Xs=null),pr)){var re=pr;pr=null,re()}}a.preloadedImages={},a.preloadedAudios={};function Ks(Y){a.onAbort&&a.onAbort(Y),Y+="",P(Y),O=!0,W=1,Y="abort("+Y+"). Build with -s ASSERTIONS=1 for more info.";var re=new WebAssembly.RuntimeError(Y);throw i(re),re}function yd(Y,re){return String.prototype.startsWith?Y.startsWith(re):Y.indexOf(re)===0}var s0="data:application/octet-stream;base64,";function yu(Y){return yd(Y,s0)}var r0="file://";function xd(Y){return yd(Y,r0)}var En="tfjs-backend-wasm.wasm";yu(En)||(En=y(En));function bd(Y){try{if(Y==En&&E)return new Uint8Array(E);if(v)return v(Y);throw"both async and sync fetching of the wasm failed"}catch(re){Ks(re)}}function a0(){if(!E&&(p||f)){if(typeof fetch=="function"&&!xd(En))return fetch(En,{credentials:"same-origin"}).then(function(Y){if(!Y.ok)throw"failed to load wasm binary file at '"+En+"'";return Y.arrayBuffer()}).catch(function(){return bd(En)});if(b)return new Promise(function(Y,re){b(En,function(xe){Y(new Uint8Array(xe))},re)})}return Promise.resolve().then(function(){return bd(En)})}function fr(){var Y={a:c0};function re(je,qe){var rn=je.exports;a.asm=rn,T=a.asm.i,et(T.buffer),He=a.asm.o,ai("wasm-instantiate")}$r("wasm-instantiate");function xe(je){re(je.instance)}function Qe(je){return a0().then(function(qe){return WebAssembly.instantiate(qe,Y)}).then(je,function(qe){P("failed to asynchronously prepare wasm: "+qe),Ks(qe)})}function Et(){return!E&&typeof WebAssembly.instantiateStreaming=="function"&&!yu(En)&&!xd(En)&&typeof fetch=="function"?fetch(En,{credentials:"same-origin"}).then(function(je){var qe=WebAssembly.instantiateStreaming(je,Y);return qe.then(xe,function(rn){return P("wasm streaming compile failed: "+rn),P("falling back to ArrayBuffer instantiation"),Qe(xe)})}):Qe(xe)}if(a.instantiateWasm)try{var bt=a.instantiateWasm(Y,re);return bt}catch(je){return P("Module.instantiateWasm callback failed with error: "+je),!1}return Et().catch(i),{}}function Dr(Y){for(;Y.length>0;){var re=Y.shift();if(typeof re=="function"){re(a);continue}var xe=re.func;typeof xe=="number"?re.arg===void 0?He.get(xe)():He.get(xe)(re.arg):xe(re.arg===void 0?null:re.arg)}}function ya(){Ks()}function o0(Y,re,xe){Te.copyWithin(Y,re,re+xe)}function i0(){return Te.length}function mr(Y){try{return T.grow(Y-Ae.byteLength+65535>>>16),et(T.buffer),1}catch(re){}}function vd(Y){var re=i0(),xe=2147483648;if(Y>xe)return!1;for(var Qe=1;Qe<=4;Qe*=2){var Et=re*(1+.2/Qe);Et=Math.min(Et,Y+100663296);var bt=Math.min(xe,he(Math.max(Y,Et),65536)),je=mr(bt);if(je)return!0}return!1}var oi={mappings:{},buffers:[null,[],[]],printChar:function(Y,re){var xe=oi.buffers[Y];re===0||re===10?((Y===1?R:P)(te(xe,0)),xe.length=0):xe.push(re)},varargs:void 0,get:function(){oi.varargs+=4;var Y=Fe[oi.varargs-4>>2];return Y},getStr:function(Y){var re=se(Y);return re},get64:function(Y,re){return Y}};function wd(Y){return 0}function l0(Y,re,xe,Qe,Et){}function kd(Y,re,xe,Qe){for(var Et=0,bt=0;bt>2],qe=Fe[re+(bt*8+4)>>2],rn=0;rn>2]=Et,0}function Rn(){return 6}function Id(Y){return Fe[Fd()>>2]=Y,Y}function u0(Y){switch(Y){case 30:return 16384;case 85:var re=2147483648;return re/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Id(28),-1}var c0={a:ya,d:o0,e:vd,f:wd,c:l0,b:kd,g:Rn,h:u0},d0=fr(),Sd=a.___wasm_call_ctors=function(){return(Sd=a.___wasm_call_ctors=a.asm.j).apply(null,arguments)},ii=a._init=function(){return(ii=a._init=a.asm.k).apply(null,arguments)},xu=a._register_tensor=function(){return(xu=a._register_tensor=a.asm.l).apply(null,arguments)},h0=a._dispose_data=function(){return(h0=a._dispose_data=a.asm.m).apply(null,arguments)},p0=a._dispose=function(){return(p0=a._dispose=a.asm.n).apply(null,arguments)},f0=a._Abs=function(){return(f0=a._Abs=a.asm.p).apply(null,arguments)},Se=a._Add=function(){return(Se=a._Add=a.asm.q).apply(null,arguments)},m0=a._AddN=function(){return(m0=a._AddN=a.asm.r).apply(null,arguments)},g0=a._All=function(){return(g0=a._All=a.asm.s).apply(null,arguments)},A0=a._Any=function(){return(A0=a._Any=a.asm.t).apply(null,arguments)},y0=a._ArgMax=function(){return(y0=a._ArgMax=a.asm.u).apply(null,arguments)},x0=a._AvgPool=function(){return(x0=a._AvgPool=a.asm.v).apply(null,arguments)},xa=a._BatchMatMul=function(){return(xa=a._BatchMatMul=a.asm.w).apply(null,arguments)},b0=a._Ceil=function(){return(b0=a._Ceil=a.asm.x).apply(null,arguments)},v0=a._ClipByValue=function(){return(v0=a._ClipByValue=a.asm.y).apply(null,arguments)},w0=a._Conv2D=function(){return(w0=a._Conv2D=a.asm.z).apply(null,arguments)},k0=a._Conv2DBackpropInput=function(){return(k0=a._Conv2DBackpropInput=a.asm.A).apply(null,arguments)},I0=a._Cos=function(){return(I0=a._Cos=a.asm.B).apply(null,arguments)},S0=a._Cosh=function(){return(S0=a._Cosh=a.asm.C).apply(null,arguments)},C0=a._CropAndResize=function(){return(C0=a._CropAndResize=a.asm.D).apply(null,arguments)},T0=a._Cumsum=function(){return(T0=a._Cumsum=a.asm.E).apply(null,arguments)},N0=a._DepthToSpace=function(){return(N0=a._DepthToSpace=a.asm.F).apply(null,arguments)},Fr=a._DepthwiseConv2dNative=function(){return(Fr=a._DepthwiseConv2dNative=a.asm.G).apply(null,arguments)},bu=a._Equal=function(){return(bu=a._Equal=a.asm.H).apply(null,arguments)},vu=a._Exp=function(){return(vu=a._Exp=a.asm.I).apply(null,arguments)},E0=a._FlipLeftRight=function(){return(E0=a._FlipLeftRight=a.asm.J).apply(null,arguments)},R0=a._Floor=function(){return(R0=a._Floor=a.asm.K).apply(null,arguments)},_0=a._FloorDiv=function(){return(_0=a._FloorDiv=a.asm.L).apply(null,arguments)},$0=a._FusedBatchNorm=function(){return($0=a._FusedBatchNorm=a.asm.M).apply(null,arguments)},D0=a._FusedConv2D=function(){return(D0=a._FusedConv2D=a.asm.N).apply(null,arguments)},Le=a._FusedDepthwiseConv2D=function(){return(Le=a._FusedDepthwiseConv2D=a.asm.O).apply(null,arguments)},F0=a._Gather=function(){return(F0=a._Gather=a.asm.P).apply(null,arguments)},O0=a._GatherNd=function(){return(O0=a._GatherNd=a.asm.Q).apply(null,arguments)},P0=a._Greater=function(){return(P0=a._Greater=a.asm.R).apply(null,arguments)},M0=a._GreaterEqual=function(){return(M0=a._GreaterEqual=a.asm.S).apply(null,arguments)},z0=a._LeakyRelu=function(){return(z0=a._LeakyRelu=a.asm.T).apply(null,arguments)},L0=a._Less=function(){return(L0=a._Less=a.asm.U).apply(null,arguments)},wu=a._LessEqual=function(){return(wu=a._LessEqual=a.asm.V).apply(null,arguments)},Cd=a._Log=function(){return(Cd=a._Log=a.asm.W).apply(null,arguments)},Td=a._LogicalAnd=function(){return(Td=a._LogicalAnd=a.asm.X).apply(null,arguments)},B0=a._Max=function(){return(B0=a._Max=a.asm.Y).apply(null,arguments)},W0=a._MaxPool=function(){return(W0=a._MaxPool=a.asm.Z).apply(null,arguments)},V0=a._Maximum=function(){return(V0=a._Maximum=a.asm._).apply(null,arguments)},U0=a._Mean=function(){return(U0=a._Mean=a.asm.$).apply(null,arguments)},H0=a._Min=function(){return(H0=a._Min=a.asm.aa).apply(null,arguments)},G0=a._Minimum=function(){return(G0=a._Minimum=a.asm.ba).apply(null,arguments)},j0=a._MirrorPad=function(){return(j0=a._MirrorPad=a.asm.ca).apply(null,arguments)},tt=a._Multiply=function(){return(tt=a._Multiply=a.asm.da).apply(null,arguments)},q0=a._Neg=function(){return(q0=a._Neg=a.asm.ea).apply(null,arguments)},X0=a._NonMaxSuppressionV3=function(){return(X0=a._NonMaxSuppressionV3=a.asm.fa).apply(null,arguments)},K0=a._NonMaxSuppressionV4=function(){return(K0=a._NonMaxSuppressionV4=a.asm.ga).apply(null,arguments)},li=a._NonMaxSuppressionV5=function(){return(li=a._NonMaxSuppressionV5=a.asm.ha).apply(null,arguments)},Nd=a._NotEqual=function(){return(Nd=a._NotEqual=a.asm.ia).apply(null,arguments)},Ed=a._OneHot=function(){return(Ed=a._OneHot=a.asm.ja).apply(null,arguments)},Rd=a._PadV2=function(){return(Rd=a._PadV2=a.asm.ka).apply(null,arguments)},Z0=a._Pow=function(){return(Z0=a._Pow=a.asm.la).apply(null,arguments)},Y0=a._Prelu=function(){return(Y0=a._Prelu=a.asm.ma).apply(null,arguments)},_d=a._Prod=function(){return(_d=a._Prod=a.asm.na).apply(null,arguments)},J0=a._RealDiv=function(){return(J0=a._RealDiv=a.asm.oa).apply(null,arguments)},$d=a._Relu=function(){return($d=a._Relu=a.asm.pa).apply(null,arguments)},Or=a._Relu6=function(){return(Or=a._Relu6=a.asm.qa).apply(null,arguments)},Q0=a._ResizeBilinear=function(){return(Q0=a._ResizeBilinear=a.asm.ra).apply(null,arguments)},em=a._Reverse=function(){return(em=a._Reverse=a.asm.sa).apply(null,arguments)},Hy=a._RotateWithOffset=function(){return(Hy=a._RotateWithOffset=a.asm.ta).apply(null,arguments)},Dd=a._Round=function(){return(Dd=a._Round=a.asm.ua).apply(null,arguments)},tm=a._Rsqrt=function(){return(tm=a._Rsqrt=a.asm.va).apply(null,arguments)},nm=a._ScatterNd=function(){return(nm=a._ScatterNd=a.asm.wa).apply(null,arguments)},sm=a._SelectV2=function(){return(sm=a._SelectV2=a.asm.xa).apply(null,arguments)},rm=a._Sigmoid=function(){return(rm=a._Sigmoid=a.asm.ya).apply(null,arguments)},am=a._Sin=function(){return(am=a._Sin=a.asm.za).apply(null,arguments)},om=a._Softmax=function(){return(om=a._Softmax=a.asm.Aa).apply(null,arguments)},im=a._Sqrt=function(){return(im=a._Sqrt=a.asm.Ba).apply(null,arguments)},lm=a._Square=function(){return(lm=a._Square=a.asm.Ca).apply(null,arguments)},um=a._SquaredDifference=function(){return(um=a._SquaredDifference=a.asm.Da).apply(null,arguments)},cm=a._Step=function(){return(cm=a._Step=a.asm.Ea).apply(null,arguments)},dm=a._StridedSlice=function(){return(dm=a._StridedSlice=a.asm.Fa).apply(null,arguments)},hm=a._Sub=function(){return(hm=a._Sub=a.asm.Ga).apply(null,arguments)},pm=a._Sum=function(){return(pm=a._Sum=a.asm.Ha).apply(null,arguments)},fm=a._Tan=function(){return(fm=a._Tan=a.asm.Ia).apply(null,arguments)},mm=a._Tanh=function(){return(mm=a._Tanh=a.asm.Ja).apply(null,arguments)},gm=a._Tile=function(){return(gm=a._Tile=a.asm.Ka).apply(null,arguments)},Am=a._TopK=function(){return(Am=a._TopK=a.asm.La).apply(null,arguments)},ym=a._Transform=function(){return(ym=a._Transform=a.asm.Ma).apply(null,arguments)},xm=a._Transpose=function(){return(xm=a._Transpose=a.asm.Na).apply(null,arguments)},bm=a.__FusedMatMul=function(){return(bm=a.__FusedMatMul=a.asm.Oa).apply(null,arguments)},vm=a._malloc=function(){return(vm=a._malloc=a.asm.Pa).apply(null,arguments)},wm=a._free=function(){return(wm=a._free=a.asm.Qa).apply(null,arguments)},Fd=a.___errno_location=function(){return(Fd=a.___errno_location=a.asm.Ra).apply(null,arguments)},Od=a.stackSave=function(){return(Od=a.stackSave=a.asm.Sa).apply(null,arguments)},Pd=a.stackRestore=function(){return(Pd=a.stackRestore=a.asm.Ta).apply(null,arguments)},ku=a.stackAlloc=function(){return(ku=a.stackAlloc=a.asm.Ua).apply(null,arguments)};a.cwrap=Q;var ui;function km(Y){this.name="ExitStatus",this.message="Program terminated with exit("+Y+")",this.status=Y}pr=function Y(){ui||Iu(),ui||(pr=Y)};function Iu(Y){if(Y=Y||c,Vn>0||(pn(),Vn>0))return;function re(){ui||(ui=!0,a.calledRun=!0,!O&&(ts(),ns(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),sn()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),re()},1)):re()}if(a.run=Iu,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return Iu(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),sS="3.8.0",rS="3.8.0",aS="3.8.0",oS="3.8.0",iS="3.8.0",lS="3.8.0",uS="3.8.0",cS="3.8.0",dS=1e-7,hS=1e-4,Wd=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Ru=class{refCount(e){return ks("refCount")}incRef(e){return ks("incRef")}timerAvailable(){return!0}time(e){return ks("time")}read(e){return ks("read")}readSync(e){return ks("readSync")}numDataIds(){return ks("numDataIds")}disposeData(e,t){return ks("disposeData")}write(e,t,n){return ks("write")}move(e,t,n,s,r){return ks("move")}memory(){return ks("memory")}floatPrecision(){return ks("floatPrecision")}epsilon(){return this.floatPrecision()===32?dS:hS}dispose(){return ks("dispose")}};function ks(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function d5(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Vd(e,t,n)}function pS(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,Vd(e,n,s),Vd(t,n,s)}function _u(e,t,n){return Math.max(e,Math.min(t,n))}function fS(e){return e%2==0?e:e+1}function Vd(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function mS(e){let t=0;for(let n=0;nn+` Shapes ${e} and ${t} must match`)}function wa(e){M(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ka(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||un(e)&&!n)for(let s=0;s0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function kS(e,t){let n=1,s=-1;for(let a=0;a=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function Is(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),M(e.every(s=>s>=-n&&s`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),M(e.every(s=>Zt(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function h5(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:Is(t,e).sort(),o=0;for(let i=0;ii)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function p5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function f5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function m5(e,t){for(let n=0;nt+=n.length),t}function zr(e){return typeof e=="string"||e instanceof String}function y5(e){return typeof e=="boolean"}function x5(e){return typeof e=="number"}function Ud(e){return Array.isArray(e)?Ud(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":x5(e)?"float32":zr(e)?"string":y5(e)?"bool":"float32"}function Lr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Hd(e,t){for(let n=t;n=0;--s)n[s]=n[s+1]*e[s+1];return n}function b5(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;ol*u)*(s?2:1);for(let l=0;lr*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return b5(0,e,t,n)}function Rm(e,t){let n=Gd(e,t);for(let s=0;ss*r,1);if(t==null||t==="float32")return yi(e,new Float32Array(n));if(t==="int32")return yi(e,new Int32Array(n));if(t==="bool")return yi(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function _m(e){e.forEach(t=>{M(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function CS(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r{let[s,r]=n.split(":");this.urlFlags[s]=RS(s,r)})}};function NS(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(ES(t,s[0],s[1]),s.join("="))),t}function ES(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function RS(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function ee(){return os}var os=null;function _S(e){os=e}var Dm;function k5(){if(Dm==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Dm=e}return Dm}function $S(){let e=k5();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Fm(e,t){let n=$S();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var xi="Abs",bi="Acos",vi="Acosh",Br="Add",Ia="AddN",wi="All",ki="Any",Sa="ArgMax",Du="ArgMin",Ii="Asin",Si="Asinh",Ci="Atan",Ti="Atanh",Ni="Atan2",Ca="AvgPool",jd="AvgPoolGrad",Fu="AvgPool3D",qd="AvgPool3DGrad",Ta="BatchMatMul",Ei="BatchToSpaceND",Xd="Bincount",I5="BroadcastTo",Na="Cast",Ea="Ceil",Wr="ClipByValue",Kd="Complex",Ou="ComplexAbs",Ri="Concat",Ra="Conv2D",Zd="Conv2DBackpropFilter",_a="Conv2DBackpropInput",Pu="Conv3D",Yd="Conv3DBackpropFilterV2",Jd="Conv3DBackpropInputV2",$a="Cos",Da="Cosh",Fa="Cumsum",_i="CropAndResize",Qd="DenseBincount",$i="DepthToSpace",Oa="DepthwiseConv2dNative",eh="DepthwiseConv2dNativeBackpropFilter",th="DepthwiseConv2dNativeBackpropInput",nh="Diag",Mu="Dilation2D",sh="Dilation2DBackpropInput",rh="Dilation2DBackpropFilter",Pa="RealDiv",ah="Einsum",Di="Elu",oh="EluGrad",Fi="Erf",Oi="Equal",Ma="Exp",Pi="ExpandDims",Mi="Expm1",ih="FFT",zu="Fill",zi="FlipLeftRight",za="Floor",La="FloorDiv",Ba="FusedBatchNorm",Li="GatherV2",Bi="GatherNd",Wi="Greater",Wa="GreaterEqual",Va="Identity",lh="IFFT",uh="Imag",Vi="IsFinite",Ui="IsInf",Hi="IsNan",Ua="LeakyRelu",Gi="Less",ji="LessEqual",ch="LinSpace",Ha="Log",qi="Log1p",Xi="LogicalAnd",Lu="LogicalNot",Bu="LogicalOr",S5="LogSoftmax",Wu="LRN",dh="LRNGrad",Ga="Max",ja="Maximum",qa="MaxPool",hh="MaxPoolGrad",Vu="MaxPool3D",ph="MaxPool3DGrad",fh="MaxPoolWithArgmax",Xa="Mean",Ka="Min",Za="Minimum",Ya="MirrorPad",Ki="Mod",mh="Multinomial",Ja="Multiply",Zi="Neg",Yi="NotEqual",Ji="NonMaxSuppressionV3",Qi="NonMaxSuppressionV4",el="NonMaxSuppressionV5",tl="OnesLike",Qa="OneHot",nl="Pack",eo="PadV2",DS="Pool",to="Pow",no="Prelu",sl="Prod",Uu="Range",gh="Real",rl="Reciprocal",so="Relu",al="Reshape",Hu="ResizeNearestNeighbor",Ah="ResizeNearestNeighborGrad",ro="ResizeBilinear",yh="ResizeBilinearGrad",ao="Relu6",oo="Reverse",io="Round",lo="Rsqrt",ol="ScatterNd",il="Select",ll="Selu",ul="Slice",uo="Sin",cl="Sinh",dl="Sign",co="Sigmoid",hl="Softplus",ho="Sqrt",po="Sum",pl="SpaceToBatchND",fl="SplitV",fo="Softmax",xh="SparseFillEmptyRows",bh="SparseReshape",vh="SparseSegmentMean",wh="SparseSegmentSum",kh="SparseToDense",mo="SquaredDifference",Gu="Square",ml="StridedSlice",Ih="StringNGrams",Sh="StringSplit",Ch="StringToHashBucketFast",go="Sub",Ao="Tan",yo="Tanh",Vr="Tile",gl="TopK",Al="Transform",xo="Transpose",Th="Unique",yl="Unpack",ju="UnsortedSegmentSum",xl="ZerosLike",Ur="Step",Nh="FromPixels",bl="RotateWithOffset",bo="_FusedMatMul",vo="FusedConv2D",wo="FusedDepthwiseConv2D",vl=Fm("kernelRegistry",()=>new Map),qu=Fm("gradRegistry",()=>new Map);function Eh(e,t){let n=Pm(e,t);return vl.get(n)}function Om(e){return qu.get(e)}function wl(e){let t=vl.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function ko(e){let{kernelName:t,backendName:n}=e,s=Pm(t,n);vl.has(s)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),vl.set(s,e)}function C5(e){let{kernelName:t}=e;qu.has(t)&&ee().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),qu.set(t,e)}function FS(e,t){let n=Pm(e,t);if(!vl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);vl.delete(n)}function OS(e){if(!qu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);qu.delete(e)}function PS(e,t){wl(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});ko(r)})}function Pm(e,t){return`${t}_${e}`}var I={};Pe(I,{arraysEqual:()=>yr,assert:()=>M,assertNonNegativeIntegerDimensions:()=>_m,assertNonNull:()=>wa,assertShapesMatch:()=>An,bytesFromStringArray:()=>A5,bytesPerElement:()=>Em,checkConversionForErrors:()=>m5,clamp:()=>_u,computeStrides:()=>Ai,createScalarValue:()=>VS,createShuffledIndices:()=>vS,decodeString:()=>$h,distSquared:()=>AS,encodeString:()=>Zu,fetch:()=>HS,fingerPrint64:()=>WS,flatten:()=>ka,getArrayFromDType:()=>f5,getTypedArrayFromDType:()=>p5,hasEncodingLoss:()=>IS,hexToLong:()=>Xu,indexToLoc:()=>TS,inferDtype:()=>Ud,inferFromImplicitShape:()=>kS,isBoolean:()=>y5,isFunction:()=>Lr,isInt:()=>Zt,isNumber:()=>x5,isPromise:()=>$m,isScalarShape:()=>yS,isString:()=>zr,isTypedArray:()=>un,isValidDtype:()=>g5,locToIndex:()=>CS,makeOnesTypedArray:()=>Rm,makeZerosNestedTypedArray:()=>SS,makeZerosTypedArray:()=>Gd,nearestDivisor:()=>Hd,nearestLargerEven:()=>fS,now:()=>Ku,parseAxisParam:()=>Is,randUniform:()=>gS,repeatedTry:()=>wS,rightPad:()=>$u,shuffle:()=>d5,shuffleCombo:()=>pS,sizeFromShape:()=>Dt,sizeToSquarishShape:()=>bS,squeezeShape:()=>h5,sum:()=>mS,swap:()=>Vd,tanh:()=>xS,toNestedArray:()=>yi,toTypedArray:()=>_h});var T5=va(PI()),Io=T5.default||T5;function Xu(e){return Io.fromString(e,!0,16)}var N5=Xu("c3a5c85c97cb3127"),So=Xu("b492b66fbe98f273"),yn=Xu("9ae16a3b2f90404f");function Mm(e){return e.xor(e.shru(47))}function E5(e,t,n){let s=e.slice(t,t+n);return Io.fromBytes(Array.from(s),!0,!0)}function pt(e,t){return E5(e,t,8)}function R5(e,t){return E5(e,t,4)}function Yt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Hr(e,t,n=Xu("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function MS(e,t,n,s,r,a){r=r.add(e),a=Yt(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(Yt(r,44)),[r.add(s),a.add(o)]}function Rh(e,t,n,s){return MS(pt(e,t),pt(e,t+8),pt(e,t+16),pt(e,t+24),n,s)}function zS(e,t=e.length){if(t>=8){let n=yn.add(t*2),s=pt(e,0).add(yn),r=pt(e,t-8),a=Yt(r,37).mul(n).add(s),o=Yt(s,25).add(r).mul(n);return Hr(a,o,n)}if(t>=4){let n=yn.add(t*2),s=R5(e,0);return Hr(s.shl(3).add(t),R5(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return Mm(yn.mul(a).xor(N5.mul(o))).mul(yn)}return yn}function LS(e,t=e.length){let n=yn.add(t*2),s=pt(e,0).mul(So),r=pt(e,8),a=pt(e,t-8).mul(n),o=pt(e,t-16).mul(yn);return Hr(Yt(s.add(r),43).add(Yt(a,30)).add(o),s.add(Yt(r.add(yn),18)).add(a),n)}function BS(e,t=e.length){let n=yn.add(t*2),s=pt(e,0).mul(yn),r=pt(e,8),a=pt(e,t-8).mul(n),o=pt(e,t-16).mul(yn),i=Yt(s.add(r),43).add(Yt(a,30)).add(o),l=Hr(i,s.add(Yt(r.add(yn),18)).add(a),n),u=pt(e,16).mul(n),c=pt(e,24),d=i.add(pt(e,t-32)).mul(n),h=l.add(pt(e,t-24)).mul(n);return Hr(Yt(u.add(c),43).add(Yt(d,30)).add(h),u.add(Yt(c.add(s),18)).add(d),n)}function WS(e,t=e.length){let n=Io.fromNumber(81,!0);if(t<=32)return t<=16?zS(e,t):LS(e,t);if(t<=64)return BS(e,t);let s=n,r=n.mul(So).add(113),a=Mm(r.mul(yn).add(113)).mul(yn),o=[Io.UZERO,Io.UZERO],i=[Io.UZERO,Io.UZERO];s=s.mul(yn).add(pt(e,0));let l=0,u=(t-1>>6)*64,c=u+(t-1&63)-63;do s=Yt(s.add(r).add(o[0]).add(pt(e,l+8)),37).mul(So),r=Yt(r.add(o[1]).add(pt(e,l+48)),42).mul(So),s=s.xor(i[1]),r=r.add(o[0]).add(pt(e,l+40)),a=Yt(a.add(i[0]),33).mul(So),o=Rh(e,l,o[1].mul(So),s.add(i[0])),i=Rh(e,l+32,a.add(i[1]),r.add(pt(e,l+16))),[a,s]=[s,a],l+=64;while(l!==u);let d=So.add(a.and(255).shl(1));return l=c,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=Yt(s.add(r).add(o[0]).add(pt(e,l+8)),37).mul(d),r=Yt(r.add(o[1]).add(pt(e,l+48)),42).mul(d),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(pt(e,l+40))),a=Yt(a.add(i[0]),33).mul(d),o=Rh(e,l,o[1].mul(d),s.add(i[0])),i=Rh(e,l+32,a.add(i[1]),r.add(pt(e,l+16))),[a,s]=[s,a],Hr(Hr(o[0],i[0],d).add(Mm(r).mul(N5)).add(a),Hr(o[1],i[1],d).add(s),d)}function VS(e,t){return t==="string"?Zu(e):_h([e],t)}function US(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function _h(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ka(e)),ee().getBool("DEBUG")&&m5(e,t),US(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s{s=n()},a,o=Ku();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:Ku()-o})}if(ee().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l{jS(c,u.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function jS(e,t,n){if(t!=="float32")return!1;for(let s=0;s0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${c} %c${u} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function XS(e,t,n){let s={},r={};for(let l=0;ls[m.id]=!0),p=!0,r[u.id]=!0;break}if(p)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let d=0;d=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let u=e[l.id];u!=null?o.push(u):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=n(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=a.inputs[l];if(!yr(u.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let d=e[c.id];e[c.id]=s(d,u),d.dispose()}}}}var _5=20,Yu=3,zm=7;function ZS(e,t,n,s){let r=Ai(t),a=YS(e,t,n,r),o=t.length,i=Dh(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(` `)),l.join(` -`)}function OS(e,t,n,s){let r=_t(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?qu(e):e;if(i>1)for(let u=0;uk5){let A=Gu*o,g=Array.from(e.slice(0,A)),y=Array.from(e.slice((i-Gu)*o,i*o));return n==="complex64"&&(g=qu(g),y=qu(y)),["["+g.map((x,b)=>ju(x,r[b],n)).join(", ")+", ..., "+y.map((x,b)=>ju(x,r[i-Gu+b],n)).join(", ")+"]"]}let m=n==="complex64"?qu(e):Array.from(e);return["["+m.map((A,g)=>ju(A,r[g],n)).join(", ")+"]"]}let u=t.slice(1),c=s.slice(1),d=s[0]*o,h=[];if(i>k5){for(let m=0;m1)for(let u=0;u_5){let g=Yu*o,A=Array.from(e.slice(0,g)),y=Array.from(e.slice((i-Yu)*o,i*o));return n==="complex64"&&(A=Qu(A),y=Qu(y)),["["+A.map((x,b)=>Ju(x,r[b],n)).join(", ")+", ..., "+y.map((x,b)=>Ju(x,r[i-Yu+b],n)).join(", ")+"]"]}let m=n==="complex64"?Qu(e):Array.from(e);return["["+m.map((g,A)=>Ju(g,r[A],n)).join(", ")+"]"]}let u=t.slice(1),c=s.slice(1),d=s[0]*o,h=[];if(i>_5){for(let m=0;m`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||o5(t,this.size),this.strides=di(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;sSh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=js().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Sh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await js().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(js().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return gl.print(this,e)}clone(){return this.throwIfDisposed(),gl.clone(this)}toString(e=!1){let t=this.dataSync();return DS(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),gl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),js().makeVariable(this,e,t,n)}};Object.defineProperty(Ue,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function BS(){return Tm("Tensor",()=>Ue)}BS();var Xu=class extends Ue{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!fr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);js().disposeTensor(this),this.dataId=e.dataId,js().incRef(this,null)}dispose(){js().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Xu,Symbol.hasInstance,{value:e=>e instanceof Ue&&e.assign!=null&&e.assign instanceof Function});var Ts={};Pe(Ts,{assertTypesMatch:()=>S5,getTensorsInContainer:()=>Mm,isTensorInList:()=>VS,makeTypesMatch:()=>It});var $m;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})($m||($m={}));var Fm;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Fm||(Fm={}));var Dm;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Dm||(Dm={}));var Om;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Om||(Om={}));var Pm;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Pm||(Pm={}));var WS={float32:Om,int32:Fm,bool:Dm,complex64:Pm};function vs(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return WS[e][t]}function Th(e){return vs(e,"int32")}function It(e,t){if(e.dtype===t.dtype)return[e,t];let n=vs(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function S5(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function VS(e,t){return t.some(n=>n.id===e.id)}function Mm(e){let t=[],n=new Set;return C5(e,t,n),t}function C5(e,t,n){if(e==null)return;if(e instanceof Ue){t.push(e);return}if(!US(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),C5(a,t,n))}}function US(e){return Array.isArray(e)||typeof e=="object"}function zm(e){return e.kernelName!=null}var T5=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Ku=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new T5}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Al(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Iu)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s(sthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return Ku.nextTensorId++}nextVariableId(){return Ku.nextVariableId++}clone(e){let t=L.runKernel(Ma,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return L.runKernel(ka,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(wh(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=zm(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(zm(e)){let{kernelName:p,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let A=wh(p,this.backendName);M(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),o=()=>{let g=this.backend.numDataIds();i=A.kernelFunc({inputs:f,attrs:m,backend:this.backend});let y=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,g,y);let x=y.map(b=>{if(b.rank!=null)return b;let{dataId:v,shape:k,dtype:w}=b;return this.makeTensorFromDataId(v,k,w)});if(s){let b=this.getTensorsForGradient(p,f,x);n=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:p}=e,f=m=>{!s||(n=m.map(A=>this.keep(this.clone(A))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>p(this.backend,f));let A=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,A),A}}let{inputs:u,attrs:c}=e,d=zm(e)?null:e.backwardsFunc,h;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(h=this.profiler.profileKernel(l,u,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(h),t=h.outputs)}),s&&this.addTapeNode(l,u,t,d,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(p=>u[p]!=null?u[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:h.timeMs,extraInfo:h.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=Nm(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,u)=>a[u]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&Dr(e[0])&&(r=e.map(i=>Hu(i)));let a=s.write(r,t,n),o=new Ue(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=u5(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r=new Ue(t,n,e,this.nextTensorId());return this.trackTensor(r,s),r}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new Xu(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*wm(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Xu||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*wm(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=Nm(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((u,c)=>{if(u==null){let d=n[c],h=zd(d.size,d.dtype);return this.makeTensor(h,d.shape,d.dtype)}return u}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Mm(e),n=new Set(t.map(r=>r.id));for(let r=0;r{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(r instanceof Ue,()=>"The result y returned by f() must be a tensor.");let a=$S(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?HS(r.shape):n,FS(o,a,l=>this.tidy(l),GS);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return M(Or(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(o=>o instanceof Ue),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),M(n.value instanceof Ue,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(Or(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),u=Array.isArray(l)?l:[l];M(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(u.every(d=>d instanceof Ue),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((d,h)=>{c[h]=()=>d}),c};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Uu(),n=await this.backend.time(e);return n.wallMs=Uu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new T5;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Ku.nextTensorId=0;Ku.nextVariableId=0;function HS(e){let t=km(_t(e),"float32");return L.makeTensor(t,e,"float32")}function N5(){let e=m5();if(e._tfengine==null){let t=new f5(e);e._tfengine=new Ku(t)}return mS(e._tfengine.ENV),MS(()=>e._tfengine),e._tfengine}var L=N5();function GS(e,t){let n={a:e,b:t};return L.runKernel(Pr,n)}var Zu={};Pe(Zu,{isBrowser:()=>E5,isMobile:()=>qS});function jS(){return typeof navigator!="undefined"&&navigator!=null}function qS(e){if(e||jS()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function E5(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ns=ee();Ns.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ns.registerFlag("IS_BROWSER",()=>E5());Ns.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ns.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ns.registerFlag("PROD",()=>!1);Ns.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ns.getBool("DEBUG"));Ns.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ns.registerFlag("IS_TEST",()=>!1);Ns.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Ns.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function qs(e,t){let n=e;if(an(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||an(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&ee().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&R5(e,s,[]),s}function R5(e,t,n){if(n=n||[],!Array.isArray(e)&&!an(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r=0&&(r=s),_5(s,r,t,n),e==null||!an(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=qs(e,r);!an(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Ih(e,r):ya(e,[],!0);return L.makeTensor(i,a,r)}function Yu(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>D(a,`${t}[${o}]`,n,s))}var $5="__op";function V(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+$5;let r=(...a)=>{L.startScope(n);try{let o=s(...a);return Sm(o)&&console.error("Cannot return a Promise inside of tidy."),L.endScope(o),o}catch(o){throw L.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function XS(e,t){let n=D(e,"real","complex"),s=D(t,"imag","complex");fn(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return L.runKernel(Vd,r)}var Wr=V({complex_:XS});function Vr(e,t,n,s){if(s==null&&(s=Pd(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!an(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Im(t);let r=_t(t),a=_t(n);M(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!an(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?Ih(e,s):ya(e,[],!0),L.makeTensor(e,t,s)}function on(e,t,n){let s=qs(e,n);return Vr(e,t,s,n)}var Lm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Nh=4;async function KS(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o{let h=await l.bytes(),p=h.reduce((A,g)=>A+g.length,0)+Nh*h.length,f=new Uint8Array(p),m=0;for(let A=0;A{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var Bm=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function D5(e){return Bm?Buffer.byteLength(e):new Blob([e]).size}function YS(e){if(Bm)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function O5(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function P5(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function Vm(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Ju(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:D5(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:D5(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function QS(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)==0;)r-=8388608,s<<=1;return s&=~8388608,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function e9(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function t9(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function n9(){let e=QS(),t=e9(),n=t9();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Nt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Nt.instance==null&&(Nt.instance=new Nt),Nt.instance}static registerSaveRouter(e){Nt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Nt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Nt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Nt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Nt.getInstance().loadRouters:Nt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},s9=e=>Nt.registerSaveRouter(e),r9=e=>Nt.registerLoadRouter(e),a9=e=>Nt.getSaveHandlers(e),o9=(e,t)=>Nt.getLoadHandlers(e,t),Um="tensorflowjs",Hm=1,vo="models_store",Ur="model_info_store";function M5(){if(!ee().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Gm(e){let t=e.result;t.createObjectStore(vo,{keyPath:"modelPath"}),t.createObjectStore(Ur,{keyPath:"modelPath"})}var wo=class{constructor(e){if(this.indexedDB=M5(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(Um,Hm);r.onupgradeneeded=()=>Gm(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(vo,"readonly"),l=o.objectStore(vo).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=u=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=Ju(t),i=a.transaction(Ur,"readwrite"),l=i.objectStore(Ur),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),c;u.onsuccess=()=>{c=a.transaction(vo,"readwrite");let h=c.objectStore(vo).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});h.onsuccess=()=>n({modelArtifactsInfo:o}),h.onerror=p=>{l=i.objectStore(Ur);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(h.error)),f.onerror=m=>(a.close(),s(h.error))}},u.onerror=d=>(a.close(),s(u.error)),i.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};wo.URL_SCHEME="indexeddb://";var z5=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(wo.URL_SCHEME)?i9(e.slice(wo.URL_SCHEME.length)):null;Nt.registerSaveRouter(z5);Nt.registerLoadRouter(z5);function i9(e){return new wo(e)}function l9(e){return e.startsWith(wo.URL_SCHEME)?e.slice(wo.URL_SCHEME.length):e}var u9=class{constructor(){this.indexedDB=M5()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Um,Hm);n.onupgradeneeded=()=>Gm(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(Ur,"readonly"),o=r.objectStore(Ur).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=l9(e),new Promise((t,n)=>{let s=this.indexedDB.open(Um,Hm);s.onupgradeneeded=()=>Gm(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(Ur,"readwrite"),o=a.objectStore(Ur),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=o.delete(e),c=()=>{l=r.transaction(vo,"readwrite");let h=l.objectStore(vo).delete(e);h.onsuccess=()=>t(i.result.modelArtifactsInfo),h.onerror=p=>n(i.error)};u.onsuccess=c,u.onerror=d=>(c(),r.close(),n(i.error))}},i.onerror=u=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},mr="/",yl="tensorflowjs_models",L5="info",c9="model_topology",d9="weight_specs",h9="weight_data",p9="model_metadata";function B5(e){return{info:[yl,e,L5].join(mr),topology:[yl,e,c9].join(mr),weightSpecs:[yl,e,d9].join(mr),weightData:[yl,e,h9].join(mr),modelMetadata:[yl,e,p9].join(mr)}}function W5(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function f9(e){let t=e.split(mr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(mr)}function m9(e){return e.startsWith(ko.URL_SCHEME)?e.slice(ko.URL_SCHEME.length):e}var ko=class{constructor(e){if(!ee().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=B5(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=Ju(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,YS(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw W5(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=JS(a),t}};ko.URL_SCHEME="localstorage://";var V5=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ko.URL_SCHEME)?A9(e.slice(ko.URL_SCHEME.length)):null;Nt.registerSaveRouter(V5);Nt.registerLoadRouter(V5);function A9(e){return new ko(e)}var g9=class{constructor(){M(ee().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=yl+mr,n=mr+L5;for(let s=0;s"scheme must not be undefined or null."),e.endsWith(xl)&&(e=e.slice(0,e.indexOf(xl))),M(e.length>0,()=>"scheme must not be an empty string.");let n=ss.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Eh(e){if(e.indexOf(xl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ss.getSchemes().join(",")}`);return{scheme:e.split(xl)[0],path:e.split(xl)[1]}}async function U5(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Nt.getLoadHandlers(e);M(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Nt.getSaveHandlers(t);M(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=Eh(e).scheme,l=Eh(e).path,u=i===Eh(e).scheme,c=await r.load();n&&u&&await ss.getManager(i).removeModel(l);let d=await o.save(c);return n&&!u&&await ss.getManager(i).removeModel(l),d.modelArtifactsInfo}async function y9(){let e=ss.getSchemes(),t={};for(let n of e){let s=await ss.getManager(n).listModels();for(let r in s){let a=n+xl+r;t[a]=s[r]}}return t}async function x9(e){let t=Eh(e);return ss.getManager(t.scheme).removeModel(t.path)}async function b9(e,t){return U5(e,t,!1)}async function v9(e,t){return U5(e,t,!0)}var w9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(ee().get("IS_BROWSER")){ee().setPlatform("browser",new w9);try{ss.registerManager(ko.URL_SCHEME,new g9)}catch(e){}try{ss.registerManager(wo.URL_SCHEME,new u9)}catch(e){}}var k9={importFetch:()=>vI()},jm,I9=class{constructor(){this.util=ci("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return ee().global.fetch!=null?ee().global.fetch(e,t):(jm==null&&(jm=k9.importFetch()),jm(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};ee().get("IS_NODE")&&ee().setPlatform("node",new I9);function Be(e,t="float32",n){return t=t||"float32",Im(e),new Bt(e,t,n)}function S9(e,t){let n=D(e,"x","cast");if(!l5(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return L.runKernel(ka,s,r)}var ce=V({cast_:S9});function C9(e){let n={x:D(e,"x","clone","string_or_numeric")};return L.runKernel(Ma,n)}var Es=V({clone_:C9});function H5(e,t=!1){console.log(e.toString(t))}N5();var T9={buffer:Be,cast:ce,clone:Es,print:H5};zS(T9);var Tn={};Pe(Tn,{browserFiles:()=>D9,browserHTTPRequest:()=>L9,concatenateArrayBuffers:()=>Wm,copyModel:()=>b9,decodeWeights:()=>F5,encodeWeights:()=>KS,fromMemory:()=>W9,getLoadHandlers:()=>o9,getModelArtifactsForJSON:()=>Vm,getModelArtifactsInfoForJSON:()=>Ju,getSaveHandlers:()=>a9,http:()=>Km,isHTTPScheme:()=>Xm,listModels:()=>y9,loadWeights:()=>O9,moveModel:()=>v9,registerLoadRouter:()=>r9,registerSaveRouter:()=>s9,removeModel:()=>x9,weightsLoaderFactory:()=>X5,withSaveHandler:()=>V9});var N9="model",E9=".json",R9=".weights.bin";function G5(e){return new Promise(t=>setTimeout(t)).then(e)}var bl=class{constructor(e){if(!ee().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(bl.URL_SCHEME)&&(e=e.slice(bl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=N9),this.modelJsonFileName=e+E9,this.weightDataFileName=e+R9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=P5(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await G5(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await G5(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Ju(e)}}}};bl.URL_SCHEME="downloads://";var _9=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=Vm(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,Wm(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>O5(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=O5(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},$9=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(bl.URL_SCHEME)?F9(e.slice(bl.URL_SCHEME.length)):null;Nt.registerSaveRouter($9);function F9(e="model"){return new bl(e)}function D9(e){return new _9(e)}function j5(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(u=>{let c=n+ ++r/e.length*(s-n);return t(c),u}),l);function o(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),M(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(a))}async function q5(e,t){t==null&&(t={});let n=t.fetchFunc==null?ee().platform.fetch:t.fetchFunc,s=e.map(d=>n(d,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await j5(s,t.onProgress,r,a)).map(d=>d.arrayBuffer()),l=.5,u=1;return t.onProgress==null?await Promise.all(i):await j5(i,t.onProgress,l,u)}async function O9(e,t="",n,s){return X5(o=>q5(o,{requestInit:s}))(e,t,n)}function X5(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((p,f)=>{let m=0;p.weights.forEach(A=>{let g="quantization"in A?A.quantization.dtype:A.dtype,y=Lm[g]*_t(A.shape),x=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:A,groupOffset:m,sizeBytes:y})};s!=null?s.forEach((b,v)=>{b===A.name&&(x(),o[v]=!0)}):x(),i.push(A.name),m+=y})}),!o.every(p=>p)){let p=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}. -Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((p,f,m)=>(f&&p.push(m),p),[]),u=[];l.forEach(p=>{t[p].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),d={},h=0;return l.forEach(p=>{let f=t[p].paths.length,m=0;for(let b=0;b{let v=A.slice(b.groupOffset,b.groupOffset+b.sizeBytes),k=F5(v,[b.manifestEntry]);for(let w in k)d[w]=k[w]}),h+=f}),d}}var P9="application/octet-stream",M9="application/json",qm=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=ee().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=P5(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:M9}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:P9}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Ju(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Vm(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=z9(t),r=this.weightPathPrefix||n,a=[];for(let u of e)a.push(...u.weights);let o=[],i=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(c)):o.push(r+c+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await q5(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Wm(l)]}};qm.URL_SCHEME_REGEX=/^https?:\/\//;function z9(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function Xm(e){return e.match(qm.URL_SCHEME_REGEX)!=null}var K5=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>Xm(s)):n=Xm(e),n)return Km(e,t)}return null};Nt.registerSaveRouter(K5);Nt.registerLoadRouter(K5);function Km(e,t){return new qm(e,t)}function L9(e,t){return Km(e,t)}var Zm=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},B9=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function W9(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Zm(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Zm({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Zm({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function V9(e){return new B9(e)}var Z5={};Pe(Z5,{confusionMatrix:()=>q9});function U9(e,t,n=!1,s=!1){let r=D(e,"a","matMul"),a=D(t,"b","matMul");[r,a]=It(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return L.runKernel(wa,o,i)}var We=V({matMul_:U9});function H9(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:D(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return L.runKernel(Xa,a,o)}var Qu=V({oneHot_:H9});function G9(e,t){let n=D(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{M(a>=0&&a`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let s={x:n},r={perm:t};return L.runKernel(fo,s,r)}var je=V({transpose_:G9});function j9(e,t,n){let s=D(e,"labels","confusionMatrix"),r=D(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),M(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),M(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=Qu(ce(s,"int32"),n),o=Qu(ce(r,"int32"),n),i=je(a),l=We(i,o);return ce(l,"int32")}var q9=V({confusionMatrix_:j9}),rs={};Pe(rs,{fromPixels:()=>eC,fromPixelsAsync:()=>J9,toPixels:()=>Q9});function Rh(e,t,n){if(ga(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=qs(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Vr(e,t,s,n)}var vl;function Y5(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let f=2;if(r&&e.readyState element.")}if(wh(vh,L.backendName)!=null){let f={pixels:e},m={numChannels:t};return L.runKernel(vh,f,m)}let[u,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;o?d=e.getContext("2d").getImageData(0,0,u,c).data:s||n?d=e.data:(a||r||i)&&(vl==null&&(vl=document.createElement("canvas").getContext("2d")),vl.canvas.width=u,vl.canvas.height=c,vl.drawImage(e,0,0,u,c),d=vl.getImageData(0,0,u,c).data);let h;if(t===4)h=new Int32Array(d);else{let f=u*c;h=new Int32Array(f*t);for(let m=0;m4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let u=0;u1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);a===1?(c[0]=p*i,c[1]=p*i,c[2]=p*i):c[h]=p*i}let d=u*4;l[d+0]=Math.round(c[0]),l[d+1]=Math.round(c[1]),l[d+2]=Math.round(c[2]),l[d+3]=Math.round(c[3])}if(t!=null){t.width=r,t.height=s;let u=t.getContext("2d"),c=new ImageData(l,r,s);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var eC=V({fromPixels_:Y5}),Ym={};Pe(Ym,{prepareAndValidate:()=>J5});function J5(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(_t(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let d=0;dd/u),1].slice(0,a);return[l,o,u,c]}var Jm={};Pe(Jm,{calculateShapes:()=>Q5,validateInput:()=>eA,validateUpdateShape:()=>Qm});function Qm(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank1?t.shape[s-1]:1,a=n.length,o=1;for(let d=r;dtC,computeFlatOffset:()=>sC,computeOutShape:()=>ex,getNormalizedAxes:()=>rx,isSliceContinous:()=>nC,maskToAxes:()=>_h,parseSliceParams:()=>cx,sliceInfo:()=>rC,startForAxis:()=>lx,startIndicesWithElidedDims:()=>ax,stopForAxis:()=>ux,stopIndicesWithElidedDims:()=>ox,stridesForAxis:()=>ix,stridesWithElidedDims:()=>tx});function tC(e,t,n){let s=e.shape.length;M(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),M(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function _h(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function ex(e,t,n){let s=[];for(let r=0;r0){let p=t[0],f=n+1;c=ax(o,p,f,s,e),d=ox(i,p,f,r,e),h=tx(a,p,f,e)}else for(let p=0;p-1)a[i]=0;else{let l=nx(t,n,i),u=s[l];e&1<-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=nx(t,n,i),u=s[l];e&1<0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=Su(0,o,l-1),o}function ux(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=Su(0,o,l):o=Su(-1,o,l-1),o}function nC(e,t,n){let s=n.length;for(let r=0;r1){s=r;break}for(let r=s+1;r0||n[r]!==e[r])return!1;return!0}function sC(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s{M(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.lengtho>=0?o:(M(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function rC(e,t,n,s,r,a,o,i,l){let u=t.slice(),c=n.slice(),d=s;s==null&&(d=new Array(u.length));let h=_h(o);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(o!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(o!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-u.length,f=_h(i),m=e.slice();f.forEach(w=>{u[w]=0,c[w]=1,m.splice(w,0,1)});let{begin:A,end:g,strides:y}=rx(m,h,p,u,c,d,r,a,o);u=A,c=g,d=y;let x=_h(l);x.forEach(w=>{c[w]=u[w]+1,d[w]=1});let b=ex(u,c,d),v=b.filter((w,C)=>x.indexOf(C)===-1);return{nonStrided:d.every(w=>w===1),$begin:u,$end:c,$strides:d,size:b,newShape:m,outShape:v}}var oe={};Pe(oe,{Serializable:()=>dx,SerializationMap:()=>Io,registerClass:()=>Hr});var dx=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Io=class{constructor(){this.classNameMap={}}static getMap(){return Io.instance==null&&(Io.instance=new Io),Io.instance}static register(e){Io.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Hr(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Io.register(e)}var hx={};Pe(hx,{TEST_EPSILON_FLOAT16:()=>px,encodeStrings:()=>fx,expectArrayBuffersEqual:()=>dC,expectArraysClose:()=>oC,expectArraysEqual:()=>lC,expectNumbersClose:()=>uC,expectPromiseToFail:()=>iC,expectValuesInRange:()=>cC,testEpsilon:()=>tA});var aC=.001,px=.1;function oC(e,t,n){return n==null&&(n=tA()),nA(e,t,(s,r)=>sA(s,r,n))}function tA(){return L.backend.floatPrecision()===32?aC:px}function nA(e,t,n){let s=!0;if((an(e)||an(t))&&(s=!1),an(e)&&an(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=qs(e),i=qs(t);if(!fr(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=an(e)?e:ya(e),a=an(t)?t:ya(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}. +`;return h[h.length-1]=" "+h[h.length-1]+"]"+(a?"":f),h}function Qu(e){let t=[];for(let n=0;n`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||f5(t,this.size),this.strides=Ai(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s$h(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Zs().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>$h(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Zs().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Zs().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return kl.print(this,e)}clone(){return this.throwIfDisposed(),kl.clone(this)}toString(e=!1){let t=this.dataSync();return ZS(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),kl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Zs().makeVariable(this,e,t,n)}};Object.defineProperty(Ge,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function nC(){return Fm("Tensor",()=>Ge)}nC();var ec=class extends Ge{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!yr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Zs().disposeTensor(this),this.dataId=e.dataId,Zs().incRef(this,null)}dispose(){Zs().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(ec,Symbol.hasInstance,{value:e=>e instanceof Ge&&e.assign!=null&&e.assign instanceof Function});var _s={};Pe(_s,{assertTypesMatch:()=>D5,getTensorsInContainer:()=>Hm,isTensorInList:()=>rC,makeTypesMatch:()=>Ct});var Lm;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Lm||(Lm={}));var Bm;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Bm||(Bm={}));var Wm;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Wm||(Wm={}));var Vm;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Vm||(Vm={}));var Um;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Um||(Um={}));var sC={float32:Vm,int32:Bm,bool:Wm,complex64:Um};function Ss(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return sC[e][t]}function Fh(e){return Ss(e,"int32")}function Ct(e,t){if(e.dtype===t.dtype)return[e,t];let n=Ss(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function D5(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function rC(e,t){return t.some(n=>n.id===e.id)}function Hm(e){let t=[],n=new Set;return F5(e,t,n),t}function F5(e,t,n){if(e==null)return;if(e instanceof Ge){t.push(e);return}if(!aC(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),F5(a,t,n))}}function aC(e){return Array.isArray(e)||typeof e=="object"}function Gm(e){return e.kernelName!=null}var O5=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},tc=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new O5}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){wl(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Ru)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s(sthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return tc.nextTensorId++}nextVariableId(){return tc.nextVariableId++}clone(e){let t=L.runKernel(Va,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return L.runKernel(Na,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(Eh(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=Gm(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Gm(e)){let{kernelName:p,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=Eh(p,this.backendName);M(g!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),o=()=>{let A=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let y=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,A,y);let x=y.map(b=>{if(b.rank!=null)return b;let{dataId:v,shape:k,dtype:w}=b;return this.makeTensorFromDataId(v,k,w)});if(s){let b=this.getTensorsForGradient(p,f,x);n=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:p}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>p(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:u,attrs:c}=e,d=Gm(e)?null:e.backwardsFunc,h;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(h=this.profiler.profileKernel(l,u,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(h),t=h.outputs)}),s&&this.addTapeNode(l,u,t,d,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(p=>u[p]!=null?u[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:h.timeMs,extraInfo:h.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=Om(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,u)=>a[u]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&zr(e[0])&&(r=e.map(i=>Zu(i)));let a=s.write(r,t,n),o=new Ge(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=A5(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r=new Ge(t,n,e,this.nextTensorId());return this.trackTensor(r,s),r}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new ec(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Em(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof ec||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Em(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=Om(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((u,c)=>{if(u==null){let d=n[c],h=Gd(d.size,d.dtype);return this.makeTensor(h,d.shape,d.dtype)}return u}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Hm(e),n=new Set(t.map(r=>r.id));for(let r=0;r{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(r instanceof Ge,()=>"The result y returned by f() must be a tensor.");let a=XS(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?oC(r.shape):n,KS(o,a,l=>this.tidy(l),iC);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return M(Lr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(o=>o instanceof Ge),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),M(n.value instanceof Ge,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(Lr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),u=Array.isArray(l)?l:[l];M(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(u.every(d=>d instanceof Ge),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((d,h)=>{c[h]=()=>d}),c};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Ku(),n=await this.backend.time(e);return n.wallMs=Ku()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new O5;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};tc.nextTensorId=0;tc.nextVariableId=0;function oC(e){let t=Rm(Dt(e),"float32");return L.makeTensor(t,e,"float32")}function P5(){let e=k5();if(e._tfengine==null){let t=new w5(e);e._tfengine=new tc(t)}return _S(e._tfengine.ENV),QS(()=>e._tfengine),e._tfengine}var L=P5();function iC(e,t){let n={a:e,b:t};return L.runKernel(Br,n)}var nc={};Pe(nc,{isBrowser:()=>M5,isMobile:()=>uC});function lC(){return typeof navigator!="undefined"&&navigator!=null}function uC(e){if(e||lC()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function M5(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var $s=ee();$s.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});$s.registerFlag("IS_BROWSER",()=>M5());$s.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");$s.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));$s.registerFlag("PROD",()=>!1);$s.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>$s.getBool("DEBUG"));$s.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);$s.registerFlag("IS_TEST",()=>!1);$s.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);$s.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Ys(e,t){let n=e;if(un(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||un(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&ee().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&z5(e,s,[]),s}function z5(e,t,n){if(n=n||[],!Array.isArray(e)&&!un(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r=0&&(r=s),L5(s,r,t,n),e==null||!un(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=Ys(e,r);!un(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?_h(e,r):ka(e,[],!0);return L.makeTensor(i,a,r)}function sc(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>F(a,`${t}[${o}]`,n,s))}var B5="__op";function V(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+B5;let r=(...a)=>{L.startScope(n);try{let o=s(...a);return $m(o)&&console.error("Cannot return a Promise inside of tidy."),L.endScope(o),o}catch(o){throw L.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function cC(e,t){let n=F(e,"real","complex"),s=F(t,"imag","complex");An(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return L.runKernel(Kd,r)}var Gr=V({complex_:cC});function jr(e,t,n,s){if(s==null&&(s=Ud(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!un(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){_m(t);let r=Dt(t),a=Dt(n);M(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!un(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?_h(e,s):ka(e,[],!0),L.makeTensor(e,t,s)}function cn(e,t,n){let s=Ys(e,n);return jr(e,t,s,n)}var jm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Oh=4;async function dC(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o{let h=await l.bytes(),p=h.reduce((g,A)=>g+A.length,0)+Oh*h.length,f=new Uint8Array(p),m=0;for(let g=0;g{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var qm=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function V5(e){return qm?Buffer.byteLength(e):new Blob([e]).size}function pC(e){if(qm)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function U5(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function H5(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function Km(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function rc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:V5(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:V5(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function mC(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)==0;)r-=8388608,s<<=1;return s&=~8388608,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function gC(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function AC(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function yC(){let e=mC(),t=gC(),n=AC();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Rt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Rt.instance==null&&(Rt.instance=new Rt),Rt.instance}static registerSaveRouter(e){Rt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Rt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Rt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Rt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Rt.getInstance().loadRouters:Rt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},xC=e=>Rt.registerSaveRouter(e),bC=e=>Rt.registerLoadRouter(e),vC=e=>Rt.getSaveHandlers(e),wC=(e,t)=>Rt.getLoadHandlers(e,t),Zm="tensorflowjs",Ym=1,Co="models_store",qr="model_info_store";function G5(){if(!ee().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Jm(e){let t=e.result;t.createObjectStore(Co,{keyPath:"modelPath"}),t.createObjectStore(qr,{keyPath:"modelPath"})}var To=class{constructor(e){if(this.indexedDB=G5(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(Zm,Ym);r.onupgradeneeded=()=>Jm(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(Co,"readonly"),l=o.objectStore(Co).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=u=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=rc(t),i=a.transaction(qr,"readwrite"),l=i.objectStore(qr),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),c;u.onsuccess=()=>{c=a.transaction(Co,"readwrite");let h=c.objectStore(Co).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});h.onsuccess=()=>n({modelArtifactsInfo:o}),h.onerror=p=>{l=i.objectStore(qr);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(h.error)),f.onerror=m=>(a.close(),s(h.error))}},u.onerror=d=>(a.close(),s(u.error)),i.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};To.URL_SCHEME="indexeddb://";var j5=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(To.URL_SCHEME)?kC(e.slice(To.URL_SCHEME.length)):null;Rt.registerSaveRouter(j5);Rt.registerLoadRouter(j5);function kC(e){return new To(e)}function IC(e){return e.startsWith(To.URL_SCHEME)?e.slice(To.URL_SCHEME.length):e}var SC=class{constructor(){this.indexedDB=G5()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Zm,Ym);n.onupgradeneeded=()=>Jm(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(qr,"readonly"),o=r.objectStore(qr).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=IC(e),new Promise((t,n)=>{let s=this.indexedDB.open(Zm,Ym);s.onupgradeneeded=()=>Jm(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(qr,"readwrite"),o=a.objectStore(qr),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=o.delete(e),c=()=>{l=r.transaction(Co,"readwrite");let h=l.objectStore(Co).delete(e);h.onsuccess=()=>t(i.result.modelArtifactsInfo),h.onerror=p=>n(i.error)};u.onsuccess=c,u.onerror=d=>(c(),r.close(),n(i.error))}},i.onerror=u=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},xr="/",Il="tensorflowjs_models",q5="info",CC="model_topology",TC="weight_specs",NC="weight_data",EC="model_metadata";function X5(e){return{info:[Il,e,q5].join(xr),topology:[Il,e,CC].join(xr),weightSpecs:[Il,e,TC].join(xr),weightData:[Il,e,NC].join(xr),modelMetadata:[Il,e,EC].join(xr)}}function K5(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function RC(e){let t=e.split(xr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(xr)}function _C(e){return e.startsWith(No.URL_SCHEME)?e.slice(No.URL_SCHEME.length):e}var No=class{constructor(e){if(!ee().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=X5(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=rc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,pC(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw K5(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=fC(a),t}};No.URL_SCHEME="localstorage://";var Z5=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(No.URL_SCHEME)?$C(e.slice(No.URL_SCHEME.length)):null;Rt.registerSaveRouter(Z5);Rt.registerLoadRouter(Z5);function $C(e){return new No(e)}var DC=class{constructor(){M(ee().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Il+xr,n=xr+q5;for(let s=0;s"scheme must not be undefined or null."),e.endsWith(Sl)&&(e=e.slice(0,e.indexOf(Sl))),M(e.length>0,()=>"scheme must not be an empty string.");let n=is.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Ph(e){if(e.indexOf(Sl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${is.getSchemes().join(",")}`);return{scheme:e.split(Sl)[0],path:e.split(Sl)[1]}}async function Y5(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Rt.getLoadHandlers(e);M(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Rt.getSaveHandlers(t);M(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=Ph(e).scheme,l=Ph(e).path,u=i===Ph(e).scheme,c=await r.load();n&&u&&await is.getManager(i).removeModel(l);let d=await o.save(c);return n&&!u&&await is.getManager(i).removeModel(l),d.modelArtifactsInfo}async function FC(){let e=is.getSchemes(),t={};for(let n of e){let s=await is.getManager(n).listModels();for(let r in s){let a=n+Sl+r;t[a]=s[r]}}return t}async function OC(e){let t=Ph(e);return is.getManager(t.scheme).removeModel(t.path)}async function PC(e,t){return Y5(e,t,!1)}async function MC(e,t){return Y5(e,t,!0)}var zC=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(ee().get("IS_BROWSER")){ee().setPlatform("browser",new zC);try{is.registerManager(No.URL_SCHEME,new DC)}catch(e){}try{is.registerManager(To.URL_SCHEME,new SC)}catch(e){}}var LC={importFetch:()=>MI()},Qm,BC=class{constructor(){this.util=gi("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return ee().global.fetch!=null?ee().global.fetch(e,t):(Qm==null&&(Qm=LC.importFetch()),Qm(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};ee().get("IS_NODE")&&ee().setPlatform("node",new BC);function We(e,t="float32",n){return t=t||"float32",_m(e),new Ut(e,t,n)}function WC(e,t){let n=F(e,"x","cast");if(!g5(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return L.runKernel(Na,s,r)}var ce=V({cast_:WC});function VC(e){let n={x:F(e,"x","clone","string_or_numeric")};return L.runKernel(Va,n)}var Ds=V({clone_:VC});function J5(e,t=!1){console.log(e.toString(t))}P5();var UC={buffer:We,cast:ce,clone:Ds,print:J5};eC(UC);var _n={};Pe(_n,{browserFiles:()=>ZC,browserHTTPRequest:()=>t9,concatenateArrayBuffers:()=>Xm,copyModel:()=>PC,decodeWeights:()=>W5,encodeWeights:()=>dC,fromMemory:()=>s9,getLoadHandlers:()=>wC,getModelArtifactsForJSON:()=>Km,getModelArtifactsInfoForJSON:()=>rc,getSaveHandlers:()=>vC,http:()=>ng,isHTTPScheme:()=>tg,listModels:()=>FC,loadWeights:()=>YC,moveModel:()=>MC,registerLoadRouter:()=>bC,registerSaveRouter:()=>xC,removeModel:()=>OC,weightsLoaderFactory:()=>nx,withSaveHandler:()=>r9});var HC="model",GC=".json",jC=".weights.bin";function Q5(e){return new Promise(t=>setTimeout(t)).then(e)}var Cl=class{constructor(e){if(!ee().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Cl.URL_SCHEME)&&(e=e.slice(Cl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=HC),this.modelJsonFileName=e+GC,this.weightDataFileName=e+jC}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=H5(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await Q5(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await Q5(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:rc(e)}}}};Cl.URL_SCHEME="downloads://";var qC=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=Km(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,Xm(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>U5(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=U5(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},XC=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Cl.URL_SCHEME)?KC(e.slice(Cl.URL_SCHEME.length)):null;Rt.registerSaveRouter(XC);function KC(e="model"){return new Cl(e)}function ZC(e){return new qC(e)}function ex(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(u=>{let c=n+ ++r/e.length*(s-n);return t(c),u}),l);function o(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),M(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(a))}async function tx(e,t){t==null&&(t={});let n=t.fetchFunc==null?ee().platform.fetch:t.fetchFunc,s=e.map(d=>n(d,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await ex(s,t.onProgress,r,a)).map(d=>d.arrayBuffer()),l=.5,u=1;return t.onProgress==null?await Promise.all(i):await ex(i,t.onProgress,l,u)}async function YC(e,t="",n,s){return nx(o=>tx(o,{requestInit:s}))(e,t,n)}function nx(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((p,f)=>{let m=0;p.weights.forEach(g=>{let A="quantization"in g?g.quantization.dtype:g.dtype,y=jm[A]*Dt(g.shape),x=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:y})};s!=null?s.forEach((b,v)=>{b===g.name&&(x(),o[v]=!0)}):x(),i.push(g.name),m+=y})}),!o.every(p=>p)){let p=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}. +Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((p,f,m)=>(f&&p.push(m),p),[]),u=[];l.forEach(p=>{t[p].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),d={},h=0;return l.forEach(p=>{let f=t[p].paths.length,m=0;for(let b=0;b{let v=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),k=W5(v,[b.manifestEntry]);for(let w in k)d[w]=k[w]}),h+=f}),d}}var JC="application/octet-stream",QC="application/json",eg=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=ee().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=H5(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:QC}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:JC}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:rc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Km(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=e9(t),r=this.weightPathPrefix||n,a=[];for(let u of e)a.push(...u.weights);let o=[],i=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(c)):o.push(r+c+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await tx(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Xm(l)]}};eg.URL_SCHEME_REGEX=/^https?:\/\//;function e9(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function tg(e){return e.match(eg.URL_SCHEME_REGEX)!=null}var sx=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>tg(s)):n=tg(e),n)return ng(e,t)}return null};Rt.registerSaveRouter(sx);Rt.registerLoadRouter(sx);function ng(e,t){return new eg(e,t)}function t9(e,t){return ng(e,t)}var sg=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},n9=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function s9(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new sg(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new sg({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new sg({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function r9(e){return new n9(e)}var rx={};Pe(rx,{confusionMatrix:()=>u9});function a9(e,t,n=!1,s=!1){let r=F(e,"a","matMul"),a=F(t,"b","matMul");[r,a]=Ct(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return L.runKernel(Ta,o,i)}var Ve=V({matMul_:a9});function o9(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:F(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return L.runKernel(Qa,a,o)}var ac=V({oneHot_:o9});function i9(e,t){let n=F(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{M(a>=0&&a`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let s={x:n},r={perm:t};return L.runKernel(xo,s,r)}var Xe=V({transpose_:i9});function l9(e,t,n){let s=F(e,"labels","confusionMatrix"),r=F(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),M(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),M(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=ac(ce(s,"int32"),n),o=ac(ce(r,"int32"),n),i=Xe(a),l=Ve(i,o);return ce(l,"int32")}var u9=V({confusionMatrix_:l9}),ls={};Pe(ls,{fromPixels:()=>g9,fromPixelsAsync:()=>f9,toPixels:()=>m9});function Mh(e,t,n){if(wa(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=Ys(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return jr(e,t,s,n)}var Tl;function ax(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let f=2;if(r&&e.readyState element.")}if(Eh(Nh,L.backendName)!=null){let f={pixels:e},m={numChannels:t};return L.runKernel(Nh,f,m)}let[u,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;o?d=e.getContext("2d").getImageData(0,0,u,c).data:s||n?d=e.data:(a||r||i)&&(Tl==null&&(Tl=document.createElement("canvas").getContext("2d")),Tl.canvas.width=u,Tl.canvas.height=c,Tl.drawImage(e,0,0,u,c),d=Tl.getImageData(0,0,u,c).data);let h;if(t===4)h=new Int32Array(d);else{let f=u*c;h=new Int32Array(f*t);for(let m=0;m4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let u=0;u1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);a===1?(c[0]=p*i,c[1]=p*i,c[2]=p*i):c[h]=p*i}let d=u*4;l[d+0]=Math.round(c[0]),l[d+1]=Math.round(c[1]),l[d+2]=Math.round(c[2]),l[d+3]=Math.round(c[3])}if(t!=null){t.width=r,t.height=s;let u=t.getContext("2d"),c=new ImageData(l,r,s);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var g9=V({fromPixels_:ax}),rg={};Pe(rg,{prepareAndValidate:()=>ox});function ox(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(Dt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let d=0;dd/u),1].slice(0,a);return[l,o,u,c]}var ag={};Pe(ag,{calculateShapes:()=>ix,validateInput:()=>ig,validateUpdateShape:()=>og});function og(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank1?t.shape[s-1]:1,a=n.length,o=1;for(let d=r;dA9,computeFlatOffset:()=>x9,computeOutShape:()=>lx,getNormalizedAxes:()=>hx,isSliceContinous:()=>y9,maskToAxes:()=>zh,parseSliceParams:()=>yx,sliceInfo:()=>b9,startForAxis:()=>gx,startIndicesWithElidedDims:()=>px,stopForAxis:()=>Ax,stopIndicesWithElidedDims:()=>fx,stridesForAxis:()=>mx,stridesWithElidedDims:()=>ux});function A9(e,t,n){let s=e.shape.length;M(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),M(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function zh(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function lx(e,t,n){let s=[];for(let r=0;r0){let p=t[0],f=n+1;c=px(o,p,f,s,e),d=fx(i,p,f,r,e),h=ux(a,p,f,e)}else for(let p=0;p-1)a[i]=0;else{let l=cx(t,n,i),u=s[l];e&1<-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=cx(t,n,i),u=s[l];e&1<0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=_u(0,o,l-1),o}function Ax(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=_u(0,o,l):o=_u(-1,o,l-1),o}function y9(e,t,n){let s=n.length;for(let r=0;r1){s=r;break}for(let r=s+1;r0||n[r]!==e[r])return!1;return!0}function x9(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s{M(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.lengtho>=0?o:(M(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function b9(e,t,n,s,r,a,o,i,l){let u=t.slice(),c=n.slice(),d=s;s==null&&(d=new Array(u.length));let h=zh(o);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(o!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(o!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-u.length,f=zh(i),m=e.slice();f.forEach(w=>{u[w]=0,c[w]=1,m.splice(w,0,1)});let{begin:g,end:A,strides:y}=hx(m,h,p,u,c,d,r,a,o);u=g,c=A,d=y;let x=zh(l);x.forEach(w=>{c[w]=u[w]+1,d[w]=1});let b=lx(u,c,d),v=b.filter((w,C)=>x.indexOf(C)===-1);return{nonStrided:d.every(w=>w===1),$begin:u,$end:c,$strides:d,size:b,newShape:m,outShape:v}}var oe={};Pe(oe,{Serializable:()=>xx,SerializationMap:()=>Eo,registerClass:()=>Xr});var xx=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Eo=class{constructor(){this.classNameMap={}}static getMap(){return Eo.instance==null&&(Eo.instance=new Eo),Eo.instance}static register(e){Eo.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Xr(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Eo.register(e)}var bx={};Pe(bx,{TEST_EPSILON_FLOAT16:()=>vx,encodeStrings:()=>wx,expectArrayBuffersEqual:()=>T9,expectArraysClose:()=>w9,expectArraysEqual:()=>I9,expectNumbersClose:()=>S9,expectPromiseToFail:()=>k9,expectValuesInRange:()=>C9,testEpsilon:()=>lg});var v9=.001,vx=.1;function w9(e,t,n){return n==null&&(n=lg()),ug(e,t,(s,r)=>cg(s,r,n))}function lg(){return L.backend.floatPrecision()===32?v9:vx}function ug(e,t,n){let s=!0;if((un(e)||un(t))&&(s=!1),un(e)&&un(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=Ys(e),i=Ys(t);if(!yr(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=un(e)?e:ka(e),a=un(t)?t:ka(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}. Actual: ${r}. Expected: ${a}.`);for(let o=0;ot.fail(),()=>t())}function lC(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Dr(e)||Dr(e[0])||Dr(t)||Dr(t[0])?nA(e,n,(s,r)=>s==r):nA(e,t,(s,r)=>sA(s,r,0))}function uC(e,t,n){if(n==null&&(n=tA()),!sA(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function sA(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function cC(e,t,n){for(let s=0;sn)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function dC(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function fx(e){for(let t=0;tn.dispose())}function Kt(e){return L.keep(e)}function yC(e){return L.time(e)}function xC(e){return L.setBackend(e)}function bC(){return L.ready()}function vC(){return L.backendName}function wC(e){L.removeBackend(e)}function aA(e){return L.findBackend(e)}function kC(e){return L.findBackendFactory(e)}function wl(e,t,n=1){return L.registerBackend(e,t,n)}function mx(){return L.backend}function IC(e,t){ee().setPlatform(e,t)}function SC(e,t){let n=D(e,"a","add"),s=D(t,"b","add");[n,s]=It(n,s);let r={a:n,b:s};return L.runKernel(Pr,r)}var ae=V({add_:SC});function CC(e,t){let n=D(e,"a","floorDiv"),s=D(t,"b","floorDiv");[n,s]=It(n,s);let r={a:n,b:s};return L.runKernel(Da,r)}var oA=V({floorDiv_:CC});function TC(e,t){let n=D(e,"a","div"),s=D(t,"b","div");if([n,s]=It(n,s),n.dtype==="int32"&&s.dtype==="int32")return oA(n,s);let r={a:n,b:s},a={};return L.runKernel(_a,r,a)}var de=V({div_:TC});function NC(e,t){let n=D(e,"a","mul"),s=D(t,"b","mul");[n,s]=It(n,s);let r={a:n,b:s};return L.runKernel(qa,r)}var z=V({mul_:NC});function EC(e){let t=D(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return L.runKernel(Eu,n)}else{let n={x:t};return L.runKernel(pi,n)}}var Wt=V({abs_:EC});function RC(e){let n={x:D(e,"x","acos")};return L.runKernel(fi,n)}var Ax=V({acos_:RC});function _C(e){let n={x:D(e,"x","acosh")};return L.runKernel(mi,n)}var gx=V({acosh_:_C});function $C(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>D(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!fr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return L.runKernel(xa,s)}var Fh=V({addN_:$C});function FC(e,t=null,n=!1){let r={x:D(e,"x","all","bool")},a={axis:t,keepDims:n};return L.runKernel(Ai,r,a)}var iA=V({all_:FC});function DC(e,t=null,n=!1){let r={x:D(e,"x","any","bool")},a={axis:t,keepDims:n};return L.runKernel(gi,r,a)}var Dh=V({any_:DC});function OC(e,t=0){let s={x:D(e,"x","argMax")},r={axis:t};return L.runKernel(ba,s,r)}var Xs=V({argMax_:OC});function PC(e,t=0){let s={x:D(e,"x","argMin")},r={axis:t};return L.runKernel(Tu,s,r)}var yx=V({argMin_:PC});function MC(e){let n={x:D(e,"x","asin")};return L.runKernel(yi,n)}var xx=V({asin_:MC});function zC(e){let n={x:D(e,"x","asinh")};return L.runKernel(xi,n)}var bx=V({asinh_:zC});function LC(e){let n={x:D(e,"x","atan")};return L.runKernel(bi,n)}var vx=V({atan_:LC});function BC(e,t){let n=D(e,"a","atan2"),s=D(t,"b","atan2");[n,s]=It(n,s);let r={a:n,b:s};return L.runKernel(wi,r)}var wx=V({atan2_:BC});function WC(e){let n={x:D(e,"x","atanh")};return L.runKernel(vi,n)}var kx=V({atanh_:WC});function VC(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=Cx(r);return ec(e,i,n,a,s,null,null,l)}function Ix(e,t,n,s,r,a,o="channelsLast"){let[i,l]=Oh(t),u;if(o==="channelsLast")u=[i,l,e[3],e[3]];else if(o==="channelsFirst")u=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return ec(e,u,n,s,r,a,!1,o)}function UC(e,t,n,s,r,a,o="NDHWC"){let[i,l,u]=uA(t),c,d;if(o==="NDHWC")d="channelsLast",c=[i,l,u,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",c=[i,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Sx(e,c,n,s,r,!1,d,a)}function ec(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,u,c,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,d]=e;else if(i==="channelsFirst")[l,d,u,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,p,,f]=t,[m,A]=Oh(n),[g,y]=Oh(s),x=kl(h,g),b=kl(p,y),{padInfo:v,outHeight:k,outWidth:w}=jC(r,u,c,m,A,x,b,a,i),C=o?f*d:f,E;return i==="channelsFirst"?E=[l,C,k,w]:i==="channelsLast"&&(E=[l,k,w,C]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:d,outHeight:k,outWidth:w,outChannels:C,padInfo:v,strideHeight:m,strideWidth:A,filterHeight:h,filterWidth:p,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:g,dilationWidth:y,inShape:e,outShape:E,filterShape:t}}function Sx(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,u,c,d,h]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,d,h]=e;else if(o==="channelsFirst")[l,h,u,c,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[p,f,m,,A]=t,[g,y,x]=uA(n),[b,v,k]=uA(s),w=kl(p,b),C=kl(f,v),E=kl(m,k),{padInfo:O,outDepth:R,outHeight:_,outWidth:N}=qC(r,u,c,d,g,y,x,w,C,E,i),P=a?A*h:A,W;return o==="channelsFirst"?W=[l,P,R,_,N]:o==="channelsLast"&&(W=[l,R,_,N,P]),{batchSize:l,dataFormat:o,inDepth:u,inHeight:c,inWidth:d,inChannels:h,outDepth:R,outHeight:_,outWidth:N,outChannels:P,padInfo:O,strideDepth:g,strideHeight:y,strideWidth:x,filterDepth:p,filterHeight:f,filterWidth:m,effectiveFilterDepth:w,effectiveFilterHeight:C,effectiveFilterWidth:E,dilationDepth:b,dilationHeight:v,dilationWidth:k,inShape:e,outShape:W,filterShape:t}}function HC(e,t,n,s,r){s==null&&(s=lA(e,t,n));let a=e[0],o=e[1],i=So((a-t+2*s)/n+1,r),l=So((o-t+2*s)/n+1,r);return[i,l]}function GC(e,t,n,s,r,a){r==null&&(r=lA(e,t,s));let o=e[0],i=e[1],l=e[2],u=So((o-t+2*r)/s+1,a),c=So((i-t+2*r)/s+1,a),d=So((l-t+2*r)/s+1,a);return[u,c,d,n]}function lA(e,t,n,s=1){let r=kl(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function Oh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function uA(e){return typeof e=="number"?[e,e,e]:e}function kl(e,t){return t<=1?e:e+(e-1)*(t-1)}function jC(e,t,n,s,r,a,o,i,l){let u,c,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let p=HC([t,n],a,s,e,i);c=p[0],d=p[1]}else if(e==="same"){c=Math.ceil(t/s),d=Math.ceil(n/r);let h=Math.max(0,(c-1)*s+a-t),p=Math.max(0,(d-1)*r+o-n),f=Math.floor(h/2),m=h-f,A=Math.floor(p/2),g=p-A;u={top:f,bottom:m,left:A,right:g,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/s),d=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let h=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:h,bottom:p,left:f,right:m,type:h===0&&p===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=So((t-a+h+p)/s+1,i),d=So((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:d}}function qC(e,t,n,s,r,a,o,i,l,u,c){let d,h,p,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let A=GC([t,n,s,1],i,1,r,e,c);h=A[0],p=A[1],f=A[2]}else if(e==="same"){h=Math.ceil(t/r),p=Math.ceil(n/a),f=Math.ceil(s/o);let m=(h-1)*r+i-t,A=(p-1)*a+l-n,g=(f-1)*o+u-s,y=Math.floor(m/2),x=m-y,b=Math.floor(A/2),v=A-b,k=Math.floor(g/2),w=g-k;d={top:b,bottom:v,left:k,right:w,front:y,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},h=Math.ceil((t-i+1)/r),p=Math.ceil((n-l+1)/a),f=Math.ceil((s-u+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:h,outHeight:p,outWidth:f}}function So(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Gr(e){let[t,n,s]=Oh(e);return t===1&&n===1&&s===1}function Ks(e,t){return Gr(e)||Gr(t)}function Cx(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function XC(e,t){let s={x:D(e,"x","reshape","string_or_numeric")},r={shape:t};return L.runKernel(Qi,s,r)}var U=V({reshape_:XC});function KC(e,t,n,s,r){let a=D(e,"x","avgPool","float32"),o=1;M(Ks(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),r!=null&&M(qt(s),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=L.runKernel(va,u,c);return d=ce(d,a.dtype),l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Ph=V({avgPool_:KC});function ZC(e,t,n,s,r,a="NDHWC"){let o=D(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&M(qt(s),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=L.runKernel(Nu,u,c);return d=ce(d,i.dtype),l?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var cA=V({avgPool3d_:ZC});function YC(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=Yu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor - with dtype ${a.dtype}. `)}),n.length===1)return Es(n[0]);let s=n,r={axis:t};return L.runKernel(Ii,s,r)}var ht=V({concat_:YC});function JC(e){let n={x:D(e,"x","sigmoid")};return L.runKernel(ao,n)}var Bn=V({sigmoid_:JC});function QC(e,t,n){let s=D(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return L.runKernel(sl,r,a)}var Re=V({slice_:QC});function eT(e){let n={x:D(e,"x","tanh")};return L.runKernel(po,n)}var Il=V({tanh_:eT});function tT(e,t,n,s,r,a){let o=D(e,"forgetBias","basicLSTMCell"),i=D(t,"lstmKernel","basicLSTMCell"),l=D(n,"lstmBias","basicLSTMCell"),u=D(s,"data","basicLSTMCell"),c=D(r,"c","basicLSTMCell"),d=D(a,"h","basicLSTMCell"),h=ht([u,d],1),p=We(h,i),f=ae(p,l),m=f.shape[0],A=f.shape[1]/4,g=[m,A],y=Re(f,[0,0],g),x=Re(f,[0,A],g),b=Re(f,[0,A*2],g),v=Re(f,[0,A*3],g),k=ae(z(Bn(y),Il(x)),z(c,Bn(ae(o,b)))),w=z(Il(k),Bn(v));return[k,w]}var nT=V({basicLSTMCell_:tT});function sT(e,t,n){let s=D(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);M(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(s.shape[0]%r==0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return L.runKernel(ki,a,o)}var Mh=V({batchToSpaceND_:sT});function rT(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function aT(e,t,n,s,r,a){a==null&&(a=.001);let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),u;r!=null&&(u=D(r,"scale","batchNorm"));let c;s!=null&&(c=D(s,"offset","batchNorm")),M(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:rT(o),scale:u,offset:c,mean:i,variance:l},p={varianceEpsilon:a},f=L.runKernel(Oa,h,p);return U(f,o.shape)}var Sl=V({batchNorm_:aT});function oT(e,t,n,s,r,a){let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),u;r!=null&&(u=D(r,"scale","batchNorm"));let c;return s!=null&&(c=D(s,"offset","batchNorm")),M(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),M(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Sl(o,i,l,c,u,a)}var Tx=V({batchNorm2d_:oT});function iT(e,t,n,s,r,a){let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),u;r!=null&&(u=D(r,"scale","batchNorm"));let c;return s!=null&&(c=D(s,"offset","batchNorm")),M(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),M(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Sl(o,i,l,c,u,a)}var Nx=V({batchNorm3d_:iT});function lT(e,t,n,s,r,a){let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),u;r!=null&&(u=D(r,"scale","batchNorm"));let c;return s!=null&&(c=D(s,"offset","batchNorm")),M(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),M(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Sl(o,i,l,c,u,a)}var Ex=V({batchNorm4d_:lT});function uT(e,t,n){let s=D(e,"x","bincount"),r=D(t,"weights","bincount");M(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return L.runKernel(Wd,a,o)}var dA=V({bincount_:uT});function cT(e,t){let n=D(e,"broadcastTo","x"),s=n.shape;if(t.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let u=n.shape.slice();for(;u.length=0;u--)if(r[u]===t[u])a[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Es(n);let i={x:n},l={reps:a};return L.runKernel(zr,i,l)}var tc=V({broadcastTo_:cT});function dT(e){let n={x:D(e,"x","ceil")};return L.runKernel(Ia,n)}var Rx=V({ceil_:dT});function hT(e,t,n){let s=D(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return L.runKernel(Mr,r,a)}var Wn=V({clipByValue_:hT});function pT(e){return ht(e,0)}var _x=V({concat1d_:pT});function fT(e,t){return ht(e,t)}var Cl=V({concat2d_:fT});function mT(e,t){return ht(e,t)}var $x=V({concat3d_:mT});function AT(e,t){return ht(e,t)}var Fx=V({concat4d_:AT});function gT(e,t,n,s,r="NHWC",a=[1,1],o){let i=D(e,"x","conv2d"),l=D(t,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&M(qt(s),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d=r==="NHWC"?u.shape[3]:u.shape[1];M(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),M(Ks(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let h={x:u,filter:l},p={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=L.runKernel(Sa,h,p);return c?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var jr=V({conv2d_:gT});function yT(e,t,n,s,r="NWC",a=1,o){let i=D(e,"x","conv1d"),l=D(t,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1]])),M(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&M(qt(s),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),M(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(Ks(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),M(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=U(l,[1,l.shape[0],l.shape[1],l.shape[2]]),h=U(u,[u.shape[0],1,u.shape[1],u.shape[2]]),A=jr(h,d,[1,n],s,"NHWC",[1,a],o);return c?U(A,[A.shape[2],A.shape[3]]):U(A,[A.shape[0],A.shape[2],A.shape[3]])}var hA=V({conv1d_:yT});function xT(e,t,n,s,r,a="NHWC",o){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,u=!1;t.rank===3&&(u=!0,l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),M(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];M(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),M(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&M(qt(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let h={dy:l,filter:n},p={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=L.runKernel(Ca,h,p);return u?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var pA=V({conv2DBackpropInput_:xT});function bT(e,t,n,s,r,a){let o=D(e,"x","conv2dTranspose"),i=D(t,"filter","conv2dTranspose");return pA(n,o,i,s,r,"NHWC",a)}var fA=V({conv2dTranspose_:bT});function vT(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=D(e,"x","conv3d"),i=D(t,"filter","conv3d"),l=o,u=!1;o.rank===4&&(u=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),M(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),M(Ks(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let c={x:l,filter:i},d={strides:n,pad:s,dataFormat:r,dilations:a},h=L.runKernel(Ru,c,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var mA=V({conv3d_:vT});function wT(e,t,n,s,r){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],u=o.shape[4];M(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),M(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:o,filter:n},d={pad:r,strides:s,inputShape:a},h=L.runKernel(Gd,c,d);return i?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Dx=V({conv3DBackpropInput_:wT});function kT(e,t,n,s,r){let a=D(e,"x","conv3dTranspose"),o=D(t,"filter","conv3dTranspose");return Dx(n,a,o,s,r)}var Ox=V({conv3dTranspose_:kT});function IT(e){let n={x:D(e,"x","cos")};return L.runKernel(Ta,n)}var zh=V({cos_:IT});function ST(e){let n={x:D(e,"x","cosh")};return L.runKernel(Na,n)}var AA=V({cosh_:ST});function CT(e,t=0,n=!1,s=!1){let a={x:D(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return L.runKernel(Ea,a,o)}var gA=V({cumsum_:CT});function TT(e,t,n,s=!1){let r=D(e,"x","denseBincount"),a=D(t,"weights","denseBincount");M(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),M(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return L.runKernel(jd,o,i)}var Px=V({denseBincount_:TT});function NT(e,t,n="NHWC"){let s=D(e,"x","depthToSpace"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];M(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying +Expected: ${a}.`)}}function k9(e,t){e().then(()=>t.fail(),()=>t())}function I9(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return zr(e)||zr(e[0])||zr(t)||zr(t[0])?ug(e,n,(s,r)=>s==r):ug(e,t,(s,r)=>cg(s,r,0))}function S9(e,t,n){if(n==null&&(n=lg()),!cg(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function cg(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function C9(e,t,n){for(let s=0;sn)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function T9(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function wx(e){for(let t=0;tn.dispose())}function Jt(e){return L.keep(e)}function F9(e){return L.time(e)}function O9(e){return L.setBackend(e)}function P9(){return L.ready()}function M9(){return L.backendName}function z9(e){L.removeBackend(e)}function hg(e){return L.findBackend(e)}function L9(e){return L.findBackendFactory(e)}function Nl(e,t,n=1){return L.registerBackend(e,t,n)}function kx(){return L.backend}function B9(e,t){ee().setPlatform(e,t)}function W9(e,t){let n=F(e,"a","add"),s=F(t,"b","add");[n,s]=Ct(n,s);let r={a:n,b:s};return L.runKernel(Br,r)}var ae=V({add_:W9});function V9(e,t){let n=F(e,"a","floorDiv"),s=F(t,"b","floorDiv");[n,s]=Ct(n,s);let r={a:n,b:s};return L.runKernel(La,r)}var pg=V({floorDiv_:V9});function U9(e,t){let n=F(e,"a","div"),s=F(t,"b","div");if([n,s]=Ct(n,s),n.dtype==="int32"&&s.dtype==="int32")return pg(n,s);let r={a:n,b:s},a={};return L.runKernel(Pa,r,a)}var de=V({div_:U9});function H9(e,t){let n=F(e,"a","mul"),s=F(t,"b","mul");[n,s]=Ct(n,s);let r={a:n,b:s};return L.runKernel(Ja,r)}var z=V({mul_:H9});function G9(e){let t=F(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return L.runKernel(Ou,n)}else{let n={x:t};return L.runKernel(xi,n)}}var Ht=V({abs_:G9});function j9(e){let n={x:F(e,"x","acos")};return L.runKernel(bi,n)}var Ix=V({acos_:j9});function q9(e){let n={x:F(e,"x","acosh")};return L.runKernel(vi,n)}var Sx=V({acosh_:q9});function X9(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>F(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!yr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return L.runKernel(Ia,s)}var Bh=V({addN_:X9});function K9(e,t=null,n=!1){let r={x:F(e,"x","all","bool")},a={axis:t,keepDims:n};return L.runKernel(wi,r,a)}var fg=V({all_:K9});function Z9(e,t=null,n=!1){let r={x:F(e,"x","any","bool")},a={axis:t,keepDims:n};return L.runKernel(ki,r,a)}var Wh=V({any_:Z9});function Y9(e,t=0){let s={x:F(e,"x","argMax")},r={axis:t};return L.runKernel(Sa,s,r)}var Js=V({argMax_:Y9});function J9(e,t=0){let s={x:F(e,"x","argMin")},r={axis:t};return L.runKernel(Du,s,r)}var Cx=V({argMin_:J9});function Q9(e){let n={x:F(e,"x","asin")};return L.runKernel(Ii,n)}var Tx=V({asin_:Q9});function eT(e){let n={x:F(e,"x","asinh")};return L.runKernel(Si,n)}var Nx=V({asinh_:eT});function tT(e){let n={x:F(e,"x","atan")};return L.runKernel(Ci,n)}var Ex=V({atan_:tT});function nT(e,t){let n=F(e,"a","atan2"),s=F(t,"b","atan2");[n,s]=Ct(n,s);let r={a:n,b:s};return L.runKernel(Ni,r)}var Rx=V({atan2_:nT});function sT(e){let n={x:F(e,"x","atanh")};return L.runKernel(Ti,n)}var _x=V({atanh_:sT});function rT(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=Fx(r);return oc(e,i,n,a,s,null,null,l)}function $x(e,t,n,s,r,a,o="channelsLast"){let[i,l]=Vh(t),u;if(o==="channelsLast")u=[i,l,e[3],e[3]];else if(o==="channelsFirst")u=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return oc(e,u,n,s,r,a,!1,o)}function aT(e,t,n,s,r,a,o="NDHWC"){let[i,l,u]=gg(t),c,d;if(o==="NDHWC")d="channelsLast",c=[i,l,u,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",c=[i,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Dx(e,c,n,s,r,!1,d,a)}function oc(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,u,c,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,d]=e;else if(i==="channelsFirst")[l,d,u,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,p,,f]=t,[m,g]=Vh(n),[A,y]=Vh(s),x=El(h,A),b=El(p,y),{padInfo:v,outHeight:k,outWidth:w}=lT(r,u,c,m,g,x,b,a,i),C=o?f*d:f,R;return i==="channelsFirst"?R=[l,C,k,w]:i==="channelsLast"&&(R=[l,k,w,C]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:d,outHeight:k,outWidth:w,outChannels:C,padInfo:v,strideHeight:m,strideWidth:g,filterHeight:h,filterWidth:p,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:A,dilationWidth:y,inShape:e,outShape:R,filterShape:t}}function Dx(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,u,c,d,h]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,d,h]=e;else if(o==="channelsFirst")[l,h,u,c,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[p,f,m,,g]=t,[A,y,x]=gg(n),[b,v,k]=gg(s),w=El(p,b),C=El(f,v),R=El(m,k),{padInfo:P,outDepth:E,outHeight:_,outWidth:T}=uT(r,u,c,d,A,y,x,w,C,R,i),O=a?g*h:g,W;return o==="channelsFirst"?W=[l,O,E,_,T]:o==="channelsLast"&&(W=[l,E,_,T,O]),{batchSize:l,dataFormat:o,inDepth:u,inHeight:c,inWidth:d,inChannels:h,outDepth:E,outHeight:_,outWidth:T,outChannels:O,padInfo:P,strideDepth:A,strideHeight:y,strideWidth:x,filterDepth:p,filterHeight:f,filterWidth:m,effectiveFilterDepth:w,effectiveFilterHeight:C,effectiveFilterWidth:R,dilationDepth:b,dilationHeight:v,dilationWidth:k,inShape:e,outShape:W,filterShape:t}}function oT(e,t,n,s,r){s==null&&(s=mg(e,t,n));let a=e[0],o=e[1],i=Ro((a-t+2*s)/n+1,r),l=Ro((o-t+2*s)/n+1,r);return[i,l]}function iT(e,t,n,s,r,a){r==null&&(r=mg(e,t,s));let o=e[0],i=e[1],l=e[2],u=Ro((o-t+2*r)/s+1,a),c=Ro((i-t+2*r)/s+1,a),d=Ro((l-t+2*r)/s+1,a);return[u,c,d,n]}function mg(e,t,n,s=1){let r=El(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function Vh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function gg(e){return typeof e=="number"?[e,e,e]:e}function El(e,t){return t<=1?e:e+(e-1)*(t-1)}function lT(e,t,n,s,r,a,o,i,l){let u,c,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let p=oT([t,n],a,s,e,i);c=p[0],d=p[1]}else if(e==="same"){c=Math.ceil(t/s),d=Math.ceil(n/r);let h=Math.max(0,(c-1)*s+a-t),p=Math.max(0,(d-1)*r+o-n),f=Math.floor(h/2),m=h-f,g=Math.floor(p/2),A=p-g;u={top:f,bottom:m,left:g,right:A,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/s),d=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let h=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:h,bottom:p,left:f,right:m,type:h===0&&p===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=Ro((t-a+h+p)/s+1,i),d=Ro((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:d}}function uT(e,t,n,s,r,a,o,i,l,u,c){let d,h,p,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=iT([t,n,s,1],i,1,r,e,c);h=g[0],p=g[1],f=g[2]}else if(e==="same"){h=Math.ceil(t/r),p=Math.ceil(n/a),f=Math.ceil(s/o);let m=(h-1)*r+i-t,g=(p-1)*a+l-n,A=(f-1)*o+u-s,y=Math.floor(m/2),x=m-y,b=Math.floor(g/2),v=g-b,k=Math.floor(A/2),w=A-k;d={top:b,bottom:v,left:k,right:w,front:y,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},h=Math.ceil((t-i+1)/r),p=Math.ceil((n-l+1)/a),f=Math.ceil((s-u+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:h,outHeight:p,outWidth:f}}function Ro(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Kr(e){let[t,n,s]=Vh(e);return t===1&&n===1&&s===1}function Qs(e,t){return Kr(e)||Kr(t)}function Fx(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function cT(e,t){let s={x:F(e,"x","reshape","string_or_numeric")},r={shape:t};return L.runKernel(al,s,r)}var U=V({reshape_:cT});function dT(e,t,n,s,r){let a=F(e,"x","avgPool","float32"),o=1;M(Qs(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),r!=null&&M(Zt(s),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=L.runKernel(Ca,u,c);return d=ce(d,a.dtype),l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Uh=V({avgPool_:dT});function hT(e,t,n,s,r,a="NDHWC"){let o=F(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&M(Zt(s),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=L.runKernel(Fu,u,c);return d=ce(d,i.dtype),l?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Ag=V({avgPool3d_:hT});function pT(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=sc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor + with dtype ${a.dtype}. `)}),n.length===1)return Ds(n[0]);let s=n,r={axis:t};return L.runKernel(Ri,s,r)}var ft=V({concat_:pT});function fT(e){let n={x:F(e,"x","sigmoid")};return L.runKernel(co,n)}var Hn=V({sigmoid_:fT});function mT(e,t,n){let s=F(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return L.runKernel(ul,r,a)}var Re=V({slice_:mT});function gT(e){let n={x:F(e,"x","tanh")};return L.runKernel(yo,n)}var Rl=V({tanh_:gT});function AT(e,t,n,s,r,a){let o=F(e,"forgetBias","basicLSTMCell"),i=F(t,"lstmKernel","basicLSTMCell"),l=F(n,"lstmBias","basicLSTMCell"),u=F(s,"data","basicLSTMCell"),c=F(r,"c","basicLSTMCell"),d=F(a,"h","basicLSTMCell"),h=ft([u,d],1),p=Ve(h,i),f=ae(p,l),m=f.shape[0],g=f.shape[1]/4,A=[m,g],y=Re(f,[0,0],A),x=Re(f,[0,g],A),b=Re(f,[0,g*2],A),v=Re(f,[0,g*3],A),k=ae(z(Hn(y),Rl(x)),z(c,Hn(ae(o,b)))),w=z(Rl(k),Hn(v));return[k,w]}var yT=V({basicLSTMCell_:AT});function xT(e,t,n){let s=F(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);M(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(s.shape[0]%r==0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return L.runKernel(Ei,a,o)}var Hh=V({batchToSpaceND_:xT});function bT(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function vT(e,t,n,s,r,a){a==null&&(a=.001);let o=F(e,"x","batchNorm"),i=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let c;s!=null&&(c=F(s,"offset","batchNorm")),M(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:bT(o),scale:u,offset:c,mean:i,variance:l},p={varianceEpsilon:a},f=L.runKernel(Ba,h,p);return U(f,o.shape)}var _l=V({batchNorm_:vT});function wT(e,t,n,s,r,a){let o=F(e,"x","batchNorm"),i=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let c;return s!=null&&(c=F(s,"offset","batchNorm")),M(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),M(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),_l(o,i,l,c,u,a)}var Ox=V({batchNorm2d_:wT});function kT(e,t,n,s,r,a){let o=F(e,"x","batchNorm"),i=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let c;return s!=null&&(c=F(s,"offset","batchNorm")),M(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),M(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),_l(o,i,l,c,u,a)}var Px=V({batchNorm3d_:kT});function IT(e,t,n,s,r,a){let o=F(e,"x","batchNorm"),i=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let c;return s!=null&&(c=F(s,"offset","batchNorm")),M(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),M(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),_l(o,i,l,c,u,a)}var Mx=V({batchNorm4d_:IT});function ST(e,t,n){let s=F(e,"x","bincount"),r=F(t,"weights","bincount");M(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return L.runKernel(Xd,a,o)}var yg=V({bincount_:ST});function CT(e,t){let n=F(e,"broadcastTo","x"),s=n.shape;if(t.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let u=n.shape.slice();for(;u.length=0;u--)if(r[u]===t[u])a[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Ds(n);let i={x:n},l={reps:a};return L.runKernel(Vr,i,l)}var ic=V({broadcastTo_:CT});function TT(e){let n={x:F(e,"x","ceil")};return L.runKernel(Ea,n)}var zx=V({ceil_:TT});function NT(e,t,n){let s=F(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return L.runKernel(Wr,r,a)}var Gn=V({clipByValue_:NT});function ET(e){return ft(e,0)}var Lx=V({concat1d_:ET});function RT(e,t){return ft(e,t)}var $l=V({concat2d_:RT});function _T(e,t){return ft(e,t)}var Bx=V({concat3d_:_T});function $T(e,t){return ft(e,t)}var Wx=V({concat4d_:$T});function DT(e,t,n,s,r="NHWC",a=[1,1],o){let i=F(e,"x","conv2d"),l=F(t,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&M(Zt(s),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d=r==="NHWC"?u.shape[3]:u.shape[1];M(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),M(Qs(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let h={x:u,filter:l},p={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=L.runKernel(Ra,h,p);return c?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Zr=V({conv2d_:DT});function FT(e,t,n,s,r="NWC",a=1,o){let i=F(e,"x","conv1d"),l=F(t,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1]])),M(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&M(Zt(s),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),M(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(Qs(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),M(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=U(l,[1,l.shape[0],l.shape[1],l.shape[2]]),h=U(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=Zr(h,d,[1,n],s,"NHWC",[1,a],o);return c?U(g,[g.shape[2],g.shape[3]]):U(g,[g.shape[0],g.shape[2],g.shape[3]])}var xg=V({conv1d_:FT});function OT(e,t,n,s,r,a="NHWC",o){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,u=!1;t.rank===3&&(u=!0,l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),M(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];M(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),M(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&M(Zt(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let h={dy:l,filter:n},p={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=L.runKernel(_a,h,p);return u?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var bg=V({conv2DBackpropInput_:OT});function PT(e,t,n,s,r,a){let o=F(e,"x","conv2dTranspose"),i=F(t,"filter","conv2dTranspose");return bg(n,o,i,s,r,"NHWC",a)}var vg=V({conv2dTranspose_:PT});function MT(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=F(e,"x","conv3d"),i=F(t,"filter","conv3d"),l=o,u=!1;o.rank===4&&(u=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),M(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),M(Qs(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let c={x:l,filter:i},d={strides:n,pad:s,dataFormat:r,dilations:a},h=L.runKernel(Pu,c,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var wg=V({conv3d_:MT});function zT(e,t,n,s,r){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],u=o.shape[4];M(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),M(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:o,filter:n},d={pad:r,strides:s,inputShape:a},h=L.runKernel(Jd,c,d);return i?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Vx=V({conv3DBackpropInput_:zT});function LT(e,t,n,s,r){let a=F(e,"x","conv3dTranspose"),o=F(t,"filter","conv3dTranspose");return Vx(n,a,o,s,r)}var Ux=V({conv3dTranspose_:LT});function BT(e){let n={x:F(e,"x","cos")};return L.runKernel($a,n)}var Gh=V({cos_:BT});function WT(e){let n={x:F(e,"x","cosh")};return L.runKernel(Da,n)}var kg=V({cosh_:WT});function VT(e,t=0,n=!1,s=!1){let a={x:F(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return L.runKernel(Fa,a,o)}var Ig=V({cumsum_:VT});function UT(e,t,n,s=!1){let r=F(e,"x","denseBincount"),a=F(t,"weights","denseBincount");M(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),M(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return L.runKernel(Qd,o,i)}var Hx=V({denseBincount_:UT});function HT(e,t,n="NHWC"){let s=F(e,"x","depthToSpace"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];M(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${r} and ${t} for depthToSpace with input shape ${s.shape}`),M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${a} and ${t} for depthToSpace with input shape - ${s.shape}`),M(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return L.runKernel(Ci,i,l)}var Mx=V({depthToSpace_:NT});function ET(e,t,n,s,r="NHWC",a=[1,1],o){let i=D(e,"x","depthwiseConv2d"),l=D(t,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&M(qt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},p=L.runKernel(Ra,d,h);return c?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var nc=V({depthwiseConv2d_:ET});function RT(e){let n={x:D(e,"x","diag")};return L.runKernel(Kd,n)}var _T=V({diag_:RT});function $T(e,t,n,s,r=[1,1],a="NHWC"){let o=D(e,"x","dilation2d"),i=D(t,"filter","dilation2d");M(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),M(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),M(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,u=!1;o.rank===3&&(l=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=!0);let c={x:l,filter:i},d={strides:n,pad:s,dilations:r},h=L.runKernel(_u,c,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var zx=V({dilation2d_:$T});function FT(e,t){let n=e.length,s=[];for(let r=0;r1&&o===1&&s.unshift(a)}return s}function Vt(e,t){let n=[];for(let s=0;s1)&&n.unshift(a)}return n}function mt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(M(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=U(n,[1,-1]),i=U(s,[-1,1]),l=We(o,i);return U(l,[])}else if(n.rank===1&&s.rank===2){let o=U(n,[1,-1]),i=U(s,[s.shape[0],s.shape[1]]),l=We(o,i);return U(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=U(s,[-1,1]),i=We(n,o);return U(i,[i.size])}else{let o=U(s,[s.shape[0],s.shape[1]]);return We(n,o)}}var LT=V({dot_:zT});function BT(e,...t){let n=t.map((r,a)=>D(r,`tensors${a}`,"einsum")),s={equation:e};return L.runKernel(Jd,n,s)}var Bx=V({einsum_:BT});function WT(e){let n={x:D(e,"x","elu")};return L.runKernel(Ti,n)}var sc=V({elu_:WT});function VT(e){let t=D(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ce(t,"float32"));let n={x:t};return L.runKernel(Ni,n)}var Wx=V({erf_:VT});function UT(e){let n={x:D(e,"x","exp")};return L.runKernel($a,n)}var os=V({exp_:UT});function HT(e,t=0){let n=D(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return L.runKernel(Ri,s,r)}var Ft=V({expandDims_:HT});function GT(e){let n={x:D(e,"x","expm1")};return L.runKernel(_i,n)}var Vx=V({expm1_:GT});function jT(e,t){let n=D(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return L.runKernel(zr,s,r)}var Rs=V({tile_:jT});function qT(e,t,n,s="float32"){t==null&&(t=e);let r=Be([e,t],s),a=e<=t?e:t;for(let i=0;i`Error in localResponseNormalization: x must be rank 3 or 4 but got - rank ${a.rank}.`),M(qt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=U(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},u={depthRadius:t,bias:n,alpha:s,beta:r},c=L.runKernel(Ou,l,u);return i?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Gx=V({localResponseNormalization_:iN});function lN(e){let n={x:D(e,"x","log")};return L.runKernel(La,n)}var is=V({log_:lN});function uN(e){let n={x:D(e,"x","log1p")};return L.runKernel(Wi,n)}var Wh=V({log1p_:uN});function cN(e){return M(Or(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=D(t,"x","tf.grad","string_or_numeric"),r=n!=null?D(n,"dy","tf.grad"):null;return L.tidy(()=>{let{value:a,grads:o}=L.gradients(()=>e(s),[s],r);return r!=null&&fn(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Vh(o),o[0]})}}function dN(e){return M(Or(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=Yu(t,"args","tf.grads","string_or_numeric"),r=n!=null?D(n,"dy","tf.grads"):null;return L.tidy(()=>{let{value:a,grads:o}=L.gradients(()=>e(...s),s,r);return r!=null&&fn(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Vh(o),o})}}function hN(e){return M(Or(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof Ue,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof Ue,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=L.gradients(()=>e(t),[t],n);return Vh(s),{grad:s[0],value:r}}}function pN(e){return M(Or(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(r=>r instanceof Ue),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof Ue,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=L.gradients(()=>e(...t),t,n);return n!=null&&fn(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Vh(s.grads),s}}function jx(e,t){M(Or(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(u=>u instanceof Xu),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in L.registeredVariables)t.push(L.registeredVariables[u])}let s=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=L.gradients(e,t,null,a);M(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),s!=null&&s.forEach(u=>l[u.name]=null),{value:o,grads:l}}function Zs(e){return L.customGrad(e)}function Vh(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that - the f you passed encloses all operations that lead from x to y.`)}function fN(e){let n={x:D(e,"x","neg")};return L.runKernel(Hi,n)}var St=V({neg_:fN});function mN(e){let n={x:D(e,"x","softplus")};return L.runKernel(ol,n)}var El=V({softplus_:mN});function AN(e){let t=D(e,"x","logSigmoid");return Zs(s=>({value:St(El(St(s))),gradFunc:o=>z(o,Bn(St(s)))}))(t)}var gN=V({logSigmoid_:AN});function yN(e,t=null,n=!1){let r={x:D(e,"x","max")},a={reductionIndices:t,keepDims:n};return L.runKernel(Ba,r,a)}var ls=V({max_:yN});function xN(e,t){let n=D(e,"a","sub"),s=D(t,"b","sub");[n,s]=It(n,s);let r={a:n,b:s};return L.runKernel(co,r)}var Ae=V({sub_:xN});function bN(e,t=null,n=!1){let s=D(e,"x","sum");s.dtype==="bool"&&(s=ce(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return L.runKernel(io,r,a)}var ve=V({sum_:bN});function vN(e,t=-1){let n=D(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Zs((r,a)=>{let o=!0,i=ls(r,t,!0),l=Ae(r,i),u=Ae(ce(l,"float32"),is(ve(os(l),t,o)));return a([u]),{value:u,gradFunc:(d,h)=>{let[p]=h,f=!0,m=os(p);return Ae(d,z(ve(d,t,f),m))}}})(n)}var bA=V({logSoftmax_:vN});function vA(e,t){for(let n=0;ne[a]);return[n,r]}function No(e,t){let n=t.map(s=>1);return qx(e,n,t)}function wN(e,t,n){M(vA(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Kx(e,t){if(vA(e,t))return null;let n=[];for(let s=0;sn.push(s)),n}function wA(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function kN(e,t){let n=[];for(let s=t-e;s`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),M(Ks(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),r!=null&&M(qt(s),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=L.runKernel(Va,u,c);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Hh=V({maxPool_:RN});function _N(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=D(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&M(qt(s),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=L.runKernel(Pu,u,c);return l?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var IA=V({maxPool3d_:_N});function $N(e,t,n,s,r=!1){let o={x:D(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=L.runKernel(ih,o,i);return{result:l[0],indexes:l[1]}}var Yx=V({maxPoolWithArgmax_:$N});function FN(e,t){let n=D(e,"a","maximum"),s=D(t,"b","maximum");[n,s]=It(n,s),n.dtype==="bool"&&(n=ce(n,"int32"),s=ce(s,"int32")),mt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Wa,r)}var gr=V({maximum_:FN});function DN(e,t=null,n=!1){let r={x:D(e,"x","mean")},a={axis:t,keepDims:n};return L.runKernel(Ua,r,a)}var Et=V({mean_:DN});function Dt(e,t="float32"){if(t==="complex64"){let s=Dt(e,"float32"),r=Dt(e,"float32");return Wr(s,r)}let n=zd(_t(e),t);return L.makeTensor(n,e,t)}function Un(e,t="float32"){if(t==="complex64"){let s=Un(e,"float32"),r=Dt(e,"float32");return Wr(s,r)}let n=km(_t(e),t);return L.makeTensor(n,e,t)}function ON(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=D(e,"x","meshgrid",e instanceof Ue?e.dtype:"float32");if(t===void 0)return[s];let r=D(t,"y","meshgrid",t instanceof Ue?t.dtype:"float32"),a=_t(s.shape),o=_t(r.shape);return n==="xy"?(s=U(s,[1,-1]),r=U(r,[-1,1]),[We(Un([o,1],s.dtype),s),We(r,Un([1,a],r.dtype))]):(s=U(s,[-1,1]),r=U(r,[1,-1]),[We(s,Un([1,o],s.dtype)),We(Un([a,1],r.dtype),r)])}function PN(e,t=null,n=!1){let r={x:D(e,"x","min")},a={axis:t,keepDims:n};return L.runKernel(Ha,r,a)}var Gh=V({min_:PN});function MN(e,t){let n=D(e,"a","minimum"),s=D(t,"b","minimum");[n,s]=It(n,s),n.dtype==="bool"&&(n=ce(n,"int32"),s=ce(s,"int32")),mt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Ga,r)}var ac=V({minimum_:MN});function zN(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=D(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i"Invalid number of paddings. Must be length of 2 each."),M(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return L.runKernel(ja,o,a)}var Jx=V({mirrorPad_:zN});function LN(e,t){let n=D(e,"a","mod"),s=D(t,"b","mod");[n,s]=It(n,s);let r={a:n,b:s};return L.runKernel(Ui,r)}var Qx=V({mod_:LN});function BN(e){let t=D(e,"x","square"),n={};return L.runKernel("Square",{x:t},n)}var lt=V({square_:BN});function WN(e,t=null,n=!1){e=D(e,"x","moments");let s=bs(t,e.shape),r=Et(e,s,n),a=r.shape;n||(a=No(r.shape,s));let o=lt(Ae(ce(e,"float32"),U(r,a))),i=Et(o,s,n);return{mean:r,variance:i}}var jh=V({moments_:WN});function VN(e,t,n,s){let r=D(t,"data","multiRNNCell"),a=Yu(n,"c","multiRNNCell"),o=Yu(s,"h","multiRNNCell"),i=r,l=[];for(let d=0;d2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?U(r,[1,-1]):r},u={numSamples:t,seed:n,normalized:s},c=L.runKernel(lh,l,u);return o===1?U(c,[c.size]):c}var eb=V({multinomial_:HN});function GN(e,t){let n=D(e,"a","notEqual","string_or_numeric"),s=D(t,"b","notEqual","string_or_numeric");[n,s]=It(n,s),mt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Gi,r)}var Rl=V({notEqual_:GN});function jN(e){let n={x:D(e,"x","onesLike")};return L.runKernel(Ki,n)}var us=V({onesLike_:jN});function qN(e,t){let n=D(e,"v1","outerProduct"),s=D(t,"v2","outerProduct");M(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=U(n,[-1,1]),a=U(s,[1,-1]);return We(r,a)}var XN=V({outerProduct_:qN});function KN(e,t,n=0){let s=D(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return L.runKernel(Ka,a,r)}var qr=V({pad_:KN});function ZN(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),qr(e,[t],n)}var YN=V({pad1d_:ZN});function JN(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),qr(e,t,n)}var QN=V({pad2d_:JN});function eE(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),qr(e,t,n)}var tE=V({pad3d_:eE});function nE(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),qr(e,t,n)}var sE=V({pad4d_:nE});function rE(e,t,n){let s=D(e,"x","spaceToBatchND");M(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return L.runKernel(il,r,a)}var qh=V({spaceToBatchND_:rE});function aE(e,t,n,s,r,a){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=D(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(Ks(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let u=Ix(i.shape,t,a,r,s),c=[u.dilationHeight,u.dilationWidth],d;s==="same"?d=iE([u.filterHeight,u.filterWidth],c):d=[[0,0],[0,0]];let h=c[0]===1&&c[1]===1,[p,f]=oE([u.inHeight,u.inWidth],c,d),m=h?s:"valid",A=h?i:qh(i,c,p),y=(n==="avg"?()=>Ph(A,t,a,m):()=>Hh(A,t,a,m))(),x=h?y:Mh(y,c,f);return l?U(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function oE(e,t,n){let s=n.map(c=>c[0]),r=n.map(c=>c[1]),a=e.concat(s,r),o=t.map((c,d)=>(c-a[d]%c)%c),i=r.map((c,d)=>c+o[d]),l=t.map((c,d)=>[s[d],i[d]]),u=t.map((c,d)=>[0,o[d]]);return[l,u]}function iE(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var lE=V({pool_:aE});function uE(e,t){let n=D(e,"base","pow"),s=D(t,"exp","pow");[n,s]=It(n,s);let r={a:n,b:s};return L.runKernel(Za,r)}var Xr=V({pow_:uE});function cE(e,t){let n=D(e,"x","prelu"),s=D(t,"alpha","prelu"),r={x:n,alpha:s};return L.runKernel(Ya,r)}var Xh=V({prelu_:cE});function dE(e,t=null,n=!1){let s=D(e,"x","prod");s.dtype==="bool"&&(s=ce(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return L.runKernel(Yi,r,a)}var SA=V({prod_:dE});function hE(e,t,n){let s=_t(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},fE=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=CA.alea(r.toString()),this.randn=new TA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),rthis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=CA.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function AE(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new fE(t,n,s,r),o=Be(e,s);for(let i=0;i`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),cs(t,0)}var CE=V({reverse1d_:SE});function TE(e,t){let n=D(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),cs(n,t)}var NE=V({reverse2d_:TE});function EE(e,t){let n=D(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),cs(n,t)}var RE=V({reverse3d_:EE});function _E(e,t){let n=D(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),cs(n,t)}var $E=V({reverse4d_:_E});function FE(e){let n={x:D(e,"x","round")};return L.runKernel(no,n)}var EA=V({round_:FE});function DE(e){let n={x:D(e,"x","rsqrt")};return L.runKernel(so,n)}var RA=V({rsqrt_:DE});function Ie(e,t){if((an(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&an(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Vr(e,[],[],t)}function OE(e){let n={x:D(e,"x","selu")};return L.runKernel(nl,n)}var _A=V({selu_:OE});function PE(e,t,n,s,r,a=[1,1],o="NHWC"){let i=D(e,"x","separableConv2d"),l=D(t,"depthwiseFilter","separableConv2d"),u=D(n,"pointwiseFilter","separableConv2d"),c=i,d=!1;if(i.rank===3&&(d=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),M(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let h=l.shape[2],p=l.shape[3];M(u.shape[2]===h*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${h*p}, but got ${u.shape[2]}.`);let f=nc(c,l,s,r,o,a),A=jr(f,u,1,"valid",o);return d?U(A,[A.shape[1],A.shape[2],A.shape[3]]):A}var sb=V({separableConv2d_:PE});async function ME(e,t){let n=D(e,"x","setdiff1d"),s=D(t,"y","setdiff1d");M(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let c=0;c`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),Re(s,[t],[n])}var Kh=V({slice1d_:WE});function VE(e,t,n){let s=D(e,"x","slice2d");return M(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),Re(s,t,n)}var DA=V({slice2d_:VE});function UE(e,t,n){let s=D(e,"x","slice3d");return M(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),Re(s,t,n)}var Zh=V({slice3d_:UE});function HE(e,t,n){let s=D(e,"x","slice4d");return M(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),Re(s,t,n)}var ic=V({slice4d_:HE});function GE(e,t=-1){let n=D(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return L.runKernel(lo,s,r)}var Yh=V({softmax_:GE});function jE(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(eh,t)}var Jh=V({fft_:jE});function qE(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(th,t)}var lc=V({ifft_:qE});function XE(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=U(e,[n,t]);s=lc(r)}else{let r=[n,2*(t-1)],a=U(oc(e),[n,t]),o=U(Lh(e),[n,t]),i=cs(Re(a,[0,1],[n,t-2]),1),l=z(cs(Re(o,[0,1],[n,t-2]),1),Ie(-1)),u=ht([a,i],1),c=ht([o,l],1),d=U(Wr(u,c),[r[0],r[1]]);s=lc(d)}if(s=oc(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=U(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var OA=V({irfft_:XE});function KE(e,t,n=0){let r={x:D(e,"x","split")},a={numOrSizeSplits:t,axis:n};return L.runKernel(ll,r,a)}var nn=V({split_:KE});function ZE(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t0),m=e.shape.map(A=>A);m[e.shape.length-1]=t,r=Re(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=ht([e,Dt(f)],e.shape.length-1),n=t}else r=e;let a=qe(r),o=U(Wr(r,a),[s,n]),i=Jh(o),l=Math.floor(n/2)+1,u=oc(i),c=Lh(i),d=nn(u,[l,n-l],u.shape.length-1),h=nn(c,[l,n-l],c.shape.length-1),p=r.shape.slice();return p[r.shape.length-1]=l,U(Wr(d[0],h[0]),p)}var Qh=V({rfft_:ZE});function YE(e){let n={x:D(e,"x","sqrt")};return L.runKernel(oo,n)}var ln=V({sqrt_:YE});function JE(e,t){let n=D(e,"a","squaredDifference"),s=D(t,"b","squaredDifference");[n,s]=It(n,s),mt(n.shape,s.shape);let r={a:n,b:s},a={};return L.runKernel(uo,r,a)}var PA=V({squaredDifference_:JE});function QE(e,t){let n=D(e,"x","squeeze");return U(n,r5(n.shape,t).newShape)}var ot=V({squeeze_:QE});function eR(e,t=0){let n=Yu(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return L.runKernel(Zi,s,r)}var Nn=V({stack_:eR});function tR(e,t=0){let s={x:D(e,"x","step")},r={alpha:t};return L.runKernel(Lr,s,r)}var uc=V({step_:tR});function nR(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let c={x:D(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return L.runKernel(ul,c,d)}var ob=V({stridedSlice_:nR});function sR(e){let n={x:D(e,"x","tan")};return L.runKernel(ho,n)}var ib=V({tan_:sR});function Ot(e,t){ga(e);let n=qs(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Vr(e,null,n,t)}function $s(e,t,n){if(ga(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=qs(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Vr(e,t,s,n)}function rR(e,t,n){if(ga(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=qs(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Vr(e,t,s,n)}function aR(e,t,n){if(ga(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=qs(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Vr(e,t,s,n)}function oR(e,t,n){if(ga(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=qs(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,Vr(e,t,s,n)}function iR(e,t=1,n=!0){let s=D(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=L.runKernel(cl,a,o);return{values:i,indices:l}}var lb=V({topk_:iR});function lR(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new TA(t,n,s,!0,r),o=Be(e,s);for(let i=0;i0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=L.runKernel(bh,s,r);return{values:a,indices:o}}var MA=V({unique_:uR});function cR(e,t,n){let s=D(e,"x","unsortedSegmentSum"),r=D(t,"segmentIds","unsortedSegmentSum","int32");M(qt(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return L.runKernel(Bu,a,o)}var ub=V({unsortedSegmentSum_:cR});function dR(e,t=0){let n=D(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return L.runKernel(hl,s,r)}var ds=V({unstack_:dR});function cb(e,t=!0,n,s){return L.makeVariable(e,t,n,s)}function db(e,t){let n=[];for(let a=0;a0,()=>"mask cannot be scalar"),fn(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m"Shape mismatch in v and x");let l=Ie(1),u=Ae(l,i),c=z(Ae(o,a),u);if(r){M(s!=null,()=>"When using zeroDebias: true, step is required.");let d=D(s,"step","movingAverage");c=de(c,Ae(l,Xr(i,d)))}return ae(a,c)}var gR=V({movingAverage_:AR});function yR(e,t,n){let s=D(e,"indices","scatterND","int32"),r=D(t,"updates","scatterND");eA(r,s,n);let a={indices:s,updates:r},o={shape:n};return L.runKernel(el,a,o)}var pb=V({scatterND_:yR});function xR(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function bR(e,t,n,s=0){let r=D(e,"sparseIndices","sparseToDense","int32"),a=D(t,"sparseValues","sparseToDense"),o=D(s,"defaultValue","sparseToDense",a.dtype);xR(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return L.runKernel(Ah,i,l)}var BA=V({sparseToDense_:bR});function vR(e,t){let n=D(t,"indices","gatherND","int32"),r={params:D(e,"x","gatherND","string_or_numeric"),indices:n};return L.runKernel(Di,r)}var fb=V({gatherND_:vR});function wR(e,t){if(t==null)return e.shape.slice();if(fr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ue?r.clone():r;let a=wR(r,n),o=1-t,i=de(rc(ae(_l(a,0,1,"float32",s),o)),o);return z(r,i)}var mb=V({dropout_:kR});function Ab(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function WA(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),M(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),fn(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];M(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,u]=[o.length/a,a],c=a5("bool",l);for(let d=0;dA.value-m.value),c[d]=0;for(let m=0;mNR,depthwiseConv2d:()=>$R,matMul:()=>DR});function CR(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=a==="NHWC"?i.shape[3]:i.shape[1],c=a==="NHWC"?l.shape[3]:l.shape[1];M(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),M(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),o!=null&&M(qt(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:i,dy:l},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return L.runKernel(Ud,d,h)}var VA=V({conv2DBackpropFilter_:CR});function tp(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,uc(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function np(e,t){let n=t,s=Vt(e.shape,t.shape);return s.length>0&&(n=ve(n,s)),U(n,e.shape)}function sp(e,t,n,s){if(t==="linear")return e;if(t==="relu")return Ys(e);if(t==="elu")return sc(e);if(t==="relu6")return NA(e);if(t==="prelu")return Xh(e,n);if(t==="leakyrelu")return Bh(e,s);if(t==="sigmoid")return Bn(e);throw new Error(`Unknown fused activation ${t}.`)}var rp=(e,t)=>!(e>0)||t==="linear";function TR({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",rp(L.state.gradientDepth,l)===!1){let v=jr(e,t,n,s,r,a,o);return i!=null&&(v=ae(v,i)),sp(v,l,u,c)}let d=D(e,"x","conv2d"),h=D(t,"filter","conv2d"),p=d,f=!1;d.rank===3&&(f=!0,p=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),M(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),M(h.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${h.rank}.`),o!=null&&M(qt(s),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),M(p.shape[3]===h.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${h.shape[2]}.`),M(Ks(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let m=ec(p.shape,h.shape,n,a,s,o),A;i!=null&&(A=D(i,"bias","fused conv2d"),[A]=It(A,d),mt(m.outShape,A.shape));let g;u!=null&&(g=D(u,"prelu weights","fused conv2d"));let y=(v,k)=>{let[w,C,E,O]=k,R=tp(v,E,l);M(Gr(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let _=pA(C.shape,R,w,n,s),N=VA(C,R,w.shape,n,s),P=[_,N];if(O!=null){let W=np(O,R);P.push(W)}return P},x={x:p,filter:h,bias:A,preluActivationWeights:g},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?Zs((k,w,C)=>{let E=L.runKernel(Ao,x,b);return C([w,k,E]),f&&(E=U(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:y}})(p,h):Zs((k,w,C,E)=>{let O=L.runKernel(Ao,x,b);return E([w,k,O,C]),f&&(O=U(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:y}})(p,h,A)}var NR=V({fusedConv2d_:TR});function ER(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:i,dy:l},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return L.runKernel(qd,u,c)}var gb=V({depthwiseConv2dNativeBackpropFilter_:ER});function RR(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:i,filter:n},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},d=L.runKernel(Xd,u,c);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var yb=V({depthwiseConv2dNativeBackpropInput_:RR});function _R({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(rp(L.state.gradientDepth,l)===!1){let v=nc(e,t,n,s,r,a,o);return i!=null&&(v=ae(v,i)),sp(v,l,u,c)}let d=D(e,"x","depthwiseConv2d"),h=D(t,"filter","depthwiseConv2d"),p=d,f=!1;d.rank===3&&(f=!0,p=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),M(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),M(h.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${h.rank}.`),M(p.shape[3]===h.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${h.shape[2]}.`),a==null&&(a=[1,1]),M(Ks(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&M(qt(s),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${s}.`);let m=ec(p.shape,h.shape,n,a,s,o,!0),A;i!=null&&(A=D(i,"bias","fused conv2d"),[A]=It(A,d),mt(m.outShape,A.shape));let g;u!=null&&(g=D(u,"prelu weights","fused depthwiseConv2d"));let y=(v,k)=>{M(Gr(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[w,C,E,O]=k,R=tp(v,E,l),_=yb(C.shape,R,w,n,s,a,o),N=gb(C,R,w.shape,n,s,a,o);if(O!=null){let P=np(A,R);return[_,N,P]}return[_,N]},x={x:p,filter:h,bias:A,preluActivationWeights:g},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?Zs((k,w,C)=>{let E=L.runKernel(go,x,b);return C([w,k,E]),f&&(E=U(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:y}})(p,h):Zs((k,w,C,E)=>{let O=L.runKernel(go,x,b);return E([w,k,O,C]),f&&(O=U(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:y}})(p,h,A)}var $R=V({fusedDepthwiseConv2d_:_R});function FR({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(rp(L.state.gradientDepth,a)===!1){let O=We(e,t,n,s);return r!=null&&(O=ae(O,r)),sp(O,a,o,i)}let l=D(e,"a","fused matMul"),u=D(t,"b","fused matMul");[l,u]=It(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=s?u.shape[u.rank-1]:u.shape[u.rank-2],h=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=s?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),A=_t(f),g=_t(m);M(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),M(fr(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),M(c===d,()=>`Error in fused matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${s} must match.`);let y=l.shape.slice(0,-2).concat([h,p]),x=n?U(l,[A,c,h]):U(l,[A,h,c]),b=s?U(u,[g,p,d]):U(u,[g,d,p]),v;r!=null&&(v=D(r,"bias","fused matMul"),[v]=It(v,l),mt(y,v.shape));let k;o!=null&&(k=D(o,"prelu weights","fused matMul"));let w=(O,R)=>{let[_,N,P,W]=R,j=tp(U(O,P.shape),P,a),q,X;if(!n&&!s?(q=We(j,N,!1,!0),X=We(_,j,!0,!1)):!n&&s?(q=We(j,N,!1,!1),X=We(j,_,!0,!1)):n&&!s?(q=We(N,j,!1,!0),X=We(_,j,!1,!1)):(q=We(N,j,!0,!0),X=We(j,_,!0,!0)),r!=null){let Q=np(W,j);return[q,X,Q]}else return[q,X]},C={a:x,b,bias:v,preluActivationWeights:k},E={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?Zs((R,_,N)=>{let P=L.runKernel(mo,C,E);return N([R,_,P]),{value:U(P,y),gradFunc:w}})(x,b):Zs((R,_,N,P)=>{let W=L.runKernel(mo,C,E);return P([R,_,W,N]),{value:U(W,y),gradFunc:w}})(x,b,v)}var DR=V({fusedMatMul_:FR});function OR(e){return WA(e,.54,.46)}var PR=V({hammingWindow_:OR});function MR(e){return WA(e,.5,.5)}var xb=V({hannWindow_:MR});function zR(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(Re(e,a,t)),a+=n;if(s)for(;a`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),M(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),M(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),M(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),M(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let c={image:o,boxes:i,boxInd:l},d={method:r,extrapolationValue:a,cropSize:s};return L.runKernel(Si,c,d)}var VR=V({cropAndResize_:WR});function UR(e){let t=D(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return L.runKernel($i,n,{})}var HR=V({flipLeftRight_:UR});function GR(e,t,n=0,s=.5){let r=D(e,"image","rotateWithOffset","float32");M(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return L.runKernel(fl,a,o)}var jR=V({rotateWithOffset_:GR});function Fl(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),M(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),M(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function qR(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=D(e,"boxes","nonMaxSuppression"),o=D(t,"scores","nonMaxSuppression"),i=Fl(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return L.runKernel(ji,{boxes:a,scores:o},l)}var XR=V({nonMaxSuppression_:qR});function KR(e,t,n){let s=ZR(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function ZR(e,t,n){return JR(e,t,n||YR)}function YR(e,t){return e>t?1:e>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function vb(e,t,n,s,r){return UA(e,t,n,s,r,0)}function wb(e,t,n,s,r,a){return UA(e,t,n,s,r,0,!1,a,!0)}function kb(e,t,n,s,r,a){return UA(e,t,n,s,r,a,!0)}function UA(e,t,n,s,r,a,o=!1,i=!1,l=!1){let u=[];for(let A=0;Ar&&u.push({score:t[A],boxIndex:A,suppressBeginIndex:0});u.sort(Ib);let c=a>0?-.5/a:0,d=[],h=[];for(;d.length0;){let A=u.pop(),{score:g,boxIndex:y,suppressBeginIndex:x}=A;if(g=x;--v){let k=QR(e,y,d[v]);if(k>=s){b=!0;break}if(A.score=A.score*e_(s,c,k),A.score<=r)break}A.suppressBeginIndex=d.length,b||(A.score===g?(d.push(y),h.push(A.score)):A.score>r&&KR(u,A,Ib))}let p=d.length,f=n-p;i&&f>0&&(d.push(...new Array(f).fill(0)),h.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=h),l&&(m.validOutputs=p),m}function QR(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),u=Math.min(r[0],r[2]),c=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),h=Math.max(r[1],r[3]),p=(i-a)*(l-o),f=(d-u)*(h-c);if(p<=0||f<=0)return 0;let m=Math.max(a,u),A=Math.max(o,c),g=Math.min(i,d),y=Math.min(l,h),x=Math.max(g-m,0)*Math.max(y-A,0);return x/(p+f-x)}function e_(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function Ib(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function t_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=D(e,"boxes","nonMaxSuppressionAsync"),o=D(t,"scores","nonMaxSuppressionAsync"),i=Fl(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),u=l[0],c=l[1],{selectedIndices:d}=vb(u,c,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),Ot(d,"int32")}var n_=t_;function s_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=D(e,"boxes","nonMaxSuppression"),i=D(t,"scores","nonMaxSuppression"),l=Fl(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u={boxes:o,scores:i},c={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},d=L.runKernel(Xi,u,c);return{selectedIndices:d[0],selectedScores:d[1]}}var r_=V({nonMaxSuppressionWithScore_:s_});async function a_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=D(e,"boxes","nonMaxSuppressionAsync"),i=D(t,"scores","nonMaxSuppressionAsync"),l=Fl(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u=await Promise.all([o.data(),i.data()]),c=u[0],d=u[1],{selectedIndices:h,selectedScores:p}=kb(c,d,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Ot(h,"int32"),selectedScores:Ot(p)}}var o_=a_;function i_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=D(e,"boxes","nonMaxSuppression"),i=D(t,"scores","nonMaxSuppression"),l=Fl(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,h={boxes:o,scores:i},p={maxOutputSize:u,iouThreshold:c,scoreThreshold:d,padToMaxOutputSize:a},f=L.runKernel(qi,h,p);return{selectedIndices:f[0],validOutputs:f[1]}}var l_=V({nonMaxSuppressionPadded_:i_});async function u_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=D(e,"boxes","nonMaxSuppressionAsync"),i=D(t,"scores","nonMaxSuppressionAsync"),l=Fl(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,[h,p]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=wb(h,p,u,c,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Ot(f,"int32"),validOutputs:Ie(m,"int32")}}var c_=u_;function d_(e,t,n=!1,s=!1){let r=D(e,"images","resizeBilinear");M(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=L.runKernel(Qa,i,l);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var h_=V({resizeBilinear_:d_});function p_(e,t,n=!1,s=!1){let r=D(e,"images","resizeNearestNeighbor");M(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=L.runKernel(zu,i,l);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var f_=V({resizeNearestNeighbor_:p_});function m_(e,t="binary",n=!1,s=.5){let r=D(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],u=z(Ot([s]),255),c,d,h,p;if(M(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),M(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),M(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),M(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[c,d,h]=nn(r,[1,1,1],-1);let A=z(c,a),g=z(d,o),y=z(h,i);p=ae(ae(A,g),y)}else p=e;if(t==="otsu"){let A=dA(ce(EA(p),"int32"),on([]),256);u=A_(A,l)}let f=n?To(p,u):Vn(p,u);return ce(z(f,255),"int32")}function A_(e,t){let n=Ot([-1]),s=Ot([0]),r=Ot([0]),a,o,i,l,u,c;for(let d=0;d`Error in transform: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},u={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return L.runKernel(dl,l,u)}var x_=V({transform_:y_});function b_(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=D(e,"a","bandPart");M(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=U($l(0,a,1,"int32"),[-1,1]),l=$l(0,o,1,"int32"),u=Ae(i,l),c=_s(To(u,Ie(+t,"int32")),Co(u,Ie(-n,"int32"))),d=Dt([a,o],s.dtype);return U(Nn(ds(U(s,[-1,a,o])).map(h=>gn(c,h,d))),r)}var v_=V({bandPart_:b_});function w_(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=nn(e,e.shape[0],0).map(r=>ot(r,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r{let a=s[r];if(r>0)for(let o=0;o=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Sb(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),s=ds(U(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[u,c]=Sb(l,t);r.push(u),a.push(c)});let o=U(Nn(r,0),e.shape),i=U(Nn(a,0),e.shape);return[o,i]}}function Sb(e,t=!1){return L.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=yA(n),a=Es(e),o=$s([[1]],[1,1]),i=Es(o),l=n>=s?s:n;for(let u=0;u{let p=Re(a,[u,u],[n-u,1]),f=LA(p),m=Re(a,[u,u],[1,1]),A=gn(Vn(m,0),$s([[-1]]),$s([[1]])),g=Ae(m,z(A,f)),y=de(p,g);y.shape[0]===1?i=Es(o):i=ht([o,Re(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let x=St(de(We(A,g),f)),b=Re(a,[u,0],[n-u,s]),v=z(x,i),k=je(i);if(u===0)a=Ae(b,We(v,We(k,b)));else{let E=Ae(b,We(v,We(k,b)));a=ht([Re(a,[0,0],[u,s]),E],0)}let w=je(v),C=Re(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=Ae(C,We(We(C,i),w));else{let E=Ae(C,We(We(C,i),w));r=ht([Re(r,[0,0],[n,u]),E],1)}return[i,a,r]}),K([c,d,h])}return!t&&n>s&&(r=Re(r,[0,0],[n,s]),a=Re(a,[0,0],[s,s])),[r,a]})}var S_=V({qr_:I_}),yn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(yn||(yn={}));function C_(e,t,n=yn.SUM_BY_NONZERO_WEIGHTS){let s=D(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=D(t,"weights","computeWeightedLoss"));let a=r==null?s:z(s,r);if(n===yn.NONE)return a;if(n===yn.SUM)return ve(a);if(n===yn.MEAN){if(r==null)return Et(a);{let o=s.size/r.size,i=de(ve(a),ve(r));return o>1?de(i,Ie(o)):i}}if(n===yn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return de(ve(a),Ie(s.size));{let o=z(r,Un(s.shape)),i=ce(ve(Rl(o,Ie(0))),"float32");return de(ve(a),i)}}throw Error(`Unknown reduction: ${n}`)}var yr=V({computeWeightedLoss_:C_});function T_(e,t,n,s=yn.SUM_BY_NONZERO_WEIGHTS){let r=D(e,"labels","absoluteDifference"),a=D(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=D(n,"weights","absoluteDifference")),fn(r.shape,a.shape,"Error in absoluteDifference: ");let i=Wt(Ae(r,a));return yr(i,o,s)}var N_=V({absoluteDifference_:T_});function E_(e,t,n,s,r=yn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"labels","cosineDistance"),o=D(t,"predictions","cosineDistance"),i=null;s!=null&&(i=D(s,"weights","cosineDistance")),fn(a.shape,o.shape,"Error in cosineDistance: ");let l=Ie(1),u=Ae(l,ve(z(a,o),n,!0));return yr(u,i,r)}var R_=V({cosineDistance_:E_});function __(e,t,n,s=yn.SUM_BY_NONZERO_WEIGHTS){let r=D(e,"labels","hingeLoss"),a=D(t,"predictions","hingeLoss"),o=null;n!=null&&(o=D(n,"weights","hingeLoss")),fn(r.shape,a.shape,"Error in hingeLoss: ");let i=Ie(1);r=Ae(z(Ie(2),r),i);let l=Ys(Ae(i,z(r,a)));return yr(l,o,s)}var $_=V({hingeLoss_:__});function F_(e,t,n,s=1,r=yn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"labels","huberLoss"),o=D(t,"predictions","huberLoss"),i=null;n!=null&&(i=D(n,"weights","huberLoss")),fn(a.shape,o.shape,"Error in huberLoss: ");let l=Ie(s),u=Wt(Ae(o,a)),c=ac(u,l),d=Ae(u,c),h=ae(z(Ie(.5),lt(c)),z(l,d));return yr(h,i,r)}var D_=V({huberLoss_:F_});function O_(e,t,n,s=1e-7,r=yn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"labels","logLoss"),o=D(t,"predictions","logLoss"),i=null;n!=null&&(i=D(n,"weights","logLoss")),fn(a.shape,o.shape,"Error in logLoss: ");let l=Ie(1),u=Ie(s),c=St(z(a,is(ae(o,u)))),d=z(Ae(l,a),is(ae(Ae(l,o),u))),h=Ae(c,d);return yr(h,i,r)}var P_=V({logLoss_:O_});function M_(e,t,n,s=yn.SUM_BY_NONZERO_WEIGHTS){let r=D(e,"labels","meanSquaredError"),a=D(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=D(n,"weights","meanSquaredError")),fn(r.shape,a.shape,"Error in meanSquaredError: ");let i=PA(r,a);return yr(i,o,s)}var z_=V({meanSquaredError_:M_});function L_(e,t){let n=D(e,"labels","sigmoidCrossEntropyWithLogits"),s=D(t,"logits","sigmoidCrossEntropyWithLogits");fn(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Ys(s),a=z(s,n),o=Wh(os(St(Wt(s))));return ae(Ae(r,a),o)}function B_(e,t,n,s=0,r=yn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"multiClassLabels","sigmoidCrossEntropy"),o=D(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=D(n,"weights","sigmoidCrossEntropy")),fn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let u=Ie(s),c=Ie(1),d=Ie(.5);a=ae(z(a,Ae(c,u)),z(d,u))}let l=L_(a,o);return yr(l,i,r)}var W_=V({sigmoidCrossEntropy_:B_});function V_(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Zs((r,a,o)=>{let l=Zx(a,[n],!0),u=Ae(ce(a,"float32"),l);o([r,u]);let c=St(z(u,r));return{value:ve(c,[n]),gradFunc:(p,f)=>{let[m,A]=f,g=No(p.shape,[n]);return[z(U(p,g),Ae(ce(m,"float32"),os(A))),z(U(p,g),Ae(os(A),ce(m,"float32")))]}}})(e,t)}function U_(e,t,n,s=0,r=yn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"onehotLabels","softmaxCrossEntropy"),o=D(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=D(n,"weights","softmaxCrossEntropy")),fn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let u=Ie(s),c=Ie(1),d=Ie(a.shape[1]);a=ae(z(a,Ae(c,u)),de(u,d))}let l=V_(a,o);return yr(l,i,r)}var H_=V({softmaxCrossEntropy_:U_});function G_(e,t,n,s){let r=D(e,"indices","sparseFillEmptyRows"),a=D(t,"values","sparseFillEmptyRows"),o=D(n,"denseShape","sparseFillEmptyRows"),i=D(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape - ${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},u=L.runKernel(hh,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var j_=V({sparseFillEmptyRows_:G_});function q_(e,t,n){let s=D(e,"inputIndices","sparseReshape"),r=D(t,"inputShape","sparseReshape"),a=D(n,"newShape","sparseReshape");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape - ${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=L.runKernel(ph,o);return{outputIndices:i[0],outputShape:i[1]}}var X_=V({sparseReshape_:q_});function K_(e,t,n){let s=D(e,"data","sparseSegmentMean"),r=D(t,"indices","sparseSegmentMean"),a=D(n,"segmentIds","sparseSegmentMean");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape + ${s.shape}`),M(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return L.runKernel($i,i,l)}var Gx=V({depthToSpace_:HT});function GT(e,t,n,s,r="NHWC",a=[1,1],o){let i=F(e,"x","depthwiseConv2d"),l=F(t,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&M(Zt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},p=L.runKernel(Oa,d,h);return c?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var lc=V({depthwiseConv2d_:GT});function jT(e){let n={x:F(e,"x","diag")};return L.runKernel(nh,n)}var qT=V({diag_:jT});function XT(e,t,n,s,r=[1,1],a="NHWC"){let o=F(e,"x","dilation2d"),i=F(t,"filter","dilation2d");M(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),M(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),M(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,u=!1;o.rank===3&&(l=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=!0);let c={x:l,filter:i},d={strides:n,pad:s,dilations:r},h=L.runKernel(Mu,c,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var jx=V({dilation2d_:XT});function KT(e,t){let n=e.length,s=[];for(let r=0;r1&&o===1&&s.unshift(a)}return s}function Gt(e,t){let n=[];for(let s=0;s1)&&n.unshift(a)}return n}function At(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(M(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=U(n,[1,-1]),i=U(s,[-1,1]),l=Ve(o,i);return U(l,[])}else if(n.rank===1&&s.rank===2){let o=U(n,[1,-1]),i=U(s,[s.shape[0],s.shape[1]]),l=Ve(o,i);return U(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=U(s,[-1,1]),i=Ve(n,o);return U(i,[i.size])}else{let o=U(s,[s.shape[0],s.shape[1]]);return Ve(n,o)}}var tN=V({dot_:eN});function nN(e,...t){let n=t.map((r,a)=>F(r,`tensors${a}`,"einsum")),s={equation:e};return L.runKernel(ah,n,s)}var Xx=V({einsum_:nN});function sN(e){let n={x:F(e,"x","elu")};return L.runKernel(Di,n)}var uc=V({elu_:sN});function rN(e){let t=F(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ce(t,"float32"));let n={x:t};return L.runKernel(Fi,n)}var Kx=V({erf_:rN});function aN(e){let n={x:F(e,"x","exp")};return L.runKernel(Ma,n)}var cs=V({exp_:aN});function oN(e,t=0){let n=F(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return L.runKernel(Pi,s,r)}var Ot=V({expandDims_:oN});function iN(e){let n={x:F(e,"x","expm1")};return L.runKernel(Mi,n)}var Zx=V({expm1_:iN});function lN(e,t){let n=F(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return L.runKernel(Vr,s,r)}var Fs=V({tile_:lN});function uN(e,t,n,s="float32"){t==null&&(t=e);let r=We([e,t],s),a=e<=t?e:t;for(let i=0;i`Error in localResponseNormalization: x must be rank 3 or 4 but got + rank ${a.rank}.`),M(Zt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=U(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},u={depthRadius:t,bias:n,alpha:s,beta:r},c=L.runKernel(Wu,l,u);return i?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Qx=V({localResponseNormalization_:kN});function IN(e){let n={x:F(e,"x","log")};return L.runKernel(Ha,n)}var ds=V({log_:IN});function SN(e){let n={x:F(e,"x","log1p")};return L.runKernel(qi,n)}var Xh=V({log1p_:SN});function CN(e){return M(Lr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=F(t,"x","tf.grad","string_or_numeric"),r=n!=null?F(n,"dy","tf.grad"):null;return L.tidy(()=>{let{value:a,grads:o}=L.gradients(()=>e(s),[s],r);return r!=null&&An(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Kh(o),o[0]})}}function TN(e){return M(Lr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=sc(t,"args","tf.grads","string_or_numeric"),r=n!=null?F(n,"dy","tf.grads"):null;return L.tidy(()=>{let{value:a,grads:o}=L.gradients(()=>e(...s),s,r);return r!=null&&An(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Kh(o),o})}}function NN(e){return M(Lr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof Ge,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof Ge,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=L.gradients(()=>e(t),[t],n);return Kh(s),{grad:s[0],value:r}}}function EN(e){return M(Lr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(r=>r instanceof Ge),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof Ge,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=L.gradients(()=>e(...t),t,n);return n!=null&&An(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Kh(s.grads),s}}function eb(e,t){M(Lr(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(u=>u instanceof ec),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in L.registeredVariables)t.push(L.registeredVariables[u])}let s=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=L.gradients(e,t,null,a);M(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),s!=null&&s.forEach(u=>l[u.name]=null),{value:o,grads:l}}function er(e){return L.customGrad(e)}function Kh(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that + the f you passed encloses all operations that lead from x to y.`)}function RN(e){let n={x:F(e,"x","neg")};return L.runKernel(Zi,n)}var Tt=V({neg_:RN});function _N(e){let n={x:F(e,"x","softplus")};return L.runKernel(hl,n)}var Ol=V({softplus_:_N});function $N(e){let t=F(e,"x","logSigmoid");return er(s=>({value:Tt(Ol(Tt(s))),gradFunc:o=>z(o,Hn(Tt(s)))}))(t)}var DN=V({logSigmoid_:$N});function FN(e,t=null,n=!1){let r={x:F(e,"x","max")},a={reductionIndices:t,keepDims:n};return L.runKernel(Ga,r,a)}var hs=V({max_:FN});function ON(e,t){let n=F(e,"a","sub"),s=F(t,"b","sub");[n,s]=Ct(n,s);let r={a:n,b:s};return L.runKernel(go,r)}var ge=V({sub_:ON});function PN(e,t=null,n=!1){let s=F(e,"x","sum");s.dtype==="bool"&&(s=ce(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return L.runKernel(po,r,a)}var ve=V({sum_:PN});function MN(e,t=-1){let n=F(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return er((r,a)=>{let o=!0,i=hs(r,t,!0),l=ge(r,i),u=ge(ce(l,"float32"),ds(ve(cs(l),t,o)));return a([u]),{value:u,gradFunc:(d,h)=>{let[p]=h,f=!0,m=cs(p);return ge(d,z(ve(d,t,f),m))}}})(n)}var Tg=V({logSoftmax_:MN});function Ng(e,t){for(let n=0;ne[a]);return[n,r]}function Do(e,t){let n=t.map(s=>1);return tb(e,n,t)}function zN(e,t,n){M(Ng(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function sb(e,t){if(Ng(e,t))return null;let n=[];for(let s=0;sn.push(s)),n}function Eg(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function LN(e,t){let n=[];for(let s=t-e;s`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),M(Qs(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),r!=null&&M(Zt(s),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=L.runKernel(qa,u,c);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Yh=V({maxPool_:jN});function qN(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=F(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&M(Zt(s),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=L.runKernel(Vu,u,c);return l?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var _g=V({maxPool3d_:qN});function XN(e,t,n,s,r=!1){let o={x:F(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=L.runKernel(fh,o,i);return{result:l[0],indexes:l[1]}}var ab=V({maxPoolWithArgmax_:XN});function KN(e,t){let n=F(e,"a","maximum"),s=F(t,"b","maximum");[n,s]=Ct(n,s),n.dtype==="bool"&&(n=ce(n,"int32"),s=ce(s,"int32")),At(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(ja,r)}var vr=V({maximum_:KN});function ZN(e,t=null,n=!1){let r={x:F(e,"x","mean")},a={axis:t,keepDims:n};return L.runKernel(Xa,r,a)}var _t=V({mean_:ZN});function Pt(e,t="float32"){if(t==="complex64"){let s=Pt(e,"float32"),r=Pt(e,"float32");return Gr(s,r)}let n=Gd(Dt(e),t);return L.makeTensor(n,e,t)}function qn(e,t="float32"){if(t==="complex64"){let s=qn(e,"float32"),r=Pt(e,"float32");return Gr(s,r)}let n=Rm(Dt(e),t);return L.makeTensor(n,e,t)}function YN(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=F(e,"x","meshgrid",e instanceof Ge?e.dtype:"float32");if(t===void 0)return[s];let r=F(t,"y","meshgrid",t instanceof Ge?t.dtype:"float32"),a=Dt(s.shape),o=Dt(r.shape);return n==="xy"?(s=U(s,[1,-1]),r=U(r,[-1,1]),[Ve(qn([o,1],s.dtype),s),Ve(r,qn([1,a],r.dtype))]):(s=U(s,[-1,1]),r=U(r,[1,-1]),[Ve(s,qn([1,o],s.dtype)),Ve(qn([a,1],r.dtype),r)])}function JN(e,t=null,n=!1){let r={x:F(e,"x","min")},a={axis:t,keepDims:n};return L.runKernel(Ka,r,a)}var Jh=V({min_:JN});function QN(e,t){let n=F(e,"a","minimum"),s=F(t,"b","minimum");[n,s]=Ct(n,s),n.dtype==="bool"&&(n=ce(n,"int32"),s=ce(s,"int32")),At(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Za,r)}var dc=V({minimum_:QN});function eE(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=F(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i"Invalid number of paddings. Must be length of 2 each."),M(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return L.runKernel(Ya,o,a)}var ob=V({mirrorPad_:eE});function tE(e,t){let n=F(e,"a","mod"),s=F(t,"b","mod");[n,s]=Ct(n,s);let r={a:n,b:s};return L.runKernel(Ki,r)}var ib=V({mod_:tE});function nE(e){let t=F(e,"x","square"),n={};return L.runKernel("Square",{x:t},n)}var ct=V({square_:nE});function sE(e,t=null,n=!1){e=F(e,"x","moments");let s=Is(t,e.shape),r=_t(e,s,n),a=r.shape;n||(a=Do(r.shape,s));let o=ct(ge(ce(e,"float32"),U(r,a))),i=_t(o,s,n);return{mean:r,variance:i}}var Qh=V({moments_:sE});function rE(e,t,n,s){let r=F(t,"data","multiRNNCell"),a=sc(n,"c","multiRNNCell"),o=sc(s,"h","multiRNNCell"),i=r,l=[];for(let d=0;d2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?U(r,[1,-1]):r},u={numSamples:t,seed:n,normalized:s},c=L.runKernel(mh,l,u);return o===1?U(c,[c.size]):c}var lb=V({multinomial_:oE});function iE(e,t){let n=F(e,"a","notEqual","string_or_numeric"),s=F(t,"b","notEqual","string_or_numeric");[n,s]=Ct(n,s),At(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Yi,r)}var Pl=V({notEqual_:iE});function lE(e){let n={x:F(e,"x","onesLike")};return L.runKernel(tl,n)}var ps=V({onesLike_:lE});function uE(e,t){let n=F(e,"v1","outerProduct"),s=F(t,"v2","outerProduct");M(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=U(n,[-1,1]),a=U(s,[1,-1]);return Ve(r,a)}var cE=V({outerProduct_:uE});function dE(e,t,n=0){let s=F(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return L.runKernel(eo,a,r)}var Yr=V({pad_:dE});function hE(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Yr(e,[t],n)}var pE=V({pad1d_:hE});function fE(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Yr(e,t,n)}var mE=V({pad2d_:fE});function gE(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Yr(e,t,n)}var AE=V({pad3d_:gE});function yE(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Yr(e,t,n)}var xE=V({pad4d_:yE});function bE(e,t,n){let s=F(e,"x","spaceToBatchND");M(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return L.runKernel(pl,r,a)}var ep=V({spaceToBatchND_:bE});function vE(e,t,n,s,r,a){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=F(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(Qs(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let u=$x(i.shape,t,a,r,s),c=[u.dilationHeight,u.dilationWidth],d;s==="same"?d=kE([u.filterHeight,u.filterWidth],c):d=[[0,0],[0,0]];let h=c[0]===1&&c[1]===1,[p,f]=wE([u.inHeight,u.inWidth],c,d),m=h?s:"valid",g=h?i:ep(i,c,p),y=(n==="avg"?()=>Uh(g,t,a,m):()=>Yh(g,t,a,m))(),x=h?y:Hh(y,c,f);return l?U(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function wE(e,t,n){let s=n.map(c=>c[0]),r=n.map(c=>c[1]),a=e.concat(s,r),o=t.map((c,d)=>(c-a[d]%c)%c),i=r.map((c,d)=>c+o[d]),l=t.map((c,d)=>[s[d],i[d]]),u=t.map((c,d)=>[0,o[d]]);return[l,u]}function kE(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var IE=V({pool_:vE});function SE(e,t){let n=F(e,"base","pow"),s=F(t,"exp","pow");[n,s]=Ct(n,s);let r={a:n,b:s};return L.runKernel(to,r)}var Jr=V({pow_:SE});function CE(e,t){let n=F(e,"x","prelu"),s=F(t,"alpha","prelu"),r={x:n,alpha:s};return L.runKernel(no,r)}var tp=V({prelu_:CE});function TE(e,t=null,n=!1){let s=F(e,"x","prod");s.dtype==="bool"&&(s=ce(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return L.runKernel(sl,r,a)}var $g=V({prod_:TE});function NE(e,t,n){let s=Dt(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},RE=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=Dg.alea(r.toString()),this.randn=new Fg(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),rthis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Dg.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function $E(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new RE(t,n,s,r),o=We(e,s);for(let i=0;i`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),fs(t,0)}var VE=V({reverse1d_:WE});function UE(e,t){let n=F(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),fs(n,t)}var HE=V({reverse2d_:UE});function GE(e,t){let n=F(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),fs(n,t)}var jE=V({reverse3d_:GE});function qE(e,t){let n=F(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),fs(n,t)}var XE=V({reverse4d_:qE});function KE(e){let n={x:F(e,"x","round")};return L.runKernel(io,n)}var Pg=V({round_:KE});function ZE(e){let n={x:F(e,"x","rsqrt")};return L.runKernel(lo,n)}var Mg=V({rsqrt_:ZE});function Ie(e,t){if((un(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&un(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return jr(e,[],[],t)}function YE(e){let n={x:F(e,"x","selu")};return L.runKernel(ll,n)}var zg=V({selu_:YE});function JE(e,t,n,s,r,a=[1,1],o="NHWC"){let i=F(e,"x","separableConv2d"),l=F(t,"depthwiseFilter","separableConv2d"),u=F(n,"pointwiseFilter","separableConv2d"),c=i,d=!1;if(i.rank===3&&(d=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),M(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let h=l.shape[2],p=l.shape[3];M(u.shape[2]===h*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${h*p}, but got ${u.shape[2]}.`);let f=lc(c,l,s,r,o,a),g=Zr(f,u,1,"valid",o);return d?U(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var db=V({separableConv2d_:JE});async function QE(e,t){let n=F(e,"x","setdiff1d"),s=F(t,"y","setdiff1d");M(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let c=0;c`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),Re(s,[t],[n])}var np=V({slice1d_:sR});function rR(e,t,n){let s=F(e,"x","slice2d");return M(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),Re(s,t,n)}var Wg=V({slice2d_:rR});function aR(e,t,n){let s=F(e,"x","slice3d");return M(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),Re(s,t,n)}var sp=V({slice3d_:aR});function oR(e,t,n){let s=F(e,"x","slice4d");return M(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),Re(s,t,n)}var pc=V({slice4d_:oR});function iR(e,t=-1){let n=F(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return L.runKernel(fo,s,r)}var rp=V({softmax_:iR});function lR(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(ih,t)}var ap=V({fft_:lR});function uR(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(lh,t)}var fc=V({ifft_:uR});function cR(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=U(e,[n,t]);s=fc(r)}else{let r=[n,2*(t-1)],a=U(hc(e),[n,t]),o=U(jh(e),[n,t]),i=fs(Re(a,[0,1],[n,t-2]),1),l=z(fs(Re(o,[0,1],[n,t-2]),1),Ie(-1)),u=ft([a,i],1),c=ft([o,l],1),d=U(Gr(u,c),[r[0],r[1]]);s=fc(d)}if(s=hc(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=U(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var Vg=V({irfft_:cR});function dR(e,t,n=0){let r={x:F(e,"x","split")},a={numOrSizeSplits:t,axis:n};return L.runKernel(fl,r,a)}var an=V({split_:dR});function hR(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=Re(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=ft([e,Pt(f)],e.shape.length-1),n=t}else r=e;let a=Ke(r),o=U(Gr(r,a),[s,n]),i=ap(o),l=Math.floor(n/2)+1,u=hc(i),c=jh(i),d=an(u,[l,n-l],u.shape.length-1),h=an(c,[l,n-l],c.shape.length-1),p=r.shape.slice();return p[r.shape.length-1]=l,U(Gr(d[0],h[0]),p)}var op=V({rfft_:hR});function pR(e){let n={x:F(e,"x","sqrt")};return L.runKernel(ho,n)}var dn=V({sqrt_:pR});function fR(e,t){let n=F(e,"a","squaredDifference"),s=F(t,"b","squaredDifference");[n,s]=Ct(n,s),At(n.shape,s.shape);let r={a:n,b:s},a={};return L.runKernel(mo,r,a)}var Ug=V({squaredDifference_:fR});function mR(e,t){let n=F(e,"x","squeeze");return U(n,h5(n.shape,t).newShape)}var lt=V({squeeze_:mR});function gR(e,t=0){let n=sc(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return L.runKernel(nl,s,r)}var $n=V({stack_:gR});function AR(e,t=0){let s={x:F(e,"x","step")},r={alpha:t};return L.runKernel(Ur,s,r)}var mc=V({step_:AR});function yR(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let c={x:F(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return L.runKernel(ml,c,d)}var fb=V({stridedSlice_:yR});function xR(e){let n={x:F(e,"x","tan")};return L.runKernel(Ao,n)}var mb=V({tan_:xR});function Mt(e,t){wa(e);let n=Ys(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return jr(e,null,n,t)}function Ps(e,t,n){if(wa(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=Ys(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return jr(e,t,s,n)}function bR(e,t,n){if(wa(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=Ys(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return jr(e,t,s,n)}function vR(e,t,n){if(wa(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=Ys(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return jr(e,t,s,n)}function wR(e,t,n){if(wa(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=Ys(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,jr(e,t,s,n)}function kR(e,t=1,n=!0){let s=F(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=L.runKernel(gl,a,o);return{values:i,indices:l}}var gb=V({topk_:kR});function IR(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new Fg(t,n,s,!0,r),o=We(e,s);for(let i=0;i0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=L.runKernel(Th,s,r);return{values:a,indices:o}}var Hg=V({unique_:SR});function CR(e,t,n){let s=F(e,"x","unsortedSegmentSum"),r=F(t,"segmentIds","unsortedSegmentSum","int32");M(Zt(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return L.runKernel(ju,a,o)}var Ab=V({unsortedSegmentSum_:CR});function TR(e,t=0){let n=F(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return L.runKernel(yl,s,r)}var ms=V({unstack_:TR});function yb(e,t=!0,n,s){return L.makeVariable(e,t,n,s)}function xb(e,t){let n=[];for(let a=0;a0,()=>"mask cannot be scalar"),An(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m"Shape mismatch in v and x");let l=Ie(1),u=ge(l,i),c=z(ge(o,a),u);if(r){M(s!=null,()=>"When using zeroDebias: true, step is required.");let d=F(s,"step","movingAverage");c=de(c,ge(l,Jr(i,d)))}return ae(a,c)}var DR=V({movingAverage_:$R});function FR(e,t,n){let s=F(e,"indices","scatterND","int32"),r=F(t,"updates","scatterND");ig(r,s,n);let a={indices:s,updates:r},o={shape:n};return L.runKernel(ol,a,o)}var vb=V({scatterND_:FR});function OR(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function PR(e,t,n,s=0){let r=F(e,"sparseIndices","sparseToDense","int32"),a=F(t,"sparseValues","sparseToDense"),o=F(s,"defaultValue","sparseToDense",a.dtype);OR(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return L.runKernel(kh,i,l)}var qg=V({sparseToDense_:PR});function MR(e,t){let n=F(t,"indices","gatherND","int32"),r={params:F(e,"x","gatherND","string_or_numeric"),indices:n};return L.runKernel(Bi,r)}var wb=V({gatherND_:MR});function zR(e,t){if(t==null)return e.shape.slice();if(yr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ge?r.clone():r;let a=zR(r,n),o=1-t,i=de(cc(ae(Ml(a,0,1,"float32",s),o)),o);return z(r,i)}var kb=V({dropout_:LR});function Ib(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Xg(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),M(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),An(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];M(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,u]=[o.length/a,a],c=p5("bool",l);for(let d=0;dg.value-m.value),c[d]=0;for(let m=0;mHR,depthwiseConv2d:()=>XR,matMul:()=>ZR});function VR(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=a==="NHWC"?i.shape[3]:i.shape[1],c=a==="NHWC"?l.shape[3]:l.shape[1];M(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),M(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),o!=null&&M(Zt(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:i,dy:l},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return L.runKernel(Zd,d,h)}var Kg=V({conv2DBackpropFilter_:VR});function lp(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,mc(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function up(e,t){let n=t,s=Gt(e.shape,t.shape);return s.length>0&&(n=ve(n,s)),U(n,e.shape)}function cp(e,t,n,s){if(t==="linear")return e;if(t==="relu")return tr(e);if(t==="elu")return uc(e);if(t==="relu6")return Og(e);if(t==="prelu")return tp(e,n);if(t==="leakyrelu")return qh(e,s);if(t==="sigmoid")return Hn(e);throw new Error(`Unknown fused activation ${t}.`)}var dp=(e,t)=>!(e>0)||t==="linear";function UR({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",dp(L.state.gradientDepth,l)===!1){let v=Zr(e,t,n,s,r,a,o);return i!=null&&(v=ae(v,i)),cp(v,l,u,c)}let d=F(e,"x","conv2d"),h=F(t,"filter","conv2d"),p=d,f=!1;d.rank===3&&(f=!0,p=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),M(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),M(h.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${h.rank}.`),o!=null&&M(Zt(s),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),M(p.shape[3]===h.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${h.shape[2]}.`),M(Qs(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let m=oc(p.shape,h.shape,n,a,s,o),g;i!=null&&(g=F(i,"bias","fused conv2d"),[g]=Ct(g,d),At(m.outShape,g.shape));let A;u!=null&&(A=F(u,"prelu weights","fused conv2d"));let y=(v,k)=>{let[w,C,R,P]=k,E=lp(v,R,l);M(Kr(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let _=bg(C.shape,E,w,n,s),T=Kg(C,E,w.shape,n,s),O=[_,T];if(P!=null){let W=up(P,E);O.push(W)}return O},x={x:p,filter:h,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?er((k,w,C)=>{let R=L.runKernel(vo,x,b);return C([w,k,R]),f&&(R=U(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:y}})(p,h):er((k,w,C,R)=>{let P=L.runKernel(vo,x,b);return R([w,k,P,C]),f&&(P=U(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:y}})(p,h,g)}var HR=V({fusedConv2d_:UR});function GR(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:i,dy:l},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return L.runKernel(eh,u,c)}var Sb=V({depthwiseConv2dNativeBackpropFilter_:GR});function jR(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:i,filter:n},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},d=L.runKernel(th,u,c);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Cb=V({depthwiseConv2dNativeBackpropInput_:jR});function qR({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(dp(L.state.gradientDepth,l)===!1){let v=lc(e,t,n,s,r,a,o);return i!=null&&(v=ae(v,i)),cp(v,l,u,c)}let d=F(e,"x","depthwiseConv2d"),h=F(t,"filter","depthwiseConv2d"),p=d,f=!1;d.rank===3&&(f=!0,p=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),M(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),M(h.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${h.rank}.`),M(p.shape[3]===h.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${h.shape[2]}.`),a==null&&(a=[1,1]),M(Qs(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&M(Zt(s),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${s}.`);let m=oc(p.shape,h.shape,n,a,s,o,!0),g;i!=null&&(g=F(i,"bias","fused conv2d"),[g]=Ct(g,d),At(m.outShape,g.shape));let A;u!=null&&(A=F(u,"prelu weights","fused depthwiseConv2d"));let y=(v,k)=>{M(Kr(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[w,C,R,P]=k,E=lp(v,R,l),_=Cb(C.shape,E,w,n,s,a,o),T=Sb(C,E,w.shape,n,s,a,o);if(P!=null){let O=up(g,E);return[_,T,O]}return[_,T]},x={x:p,filter:h,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?er((k,w,C)=>{let R=L.runKernel(wo,x,b);return C([w,k,R]),f&&(R=U(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:y}})(p,h):er((k,w,C,R)=>{let P=L.runKernel(wo,x,b);return R([w,k,P,C]),f&&(P=U(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:y}})(p,h,g)}var XR=V({fusedDepthwiseConv2d_:qR});function KR({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(dp(L.state.gradientDepth,a)===!1){let P=Ve(e,t,n,s);return r!=null&&(P=ae(P,r)),cp(P,a,o,i)}let l=F(e,"a","fused matMul"),u=F(t,"b","fused matMul");[l,u]=Ct(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=s?u.shape[u.rank-1]:u.shape[u.rank-2],h=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=s?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),g=Dt(f),A=Dt(m);M(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),M(yr(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),M(c===d,()=>`Error in fused matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${s} must match.`);let y=l.shape.slice(0,-2).concat([h,p]),x=n?U(l,[g,c,h]):U(l,[g,h,c]),b=s?U(u,[A,p,d]):U(u,[A,d,p]),v;r!=null&&(v=F(r,"bias","fused matMul"),[v]=Ct(v,l),At(y,v.shape));let k;o!=null&&(k=F(o,"prelu weights","fused matMul"));let w=(P,E)=>{let[_,T,O,W]=E,j=lp(U(P,O.shape),O,a),q,X;if(!n&&!s?(q=Ve(j,T,!1,!0),X=Ve(_,j,!0,!1)):!n&&s?(q=Ve(j,T,!1,!1),X=Ve(j,_,!0,!1)):n&&!s?(q=Ve(T,j,!1,!0),X=Ve(_,j,!1,!1)):(q=Ve(T,j,!0,!0),X=Ve(j,_,!0,!0)),r!=null){let Q=up(W,j);return[q,X,Q]}else return[q,X]},C={a:x,b,bias:v,preluActivationWeights:k},R={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?er((E,_,T)=>{let O=L.runKernel(bo,C,R);return T([E,_,O]),{value:U(O,y),gradFunc:w}})(x,b):er((E,_,T,O)=>{let W=L.runKernel(bo,C,R);return O([E,_,W,T]),{value:U(W,y),gradFunc:w}})(x,b,v)}var ZR=V({fusedMatMul_:KR});function YR(e){return Xg(e,.54,.46)}var JR=V({hammingWindow_:YR});function QR(e){return Xg(e,.5,.5)}var Tb=V({hannWindow_:QR});function e_(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(Re(e,a,t)),a+=n;if(s)for(;a`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),M(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),M(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),M(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),M(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let c={image:o,boxes:i,boxInd:l},d={method:r,extrapolationValue:a,cropSize:s};return L.runKernel(_i,c,d)}var r_=V({cropAndResize_:s_});function a_(e){let t=F(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return L.runKernel(zi,n,{})}var o_=V({flipLeftRight_:a_});function i_(e,t,n=0,s=.5){let r=F(e,"image","rotateWithOffset","float32");M(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return L.runKernel(bl,a,o)}var l_=V({rotateWithOffset_:i_});function Ll(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),M(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),M(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function u_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=F(e,"boxes","nonMaxSuppression"),o=F(t,"scores","nonMaxSuppression"),i=Ll(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return L.runKernel(Ji,{boxes:a,scores:o},l)}var c_=V({nonMaxSuppression_:u_});function d_(e,t,n){let s=h_(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function h_(e,t,n){return f_(e,t,n||p_)}function p_(e,t){return e>t?1:e>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function Eb(e,t,n,s,r){return Zg(e,t,n,s,r,0)}function Rb(e,t,n,s,r,a){return Zg(e,t,n,s,r,0,!1,a,!0)}function _b(e,t,n,s,r,a){return Zg(e,t,n,s,r,a,!0)}function Zg(e,t,n,s,r,a,o=!1,i=!1,l=!1){let u=[];for(let g=0;gr&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort($b);let c=a>0?-.5/a:0,d=[],h=[];for(;d.length0;){let g=u.pop(),{score:A,boxIndex:y,suppressBeginIndex:x}=g;if(A=x;--v){let k=m_(e,y,d[v]);if(k>=s){b=!0;break}if(g.score=g.score*g_(s,c,k),g.score<=r)break}g.suppressBeginIndex=d.length,b||(g.score===A?(d.push(y),h.push(g.score)):g.score>r&&d_(u,g,$b))}let p=d.length,f=n-p;i&&f>0&&(d.push(...new Array(f).fill(0)),h.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=h),l&&(m.validOutputs=p),m}function m_(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),u=Math.min(r[0],r[2]),c=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),h=Math.max(r[1],r[3]),p=(i-a)*(l-o),f=(d-u)*(h-c);if(p<=0||f<=0)return 0;let m=Math.max(a,u),g=Math.max(o,c),A=Math.min(i,d),y=Math.min(l,h),x=Math.max(A-m,0)*Math.max(y-g,0);return x/(p+f-x)}function g_(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function $b(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function A_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=F(e,"boxes","nonMaxSuppressionAsync"),o=F(t,"scores","nonMaxSuppressionAsync"),i=Ll(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),u=l[0],c=l[1],{selectedIndices:d}=Eb(u,c,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),Mt(d,"int32")}var y_=A_;function x_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=F(e,"boxes","nonMaxSuppression"),i=F(t,"scores","nonMaxSuppression"),l=Ll(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u={boxes:o,scores:i},c={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},d=L.runKernel(el,u,c);return{selectedIndices:d[0],selectedScores:d[1]}}var b_=V({nonMaxSuppressionWithScore_:x_});async function v_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=F(e,"boxes","nonMaxSuppressionAsync"),i=F(t,"scores","nonMaxSuppressionAsync"),l=Ll(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u=await Promise.all([o.data(),i.data()]),c=u[0],d=u[1],{selectedIndices:h,selectedScores:p}=_b(c,d,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Mt(h,"int32"),selectedScores:Mt(p)}}var w_=v_;function k_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=F(e,"boxes","nonMaxSuppression"),i=F(t,"scores","nonMaxSuppression"),l=Ll(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,h={boxes:o,scores:i},p={maxOutputSize:u,iouThreshold:c,scoreThreshold:d,padToMaxOutputSize:a},f=L.runKernel(Qi,h,p);return{selectedIndices:f[0],validOutputs:f[1]}}var I_=V({nonMaxSuppressionPadded_:k_});async function S_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=F(e,"boxes","nonMaxSuppressionAsync"),i=F(t,"scores","nonMaxSuppressionAsync"),l=Ll(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,[h,p]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=Rb(h,p,u,c,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Mt(f,"int32"),validOutputs:Ie(m,"int32")}}var C_=S_;function T_(e,t,n=!1,s=!1){let r=F(e,"images","resizeBilinear");M(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=L.runKernel(ro,i,l);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var N_=V({resizeBilinear_:T_});function E_(e,t,n=!1,s=!1){let r=F(e,"images","resizeNearestNeighbor");M(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=L.runKernel(Hu,i,l);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var R_=V({resizeNearestNeighbor_:E_});function __(e,t="binary",n=!1,s=.5){let r=F(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],u=z(Mt([s]),255),c,d,h,p;if(M(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),M(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),M(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),M(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[c,d,h]=an(r,[1,1,1],-1);let g=z(c,a),A=z(d,o),y=z(h,i);p=ae(ae(g,A),y)}else p=e;if(t==="otsu"){let g=yg(ce(Pg(p),"int32"),cn([]),256);u=$_(g,l)}let f=n?$o(p,u):jn(p,u);return ce(z(f,255),"int32")}function $_(e,t){let n=Mt([-1]),s=Mt([0]),r=Mt([0]),a,o,i,l,u,c;for(let d=0;d`Error in transform: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},u={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return L.runKernel(Al,l,u)}var O_=V({transform_:F_});function P_(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=F(e,"a","bandPart");M(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=U(zl(0,a,1,"int32"),[-1,1]),l=zl(0,o,1,"int32"),u=ge(i,l),c=Os($o(u,Ie(+t,"int32")),_o(u,Ie(-n,"int32"))),d=Pt([a,o],s.dtype);return U($n(ms(U(s,[-1,a,o])).map(h=>bn(c,h,d))),r)}var M_=V({bandPart_:P_});function z_(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=an(e,e.shape[0],0).map(r=>lt(r,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r{let a=s[r];if(r>0)for(let o=0;o=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Db(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),s=ms(U(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[u,c]=Db(l,t);r.push(u),a.push(c)});let o=U($n(r,0),e.shape),i=U($n(a,0),e.shape);return[o,i]}}function Db(e,t=!1){return L.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=Sg(n),a=Ds(e),o=Ps([[1]],[1,1]),i=Ds(o),l=n>=s?s:n;for(let u=0;u{let p=Re(a,[u,u],[n-u,1]),f=jg(p),m=Re(a,[u,u],[1,1]),g=bn(jn(m,0),Ps([[-1]]),Ps([[1]])),A=ge(m,z(g,f)),y=de(p,A);y.shape[0]===1?i=Ds(o):i=ft([o,Re(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let x=Tt(de(Ve(g,A),f)),b=Re(a,[u,0],[n-u,s]),v=z(x,i),k=Xe(i);if(u===0)a=ge(b,Ve(v,Ve(k,b)));else{let R=ge(b,Ve(v,Ve(k,b)));a=ft([Re(a,[0,0],[u,s]),R],0)}let w=Xe(v),C=Re(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=ge(C,Ve(Ve(C,i),w));else{let R=ge(C,Ve(Ve(C,i),w));r=ft([Re(r,[0,0],[n,u]),R],1)}return[i,a,r]}),K([c,d,h])}return!t&&n>s&&(r=Re(r,[0,0],[n,s]),a=Re(a,[0,0],[s,s])),[r,a]})}var W_=V({qr_:B_}),vn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(vn||(vn={}));function V_(e,t,n=vn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=F(t,"weights","computeWeightedLoss"));let a=r==null?s:z(s,r);if(n===vn.NONE)return a;if(n===vn.SUM)return ve(a);if(n===vn.MEAN){if(r==null)return _t(a);{let o=s.size/r.size,i=de(ve(a),ve(r));return o>1?de(i,Ie(o)):i}}if(n===vn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return de(ve(a),Ie(s.size));{let o=z(r,qn(s.shape)),i=ce(ve(Pl(o,Ie(0))),"float32");return de(ve(a),i)}}throw Error(`Unknown reduction: ${n}`)}var wr=V({computeWeightedLoss_:V_});function U_(e,t,n,s=vn.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"labels","absoluteDifference"),a=F(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=F(n,"weights","absoluteDifference")),An(r.shape,a.shape,"Error in absoluteDifference: ");let i=Ht(ge(r,a));return wr(i,o,s)}var H_=V({absoluteDifference_:U_});function G_(e,t,n,s,r=vn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"labels","cosineDistance"),o=F(t,"predictions","cosineDistance"),i=null;s!=null&&(i=F(s,"weights","cosineDistance")),An(a.shape,o.shape,"Error in cosineDistance: ");let l=Ie(1),u=ge(l,ve(z(a,o),n,!0));return wr(u,i,r)}var j_=V({cosineDistance_:G_});function q_(e,t,n,s=vn.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"labels","hingeLoss"),a=F(t,"predictions","hingeLoss"),o=null;n!=null&&(o=F(n,"weights","hingeLoss")),An(r.shape,a.shape,"Error in hingeLoss: ");let i=Ie(1);r=ge(z(Ie(2),r),i);let l=tr(ge(i,z(r,a)));return wr(l,o,s)}var X_=V({hingeLoss_:q_});function K_(e,t,n,s=1,r=vn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"labels","huberLoss"),o=F(t,"predictions","huberLoss"),i=null;n!=null&&(i=F(n,"weights","huberLoss")),An(a.shape,o.shape,"Error in huberLoss: ");let l=Ie(s),u=Ht(ge(o,a)),c=dc(u,l),d=ge(u,c),h=ae(z(Ie(.5),ct(c)),z(l,d));return wr(h,i,r)}var Z_=V({huberLoss_:K_});function Y_(e,t,n,s=1e-7,r=vn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"labels","logLoss"),o=F(t,"predictions","logLoss"),i=null;n!=null&&(i=F(n,"weights","logLoss")),An(a.shape,o.shape,"Error in logLoss: ");let l=Ie(1),u=Ie(s),c=Tt(z(a,ds(ae(o,u)))),d=z(ge(l,a),ds(ae(ge(l,o),u))),h=ge(c,d);return wr(h,i,r)}var J_=V({logLoss_:Y_});function Q_(e,t,n,s=vn.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"labels","meanSquaredError"),a=F(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=F(n,"weights","meanSquaredError")),An(r.shape,a.shape,"Error in meanSquaredError: ");let i=Ug(r,a);return wr(i,o,s)}var e$=V({meanSquaredError_:Q_});function t$(e,t){let n=F(e,"labels","sigmoidCrossEntropyWithLogits"),s=F(t,"logits","sigmoidCrossEntropyWithLogits");An(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=tr(s),a=z(s,n),o=Xh(cs(Tt(Ht(s))));return ae(ge(r,a),o)}function n$(e,t,n,s=0,r=vn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"multiClassLabels","sigmoidCrossEntropy"),o=F(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=F(n,"weights","sigmoidCrossEntropy")),An(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let u=Ie(s),c=Ie(1),d=Ie(.5);a=ae(z(a,ge(c,u)),z(d,u))}let l=t$(a,o);return wr(l,i,r)}var s$=V({sigmoidCrossEntropy_:n$});function r$(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return er((r,a,o)=>{let l=rb(a,[n],!0),u=ge(ce(a,"float32"),l);o([r,u]);let c=Tt(z(u,r));return{value:ve(c,[n]),gradFunc:(p,f)=>{let[m,g]=f,A=Do(p.shape,[n]);return[z(U(p,A),ge(ce(m,"float32"),cs(g))),z(U(p,A),ge(cs(g),ce(m,"float32")))]}}})(e,t)}function a$(e,t,n,s=0,r=vn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"onehotLabels","softmaxCrossEntropy"),o=F(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=F(n,"weights","softmaxCrossEntropy")),An(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let u=Ie(s),c=Ie(1),d=Ie(a.shape[1]);a=ae(z(a,ge(c,u)),de(u,d))}let l=r$(a,o);return wr(l,i,r)}var o$=V({softmaxCrossEntropy_:a$});function i$(e,t,n,s){let r=F(e,"indices","sparseFillEmptyRows"),a=F(t,"values","sparseFillEmptyRows"),o=F(n,"denseShape","sparseFillEmptyRows"),i=F(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape + ${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},u=L.runKernel(xh,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var l$=V({sparseFillEmptyRows_:i$});function u$(e,t,n){let s=F(e,"inputIndices","sparseReshape"),r=F(t,"inputShape","sparseReshape"),a=F(n,"newShape","sparseReshape");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape + ${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=L.runKernel(bh,o);return{outputIndices:i[0],outputShape:i[1]}}var c$=V({sparseReshape_:u$});function d$(e,t,n){let s=F(e,"data","sparseSegmentMean"),r=F(t,"indices","sparseSegmentMean"),a=F(n,"segmentIds","sparseSegmentMean");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape - ${a.shape}`);let o={data:s,indices:r,segmentIds:a};return L.runKernel(fh,o)}var Z_=V({sparseSegmentMean_:K_});function Y_(e,t,n){let s=D(e,"data","sparseSegmentSum"),r=D(t,"indices","sparseSegmentSum"),a=D(n,"segmentIds","sparseSegmentSum");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape + ${a.shape}`);let o={data:s,indices:r,segmentIds:a};return L.runKernel(vh,o)}var h$=V({sparseSegmentMean_:d$});function p$(e,t,n){let s=F(e,"data","sparseSegmentSum"),r=F(t,"indices","sparseSegmentSum"),a=F(n,"segmentIds","sparseSegmentSum");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape - ${a.shape}`);let o={data:s,indices:r,segmentIds:a};return L.runKernel(mh,o)}var J_=V({sparseSegmentSum_:Y_});function Q_(e,t,n,s,r,a,o,i){let l=D(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=D(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:u},h=L.runKernel(gh,d,c);return{nGrams:h[0],nGramsSplits:h[1]}}var e$=V({stringNGrams_:Q_});function t$(e,t,n=!0){let s=D(e,"input","stringSplit","string"),r=D(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=L.runKernel(yh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var n$=V({stringSplit_:t$});function s$(e,t){let n=D(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return L.runKernel(xh,r,s)}var r$=V({stringToHashBucketFast_:s$}),a$={fft:Jh,ifft:lc,rfft:Qh,irfft:OA},o$={hammingWindow:PR,hannWindow:xb,frame:bb,stft:BR},_e={flipLeftRight:HR,resizeNearestNeighbor:f_,resizeBilinear:h_,rotateWithOffset:jR,cropAndResize:VR,nonMaxSuppression:XR,nonMaxSuppressionAsync:n_,nonMaxSuppressionWithScore:r_,nonMaxSuppressionWithScoreAsync:o_,nonMaxSuppressionPadded:l_,nonMaxSuppressionPaddedAsync:c_,threshold:g_,transform:x_},Cb={bandPart:v_,gramSchmidt:k_,qr:S_},i$={absoluteDifference:N_,computeWeightedLoss:yr,cosineDistance:R_,hingeLoss:$_,huberLoss:D_,logLoss:P_,meanSquaredError:z_,sigmoidCrossEntropy:W_,softmaxCrossEntropy:H_},cc={sparseFillEmptyRows:j_,sparseReshape:X_,sparseSegmentMean:Z_,sparseSegmentSum:J_},ap={stringNGrams:e$,stringSplit:n$,stringToHashBucketFast:r$},xr=class extends dx{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return K(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return jx(e,t)}dispose(){this.iterations_!=null&&K(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ie(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(xr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var op=class extends xr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:H(()=>qe(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:H(()=>qe(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;H(()=>{let u=ae(z(i,this.rho),z(lt(o),1-this.rho)),c=z(de(ln(ae(l,this.epsilon)),ln(ae(i,this.epsilon))),o),d=ae(z(l,this.rho),z(lt(c),1-this.rho));i.assign(u),l.assign(d);let h=ae(z(c,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(K(this.accumulatedGrads.map(e=>e.variable)),K(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};op.className="Adadelta";Hr(op);var ip=class extends xr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n];if(this.accumulatedGrads[s]==null){let i=!1;this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:H(()=>Tl(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;H(()=>{let i=ae(o,lt(a));o.assign(i);let l=ae(z(de(a,ln(ae(i,L.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&K(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};ip.className="Adagrad";Hr(ip);var lp=class extends xr{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],H(()=>{this.accBeta1=Ie(t).variable(),this.accBeta2=Ie(n).variable()}),s==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=Ae(1,this.accBeta1),s=Ae(1,this.accBeta2);t.forEach((r,a)=>{let o=L.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:H(()=>qe(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:H(()=>qe(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,d=ae(z(u,this.beta1),z(l,1-this.beta1)),h=ae(z(c,this.beta2),z(lt(l),1-this.beta2)),p=de(d,n),f=de(h,s);u.assign(d),c.assign(h);let m=ae(z(de(p,ae(ln(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&K(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&K(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),H(()=>{this.accBeta1.assign(Xr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Xr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};lp.className="Adam";Hr(lp);var up=class extends xr{constructor(e,t,n,s=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],H(()=>{this.iteration=Ie(0).variable(),this.accBeta1=Ie(t).variable()}),s==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=Ae(1,this.accBeta1),s=de(-this.learningRate,ae(z(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=L.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:qe(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:qe(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,d=ae(z(u,this.beta1),z(l,1-this.beta1)),h=z(c,this.beta2),p=Wt(l),f=gr(h,p);u.assign(d),c.assign(f);let m=ae(z(de(s,n),de(d,ae(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(ae(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&K(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&K(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};up.className="Adamax";Hr(up);var dc=class extends xr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=L.registeredVariables[n];H(()=>{let o=ae(z(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Kt(Ie(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};dc.className="SGD";Hr(dc);var cp=class extends dc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ie(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n];if(this.accumulations[s]==null){let i=!1;this.accumulations[s]={originalName:`${n}/momentum`,variable:H(()=>qe(r).variable(i))}}let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&H(()=>{let i,l=ae(z(this.m,a),o);this.useNesterov?i=ae(z(this.c,ae(o,z(l,this.m))),r):i=ae(z(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&K(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};cp.className="Momentum";Hr(cp);var dp=class extends xr{constructor(e,t=.9,n=0,s=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=L.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:H(()=>qe(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:H(()=>qe(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:H(()=>qe(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;H(()=>{let u=ae(z(i,this.decay),z(lt(o),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[s].variable,d=ae(z(c,this.decay),z(o,1-this.decay)),h=de(z(o,this.learningRate),ln(Ae(u,ae(lt(d),this.epsilon)))),p=ae(z(l,this.momentum),h);i.assign(u),c.assign(d),l.assign(p);let f=Ae(r,p);r.assign(f)}else{let c=ae(z(i,this.decay),z(lt(o),1-this.decay)),d=ae(z(l,this.momentum),de(z(o,this.learningRate),ln(ae(c,this.epsilon))));i.assign(c),l.assign(d);let h=Ae(r,d);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&K(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&K(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&K(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};dp.className="RMSProp";Hr(dp);var Eo=class{static sgd(e){return new dc(e)}static momentum(e,t,n=!1){return new cp(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new dp(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new lp(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new op(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new up(e,t,n,s,r)}static adagrad(e,t=.1){return new ip(e,t)}},Ro={sgd:Eo.sgd,momentum:Eo.momentum,adadelta:Eo.adadelta,adagrad:Eo.adagrad,rmsprop:Eo.rmsprop,adamax:Eo.adamax,adam:Eo.adam},l$=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function hp(){return new Promise(e=>l$(()=>e()))}var $={};Pe($,{ERF_A1:()=>x$,ERF_A2:()=>b$,ERF_A3:()=>v$,ERF_A4:()=>w$,ERF_A5:()=>k$,ERF_P:()=>y$,PARALLELIZE_THRESHOLD:()=>HA,SELU_SCALE:()=>Nb,SELU_SCALEALPHA:()=>Tb,applyActivation:()=>sp,assertAndGetBroadcastShape:()=>mt,assertAxesAreInnerMostDims:()=>wN,assertParamsConsistent:()=>u$,assignToTypedArray:()=>_$,axesAreInnerMostDims:()=>vA,calculateShapes:()=>Q5,checkEinsumDimSizes:()=>M$,combineLocations:()=>qx,complexWithEvenIndex:()=>N$,complexWithOddIndex:()=>E$,computeConv2DInfo:()=>ec,computeConv3DInfo:()=>Sx,computeDefaultPad:()=>lA,computeDilation2DInfo:()=>VC,computeOptimalWindowSize:()=>d$,computeOutAndReduceShapes:()=>Xx,computeOutShape:()=>c$,computePool2DInfo:()=>Ix,computePool3DInfo:()=>UC,convertConv2DDataFormat:()=>Cx,decodeEinsumEquation:()=>O$,eitherStridesOrDilationsAreOne:()=>Ks,expandShapeToKeepDim:()=>No,exponent:()=>F$,exponents:()=>$$,fromStringArrayToUint8:()=>j$,fromUint8ToStringArray:()=>G$,getAxesPermutation:()=>Kx,getBroadcastDims:()=>FT,getComplexWithIndex:()=>R$,getEinsumComputePath:()=>z$,getEinsumPermutation:()=>P$,getFusedBiasGradient:()=>np,getFusedDyActivation:()=>tp,getImageCenter:()=>h$,getInnerMostAxes:()=>kN,getPermuted:()=>f$,getReductionAxes:()=>Vt,getReshaped:()=>p$,getReshapedPermuted:()=>m$,getSliceBeginCoords:()=>A$,getSliceSize:()=>g$,getUndoAxesPermutation:()=>wA,isIdentityPermutation:()=>L$,log:()=>S$,mergeRealAndImagArrays:()=>C$,prepareAndValidate:()=>J5,prepareSplitSize:()=>W$,segment_util:()=>_b,shouldFuse:()=>rp,slice_util:()=>An,splitRealAndImagArrays:()=>T$,tupleValuesAreOne:()=>Gr,upcastType:()=>vs,validateInput:()=>eA,validateUpdateShape:()=>Qm,warn:()=>I$});function u$(e,t){let n=e[0].length;e.forEach((r,a)=>{M(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function c$(e,t){let n=e[0].slice();for(let s=1;s=t*2+1||o%2==1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function m$(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a/g,Eb=",",Rb="...";function O$(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(D$,"").length)/GA.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${GA}").`);let[s,r]=e.split(GA);M(s.indexOf(Rb)===-1,()=>`The ellipsis notation ("${Rb}") is not supported yet.`);let a=s.split(Eb),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let h=0;hf.indexOf(p)!==-1))throw new Error(`Output subscripts contain the label ${p} not present in the input subscripts.`);i.indexOf(p)===-1&&i.push(p)}for(let h=0;hr!==-1),{permutationIndices:n,expandDims:s}}function M$(e,t,n){let s=new Array(e);for(let r=0;r`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function z$(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;ot===n)}function B$(e,t){let n=[];for(let s=0;s"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);M(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}M(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}var _b={};Pe(_b,{collectGatherOpShapeInfo:()=>H$,computeOutShape:()=>U$,segOpComputeOptimalWindowSize:()=>V$});function V$(e,t){let n=!1,s;for(e<=HA?(s=e,n=!0):s=Md(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=Md(e,s+1);return s}function U$(e,t,n){let s=[],r=e.length;for(let a=0;ar))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) ( - ${a}).`);if(nSh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function j$(e){return e.map(t=>Hu(t))}var Js={};Pe(Js,{nonMaxSuppressionV3Impl:()=>vb,nonMaxSuppressionV4Impl:()=>wb,nonMaxSuppressionV5Impl:()=>kb,whereImpl:()=>db});var $b={kernelName:pi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,uc(ce(n,"float32"),-1))}}},q$={kernelName:fi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=lt(ce(n,"float32")),r=ln(Ae(Ie(1),s));return St(de(e,r))}}}},X$={kernelName:mi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ln(Ae(lt(ce(n,"float32")),1));return de(e,s)}}}},K$={kernelName:Pr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=e,l=Vt(n.shape,r);return l.length>0&&(i=ve(i,l)),U(i,n.shape)},b:()=>{let i=e,l=Vt(s.shape,r);return l.length>0&&(i=ve(i,l)),U(i,s.shape)}}}},Z$={kernelName:xa,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},Y$={kernelName:ba,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},J$={kernelName:Tu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},Q$={kernelName:yi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ln(Ae(Ie(1),lt(ce(n,"float32")))))}}},eF={kernelName:xi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ln(ae(Ie(1),lt(ce(n,"float32"))));return de(e,s)}}}},tF={kernelName:wi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=ae(lt(n),lt(s)),l=z(e,de(s,i)),u=Vt(n.shape,r);return u.length>0&&(l=ve(l,u)),U(l,n.shape)},b:()=>{let i=ae(lt(n),lt(s)),l=St(z(e,de(n,i))),u=Vt(s.shape,r);return u.length>0&&(l=ve(l,u)),U(l,s.shape)}}}},nF={kernelName:bi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ae(lt(ce(n,"float32")),1))}}},sF={kernelName:vi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,Ae(Ie(1),lt(ce(n,"float32"))))}}};function rF(e,t,n,s,r,a){let o=D(e,"dy","avgPool3dGrad"),i=D(t,"input","avgPool3dGrad"),l=o,u=i,c=!1;i.rank===4&&(c=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),u=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),a!=null&&M(qt(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let d={dy:l,input:u},h={filterSize:n,strides:s,pad:r,dimRoundingMode:a},p=L.runKernel(Bd,d,h);return c?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var aF=V({avgPool3dGrad_:rF}),oF={kernelName:Nu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>aF(e,s,r,a,o,i)}}};function iF(e,t,n,s,r){let a=D(e,"dy","avgPoolGrad"),o=D(t,"input","avgPoolGrad");M(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,u=!1;o.rank===3&&(u=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},d={filterSize:n,strides:s,pad:r},h=L.runKernel(Ld,c,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var lF=V({avgPoolGrad_:iF}),uF={kernelName:va,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>lF(e,s,r,a,o)}}},cF={kernelName:wa,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>We(e,r,!1,!0),b:()=>We(s,e,!0,!1)}:!a&&o?{a:()=>We(e,r,!1,!1),b:()=>We(e,s,!0,!1)}:a&&!o?{a:()=>We(r,e,!1,!0),b:()=>We(s,e,!1,!1)}:{a:()=>We(r,e,!0,!0),b:()=>We(e,s,!0,!0)}}},dF={kernelName:ki,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>qh(e,s,r)}}},hF={kernelName:A5,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l1&&i.push(l);return{x:()=>ve(e,i,!0)}}},pF={kernelName:ka,gradFunc:e=>({x:()=>e.clone()})},fF={kernelName:Ia,gradFunc:e=>({x:()=>qe(e)})},mF={kernelName:Mr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>gn(_s(Co(s,r),To(s,a)),e,qe(e))}}},AF={kernelName:Eu,inputsToSave:["x"],gradFunc:$b.gradFunc},gF={kernelName:Ii,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=bs(r,t[0].shape)[0],o=s.map(l=>l[a]);return nn(e,o,a).map(l=>()=>l)}},yF={kernelName:Sa,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return M(Gr(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>pA(s.shape,e,r,o,i,l),filter:()=>VA(s,e,r.shape,o,i,l)}}},xF={kernelName:Ca,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>jr(e,r,a,o,i,1,l),filter:()=>VA(e,s,r.shape,a,o,i,l)}}};function bF(e,t,n,s,r){let a=e;e.rank===4&&(a=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),M(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),M(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return L.runKernel(Hd,i,l)}var vF=V({conv3DBackpropFilter_:bF}),wF={kernelName:Ru,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;M(Gr(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>Dx(o.shape,e,i,r,a),filter:()=>vF(o,e,i.shape,r,a)}}},kF={kernelName:Ta,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(St($A(ce(n,"float32"))),e)}}},IF={kernelName:Na,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(FA(ce(n,"float32")),e)}}},SF={kernelName:Ea,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=Kx([r],s.rank),l=gA(e,r,a,!o);return i!=null&&(l=je(l,i)),l}}}},CF={kernelName:Ra,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;M(Gr(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),M(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),M(Ks(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),o!=null&&M(qt(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>yb(l.shape,e,u,r,a,s,o),filter:()=>gb(l,e,u.shape,r,a,s,o)}}},TF={kernelName:_u,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>L.runKernel(Zd,a,n),filter:()=>L.runKernel(Yd,o,n)}}},NF={kernelName:Ti,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>L.runKernel(Qd,s)}}},EF={kernelName:Ni,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z(os(St(lt(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,s)}}},RF={kernelName:$a,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},_F={kernelName:Ri,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>U(e,n.shape)}}},$F={kernelName:_i,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,os(n))}}},FF={kernelName:Fa,gradFunc:e=>({x:()=>qe(e)})},DF={kernelName:Da,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=de(e,ce(s,"float32")),l=Vt(n.shape,r);return l.length>0?U(ve(i,l),n.shape):i},b:()=>{let i=z(e,ce(n,"float32")),l=Vt(s.shape,r);l.length>0&&(i=U(ve(i,l),s.shape));let u=lt(s);return St(de(i,ce(u,"float32")))}}}},OF={kernelName:Oa,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Ie(1):i,u=Vt(a.shape,r.shape),c=[];if(a.rank===1){for(let b=0;ba.rank===1?U(z(z(e,Rs(U(p,[1,1,1,a.shape[0]]),c)),l),r.shape):U(z(z(e,p),l),r.shape),mean:()=>{let b=z(z(p,Ie(-1)),h);return a.rank===1&&(b=ve(b,u)),U(b,a.shape)},variance:()=>{let b=z(z(f,d),h);return a.rank===1&&(b=ve(b,u)),U(b,a.shape)},scale:()=>{let b=z(d,p),v=z(e,b);return a.rank===1&&(v=ve(v,u)),U(v,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=ve(b,u)),U(b,a.shape)}}}},PF={kernelName:Fi,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=bs(a,s.shape)[0];return{x:()=>{let l=s.shape,u=r.size,c=l.slice(0,o),d=c.length,h=l.slice(a,l.length).slice(1),p=h.length,f=Fb(0,d),m=Fb(d+1,d+1+p),A=Db([c,[u],h]),g=U(e,A),y=U(r,[u]),x=Db([[d],f,m]),b=je(g,x),v=ub(b,y,s.shape[o]),k=wA(x);return v=je(v,k),v},indices:()=>r}}};function Fb(e,t){let n=[];for(let s=e;s{let[n,s]=t;return{a:()=>qe(n),b:()=>qe(s)}}},zF={kernelName:Ma,gradFunc:e=>({x:()=>ce(e,"float32")})},LF={kernelName:Pi,gradFunc:e=>({x:()=>qe(e)})},BF={kernelName:Mi,gradFunc:e=>({x:()=>qe(e)})},WF={kernelName:zi,gradFunc:e=>({x:()=>qe(e)})},VF={kernelName:za,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=Vn(s,0);return{x:()=>gn(a,e,z(e,r))}}},UF={kernelName:Wi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ae(n,1))}}},HF={kernelName:La,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ce(n,"float32"))}}},GF={kernelName:g5,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let a=!0,o=os(s);return Ae(e,z(ve(e,r,a),o))}}}};function jF(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return L.runKernel(rh,i,l)}var qF=V({localResponseNormalizationBackprop_:jF}),XF={kernelName:Ou,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>qF(s,r,e,a,o,i,l)}}};function Ob(e,t,n,s){return t.rankz(e,ce(as(n,t),e.dtype))}}var Pb={kernelName:Ba,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=bs(r,a.shape),l=Ob(e,o,a,i);return{x:()=>l.x()}}},KF={kernelName:Wa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,ce(Co(n,s),"float32")),b:()=>z(e,ce(xA(n,s),"float32"))}}};function ZF(e,t,n,s,r,a,o){let i=D(e,"dy","maxPool3dGrad"),l=D(t,"input","maxPool3dGrad"),u=D(n,"output","maxPool3dGrad"),c=i,d=l,h=u,p=!1;l.rank===4&&(p=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=U(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),h=U(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),M(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),M(h.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${h.rank}.`),o!=null&&M(qt(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let f={dy:c,input:d,output:h},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},A=L.runKernel(oh,f,m);return p?U(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var YF=V({maxPool3dGrad_:ZF}),JF={kernelName:Pu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>YF(e,s,r,a,o,i,l)}}};function QF(e,t,n,s,r,a,o){let i=D(e,"dy","maxPoolGrad"),l=D(t,"input","maxPoolGrad"),u=D(n,"output","maxPoolGrad");M(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),M(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),o!=null&&M(qt(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let c={dy:i,input:l,output:u},d={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return L.runKernel(ah,c,d)}var eD=V({maxPoolGrad_:QF}),tD={kernelName:Va,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>eD(e,s,r,a,o,i)}}},nD={kernelName:Ua,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=bs(r,s.shape),i=Xx(s.shape,a)[1],l=_t(i);return{x:()=>{let c=s.shape.slice();a.forEach(p=>{c[p]=1});let d=U(e,c);return de(z(d,Un(s.shape,"float32")),l)}}}},sD={kernelName:Ha,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=bs(r,a.shape),l=Ob(e,o,a,i);return{x:()=>l.x()}}},rD={kernelName:Ga,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,ce(To(n,s),"float32")),b:()=>z(e,ce(Vn(n,s),"float32"))}}},aD={kernelName:ja,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Re(e,a,s.shape)}}},oD={kernelName:Ui,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=Vt(n.shape,r);return i.length>0?U(ve(e,i),n.shape):e},b:()=>{let i=z(e,St(rc(de(n,s)))),l=Vt(s.shape,r);return l.length>0?U(ve(i,l),s.shape):i}}}},iD={kernelName:qa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=z(e,ce(s,"float32")),l=Vt(n.shape,r);return l.length>0?U(ve(i,l),n.shape):i},b:()=>{let i=z(e,ce(n,"float32")),l=Vt(s.shape,r);return l.length>0?U(ve(i,l),s.shape):i}}}},lD={kernelName:Hi,gradFunc:e=>({x:()=>St(e)})},uD={kernelName:Xa,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Dt(n.shape,"float32")}}},cD={kernelName:Ki,gradFunc:e=>({x:()=>qe(e)})},dD={kernelName:Zi,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return ds(e,s).map(a=>()=>a)}},Mb={kernelName:Ka,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Re(e,a,s.shape)}}},hD={kernelName:Za,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=mt(a.shape,o.shape);return{a:()=>{let c=ce(o,"float32"),d=z(e,z(c,Xr(a,Ae(c,Ie(1))))),h=Vt(a.shape,i);return h.length>0&&(d=ve(d,h)),U(d,a.shape)},b:()=>{let c=Vn(a,0),d=gn(c,is(a),qe(a)),h=z(e,z(r,d)),p=Vt(o.shape,i);return p.length>0&&(h=ve(h,p)),U(h,o.shape)}}}},pD={kernelName:Ya,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=Vn(n,0);return{x:()=>gn(r,e,z(e,s)),alpha:()=>{let a=gn(r,qe(e),z(e,n)),o=Vt(s.shape,e.shape);return o.length>0&&(a=ve(a,o)),U(a,s.shape)}}}},fD={kernelName:_a,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=de(e,ce(s,"float32")),l=Vt(n.shape,r);return l.length>0?U(ve(i,l),n.shape):i},b:()=>{let i=z(e,ce(n,"float32")),l=Vt(s.shape,r);l.length>0&&(i=U(ve(i,l),s.shape));let u=lt(s);return St(de(i,ce(u,"float32")))}}}},mD={kernelName:Ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,St(lt(n)))}}},AD={kernelName:eo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z(To(n,6),uc(n));return{x:()=>z(e,ce(s,"float32"))}}},gD={kernelName:Ja,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ce(uc(n),"float32"))}}},yD={kernelName:Qi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>U(e,n.shape)}}},xD={kernelName:Qa,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>L.runKernel(dh,r,n)}}},bD={kernelName:zu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>L.runKernel(ch,r,n)}}},vD={kernelName:to,gradFunc:(e,t,n)=>{let{dims:s}=n,r=bs(s,e.shape);return{x:()=>cs(e,r)}}},wD={kernelName:no,gradFunc:e=>({x:()=>qe(e)})},kD={kernelName:so,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>St(de(e,z(Xr(n,1.5),2)))}}},ID={kernelName:tl,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ce(qe(n),"float32"),t:()=>z(e,ce(n,e.dtype)),e:()=>z(e,ce(Uh(n),e.dtype))}}},SD={kernelName:nl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Vn(n,Ie(0)),r=Ie(Tb),a=Ie(Nb),o=z(e,a),i=z(z(e,r),os(ce(n,"float32")));return gn(s,o,i)}}}},CD={kernelName:ao,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,Ae(Ie(1),n)))}}},TD={kernelName:al,gradFunc:e=>({x:()=>qe(e)})},ND={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(zh(ce(n,"float32")),e)}}},ED={kernelName:rl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(AA(ce(n,"float32")),e)}}},RD={kernelName:sl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=cx(s,r,a),u=[];for(let c=0;cqr(e,u)}}},_D={kernelName:lo,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=z(e,s);return{logits:()=>Ae(o,z(ve(o,[r],a),s))}}},$D={kernelName:ol,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Bn(n))}}},zb={kernelName:il,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>Mh(e,s,r)}}},Lb={kernelName:ll,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>ht(e,s)}}},FD={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,z(ln(ce(n,"float32")),2))}}},DD={kernelName:Lu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(ce(n,"float32"),2))}}},OD={kernelName:uo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Ie(2);return{a:()=>z(e,z(r,Ae(n,s))),b:()=>z(e,z(r,Ae(s,n)))}}},PD={kernelName:Lr,gradFunc:e=>({x:()=>qe(e)})},MD={kernelName:co,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=e,l=Vt(n.shape,r);return l.length>0&&(i=ve(i,l)),U(i,n.shape)},b:()=>{let i=e,l=Vt(s.shape,r);return l.length>0&&(i=ve(i,l)),U(St(i),s.shape)}}}},zD={kernelName:io,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;bs(a,s.shape).forEach(u=>{r[u]=1});let i=U(e,r),l=z(i,Un(s.shape,"float32"));return{x:()=>l}}},LD={kernelName:ho,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,lt(zh(n)))}}},BD={kernelName:po,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Ae(Ie(1),lt(n)),e)}}},WD={kernelName:zr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=qe(s);if(s.rank===1)for(let i=0;i{let s=n,{perm:r}=s,a=wA(r);return{x:()=>je(e,a)}}},UD={kernelName:hl,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>Nn(e,r)}}},HD={kernelName:Bu,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>GD(e,n)}}};function GD(e,t){let n=gr(t,qe(t)),s=Nl(e,n),r=Co(t,Ie(0,"int32")),a=s.rank-r.rank;for(let i=0;i({x:()=>qe(e)})},qD=[$b,q$,X$,K$,Z$,Y$,J$,Q$,eF,tF,nF,sF,oF,uF,cF,dF,hF,pF,fF,mF,AF,gF,xF,yF,wF,kF,IF,SF,CF,TF,fD,NF,EF,RF,_F,$F,DF,FF,OF,PF,MF,zF,LF,BF,WF,VF,UF,HF,GF,XF,Pb,Pb,KF,JF,tD,nD,sD,rD,aD,oD,iD,lD,uD,cD,dD,Mb,Mb,hD,pD,mD,AD,gD,yD,xD,bD,vD,wD,kD,ID,SD,CD,TD,ND,ED,RD,_D,$D,zb,zb,Lb,Lb,FD,OD,DD,PD,MD,zD,LD,BD,WD,VD,UD,HD,jD];for(let e of qD)y5(e);var Bb={};Pe(Bb,{maxNorm:()=>YD,minMaxNorm:()=>eO,nonNeg:()=>QD,unitNorm:()=>JD});var jA;function Ut(){return jA==null&&(jA=mx().epsilon()),jA}function Fs(){return"channelsLast"}var br=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,br.prototype)}},Ds=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ds.prototype)}},G=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,G.prototype)}},Oe=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Oe.prototype)}},Wb=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Wb.prototype)}};function _o(e,t){if(Array.isArray(e)){let n=[];for(let s=0;sn.toUpperCase())}var ws={};function qA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function XA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>XA(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:XA(s))}}}function hc(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in ws)o=ws[a];else if(o=t[a],o==null)throw new G(`Unknown ${s}: ${e}. This may be due to one of the following reasons: + ${a.shape}`);let o={data:s,indices:r,segmentIds:a};return L.runKernel(wh,o)}var f$=V({sparseSegmentSum_:p$});function m$(e,t,n,s,r,a,o,i){let l=F(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=F(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:u},h=L.runKernel(Ih,d,c);return{nGrams:h[0],nGramsSplits:h[1]}}var g$=V({stringNGrams_:m$});function A$(e,t,n=!0){let s=F(e,"input","stringSplit","string"),r=F(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=L.runKernel(Sh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var y$=V({stringSplit_:A$});function x$(e,t){let n=F(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return L.runKernel(Ch,r,s)}var b$=V({stringToHashBucketFast_:x$}),v$={fft:ap,ifft:fc,rfft:op,irfft:Vg},w$={hammingWindow:JR,hannWindow:Tb,frame:Nb,stft:n_},_e={flipLeftRight:o_,resizeNearestNeighbor:R_,resizeBilinear:N_,rotateWithOffset:l_,cropAndResize:r_,nonMaxSuppression:c_,nonMaxSuppressionAsync:y_,nonMaxSuppressionWithScore:b_,nonMaxSuppressionWithScoreAsync:w_,nonMaxSuppressionPadded:I_,nonMaxSuppressionPaddedAsync:C_,threshold:D_,transform:O_},Fb={bandPart:M_,gramSchmidt:L_,qr:W_},k$={absoluteDifference:H_,computeWeightedLoss:wr,cosineDistance:j_,hingeLoss:X_,huberLoss:Z_,logLoss:J_,meanSquaredError:e$,sigmoidCrossEntropy:s$,softmaxCrossEntropy:o$},gc={sparseFillEmptyRows:l$,sparseReshape:c$,sparseSegmentMean:h$,sparseSegmentSum:f$},hp={stringNGrams:g$,stringSplit:y$,stringToHashBucketFast:b$},kr=class extends xx{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return K(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return eb(e,t)}dispose(){this.iterations_!=null&&K(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ie(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(kr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var pp=class extends kr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:H(()=>Ke(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:H(()=>Ke(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;H(()=>{let u=ae(z(i,this.rho),z(ct(o),1-this.rho)),c=z(de(dn(ae(l,this.epsilon)),dn(ae(i,this.epsilon))),o),d=ae(z(l,this.rho),z(ct(c),1-this.rho));i.assign(u),l.assign(d);let h=ae(z(c,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(K(this.accumulatedGrads.map(e=>e.variable)),K(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};pp.className="Adadelta";Xr(pp);var fp=class extends kr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n];if(this.accumulatedGrads[s]==null){let i=!1;this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:H(()=>Dl(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;H(()=>{let i=ae(o,ct(a));o.assign(i);let l=ae(z(de(a,dn(ae(i,L.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&K(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};fp.className="Adagrad";Xr(fp);var mp=class extends kr{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],H(()=>{this.accBeta1=Ie(t).variable(),this.accBeta2=Ie(n).variable()}),s==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=ge(1,this.accBeta1),s=ge(1,this.accBeta2);t.forEach((r,a)=>{let o=L.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:H(()=>Ke(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:H(()=>Ke(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,d=ae(z(u,this.beta1),z(l,1-this.beta1)),h=ae(z(c,this.beta2),z(ct(l),1-this.beta2)),p=de(d,n),f=de(h,s);u.assign(d),c.assign(h);let m=ae(z(de(p,ae(dn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&K(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&K(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),H(()=>{this.accBeta1.assign(Jr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Jr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};mp.className="Adam";Xr(mp);var gp=class extends kr{constructor(e,t,n,s=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],H(()=>{this.iteration=Ie(0).variable(),this.accBeta1=Ie(t).variable()}),s==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=ge(1,this.accBeta1),s=de(-this.learningRate,ae(z(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=L.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:Ke(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:Ke(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,d=ae(z(u,this.beta1),z(l,1-this.beta1)),h=z(c,this.beta2),p=Ht(l),f=vr(h,p);u.assign(d),c.assign(f);let m=ae(z(de(s,n),de(d,ae(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(ae(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&K(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&K(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};gp.className="Adamax";Xr(gp);var Ac=class extends kr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=L.registeredVariables[n];H(()=>{let o=ae(z(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Jt(Ie(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Ac.className="SGD";Xr(Ac);var Ap=class extends Ac{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ie(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n];if(this.accumulations[s]==null){let i=!1;this.accumulations[s]={originalName:`${n}/momentum`,variable:H(()=>Ke(r).variable(i))}}let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&H(()=>{let i,l=ae(z(this.m,a),o);this.useNesterov?i=ae(z(this.c,ae(o,z(l,this.m))),r):i=ae(z(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&K(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Ap.className="Momentum";Xr(Ap);var yp=class extends kr{constructor(e,t=.9,n=0,s=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=L.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:H(()=>Ke(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:H(()=>Ke(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:H(()=>Ke(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;H(()=>{let u=ae(z(i,this.decay),z(ct(o),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[s].variable,d=ae(z(c,this.decay),z(o,1-this.decay)),h=de(z(o,this.learningRate),dn(ge(u,ae(ct(d),this.epsilon)))),p=ae(z(l,this.momentum),h);i.assign(u),c.assign(d),l.assign(p);let f=ge(r,p);r.assign(f)}else{let c=ae(z(i,this.decay),z(ct(o),1-this.decay)),d=ae(z(l,this.momentum),de(z(o,this.learningRate),dn(ae(c,this.epsilon))));i.assign(c),l.assign(d);let h=ge(r,d);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&K(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&K(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&K(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};yp.className="RMSProp";Xr(yp);var Fo=class{static sgd(e){return new Ac(e)}static momentum(e,t,n=!1){return new Ap(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new yp(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new mp(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new pp(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new gp(e,t,n,s,r)}static adagrad(e,t=.1){return new fp(e,t)}},Oo={sgd:Fo.sgd,momentum:Fo.momentum,adadelta:Fo.adadelta,adagrad:Fo.adagrad,rmsprop:Fo.rmsprop,adamax:Fo.adamax,adam:Fo.adam},I$=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function xp(){return new Promise(e=>I$(()=>e()))}var $={};Pe($,{ERF_A1:()=>O$,ERF_A2:()=>P$,ERF_A3:()=>M$,ERF_A4:()=>z$,ERF_A5:()=>L$,ERF_P:()=>F$,PARALLELIZE_THRESHOLD:()=>Yg,SELU_SCALE:()=>Pb,SELU_SCALEALPHA:()=>Ob,applyActivation:()=>cp,assertAndGetBroadcastShape:()=>At,assertAxesAreInnerMostDims:()=>zN,assertParamsConsistent:()=>S$,assignToTypedArray:()=>q$,axesAreInnerMostDims:()=>Ng,calculateShapes:()=>ix,checkEinsumDimSizes:()=>Q$,combineLocations:()=>tb,complexWithEvenIndex:()=>H$,complexWithOddIndex:()=>G$,computeConv2DInfo:()=>oc,computeConv3DInfo:()=>Dx,computeDefaultPad:()=>mg,computeDilation2DInfo:()=>rT,computeOptimalWindowSize:()=>T$,computeOutAndReduceShapes:()=>nb,computeOutShape:()=>C$,computePool2DInfo:()=>$x,computePool3DInfo:()=>aT,convertConv2DDataFormat:()=>Fx,decodeEinsumEquation:()=>Y$,eitherStridesOrDilationsAreOne:()=>Qs,expandShapeToKeepDim:()=>Do,exponent:()=>K$,exponents:()=>X$,fromStringArrayToUint8:()=>lD,fromUint8ToStringArray:()=>iD,getAxesPermutation:()=>sb,getBroadcastDims:()=>KT,getComplexWithIndex:()=>j$,getEinsumComputePath:()=>eD,getEinsumPermutation:()=>J$,getFusedBiasGradient:()=>up,getFusedDyActivation:()=>lp,getImageCenter:()=>N$,getInnerMostAxes:()=>LN,getPermuted:()=>R$,getReductionAxes:()=>Gt,getReshaped:()=>E$,getReshapedPermuted:()=>_$,getSliceBeginCoords:()=>$$,getSliceSize:()=>D$,getUndoAxesPermutation:()=>Eg,isIdentityPermutation:()=>tD,log:()=>W$,mergeRealAndImagArrays:()=>V$,prepareAndValidate:()=>ox,prepareSplitSize:()=>sD,segment_util:()=>Lb,shouldFuse:()=>dp,slice_util:()=>xn,splitRealAndImagArrays:()=>U$,tupleValuesAreOne:()=>Kr,upcastType:()=>Ss,validateInput:()=>ig,validateUpdateShape:()=>og,warn:()=>B$});function S$(e,t){let n=e[0].length;e.forEach((r,a)=>{M(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function C$(e,t){let n=e[0].slice();for(let s=1;s=t*2+1||o%2==1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function _$(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a/g,Mb=",",zb="...";function Y$(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(Z$,"").length)/Jg.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${Jg}").`);let[s,r]=e.split(Jg);M(s.indexOf(zb)===-1,()=>`The ellipsis notation ("${zb}") is not supported yet.`);let a=s.split(Mb),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let h=0;hf.indexOf(p)!==-1))throw new Error(`Output subscripts contain the label ${p} not present in the input subscripts.`);i.indexOf(p)===-1&&i.push(p)}for(let h=0;hr!==-1),{permutationIndices:n,expandDims:s}}function Q$(e,t,n){let s=new Array(e);for(let r=0;r`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function eD(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;ot===n)}function nD(e,t){let n=[];for(let s=0;s"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);M(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}M(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}var Lb={};Pe(Lb,{collectGatherOpShapeInfo:()=>oD,computeOutShape:()=>aD,segOpComputeOptimalWindowSize:()=>rD});function rD(e,t){let n=!1,s;for(e<=Yg?(s=e,n=!0):s=Hd(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=Hd(e,s+1);return s}function aD(e,t,n){let s=[],r=e.length;for(let a=0;ar))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) ( + ${a}).`);if(n$h(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function lD(e){return e.map(t=>Zu(t))}var nr={};Pe(nr,{nonMaxSuppressionV3Impl:()=>Eb,nonMaxSuppressionV4Impl:()=>Rb,nonMaxSuppressionV5Impl:()=>_b,whereImpl:()=>xb});var Bb={kernelName:xi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,mc(ce(n,"float32"),-1))}}},uD={kernelName:bi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ct(ce(n,"float32")),r=dn(ge(Ie(1),s));return Tt(de(e,r))}}}},cD={kernelName:vi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=dn(ge(ct(ce(n,"float32")),1));return de(e,s)}}}},dD={kernelName:Br,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=At(n.shape,s.shape);return{a:()=>{let i=e,l=Gt(n.shape,r);return l.length>0&&(i=ve(i,l)),U(i,n.shape)},b:()=>{let i=e,l=Gt(s.shape,r);return l.length>0&&(i=ve(i,l)),U(i,s.shape)}}}},hD={kernelName:Ia,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},pD={kernelName:Sa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ke(n)}}},fD={kernelName:Du,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ke(n)}}},mD={kernelName:Ii,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,dn(ge(Ie(1),ct(ce(n,"float32")))))}}},gD={kernelName:Si,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=dn(ae(Ie(1),ct(ce(n,"float32"))));return de(e,s)}}}},AD={kernelName:Ni,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=At(n.shape,s.shape);return{a:()=>{let i=ae(ct(n),ct(s)),l=z(e,de(s,i)),u=Gt(n.shape,r);return u.length>0&&(l=ve(l,u)),U(l,n.shape)},b:()=>{let i=ae(ct(n),ct(s)),l=Tt(z(e,de(n,i))),u=Gt(s.shape,r);return u.length>0&&(l=ve(l,u)),U(l,s.shape)}}}},yD={kernelName:Ci,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ae(ct(ce(n,"float32")),1))}}},xD={kernelName:Ti,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ge(Ie(1),ct(ce(n,"float32"))))}}};function bD(e,t,n,s,r,a){let o=F(e,"dy","avgPool3dGrad"),i=F(t,"input","avgPool3dGrad"),l=o,u=i,c=!1;i.rank===4&&(c=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),u=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),a!=null&&M(Zt(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let d={dy:l,input:u},h={filterSize:n,strides:s,pad:r,dimRoundingMode:a},p=L.runKernel(qd,d,h);return c?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var vD=V({avgPool3dGrad_:bD}),wD={kernelName:Fu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>vD(e,s,r,a,o,i)}}};function kD(e,t,n,s,r){let a=F(e,"dy","avgPoolGrad"),o=F(t,"input","avgPoolGrad");M(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,u=!1;o.rank===3&&(u=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},d={filterSize:n,strides:s,pad:r},h=L.runKernel(jd,c,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var ID=V({avgPoolGrad_:kD}),SD={kernelName:Ca,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>ID(e,s,r,a,o)}}},CD={kernelName:Ta,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>Ve(e,r,!1,!0),b:()=>Ve(s,e,!0,!1)}:!a&&o?{a:()=>Ve(e,r,!1,!1),b:()=>Ve(e,s,!0,!1)}:a&&!o?{a:()=>Ve(r,e,!1,!0),b:()=>Ve(s,e,!1,!1)}:{a:()=>Ve(r,e,!0,!0),b:()=>Ve(e,s,!0,!0)}}},TD={kernelName:Ei,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>ep(e,s,r)}}},ND={kernelName:I5,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l1&&i.push(l);return{x:()=>ve(e,i,!0)}}},ED={kernelName:Na,gradFunc:e=>({x:()=>e.clone()})},RD={kernelName:Ea,gradFunc:e=>({x:()=>Ke(e)})},_D={kernelName:Wr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>bn(Os(_o(s,r),$o(s,a)),e,Ke(e))}}},$D={kernelName:Ou,inputsToSave:["x"],gradFunc:Bb.gradFunc},DD={kernelName:Ri,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=Is(r,t[0].shape)[0],o=s.map(l=>l[a]);return an(e,o,a).map(l=>()=>l)}},FD={kernelName:Ra,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return M(Kr(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>bg(s.shape,e,r,o,i,l),filter:()=>Kg(s,e,r.shape,o,i,l)}}},OD={kernelName:_a,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>Zr(e,r,a,o,i,1,l),filter:()=>Kg(e,s,r.shape,a,o,i,l)}}};function PD(e,t,n,s,r){let a=e;e.rank===4&&(a=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),M(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),M(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return L.runKernel(Yd,i,l)}var MD=V({conv3DBackpropFilter_:PD}),zD={kernelName:Pu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;M(Kr(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>Vx(o.shape,e,i,r,a),filter:()=>MD(o,e,i.shape,r,a)}}},LD={kernelName:$a,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Tt(Lg(ce(n,"float32"))),e)}}},BD={kernelName:Da,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Bg(ce(n,"float32")),e)}}},WD={kernelName:Fa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=sb([r],s.rank),l=Ig(e,r,a,!o);return i!=null&&(l=Xe(l,i)),l}}}},VD={kernelName:Oa,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;M(Kr(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),M(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),M(Qs(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),o!=null&&M(Zt(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>Cb(l.shape,e,u,r,a,s,o),filter:()=>Sb(l,e,u.shape,r,a,s,o)}}},UD={kernelName:Mu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>L.runKernel(sh,a,n),filter:()=>L.runKernel(rh,o,n)}}},HD={kernelName:Di,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>L.runKernel(oh,s)}}},GD={kernelName:Fi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z(cs(Tt(ct(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,s)}}},jD={kernelName:Ma,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},qD={kernelName:Pi,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>U(e,n.shape)}}},XD={kernelName:Mi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,cs(n))}}},KD={kernelName:za,gradFunc:e=>({x:()=>Ke(e)})},ZD={kernelName:La,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=At(n.shape,s.shape);return{a:()=>{let i=de(e,ce(s,"float32")),l=Gt(n.shape,r);return l.length>0?U(ve(i,l),n.shape):i},b:()=>{let i=z(e,ce(n,"float32")),l=Gt(s.shape,r);l.length>0&&(i=U(ve(i,l),s.shape));let u=ct(s);return Tt(de(i,ce(u,"float32")))}}}},YD={kernelName:Ba,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Ie(1):i,u=Gt(a.shape,r.shape),c=[];if(a.rank===1){for(let b=0;ba.rank===1?U(z(z(e,Fs(U(p,[1,1,1,a.shape[0]]),c)),l),r.shape):U(z(z(e,p),l),r.shape),mean:()=>{let b=z(z(p,Ie(-1)),h);return a.rank===1&&(b=ve(b,u)),U(b,a.shape)},variance:()=>{let b=z(z(f,d),h);return a.rank===1&&(b=ve(b,u)),U(b,a.shape)},scale:()=>{let b=z(d,p),v=z(e,b);return a.rank===1&&(v=ve(v,u)),U(v,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=ve(b,u)),U(b,a.shape)}}}},JD={kernelName:Li,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=Is(a,s.shape)[0];return{x:()=>{let l=s.shape,u=r.size,c=l.slice(0,o),d=c.length,h=l.slice(a,l.length).slice(1),p=h.length,f=Wb(0,d),m=Wb(d+1,d+1+p),g=Vb([c,[u],h]),A=U(e,g),y=U(r,[u]),x=Vb([[d],f,m]),b=Xe(A,x),v=Ab(b,y,s.shape[o]),k=Eg(x);return v=Xe(v,k),v},indices:()=>r}}};function Wb(e,t){let n=[];for(let s=e;s{let[n,s]=t;return{a:()=>Ke(n),b:()=>Ke(s)}}},eF={kernelName:Va,gradFunc:e=>({x:()=>ce(e,"float32")})},tF={kernelName:Vi,gradFunc:e=>({x:()=>Ke(e)})},nF={kernelName:Ui,gradFunc:e=>({x:()=>Ke(e)})},sF={kernelName:Hi,gradFunc:e=>({x:()=>Ke(e)})},rF={kernelName:Ua,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=jn(s,0);return{x:()=>bn(a,e,z(e,r))}}},aF={kernelName:qi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ae(n,1))}}},oF={kernelName:Ha,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ce(n,"float32"))}}},iF={kernelName:S5,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let a=!0,o=cs(s);return ge(e,z(ve(e,r,a),o))}}}};function lF(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return L.runKernel(dh,i,l)}var uF=V({localResponseNormalizationBackprop_:lF}),cF={kernelName:Wu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>uF(s,r,e,a,o,i,l)}}};function Ub(e,t,n,s){return t.rankz(e,ce(us(n,t),e.dtype))}}var Hb={kernelName:Ga,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=Is(r,a.shape),l=Ub(e,o,a,i);return{x:()=>l.x()}}},dF={kernelName:ja,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,ce(_o(n,s),"float32")),b:()=>z(e,ce(Cg(n,s),"float32"))}}};function hF(e,t,n,s,r,a,o){let i=F(e,"dy","maxPool3dGrad"),l=F(t,"input","maxPool3dGrad"),u=F(n,"output","maxPool3dGrad"),c=i,d=l,h=u,p=!1;l.rank===4&&(p=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=U(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),h=U(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),M(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),M(h.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${h.rank}.`),o!=null&&M(Zt(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let f={dy:c,input:d,output:h},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=L.runKernel(ph,f,m);return p?U(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var pF=V({maxPool3dGrad_:hF}),fF={kernelName:Vu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>pF(e,s,r,a,o,i,l)}}};function mF(e,t,n,s,r,a,o){let i=F(e,"dy","maxPoolGrad"),l=F(t,"input","maxPoolGrad"),u=F(n,"output","maxPoolGrad");M(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),M(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),o!=null&&M(Zt(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let c={dy:i,input:l,output:u},d={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return L.runKernel(hh,c,d)}var gF=V({maxPoolGrad_:mF}),AF={kernelName:qa,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>gF(e,s,r,a,o,i)}}},yF={kernelName:Xa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=Is(r,s.shape),i=nb(s.shape,a)[1],l=Dt(i);return{x:()=>{let c=s.shape.slice();a.forEach(p=>{c[p]=1});let d=U(e,c);return de(z(d,qn(s.shape,"float32")),l)}}}},xF={kernelName:Ka,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=Is(r,a.shape),l=Ub(e,o,a,i);return{x:()=>l.x()}}},bF={kernelName:Za,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,ce($o(n,s),"float32")),b:()=>z(e,ce(jn(n,s),"float32"))}}},vF={kernelName:Ya,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Re(e,a,s.shape)}}},wF={kernelName:Ki,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=At(n.shape,s.shape);return{a:()=>{let i=Gt(n.shape,r);return i.length>0?U(ve(e,i),n.shape):e},b:()=>{let i=z(e,Tt(cc(de(n,s)))),l=Gt(s.shape,r);return l.length>0?U(ve(i,l),s.shape):i}}}},kF={kernelName:Ja,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=At(n.shape,s.shape);return{a:()=>{let i=z(e,ce(s,"float32")),l=Gt(n.shape,r);return l.length>0?U(ve(i,l),n.shape):i},b:()=>{let i=z(e,ce(n,"float32")),l=Gt(s.shape,r);return l.length>0?U(ve(i,l),s.shape):i}}}},IF={kernelName:Zi,gradFunc:e=>({x:()=>Tt(e)})},SF={kernelName:Qa,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Pt(n.shape,"float32")}}},CF={kernelName:tl,gradFunc:e=>({x:()=>Ke(e)})},TF={kernelName:nl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return ms(e,s).map(a=>()=>a)}},Gb={kernelName:eo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Re(e,a,s.shape)}}},NF={kernelName:to,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=At(a.shape,o.shape);return{a:()=>{let c=ce(o,"float32"),d=z(e,z(c,Jr(a,ge(c,Ie(1))))),h=Gt(a.shape,i);return h.length>0&&(d=ve(d,h)),U(d,a.shape)},b:()=>{let c=jn(a,0),d=bn(c,ds(a),Ke(a)),h=z(e,z(r,d)),p=Gt(o.shape,i);return p.length>0&&(h=ve(h,p)),U(h,o.shape)}}}},EF={kernelName:no,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=jn(n,0);return{x:()=>bn(r,e,z(e,s)),alpha:()=>{let a=bn(r,Ke(e),z(e,n)),o=Gt(s.shape,e.shape);return o.length>0&&(a=ve(a,o)),U(a,s.shape)}}}},RF={kernelName:Pa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=At(n.shape,s.shape);return{a:()=>{let i=de(e,ce(s,"float32")),l=Gt(n.shape,r);return l.length>0?U(ve(i,l),n.shape):i},b:()=>{let i=z(e,ce(n,"float32")),l=Gt(s.shape,r);l.length>0&&(i=U(ve(i,l),s.shape));let u=ct(s);return Tt(de(i,ce(u,"float32")))}}}},_F={kernelName:rl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,Tt(ct(n)))}}},$F={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z($o(n,6),mc(n));return{x:()=>z(e,ce(s,"float32"))}}},DF={kernelName:so,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ce(mc(n),"float32"))}}},FF={kernelName:al,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>U(e,n.shape)}}},OF={kernelName:ro,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>L.runKernel(yh,r,n)}}},PF={kernelName:Hu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>L.runKernel(Ah,r,n)}}},MF={kernelName:oo,gradFunc:(e,t,n)=>{let{dims:s}=n,r=Is(s,e.shape);return{x:()=>fs(e,r)}}},zF={kernelName:io,gradFunc:e=>({x:()=>Ke(e)})},LF={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Tt(de(e,z(Jr(n,1.5),2)))}}},BF={kernelName:il,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ce(Ke(n),"float32"),t:()=>z(e,ce(n,e.dtype)),e:()=>z(e,ce(Zh(n),e.dtype))}}},WF={kernelName:ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=jn(n,Ie(0)),r=Ie(Ob),a=Ie(Pb),o=z(e,a),i=z(z(e,r),cs(ce(n,"float32")));return bn(s,o,i)}}}},VF={kernelName:co,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,ge(Ie(1),n)))}}},UF={kernelName:dl,gradFunc:e=>({x:()=>Ke(e)})},HF={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Gh(ce(n,"float32")),e)}}},GF={kernelName:cl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(kg(ce(n,"float32")),e)}}},jF={kernelName:ul,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=yx(s,r,a),u=[];for(let c=0;cYr(e,u)}}},qF={kernelName:fo,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=z(e,s);return{logits:()=>ge(o,z(ve(o,[r],a),s))}}},XF={kernelName:hl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Hn(n))}}},jb={kernelName:pl,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>Hh(e,s,r)}}},qb={kernelName:fl,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>ft(e,s)}}},KF={kernelName:ho,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,z(dn(ce(n,"float32")),2))}}},ZF={kernelName:Gu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(ce(n,"float32"),2))}}},YF={kernelName:mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Ie(2);return{a:()=>z(e,z(r,ge(n,s))),b:()=>z(e,z(r,ge(s,n)))}}},JF={kernelName:Ur,gradFunc:e=>({x:()=>Ke(e)})},QF={kernelName:go,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=At(n.shape,s.shape);return{a:()=>{let i=e,l=Gt(n.shape,r);return l.length>0&&(i=ve(i,l)),U(i,n.shape)},b:()=>{let i=e,l=Gt(s.shape,r);return l.length>0&&(i=ve(i,l)),U(Tt(i),s.shape)}}}},eO={kernelName:po,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;Is(a,s.shape).forEach(u=>{r[u]=1});let i=U(e,r),l=z(i,qn(s.shape,"float32"));return{x:()=>l}}},tO={kernelName:Ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ct(Gh(n)))}}},nO={kernelName:yo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(ge(Ie(1),ct(n)),e)}}},sO={kernelName:Vr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=Ke(s);if(s.rank===1)for(let i=0;i{let s=n,{perm:r}=s,a=Eg(r);return{x:()=>Xe(e,a)}}},aO={kernelName:yl,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>$n(e,r)}}},oO={kernelName:ju,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>iO(e,n)}}};function iO(e,t){let n=vr(t,Ke(t)),s=Fl(e,n),r=_o(t,Ie(0,"int32")),a=s.rank-r.rank;for(let i=0;i({x:()=>Ke(e)})},uO=[Bb,uD,cD,dD,hD,pD,fD,mD,gD,AD,yD,xD,wD,SD,CD,TD,ND,ED,RD,_D,$D,DD,OD,FD,zD,LD,BD,WD,VD,UD,RF,HD,GD,jD,qD,XD,ZD,KD,YD,JD,QD,eF,tF,nF,sF,rF,aF,oF,iF,cF,Hb,Hb,dF,fF,AF,yF,xF,bF,vF,wF,kF,IF,SF,CF,TF,Gb,Gb,NF,EF,_F,$F,DF,FF,OF,PF,MF,zF,LF,BF,WF,VF,UF,HF,GF,jF,qF,XF,jb,jb,qb,qb,KF,YF,ZF,JF,QF,eO,tO,nO,sO,rO,aO,oO,lO];for(let e of uO)C5(e);var Xb={};Pe(Xb,{maxNorm:()=>pO,minMaxNorm:()=>gO,nonNeg:()=>mO,unitNorm:()=>fO});var Qg;function jt(){return Qg==null&&(Qg=kx().epsilon()),Qg}function Ms(){return"channelsLast"}var Ir=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ir.prototype)}},zs=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,zs.prototype)}},G=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,G.prototype)}},Oe=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Oe.prototype)}},Kb=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Kb.prototype)}};function Po(e,t){if(Array.isArray(e)){let n=[];for(let s=0;sn.toUpperCase())}var Cs={};function eA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function tA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>tA(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:tA(s))}}}function yc(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in Cs)o=Cs[a];else if(o=t[a],o==null)throw new G(`Unknown ${s}: ${e}. This may be due to one of the following reasons: 1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new G(`${s}: Improper config format: ${JSON.stringify(a)}. -'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in ws?[i,l]=ws.className:o in t&&([i,l]=t[o]),i==null)throw new G(`Unknown ${s}: ${o}. This may be due to one of the following reasons: +'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in Cs?[i,l]=Cs.className:o in t&&([i,l]=t[o]),i==null)throw new G(`Unknown ${s}: ${o}. This may be due to one of the following reasons: 1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. -2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let p of Object.keys(ws))u[p]=ws[p];for(let p of Object.keys(n))u[p]=n[p];let c=a.config;c.customObjects=u;let d=Object.assign({},ws);for(let p of Object.keys(n))ws[p]=n[p];XA(a.config);let h=l(i,a.config,n,r);return ws=Object.assign({},d),h}else{let u=Object.assign({},ws);for(let d of Object.keys(n))ws[d]=n[d];let c=new i(a.config);return ws=Object.assign({},u),c}}}function XD(e,t){return et?1:0}function pp(e,t){return-1*XD(e,t)}function Zr(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function KD(e){if(e==null)throw new G(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Fo(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new G(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function KA(e,t,n=0,s=1/0){return Qs(n>=0),Qs(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function Zt(e,t){Array.isArray(e)?(I.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>Zt(n,`element ${s+1} of ${t}`))):I.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Ub(e)}.`)}function Ub(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Ub(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function ZD(e,t){let n=I.now(),s;return(...a)=>{let o=I.now();return o-nln(ve(z(e,e),t,!0)))}var pc=class extends oe.Serializable{getConfig(){return{}}},YA=class extends pc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=ZA(e,this.axis),n=Wn(t,0,this.maxValue);return z(e,de(n,ae(Ut(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};YA.className="MaxNorm";oe.registerClass(YA);var JA=class extends pc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>de(e,ae(Ut(),ZA(e,this.axis))))}getConfig(){return{axis:this.axis}}};JA.className="UnitNorm";oe.registerClass(JA);var QA=class extends pc{apply(e){return Ys(e)}};QA.className="NonNeg";oe.registerClass(QA);var eg=class extends pc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=ZA(e,this.axis),n=ae(z(this.rate,Wn(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,de(n,ae(Ut(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};eg.className="MinMaxNorm";oe.registerClass(eg);var Gb={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Ht(e){return qA(e)}function jb(e,t={}){return hc(e,oe.SerializationMap.getMap().classNameMap,t,"constraint")}function Gt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in Gb?Gb[e]:e,config:{}};return jb(n)}else return e instanceof pc?e:jb(e)}function YD(e){return new YA(e)}function JD(e){return new JA(e)}function QD(){return new QA}function eO(e){return new eg(e)}var qb={};Pe(qb,{constant:()=>kO,glorotNormal:()=>RO,glorotUniform:()=>EO,heNormal:()=>_O,heUniform:()=>$O,identity:()=>TO,leCunNormal:()=>FO,leCunUniform:()=>DO,ones:()=>wO,orthogonal:()=>OO,randomNormal:()=>SO,randomUniform:()=>IO,truncatedNormal:()=>CO,varianceScaling:()=>NO,zeros:()=>vO});var tO=["channelsFirst","channelsLast"],nO=["nearest","bilinear"],sO=["valid","same","causal"],rO=["max","avg"],aO=["sum","mul","concat","ave"],Dl=new Map;function $t(e){Fo(tO,"DataFormat",e)}function oO(e){Fo(nO,"InterpolationFormat",e)}function hs(e){Fo(sO,"PaddingMode",e)}function Xb(e){Fo(rO,"PoolMode",e)}var fc=[],Kb="/";function Do(e,t){fc.push(e);try{let n=t();return fc.pop(),n}catch(n){throw fc.pop(),n}}function iO(){return fc.length===0?"":fc.join(Kb)+Kb}function Zb(e){if(!Jb(e))throw new Error("Not a valid tensor name: '"+e+"'");return iO()+e}function Yb(e){if(!Jb(e))throw new Error("Not a valid tensor name: '"+e+"'");Dl.has(e)||Dl.set(e,0);let t=Dl.get(e);if(Dl.set(e,Dl.get(e)+1),t>0){let n=`${e}_${t}`;return Dl.set(n,1),n}else return e}var lO=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function Jb(e){return!!e.match(lO)}function uO(e){return e===parseInt(e.toString(),10)}function Yr(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;rt&&(t=s)}return t}function Os(e,t){if(t{if(e.shape.length!==2)throw new G(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=mc(e,1);return sg(n,[1,t,1])})}function dO(e){let t=[Yr(e.shape)];return U(e,t)}function hO(e){if(e.rank<=1)throw new G(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Yr(e.shape,1)];return U(e,t)}function Oo(e,t,n){return H(()=>{switch(e.rank){case 1:return Kh(e,t,n);case 2:return DA(e,[t,0],[n,e.shape[1]]);case 3:return Zh(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return ic(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Re(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Re(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new G(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function tg(e,t,n){return H(()=>{switch(e.rank){case 1:return Kh(e,t,n);case 2:return DA(e,[0,t],[e.shape[0],n]);case 3:return Zh(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return ic(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function mp(e,t,n,s){return H(()=>{switch(e.rank){case 1:return Kh(e,t,n);case 2:switch(s){case 1:return Oo(e,t,n);case 2:return tg(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return Oo(e,t,n);case 2:return Zh(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return tg(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return Oo(e,t,n);case 2:return ic(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return ic(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return tg(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function ng(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),ht(e,t)}function Qb(e,t){switch(e.rank){case 1:return _x([e,t]);case 2:return Cl([e,t],0);case 3:return $x([e,t],0);case 4:return Fx([e,t],0);default:throw new G(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function sg(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new G(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Rs(e,t)}function Ap(e,t=0,n=1,s,r){return tb(e,t,n,s,r)}function er(e,t,n,s){if(e.rank<2||t.rank<2)throw new Oe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Oe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,a=!1;return Kr.matMul({a:e,b:t,transposeA:r,transposeB:a,bias:s?rg(e.rank,s,Fs()):null,activation:n})}else{let r=e.shape.slice(),a=r.pop();e=U(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),u=[...o,i],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=U(je(t,c),[l,-1]);let d=[...r,...u],h=!1,p=!1;return U(Kr.matMul({a:e,b:t,transposeA:h,transposeB:p,bias:s?rg(e.rank,s,Fs()):null,activation:n}),d)}}function e3(e,t,n){return H(()=>(Array.isArray(t)?t=Ot(t,"int32"):t=ce(t,"int32"),Nl(e,t,n)))}function Ac(e){return z(e,e)}function rg(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new G(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1,1]):U(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1]):U(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1]):U(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,s[0]]):U(t,[1].concat(s))}else if(e<3)return t;throw new G(`Unsupported input rank by biasAdd: ${t.rank}`)}function Ps(e,t,n){return H(()=>(n==null&&(n=Fs()),$t(n),ae(e,rg(e.rank,t,n))))}function pO(e,t=1){if(t!==1)throw new Oe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return sc(e)}function fO(e){return H(()=>de(e,ae(Wt(e),1)))}function t3(e,t,n,s){return H(()=>mb(e,t,n,s))}function mO(e){return H(()=>{let t=ae(.5,z(.2,e));return Wn(t,0,1)})}function gc(e,t,n=!1){return n?e():t()}var AO=["fanIn","fanOut","fanAvg"],gO=["normal","uniform","truncatedNormal"];function yO(e){Fo(AO,"FanMode",e)}function xO(e){Fo(gO,"Distribution",e)}var ks=class extends oe.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},ag=class extends ks{apply(e,t){return Dt(e,t)}};ag.className="Zeros";oe.registerClass(ag);var gp=class extends ks{apply(e,t){return Un(e,t)}};gp.className="Ones";oe.registerClass(gp);var og=class extends ks{constructor(e){super();if(typeof e!="object")throw new G(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new G(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return H(()=>z(Ie(this.value),Un(e,t)))}getConfig(){return{value:this.value}}};og.className="Constant";oe.registerClass(og);var ig=class extends ks{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return _l(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};ig.className="RandomUniform";oe.registerClass(ig);var lg=class extends ks{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`randomNormal does not support dType ${t}.`);return Ap(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};lg.className="RandomNormal";oe.registerClass(lg);var ug=class extends ks{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`truncatedNormal does not support dType ${t}.`);return ep(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};ug.className="TruncatedNormal";oe.registerClass(ug);var cg=class extends ks{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return H(()=>{if(e.length!==2||e[0]!==e[1])throw new G("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,yA(e[0]))})}getConfig(){return{gain:this.gain}}};cg.className="Identity";oe.registerClass(cg);function bO(e,t="channelsLast"){let n,s;if($t(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Yr(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=Yr(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=Yr(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var Rn=class extends ks{constructor(e){super();if(e.scale<0)throw new G(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,yO(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,xO(this.distribution),this.seed=e.seed}apply(e,t){let n=bO(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`${this.getClassName()} does not support dType ${t}.`);return ep(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return _l(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Rn.className="VarianceScaling";oe.registerClass(Rn);var yp=class extends Rn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};yp.className="GlorotUniform";oe.registerClass(yp);var xp=class extends Rn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};xp.className="GlorotNormal";oe.registerClass(xp);var bp=class extends Rn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};bp.className="HeNormal";oe.registerClass(bp);var vp=class extends Rn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};vp.className="HeUniform";oe.registerClass(vp);var wp=class extends Rn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};wp.className="LeCunNormal";oe.registerClass(wp);var kp=class extends Rn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};kp.className="LeCunNormal";oe.registerClass(kp);var dg=class extends ks{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Oe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return H(()=>{if(e.length<2)throw new Oe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=Ap(n,0,1,"float32"),r=Cb.gramSchmidt(s);return e[0]>e[1]&&(r=je(r)),z(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};dg.className="Orthogonal";oe.registerClass(dg);var n3={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function s3(e,t={}){return hc(e,oe.SerializationMap.getMap().classNameMap,t,"initializer")}function Ct(e){return qA(e)}function bt(e){if(typeof e=="string"){let t=e in n3?n3[e]:e;if(t==="GlorotNormal")return new xp;if(t==="GlorotUniform")return new yp;if(t==="HeNormal")return new bp;if(t==="HeUniform")return new vp;if(t==="LeCunNormal")return new wp;if(t==="LeCunUniform")return new kp;{let n={};return n.className=t,n.config={},s3(n)}}else return e instanceof ks?e:s3(e)}function vO(){return new ag}function wO(){return new gp}function kO(e){return new og(e)}function IO(e){return new ig(e)}function SO(e){return new lg(e)}function CO(e){return new ug(e)}function TO(e){return new cg(e)}function NO(e){return new Rn(e)}function EO(e){return new yp(e)}function RO(e){return new xp(e)}function _O(e){return new bp(e)}function $O(e){return new vp(e)}function FO(e){return new wp(e)}function DO(e){return new kp(e)}function OO(e){return new dg(e)}var r3={};Pe(r3,{Layer:()=>Xe,RNN:()=>sr,RNNCell:()=>Cc,activation:()=>gM,add:()=>CM,alphaDropout:()=>uz,average:()=>TM,averagePooling1d:()=>E2,averagePooling2d:()=>R2,averagePooling3d:()=>_2,avgPool1d:()=>PM,avgPool2d:()=>zM,avgPool3d:()=>BM,avgPooling1d:()=>MM,avgPooling2d:()=>LM,avgPooling3d:()=>WM,batchNormalization:()=>FM,bidirectional:()=>tz,concatenate:()=>NM,conv1d:()=>lM,conv2d:()=>uM,conv2dTranspose:()=>cM,conv3d:()=>dM,conv3dTranspose:()=>hM,convLstm2d:()=>YM,convLstm2dCell:()=>JM,cropping2D:()=>fM,dense:()=>yM,depthwiseConv2d:()=>AM,dot:()=>$M,dropout:()=>xM,elu:()=>nM,embedding:()=>SM,flatten:()=>vM,gaussianDropout:()=>lz,gaussianNoise:()=>iz,globalAveragePooling1d:()=>VM,globalAveragePooling2d:()=>UM,globalMaxPool1d:()=>sz,globalMaxPool2d:()=>rz,globalMaxPooling1d:()=>pv,globalMaxPooling2d:()=>fv,gru:()=>GM,gruCell:()=>jM,input:()=>M3,inputLayer:()=>tM,layerNormalization:()=>DM,leakyReLU:()=>rM,lstm:()=>qM,lstmCell:()=>XM,masking:()=>cz,maxPool1d:()=>az,maxPool2d:()=>oz,maxPooling1d:()=>mv,maxPooling2d:()=>Av,maxPooling3d:()=>HM,maximum:()=>EM,minimum:()=>RM,multiply:()=>_M,permute:()=>IM,prelu:()=>aM,reLU:()=>sM,repeatVector:()=>wM,reshape:()=>kM,rnn:()=>QM,separableConv2d:()=>pM,simpleRNN:()=>KM,simpleRNNCell:()=>ZM,softmax:()=>oM,spatialDropout1d:()=>bM,stackedRNNCells:()=>ez,thresholdedReLU:()=>iM,timeDistributed:()=>nz,upSampling2d:()=>mM,zeroPadding2d:()=>OM});var PO=0;function a3(){return PO++}var Ip={};function Sp(e=""){return e in Ip||(Ip[e]=0),Ip[e]+=1,e+Ip[e].toString()}function hg(e){return Array.isArray(e)&&Array.isArray(e[0])}function Cp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function ze(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new G(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function st(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new G(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Tp(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var o3="Variable",i3=class{constructor(e,t="float32",n=o3,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=a3(),n=n==null?o3:n,this.originalName=Zb(n),this.name=Yb(this.originalName),this.trainable_=s,this.constraint=r,this.val=cb(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),MO(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function MO(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function pg(e){return e.map(t=>t.read())}function fg(e){e.forEach(t=>{t[0].write(t[1])})}var Pt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Ms=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=a3(),a!=null&&(this.originalName=Zb(a),this.name=Yb(this.originalName)),this.rank=t.length}},zO=0,Np=class{constructor(e,t){this.callArgs=t,this.id=zO++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},LO=0,Xe=class extends oe.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=LO++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=vr(n)+"_"+Sp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Ds(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new G(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return En(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return En(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new br(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new br(`Layer ${this.name} is not connected, no input to return.`);return En(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new br(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new br(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return En(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=At(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=At(this.inputSpec);if(e.length!==t.length)throw new G(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;nr.maxNDim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a=0?o[l]:o[o.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of At(e))a.push(o.shape);this.build(En(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=At(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=En(i),this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=BO(e),o=this.computeOutputShape(a),i,l=WO(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((u,c)=>new Ms(l,u,this,At(e),t,this.name,c)):i=new Ms(l,o,this,At(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new br(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new br(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Ds(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Tp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return pg(e?this.trainableWeights:this.weights)}setWeights(e){H(()=>{let t=this.weights;if(t.length!==e.length)throw new G(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=pg(t);for(let r=0;rr.apply(l.read())),a==null&&(a=!0),a?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=At(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=At(e);t=At(t),n=At(n),s=At(s),r=Cp(r),a=Cp(a);let l=[],u=[],c=[];for(let d of i)l.push(d.sourceLayer),u.push(d.nodeIndex),c.push(d.tensorIndex);new Np({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let d=0;de.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function BO(e){e=At(e);let t=[];for(let n of e)t.push(n.shape);return En(t)}function WO(e){return"float32"}function l3(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a0){let r=await Promise.all(t);for(let a=0;aae(this.totals[s],z(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:H(()=>{let s=z(de(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),Kt(t[n])}))}},p3=class extends Ml{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;onew f3(s,t))}var Is=class{constructor(){}static registerCallbackConstructor(e,t){I.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Is.checkForDuplicate(t),Is.constructors[e]==null&&(Is.constructors[e]=[]),Is.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Is.constructors)Is.constructors[+t].forEach(s=>{if(s===e)throw new G("Duplicate callback constructor.")})}static clear(){Is.constructors={}}static createCallbacks(e){let t=[];for(let n in Is.constructors){let s=+n;e>=s&&t.push(...Is.constructors[s])}return t.map(n=>new n)}};Is.constructors={};function A3(e,t,n,s,r,a,o,i,l){let u=new p3,c=[new UO,...Is.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let d=new h3(c);return d.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:d,history:u}}function zs(e,t={},n=!1){return hc(e,oe.SerializationMap.getMap().classNameMap,t,"layer",n)}function Ep(e,t){return H(()=>{e.dtype!=="float32"&&(e=ce(e,"float32"));let n=ve(Ac(e),t,!0),s=Tl(n.shape,Ut()),r=ln(gr(n,s));return de(e,r)})}function Po(e,t){return H(()=>Et(Ac(Ae(t,e)),-1))}function Rp(e,t){return H(()=>Et(Wt(Ae(t,e)),-1))}function zl(e,t){return H(()=>{let n=Ae(e,t),s=Wn(Wt(e),Ut(),Number.MAX_VALUE),r=Wt(de(n,s));return z(100,Et(r,-1))})}function HO(e,t){return H(()=>{let n=Wn(t,Ut(),Number.MAX_VALUE),s=is(ae(1,n)),r=Wn(e,Ut(),Number.MAX_VALUE),a=is(ae(1,r));return Et(Ac(Ae(s,a)),-1)})}function GO(e,t){return H(()=>{let n=gr(0,Ae(1,z(e,t)));return Et(Ac(n),-1)})}function jO(e,t){return H(()=>{let n=gr(0,Ae(1,z(e,t)));return Et(n,-1)})}function qO(e,t){return H(()=>{let n=ve(z(e,t),-1),s=ls(z(Ae(1,e),t),-1);return gr(0,ae(1,Ae(s,n)))})}function XO(e,t){return H(()=>{let n=Math.log(2),s=Ae(t,e),r=Ae(ae(s,El(z(-2,s))),n);return Et(r,-1)})}function yc(e,t,n=!1){return H(()=>{if(n)t=Yh(t);else{let s=ve(t,t.shape.length-1,!0);t=de(t,s)}return t=Wn(t,Ut(),1-Ut()),St(ve(z(ce(e,"float32"),is(t)),t.shape.length-1))})}function _p(e,t,n=!1){return H(()=>{let s=ce(rc(dO(e)),"int32");t=Wn(t,Ut(),1-Ut());let r=t.shape,a=U(Qu(s,r[r.length-1]),r);return yc(a,t,n)})}function KO(e,t){if(!I.arraysEqual(e.shape,t.shape))throw new G(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return H(()=>{let n=Ys(t),s=St(Wt(t));return ae(Ae(n,z(t,e)),Wh(os(s)))})}function $p(e,t){return H(()=>{let n;return n=Wn(t,Ut(),1-Ut()),n=is(de(n,Ae(1,n))),Et(KO(e,n),-1)})}function ZO(e,t){return H(()=>{let n=Wn(e,Ut(),1),s=Wn(t,Ut(),1);return ve(z(e,is(de(n,s))),-1)})}function YO(e,t){return H(()=>{let n=is(ae(Ut(),t));return Et(Ae(t,z(e,n)),-1)})}function mg(e,t){return H(()=>{let n=Ep(e,-1),s=Ep(t,-1),r=z(n,s);return St(ve(r,-1))})}var Fp={meanSquaredError:Po,meanAbsoluteError:Rp,meanAbsolutePercentageError:zl,meanSquaredLogarithmicError:HO,squaredHinge:GO,hinge:jO,categoricalHinge:qO,logcosh:XO,categoricalCrossentropy:yc,sparseCategoricalCrossentropy:_p,binaryCrossentropy:$p,kullbackLeiblerDivergence:ZO,poisson:YO,cosineProximity:mg};function Ag(e){if(typeof e=="string"){if(e in Fp)return Fp[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new G(t)}else return e}function gg(e,t){return H(()=>{let n=z(.5,us(t)),s=fp(Vn(t,n),e.dtype);return Et(as(e,s),-1)})}function yg(e,t){return H(()=>fp(as(Xs(e,-1),Xs(t,-1)),"float32"))}function g3(e,t){return H(()=>ce(ve(_s(as(e,1),as(t,1))),"float32"))}function JO(e,t){return H(()=>ce(ve(_s(as(e,1),as(t,0))),"float32"))}function QO(e,t){return H(()=>ce(ve(_s(as(e,0),as(t,1))),"float32"))}function y3(e,t){return H(()=>{let n=g3(e,t),s=QO(e,t),r=ae(n,s);return ce(gn(Vn(r,0),de(n,r),0),"float32")})}function eP(e,t){return H(()=>{let n=g3(e,t),s=JO(e,t),r=ae(n,s);return ce(gn(Vn(r,0),de(n,r),0),"float32")})}function x3(e,t){return $p(e,t)}function b3(e,t){return e.rank===t.rank&&(e=ot(e,[e.rank-1])),t=Xs(t,-1),t.dtype!==e.dtype&&(t=ce(t,e.dtype)),ce(as(e,t),"float32")}var tP=Po,nP=Po,sP=Rp,rP=Rp,aP=zl,oP=zl,xg=yc,iP=mg,v3=_p,Dp={binaryAccuracy:gg,categoricalAccuracy:yg,precision:y3,categoricalCrossentropy:xg,sparseCategoricalCrossentropy:v3,mse:tP,MSE:nP,mae:sP,MAE:rP,mape:aP,MAPE:oP,cosine:iP};function lP(e){if(typeof e=="string"&&e in Dp)return Dp[e];if(typeof e!="string"&&e!=null)return e;throw new G(`Unknown metric ${e}`)}function Op(e){if(Qs(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Fp))if(Fp[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Dp))if(Dp[n]===e){t=n;break}return t!==void 0?t:e.name}}function uP(e){let t={Adagrad:()=>Ro.adagrad(.01),Adadelta:()=>Ro.adadelta(1,.95,Ut()),Adam:()=>Ro.adam(.001,.9,.999,Ut()),Adamax:()=>Ro.adamax(.002,.9,.999,Ut(),0),RMSProp:()=>Ro.rmsprop(.001,.9,0,Ut()),SGD:()=>Ro.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new G(`Unknown Optimizer ${e}`)}var w3=1*1024*1024;function k3(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!bg(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>w3&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${w3}.`)}}function bg(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!bg(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!bg(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function cP(e,t,n,s=console.log){let r=hP(e),a=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let o;if(!r){a.push("Receives inputs"),o=[];for(let c in e.nodesByDepth)o.push(...e.nodesByDepth[c])}s("_".repeat(t)),Pp(a,n,s),s("=".repeat(t));let i=e.layers;for(let c=0;c1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Pp(e,t,n=console.log){let s="";for(let r=0;r0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function pP(e,t,n){let s;try{s=JSON.stringify(e.outputShape)}catch(i){s="multiple"}let r=e.name,a=e.getClassName(),o=[`${r} (${a})`,s,e.countParams().toString()];Pp(o,t,n)}function fP(e,t,n,s){let r;try{r=JSON.stringify(e.outputShape)}catch(c){r="multiple"}let a=[];for(let c of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(c)===-1))for(let d=0;df.name),l=[],u=t.names();for(let f of i)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let c=i.join(",")+"|"+t.names().join(","),d,h;if(kg[c]==null){let f=AP(o,t);d=f.sorted,h=f.recipientCounts,kg[c]=d,S3[c]=h}d=kg[c],h={},r||Object.assign(h,S3[c]);let p=new Mo(t);for(let f=0;fs.maxNumTensors&&(s.maxNumTensors=E),E0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=C3(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=C3(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(u=>s[l].add(u))}}return{sorted:n,recipientCounts:gP(s)}}function gP(e){let t={};for(let n in e)t[n]=e[n].size;return t}function C3(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let u of i.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(i.name),!n.has(u.name)&&a.push(u)}}return{sorted:s,recipientMap:r}}function yP(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;sg.name)}`);Zr(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(g=>g.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let g of this.outputs){let y=g.sourceLayer,x=g.nodeIndex,b=g.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(b)}for(let g of this.inputs){let y=g.sourceLayer,x=g.nodeIndex,b=g.tensorIndex;Qs(x===0,"input layer has >1 nodes"),Qs(b===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let g=0;gg.shape),this.internalOutputShapes=this.outputs.map(g=>g.shape);let t={},n={},s={},r={},a={},o=[],i=(g,y,x,b,v,k)=>{(b==null||v==null||k==null)&&(b=g.sourceLayer,v=g.nodeIndex,k=g.tensorIndex);let w=b.inboundNodes[v];if(x.indexOf(w)!==-1)throw new Ds(`The tensor ${g.name} at layer "${b.name}" is part of a cycle.`);if(y.indexOf(w)!==-1)return;this.containerNodes.add(tr.nodeKey(b,v)),b.id in a||(a[b.id]=Object.keys(a).length),x.indexOf(w)===-1&&x.push(w);let C=w.inboundLayers.length;for(let E=0;E=0;)x.splice(x.indexOf(w),1);o.push(w)},l=[],u=[];for(let g of this.outputs)i(g,l,u);let c=o.slice().reverse();for(let g of c){n[g.id]=g,g.id in t||(t[g.id]=0);let y=t[g.id],x=s[g.outboundLayer.id]==null?0:s[g.outboundLayer.id];y=Math.max(y,x),s[g.outboundLayer.id]=y,r[g.outboundLayer.id]=g.outboundLayer,t[g.id]=y;for(let b=0;bparseInt(g,10)).sort(pp);this.layers=[];for(let g of p){let y=h[g];y.sort((x,b)=>{let v=a[x.id],k=a[b.id];return vk?1:0});for(let x of y)x instanceof tr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=h,p=Object.keys(d).map(g=>parseInt(g,10)).sort(pp);let f=this.inputs.slice(),m=[];for(let g of p)for(let y of d[g]){let x=y.outboundLayer;if(x!=null){for(let b of y.inputTensors)if(f.indexOf(b)===-1)throw new Ds(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${x.name}". The following previous layers were accessed without issue: ${m}`);for(let b of y.outputTensors)f.push(b);m.push(x.name)}}this.nodesByDepth=d;let A=this.layers.map(g=>g.name);for(let g of A){let y=A.filter(x=>x===g).length;if(y!==1)throw new Ds(`The name "${g}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Np({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(g=>null),outputMasks:this.outputs.map(g=>null),inputShapes:this.inputs.map(g=>g.shape),outputShapes:this.outputs.map(g=>g.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new G("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new G(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new G(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new G(`${a.length} of ${s} weights are not set: ${a}`)}fg(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${wg}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=vg(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return H(()=>{e=At(e);let n=new Mo;for(let s=0;s{e=At(e);let n;return t==null?n=_o(null,e.length):n=At(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Cp(e);if(t.length!==this.inputLayers.length)throw new G(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;oparseInt(o,10)).sort(pp);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let c=[];for(let f=0;fparseInt(i,10)).sort(pp);for(let i of s){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer,d=u.inputTensors,h=u.outputTensors,p=new Array;for(let f of d)f.id in n&&p.push(n[f.id]);if(p.length===d.length){let f={},m,A,g,y;if(u.callArgs!=null&&(f=u.callArgs),p.length===1){let[x,b]=p[0];f.mask==null&&(f.mask=b),g=At(c.call(x,f)),y=At(c.computeMask(x,b)),m=[x],A=[b]}else m=p.map(x=>x[0]),A=p.map(x=>x[1]),f.mask==null&&(f.mask=A),g=At(c.call(m,f)),y=At(c.computeMask(m,A));if(c.activityRegularizer)throw new Oe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x{let e=[];for(let t of this.layers)for(let n=0;n0){let f=[];for(let m=0;m0&&m.apply(En(g),y)}function l(m){let A=m.name,g=zs(m,t.customObjects!=null?t.customObjects:{});g.setFastWeightInitDuringBuild(s),r[A]=g,m.inboundNodes.forEach(x=>{if(!(x instanceof Array))throw new G(`Corrupted configuration, expected array for nodeData: ${x}`);o(g,x)})}let u=t.name,c=t.layers;for(let m of c)l(m);for(;!KD(a);)for(let m of c){let A=r[m.name];if(A.name in a){let g=a[A.name];delete a[A.name];for(let y of g)i(A,y)}}let d=[],h=[],p=t.inputLayers;for(let m of p){let A=m[0],g=m[1],y=m[2];Qs(A in r);let b=r[A].inboundNodes[g].outputTensors;d.push(b[y])}let f=t.outputLayers;for(let m of f){let A=m[0],g=m[1],y=m[2];Qs(A in r);let b=r[A].inboundNodes[g].outputTensors;h.push(b[y])}return new e({inputs:d,outputs:h,name:u})}get stateful(){if(this._stateful)throw new G("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){H(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function xP(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function T3(e,t){return xP(e,t,"classWeight")}async function N3(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=H(()=>{if(e.shape.length===1)return Es(e);if(e.shape.length===2){if(e.shape[1]>1)return Xs(e,1);if(e.shape[1]===1)return U(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());K(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Ot(o,"float32")}else return null}function bP(e,t){return z(e,t)}var vP=32;function E3(e,t){let n,s,r=t;n=r.xs,s=r.ys,I.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=R3("input",e.inputNames,n),o=R3("output",e.outputNames,s),i=a[0].shape[0];I.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),I.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function R3(e,t,n){if(n instanceof Ue)return[n];if(Array.isArray(n))return I.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new G(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function wP(e){if(e.length===3)throw new Oe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function kP(e,t,n){let s=n.batchesPerEpoch!=null;if(I.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),I.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),I.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),I.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),I.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(_3(n.validationData))I.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=wP(n.validationData);a=A.xs,o=A.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(A=>"val_"+A)):u=l.slice();let c=m3(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:h,history:p}=A3(c,d,n.epochs,null,null,IP(t,n),null,r,u);h.setModel(e),e.history=p,await h.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f=n.batchesPerEpoch:x.done){if(r){let b;_3(n.validationData)?b=At(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=At(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?vP:n.validationBatchSize,verbose:0}));for(let v=0;v0)throw new Oe("Verbose mode is not implemented yet.");I.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=SP(t)?t:await t.iterator(),i=0,l=0;for(;s?l{if(u.value){let{xs:c,ys:d}=E3(e,u.value),h=c.concat(d),p=H(()=>r(h));if(K(h),l===0)for(let m=0;mae(a[m],z(f,A))),l>0&&K(g)}K(p),i+=f,++l}return a}),u.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function vc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>Oo(s,t,n-t)):Oo(e,t,n-t)}function Sg(e,t){return H(()=>e==null?null:Array.isArray(e)?e.map(n=>Sg(n,t)):e3(e,t.dtype==="int32"?t:ce(t,"int32")))}function Cg(e,t){let n=[],s=0,r=null;for(;s=e&&(r=e),n.push([s,r]),s=r;return n}async function TP(e,t,n,s,r,a,o,i,l,u,c,d,h,p,f){r==null&&(r=32),a==null&&(a=1),c==null&&(c=!0),h==null&&(h=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,p==null))throw new G("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,r,p,"steps_per_epoch"),g;A!=null&&(g=Os(0,A)),o==null&&(o=1);let{callbackList:y,history:x}=A3(i,o,a,h,A,p,r,m,d);y.setModel(e),e.history=x,await y.onTrainBegin(),e.stopTraining_=!1;for(let b=h;b{let O=w[C][0],R=w[C][1],_=Oo(k,O,R-O);E.batch=C,E.size=R-O;let N=Sg(n,_),P=t(N);for(let W=0;W0){if(f=!0,s.validationData.length===2)o=s.validationData[0],i=s.validationData[1];else throw s.validationData.length===3?new Oe("validationData including sample weights is not supported yet."):new G(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let w=!0,C=await e.standardizeUserData(o,i,null,null,w,d);l=C[0],u=C[1],m=l.concat(u)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){f=!0;let w=Math.floor(r[0].shape[0]*(1-s.validationSplit)),C=r[0].shape[0];l=vc(r,w,C),r=vc(r,0,w),u=vc(a,w,C),a=vc(a,0,w),m=l.concat(u)}else s.validationSteps!=null&&(f=!0);let A=r.concat(a).concat(c);e.checkTrainableWeightsConsistency();let g=e.makeTrainFunction(),y=e.getDedupedMetricsNames(),x,b;f?(e.makeTestFunction(),x=e.testFunction,b=y.slice().concat(y.map(w=>"val_"+w))):(x=null,m=[],b=y.slice());let v=m3(s.callbacks,s.yieldEvery);return await TP(e,g,A,y,d,s.epochs,s.verbose,v,x,m,s.shuffle,b,s.initialEpoch,null,null)}finally{e.isTraining=!1,zo(r,t),zo(a,n),zo(l,o),zo(u,i),c!=null&&K(c)}}function $3(e){let t=[];e instanceof Ue&&(e=[e]);for(let n=0;nn.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof Ue)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function EP(e){return e instanceof Ue}function Tg(e){return Array.isArray(e)}function F3(e){return!EP(e)&&!Tg(e)}function D3(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(Tg(e)&&e.length>0)o=!0;else if(F3(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new G(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(F3(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new G(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(Tg(e)){if(e=e,e.length!==t.length)throw new G(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new G(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=$3(a),n!=null)for(let o=0;o=0&&u!==c)throw new G(`Error when checking ${r}: expected ${t[o]} to have shape [${n[o]}], but got array with shape [${i.shape}].`)}}return a}function RP(e,t,n){let s=Zr(e.map(a=>a.shape[0]));s.sort();let r=Zr(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new G(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new G(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!I.arraysEqual(s,r))throw new G(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function _P(e,t,n){let s=[Po,$p,yc];for(let r=0;r1)throw new G(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var FP="layers-model",wr=class extends tr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new G("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");cP(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=uP(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof xr))throw new G("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new G(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(Ag(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new G(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>Ag(o))}else{let a=Ag(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a{for(let a=0;a1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=$P(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};Do("metric",()=>{for(let a=0;a{let u="",c,d,h;for(let p of l){if(typeof p=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(p)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===$p?["accuracy","acc"].indexOf(p)!==-1?d=gg:["crossentropy","ce"].indexOf(p)!==-1&&(d=x3):this.lossFunctions[a]===_p?["accuracy","acc"].indexOf(p)!==-1?d=b3:["crossentropy","ce"].indexOf(p)!==-1&&(d=v3):["accuracy","acc"].indexOf(p)!==-1?d=yg:["crossentropy","ce"].indexOf(p)!==-1&&(d=xg);let A;["accuracy","acc"].indexOf(p)!==-1?A="acc":["crossentropy","ce"].indexOf(p)!==-1&&(A="ce"),h=d,c=u+A}else h=lP(p),c=u+Op(p);let f;Do(c,()=>{f=h}),r(a,c,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;Ig(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return En(l)}finally{zo(a[0],e),zo(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),CP(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new G(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new G(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new G("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new Mo;if(e instanceof Ue&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new G(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;io.name);for(let o=0;o0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new G(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return H(()=>{let s=this.checkNumSamples(e);if(n)throw new Oe("Verbose predictLoop() is not implemented yet.");let r=Cg(s,t),a=this.outputs.map(o=>[]);for(let o=0;o{let l=r[o][0],u=r[o][1],c=vc(e,l,u),d=[];if(Array.isArray(c))for(let p=0;pa[u].push(l));return En(a.map(o=>ht(o,0)))})}predict(e,t={}){let n=$3(e);O3(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return Ig(s),this.predictLoop(n,s)}finally{zo(n,e)}}predictOnBatch(e){O3(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new Ds("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a0&&e[0].shape[0]%s!=0)throw new G(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let u=T3(s,this.outputNames);l=[];for(let c=0;c{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new Oe("Verbose mode is not implemented yet.");if(r!=null)throw new Oe("steps mode in testLoop() is not implemented yet");{let i=Cg(a,n),l=Ot(Os(0,a));for(let u=0;u1&&(r+=`_${Vb(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let c=[];for(let f=0;f1&&f{p=ae(p,f)}),p},i=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>H(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;lvr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=vr(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[vr(Op(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>vr(Op(e)));{let e={};for(let t in this.metrics)e[t]=vr(Op(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=xc(e.optimizer_config),n=zs(t),s;if(typeof e.loss=="string")s=$o(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>$o(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=$o(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>$o(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=$o(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=Tn.getSaveHandlers(e);if(l.length===0)throw new G(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new G(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new G("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Tn.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:FP,generatedBy:`TensorFlow.js tfjs-layers v${wg}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:u,specs:c}=await Tn.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...c),n.data=Tn.concatenateArrayBuffers([n.data,u])}if(this.userDefinedMetadata!=null){let l=!0;k3(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){k3(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};wr.className="Model";oe.registerClass(wr);var P3=class extends wr{};P3.className="Functional";oe.registerClass(P3);async function DP(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=xc(n),r=zs(s,t);if(e.weightsManifest!=null){let a=await Tn.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),K(a)}return r}async function OP(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Tn.getLoadHandlers(e,t);if(n.length===0)n.push(Tn.browserHTTPRequest(e,t));else if(n.length>1)throw new G(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return PP(e,void 0,t)}async function PP(e,t,n){if(n==null&&(n={}),e.load==null)throw new G("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=zs(xc(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new G("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=MP(s.weightData,s.weightSpecs);i.loadWeights(u,a),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),K(u),K(c.map(d=>d.tensor))}return i}function MP(e,t){let n=Tn.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var Ll=class extends wr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Sp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new G(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Ll||e instanceof wr,n;if(t){if(n=e,n.outputs.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new G("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new G("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=u3({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new G(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=l3(this.outputs[0])}this.inboundNodes=[],new Np({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:_o(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(st(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new wr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Ds("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Ds("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Ds("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Ds("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new G("Legacy serialization format not supported yet.");r=t}else I.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof Ll))throw new Oe(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let u=zs(i,void 0,s);s&&u.setFastWeightInitDuringBuild(!0),o.add(u)}return o}set stopTraining(e){if(this.model==null)throw new G("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new G("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Ll.className="Sequential";oe.registerClass(Ll);function zP(e){return new wr(e)}function LP(e){return new Ll(e)}function BP(e,t){return t==null&&(t={}),OP(e,t)}function M3(e){return u3(e)}function WP(e,t){Is.registerCallbackConstructor(e,t)}var _n=class extends oe.Serializable{getConfig(){return{}}},z3=class extends _n{apply(e,t=1){return pO(e,t)}};z3.className="elu";oe.registerClass(z3);var L3=class extends _n{apply(e){return _A(e)}};L3.className="selu";oe.registerClass(L3);var B3=class extends _n{apply(e){return Ys(e)}};B3.className="relu";oe.registerClass(B3);var W3=class extends _n{apply(e){return H(()=>ac(6,Ys(e)))}};W3.className="relu6";oe.registerClass(W3);var V3=class extends _n{apply(e){return e}};V3.className="linear";oe.registerClass(V3);var U3=class extends _n{apply(e){return Bn(e)}};U3.className="sigmoid";oe.registerClass(U3);var H3=class extends _n{apply(e){return mO(e)}};H3.className="hardSigmoid";oe.registerClass(H3);var G3=class extends _n{apply(e){return El(e)}};G3.className="softplus";oe.registerClass(G3);var j3=class extends _n{apply(e){return fO(e)}};j3.className="softsign";oe.registerClass(j3);var q3=class extends _n{apply(e){return Il(e)}};q3.className="tanh";oe.registerClass(q3);var Ng=class extends _n{apply(e,t=-1){return Yh(e,t)}};Ng.className="softmax";oe.registerClass(Ng);var X3=class extends _n{apply(e,t=-1){return bA(e,t)}};X3.className="logSoftmax";oe.registerClass(X3);var K3=class extends _n{apply(e,t=1){return H(()=>z(Bn(z(e,t)),e))}};K3.className="swish";oe.registerClass(K3);var Z3=class extends _n{apply(e){return H(()=>z(e,Il(El(e))))}};Z3.className="mish";oe.registerClass(Z3);function ea(e){return e.getClassName()}function Eg(e,t={}){return hc(e,oe.SerializationMap.getMap().classNameMap,t,"activation")}function ta(e){if(e==null){let t={};return t.className="linear",t.config={},Eg(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Eg(t)}else return e instanceof _n?e:Eg(e)}function Rg(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var Y3=class extends oe.Serializable{},wc=class extends Y3{constructor(e){super();Rg(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return H(()=>{let t=Dt([1]);return this.hasL1&&(t=ae(t,ve(z(this.l1,Wt(e))))),this.hasL2&&(t=ae(t,ve(z(this.l2,Ac(e))))),U(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};wc.className="L1L2";oe.registerClass(wc);function VP(e){return Rg(e),new wc({l1:e!=null?e.l1:null,l2:0})}function UP(e){return Rg(e),new wc({l2:e!=null?e.l2:null,l1:0})}var J3={l1l2:"L1L2"};function ut(e){return qA(e)}function Q3(e,t={}){return hc(e,oe.SerializationMap.getMap().classNameMap,t,"regularizer")}function vt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in J3?J3[e]:e,config:{}};return Q3(n)}else return e instanceof Y3?e:Q3(e)}var _g=class extends Xe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=ze(e);let n=Ys(e);return this.maxValue!=null&&(n=Wn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};_g.className="ReLU";oe.registerClass(_g);var $g=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return Bh(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};$g.className="LeakyReLU";oe.registerClass($g);var Fg=class extends Xe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=bt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=vt(e.alphaRegularizer),this.alphaConstraint=Gt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new G(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=st(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s($t(t),t==="channelsFirst"?je(e,[0,2,3,1]):e))}function ev(e,t){return H(()=>($t(t),t==="channelsFirst"?je(e,[0,2,3,4,1]):e))}function HP(e,t,n,s=1,r="valid",a,o=1){return H(()=>{if(a==null&&(a=Fs()),$t(a),e.shape.length!==3)throw new G(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new G(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new G(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=je(e,[0,2,1])),r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=hA(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=Ps(i,n)),i})}function tv(e,t,n,s=[1,1],r="valid",a,o,i=null){return H(()=>{if(a==null&&(a=Fs()),$t(a),e.rank!==3&&e.rank!==4)throw new G(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new G(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Mg(e,a);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Kr.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=je(l,[0,3,1,2])),l})}function GP(e,t,n,s=[1,1,1],r="valid",a,o){return H(()=>{if(a==null&&(a=Fs()),$t(a),e.rank!==4&&e.rank!==5)throw new G(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new G(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=ev(e,a);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=mA(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=Ps(i,n)),a==="channelsFirst"&&(i=je(i,[0,4,1,2,3])),i})}var zg=class extends Xe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",zg.verifyArgs(t),this.rank=e,Zt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Oe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Bl(t.kernelSize,e,"kernelSize"),this.strides=Bl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,hs(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,$t(this.dataFormat),this.activation=ta(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=bt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Gt(t.biasConstraint),this.biasRegularizer=vt(t.biasRegularizer),this.activityRegularizer=vt(t.activityRegularizer),this.dilationRate=Bl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new G(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new G(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new G(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Qs("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!KA(e.kernelSize,"number",1,3))throw new G(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:ea(this.activation),useBias:this.useBias,biasInitializer:Ct(this.biasInitializer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),biasConstraint:Ht(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},kc=class extends zg{constructor(e,t){super(e,t);this.kernel=null,kc.verifyArgs(t),this.filters=t.filters,Zt(this.filters,"filters"),this.kernelInitializer=bt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Gt(t.kernelConstraint),this.kernelRegularizer=vt(t.kernelRegularizer)}build(e){e=st(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return H(()=>{e=ze(e);let n,s=this.bias==null?null:this.bias.read(),r=Hb(this.activation.getClassName());if(r!=null&&this.rank===2)n=tv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=HP(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=tv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=GP(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Oe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=st(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r 0 but got ${JSON.stringify(e.filters)}`)}},Ic=class extends kc{constructor(e){super(2,e);Ic.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!KA(e.kernelSize,"number",1,2))throw new G(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Ic.className="Conv2D";oe.registerClass(Ic);var Sc=class extends kc{constructor(e){super(3,e);Sc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new G(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Sc.className="Conv3D";oe.registerClass(Sc);var Lg=class extends Ic{constructor(e){super(e);if(this.inputSpec=[new Pt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==4)throw new G("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Pt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{let n=ze(e);if(n.shape.length!==4)throw new G(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],u=this.kernelSize[0],c=this.kernelSize[1],d=this.strides[0],h=this.strides[1],p=nr(i,d,u,this.padding),f=nr(l,h,c,this.padding),m=[r,p,f,this.filters];this.dataFormat!=="channelsLast"&&(n=je(n,[0,2,3,1]));let A=fA(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=je(A,[0,3,1,2])),this.bias!=null&&(A=Ps(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=st(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=nr(t[s],i,a,this.padding),t[r]=nr(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Lg.className="Conv2DTranspose";oe.registerClass(Lg);var Bg=class extends Sc{constructor(e){super(e);if(this.inputSpec=[new Pt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==5)throw new G("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Pt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{let n=ze(e);if(n.shape.length!==5)throw new G(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],u=s[a],c=s[o],d=this.kernelSize[0],h=this.kernelSize[1],p=this.kernelSize[2],f=this.strides[0],m=this.strides[1],A=this.strides[2],g=nr(l,f,d,this.padding),y=nr(u,m,h,this.padding),x=nr(c,A,p,this.padding),b=[r,g,y,x,this.filters];this.dataFormat!=="channelsLast"&&(n=je(n,[0,2,3,4,1]));let v=Ox(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(v=je(v,[0,4,1,2,3])),this.bias!==null&&(v=Ps(v,this.bias.read(),this.dataFormat)),this.activation!==null&&(v=this.activation.apply(v)),v})}computeOutputShape(e){e=st(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],c=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[s]=nr(t[s],u,o,this.padding),t[r]=nr(t[r],c,i,this.padding),t[a]=nr(t[a],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Bg.className="Conv3DTranspose";oe.registerClass(Bg);var nv=class extends kc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new G("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new G("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new G(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=bt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=vt(t.depthwiseRegularizer),this.depthwiseConstraint=Gt(t.depthwiseConstraint),this.pointwiseInitializer=bt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=vt(t.pointwiseRegularizer),this.pointwiseConstraint=Gt(t.pointwiseConstraint)}build(e){if(e=st(e),e.length{e=ze(e);let n;if(this.rank===1)throw new Oe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=je(e,[0,2,3,1])),n=sb(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Ps(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=je(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.pointwiseInitializer=Ct(this.pointwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.pointwiseRegularizer=ut(this.pointwiseRegularizer),e.depthwiseConstraint=Ht(this.depthwiseConstraint),e.pointwiseConstraint=Ht(this.pointwiseConstraint),e}};nv.className="SeparableConv";var Wg=class extends nv{constructor(e){super(2,e)}};Wg.className="SeparableConv2D";oe.registerClass(Wg);var Mp=class extends kc{constructor(e){super(1,e);Mp.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!KA(e.kernelSize,"number",1,1))throw new G(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Mp.className="Conv1D";oe.registerClass(Mp);var Vg=class extends Xe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return H(()=>{if(e=ze(e),this.dataFormat==="channelsLast"){let n=mp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return mp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=mp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return mp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Vg.className="Cropping2D";oe.registerClass(Vg);var Ug=class extends Xe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,oO(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return H(()=>{let n=ze(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=je(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?_e.resizeNearestNeighbor(n,[r,a]):_e.resizeBilinear(n,[r,a]);return je(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?_e.resizeNearestNeighbor(n,[r,a]):_e.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ug.className="UpSampling2D";oe.registerClass(Ug);function jP(e,t,n=[1,1],s="valid",r,a){return H(()=>{r==null&&(r=Fs()),$t(r);let o=Mg(e,r);if(e.rank!==4)throw new G(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new G(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=nc(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=je(o,[0,3,1,2])),o})}var Hg=class extends zg{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=bt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Gt(e.depthwiseConstraint),this.depthwiseRegularizer=vt(e.depthwiseRegularizer)}build(e){if(e=st(e),e.length<4)throw new G(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new G(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{e=ze(e);let n=jP(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Ps(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Ls(t,this.kernelSize[0],this.padding,this.strides[0]),a=Ls(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.depthwiseConstraint=Ht(this.depthwiseRegularizer),e}};Hg.className="DepthwiseConv2D";oe.registerClass(Hg);function sv(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new G("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function rv(e,t,n,s=!1,r,a,o=!1,i=!1){return H(()=>{let l=t.shape.length;if(l<3)throw new G(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Os(2,l));if(t=je(t,u),a!=null)throw new Oe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=ce(ce(r,"bool"),"float32"),r.rank===l-1&&(r=Ft(r,-1)),r=je(r,u)),s&&(t=cs(t,0),r!=null&&(r=cs(r,0)));let c=[],d,h=n,p=t.shape[0],f=ds(t),m;r!=null&&(m=ds(r));for(let g=0;ge(y,h));if(r==null)d=x[0],h=x[1];else{let b=H(()=>{let v=m[g],k=Ae(us(v),v),w=ae(z(x[0],v),z(h[0],k)),C=h.map((E,O)=>ae(z(x[1][O],v),z(E,k)));return{output:w,newStates:C}});d=b.output,h=b.newStates}i&&c.push(d)}let A;return i&&(A=Nn(c,1)),[d,A,h]})}var sr=class extends Xe{constructor(e){super(e);let t;if(e.cell==null)throw new G("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Bp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new G("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Pt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Os(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){hg(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return H(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;no.shape[o.shape.length-1]),a))throw new G(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new Pt({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new br("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Dt([n,s])):this.states_=[Dt([n,this.cell.stateSize])];else if(e==null)K(this.states_),this.keptStates!=null&&(K(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Dt([n,s])):this.states_[0]=Dt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):K(this.states_);for(let s=0;sKt(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=sv(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new Pt({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof Ms){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=ze(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new G(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=rv((p,f)=>{let m=this.cell.call([p].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),u=l[0],c=l[1],d=l[2];this.stateful&&this.resetStates(d,s);let h=this.returnSequences?c:u;return this.returnState?[h].concat(d):h})}getInitialState(e){return H(()=>{let t=Dt(e.shape);return t=ve(t,[1,2]),t=mc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?sg(t,[1,n]):t):this.cell.stateSize>1?[sg(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===sr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let s=t.cell,r=zs(s,n);return new e(Object.assign(t,{cell:r}))}};sr.className="RNN";oe.registerClass(sr);var Cc=class extends Xe{},zp=class extends Cc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Zt(this.units,"units"),this.activation=ta(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=bt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=vt(e.kernelRegularizer),this.recurrentRegularizer=vt(e.recurrentRegularizer),this.biasRegularizer=vt(e.biasRegularizer),this.kernelConstraint=Gt(e.kernelConstraint),this.recurrentConstraint=Gt(e.recurrentConstraint),this.biasConstraint=Gt(e.biasConstraint),this.dropout=Ol([1,Jr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ol([1,Jr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new G(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0us(e),rate:this.dropout,training:s})),0us(n),rate:this.recurrentDropout,training:s}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=er(z(e,a),this.kernel.read()):r=er(e,this.kernel.read()),this.bias!=null&&(r=Ps(r,this.bias.read())),o!=null&&(n=z(n,o));let i=ae(r,er(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ea(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Ht(this.kernelConstraint),recurrentConstraint:Ht(this.recurrentConstraint),biasConstraint:Ht(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};zp.className="SimpleRNNCell";oe.registerClass(zp);var Gg=class extends sr{constructor(e){e.cell=new zp(e);super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(K(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(K(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};Gg.className="SimpleRNN";oe.registerClass(Gg);var Lp=class extends Cc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new G("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Zt(this.units,"units"),this.activation=ta(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ta(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=bt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=vt(e.kernelRegularizer),this.recurrentRegularizer=vt(e.recurrentRegularizer),this.biasRegularizer=vt(e.biasRegularizer),this.kernelConstraint=Gt(e.kernelConstraint),this.recurrentConstraint=Gt(e.recurrentConstraint),this.biasConstraint=Gt(e.biasConstraint),this.dropout=Ol([1,Jr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ol([1,Jr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new G(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0us(e),rate:this.dropout,training:n,count:3})),0us(s),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0{this.cell.dropoutMask!=null&&(K(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(K(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};jg.className="GRU";oe.registerClass(jg);var Tc=class extends Cc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Zt(this.units,"units"),this.activation=ta(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ta(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=bt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=vt(e.kernelRegularizer),this.recurrentRegularizer=vt(e.recurrentRegularizer),this.biasRegularizer=vt(e.biasRegularizer),this.kernelConstraint=Gt(e.kernelConstraint),this.recurrentConstraint=Gt(e.recurrentConstraint),this.biasConstraint=Gt(e.biasConstraint),this.dropout=Ol([1,Jr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ol([1,Jr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=st(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends ks{apply(i,l){let u=r.apply([a]),c=new gp().apply([a]),d=r.apply([a*2]);return Qb(Qb(u,c),d)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new G(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0us(e),rate:this.dropout,training:n,count:4})),0us(s),rate:this.recurrentDropout,training:n,count:4}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,u,c;0{this.cell.dropoutMask!=null&&(K(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(K(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};qg.className="LSTM";oe.registerClass(qg);var Bp=class extends Cc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return H(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o{Do(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return Object.assign({},e,s)}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(zs(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return pg(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;at3(t(),n),o=()=>gc(a,t,s);return!r||r<=1?Kt(o().clone()):Array(r).fill(void 0).map(o).map(l=>Kt(l.clone()))}var qP=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,s=Object.getOwnPropertySymbols(e);r{if(this.cell.dropoutMask!=null&&(K(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(K(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new G("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return H(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Dt(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new br("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Dt(r)):this.states_=[Dt(r)];else if(e==null)K(this.states_),this.keptStates!=null&&(K(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Dt(r)):this.states_[0]=Dt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):K(this.states_);for(let o=0;oKt(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],u=e[i?4:3],c=Ls(l,s[0],r,a[0],o[0]),d=Ls(u,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,c,d]:[c,d,n]]}};av.className="ConvRNN2D";var Wp=class extends Tc{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t}));this.filters=t,Zt(this.filters,"filters"),this.kernelSize=Bl(n,2,"kernelSize"),this.kernelSize.forEach(i=>Zt(i,"kernelSize")),this.strides=Bl(s||1,2,"strides"),this.strides.forEach(i=>Zt(i,"strides")),this.padding=r||"valid",hs(this.padding),this.dataFormat=a||"channelsLast",$t(this.dataFormat),this.dilationRate=Bl(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>Zt(i,"dilationRate"))}build(e){var t;e=st(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;i=new(t=class extends ks{apply(d,h){let p=l.apply([u]),f=Un([u]),m=l.apply([u*2]);return ng([p,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return H(()=>{if(e.length!==3)throw new G(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0us(s),rate:this.dropout,training:n,count:o}));let i=this.dropoutMask,l=(Q,ne,te)=>!ne||!ne[te]?Q:z(ne[te],Q),u=l(s,i,0),c=l(s,i,1),d=l(s,i,2),h=l(s,i,3);0us(r),rate:this.recurrentDropout,training:n,count:o}));let p=this.recurrentDropoutMask,f=l(r,p,0),m=l(r,p,1),A=l(r,p,2),g=l(r,p,3),y=3,[x,b,v,k]=nn(this.kernel.read(),o,y),[w,C,E,O]=this.useBias?nn(this.bias.read(),o):[null,null,null,null];u=this.inputConv(u,x,w,this.padding),c=this.inputConv(c,b,C,this.padding),d=this.inputConv(d,v,E,this.padding),h=this.inputConv(h,k,O,this.padding);let[R,_,N,P]=nn(this.recurrentKernel.read(),o,y);f=this.recurrentConv(f,R),m=this.recurrentConv(m,_),A=this.recurrentConv(A,N),g=this.recurrentConv(g,P);let W=this.recurrentActivation.apply(ae(u,f)),j=this.recurrentActivation.apply(ae(c,m)),q=ae(z(j,a),z(W,this.activation.apply(ae(d,A)))),X=z(this.recurrentActivation.apply(ae(h,g)),this.activation.apply(q));return[X,X,q]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=qP(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){let r=jr(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Ps(r,n,this.dataFormat):r}recurrentConv(e,t){return jr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Wp.className="ConvLSTM2DCell";oe.registerClass(Wp);var Xg=class extends av{constructor(e){let t=new Wp(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Xg.className="ConvLSTM2D";oe.registerClass(Xg);var Vp=class extends Xe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s{this.invokeCallHook(e,t);let n=ze(e);if(0t3(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Vp.className="Dropout";oe.registerClass(Vp);var Kg=class extends Vp{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Kg.className="SpatialDropout1D";oe.registerClass(Kg);var Zg=class extends Xe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Zt(this.units,"units"),this.activation=ta(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Gt(e.kernelConstraint),this.biasConstraint=Gt(e.biasConstraint),this.kernelRegularizer=vt(e.kernelRegularizer),this.biasRegularizer=vt(e.biasRegularizer),this.activityRegularizer=vt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=st(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=st(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e),s=Hb(this.activation.getClassName()),r;return s!=null?r=er(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=er(n,this.kernel.read()),this.bias!=null&&(r=Ps(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:ea(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Ht(this.kernelConstraint),biasConstraint:Ht(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Zg.className="Dense";oe.registerClass(Zg);var Yg=class extends Xe{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=st(e);for(let t of e.slice(1))if(t==null)throw new G(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Yr(e,1)]}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r{this.invokeCallHook(e,t);let n=ze(e);return this.activation.apply(n)})}getConfig(){let e={activation:ea(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Jg.className="Activation";oe.registerClass(Jg);var Qg=class extends Xe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return H(()=>(e=ze(e),cO(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Qg.className="RepeatVector";oe.registerClass(Qg);var e2=class extends Xe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let n=ze(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return U(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};e2.className="Reshape";oe.registerClass(e2);var t2=class extends Xe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Os(1,e.dims.length+1);if(!I.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Pt({ndim:this.dims.length+1})]}computeOutputShape(e){e=st(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return je(ze(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};t2.className="Permute";oe.registerClass(t2);var n2=class extends Xe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=ze(e),s=-1;return Dh(Rl(n,this.maskValue),s)}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e),s=-1,r=!0,a=Dh(Rl(n,this.maskValue),s,r);return z(n,ce(a,n.dtype))})}};n2.className="Masking";oe.registerClass(n2);var s2=class extends Xe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(At(e.inputLength))}this.inputDim=e.inputDim,Zt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Zt(this.outputDim,"outputDim"),this.embeddingsInitializer=bt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=vt(e.embeddingsRegularizer),this.activityRegularizer=vt(e.activityRegularizer),this.embeddingsConstraint=Gt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return H(()=>this.maskZero?(e=ze(e),Rl(e,qe(e))):null)}computeOutputShape(e){if(e=st(e),this.inputLength==null)return[...e,this.outputDim];let t=At(this.inputLength);if(t.length!==e.length-1)throw new G(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s{this.invokeCallHook(e,t);let n=ze(e);n.dtype!=="int32"&&(n=fp(n,"int32"));let s=e3(this.embeddings.read(),U(n,[n.size]));return U(s,st(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ct(this.embeddingsInitializer),embeddingsRegularizer:ut(this.embeddingsRegularizer),activityRegularizer:ut(this.activityRegularizer),embeddingsConstraint:Ht(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};s2.className="Embedding";oe.registerClass(s2);var Lo=class extends Xe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Oe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new G(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;rr.length);e.indexOf(null)===-1&&Zr(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return H(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=Jr(s);for(let a of e){let o=a.rank;for(let i=0;i1){let u=Os(1,l).concat([0]);n.push(je(i,u)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,u=i[l-1],c=[u].concat(i.slice(0,i.length-1));a=U(je(U(a,[-1,u]),[1,0]),c)}else if(o>1){let i=[o-1].concat(Os(0,o-1));a=je(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s{if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an Array");if(!Array.isArray(e))throw new G("`inputs` should be an Array");if(t.length!==e.length)throw new G(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Ft(s,0));let n=t[0];for(let s=1;s{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0];for(let n=1;n{let t=e[0];for(let n=1;n1)throw new G("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return H(()=>ng(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new G("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new G("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new G(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return H(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a3||t.shape.length>3)throw new Oe("batchDot is not implemented for tensors of 4D or higher rank yet");if(I.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),I.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Oe("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return H(()=>{let o;if(s>r){o=s-r;let l=[];for(let u=0;us){o=r-s;let l=[];for(let u=0;u0){let l;s>r?l=s+r-3:l=s-1;let u=[];for(let c=l;c"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new G(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new G(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>Nc(r,e[a].shape.length)):s=[Nc(this.axes,t.shape.length),Nc(this.axes,n.shape.length)],this.normalize&&(t=Ep(t,s[0]),n=Ep(n,s[1])),XP(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Nc(this.axes,e.length),Nc(this.axes,t.length)],n}computeOutputShape(e){I.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};c2.className="Dot";oe.registerClass(c2);var d2=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);return gc(()=>ae(Ap(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};d2.className="GaussianNoise";oe.registerClass(d2);var h2=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.rate>0&&this.rate<1?gc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return z(n,Ap(n.shape,1,r))},()=>n,t.training||!1):n})}};h2.className="GaussianDropout";oe.registerClass(h2);var p2=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||ze(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return gc(()=>{let r=ze(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=Co(_l(n),this.rate);l=fp(l,"float32");let u=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-u*i*this.rate,d=ae(z(r,l),z(ae(l,-1),i));return ae(z(d,u),c)},()=>ze(e),t.training||!1)}return e})}};p2.className="AlphaDropout";oe.registerClass(p2);function Ec(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=Tx(e,t,n,s,r,a);else if(e.rank===3)o=Nx(e,t,n,s,r,a);else if(e.rank===4)o=Ex(e,t,n,s,r,a);else throw new Oe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function KP(e,t,n,s,r=.001){return H(()=>{let a=jh(e,s),o=a.mean,i=a.variance;return[Ec(e,o,i,n,t,r),o,i]})}function ZP(e,t,n,s,r=.001){return H(()=>{let a=jh(e,s),o=a.mean,i=a.variance,l=[];for(let f of Os(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let u=U(o,l),c=U(i,l),d=t==null?null:U(t,l),h=n==null?null:U(n,l);return[Ec(e,u,c,h,d,r),o,i]})}function YP(e,t,n,s,r=.001){return I.arraysEqual(s.slice().sort(),Os(0,e.rank-1))?KP(e,t,n,s,r):ZP(e,t,n,s,r)}var f2=class extends Xe{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=bt(e.betaInitializer||"zeros"),this.gammaInitializer=bt(e.gammaInitializer||"ones"),this.movingMeanInitializer=bt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=bt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Gt(e.betaConstraint),this.gammaConstraint=Gt(e.gammaConstraint),this.betaRegularizer=vt(e.betaRegularizer),this.gammaRegularizer=vt(e.gammaRegularizer)}build(e){e=st(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new G(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Pt({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training,s=ze(e),r=s.shape,a=r.length,o=Os(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=_o(1,a);l[i]=r[i];let u=o.slice();u.sort();let c=!I.arraysEqual(u,Os(0,a).slice(0,a-1)),d=()=>{if(c){let g=U(this.movingMean.read(),l),y=U(this.movingVariance.read(),l),x=this.center?U(this.beta.read(),l):null,b=this.scale?U(this.gamma.read(),l):null;return Ec(s,g,y,x,b,this.epsilon)}else return Ec(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[h,p,f]=YP(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(g,y,x)=>{H(()=>{let b=1-x,v=g.read(),k=z(Ae(v,y),b);g.write(Ae(v,k))})};return(()=>{m(this.movingMean,p,this.momentum),m(this.movingVariance,f,this.momentum)})(),h})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ct(this.betaInitializer),gammaInitializer:Ct(this.gammaInitializer),movingMeanInitializer:Ct(this.movingMeanInitializer),movingVarianceInitializer:Ct(this.movingVarianceInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer),betaConstraint:Ht(this.betaConstraint),gammaConstraint:Ht(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};f2.className="BatchNormalization";oe.registerClass(f2);var m2=class extends Xe{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=bt(e.betaInitializer||"zeros"),this.gammaInitializer=bt(e.gammaInitializer||"ones"),this.betaRegularizer=vt(e.betaRegularizer),this.gammaRegularizer=vt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=st(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Zr(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=ze(e),s=n.shape,r=s.length;return H(()=>{let a=!0,{mean:o,variance:i}=jh(n,this.axis,a),l=_o(1,r);for(let f of this.axis)l[f]=s[f];let u=f=>f!=null&&f.shape.length!==r&&this.axis!==[r-1]?U(f,l):f,c=u(this.gamma.read()),d=u(this.beta.read()),h=[],p=[];for(let f=0;f{if(e.rank!==4)throw new G(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new G("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Fs()),n!=="channelsLast"&&n!=="channelsFirst")throw new G(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],qr(e,s)})}var A2=class extends Xe{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?Fs():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new G(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new G(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new G(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Pt({ndim:4})]}computeOutputShape(e){e=st(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return H(()=>JP(ze(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};A2.className="ZeroPadding2D";oe.registerClass(A2);function Up(e,t,n,s,r,a){return H(()=>{$t(r),Xb(a),hs(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=Fs()),a==null&&(a="max"),e=Mg(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=Hh(e,t,n,i):o=Ph(e,t,n,i),r==="channelsFirst"&&(o=je(o,[0,3,1,2])),o})}function ov(e,t,n,s,r,a){return H(()=>{$t(r),Xb(a),hs(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=Fs()),a==null&&(a="max"),e=ev(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=IA(e,t,n,i):o=cA(e,t,n,i),r==="channelsFirst"&&(o=je(o,[0,4,1,2,3])),o})}var iv=class extends Xe{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new G(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Zt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new G(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Zt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,hs(this.padding),this.inputSpec=[new Pt({ndim:3})]}computeOutputShape(e){e=st(e);let t=Ls(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return H(()=>{this.invokeCallHook(e,t),e=mc(ze(e),2);let n=this.poolingFunction(ze(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return ot(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},g2=class extends iv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return $t(r),hs(s),Up(e,t,n,s,r,"max")}};g2.className="MaxPooling1D";oe.registerClass(g2);var y2=class extends iv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return $t(r),hs(s),Up(e,t,n,s,r,"avg")}};y2.className="AveragePooling1D";oe.registerClass(y2);var lv=class extends Xe{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new G(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Zt(this.poolSize,"poolSize"),Zt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),hs(this.padding),this.inputSpec=[new Pt({ndim:4})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ls(t,this.poolSize[0],this.padding,this.strides[0]),n=Ls(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},x2=class extends lv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return $t(r),hs(s),Up(e,t,n,s,r,"max")}};x2.className="MaxPooling2D";oe.registerClass(x2);var b2=class extends lv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return $t(r),hs(s),Up(e,t,n,s,r,"avg")}};b2.className="AveragePooling2D";oe.registerClass(b2);var uv=class extends Xe{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new G(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Zt(this.poolSize,"poolSize"),Zt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),hs(this.padding),this.inputSpec=[new Pt({ndim:5})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ls(t,this.poolSize[0],this.padding,this.strides[0]),n=Ls(n,this.poolSize[1],this.padding,this.strides[1]),s=Ls(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},v2=class extends uv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return $t(r),hs(s),ov(e,t,n,s,r,"max")}};v2.className="MaxPooling3D";oe.registerClass(v2);var w2=class extends uv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return $t(r),hs(s),ov(e,t,n,s,r,"avg")}};w2.className="AveragePooling3D";oe.registerClass(w2);var cv=class extends Xe{constructor(e){super(e);this.inputSpec=[new Pt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Oe}},k2=class extends cv{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=ze(e);return Et(n,1)})}};k2.className="GlobalAveragePooling1D";oe.registerClass(k2);var I2=class extends cv{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=ze(e);return ls(n,1)})}};I2.className="GlobalMaxPooling1D";oe.registerClass(I2);var dv=class extends Xe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),this.inputSpec=[new Pt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Oe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},S2=class extends dv{call(e,t){return H(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?Et(n,[1,2]):Et(n,[2,3])})}};S2.className="GlobalAveragePooling2D";oe.registerClass(S2);var C2=class extends dv{call(e,t){return H(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?ls(n,[1,2]):ls(n,[2,3])})}};C2.className="GlobalMaxPooling2D";oe.registerClass(C2);var hv=class extends Xe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=zs(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},T2=class extends hv{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=st(e),e.length<3)throw new G(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=st(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return H(()=>(e=ze(e),rv((a,o)=>[ze(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};T2.className="TimeDistributed";oe.registerClass(T2);function QP(e){Fo(aO,"BidirectionalMergeMode",e)}var eM="concat",N2=class extends hv{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=zs(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=zs(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?eM:e.mergeMode,QP(this.mergeMode),e.weights)throw new Oe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):En(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=sv(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new G("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let u=n.map(c=>new Pt({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),o.push(...u)}if(s!=null)throw new Oe("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof Ms;for(let l of a)if(l instanceof Ms!==i)throw new G("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=cs(r,1));let o;return this.mergeMode==="concat"?o=ng([s,r]):this.mergeMode==="sum"?o=ae(s,r):this.mergeMode==="ave"?o=z(.5,ae(s,r)):this.mergeMode==="mul"?o=z(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Do(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Do(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=zs(t.layer);if(delete t.layer,t.numConstants!=null)throw new Oe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};N2.className="Bidirectional";oe.registerClass(N2);function tM(e){return new Pl(e)}function nM(e){return new Dg(e)}function sM(e){return new _g(e)}function rM(e){return new $g(e)}function aM(e){return new Fg(e)}function oM(e){return new Pg(e)}function iM(e){return new Og(e)}function lM(e){return new Mp(e)}function uM(e){return new Ic(e)}function cM(e){return new Lg(e)}function dM(e){return new Sc(e)}function hM(e){return new Bg(e)}function pM(e){return new Wg(e)}function fM(e){return new Vg(e)}function mM(e){return new Ug(e)}function AM(e){return new Hg(e)}function gM(e){return new Jg(e)}function yM(e){return new Zg(e)}function xM(e){return new Vp(e)}function bM(e){return new Kg(e)}function vM(e){return new Yg(e)}function wM(e){return new Qg(e)}function kM(e){return new e2(e)}function IM(e){return new t2(e)}function SM(e){return new s2(e)}function CM(e){return new r2(e)}function TM(e){return new o2(e)}function NM(e){return new u2(e)}function EM(e){return new i2(e)}function RM(e){return new l2(e)}function _M(e){return new a2(e)}function $M(e){return new c2(e)}function FM(e){return new f2(e)}function DM(e){return new m2(e)}function OM(e){return new A2(e)}function E2(e){return new y2(e)}function PM(e){return E2(e)}function MM(e){return E2(e)}function R2(e){return new b2(e)}function zM(e){return R2(e)}function LM(e){return R2(e)}function _2(e){return new w2(e)}function BM(e){return _2(e)}function WM(e){return _2(e)}function VM(e){return new k2(e)}function UM(e){return new S2(e)}function pv(e){return new I2(e)}function fv(e){return new C2(e)}function mv(e){return new g2(e)}function Av(e){return new x2(e)}function HM(e){return new v2(e)}function GM(e){return new jg(e)}function jM(e){return new Lp(e)}function qM(e){return new qg(e)}function XM(e){return new Tc(e)}function KM(e){return new Gg(e)}function ZM(e){return new zp(e)}function YM(e){return new Xg(e)}function JM(e){return new Wp(e)}function QM(e){return new sr(e)}function ez(e){return new Bp(e)}function tz(e){return new N2(e)}function nz(e){return new T2(e)}var sz=pv,rz=fv,az=mv,oz=Av;function iz(e){return new d2(e)}function lz(e){return new h2(e)}function uz(e){return new p2(e)}function cz(e){return new n2(e)}var gv={};Pe(gv,{MAPE:()=>vz,MSE:()=>Iz,binaryAccuracy:()=>dz,binaryCrossentropy:()=>hz,categoricalAccuracy:()=>fz,categoricalCrossentropy:()=>mz,cosineProximity:()=>yz,mape:()=>wz,meanAbsoluteError:()=>xz,meanAbsolutePercentageError:()=>bz,meanSquaredError:()=>kz,mse:()=>Sz,precision:()=>Az,recall:()=>gz,sparseCategoricalAccuracy:()=>pz});function dz(e,t){return gg(e,t)}function hz(e,t){return x3(e,t)}function pz(e,t){return b3(e,t)}function fz(e,t){return yg(e,t)}function mz(e,t){return xg(e,t)}function Az(e,t){return y3(e,t)}function gz(e,t){return eP(e,t)}function yz(e,t){return mg(e,t)}function xz(e,t){return Rp(e,t)}function bz(e,t){return zl(e,t)}function vz(e,t){return zl(e,t)}function wz(e,t){return zl(e,t)}function kz(e,t){return Po(e,t)}function Iz(e,t){return Po(e,t)}function Sz(e,t){return Po(e,t)}var yv={};Pe(yv,{modelFromJSON:()=>DP});var xv={};Pe(xv,{l1:()=>Tz,l1l2:()=>Cz,l2:()=>Nz});function Cz(e){return new wc(e)}function Tz(e){return VP(e)}function Nz(e){return UP(e)}var bv=class extends Ml{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof wr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Hp(e,t){return et}var wv=class extends bv{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Oe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Hp:this.mode==="max"?this.monitorFunc=vv:this.monitor.indexOf("acc")!==-1?this.monitorFunc=vv:this.monitorFunc=Hp,this.monitorFunc===Hp&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Hp?1/0:-1/0}async onEpochEnd(e,t){await Qr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Ez(e){return new wv(e)}var Rz={earlyStopping:Ez},Bs;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Bs||(Bs={}));var kv;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(kv||(kv={}));var $2={};function _z(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};$2[e]=n}function Iv(e){return $2[e]}function $z(e){delete $2[e]}function S(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return xn(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(h=>xn(h,n,s,r));let u=xn(t.inputNames.slice(i)[0],n,s,r),c=u.dataSync();return a.type==="number"?c[0]:I.toNestedArray(u.shape,c)}let o=t.attrParams[e];return o&&o.value}function xn(e,t,n,s){let[r,a]=Hn(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[Gp(r,i)]);return o!==void 0?t[Gp(r,o)][a]:void 0}function Fz(e,t,n){return t[Gp(e,n.currentContextId)]}function kr(e,t){let[n,s,r]=Hn(e);return[Gp(n,t&&t.currentContextId),s,r]}function Gp(e,t){return t?`${e}-${t}`:e}function Hn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function jp(e,t,n){let s=S("pad",e,t,n);if(s==="explicit"){s=S("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function Ir(e){return e.kept?e:Es(e)}var Sv={};Pe(Sv,{json:()=>Dz});var Dz=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Cv={};Pe(Cv,{json:()=>Oz});var Oz=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Tv={};Pe(Tv,{json:()=>Pz});var Pz=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],Nv={};Pe(Nv,{json:()=>Mz});var Mz=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],Ev={};Pe(Ev,{json:()=>zz});var zz=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],Rv={};Pe(Rv,{json:()=>Lz});var Lz=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],_v={};Pe(_v,{json:()=>Bz});var Bz=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],$v={};Pe($v,{json:()=>Wz});var Wz=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Fv={};Pe(Fv,{json:()=>Vz});var Vz=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],Dv={};Pe(Dv,{json:()=>Uz});var Uz=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],Ov={};Pe(Ov,{json:()=>Hz});var Hz=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Pv={};Pe(Pv,{json:()=>Gz});var Gz=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],Mv={};Pe(Mv,{json:()=>jz});var jz=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],zv={};Pe(zv,{json:()=>qz});var qz=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],Lv={};Pe(Lv,{json:()=>Xz});var Xz=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],Bv={};Pe(Bv,{json:()=>Kz});var Kz=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],Wv={};Pe(Wv,{json:()=>Zz});var Zz=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],Vv={};Pe(Vv,{json:()=>Yz});var Yz=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],Uv={};Pe(Uv,{json:()=>Jz});var Jz=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],Hv=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Sv,Cv,Tv,Nv,Ev,Rv,_v,$v,Fv,Dv,Ov,Pv,Mv,zv,Lv,Bv,Wv,Vv,Uv],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((A,g)=>{let[y,,x]=kr(A),b=o[y];if(b.outputs!=null){let v=b.outputs.indexOf(x);if(v!==-1){let k=`${y}:${v}`;m.inputNames[g]=k}}m.inputs.push(b),b.children.push(m)})}),Object.keys(c).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(c).forEach(f=>{let[m]=kr(f),A=o[m];A!=null&&(A.signatureKey=c[f],l.push(A))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=kr(f),A=o[m];A&&(A.signatureKey=u[f],i.push(A))}):i=s;let h={};e.library!=null&&e.library.function!=null&&(h=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let p={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:h};return a.length>0&&(p.initNodes=a),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=Iv(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.substr(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=F2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=F2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=W2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=W2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=O2(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=O2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=B2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=B2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=D2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=D2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=U2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=U2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=L2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=L2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=V2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=V2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=M2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=M2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=z2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=z2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=jv(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=jv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((c,d)=>(c[d.name]=this.mapNode(d),d.op==="Const"&&s.push(c[d.name]),c),{}));let a=[],o=[];e.signature.inputArg.forEach(c=>{let[d]=kr(c.name),h={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:P2(c.type),type:"dtype"}},children:[]};h.signatureKey=c.name,a.push(h),r[d]=h}),Object.keys(r).forEach(c=>{let d=r[c];d.inputNames.forEach((h,p)=>{let[f,,m]=kr(h),A=r[f];if(A.outputs!=null){let g=A.outputs.indexOf(m);if(g!==-1){let y=`${f}:${g}`;d.inputNames[p]=y}}d.inputs.push(A),A.children.push(d)})});let l=e.ret;e.signature.outputArg.forEach(c=>{let[d,h]=kr(l[c.name]),p=r[d];p!=null&&(p.defaultOutput=h,o.push(p))});let u=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:u}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function Qz(e){let t=ee().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function Gv(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):Qz(e);return t?n:n.toLowerCase()}function F2(e,t,n,s=!1){let r=e[t];return r!=null?Gv(r.s,s):n}function D2(e,t,n){let s=e[t];return s?s.b:n}function O2(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function P2(e){switch(typeof e=="string"&&(e=Bs[e]),e){case Bs.DT_FLOAT:return"float32";case Bs.DT_INT32:case Bs.DT_INT64:case Bs.DT_INT8:case Bs.DT_UINT8:return"int32";case Bs.DT_BOOL:return"bool";case Bs.DT_DOUBLE:return"float32";case Bs.DT_STRING:return"string";default:return null}}function jv(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function M2(e,t,n){let s=e[t];return s&&s.type?P2(s.type):n}function z2(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>P2(r)):n}function qv(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function L2(e,t,n){let s=e[t];return s&&s.shape?qv(s.shape):n}function B2(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function W2(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>Gv(a,s)):n}function V2(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>qv(r)):n}function U2(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var eL=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return xn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return xn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return O2(this.node.rawAttrs,e,t);if(n.s!=null)return F2(this.node.rawAttrs,e,t);if(n.b!=null)return D2(this.node.rawAttrs,e,t);if(n.shape!=null)return L2(this.node.rawAttrs,e,t);if(n.type!=null)return M2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return B2(this.node.rawAttrs,e,t);if(n.list.s!=null)return W2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return V2(this.node.rawAttrs,e,t);if(n.list.b!=null)return U2(this.node.rawAttrs,e,t);if(n.list.type!=null)return z2(this.node.rawAttrs,e,t)}return t}},tL=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ae(S("a",e,t,n),S("b",e,t,n))];case"AddN":return[Fh(S("tensors",e,t,n))];case"FloorMod":case"Mod":return[Qx(S("a",e,t,n),S("b",e,t,n))];case"Mul":return[z(S("a",e,t,n),S("b",e,t,n))];case"RealDiv":case"Div":return[de(S("a",e,t,n),S("b",e,t,n))];case"DivNoNan":return[Lx(S("a",e,t,n),S("b",e,t,n))];case"FloorDiv":return[oA(S("a",e,t,n),S("b",e,t,n))];case"Sub":return[Ae(S("a",e,t,n),S("b",e,t,n))];case"Minimum":return[ac(S("a",e,t,n),S("b",e,t,n))];case"Maximum":return[gr(S("a",e,t,n),S("b",e,t,n))];case"Pow":return[Xr(S("a",e,t,n),S("b",e,t,n))];case"SquaredDifference":return[PA(S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},nL=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Wt(S("x",e,t,n))];case"Acos":return[Ax(S("x",e,t,n))];case"Acosh":return[gx(S("x",e,t,n))];case"Asin":return[xx(S("x",e,t,n))];case"Asinh":return[bx(S("x",e,t,n))];case"Atan":return[vx(S("x",e,t,n))];case"Atan2":return[wx(S("x",e,t,n),S("y",e,t,n))];case"Atanh":return[kx(S("x",e,t,n))];case"Ceil":return[Rx(S("x",e,t,n))];case"Complex":return[Wr(S("real",e,t,n),S("imag",e,t,n))];case"Cos":return[zh(S("x",e,t,n))];case"Cosh":return[AA(S("x",e,t,n))];case"Elu":return[sc(S("x",e,t,n))];case"Erf":return[Wx(S("x",e,t,n))];case"Exp":return[os(S("x",e,t,n))];case"Expm1":return[Vx(S("x",e,t,n))];case"Floor":return[rc(S("x",e,t,n))];case"Log":return[is(S("x",e,t,n))];case"Log1p":return[Wh(S("x",e,t,n))];case"Imag":return[Lh(S("x",e,t,n))];case"Neg":return[St(S("x",e,t,n))];case"Reciprocal":return[nb(S("x",e,t,n))];case"Real":return[oc(S("x",e,t,n))];case"Relu":return[Ys(S("x",e,t,n))];case"Round":return[EA(S("x",e,t,n))];case"Selu":return[_A(S("x",e,t,n))];case"Sigmoid":return[Bn(S("x",e,t,n))];case"Sin":return[$A(S("x",e,t,n))];case"Sign":return[ab(S("x",e,t,n))];case"Sinh":return[FA(S("x",e,t,n))];case"Softplus":return[El(S("x",e,t,n))];case"Sqrt":return[ln(S("x",e,t,n))];case"Square":return[lt(S("x",e,t,n))];case"Tanh":return[Il(S("x",e,t,n))];case"Tan":return[ib(S("x",e,t,n))];case"ClipByValue":return[Wn(S("x",e,t,n),S("clipValueMin",e,t,n),S("clipValueMax",e,t,n))];case"Relu6":return[NA(S("x",e,t,n))];case"Rsqrt":return[RA(xn(e.inputNames[0],t,n))];case"Prod":return[SA(S("x",e,t,n),S("axes",e,t,n))];case"LeakyRelu":return[Bh(S("x",e,t,n),S("alpha",e,t,n))];case"Prelu":return[Xh(S("x",e,t,n),S("alpha",e,t,n))];case"IsNan":return[Ux(xn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ss(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){I.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;sn+` Shapes ${e} and ${t} must match`)}}}function Xv(e){return!(typeof e=="number"||e.some(t=>t<0))}function Rc(e,t,n){let s=H2(e,n),r=!Xv(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=H2(a.shape,s)}),!Xv(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function H2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var sL=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Ie(0),Kt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, - because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Ss(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Kt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ds(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to +2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let p of Object.keys(Cs))u[p]=Cs[p];for(let p of Object.keys(n))u[p]=n[p];let c=a.config;c.customObjects=u;let d=Object.assign({},Cs);for(let p of Object.keys(n))Cs[p]=n[p];tA(a.config);let h=l(i,a.config,n,r);return Cs=Object.assign({},d),h}else{let u=Object.assign({},Cs);for(let d of Object.keys(n))Cs[d]=n[d];let c=new i(a.config);return Cs=Object.assign({},u),c}}}function cO(e,t){return et?1:0}function bp(e,t){return-1*cO(e,t)}function ea(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function dO(e){if(e==null)throw new G(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function zo(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new G(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function nA(e,t,n=0,s=1/0){return sr(n>=0),sr(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function Qt(e,t){Array.isArray(e)?(I.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>Qt(n,`element ${s+1} of ${t}`))):I.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Yb(e)}.`)}function Yb(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Yb(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function hO(e,t){let n=I.now(),s;return(...a)=>{let o=I.now();return o-ndn(ve(z(e,e),t,!0)))}var xc=class extends oe.Serializable{getConfig(){return{}}},rA=class extends xc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=sA(e,this.axis),n=Gn(t,0,this.maxValue);return z(e,de(n,ae(jt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};rA.className="MaxNorm";oe.registerClass(rA);var aA=class extends xc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>de(e,ae(jt(),sA(e,this.axis))))}getConfig(){return{axis:this.axis}}};aA.className="UnitNorm";oe.registerClass(aA);var oA=class extends xc{apply(e){return tr(e)}};oA.className="NonNeg";oe.registerClass(oA);var iA=class extends xc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=sA(e,this.axis),n=ae(z(this.rate,Gn(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,de(n,ae(jt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};iA.className="MinMaxNorm";oe.registerClass(iA);var Qb={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function qt(e){return eA(e)}function e3(e,t={}){return yc(e,oe.SerializationMap.getMap().classNameMap,t,"constraint")}function Xt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in Qb?Qb[e]:e,config:{}};return e3(n)}else return e instanceof xc?e:e3(e)}function pO(e){return new rA(e)}function fO(e){return new aA(e)}function mO(){return new oA}function gO(e){return new iA(e)}var t3={};Pe(t3,{constant:()=>LO,glorotNormal:()=>jO,glorotUniform:()=>GO,heNormal:()=>qO,heUniform:()=>XO,identity:()=>UO,leCunNormal:()=>KO,leCunUniform:()=>ZO,ones:()=>zO,orthogonal:()=>YO,randomNormal:()=>WO,randomUniform:()=>BO,truncatedNormal:()=>VO,varianceScaling:()=>HO,zeros:()=>MO});var AO=["channelsFirst","channelsLast"],yO=["nearest","bilinear"],xO=["valid","same","causal"],bO=["max","avg"],vO=["sum","mul","concat","ave"],Bl=new Map;function Ft(e){zo(AO,"DataFormat",e)}function wO(e){zo(yO,"InterpolationFormat",e)}function gs(e){zo(xO,"PaddingMode",e)}function n3(e){zo(bO,"PoolMode",e)}var bc=[],s3="/";function Lo(e,t){bc.push(e);try{let n=t();return bc.pop(),n}catch(n){throw bc.pop(),n}}function kO(){return bc.length===0?"":bc.join(s3)+s3}function r3(e){if(!o3(e))throw new Error("Not a valid tensor name: '"+e+"'");return kO()+e}function a3(e){if(!o3(e))throw new Error("Not a valid tensor name: '"+e+"'");Bl.has(e)||Bl.set(e,0);let t=Bl.get(e);if(Bl.set(e,Bl.get(e)+1),t>0){let n=`${e}_${t}`;return Bl.set(n,1),n}else return e}var IO=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function o3(e){return!!e.match(IO)}function SO(e){return e===parseInt(e.toString(),10)}function ta(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;rt&&(t=s)}return t}function Ls(e,t){if(t{if(e.shape.length!==2)throw new G(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=vc(e,1);return cA(n,[1,t,1])})}function TO(e){let t=[ta(e.shape)];return U(e,t)}function NO(e){if(e.rank<=1)throw new G(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],ta(e.shape,1)];return U(e,t)}function Bo(e,t,n){return H(()=>{switch(e.rank){case 1:return np(e,t,n);case 2:return Wg(e,[t,0],[n,e.shape[1]]);case 3:return sp(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return pc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Re(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Re(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new G(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function lA(e,t,n){return H(()=>{switch(e.rank){case 1:return np(e,t,n);case 2:return Wg(e,[0,t],[e.shape[0],n]);case 3:return sp(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return pc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function wp(e,t,n,s){return H(()=>{switch(e.rank){case 1:return np(e,t,n);case 2:switch(s){case 1:return Bo(e,t,n);case 2:return lA(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return Bo(e,t,n);case 2:return sp(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return lA(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return Bo(e,t,n);case 2:return pc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return pc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return lA(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function uA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),ft(e,t)}function i3(e,t){switch(e.rank){case 1:return Lx([e,t]);case 2:return $l([e,t],0);case 3:return Bx([e,t],0);case 4:return Wx([e,t],0);default:throw new G(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function cA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new G(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Fs(e,t)}function kp(e,t=0,n=1,s,r){return ub(e,t,n,s,r)}function rr(e,t,n,s){if(e.rank<2||t.rank<2)throw new Oe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Oe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,a=!1;return Qr.matMul({a:e,b:t,transposeA:r,transposeB:a,bias:s?dA(e.rank,s,Ms()):null,activation:n})}else{let r=e.shape.slice(),a=r.pop();e=U(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),u=[...o,i],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=U(Xe(t,c),[l,-1]);let d=[...r,...u],h=!1,p=!1;return U(Qr.matMul({a:e,b:t,transposeA:h,transposeB:p,bias:s?dA(e.rank,s,Ms()):null,activation:n}),d)}}function l3(e,t,n){return H(()=>(Array.isArray(t)?t=Mt(t,"int32"):t=ce(t,"int32"),Fl(e,t,n)))}function wc(e){return z(e,e)}function dA(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new G(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1,1]):U(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1]):U(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1]):U(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,s[0]]):U(t,[1].concat(s))}else if(e<3)return t;throw new G(`Unsupported input rank by biasAdd: ${t.rank}`)}function Bs(e,t,n){return H(()=>(n==null&&(n=Ms()),Ft(n),ae(e,dA(e.rank,t,n))))}function EO(e,t=1){if(t!==1)throw new Oe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return uc(e)}function RO(e){return H(()=>de(e,ae(Ht(e),1)))}function u3(e,t,n,s){return H(()=>kb(e,t,n,s))}function _O(e){return H(()=>{let t=ae(.5,z(.2,e));return Gn(t,0,1)})}function kc(e,t,n=!1){return n?e():t()}var $O=["fanIn","fanOut","fanAvg"],DO=["normal","uniform","truncatedNormal"];function FO(e){zo($O,"FanMode",e)}function OO(e){zo(DO,"Distribution",e)}var Ts=class extends oe.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},hA=class extends Ts{apply(e,t){return Pt(e,t)}};hA.className="Zeros";oe.registerClass(hA);var Ip=class extends Ts{apply(e,t){return qn(e,t)}};Ip.className="Ones";oe.registerClass(Ip);var pA=class extends Ts{constructor(e){super();if(typeof e!="object")throw new G(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new G(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return H(()=>z(Ie(this.value),qn(e,t)))}getConfig(){return{value:this.value}}};pA.className="Constant";oe.registerClass(pA);var fA=class extends Ts{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Ml(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};fA.className="RandomUniform";oe.registerClass(fA);var mA=class extends Ts{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`randomNormal does not support dType ${t}.`);return kp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};mA.className="RandomNormal";oe.registerClass(mA);var gA=class extends Ts{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`truncatedNormal does not support dType ${t}.`);return ip(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};gA.className="TruncatedNormal";oe.registerClass(gA);var AA=class extends Ts{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return H(()=>{if(e.length!==2||e[0]!==e[1])throw new G("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,Sg(e[0]))})}getConfig(){return{gain:this.gain}}};AA.className="Identity";oe.registerClass(AA);function PO(e,t="channelsLast"){let n,s;if(Ft(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=ta(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=ta(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=ta(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var Fn=class extends Ts{constructor(e){super();if(e.scale<0)throw new G(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,FO(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,OO(this.distribution),this.seed=e.seed}apply(e,t){let n=PO(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`${this.getClassName()} does not support dType ${t}.`);return ip(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return Ml(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Fn.className="VarianceScaling";oe.registerClass(Fn);var Sp=class extends Fn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};Sp.className="GlorotUniform";oe.registerClass(Sp);var Cp=class extends Fn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};Cp.className="GlorotNormal";oe.registerClass(Cp);var Tp=class extends Fn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};Tp.className="HeNormal";oe.registerClass(Tp);var Np=class extends Fn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};Np.className="HeUniform";oe.registerClass(Np);var Ep=class extends Fn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};Ep.className="LeCunNormal";oe.registerClass(Ep);var Rp=class extends Fn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};Rp.className="LeCunNormal";oe.registerClass(Rp);var yA=class extends Ts{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Oe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return H(()=>{if(e.length<2)throw new Oe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=kp(n,0,1,"float32"),r=Fb.gramSchmidt(s);return e[0]>e[1]&&(r=Xe(r)),z(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};yA.className="Orthogonal";oe.registerClass(yA);var c3={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function d3(e,t={}){return yc(e,oe.SerializationMap.getMap().classNameMap,t,"initializer")}function Nt(e){return eA(e)}function wt(e){if(typeof e=="string"){let t=e in c3?c3[e]:e;if(t==="GlorotNormal")return new Cp;if(t==="GlorotUniform")return new Sp;if(t==="HeNormal")return new Tp;if(t==="HeUniform")return new Np;if(t==="LeCunNormal")return new Ep;if(t==="LeCunUniform")return new Rp;{let n={};return n.className=t,n.config={},d3(n)}}else return e instanceof Ts?e:d3(e)}function MO(){return new hA}function zO(){return new Ip}function LO(e){return new pA(e)}function BO(e){return new fA(e)}function WO(e){return new mA(e)}function VO(e){return new gA(e)}function UO(e){return new AA(e)}function HO(e){return new Fn(e)}function GO(e){return new Sp(e)}function jO(e){return new Cp(e)}function qO(e){return new Tp(e)}function XO(e){return new Np(e)}function KO(e){return new Ep(e)}function ZO(e){return new Rp(e)}function YO(e){return new yA(e)}var h3={};Pe(h3,{Layer:()=>Ze,RNN:()=>ir,RNNCell:()=>$c,activation:()=>DM,add:()=>VM,alphaDropout:()=>Sz,average:()=>UM,averagePooling1d:()=>P2,averagePooling2d:()=>M2,averagePooling3d:()=>z2,avgPool1d:()=>JM,avgPool2d:()=>ez,avgPool3d:()=>nz,avgPooling1d:()=>QM,avgPooling2d:()=>tz,avgPooling3d:()=>sz,batchNormalization:()=>KM,bidirectional:()=>Az,concatenate:()=>HM,conv1d:()=>IM,conv2d:()=>SM,conv2dTranspose:()=>CM,conv3d:()=>TM,conv3dTranspose:()=>NM,convLstm2d:()=>pz,convLstm2dCell:()=>fz,cropping2D:()=>RM,dense:()=>FM,depthwiseConv2d:()=>$M,dot:()=>XM,dropout:()=>OM,elu:()=>yM,embedding:()=>WM,flatten:()=>MM,gaussianDropout:()=>Iz,gaussianNoise:()=>kz,globalAveragePooling1d:()=>rz,globalAveragePooling2d:()=>az,globalMaxPool1d:()=>xz,globalMaxPool2d:()=>bz,globalMaxPooling1d:()=>vv,globalMaxPooling2d:()=>wv,gru:()=>iz,gruCell:()=>lz,input:()=>G3,inputLayer:()=>AM,layerNormalization:()=>ZM,leakyReLU:()=>bM,lstm:()=>uz,lstmCell:()=>cz,masking:()=>Cz,maxPool1d:()=>vz,maxPool2d:()=>wz,maxPooling1d:()=>kv,maxPooling2d:()=>Iv,maxPooling3d:()=>oz,maximum:()=>GM,minimum:()=>jM,multiply:()=>qM,permute:()=>BM,prelu:()=>vM,reLU:()=>xM,repeatVector:()=>zM,reshape:()=>LM,rnn:()=>mz,separableConv2d:()=>EM,simpleRNN:()=>dz,simpleRNNCell:()=>hz,softmax:()=>wM,spatialDropout1d:()=>PM,stackedRNNCells:()=>gz,thresholdedReLU:()=>kM,timeDistributed:()=>yz,upSampling2d:()=>_M,zeroPadding2d:()=>YM});var JO=0;function p3(){return JO++}var _p={};function $p(e=""){return e in _p||(_p[e]=0),_p[e]+=1,e+_p[e].toString()}function xA(e){return Array.isArray(e)&&Array.isArray(e[0])}function Dp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function ze(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new G(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function at(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new G(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Fp(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var f3="Variable",m3=class{constructor(e,t="float32",n=f3,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=p3(),n=n==null?f3:n,this.originalName=r3(n),this.name=a3(this.originalName),this.trainable_=s,this.constraint=r,this.val=yb(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),QO(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function QO(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function bA(e){return e.map(t=>t.read())}function vA(e){e.forEach(t=>{t[0].write(t[1])})}var zt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Ws=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=p3(),a!=null&&(this.originalName=r3(a),this.name=a3(this.originalName)),this.rank=t.length}},eP=0,Op=class{constructor(e,t){this.callArgs=t,this.id=eP++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},tP=0,Ze=class extends oe.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=tP++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Sr(n)+"_"+$p(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new zs(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new G(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Dn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Dn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Ir(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Ir(`Layer ${this.name} is not connected, no input to return.`);return Dn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Ir(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Ir(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Dn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=yt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=yt(this.inputSpec);if(e.length!==t.length)throw new G(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;nr.maxNDim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a=0?o[l]:o[o.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of yt(e))a.push(o.shape);this.build(Dn(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=yt(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=Dn(i),this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=nP(e),o=this.computeOutputShape(a),i,l=sP(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((u,c)=>new Ws(l,u,this,yt(e),t,this.name,c)):i=new Ws(l,o,this,yt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Ir(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Ir(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new zs(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Fp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return bA(e?this.trainableWeights:this.weights)}setWeights(e){H(()=>{let t=this.weights;if(t.length!==e.length)throw new G(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=bA(t);for(let r=0;rr.apply(l.read())),a==null&&(a=!0),a?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=yt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=yt(e);t=yt(t),n=yt(n),s=yt(s),r=Dp(r),a=Dp(a);let l=[],u=[],c=[];for(let d of i)l.push(d.sourceLayer),u.push(d.nodeIndex),c.push(d.tensorIndex);new Op({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let d=0;de.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function nP(e){e=yt(e);let t=[];for(let n of e)t.push(n.shape);return Dn(t)}function sP(e){return"float32"}function g3(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a0){let r=await Promise.all(t);for(let a=0;aae(this.totals[s],z(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:H(()=>{let s=z(de(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),Jt(t[n])}))}},v3=class extends Ul{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;onew w3(s,t))}var Ns=class{constructor(){}static registerCallbackConstructor(e,t){I.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Ns.checkForDuplicate(t),Ns.constructors[e]==null&&(Ns.constructors[e]=[]),Ns.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Ns.constructors)Ns.constructors[+t].forEach(s=>{if(s===e)throw new G("Duplicate callback constructor.")})}static clear(){Ns.constructors={}}static createCallbacks(e){let t=[];for(let n in Ns.constructors){let s=+n;e>=s&&t.push(...Ns.constructors[s])}return t.map(n=>new n)}};Ns.constructors={};function I3(e,t,n,s,r,a,o,i,l){let u=new v3,c=[new aP,...Ns.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let d=new b3(c);return d.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:d,history:u}}function Vs(e,t={},n=!1){return yc(e,oe.SerializationMap.getMap().classNameMap,t,"layer",n)}function Pp(e,t){return H(()=>{e.dtype!=="float32"&&(e=ce(e,"float32"));let n=ve(wc(e),t,!0),s=Dl(n.shape,jt()),r=dn(vr(n,s));return de(e,r)})}function Wo(e,t){return H(()=>_t(wc(ge(t,e)),-1))}function Mp(e,t){return H(()=>_t(Ht(ge(t,e)),-1))}function Hl(e,t){return H(()=>{let n=ge(e,t),s=Gn(Ht(e),jt(),Number.MAX_VALUE),r=Ht(de(n,s));return z(100,_t(r,-1))})}function oP(e,t){return H(()=>{let n=Gn(t,jt(),Number.MAX_VALUE),s=ds(ae(1,n)),r=Gn(e,jt(),Number.MAX_VALUE),a=ds(ae(1,r));return _t(wc(ge(s,a)),-1)})}function iP(e,t){return H(()=>{let n=vr(0,ge(1,z(e,t)));return _t(wc(n),-1)})}function lP(e,t){return H(()=>{let n=vr(0,ge(1,z(e,t)));return _t(n,-1)})}function uP(e,t){return H(()=>{let n=ve(z(e,t),-1),s=hs(z(ge(1,e),t),-1);return vr(0,ae(1,ge(s,n)))})}function cP(e,t){return H(()=>{let n=Math.log(2),s=ge(t,e),r=ge(ae(s,Ol(z(-2,s))),n);return _t(r,-1)})}function Ic(e,t,n=!1){return H(()=>{if(n)t=rp(t);else{let s=ve(t,t.shape.length-1,!0);t=de(t,s)}return t=Gn(t,jt(),1-jt()),Tt(ve(z(ce(e,"float32"),ds(t)),t.shape.length-1))})}function zp(e,t,n=!1){return H(()=>{let s=ce(cc(TO(e)),"int32");t=Gn(t,jt(),1-jt());let r=t.shape,a=U(ac(s,r[r.length-1]),r);return Ic(a,t,n)})}function dP(e,t){if(!I.arraysEqual(e.shape,t.shape))throw new G(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return H(()=>{let n=tr(t),s=Tt(Ht(t));return ae(ge(n,z(t,e)),Xh(cs(s)))})}function Lp(e,t){return H(()=>{let n;return n=Gn(t,jt(),1-jt()),n=ds(de(n,ge(1,n))),_t(dP(e,n),-1)})}function hP(e,t){return H(()=>{let n=Gn(e,jt(),1),s=Gn(t,jt(),1);return ve(z(e,ds(de(n,s))),-1)})}function pP(e,t){return H(()=>{let n=ds(ae(jt(),t));return _t(ge(t,z(e,n)),-1)})}function wA(e,t){return H(()=>{let n=Pp(e,-1),s=Pp(t,-1),r=z(n,s);return Tt(ve(r,-1))})}var Bp={meanSquaredError:Wo,meanAbsoluteError:Mp,meanAbsolutePercentageError:Hl,meanSquaredLogarithmicError:oP,squaredHinge:iP,hinge:lP,categoricalHinge:uP,logcosh:cP,categoricalCrossentropy:Ic,sparseCategoricalCrossentropy:zp,binaryCrossentropy:Lp,kullbackLeiblerDivergence:hP,poisson:pP,cosineProximity:wA};function kA(e){if(typeof e=="string"){if(e in Bp)return Bp[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new G(t)}else return e}function IA(e,t){return H(()=>{let n=z(.5,ps(t)),s=vp(jn(t,n),e.dtype);return _t(us(e,s),-1)})}function SA(e,t){return H(()=>vp(us(Js(e,-1),Js(t,-1)),"float32"))}function S3(e,t){return H(()=>ce(ve(Os(us(e,1),us(t,1))),"float32"))}function fP(e,t){return H(()=>ce(ve(Os(us(e,1),us(t,0))),"float32"))}function mP(e,t){return H(()=>ce(ve(Os(us(e,0),us(t,1))),"float32"))}function C3(e,t){return H(()=>{let n=S3(e,t),s=mP(e,t),r=ae(n,s);return ce(bn(jn(r,0),de(n,r),0),"float32")})}function gP(e,t){return H(()=>{let n=S3(e,t),s=fP(e,t),r=ae(n,s);return ce(bn(jn(r,0),de(n,r),0),"float32")})}function T3(e,t){return Lp(e,t)}function N3(e,t){return e.rank===t.rank&&(e=lt(e,[e.rank-1])),t=Js(t,-1),t.dtype!==e.dtype&&(t=ce(t,e.dtype)),ce(us(e,t),"float32")}var AP=Wo,yP=Wo,xP=Mp,bP=Mp,vP=Hl,wP=Hl,CA=Ic,kP=wA,E3=zp,Wp={binaryAccuracy:IA,categoricalAccuracy:SA,precision:C3,categoricalCrossentropy:CA,sparseCategoricalCrossentropy:E3,mse:AP,MSE:yP,mae:xP,MAE:bP,mape:vP,MAPE:wP,cosine:kP};function IP(e){if(typeof e=="string"&&e in Wp)return Wp[e];if(typeof e!="string"&&e!=null)return e;throw new G(`Unknown metric ${e}`)}function Vp(e){if(sr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Bp))if(Bp[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Wp))if(Wp[n]===e){t=n;break}return t!==void 0?t:e.name}}function SP(e){let t={Adagrad:()=>Oo.adagrad(.01),Adadelta:()=>Oo.adadelta(1,.95,jt()),Adam:()=>Oo.adam(.001,.9,.999,jt()),Adamax:()=>Oo.adamax(.002,.9,.999,jt(),0),RMSProp:()=>Oo.rmsprop(.001,.9,0,jt()),SGD:()=>Oo.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new G(`Unknown Optimizer ${e}`)}var R3=1*1024*1024;function _3(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!TA(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>R3&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${R3}.`)}}function TA(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!TA(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!TA(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function CP(e,t,n,s=console.log){let r=NP(e),a=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let o;if(!r){a.push("Receives inputs"),o=[];for(let c in e.nodesByDepth)o.push(...e.nodesByDepth[c])}s("_".repeat(t)),Up(a,n,s),s("=".repeat(t));let i=e.layers;for(let c=0;c1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Up(e,t,n=console.log){let s="";for(let r=0;r0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function EP(e,t,n){let s;try{s=JSON.stringify(e.outputShape)}catch(i){s="multiple"}let r=e.name,a=e.getClassName(),o=[`${r} (${a})`,s,e.countParams().toString()];Up(o,t,n)}function RP(e,t,n,s){let r;try{r=JSON.stringify(e.outputShape)}catch(c){r="multiple"}let a=[];for(let c of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(c)===-1))for(let d=0;df.name),l=[],u=t.names();for(let f of i)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let c=i.join(",")+"|"+t.names().join(","),d,h;if(RA[c]==null){let f=$P(o,t);d=f.sorted,h=f.recipientCounts,RA[c]=d,D3[c]=h}d=RA[c],h={},r||Object.assign(h,D3[c]);let p=new Vo(t);for(let f=0;fs.maxNumTensors&&(s.maxNumTensors=R),R0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=F3(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=F3(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(u=>s[l].add(u))}}return{sorted:n,recipientCounts:DP(s)}}function DP(e){let t={};for(let n in e)t[n]=e[n].size;return t}function F3(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let u of i.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(i.name),!n.has(u.name)&&a.push(u)}}return{sorted:s,recipientMap:r}}function FP(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;sA.name)}`);ea(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(A=>A.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let A of this.outputs){let y=A.sourceLayer,x=A.nodeIndex,b=A.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(b)}for(let A of this.inputs){let y=A.sourceLayer,x=A.nodeIndex,b=A.tensorIndex;sr(x===0,"input layer has >1 nodes"),sr(b===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let A=0;AA.shape),this.internalOutputShapes=this.outputs.map(A=>A.shape);let t={},n={},s={},r={},a={},o=[],i=(A,y,x,b,v,k)=>{(b==null||v==null||k==null)&&(b=A.sourceLayer,v=A.nodeIndex,k=A.tensorIndex);let w=b.inboundNodes[v];if(x.indexOf(w)!==-1)throw new zs(`The tensor ${A.name} at layer "${b.name}" is part of a cycle.`);if(y.indexOf(w)!==-1)return;this.containerNodes.add(ar.nodeKey(b,v)),b.id in a||(a[b.id]=Object.keys(a).length),x.indexOf(w)===-1&&x.push(w);let C=w.inboundLayers.length;for(let R=0;R=0;)x.splice(x.indexOf(w),1);o.push(w)},l=[],u=[];for(let A of this.outputs)i(A,l,u);let c=o.slice().reverse();for(let A of c){n[A.id]=A,A.id in t||(t[A.id]=0);let y=t[A.id],x=s[A.outboundLayer.id]==null?0:s[A.outboundLayer.id];y=Math.max(y,x),s[A.outboundLayer.id]=y,r[A.outboundLayer.id]=A.outboundLayer,t[A.id]=y;for(let b=0;bparseInt(A,10)).sort(bp);this.layers=[];for(let A of p){let y=h[A];y.sort((x,b)=>{let v=a[x.id],k=a[b.id];return vk?1:0});for(let x of y)x instanceof ar&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=h,p=Object.keys(d).map(A=>parseInt(A,10)).sort(bp);let f=this.inputs.slice(),m=[];for(let A of p)for(let y of d[A]){let x=y.outboundLayer;if(x!=null){for(let b of y.inputTensors)if(f.indexOf(b)===-1)throw new zs(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${x.name}". The following previous layers were accessed without issue: ${m}`);for(let b of y.outputTensors)f.push(b);m.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(A=>A.name);for(let A of g){let y=g.filter(x=>x===A).length;if(y!==1)throw new zs(`The name "${A}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Op({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(A=>null),outputMasks:this.outputs.map(A=>null),inputShapes:this.inputs.map(A=>A.shape),outputShapes:this.outputs.map(A=>A.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new G("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new G(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new G(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new G(`${a.length} of ${s} weights are not set: ${a}`)}vA(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${EA}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=NA(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return H(()=>{e=yt(e);let n=new Vo;for(let s=0;s{e=yt(e);let n;return t==null?n=Po(null,e.length):n=yt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Dp(e);if(t.length!==this.inputLayers.length)throw new G(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;oparseInt(o,10)).sort(bp);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let c=[];for(let f=0;fparseInt(i,10)).sort(bp);for(let i of s){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer,d=u.inputTensors,h=u.outputTensors,p=new Array;for(let f of d)f.id in n&&p.push(n[f.id]);if(p.length===d.length){let f={},m,g,A,y;if(u.callArgs!=null&&(f=u.callArgs),p.length===1){let[x,b]=p[0];f.mask==null&&(f.mask=b),A=yt(c.call(x,f)),y=yt(c.computeMask(x,b)),m=[x],g=[b]}else m=p.map(x=>x[0]),g=p.map(x=>x[1]),f.mask==null&&(f.mask=g),A=yt(c.call(m,f)),y=yt(c.computeMask(m,g));if(c.activityRegularizer)throw new Oe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x{let e=[];for(let t of this.layers)for(let n=0;n0){let f=[];for(let m=0;m0&&m.apply(Dn(A),y)}function l(m){let g=m.name,A=Vs(m,t.customObjects!=null?t.customObjects:{});A.setFastWeightInitDuringBuild(s),r[g]=A,m.inboundNodes.forEach(x=>{if(!(x instanceof Array))throw new G(`Corrupted configuration, expected array for nodeData: ${x}`);o(A,x)})}let u=t.name,c=t.layers;for(let m of c)l(m);for(;!dO(a);)for(let m of c){let g=r[m.name];if(g.name in a){let A=a[g.name];delete a[g.name];for(let y of A)i(g,y)}}let d=[],h=[],p=t.inputLayers;for(let m of p){let g=m[0],A=m[1],y=m[2];sr(g in r);let b=r[g].inboundNodes[A].outputTensors;d.push(b[y])}let f=t.outputLayers;for(let m of f){let g=m[0],A=m[1],y=m[2];sr(g in r);let b=r[g].inboundNodes[A].outputTensors;h.push(b[y])}return new e({inputs:d,outputs:h,name:u})}get stateful(){if(this._stateful)throw new G("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){H(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function OP(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function O3(e,t){return OP(e,t,"classWeight")}async function P3(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=H(()=>{if(e.shape.length===1)return Ds(e);if(e.shape.length===2){if(e.shape[1]>1)return Js(e,1);if(e.shape[1]===1)return U(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());K(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Mt(o,"float32")}else return null}function PP(e,t){return z(e,t)}var MP=32;function M3(e,t){let n,s,r=t;n=r.xs,s=r.ys,I.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=z3("input",e.inputNames,n),o=z3("output",e.outputNames,s),i=a[0].shape[0];I.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),I.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function z3(e,t,n){if(n instanceof Ge)return[n];if(Array.isArray(n))return I.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new G(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function zP(e){if(e.length===3)throw new Oe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function LP(e,t,n){let s=n.batchesPerEpoch!=null;if(I.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),I.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),I.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),I.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),I.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(L3(n.validationData))I.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=zP(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=k3(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:h,history:p}=I3(c,d,n.epochs,null,null,BP(t,n),null,r,u);h.setModel(e),e.history=p,await h.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f=n.batchesPerEpoch:x.done){if(r){let b;L3(n.validationData)?b=yt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=yt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?MP:n.validationBatchSize,verbose:0}));for(let v=0;v0)throw new Oe("Verbose mode is not implemented yet.");I.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=WP(t)?t:await t.iterator(),i=0,l=0;for(;s?l{if(u.value){let{xs:c,ys:d}=M3(e,u.value),h=c.concat(d),p=H(()=>r(h));if(K(h),l===0)for(let m=0;mae(a[m],z(f,g))),l>0&&K(A)}K(p),i+=f,++l}return a}),u.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Tc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>Bo(s,t,n-t)):Bo(e,t,n-t)}function $A(e,t){return H(()=>e==null?null:Array.isArray(e)?e.map(n=>$A(n,t)):l3(e,t.dtype==="int32"?t:ce(t,"int32")))}function DA(e,t){let n=[],s=0,r=null;for(;s=e&&(r=e),n.push([s,r]),s=r;return n}async function UP(e,t,n,s,r,a,o,i,l,u,c,d,h,p,f){r==null&&(r=32),a==null&&(a=1),c==null&&(c=!0),h==null&&(h=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,p==null))throw new G("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,p,"steps_per_epoch"),A;g!=null&&(A=Ls(0,g)),o==null&&(o=1);let{callbackList:y,history:x}=I3(i,o,a,h,g,p,r,m,d);y.setModel(e),e.history=x,await y.onTrainBegin(),e.stopTraining_=!1;for(let b=h;b{let P=w[C][0],E=w[C][1],_=Bo(k,P,E-P);R.batch=C,R.size=E-P;let T=$A(n,_),O=t(T);for(let W=0;W0){if(f=!0,s.validationData.length===2)o=s.validationData[0],i=s.validationData[1];else throw s.validationData.length===3?new Oe("validationData including sample weights is not supported yet."):new G(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let w=!0,C=await e.standardizeUserData(o,i,null,null,w,d);l=C[0],u=C[1],m=l.concat(u)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){f=!0;let w=Math.floor(r[0].shape[0]*(1-s.validationSplit)),C=r[0].shape[0];l=Tc(r,w,C),r=Tc(r,0,w),u=Tc(a,w,C),a=Tc(a,0,w),m=l.concat(u)}else s.validationSteps!=null&&(f=!0);let g=r.concat(a).concat(c);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),y=e.getDedupedMetricsNames(),x,b;f?(e.makeTestFunction(),x=e.testFunction,b=y.slice().concat(y.map(w=>"val_"+w))):(x=null,m=[],b=y.slice());let v=k3(s.callbacks,s.yieldEvery);return await UP(e,A,g,y,d,s.epochs,s.verbose,v,x,m,s.shuffle,b,s.initialEpoch,null,null)}finally{e.isTraining=!1,Uo(r,t),Uo(a,n),Uo(l,o),Uo(u,i),c!=null&&K(c)}}function B3(e){let t=[];e instanceof Ge&&(e=[e]);for(let n=0;nn.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof Ge)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function GP(e){return e instanceof Ge}function FA(e){return Array.isArray(e)}function W3(e){return!GP(e)&&!FA(e)}function V3(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(FA(e)&&e.length>0)o=!0;else if(W3(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new G(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(W3(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new G(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(FA(e)){if(e=e,e.length!==t.length)throw new G(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new G(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=B3(a),n!=null)for(let o=0;o=0&&u!==c)throw new G(`Error when checking ${r}: expected ${t[o]} to have shape [${n[o]}], but got array with shape [${i.shape}].`)}}return a}function jP(e,t,n){let s=ea(e.map(a=>a.shape[0]));s.sort();let r=ea(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new G(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new G(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!I.arraysEqual(s,r))throw new G(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function qP(e,t,n){let s=[Wo,Lp,Ic];for(let r=0;r1)throw new G(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var KP="layers-model",Cr=class extends ar{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new G("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");CP(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=SP(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof kr))throw new G("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new G(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(kA(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new G(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>kA(o))}else{let a=kA(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a{for(let a=0;a1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=XP(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};Lo("metric",()=>{for(let a=0;a{let u="",c,d,h;for(let p of l){if(typeof p=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(p)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===Lp?["accuracy","acc"].indexOf(p)!==-1?d=IA:["crossentropy","ce"].indexOf(p)!==-1&&(d=T3):this.lossFunctions[a]===zp?["accuracy","acc"].indexOf(p)!==-1?d=N3:["crossentropy","ce"].indexOf(p)!==-1&&(d=E3):["accuracy","acc"].indexOf(p)!==-1?d=SA:["crossentropy","ce"].indexOf(p)!==-1&&(d=CA);let g;["accuracy","acc"].indexOf(p)!==-1?g="acc":["crossentropy","ce"].indexOf(p)!==-1&&(g="ce"),h=d,c=u+g}else h=IP(p),c=u+Vp(p);let f;Lo(c,()=>{f=h}),r(a,c,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;_A(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return Dn(l)}finally{Uo(a[0],e),Uo(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),VP(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new G(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new G(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new G("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new Vo;if(e instanceof Ge&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new G(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;io.name);for(let o=0;o0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new G(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return H(()=>{let s=this.checkNumSamples(e);if(n)throw new Oe("Verbose predictLoop() is not implemented yet.");let r=DA(s,t),a=this.outputs.map(o=>[]);for(let o=0;o{let l=r[o][0],u=r[o][1],c=Tc(e,l,u),d=[];if(Array.isArray(c))for(let p=0;pa[u].push(l));return Dn(a.map(o=>ft(o,0)))})}predict(e,t={}){let n=B3(e);U3(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return _A(s),this.predictLoop(n,s)}finally{Uo(n,e)}}predictOnBatch(e){U3(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new zs("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a0&&e[0].shape[0]%s!=0)throw new G(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let u=O3(s,this.outputNames);l=[];for(let c=0;c{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new Oe("Verbose mode is not implemented yet.");if(r!=null)throw new Oe("steps mode in testLoop() is not implemented yet");{let i=DA(a,n),l=Mt(Ls(0,a));for(let u=0;u1&&(r+=`_${Zb(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let c=[];for(let f=0;f1&&f{p=ae(p,f)}),p},i=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>H(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;lSr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=Sr(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Sr(Vp(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Sr(Vp(e)));{let e={};for(let t in this.metrics)e[t]=Sr(Vp(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Sc(e.optimizer_config),n=Vs(t),s;if(typeof e.loss=="string")s=Mo(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>Mo(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=Mo(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>Mo(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=Mo(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=_n.getSaveHandlers(e);if(l.length===0)throw new G(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new G(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new G("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await _n.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:KP,generatedBy:`TensorFlow.js tfjs-layers v${EA}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:u,specs:c}=await _n.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...c),n.data=_n.concatenateArrayBuffers([n.data,u])}if(this.userDefinedMetadata!=null){let l=!0;_3(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){_3(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Cr.className="Model";oe.registerClass(Cr);var H3=class extends Cr{};H3.className="Functional";oe.registerClass(H3);async function ZP(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=Sc(n),r=Vs(s,t);if(e.weightsManifest!=null){let a=await _n.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),K(a)}return r}async function YP(e,t){if(t==null&&(t={}),typeof e=="string"){let n=_n.getLoadHandlers(e,t);if(n.length===0)n.push(_n.browserHTTPRequest(e,t));else if(n.length>1)throw new G(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return JP(e,void 0,t)}async function JP(e,t,n){if(n==null&&(n={}),e.load==null)throw new G("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=Vs(Sc(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new G("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=QP(s.weightData,s.weightSpecs);i.loadWeights(u,a),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),K(u),K(c.map(d=>d.tensor))}return i}function QP(e,t){let n=_n.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var Gl=class extends Cr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:$p("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new G(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Gl||e instanceof Cr,n;if(t){if(n=e,n.outputs.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new G("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new G("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=A3({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new G(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=g3(this.outputs[0])}this.inboundNodes=[],new Op({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Po(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(at(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Cr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new zs("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new zs("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new zs("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new zs("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new G("Legacy serialization format not supported yet.");r=t}else I.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof Gl))throw new Oe(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let u=Vs(i,void 0,s);s&&u.setFastWeightInitDuringBuild(!0),o.add(u)}return o}set stopTraining(e){if(this.model==null)throw new G("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new G("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Gl.className="Sequential";oe.registerClass(Gl);function eM(e){return new Cr(e)}function tM(e){return new Gl(e)}function nM(e,t){return t==null&&(t={}),YP(e,t)}function G3(e){return A3(e)}function sM(e,t){Ns.registerCallbackConstructor(e,t)}var On=class extends oe.Serializable{getConfig(){return{}}},j3=class extends On{apply(e,t=1){return EO(e,t)}};j3.className="elu";oe.registerClass(j3);var q3=class extends On{apply(e){return zg(e)}};q3.className="selu";oe.registerClass(q3);var X3=class extends On{apply(e){return tr(e)}};X3.className="relu";oe.registerClass(X3);var K3=class extends On{apply(e){return H(()=>dc(6,tr(e)))}};K3.className="relu6";oe.registerClass(K3);var Z3=class extends On{apply(e){return e}};Z3.className="linear";oe.registerClass(Z3);var Y3=class extends On{apply(e){return Hn(e)}};Y3.className="sigmoid";oe.registerClass(Y3);var J3=class extends On{apply(e){return _O(e)}};J3.className="hardSigmoid";oe.registerClass(J3);var Q3=class extends On{apply(e){return Ol(e)}};Q3.className="softplus";oe.registerClass(Q3);var ev=class extends On{apply(e){return RO(e)}};ev.className="softsign";oe.registerClass(ev);var tv=class extends On{apply(e){return Rl(e)}};tv.className="tanh";oe.registerClass(tv);var OA=class extends On{apply(e,t=-1){return rp(e,t)}};OA.className="softmax";oe.registerClass(OA);var nv=class extends On{apply(e,t=-1){return Tg(e,t)}};nv.className="logSoftmax";oe.registerClass(nv);var sv=class extends On{apply(e,t=1){return H(()=>z(Hn(z(e,t)),e))}};sv.className="swish";oe.registerClass(sv);var rv=class extends On{apply(e){return H(()=>z(e,Rl(Ol(e))))}};rv.className="mish";oe.registerClass(rv);function ra(e){return e.getClassName()}function PA(e,t={}){return yc(e,oe.SerializationMap.getMap().classNameMap,t,"activation")}function aa(e){if(e==null){let t={};return t.className="linear",t.config={},PA(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},PA(t)}else return e instanceof On?e:PA(e)}function MA(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var av=class extends oe.Serializable{},Nc=class extends av{constructor(e){super();MA(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return H(()=>{let t=Pt([1]);return this.hasL1&&(t=ae(t,ve(z(this.l1,Ht(e))))),this.hasL2&&(t=ae(t,ve(z(this.l2,wc(e))))),U(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Nc.className="L1L2";oe.registerClass(Nc);function rM(e){return MA(e),new Nc({l1:e!=null?e.l1:null,l2:0})}function aM(e){return MA(e),new Nc({l2:e!=null?e.l2:null,l1:0})}var ov={l1l2:"L1L2"};function dt(e){return eA(e)}function iv(e,t={}){return yc(e,oe.SerializationMap.getMap().classNameMap,t,"regularizer")}function kt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in ov?ov[e]:e,config:{}};return iv(n)}else return e instanceof av?e:iv(e)}var zA=class extends Ze{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=ze(e);let n=tr(e);return this.maxValue!=null&&(n=Gn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};zA.className="ReLU";oe.registerClass(zA);var LA=class extends Ze{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return qh(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};LA.className="LeakyReLU";oe.registerClass(LA);var BA=class extends Ze{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=wt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=kt(e.alphaRegularizer),this.alphaConstraint=Xt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new G(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=at(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s(Ft(t),t==="channelsFirst"?Xe(e,[0,2,3,1]):e))}function lv(e,t){return H(()=>(Ft(t),t==="channelsFirst"?Xe(e,[0,2,3,4,1]):e))}function oM(e,t,n,s=1,r="valid",a,o=1){return H(()=>{if(a==null&&(a=Ms()),Ft(a),e.shape.length!==3)throw new G(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new G(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new G(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=Xe(e,[0,2,1])),r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=xg(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=Bs(i,n)),i})}function uv(e,t,n,s=[1,1],r="valid",a,o,i=null){return H(()=>{if(a==null&&(a=Ms()),Ft(a),e.rank!==3&&e.rank!==4)throw new G(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new G(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=HA(e,a);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Qr.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=Xe(l,[0,3,1,2])),l})}function iM(e,t,n,s=[1,1,1],r="valid",a,o){return H(()=>{if(a==null&&(a=Ms()),Ft(a),e.rank!==4&&e.rank!==5)throw new G(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new G(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=lv(e,a);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=wg(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=Bs(i,n)),a==="channelsFirst"&&(i=Xe(i,[0,4,1,2,3])),i})}var GA=class extends Ze{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",GA.verifyArgs(t),this.rank=e,Qt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Oe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=jl(t.kernelSize,e,"kernelSize"),this.strides=jl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,gs(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ft(this.dataFormat),this.activation=aa(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=wt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Xt(t.biasConstraint),this.biasRegularizer=kt(t.biasRegularizer),this.activityRegularizer=kt(t.activityRegularizer),this.dilationRate=jl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new G(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new G(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new G(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(sr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!nA(e.kernelSize,"number",1,3))throw new G(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:ra(this.activation),useBias:this.useBias,biasInitializer:Nt(this.biasInitializer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),biasConstraint:qt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Ec=class extends GA{constructor(e,t){super(e,t);this.kernel=null,Ec.verifyArgs(t),this.filters=t.filters,Qt(this.filters,"filters"),this.kernelInitializer=wt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Xt(t.kernelConstraint),this.kernelRegularizer=kt(t.kernelRegularizer)}build(e){e=at(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return H(()=>{e=ze(e);let n,s=this.bias==null?null:this.bias.read(),r=Jb(this.activation.getClassName());if(r!=null&&this.rank===2)n=uv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=oM(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=uv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=iM(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Oe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=at(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r 0 but got ${JSON.stringify(e.filters)}`)}},Rc=class extends Ec{constructor(e){super(2,e);Rc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!nA(e.kernelSize,"number",1,2))throw new G(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Rc.className="Conv2D";oe.registerClass(Rc);var _c=class extends Ec{constructor(e){super(3,e);_c.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new G(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};_c.className="Conv3D";oe.registerClass(_c);var jA=class extends Rc{constructor(e){super(e);if(this.inputSpec=[new zt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=at(e),e.length!==4)throw new G("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{let n=ze(e);if(n.shape.length!==4)throw new G(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],u=this.kernelSize[0],c=this.kernelSize[1],d=this.strides[0],h=this.strides[1],p=or(i,d,u,this.padding),f=or(l,h,c,this.padding),m=[r,p,f,this.filters];this.dataFormat!=="channelsLast"&&(n=Xe(n,[0,2,3,1]));let g=vg(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Xe(g,[0,3,1,2])),this.bias!=null&&(g=Bs(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=at(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=or(t[s],i,a,this.padding),t[r]=or(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};jA.className="Conv2DTranspose";oe.registerClass(jA);var qA=class extends _c{constructor(e){super(e);if(this.inputSpec=[new zt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=at(e),e.length!==5)throw new G("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{let n=ze(e);if(n.shape.length!==5)throw new G(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],u=s[a],c=s[o],d=this.kernelSize[0],h=this.kernelSize[1],p=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],A=or(l,f,d,this.padding),y=or(u,m,h,this.padding),x=or(c,g,p,this.padding),b=[r,A,y,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Xe(n,[0,2,3,4,1]));let v=Ux(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(v=Xe(v,[0,4,1,2,3])),this.bias!==null&&(v=Bs(v,this.bias.read(),this.dataFormat)),this.activation!==null&&(v=this.activation.apply(v)),v})}computeOutputShape(e){e=at(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],c=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[s]=or(t[s],u,o,this.padding),t[r]=or(t[r],c,i,this.padding),t[a]=or(t[a],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};qA.className="Conv3DTranspose";oe.registerClass(qA);var cv=class extends Ec{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new G("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new G("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new G(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=wt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=kt(t.depthwiseRegularizer),this.depthwiseConstraint=Xt(t.depthwiseConstraint),this.pointwiseInitializer=wt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=kt(t.pointwiseRegularizer),this.pointwiseConstraint=Xt(t.pointwiseConstraint)}build(e){if(e=at(e),e.length{e=ze(e);let n;if(this.rank===1)throw new Oe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Xe(e,[0,2,3,1])),n=db(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Bs(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Xe(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Nt(this.depthwiseInitializer),e.pointwiseInitializer=Nt(this.pointwiseInitializer),e.depthwiseRegularizer=dt(this.depthwiseRegularizer),e.pointwiseRegularizer=dt(this.pointwiseRegularizer),e.depthwiseConstraint=qt(this.depthwiseConstraint),e.pointwiseConstraint=qt(this.pointwiseConstraint),e}};cv.className="SeparableConv";var XA=class extends cv{constructor(e){super(2,e)}};XA.className="SeparableConv2D";oe.registerClass(XA);var Hp=class extends Ec{constructor(e){super(1,e);Hp.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!nA(e.kernelSize,"number",1,1))throw new G(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Hp.className="Conv1D";oe.registerClass(Hp);var KA=class extends Ze{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return H(()=>{if(e=ze(e),this.dataFormat==="channelsLast"){let n=wp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return wp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=wp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return wp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};KA.className="Cropping2D";oe.registerClass(KA);var ZA=class extends Ze{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,wO(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return H(()=>{let n=ze(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=Xe(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?_e.resizeNearestNeighbor(n,[r,a]):_e.resizeBilinear(n,[r,a]);return Xe(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?_e.resizeNearestNeighbor(n,[r,a]):_e.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};ZA.className="UpSampling2D";oe.registerClass(ZA);function lM(e,t,n=[1,1],s="valid",r,a){return H(()=>{r==null&&(r=Ms()),Ft(r);let o=HA(e,r);if(e.rank!==4)throw new G(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new G(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=lc(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=Xe(o,[0,3,1,2])),o})}var YA=class extends GA{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=wt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Xt(e.depthwiseConstraint),this.depthwiseRegularizer=kt(e.depthwiseRegularizer)}build(e){if(e=at(e),e.length<4)throw new G(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new G(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{e=ze(e);let n=lM(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Bs(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Us(t,this.kernelSize[0],this.padding,this.strides[0]),a=Us(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Nt(this.depthwiseInitializer),e.depthwiseRegularizer=dt(this.depthwiseRegularizer),e.depthwiseConstraint=qt(this.depthwiseRegularizer),e}};YA.className="DepthwiseConv2D";oe.registerClass(YA);function dv(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new G("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function hv(e,t,n,s=!1,r,a,o=!1,i=!1){return H(()=>{let l=t.shape.length;if(l<3)throw new G(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Ls(2,l));if(t=Xe(t,u),a!=null)throw new Oe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=ce(ce(r,"bool"),"float32"),r.rank===l-1&&(r=Ot(r,-1)),r=Xe(r,u)),s&&(t=fs(t,0),r!=null&&(r=fs(r,0)));let c=[],d,h=n,p=t.shape[0],f=ms(t),m;r!=null&&(m=ms(r));for(let A=0;Ae(y,h));if(r==null)d=x[0],h=x[1];else{let b=H(()=>{let v=m[A],k=ge(ps(v),v),w=ae(z(x[0],v),z(h[0],k)),C=h.map((R,P)=>ae(z(x[1][P],v),z(R,k)));return{output:w,newStates:C}});d=b.output,h=b.newStates}i&&c.push(d)}let g;return i&&(g=$n(c,1)),[d,g,h]})}var ir=class extends Ze{constructor(e){super(e);let t;if(e.cell==null)throw new G("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new qp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new G("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new zt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Ls(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){xA(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return H(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;no.shape[o.shape.length-1]),a))throw new G(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new zt({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new Ir("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Pt([n,s])):this.states_=[Pt([n,this.cell.stateSize])];else if(e==null)K(this.states_),this.keptStates!=null&&(K(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Pt([n,s])):this.states_[0]=Pt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):K(this.states_);for(let s=0;sJt(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=dv(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new zt({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof Ws){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=ze(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new G(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=hv((p,f)=>{let m=this.cell.call([p].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),u=l[0],c=l[1],d=l[2];this.stateful&&this.resetStates(d,s);let h=this.returnSequences?c:u;return this.returnState?[h].concat(d):h})}getInitialState(e){return H(()=>{let t=Pt(e.shape);return t=ve(t,[1,2]),t=vc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?cA(t,[1,n]):t):this.cell.stateSize>1?[cA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===ir.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let s=t.cell,r=Vs(s,n);return new e(Object.assign(t,{cell:r}))}};ir.className="RNN";oe.registerClass(ir);var $c=class extends Ze{},Gp=class extends $c{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Qt(this.units,"units"),this.activation=aa(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=kt(e.kernelRegularizer),this.recurrentRegularizer=kt(e.recurrentRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=Wl([1,na([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Wl([1,na([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=at(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new G(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0ps(e),rate:this.dropout,training:s})),0ps(n),rate:this.recurrentDropout,training:s}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=rr(z(e,a),this.kernel.read()):r=rr(e,this.kernel.read()),this.bias!=null&&(r=Bs(r,this.bias.read())),o!=null&&(n=z(n,o));let i=ae(r,rr(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ra(this.activation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),recurrentConstraint:qt(this.recurrentConstraint),biasConstraint:qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Gp.className="SimpleRNNCell";oe.registerClass(Gp);var JA=class extends ir{constructor(e){e.cell=new Gp(e);super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(K(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(K(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};JA.className="SimpleRNN";oe.registerClass(JA);var jp=class extends $c{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new G("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Qt(this.units,"units"),this.activation=aa(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=aa(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=kt(e.kernelRegularizer),this.recurrentRegularizer=kt(e.recurrentRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=Wl([1,na([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Wl([1,na([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=at(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new G(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0ps(e),rate:this.dropout,training:n,count:3})),0ps(s),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0{this.cell.dropoutMask!=null&&(K(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(K(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};QA.className="GRU";oe.registerClass(QA);var Dc=class extends $c{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Qt(this.units,"units"),this.activation=aa(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=aa(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=kt(e.kernelRegularizer),this.recurrentRegularizer=kt(e.recurrentRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=Wl([1,na([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Wl([1,na([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=at(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends Ts{apply(i,l){let u=r.apply([a]),c=new Ip().apply([a]),d=r.apply([a*2]);return i3(i3(u,c),d)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new G(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0ps(e),rate:this.dropout,training:n,count:4})),0ps(s),rate:this.recurrentDropout,training:n,count:4}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,u,c;0{this.cell.dropoutMask!=null&&(K(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(K(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};e2.className="LSTM";oe.registerClass(e2);var qp=class extends $c{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return H(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o{Lo(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return Object.assign({},e,s)}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(Vs(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return bA(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;au3(t(),n),o=()=>kc(a,t,s);return!r||r<=1?Jt(o().clone()):Array(r).fill(void 0).map(o).map(l=>Jt(l.clone()))}var uM=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,s=Object.getOwnPropertySymbols(e);r{if(this.cell.dropoutMask!=null&&(K(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(K(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new G("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return H(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Pt(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new Ir("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Pt(r)):this.states_=[Pt(r)];else if(e==null)K(this.states_),this.keptStates!=null&&(K(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Pt(r)):this.states_[0]=Pt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):K(this.states_);for(let o=0;oJt(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],u=e[i?4:3],c=Us(l,s[0],r,a[0],o[0]),d=Us(u,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,c,d]:[c,d,n]]}};pv.className="ConvRNN2D";var Xp=class extends Dc{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t}));this.filters=t,Qt(this.filters,"filters"),this.kernelSize=jl(n,2,"kernelSize"),this.kernelSize.forEach(i=>Qt(i,"kernelSize")),this.strides=jl(s||1,2,"strides"),this.strides.forEach(i=>Qt(i,"strides")),this.padding=r||"valid",gs(this.padding),this.dataFormat=a||"channelsLast",Ft(this.dataFormat),this.dilationRate=jl(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>Qt(i,"dilationRate"))}build(e){var t;e=at(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;i=new(t=class extends Ts{apply(d,h){let p=l.apply([u]),f=qn([u]),m=l.apply([u*2]);return uA([p,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return H(()=>{if(e.length!==3)throw new G(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0ps(s),rate:this.dropout,training:n,count:o}));let i=this.dropoutMask,l=(Q,ne,te)=>!ne||!ne[te]?Q:z(ne[te],Q),u=l(s,i,0),c=l(s,i,1),d=l(s,i,2),h=l(s,i,3);0ps(r),rate:this.recurrentDropout,training:n,count:o}));let p=this.recurrentDropoutMask,f=l(r,p,0),m=l(r,p,1),g=l(r,p,2),A=l(r,p,3),y=3,[x,b,v,k]=an(this.kernel.read(),o,y),[w,C,R,P]=this.useBias?an(this.bias.read(),o):[null,null,null,null];u=this.inputConv(u,x,w,this.padding),c=this.inputConv(c,b,C,this.padding),d=this.inputConv(d,v,R,this.padding),h=this.inputConv(h,k,P,this.padding);let[E,_,T,O]=an(this.recurrentKernel.read(),o,y);f=this.recurrentConv(f,E),m=this.recurrentConv(m,_),g=this.recurrentConv(g,T),A=this.recurrentConv(A,O);let W=this.recurrentActivation.apply(ae(u,f)),j=this.recurrentActivation.apply(ae(c,m)),q=ae(z(j,a),z(W,this.activation.apply(ae(d,g)))),X=z(this.recurrentActivation.apply(ae(h,A)),this.activation.apply(q));return[X,X,q]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=uM(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){let r=Zr(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Bs(r,n,this.dataFormat):r}recurrentConv(e,t){return Zr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Xp.className="ConvLSTM2DCell";oe.registerClass(Xp);var t2=class extends pv{constructor(e){let t=new Xp(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};t2.className="ConvLSTM2D";oe.registerClass(t2);var Kp=class extends Ze{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s{this.invokeCallHook(e,t);let n=ze(e);if(0u3(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Kp.className="Dropout";oe.registerClass(Kp);var n2=class extends Kp{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};n2.className="SpatialDropout1D";oe.registerClass(n2);var s2=class extends Ze{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Qt(this.units,"units"),this.activation=aa(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Xt(e.kernelConstraint),this.biasConstraint=Xt(e.biasConstraint),this.kernelRegularizer=kt(e.kernelRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.activityRegularizer=kt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=at(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=at(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e),s=Jb(this.activation.getClassName()),r;return s!=null?r=rr(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=rr(n,this.kernel.read()),this.bias!=null&&(r=Bs(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:ra(this.activation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),biasConstraint:qt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};s2.className="Dense";oe.registerClass(s2);var r2=class extends Ze{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=at(e);for(let t of e.slice(1))if(t==null)throw new G(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],ta(e,1)]}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r{this.invokeCallHook(e,t);let n=ze(e);return this.activation.apply(n)})}getConfig(){let e={activation:ra(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};a2.className="Activation";oe.registerClass(a2);var o2=class extends Ze{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return H(()=>(e=ze(e),CO(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};o2.className="RepeatVector";oe.registerClass(o2);var i2=class extends Ze{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let n=ze(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return U(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};i2.className="Reshape";oe.registerClass(i2);var l2=class extends Ze{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Ls(1,e.dims.length+1);if(!I.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new zt({ndim:this.dims.length+1})]}computeOutputShape(e){e=at(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return Xe(ze(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};l2.className="Permute";oe.registerClass(l2);var u2=class extends Ze{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=ze(e),s=-1;return Wh(Pl(n,this.maskValue),s)}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e),s=-1,r=!0,a=Wh(Pl(n,this.maskValue),s,r);return z(n,ce(a,n.dtype))})}};u2.className="Masking";oe.registerClass(u2);var c2=class extends Ze{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(yt(e.inputLength))}this.inputDim=e.inputDim,Qt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Qt(this.outputDim,"outputDim"),this.embeddingsInitializer=wt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=kt(e.embeddingsRegularizer),this.activityRegularizer=kt(e.activityRegularizer),this.embeddingsConstraint=Xt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return H(()=>this.maskZero?(e=ze(e),Pl(e,Ke(e))):null)}computeOutputShape(e){if(e=at(e),this.inputLength==null)return[...e,this.outputDim];let t=yt(this.inputLength);if(t.length!==e.length-1)throw new G(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s{this.invokeCallHook(e,t);let n=ze(e);n.dtype!=="int32"&&(n=vp(n,"int32"));let s=l3(this.embeddings.read(),U(n,[n.size]));return U(s,at(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Nt(this.embeddingsInitializer),embeddingsRegularizer:dt(this.embeddingsRegularizer),activityRegularizer:dt(this.activityRegularizer),embeddingsConstraint:qt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};c2.className="Embedding";oe.registerClass(c2);var Ho=class extends Ze{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Oe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new G(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;rr.length);e.indexOf(null)===-1&&ea(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return H(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=na(s);for(let a of e){let o=a.rank;for(let i=0;i1){let u=Ls(1,l).concat([0]);n.push(Xe(i,u)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,u=i[l-1],c=[u].concat(i.slice(0,i.length-1));a=U(Xe(U(a,[-1,u]),[1,0]),c)}else if(o>1){let i=[o-1].concat(Ls(0,o-1));a=Xe(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s{if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an Array");if(!Array.isArray(e))throw new G("`inputs` should be an Array");if(t.length!==e.length)throw new G(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Ot(s,0));let n=t[0];for(let s=1;s{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0];for(let n=1;n{let t=e[0];for(let n=1;n1)throw new G("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return H(()=>uA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new G("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new G("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new G(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return H(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a3||t.shape.length>3)throw new Oe("batchDot is not implemented for tensors of 4D or higher rank yet");if(I.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),I.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Oe("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return H(()=>{let o;if(s>r){o=s-r;let l=[];for(let u=0;us){o=r-s;let l=[];for(let u=0;u0){let l;s>r?l=s+r-3:l=s-1;let u=[];for(let c=l;c"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new G(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new G(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>Fc(r,e[a].shape.length)):s=[Fc(this.axes,t.shape.length),Fc(this.axes,n.shape.length)],this.normalize&&(t=Pp(t,s[0]),n=Pp(n,s[1])),cM(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Fc(this.axes,e.length),Fc(this.axes,t.length)],n}computeOutputShape(e){I.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};A2.className="Dot";oe.registerClass(A2);var y2=class extends Ze{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);return kc(()=>ae(kp(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};y2.className="GaussianNoise";oe.registerClass(y2);var x2=class extends Ze{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.rate>0&&this.rate<1?kc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return z(n,kp(n.shape,1,r))},()=>n,t.training||!1):n})}};x2.className="GaussianDropout";oe.registerClass(x2);var b2=class extends Ze{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||ze(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return kc(()=>{let r=ze(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=_o(Ml(n),this.rate);l=vp(l,"float32");let u=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-u*i*this.rate,d=ae(z(r,l),z(ae(l,-1),i));return ae(z(d,u),c)},()=>ze(e),t.training||!1)}return e})}};b2.className="AlphaDropout";oe.registerClass(b2);function Oc(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=Ox(e,t,n,s,r,a);else if(e.rank===3)o=Px(e,t,n,s,r,a);else if(e.rank===4)o=Mx(e,t,n,s,r,a);else throw new Oe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function dM(e,t,n,s,r=.001){return H(()=>{let a=Qh(e,s),o=a.mean,i=a.variance;return[Oc(e,o,i,n,t,r),o,i]})}function hM(e,t,n,s,r=.001){return H(()=>{let a=Qh(e,s),o=a.mean,i=a.variance,l=[];for(let f of Ls(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let u=U(o,l),c=U(i,l),d=t==null?null:U(t,l),h=n==null?null:U(n,l);return[Oc(e,u,c,h,d,r),o,i]})}function pM(e,t,n,s,r=.001){return I.arraysEqual(s.slice().sort(),Ls(0,e.rank-1))?dM(e,t,n,s,r):hM(e,t,n,s,r)}var v2=class extends Ze{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=wt(e.betaInitializer||"zeros"),this.gammaInitializer=wt(e.gammaInitializer||"ones"),this.movingMeanInitializer=wt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=wt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Xt(e.betaConstraint),this.gammaConstraint=Xt(e.gammaConstraint),this.betaRegularizer=kt(e.betaRegularizer),this.gammaRegularizer=kt(e.gammaRegularizer)}build(e){e=at(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new G(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new zt({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training,s=ze(e),r=s.shape,a=r.length,o=Ls(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=Po(1,a);l[i]=r[i];let u=o.slice();u.sort();let c=!I.arraysEqual(u,Ls(0,a).slice(0,a-1)),d=()=>{if(c){let A=U(this.movingMean.read(),l),y=U(this.movingVariance.read(),l),x=this.center?U(this.beta.read(),l):null,b=this.scale?U(this.gamma.read(),l):null;return Oc(s,A,y,x,b,this.epsilon)}else return Oc(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[h,p,f]=pM(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(A,y,x)=>{H(()=>{let b=1-x,v=A.read(),k=z(ge(v,y),b);A.write(ge(v,k))})};return(()=>{m(this.movingMean,p,this.momentum),m(this.movingVariance,f,this.momentum)})(),h})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Nt(this.betaInitializer),gammaInitializer:Nt(this.gammaInitializer),movingMeanInitializer:Nt(this.movingMeanInitializer),movingVarianceInitializer:Nt(this.movingVarianceInitializer),betaRegularizer:dt(this.betaRegularizer),gammaRegularizer:dt(this.gammaRegularizer),betaConstraint:qt(this.betaConstraint),gammaConstraint:qt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};v2.className="BatchNormalization";oe.registerClass(v2);var w2=class extends Ze{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=wt(e.betaInitializer||"zeros"),this.gammaInitializer=wt(e.gammaInitializer||"ones"),this.betaRegularizer=kt(e.betaRegularizer),this.gammaRegularizer=kt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=at(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==ea(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=ze(e),s=n.shape,r=s.length;return H(()=>{let a=!0,{mean:o,variance:i}=Qh(n,this.axis,a),l=Po(1,r);for(let f of this.axis)l[f]=s[f];let u=f=>f!=null&&f.shape.length!==r&&this.axis!==[r-1]?U(f,l):f,c=u(this.gamma.read()),d=u(this.beta.read()),h=[],p=[];for(let f=0;f{if(e.rank!==4)throw new G(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new G("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Ms()),n!=="channelsLast"&&n!=="channelsFirst")throw new G(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],Yr(e,s)})}var k2=class extends Ze{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?Ms():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new G(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new G(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new G(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=at(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return H(()=>fM(ze(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};k2.className="ZeroPadding2D";oe.registerClass(k2);function Zp(e,t,n,s,r,a){return H(()=>{Ft(r),n3(a),gs(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=Ms()),a==null&&(a="max"),e=HA(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=Yh(e,t,n,i):o=Uh(e,t,n,i),r==="channelsFirst"&&(o=Xe(o,[0,3,1,2])),o})}function fv(e,t,n,s,r,a){return H(()=>{Ft(r),n3(a),gs(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=Ms()),a==null&&(a="max"),e=lv(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=_g(e,t,n,i):o=Ag(e,t,n,i),r==="channelsFirst"&&(o=Xe(o,[0,4,1,2,3])),o})}var mv=class extends Ze{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new G(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Qt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new G(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,gs(this.padding),this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){e=at(e);let t=Us(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return H(()=>{this.invokeCallHook(e,t),e=vc(ze(e),2);let n=this.poolingFunction(ze(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return lt(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},I2=class extends mv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ft(r),gs(s),Zp(e,t,n,s,r,"max")}};I2.className="MaxPooling1D";oe.registerClass(I2);var S2=class extends mv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ft(r),gs(s),Zp(e,t,n,s,r,"avg")}};S2.className="AveragePooling1D";oe.registerClass(S2);var gv=class extends Ze{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new G(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Qt(this.poolSize,"poolSize"),Qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),gs(this.padding),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Us(t,this.poolSize[0],this.padding,this.strides[0]),n=Us(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},C2=class extends gv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ft(r),gs(s),Zp(e,t,n,s,r,"max")}};C2.className="MaxPooling2D";oe.registerClass(C2);var T2=class extends gv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ft(r),gs(s),Zp(e,t,n,s,r,"avg")}};T2.className="AveragePooling2D";oe.registerClass(T2);var Av=class extends Ze{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new G(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Qt(this.poolSize,"poolSize"),Qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),gs(this.padding),this.inputSpec=[new zt({ndim:5})]}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Us(t,this.poolSize[0],this.padding,this.strides[0]),n=Us(n,this.poolSize[1],this.padding,this.strides[1]),s=Us(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},N2=class extends Av{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ft(r),gs(s),fv(e,t,n,s,r,"max")}};N2.className="MaxPooling3D";oe.registerClass(N2);var E2=class extends Av{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ft(r),gs(s),fv(e,t,n,s,r,"avg")}};E2.className="AveragePooling3D";oe.registerClass(E2);var yv=class extends Ze{constructor(e){super(e);this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Oe}},R2=class extends yv{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=ze(e);return _t(n,1)})}};R2.className="GlobalAveragePooling1D";oe.registerClass(R2);var _2=class extends yv{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=ze(e);return hs(n,1)})}};_2.className="GlobalMaxPooling1D";oe.registerClass(_2);var xv=class extends Ze{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Oe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},$2=class extends xv{call(e,t){return H(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?_t(n,[1,2]):_t(n,[2,3])})}};$2.className="GlobalAveragePooling2D";oe.registerClass($2);var D2=class extends xv{call(e,t){return H(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?hs(n,[1,2]):hs(n,[2,3])})}};D2.className="GlobalMaxPooling2D";oe.registerClass(D2);var bv=class extends Ze{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=Vs(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},F2=class extends bv{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=at(e),e.length<3)throw new G(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=at(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return H(()=>(e=ze(e),hv((a,o)=>[ze(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};F2.className="TimeDistributed";oe.registerClass(F2);function mM(e){zo(vO,"BidirectionalMergeMode",e)}var gM="concat",O2=class extends bv{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Vs(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=Vs(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?gM:e.mergeMode,mM(this.mergeMode),e.weights)throw new Oe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Dn(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=dv(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new G("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let u=n.map(c=>new zt({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),o.push(...u)}if(s!=null)throw new Oe("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof Ws;for(let l of a)if(l instanceof Ws!==i)throw new G("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=fs(r,1));let o;return this.mergeMode==="concat"?o=uA([s,r]):this.mergeMode==="sum"?o=ae(s,r):this.mergeMode==="ave"?o=z(.5,ae(s,r)):this.mergeMode==="mul"?o=z(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Lo(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Lo(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Vs(t.layer);if(delete t.layer,t.numConstants!=null)throw new Oe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};O2.className="Bidirectional";oe.registerClass(O2);function AM(e){return new Vl(e)}function yM(e){return new WA(e)}function xM(e){return new zA(e)}function bM(e){return new LA(e)}function vM(e){return new BA(e)}function wM(e){return new UA(e)}function kM(e){return new VA(e)}function IM(e){return new Hp(e)}function SM(e){return new Rc(e)}function CM(e){return new jA(e)}function TM(e){return new _c(e)}function NM(e){return new qA(e)}function EM(e){return new XA(e)}function RM(e){return new KA(e)}function _M(e){return new ZA(e)}function $M(e){return new YA(e)}function DM(e){return new a2(e)}function FM(e){return new s2(e)}function OM(e){return new Kp(e)}function PM(e){return new n2(e)}function MM(e){return new r2(e)}function zM(e){return new o2(e)}function LM(e){return new i2(e)}function BM(e){return new l2(e)}function WM(e){return new c2(e)}function VM(e){return new d2(e)}function UM(e){return new p2(e)}function HM(e){return new g2(e)}function GM(e){return new f2(e)}function jM(e){return new m2(e)}function qM(e){return new h2(e)}function XM(e){return new A2(e)}function KM(e){return new v2(e)}function ZM(e){return new w2(e)}function YM(e){return new k2(e)}function P2(e){return new S2(e)}function JM(e){return P2(e)}function QM(e){return P2(e)}function M2(e){return new T2(e)}function ez(e){return M2(e)}function tz(e){return M2(e)}function z2(e){return new E2(e)}function nz(e){return z2(e)}function sz(e){return z2(e)}function rz(e){return new R2(e)}function az(e){return new $2(e)}function vv(e){return new _2(e)}function wv(e){return new D2(e)}function kv(e){return new I2(e)}function Iv(e){return new C2(e)}function oz(e){return new N2(e)}function iz(e){return new QA(e)}function lz(e){return new jp(e)}function uz(e){return new e2(e)}function cz(e){return new Dc(e)}function dz(e){return new JA(e)}function hz(e){return new Gp(e)}function pz(e){return new t2(e)}function fz(e){return new Xp(e)}function mz(e){return new ir(e)}function gz(e){return new qp(e)}function Az(e){return new O2(e)}function yz(e){return new F2(e)}var xz=vv,bz=wv,vz=kv,wz=Iv;function kz(e){return new y2(e)}function Iz(e){return new x2(e)}function Sz(e){return new b2(e)}function Cz(e){return new u2(e)}var Sv={};Pe(Sv,{MAPE:()=>Mz,MSE:()=>Bz,binaryAccuracy:()=>Tz,binaryCrossentropy:()=>Nz,categoricalAccuracy:()=>Rz,categoricalCrossentropy:()=>_z,cosineProximity:()=>Fz,mape:()=>zz,meanAbsoluteError:()=>Oz,meanAbsolutePercentageError:()=>Pz,meanSquaredError:()=>Lz,mse:()=>Wz,precision:()=>$z,recall:()=>Dz,sparseCategoricalAccuracy:()=>Ez});function Tz(e,t){return IA(e,t)}function Nz(e,t){return T3(e,t)}function Ez(e,t){return N3(e,t)}function Rz(e,t){return SA(e,t)}function _z(e,t){return CA(e,t)}function $z(e,t){return C3(e,t)}function Dz(e,t){return gP(e,t)}function Fz(e,t){return wA(e,t)}function Oz(e,t){return Mp(e,t)}function Pz(e,t){return Hl(e,t)}function Mz(e,t){return Hl(e,t)}function zz(e,t){return Hl(e,t)}function Lz(e,t){return Wo(e,t)}function Bz(e,t){return Wo(e,t)}function Wz(e,t){return Wo(e,t)}var Cv={};Pe(Cv,{modelFromJSON:()=>ZP});var Tv={};Pe(Tv,{l1:()=>Uz,l1l2:()=>Vz,l2:()=>Hz});function Vz(e){return new Nc(e)}function Uz(e){return rM(e)}function Hz(e){return aM(e)}var Nv=class extends Ul{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Cr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Yp(e,t){return et}var Rv=class extends Nv{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Oe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Yp:this.mode==="max"?this.monitorFunc=Ev:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Ev:this.monitorFunc=Yp,this.monitorFunc===Yp&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Yp?1/0:-1/0}async onEpochEnd(e,t){await sa(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Gz(e){return new Rv(e)}var jz={earlyStopping:Gz},Hs;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Hs||(Hs={}));var _v;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(_v||(_v={}));var L2={};function qz(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};L2[e]=n}function $v(e){return L2[e]}function Xz(e){delete L2[e]}function S(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return wn(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(h=>wn(h,n,s,r));let u=wn(t.inputNames.slice(i)[0],n,s,r),c=u.dataSync();return a.type==="number"?c[0]:I.toNestedArray(u.shape,c)}let o=t.attrParams[e];return o&&o.value}function wn(e,t,n,s){let[r,a]=Xn(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[Jp(r,i)]);return o!==void 0?t[Jp(r,o)][a]:void 0}function Kz(e,t,n){return t[Jp(e,n.currentContextId)]}function Tr(e,t){let[n,s,r]=Xn(e);return[Jp(n,t&&t.currentContextId),s,r]}function Jp(e,t){return t?`${e}-${t}`:e}function Xn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function Qp(e,t,n){let s=S("pad",e,t,n);if(s==="explicit"){s=S("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function Nr(e){return e.kept?e:Ds(e)}var Dv={};Pe(Dv,{json:()=>Zz});var Zz=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Fv={};Pe(Fv,{json:()=>Yz});var Yz=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Ov={};Pe(Ov,{json:()=>Jz});var Jz=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],Pv={};Pe(Pv,{json:()=>Qz});var Qz=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],Mv={};Pe(Mv,{json:()=>eL});var eL=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],zv={};Pe(zv,{json:()=>tL});var tL=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Lv={};Pe(Lv,{json:()=>nL});var nL=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],Bv={};Pe(Bv,{json:()=>sL});var sL=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Wv={};Pe(Wv,{json:()=>rL});var rL=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],Vv={};Pe(Vv,{json:()=>aL});var aL=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],Uv={};Pe(Uv,{json:()=>oL});var oL=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Hv={};Pe(Hv,{json:()=>iL});var iL=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],Gv={};Pe(Gv,{json:()=>lL});var lL=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],jv={};Pe(jv,{json:()=>uL});var uL=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],qv={};Pe(qv,{json:()=>cL});var cL=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],Xv={};Pe(Xv,{json:()=>dL});var dL=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],Kv={};Pe(Kv,{json:()=>hL});var hL=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],Zv={};Pe(Zv,{json:()=>pL});var pL=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],Yv={};Pe(Yv,{json:()=>fL});var fL=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],Jv=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Dv,Fv,Ov,Pv,Mv,zv,Lv,Bv,Wv,Vv,Uv,Hv,Gv,jv,qv,Xv,Kv,Zv,Yv],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((g,A)=>{let[y,,x]=Tr(g),b=o[y];if(b.outputs!=null){let v=b.outputs.indexOf(x);if(v!==-1){let k=`${y}:${v}`;m.inputNames[A]=k}}m.inputs.push(b),b.children.push(m)})}),Object.keys(c).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(c).forEach(f=>{let[m]=Tr(f),g=o[m];g!=null&&(g.signatureKey=c[f],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=Tr(f),g=o[m];g&&(g.signatureKey=u[f],i.push(g))}):i=s;let h={};e.library!=null&&e.library.function!=null&&(h=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let p={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:h};return a.length>0&&(p.initNodes=a),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=$v(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.substr(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=B2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=B2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=X2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=X2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=V2(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=V2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=q2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=q2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=W2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=W2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=Z2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Z2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=j2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=j2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=K2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=K2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=H2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=H2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=G2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=G2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=e7(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=e7(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((c,d)=>(c[d.name]=this.mapNode(d),d.op==="Const"&&s.push(c[d.name]),c),{}));let a=[],o=[];e.signature.inputArg.forEach(c=>{let[d]=Tr(c.name),h={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:U2(c.type),type:"dtype"}},children:[]};h.signatureKey=c.name,a.push(h),r[d]=h}),Object.keys(r).forEach(c=>{let d=r[c];d.inputNames.forEach((h,p)=>{let[f,,m]=Tr(h),g=r[f];if(g.outputs!=null){let A=g.outputs.indexOf(m);if(A!==-1){let y=`${f}:${A}`;d.inputNames[p]=y}}d.inputs.push(g),g.children.push(d)})});let l=e.ret;e.signature.outputArg.forEach(c=>{let[d,h]=Tr(l[c.name]),p=r[d];p!=null&&(p.defaultOutput=h,o.push(p))});let u=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:u}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function mL(e){let t=ee().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function Qv(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):mL(e);return t?n:n.toLowerCase()}function B2(e,t,n,s=!1){let r=e[t];return r!=null?Qv(r.s,s):n}function W2(e,t,n){let s=e[t];return s?s.b:n}function V2(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function U2(e){switch(typeof e=="string"&&(e=Hs[e]),e){case Hs.DT_FLOAT:return"float32";case Hs.DT_INT32:case Hs.DT_INT64:case Hs.DT_INT8:case Hs.DT_UINT8:return"int32";case Hs.DT_BOOL:return"bool";case Hs.DT_DOUBLE:return"float32";case Hs.DT_STRING:return"string";default:return null}}function e7(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function H2(e,t,n){let s=e[t];return s&&s.type?U2(s.type):n}function G2(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>U2(r)):n}function t7(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function j2(e,t,n){let s=e[t];return s&&s.shape?t7(s.shape):n}function q2(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function X2(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>Qv(a,s)):n}function K2(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>t7(r)):n}function Z2(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var gL=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return wn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return wn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return V2(this.node.rawAttrs,e,t);if(n.s!=null)return B2(this.node.rawAttrs,e,t);if(n.b!=null)return W2(this.node.rawAttrs,e,t);if(n.shape!=null)return j2(this.node.rawAttrs,e,t);if(n.type!=null)return H2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return q2(this.node.rawAttrs,e,t);if(n.list.s!=null)return X2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return K2(this.node.rawAttrs,e,t);if(n.list.b!=null)return Z2(this.node.rawAttrs,e,t);if(n.list.type!=null)return G2(this.node.rawAttrs,e,t)}return t}},AL=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ae(S("a",e,t,n),S("b",e,t,n))];case"AddN":return[Bh(S("tensors",e,t,n))];case"FloorMod":case"Mod":return[ib(S("a",e,t,n),S("b",e,t,n))];case"Mul":return[z(S("a",e,t,n),S("b",e,t,n))];case"RealDiv":case"Div":return[de(S("a",e,t,n),S("b",e,t,n))];case"DivNoNan":return[qx(S("a",e,t,n),S("b",e,t,n))];case"FloorDiv":return[pg(S("a",e,t,n),S("b",e,t,n))];case"Sub":return[ge(S("a",e,t,n),S("b",e,t,n))];case"Minimum":return[dc(S("a",e,t,n),S("b",e,t,n))];case"Maximum":return[vr(S("a",e,t,n),S("b",e,t,n))];case"Pow":return[Jr(S("a",e,t,n),S("b",e,t,n))];case"SquaredDifference":return[Ug(S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},yL=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Ht(S("x",e,t,n))];case"Acos":return[Ix(S("x",e,t,n))];case"Acosh":return[Sx(S("x",e,t,n))];case"Asin":return[Tx(S("x",e,t,n))];case"Asinh":return[Nx(S("x",e,t,n))];case"Atan":return[Ex(S("x",e,t,n))];case"Atan2":return[Rx(S("x",e,t,n),S("y",e,t,n))];case"Atanh":return[_x(S("x",e,t,n))];case"Ceil":return[zx(S("x",e,t,n))];case"Complex":return[Gr(S("real",e,t,n),S("imag",e,t,n))];case"Cos":return[Gh(S("x",e,t,n))];case"Cosh":return[kg(S("x",e,t,n))];case"Elu":return[uc(S("x",e,t,n))];case"Erf":return[Kx(S("x",e,t,n))];case"Exp":return[cs(S("x",e,t,n))];case"Expm1":return[Zx(S("x",e,t,n))];case"Floor":return[cc(S("x",e,t,n))];case"Log":return[ds(S("x",e,t,n))];case"Log1p":return[Xh(S("x",e,t,n))];case"Imag":return[jh(S("x",e,t,n))];case"Neg":return[Tt(S("x",e,t,n))];case"Reciprocal":return[cb(S("x",e,t,n))];case"Real":return[hc(S("x",e,t,n))];case"Relu":return[tr(S("x",e,t,n))];case"Round":return[Pg(S("x",e,t,n))];case"Selu":return[zg(S("x",e,t,n))];case"Sigmoid":return[Hn(S("x",e,t,n))];case"Sin":return[Lg(S("x",e,t,n))];case"Sign":return[pb(S("x",e,t,n))];case"Sinh":return[Bg(S("x",e,t,n))];case"Softplus":return[Ol(S("x",e,t,n))];case"Sqrt":return[dn(S("x",e,t,n))];case"Square":return[ct(S("x",e,t,n))];case"Tanh":return[Rl(S("x",e,t,n))];case"Tan":return[mb(S("x",e,t,n))];case"ClipByValue":return[Gn(S("x",e,t,n),S("clipValueMin",e,t,n),S("clipValueMax",e,t,n))];case"Relu6":return[Og(S("x",e,t,n))];case"Rsqrt":return[Mg(wn(e.inputNames[0],t,n))];case"Prod":return[$g(S("x",e,t,n),S("axes",e,t,n))];case"LeakyRelu":return[qh(S("x",e,t,n),S("alpha",e,t,n))];case"Prelu":return[tp(S("x",e,t,n),S("alpha",e,t,n))];case"IsNan":return[Yx(wn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Es(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){I.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;sn+` Shapes ${e} and ${t} must match`)}}}function n7(e){return!(typeof e=="number"||e.some(t=>t<0))}function Pc(e,t,n){let s=Y2(e,n),r=!n7(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=Y2(a.shape,s)}),!n7(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function Y2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var xL=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Ie(0),Jt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, + because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Es(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Jt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ms(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is - ${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];H(()=>{t=U(t,[1,n,r]);for(let i=0;i{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Ss(t,r.shape,"TensorList shape mismatch: "),Kt(r)}),this.idTensor=Ie(0),this.maxNumElements=s,Kt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new _c([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Ss(e,this.elementShape,"TensorList shape mismatch: ");let s=Rc(this.elementShape,this.tensors,e);return H(()=>{let r=this.tensors.map(a=>U(a,s));return Nn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Rc(this.elementShape,this.tensors,e),s=this.tensors.pop();return Ss(s.shape,e,"TensorList shape mismatch: "),U(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Ss(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Kt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Ss(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=Rc(this.elementShape,this.tensors,t);return U(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Ss(this.elementShape,t.shape,"TensorList shape mismatch: "),Kt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Ss(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=Rc(this.elementShape,this.tensors,n);return e.length===0?on([],[0].concat(s)):H(()=>{let r=e.map(a=>U(this.tensors[a],s));return Nn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Ss(this.elementShape,t,"TensorList shape mismatch: ");let n=Rc(this.elementShape,this.tensors,t);return this.size()===0?on([],[0].concat(n)):H(()=>{let s=this.tensors.map(r=>U(r,n));return ht(s,0)})}};function rL(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Ss(r,t,"TensorList shape mismatch: ");let a=ds(e);return new _c(a,t,s)}function aL(e,t,n){return new _c([],e,t,n)}function oL(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new _c([],n,e.dtype,s),o=ds(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function iL(e,t,n){let s=0,r=t.map(c=>(s+=c,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to + ${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];H(()=>{t=U(t,[1,n,r]);for(let i=0;i{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Es(t,r.shape,"TensorList shape mismatch: "),Jt(r)}),this.idTensor=Ie(0),this.maxNumElements=s,Jt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Mc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Es(e,this.elementShape,"TensorList shape mismatch: ");let s=Pc(this.elementShape,this.tensors,e);return H(()=>{let r=this.tensors.map(a=>U(a,s));return $n(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Pc(this.elementShape,this.tensors,e),s=this.tensors.pop();return Es(s.shape,e,"TensorList shape mismatch: "),U(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Es(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Jt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Es(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=Pc(this.elementShape,this.tensors,t);return U(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Es(this.elementShape,t.shape,"TensorList shape mismatch: "),Jt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Es(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=Pc(this.elementShape,this.tensors,n);return e.length===0?cn([],[0].concat(s)):H(()=>{let r=e.map(a=>U(this.tensors[a],s));return $n(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Es(this.elementShape,t,"TensorList shape mismatch: ");let n=Pc(this.elementShape,this.tensors,t);return this.size()===0?cn([],[0].concat(n)):H(()=>{let s=this.tensors.map(r=>U(r,n));return ft(s,0)})}};function bL(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Es(r,t,"TensorList shape mismatch: ");let a=ms(e);return new Mc(a,t,s)}function vL(e,t,n){return new Mc([],e,t,n)}function wL(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new Mc([],n,e.dtype,s),o=ms(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function kL(e,t,n){let s=0,r=t.map(c=>(s+=c,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is - ${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=H2(a,n),i=s===0?0:e.size/s,l=H(()=>{let c=[];e=U(e,[1,s,i]);for(let d=0;d{switch(e.op){case"If":case"StatelessIf":{let s=S("thenBranch",e,t,n),r=S("elseBranch",e,t,n),a=S("cond",e,t,n),o=S("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=S("body",e,t,n),r=S("cond",e,t,n),a=S("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(c=>c.id),l=await o[0].data();o.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=a;for(;l[0];){let c=u;u=await n.functionMap[s].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(p=>p.id);c.forEach(p=>{!p.kept&&i.indexOf(p.id)===-1&&d.indexOf(p.id)===-1&&p.dispose()});let h=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await h[0].data(),h.forEach(p=>{!p.kept&&i.indexOf(p.id)===-1&&d.indexOf(p.id)===-1&&p.dispose()})}return u}case"LoopCond":{let s=S("pred",e,t,n);return[Ir(s)]}case"Switch":{let s=S("pred",e,t,n),r=S("data",e,t,n);return r.kept||(r=Ir(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>xn(r,t,n)!==void 0);if(s){let r=xn(s,t,n);return[Ir(r)]}return}case"Enter":{let s=S("frameName",e,t,n),r=S("tensor",e,t,n);return n.enterFrame(s),[Ir(r)]}case"Exit":{let s=S("tensor",e,t,n);return n.exitFrame(),[Ir(s)]}case"NextIteration":{let s=S("tensor",e,t,n);return n.nextIteration(),[Ir(s)]}case"TensorArrayV3":{let s=S("size",e,t,n),r=S("dtype",e,t,n),a=S("elementShape",e,t,n),o=S("dynamicSize",e,t,n),i=S("clearAfterRead",e,t,n),l=S("identicalElementShapes",e,t,n),u=S("name",e,t,n),c=new sL(u,r,s,a,l,o,i);return n.addTensorArray(c),[c.idTensor,Ie(1)]}case"TensorArrayWriteV3":{let s=S("tensorArrayId",e,t,n),r=S("index",e,t,n),a=S("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=S("tensorArrayId",e,t,n),r=S("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),a=S("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),a=S("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=S("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=S("tensorArrayId",e,t,n),r=S("tensor",e,t,n),a=S("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Ie(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=S("tensorListId",e,t,n),r=S("index",e,t,n),a=S("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=S("tensorListId",e,t,n),r=S("index",e,t,n),a=S("elementShape",e,t,n),o=S("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=S("indices",e,t,n),r=S("tensor",e,t,n),a=S("elementShape",e,t,n),o=S("numElements",e,t,n),i=oL(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=S("elementShape",e,t,n),r=S("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=S(a,e,t,n),i=aL(s,r,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let s=S("tensorListId",e,t,n),r=S("indices",e,t,n),a=S("elementShape",e,t,n),o=S("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n),o=S("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=S("tensor",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n),o=rL(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let s=S("tensorListId",e,t,n),r=n.getTensorList(s.id),a=S("dtype",e,t,n),o=S("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=S("tensorListId",e,t,n),r=S("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=S("tensor",e,t,n),r=S("elementShape",e,t,n),a=S("lengths",e,t,n),o=iL(s,a,r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Kv(e,t,n){let[s,r]=S("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",u=S("numArgs",e,t,n);if(a){if(i&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=S("strides",e,t,n),d=jp(e,t,n),h=S("dataFormat",e,t,n).toUpperCase(),p=S("dilations",e,t,n),[f,m]=S("args",e,t,n);o&&(m=f,f=void 0);let A=S("leakyreluAlpha",e,t,n);return{stride:c,pad:d,dataFormat:h,dilations:p,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:A}}var uL=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=S("stride",e,t,n),r=S("pad",e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),o=S("dilation",e,t,n);return[hA(S("x",e,t,n),S("filter",e,t,n),s,r,a,o)]}case"Conv2D":{let s=S("strides",e,t,n),r=jp(e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),o=S("dilations",e,t,n);return[jr(S("x",e,t,n),S("filter",e,t,n),[s[1],s[2]],r,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=Kv(e,t,n);return[Kr.conv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=Kv(e,t,n);return[Kr.depthwiseConv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=S("outputShape",e,t,n),r=S("strides",e,t,n),a=jp(e,t,n);return[fA(S("x",e,t,n),S("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=S("strides",e,t,n),r=jp(e,t,n),a=S("dilations",e,t,n),o=S("dataFormat",e,t,n).toUpperCase();return[nc(S("input",e,t,n),S("filter",e,t,n),[s[1],s[2]],r,o,[a[1],a[2]])]}case"Conv3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),o=S("dilations",e,t,n);return[mA(S("x",e,t,n),S("filter",e,t,n),[s[1],s[2],s[3]],r,a,[o[1],o[2],o[3]])]}case"AvgPool":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[Ph(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[Hh(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n),o=S("includeBatchInIndex",e,t,n),{result:i,indexes:l}=Yx(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,o);return[i,l]}case"AvgPool3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[cA(S("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[IA(S("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("dilations",e,t,n),o=s[1],i=s[2],l=a[1],u=a[2];return[zx(S("x",e,t,n),S("filter",e,t,n),[o,i],r,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},cL=(e,t,n)=>{switch(e.op){case"Fill":{let s=S("shape",e,t,n),r=S("dtype",e,t,n),a=S("value",e,t,n);return[Tl(s,a,r)]}case"LinSpace":{let s=S("start",e,t,n),r=S("stop",e,t,n),a=S("num",e,t,n);return[Hx(s,r,a)]}case"Multinomial":{let s=S("logits",e,t,n),r=S("numSamples",e,t,n),a=S("seed",e,t,n);return[eb(s,r,a)]}case"OneHot":{let s=S("indices",e,t,n),r=S("depth",e,t,n),a=S("onValue",e,t,n),o=S("offValue",e,t,n);return[Qu(s,r,a,o)]}case"Ones":return[Un(S("shape",e,t,n),S("dtype",e,t,n))];case"OnesLike":return[us(S("x",e,t,n))];case"RandomUniform":return[_l(S("shape",e,t,n),S("minval",e,t,n),S("maxval",e,t,n),S("dtype",e,t,n))];case"Range":{let s=S("start",e,t,n),r=S("stop",e,t,n),a=S("step",e,t,n);return[$l(s,r,a,S("dtype",e,t,n))]}case"TruncatedNormal":{let s=S("shape",e,t,n),r=S("mean",e,t,n),a=S("stdDev",e,t,n),o=S("seed",e,t,n);return[ep(s,r,a,S("dtype",e,t,n),o)]}case"Zeros":return[Dt(S("shape",e,t,n),S("dtype",e,t,n))];case"ZerosLike":return[qe(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function G2(e,t,n){let s=S("boxes",e,t,n),r=S("scores",e,t,n),a=S("maxOutputSize",e,t,n),o=S("iouThreshold",e,t,n),i=S("scoreThreshold",e,t,n),l=S("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var dL=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=G2(e,t,n),u=await _e.nonMaxSuppressionWithScoreAsync(s,r,a,o,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=G2(e,t,n),l=S("padToMaxOutputSize",e,t,n),u=await _e.nonMaxSuppressionPaddedAsync(s,r,a,o,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=G2(e,t,n);return[await _e.nonMaxSuppressionAsync(s,r,a,o,i)]}case"Where":{let s=ce(S("condition",e,t,n),"bool"),r=[await zA(s)];return s.dispose(),r}case"ListDiff":return rb(S("x",e,t,n),S("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},hL=(e,t,n)=>{switch(e.op){case"TopKV2":{let s=S("x",e,t,n),r=S("k",e,t,n),a=S("sorted",e,t,n),o=lb(s,r,a);return[o.values,o.indices]}case"Unique":{let s=S("x",e,t,n),r=MA(s);return[r.values,r.indices]}case"UniqueV2":{let s=S("x",e,t,n),r=S("axis",e,t,n),a=MA(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},pL=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=S("default",e,t,n);return[xn(e.name,t,n)||s];case"Placeholder":return[xn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=S("x",e,t,n);return[Ir(u)]}case"IdentityN":return S("x",e,t,n).map(u=>Ir(u));case"Snapshot":let r=S("x",e,t,n);return[Ir(r)];case"Shape":return[Ot(S("x",e,t,n).shape,"int32")];case"ShapeN":return S("x",e,t,n).map(u=>Ot(u.shape));case"Size":return[Ie(S("x",e,t,n).size,"int32")];case"Rank":return[Ie(S("x",e,t,n).rank,"int32")];case"NoOp":return[Ie(1)];case"Print":let a=S("x",e,t,n),o=S("data",e,t,n),i=S("message",e,t,n),l=S("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;ue.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ie(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),H(()=>{let s=ds(t),r=n.length,a=s.length;I.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o{let s=[];for(let r=0;r{switch(e.op){case"HashTable":case"HashTableV2":{let r=S("keyDType",e,t,n),a=S("valueDType",e,t,n),o=new fL(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=S("tableHandle",e,t,n,s),a=S("keys",e,t,n),o=S("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=S("tableHandle",e,t,n,s),a=S("keys",e,t,n),o=S("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=S("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},AL=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=S("images",e,t,n),r=S("size",e,t,n),a=S("alignCorners",e,t,n),o=S("halfPixelCenters",e,t,n);return[_e.resizeBilinear(s,[r[0],r[1]],a,o)]}case"ResizeNearestNeighbor":{let s=S("images",e,t,n),r=S("size",e,t,n),a=S("alignCorners",e,t,n),o=S("halfPixelCenters",e,t,n);return[_e.resizeNearestNeighbor(s,[r[0],r[1]],a,o)]}case"CropAndResize":{let s=S("image",e,t,n),r=S("boxes",e,t,n),a=S("boxInd",e,t,n),o=S("cropSize",e,t,n),i=S("method",e,t,n),l=S("extrapolationValue",e,t,n);return[_e.cropAndResize(s,r,a,o,i,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},gL=(e,t,n)=>{switch(e.op){case"Equal":return[as(S("a",e,t,n),S("b",e,t,n))];case"NotEqual":return[Rl(S("a",e,t,n),S("b",e,t,n))];case"Greater":return[Vn(S("a",e,t,n),S("b",e,t,n))];case"GreaterEqual":return[Co(S("a",e,t,n),S("b",e,t,n))];case"Less":return[xA(S("a",e,t,n),S("b",e,t,n))];case"LessEqual":return[To(S("a",e,t,n),S("b",e,t,n))];case"LogicalAnd":return[_s(S("a",e,t,n),S("b",e,t,n))];case"LogicalNot":return[Uh(S("a",e,t,n))];case"LogicalOr":return[kA(S("a",e,t,n),S("b",e,t,n))];case"Select":case"SelectV2":return[gn(S("condition",e,t,n),S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},yL=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[We(S("a",e,t,n),S("b",e,t,n),S("transposeA",e,t,n),S("transposeB",e,t,n))];case"Einsum":return[Bx(S("equation",e,t,n),...S("tensors",e,t,n))];case"Transpose":return[je(S("x",e,t,n),S("perm",e,t,n))];case"_FusedMatMul":let[s,r]=S("fusedOps",e,t,n),a=s==="biasadd",o=r==="prelu",i=S("numArgs",e,t,n),l=S("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=S("args",e,t,n);return[Kr.matMul({a:S("a",e,t,n),b:S("b",e,t,n),transposeA:S("transposeA",e,t,n),transposeB:S("transposeB",e,t,n),bias:u,activation:r,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},xL=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Sl(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"FusedBatchNormV3":return[Sl(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"LRN":return[Gx(S("x",e,t,n),S("radius",e,t,n),S("bias",e,t,n),S("alpha",e,t,n),S("beta",e,t,n))];case"Softmax":return[Yh(S("x",e,t,n))];case"LogSoftmax":return[bA(S("x",e,t,n))];case"SparseToDense":return[BA(S("sparseIndices",e,t,n),S("outputShape",e,t,n),S("sparseValues",e,t,n),S("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},bL=(e,t,n)=>{switch(e.op){case"Max":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[ls(S("x",e,t,n),o,i)]}case"Mean":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[Et(S("x",e,t,n),o,i)]}case"Min":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[Gh(S("x",e,t,n),o,i)]}case"Sum":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[ve(S("x",e,t,n),o,i)]}case"All":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[iA(S("x",e,t,n),o,i)]}case"Any":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[Dh(S("x",e,t,n),o,i)]}case"ArgMax":{let o=S("axis",e,t,n);return[Xs(S("x",e,t,n),o)]}case"ArgMin":{let o=S("axis",e,t,n);return[yx(S("x",e,t,n),o)]}case"Prod":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[SA(S("x",e,t,n),o,i)]}case"Cumsum":{let o=S("axis",e,t,n),i=S("exclusive",e,t,n),l=S("reverse",e,t,n);return[gA(S("x",e,t,n),o,i,l)]}case"Bincount":let s=S("x",e,t,n),r=S("weights",e,t,n),a=S("size",e,t,n);return[dA(s,r,a)];case"DenseBincount":{let o=S("x",e,t,n),i=S("weights",e,t,n),l=S("size",e,t,n),u=S("binaryOutput",e,t,n);return[Px(o,i,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},vL=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=S("n",e,t,n),r=S("axis",e,t,n),a=S("tensors",e,t,n);return a=a.slice(0,s),[ht(a,r)]}case"Gather":{let s=S("x",e,t,n),r=S("indices",e,t,n);return[Nl(s,ce(r,"int32"),0)]}case"GatherV2":{let s=S("axis",e,t,n),r=S("batchDims",e,t,n),a=S("x",e,t,n),o=S("indices",e,t,n);return[Nl(a,ce(o,"int32"),s,r)]}case"Reverse":{let s=S("dims",e,t,n),r=[];for(let o=0;o{let s=S("axis",e,t,n),r=S("tensors",e,t,n),a=r[0].shape,o=ot(r[0]).shape,i=r.map(l=>{let u=I.arraysEqual(l.shape,a);if(!u&&!I.arraysEqual(ot(l).shape,o))throw new Error("the input tensors shape does not match");return u?l:U(l,a)});return[Nn(i,s)]});case"Unpack":{let s=S("axis",e,t,n),r=S("tensor",e,t,n);return ds(r,s)}case"Tile":{let s=S("reps",e,t,n);return[Rs(S("x",e,t,n),s)]}case"Split":case"SplitV":{let s=S("axis",e,t,n),r=S("numOrSizeSplits",e,t,n),a=S("x",e,t,n);return nn(a,r,s)}case"ScatterNd":{let s=S("indices",e,t,n),r=S("values",e,t,n),a=S("shape",e,t,n);return[pb(s,r,a)]}case"GatherNd":{let s=S("x",e,t,n),r=S("indices",e,t,n);return[fb(s,r)]}case"SparseToDense":{let s=S("sparseIndices",e,t,n),r=S("outputShape",e,t,n),a=S("sparseValues",e,t,n),o=S("defaultValue",e,t,n);return[BA(s,a,r,a.dtype===o.dtype?o:ce(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},wL=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:o}=cc.sparseFillEmptyRows(S("indices",e,t,n),S("values",e,t,n),S("denseShape",e,t,n),S("defaultValue",e,t,n));return[s,r,a,o]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=cc.sparseReshape(S("inputIndices",e,t,n),S("inputShape",e,t,n),S("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[cc.sparseSegmentMean(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];case"SparseSegmentSum":return[cc.sparseSegmentSum(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},kL=(e,t,n)=>{switch(e.op){case"FFT":return[Jh(S("x",e,t,n))];case"IFFT":return[lc(S("x",e,t,n))];case"RFFT":return[Qh(S("x",e,t,n))];case"IRFFT":return[OA(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},IL=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=ap.stringNGrams(S("data",e,t,n),S("dataSplits",e,t,n),S("separator",e,t,n),S("nGramWidths",e,t,n),S("leftPad",e,t,n),S("rightPad",e,t,n),S("padWidth",e,t,n),S("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=ap.stringSplit(S("input",e,t,n),S("delimiter",e,t,n),S("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[ap.stringToHashBucketFast(S("input",e,t,n),S("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},SL=(e,t,n)=>{switch(e.op){case"Cast":return[ce(S("x",e,t,n),S("dtype",e,t,n))];case"ExpandDims":{let s=S("axis",e,t,n);return[Ft(S("x",e,t,n),s)]}case"Squeeze":{let s=S("axis",e,t,n);return[ot(S("x",e,t,n),s)]}case"Reshape":return[U(S("x",e,t,n),S("shape",e,t,n))];case"MirrorPad":return[Jx(S("x",e,t,n),S("padding",e,t,n),S("mode",e,t,n))];case"PadV2":case"Pad":return[qr(S("x",e,t,n),S("padding",e,t,n),S("constantValue",e,t,n))];case"SpaceToBatchND":{let s=S("blockShape",e,t,n),r=S("paddings",e,t,n);return[qh(S("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=S("blockShape",e,t,n),r=S("crops",e,t,n);return[Mh(S("x",e,t,n),s,r)]}case"DepthToSpace":{let s=S("blockSize",e,t,n),r=S("dataFormat",e,t,n).toUpperCase();return[Mx(S("x",e,t,n),s,r)]}case"BroadcastTo":return[tc(S("x",e,t,n),S("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Zv(e,t,n,s){let r=((a,o,i)=>{switch(a.category){case"arithmetic":return H(()=>tL(a,o,i));case"basic_math":return H(()=>nL(a,o,i));case"control":return lL(a,o,i);case"convolution":return H(()=>uL(a,o,i));case"creation":return H(()=>cL(a,o,i));case"dynamic":return dL(a,o,i);case"evaluation":return H(()=>hL(a,o,i));case"image":return H(()=>AL(a,o,i));case"graph":return H(()=>pL(a,o,i));case"logical":return H(()=>gL(a,o,i));case"matrices":return H(()=>yL(a,o,i));case"normalization":return H(()=>xL(a,o,i));case"reduction":return H(()=>bL(a,o,i));case"slice_join":return H(()=>vL(a,o,i));case"sparse":return H(()=>wL(a,o,i));case"spectral":return H(()=>kL(a,o,i));case"string":return H(()=>IL(a,o,i));case"transformation":return H(()=>SL(a,o,i));case"hash_table":return mL(a,o,i,s);case"custom":let l=Iv(a.op);if(l&&l.customExecutor)return l.customExecutor(new eL(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return I.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var Yv=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Jv(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,u=Object.keys(e).map(h=>Hn(h)[0]),c=[];s!=null&&(c=s.map(h=>Hn(h.name)[0]));let d=[...t];for(;d.length>0;){let h=d.pop();if((Qv(h)||RL(h)||_L(h))&&o==null&&(o=h,i=o.children.map(p=>p.name).filter(p=>r.has(p))),r.add(h.name),n[h.name]==null&&u.indexOf(h.name)===-1&&c.indexOf(h.name)===-1){if(h.inputs.length===0){a.push(h.name);continue}h.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),d.push(p))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function CL(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(c=>Hn(c)[0]).map(c=>e.nodes[c]),i=e.initNodes;o.forEach(c=>{s.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{s.has(c.name)&&a.push(c)}),i!=null&&i.forEach(c=>{s.has(c.name)&&a.push(c)});let l=new Set,u=[];for(;a.length>0;){let c=a.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(d=>{!l.has(d.name)&&s.has(d.name)&&d.inputs.every(h=>l.has(h.name))&&a.push(d)})}return u}var TL=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],NL=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],EL=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function Qv(e){return TL.indexOf(e.op)>=0}function RL(e){return NL.indexOf(e.op)>=0}function _L(e){return EL.indexOf(e.op)>=0}var j2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new j2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=Jv(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return CL(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(c=>this.graph.nodes[Hn(c)[0]]),r=t.map(c=>Hn(c)[0]),a=r.map(c=>this.graph.nodes[c]);a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},u={};return H(()=>{let c=new Yv(this.weightMap,l,u,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,A]=Hn(f),g=[];g[A]=e[f],d[m]=g});let h=this.getFrozenTensorIds(d),p={};for(let f=0;fxn(f,d,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=Fz(i.name,n,s);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let c=o[u.id];c===1?(u.dispose(),delete o[u.id]):c!=null&&o[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new Yv(this.weightMap,s,r,this.functionExecutorMap),o=await this.executeWithControlFlow(e,a,t,n),i=t.map(d=>xn(d,o,a)),l=i.map(d=>d.id),u=Object.keys(e).map(d=>e[d].id),c=new Set([...l,...u,...this.weightIds]);return Object.keys(o).forEach(d=>{o[d].forEach(p=>{p&&!p.kept&&!p.isDisposed&&!c.has(p.id)&&p.dispose()})}),this.parent==null&&a.dispose(c),i}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(y=>this.graph.nodes[Hn(y)[0]]),o=n.map(y=>Hn(y)[0]),i=o.map(y=>this.graph.nodes[y]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:d}=Jv(e,i,this.weightMap,this._initNodes),h=[...a,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(y=>{let[x,b]=Hn(y),v=[];v[b]=e[y],p[x]=v});let f={},m=this.getFrozenTensorIds(p),A={};for(;h.length>0;){let y=this.processStack(a,h,t,p,A,m,o,f,l);await Promise.all(y)}c==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let g=i.filter(y=>!Qv(y)&&!xn(y.name,p,t)).map(y=>y.name);if(g.length>0){let y="";throw c!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${g}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${y}`)}return p}processStack(e,t,n,s,r,a,o,i,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let d="";if(c.node.op==="Enter"&&S("isConstant",c.node,s,n)&&([d]=kr(c.node.name,n)),s[c.node.name]==null){let h=Zv(c.node,s,n,this._resourceManager);d||([d]=kr(c.node.name,n));let p=n.currentContext;I.isPromise(h)?u.push(h.then(f=>(s[d]=f,n.currentContext=p,this.checkTensorForDisposal(d,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l),f))):(s[d]=h,this.checkTensorForDisposal(d,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l))}else this.processChildNodes(c.node,t,n,s,r,l)}return u}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=kr(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!xn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!xn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=Hn(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);I.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&I.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=Hn(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Hn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},$L=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},FL="?tfjs-format=file",DL="model.json",e7=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new $L}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Tn.browserHTTPRequest(e,this.loadOptions);else{let t=Tn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Tn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=Tn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new j2(Hv.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=Hv.Instance.transformGraph(e.modelInitializer);this.initializer=new j2(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Tn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ue)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function pt(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${DL}${FL}`);let n=new e7(e,t);return await n.load(),n}var OL="3.8.0",t7={};Pe(t7,{CSVDataset:()=>p7,Dataset:()=>Vl,FileDataSource:()=>b7,TextLineDataset:()=>c7,URLDataSource:()=>v7,array:()=>rB,csv:()=>mB,func:()=>AB,generator:()=>gB,microphone:()=>xB,version_data:()=>bB,webcam:()=>yB,zip:()=>aB});var PL=Aa(n5()),ML=Aa(n5());function zL(e,t){return qp(e,t)}function qp(e,t,n=new Map,s=new Set){if(e==null)return null;if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Wl(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=qp(i,t,n,s);a[o]=l}return s.delete(e),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function LL(e,t=s7){return n7(e,t)}function n7(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Wl(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(u=>u[o]),l=n7(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function s7(e){return e===null?null:Wl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function r7(e,t){let n=new Map;qp(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(I.isPromise(a)){let o=await a;n.set(r,o)}}return qp(e,t,n)}function Wl(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ue))}function BL(e){return e==null||WL(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ue||I.isTypedArray(e)}function WL(e){return e===null||typeof e!="object"&&typeof e!="function"}function VL(e){return zL(e,UL)}function UL(e){return e instanceof Ue?{value:e.clone(),recurse:!1}:Wl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var a7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},q2=class extends a7{constructor(){super(q2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;st===!0)}rowMajorBatch(e,t=!0){return new YL(this,e,t)}columnMajorBatch(e,t=!0,n=s7){return this.rowMajorBatch(e,t).map(r=>LL(r,n))}concatenate(e,t){return new l7(o7([this,e]),t)}take(e){return e<0||e==null?this:new ZL(this,e)}skip(e){return e<0||e==null?this:new KL(this,e)}prefetch(e){return new u7(this,e)}shuffle(e,t){return new sB(this,e,t)}serial(){return new XL(this)}},jL=class extends Yt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:VL(e),done:!1}}},qL=class extends Yt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},XL=class extends Yt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},KL=class extends Yt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},YL=class extends Yt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},JL=class extends Yt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;K(e.value)}}},QL=class extends Yt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ts.getTensorsInContainer(e.value),n=this.transform(e.value),s=Ts.getTensorsInContainer(n);for(let r of t)Ts.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},eB=class extends Yt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},i7=class extends Yt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ts.getTensorsInContainer(e.value),n=await this.transform(e.value),s=Ts.getTensorsInContainer(n);for(let r of t)Ts.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},K2=class extends Yt{constructor(){super();this.outputQueue=new q2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},tB=class extends K2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Ts.getTensorsInContainer(e.value),n=this.transform(e.value),s=Ts.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Ts.isTensorInList(r,s)||r.dispose();return!0}},l7=class extends Yt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},sa;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(sa||(sa={}));var nB=class extends Yt{constructor(e,t=sa.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof Yt?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await r7(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case sa.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case sa.SHORTEST:return{value:null,done:!0};case sa.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},u7=class extends Yt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new a7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},sB=class extends u7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=ML.alea(n||I.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Vl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;I.assert(e>0,()=>`batchSize needs to be positive, but it is - ${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),Gn(async()=>(await n.iterator()).columnMajorBatch(e,t,oB),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Gn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Gn(async()=>(await t.iterator()).filter(s=>H(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Gn(async()=>(await t.iterator()).map(n=>H(()=>e(n))),this.size)}mapAsync(e){let t=this;return Gn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Gn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Gn(async()=>{let s=X2(async()=>({value:await t.iterator(),done:!1}));return HL(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=PL.alea(t||I.now().toString());return Gn(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Gn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Vl.MAX_BUFFER_SIZE=1e4;function Gn(e,t=null){return new class extends Vl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function rB(e){return Gn(async()=>o7(e),e.length)}function aB(e){if(!Wl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n{let n=await r7(e,s=>{if(s instanceof Vl)return{value:s.iterator(),recurse:!1};if(Wl(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return GL(n,sa.SHORTEST)},t)}function oB(e){if(e===null)return null;let t=e[0];return BL(t)?{value:iB(e),recurse:!1}:{value:null,recurse:!0}}function iB(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ue?Nn(e):on(e)}var c7=class extends Vl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` -`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},Xp='"',$c=Symbol("out"),d7=Symbol("field"),Kp=Symbol("quote"),Z2=Symbol("quoteafterquote"),h7=Symbol("quoteinquote"),p7=class extends Vl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new c7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(I.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&I.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(I.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(ee().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new f7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(I.sizeFromShape(t));return n.set(e,n.length-e.length),on(n,t)}},m7=class extends Yt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ot([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=$s([a,r,i,o],[1,4])}else this.cropBox=$s([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(ee().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new m7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&I.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=rs.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return H(()=>{let t=Ft(ce(e,"float32"),0),n;n=_e.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return U(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},A7=class{},g7=class extends Yt{split(e){return new lB(this,e)}},lB=class extends g7{constructor(e,t){super();this.upstream=e,this.impl=new uB(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},uB=class extends K2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},cB=class extends Yt{decodeUTF8(){return new dB(this)}},dB=class extends g7{constructor(e){super();this.upstream=e,this.impl=new hB(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},hB=class extends K2{constructor(e){super();if(this.upstream=e,ee().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=PI();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return ee().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},y7=class extends cB{constructor(e,t={}){super();this.file=e,this.options=t,I.assert(e instanceof Uint8Array||(ee().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function pB(e,t={}){let n,s;typeof e=="string"?n=e:(n=e.url,s=fB(e));let r=await I.fetch(n,s);if(r.ok){let a=new Uint8Array(await r.arrayBuffer());return new y7(a,t)}else throw new Error(r.statusText)}var fB=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function x7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var b7=class extends A7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(x7(this.input)&&ee().get("IS_NODE")){let e=ci("fs");this.input=e.readFileSync(this.input.substr(7))}return new y7(this.input,this.options)}},v7=class extends A7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return x7(this.url)?new b7(this.url,this.fileOptions).iterator():pB(this.url,this.fileOptions)}};function mB(e,t={}){return new p7(new v7(e),t)}function AB(e){let t=X2(e);return Gn(async()=>t)}function gB(e){return Gn(async()=>{let t=await e();return X2(()=>t.next())})}async function yB(e,t){return m7.create(e,t)}async function xB(e){return f7.create(e)}var bB="3.8.0";function ke(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&I.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var vB=Js.whereImpl,Zp=class extends Iu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Dd(this,Ar())}nextDataId(){return Zp.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,ee().get("IS_NODE")&&$.warn(` + ${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=Y2(a,n),i=s===0?0:e.size/s,l=H(()=>{let c=[];e=U(e,[1,s,i]);for(let d=0;d{switch(e.op){case"If":case"StatelessIf":{let s=S("thenBranch",e,t,n),r=S("elseBranch",e,t,n),a=S("cond",e,t,n),o=S("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=S("body",e,t,n),r=S("cond",e,t,n),a=S("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(c=>c.id),l=await o[0].data();o.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=a;for(;l[0];){let c=u;u=await n.functionMap[s].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(p=>p.id);c.forEach(p=>{!p.kept&&i.indexOf(p.id)===-1&&d.indexOf(p.id)===-1&&p.dispose()});let h=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await h[0].data(),h.forEach(p=>{!p.kept&&i.indexOf(p.id)===-1&&d.indexOf(p.id)===-1&&p.dispose()})}return u}case"LoopCond":{let s=S("pred",e,t,n);return[Nr(s)]}case"Switch":{let s=S("pred",e,t,n),r=S("data",e,t,n);return r.kept||(r=Nr(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>wn(r,t,n)!==void 0);if(s){let r=wn(s,t,n);return[Nr(r)]}return}case"Enter":{let s=S("frameName",e,t,n),r=S("tensor",e,t,n);return n.enterFrame(s),[Nr(r)]}case"Exit":{let s=S("tensor",e,t,n);return n.exitFrame(),[Nr(s)]}case"NextIteration":{let s=S("tensor",e,t,n);return n.nextIteration(),[Nr(s)]}case"TensorArrayV3":{let s=S("size",e,t,n),r=S("dtype",e,t,n),a=S("elementShape",e,t,n),o=S("dynamicSize",e,t,n),i=S("clearAfterRead",e,t,n),l=S("identicalElementShapes",e,t,n),u=S("name",e,t,n),c=new xL(u,r,s,a,l,o,i);return n.addTensorArray(c),[c.idTensor,Ie(1)]}case"TensorArrayWriteV3":{let s=S("tensorArrayId",e,t,n),r=S("index",e,t,n),a=S("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=S("tensorArrayId",e,t,n),r=S("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),a=S("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),a=S("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=S("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=S("tensorArrayId",e,t,n),r=S("tensor",e,t,n),a=S("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Ie(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=S("tensorListId",e,t,n),r=S("index",e,t,n),a=S("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=S("tensorListId",e,t,n),r=S("index",e,t,n),a=S("elementShape",e,t,n),o=S("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=S("indices",e,t,n),r=S("tensor",e,t,n),a=S("elementShape",e,t,n),o=S("numElements",e,t,n),i=wL(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=S("elementShape",e,t,n),r=S("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=S(a,e,t,n),i=vL(s,r,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let s=S("tensorListId",e,t,n),r=S("indices",e,t,n),a=S("elementShape",e,t,n),o=S("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n),o=S("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=S("tensor",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n),o=bL(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let s=S("tensorListId",e,t,n),r=n.getTensorList(s.id),a=S("dtype",e,t,n),o=S("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=S("tensorListId",e,t,n),r=S("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=S("tensor",e,t,n),r=S("elementShape",e,t,n),a=S("lengths",e,t,n),o=kL(s,a,r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function s7(e,t,n){let[s,r]=S("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",u=S("numArgs",e,t,n);if(a){if(i&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=S("strides",e,t,n),d=Qp(e,t,n),h=S("dataFormat",e,t,n).toUpperCase(),p=S("dilations",e,t,n),[f,m]=S("args",e,t,n);o&&(m=f,f=void 0);let g=S("leakyreluAlpha",e,t,n);return{stride:c,pad:d,dataFormat:h,dilations:p,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var SL=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=S("stride",e,t,n),r=S("pad",e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),o=S("dilation",e,t,n);return[xg(S("x",e,t,n),S("filter",e,t,n),s,r,a,o)]}case"Conv2D":{let s=S("strides",e,t,n),r=Qp(e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),o=S("dilations",e,t,n);return[Zr(S("x",e,t,n),S("filter",e,t,n),[s[1],s[2]],r,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=s7(e,t,n);return[Qr.conv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=s7(e,t,n);return[Qr.depthwiseConv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=S("outputShape",e,t,n),r=S("strides",e,t,n),a=Qp(e,t,n);return[vg(S("x",e,t,n),S("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=S("strides",e,t,n),r=Qp(e,t,n),a=S("dilations",e,t,n),o=S("dataFormat",e,t,n).toUpperCase();return[lc(S("input",e,t,n),S("filter",e,t,n),[s[1],s[2]],r,o,[a[1],a[2]])]}case"Conv3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),o=S("dilations",e,t,n);return[wg(S("x",e,t,n),S("filter",e,t,n),[s[1],s[2],s[3]],r,a,[o[1],o[2],o[3]])]}case"AvgPool":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[Uh(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[Yh(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n),o=S("includeBatchInIndex",e,t,n),{result:i,indexes:l}=ab(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,o);return[i,l]}case"AvgPool3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[Ag(S("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[_g(S("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("dilations",e,t,n),o=s[1],i=s[2],l=a[1],u=a[2];return[jx(S("x",e,t,n),S("filter",e,t,n),[o,i],r,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},CL=(e,t,n)=>{switch(e.op){case"Fill":{let s=S("shape",e,t,n),r=S("dtype",e,t,n),a=S("value",e,t,n);return[Dl(s,a,r)]}case"LinSpace":{let s=S("start",e,t,n),r=S("stop",e,t,n),a=S("num",e,t,n);return[Jx(s,r,a)]}case"Multinomial":{let s=S("logits",e,t,n),r=S("numSamples",e,t,n),a=S("seed",e,t,n);return[lb(s,r,a)]}case"OneHot":{let s=S("indices",e,t,n),r=S("depth",e,t,n),a=S("onValue",e,t,n),o=S("offValue",e,t,n);return[ac(s,r,a,o)]}case"Ones":return[qn(S("shape",e,t,n),S("dtype",e,t,n))];case"OnesLike":return[ps(S("x",e,t,n))];case"RandomUniform":return[Ml(S("shape",e,t,n),S("minval",e,t,n),S("maxval",e,t,n),S("dtype",e,t,n))];case"Range":{let s=S("start",e,t,n),r=S("stop",e,t,n),a=S("step",e,t,n);return[zl(s,r,a,S("dtype",e,t,n))]}case"TruncatedNormal":{let s=S("shape",e,t,n),r=S("mean",e,t,n),a=S("stdDev",e,t,n),o=S("seed",e,t,n);return[ip(s,r,a,S("dtype",e,t,n),o)]}case"Zeros":return[Pt(S("shape",e,t,n),S("dtype",e,t,n))];case"ZerosLike":return[Ke(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function J2(e,t,n){let s=S("boxes",e,t,n),r=S("scores",e,t,n),a=S("maxOutputSize",e,t,n),o=S("iouThreshold",e,t,n),i=S("scoreThreshold",e,t,n),l=S("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var TL=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=J2(e,t,n),u=await _e.nonMaxSuppressionWithScoreAsync(s,r,a,o,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=J2(e,t,n),l=S("padToMaxOutputSize",e,t,n),u=await _e.nonMaxSuppressionPaddedAsync(s,r,a,o,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=J2(e,t,n);return[await _e.nonMaxSuppressionAsync(s,r,a,o,i)]}case"Where":{let s=ce(S("condition",e,t,n),"bool"),r=[await Gg(s)];return s.dispose(),r}case"ListDiff":return hb(S("x",e,t,n),S("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},NL=(e,t,n)=>{switch(e.op){case"TopKV2":{let s=S("x",e,t,n),r=S("k",e,t,n),a=S("sorted",e,t,n),o=gb(s,r,a);return[o.values,o.indices]}case"Unique":{let s=S("x",e,t,n),r=Hg(s);return[r.values,r.indices]}case"UniqueV2":{let s=S("x",e,t,n),r=S("axis",e,t,n),a=Hg(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},EL=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=S("default",e,t,n);return[wn(e.name,t,n)||s];case"Placeholder":return[wn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=S("x",e,t,n);return[Nr(u)]}case"IdentityN":return S("x",e,t,n).map(u=>Nr(u));case"Snapshot":let r=S("x",e,t,n);return[Nr(r)];case"Shape":return[Mt(S("x",e,t,n).shape,"int32")];case"ShapeN":return S("x",e,t,n).map(u=>Mt(u.shape));case"Size":return[Ie(S("x",e,t,n).size,"int32")];case"Rank":return[Ie(S("x",e,t,n).rank,"int32")];case"NoOp":return[Ie(1)];case"Print":let a=S("x",e,t,n),o=S("data",e,t,n),i=S("message",e,t,n),l=S("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;ue.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ie(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),H(()=>{let s=ms(t),r=n.length,a=s.length;I.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o{let s=[];for(let r=0;r{switch(e.op){case"HashTable":case"HashTableV2":{let r=S("keyDType",e,t,n),a=S("valueDType",e,t,n),o=new RL(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=S("tableHandle",e,t,n,s),a=S("keys",e,t,n),o=S("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=S("tableHandle",e,t,n,s),a=S("keys",e,t,n),o=S("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=S("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},$L=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=S("images",e,t,n),r=S("size",e,t,n),a=S("alignCorners",e,t,n),o=S("halfPixelCenters",e,t,n);return[_e.resizeBilinear(s,[r[0],r[1]],a,o)]}case"ResizeNearestNeighbor":{let s=S("images",e,t,n),r=S("size",e,t,n),a=S("alignCorners",e,t,n),o=S("halfPixelCenters",e,t,n);return[_e.resizeNearestNeighbor(s,[r[0],r[1]],a,o)]}case"CropAndResize":{let s=S("image",e,t,n),r=S("boxes",e,t,n),a=S("boxInd",e,t,n),o=S("cropSize",e,t,n),i=S("method",e,t,n),l=S("extrapolationValue",e,t,n);return[_e.cropAndResize(s,r,a,o,i,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},DL=(e,t,n)=>{switch(e.op){case"Equal":return[us(S("a",e,t,n),S("b",e,t,n))];case"NotEqual":return[Pl(S("a",e,t,n),S("b",e,t,n))];case"Greater":return[jn(S("a",e,t,n),S("b",e,t,n))];case"GreaterEqual":return[_o(S("a",e,t,n),S("b",e,t,n))];case"Less":return[Cg(S("a",e,t,n),S("b",e,t,n))];case"LessEqual":return[$o(S("a",e,t,n),S("b",e,t,n))];case"LogicalAnd":return[Os(S("a",e,t,n),S("b",e,t,n))];case"LogicalNot":return[Zh(S("a",e,t,n))];case"LogicalOr":return[Rg(S("a",e,t,n),S("b",e,t,n))];case"Select":case"SelectV2":return[bn(S("condition",e,t,n),S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},FL=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ve(S("a",e,t,n),S("b",e,t,n),S("transposeA",e,t,n),S("transposeB",e,t,n))];case"Einsum":return[Xx(S("equation",e,t,n),...S("tensors",e,t,n))];case"Transpose":return[Xe(S("x",e,t,n),S("perm",e,t,n))];case"_FusedMatMul":let[s,r]=S("fusedOps",e,t,n),a=s==="biasadd",o=r==="prelu",i=S("numArgs",e,t,n),l=S("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=S("args",e,t,n);return[Qr.matMul({a:S("a",e,t,n),b:S("b",e,t,n),transposeA:S("transposeA",e,t,n),transposeB:S("transposeB",e,t,n),bias:u,activation:r,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},OL=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[_l(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"FusedBatchNormV3":return[_l(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"LRN":return[Qx(S("x",e,t,n),S("radius",e,t,n),S("bias",e,t,n),S("alpha",e,t,n),S("beta",e,t,n))];case"Softmax":return[rp(S("x",e,t,n))];case"LogSoftmax":return[Tg(S("x",e,t,n))];case"SparseToDense":return[qg(S("sparseIndices",e,t,n),S("outputShape",e,t,n),S("sparseValues",e,t,n),S("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},PL=(e,t,n)=>{switch(e.op){case"Max":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[hs(S("x",e,t,n),o,i)]}case"Mean":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[_t(S("x",e,t,n),o,i)]}case"Min":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[Jh(S("x",e,t,n),o,i)]}case"Sum":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[ve(S("x",e,t,n),o,i)]}case"All":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[fg(S("x",e,t,n),o,i)]}case"Any":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[Wh(S("x",e,t,n),o,i)]}case"ArgMax":{let o=S("axis",e,t,n);return[Js(S("x",e,t,n),o)]}case"ArgMin":{let o=S("axis",e,t,n);return[Cx(S("x",e,t,n),o)]}case"Prod":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[$g(S("x",e,t,n),o,i)]}case"Cumsum":{let o=S("axis",e,t,n),i=S("exclusive",e,t,n),l=S("reverse",e,t,n);return[Ig(S("x",e,t,n),o,i,l)]}case"Bincount":let s=S("x",e,t,n),r=S("weights",e,t,n),a=S("size",e,t,n);return[yg(s,r,a)];case"DenseBincount":{let o=S("x",e,t,n),i=S("weights",e,t,n),l=S("size",e,t,n),u=S("binaryOutput",e,t,n);return[Hx(o,i,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},ML=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=S("n",e,t,n),r=S("axis",e,t,n),a=S("tensors",e,t,n);return a=a.slice(0,s),[ft(a,r)]}case"Gather":{let s=S("x",e,t,n),r=S("indices",e,t,n);return[Fl(s,ce(r,"int32"),0)]}case"GatherV2":{let s=S("axis",e,t,n),r=S("batchDims",e,t,n),a=S("x",e,t,n),o=S("indices",e,t,n);return[Fl(a,ce(o,"int32"),s,r)]}case"Reverse":{let s=S("dims",e,t,n),r=[];for(let o=0;o{let s=S("axis",e,t,n),r=S("tensors",e,t,n),a=r[0].shape,o=lt(r[0]).shape,i=r.map(l=>{let u=I.arraysEqual(l.shape,a);if(!u&&!I.arraysEqual(lt(l).shape,o))throw new Error("the input tensors shape does not match");return u?l:U(l,a)});return[$n(i,s)]});case"Unpack":{let s=S("axis",e,t,n),r=S("tensor",e,t,n);return ms(r,s)}case"Tile":{let s=S("reps",e,t,n);return[Fs(S("x",e,t,n),s)]}case"Split":case"SplitV":{let s=S("axis",e,t,n),r=S("numOrSizeSplits",e,t,n),a=S("x",e,t,n);return an(a,r,s)}case"ScatterNd":{let s=S("indices",e,t,n),r=S("values",e,t,n),a=S("shape",e,t,n);return[vb(s,r,a)]}case"GatherNd":{let s=S("x",e,t,n),r=S("indices",e,t,n);return[wb(s,r)]}case"SparseToDense":{let s=S("sparseIndices",e,t,n),r=S("outputShape",e,t,n),a=S("sparseValues",e,t,n),o=S("defaultValue",e,t,n);return[qg(s,a,r,a.dtype===o.dtype?o:ce(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},zL=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:o}=gc.sparseFillEmptyRows(S("indices",e,t,n),S("values",e,t,n),S("denseShape",e,t,n),S("defaultValue",e,t,n));return[s,r,a,o]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=gc.sparseReshape(S("inputIndices",e,t,n),S("inputShape",e,t,n),S("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[gc.sparseSegmentMean(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];case"SparseSegmentSum":return[gc.sparseSegmentSum(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},LL=(e,t,n)=>{switch(e.op){case"FFT":return[ap(S("x",e,t,n))];case"IFFT":return[fc(S("x",e,t,n))];case"RFFT":return[op(S("x",e,t,n))];case"IRFFT":return[Vg(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},BL=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=hp.stringNGrams(S("data",e,t,n),S("dataSplits",e,t,n),S("separator",e,t,n),S("nGramWidths",e,t,n),S("leftPad",e,t,n),S("rightPad",e,t,n),S("padWidth",e,t,n),S("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=hp.stringSplit(S("input",e,t,n),S("delimiter",e,t,n),S("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[hp.stringToHashBucketFast(S("input",e,t,n),S("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},WL=(e,t,n)=>{switch(e.op){case"Cast":return[ce(S("x",e,t,n),S("dtype",e,t,n))];case"ExpandDims":{let s=S("axis",e,t,n);return[Ot(S("x",e,t,n),s)]}case"Squeeze":{let s=S("axis",e,t,n);return[lt(S("x",e,t,n),s)]}case"Reshape":return[U(S("x",e,t,n),S("shape",e,t,n))];case"MirrorPad":return[ob(S("x",e,t,n),S("padding",e,t,n),S("mode",e,t,n))];case"PadV2":case"Pad":return[Yr(S("x",e,t,n),S("padding",e,t,n),S("constantValue",e,t,n))];case"SpaceToBatchND":{let s=S("blockShape",e,t,n),r=S("paddings",e,t,n);return[ep(S("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=S("blockShape",e,t,n),r=S("crops",e,t,n);return[Hh(S("x",e,t,n),s,r)]}case"DepthToSpace":{let s=S("blockSize",e,t,n),r=S("dataFormat",e,t,n).toUpperCase();return[Gx(S("x",e,t,n),s,r)]}case"BroadcastTo":return[ic(S("x",e,t,n),S("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function r7(e,t,n,s){let r=((a,o,i)=>{switch(a.category){case"arithmetic":return H(()=>AL(a,o,i));case"basic_math":return H(()=>yL(a,o,i));case"control":return IL(a,o,i);case"convolution":return H(()=>SL(a,o,i));case"creation":return H(()=>CL(a,o,i));case"dynamic":return TL(a,o,i);case"evaluation":return H(()=>NL(a,o,i));case"image":return H(()=>$L(a,o,i));case"graph":return H(()=>EL(a,o,i));case"logical":return H(()=>DL(a,o,i));case"matrices":return H(()=>FL(a,o,i));case"normalization":return H(()=>OL(a,o,i));case"reduction":return H(()=>PL(a,o,i));case"slice_join":return H(()=>ML(a,o,i));case"sparse":return H(()=>zL(a,o,i));case"spectral":return H(()=>LL(a,o,i));case"string":return H(()=>BL(a,o,i));case"transformation":return H(()=>WL(a,o,i));case"hash_table":return _L(a,o,i,s);case"custom":let l=$v(a.op);if(l&&l.customExecutor)return l.customExecutor(new gL(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return I.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var a7=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function o7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,u=Object.keys(e).map(h=>Xn(h)[0]),c=[];s!=null&&(c=s.map(h=>Xn(h.name)[0]));let d=[...t];for(;d.length>0;){let h=d.pop();if((i7(h)||jL(h)||qL(h))&&o==null&&(o=h,i=o.children.map(p=>p.name).filter(p=>r.has(p))),r.add(h.name),n[h.name]==null&&u.indexOf(h.name)===-1&&c.indexOf(h.name)===-1){if(h.inputs.length===0){a.push(h.name);continue}h.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),d.push(p))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function VL(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(c=>Xn(c)[0]).map(c=>e.nodes[c]),i=e.initNodes;o.forEach(c=>{s.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{s.has(c.name)&&a.push(c)}),i!=null&&i.forEach(c=>{s.has(c.name)&&a.push(c)});let l=new Set,u=[];for(;a.length>0;){let c=a.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(d=>{!l.has(d.name)&&s.has(d.name)&&d.inputs.every(h=>l.has(h.name))&&a.push(d)})}return u}var UL=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],HL=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],GL=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function i7(e){return UL.indexOf(e.op)>=0}function jL(e){return HL.indexOf(e.op)>=0}function qL(e){return GL.indexOf(e.op)>=0}var Q2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Q2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=o7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return VL(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(c=>this.graph.nodes[Xn(c)[0]]),r=t.map(c=>Xn(c)[0]),a=r.map(c=>this.graph.nodes[c]);a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},u={};return H(()=>{let c=new a7(this.weightMap,l,u,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,g]=Xn(f),A=[];A[g]=e[f],d[m]=A});let h=this.getFrozenTensorIds(d),p={};for(let f=0;fwn(f,d,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=Kz(i.name,n,s);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let c=o[u.id];c===1?(u.dispose(),delete o[u.id]):c!=null&&o[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new a7(this.weightMap,s,r,this.functionExecutorMap),o=await this.executeWithControlFlow(e,a,t,n),i=t.map(d=>wn(d,o,a)),l=i.map(d=>d.id),u=Object.keys(e).map(d=>e[d].id),c=new Set([...l,...u,...this.weightIds]);return Object.keys(o).forEach(d=>{o[d].forEach(p=>{p&&!p.kept&&!p.isDisposed&&!c.has(p.id)&&p.dispose()})}),this.parent==null&&a.dispose(c),i}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(y=>this.graph.nodes[Xn(y)[0]]),o=n.map(y=>Xn(y)[0]),i=o.map(y=>this.graph.nodes[y]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:d}=o7(e,i,this.weightMap,this._initNodes),h=[...a,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(y=>{let[x,b]=Xn(y),v=[];v[b]=e[y],p[x]=v});let f={},m=this.getFrozenTensorIds(p),g={};for(;h.length>0;){let y=this.processStack(a,h,t,p,g,m,o,f,l);await Promise.all(y)}c==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let A=i.filter(y=>!i7(y)&&!wn(y.name,p,t)).map(y=>y.name);if(A.length>0){let y="";throw c!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${A}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${y}`)}return p}processStack(e,t,n,s,r,a,o,i,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let d="";if(c.node.op==="Enter"&&S("isConstant",c.node,s,n)&&([d]=Tr(c.node.name,n)),s[c.node.name]==null){let h=r7(c.node,s,n,this._resourceManager);d||([d]=Tr(c.node.name,n));let p=n.currentContext;I.isPromise(h)?u.push(h.then(f=>(s[d]=f,n.currentContext=p,this.checkTensorForDisposal(d,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l),f))):(s[d]=h,this.checkTensorForDisposal(d,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l))}else this.processChildNodes(c.node,t,n,s,r,l)}return u}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=Tr(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!wn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!wn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=Xn(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);I.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&I.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=Xn(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Xn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},XL=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},KL="?tfjs-format=file",ZL="model.json",l7=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new XL}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=_n.browserHTTPRequest(e,this.loadOptions);else{let t=_n.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(_n.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=_n.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Q2(Jv.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=Jv.Instance.transformGraph(e.modelInitializer);this.initializer=new Q2(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=_n.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ge)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function mt(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${ZL}${KL}`);let n=new l7(e,t);return await n.load(),n}var YL="3.8.0",u7={};Pe(u7,{CSVDataset:()=>v7,Dataset:()=>Xl,FileDataSource:()=>N7,TextLineDataset:()=>y7,URLDataSource:()=>E7,array:()=>bB,csv:()=>_B,func:()=>$B,generator:()=>DB,microphone:()=>OB,version_data:()=>PB,webcam:()=>FB,zip:()=>vB});var JL=va(c5()),QL=va(c5());function eB(e,t){return ef(e,t)}function ef(e,t,n=new Map,s=new Set){if(e==null)return null;if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(ql(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=ef(i,t,n,s);a[o]=l}return s.delete(e),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function tB(e,t=d7){return c7(e,t)}function c7(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(ql(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(u=>u[o]),l=c7(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function d7(e){return e===null?null:ql(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function h7(e,t){let n=new Map;ef(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(I.isPromise(a)){let o=await a;n.set(r,o)}}return ef(e,t,n)}function ql(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ge))}function nB(e){return e==null||sB(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ge||I.isTypedArray(e)}function sB(e){return e===null||typeof e!="object"&&typeof e!="function"}function rB(e){return eB(e,aB)}function aB(e){return e instanceof Ge?{value:e.clone(),recurse:!1}:ql(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var p7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},e1=class extends p7{constructor(){super(e1.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;st===!0)}rowMajorBatch(e,t=!0){return new pB(this,e,t)}columnMajorBatch(e,t=!0,n=d7){return this.rowMajorBatch(e,t).map(r=>tB(r,n))}concatenate(e,t){return new g7(f7([this,e]),t)}take(e){return e<0||e==null?this:new hB(this,e)}skip(e){return e<0||e==null?this:new dB(this,e)}prefetch(e){return new A7(this,e)}shuffle(e,t){return new xB(this,e,t)}serial(){return new cB(this)}},lB=class extends en{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:rB(e),done:!1}}},uB=class extends en{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},cB=class extends en{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},dB=class extends en{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},pB=class extends en{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},fB=class extends en{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;K(e.value)}}},mB=class extends en{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=_s.getTensorsInContainer(e.value),n=this.transform(e.value),s=_s.getTensorsInContainer(n);for(let r of t)_s.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},gB=class extends en{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},m7=class extends en{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=_s.getTensorsInContainer(e.value),n=await this.transform(e.value),s=_s.getTensorsInContainer(n);for(let r of t)_s.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},n1=class extends en{constructor(){super();this.outputQueue=new e1,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},AB=class extends n1{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=_s.getTensorsInContainer(e.value),n=this.transform(e.value),s=_s.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)_s.isTensorInList(r,s)||r.dispose();return!0}},g7=class extends en{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ia;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ia||(ia={}));var yB=class extends en{constructor(e,t=ia.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof en?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await h7(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ia.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ia.SHORTEST:return{value:null,done:!0};case ia.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},A7=class extends en{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new p7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},xB=class extends A7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=QL.alea(n||I.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Xl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;I.assert(e>0,()=>`batchSize needs to be positive, but it is + ${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),Kn(async()=>(await n.iterator()).columnMajorBatch(e,t,wB),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Kn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Kn(async()=>(await t.iterator()).filter(s=>H(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Kn(async()=>(await t.iterator()).map(n=>H(()=>e(n))),this.size)}mapAsync(e){let t=this;return Kn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Kn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Kn(async()=>{let s=t1(async()=>({value:await t.iterator(),done:!1}));return oB(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=JL.alea(t||I.now().toString());return Kn(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Kn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Xl.MAX_BUFFER_SIZE=1e4;function Kn(e,t=null){return new class extends Xl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function bB(e){return Kn(async()=>f7(e),e.length)}function vB(e){if(!ql(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n{let n=await h7(e,s=>{if(s instanceof Xl)return{value:s.iterator(),recurse:!1};if(ql(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return iB(n,ia.SHORTEST)},t)}function wB(e){if(e===null)return null;let t=e[0];return nB(t)?{value:kB(e),recurse:!1}:{value:null,recurse:!0}}function kB(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ge?$n(e):cn(e)}var y7=class extends Xl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` +`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},tf='"',zc=Symbol("out"),x7=Symbol("field"),nf=Symbol("quote"),s1=Symbol("quoteafterquote"),b7=Symbol("quoteinquote"),v7=class extends Xl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new y7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(I.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&I.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(I.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(ee().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new w7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(I.sizeFromShape(t));return n.set(e,n.length-e.length),cn(n,t)}},k7=class extends en{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Mt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=Ps([a,r,i,o],[1,4])}else this.cropBox=Ps([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(ee().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new k7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&I.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=ls.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return H(()=>{let t=Ot(ce(e,"float32"),0),n;n=_e.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return U(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},I7=class{},S7=class extends en{split(e){return new IB(this,e)}},IB=class extends S7{constructor(e,t){super();this.upstream=e,this.impl=new SB(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},SB=class extends n1{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},CB=class extends en{decodeUTF8(){return new TB(this)}},TB=class extends S7{constructor(e){super();this.upstream=e,this.impl=new NB(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},NB=class extends n1{constructor(e){super();if(this.upstream=e,ee().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=JI();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return ee().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},C7=class extends CB{constructor(e,t={}){super();this.file=e,this.options=t,I.assert(e instanceof Uint8Array||(ee().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function EB(e,t={}){let n,s;typeof e=="string"?n=e:(n=e.url,s=RB(e));let r=await I.fetch(n,s);if(r.ok){let a=new Uint8Array(await r.arrayBuffer());return new C7(a,t)}else throw new Error(r.statusText)}var RB=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function T7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var N7=class extends I7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(T7(this.input)&&ee().get("IS_NODE")){let e=gi("fs");this.input=e.readFileSync(this.input.substr(7))}return new C7(this.input,this.options)}},E7=class extends I7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return T7(this.url)?new N7(this.url,this.fileOptions).iterator():EB(this.url,this.fileOptions)}};function _B(e,t={}){return new v7(new E7(e),t)}function $B(e){let t=t1(e);return Kn(async()=>t)}function DB(e){return Kn(async()=>{let t=await e();return t1(()=>t.next())})}async function FB(e,t){return k7.create(e,t)}async function OB(e){return w7.create(e)}var PB="3.8.0";function ke(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&I.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var MB=nr.whereImpl,sf=class extends Ru{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Wd(this,br())}nextDataId(){return sf.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,ee().get("IS_NODE")&&$.warn(` ============================ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details. -============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&I.isString(n[0])){let r=n.map(a=>I.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return $.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>I.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}makeOutput(e,t,n){let s=this.write(e,t,n);return Ar().makeTensorFromDataId(s,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=I.now();return e(),{kernelMs:I.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ke([e],"where");let t=this.readSync(e.dataId);return vB(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Zp.nextDataId=0;var Y2={};Pe(Y2,{addImpl:()=>k7,bincountImpl:()=>Q2,bincountReduceImpl:()=>I7,ceilImpl:()=>S7,concatImpl:()=>e1,equalImpl:()=>C7,expImpl:()=>N7,expm1Impl:()=>R7,floorImpl:()=>_7,gatherNdImpl:()=>$7,gatherV2Impl:()=>F7,greaterEqualImpl:()=>O7,greaterImpl:()=>D7,lessEqualImpl:()=>M7,lessImpl:()=>P7,linSpaceImpl:()=>z7,logImpl:()=>L7,maxImpl:()=>B7,maximumImpl:()=>W7,minimumImpl:()=>V7,multiplyImpl:()=>t1,negImpl:()=>U7,notEqualImpl:()=>H7,prodImpl:()=>G7,rangeImpl:()=>s1,rsqrtImpl:()=>j7,simpleAbsImpl:()=>w7,sliceImpl:()=>Qp,sparseFillEmptyRowsImpl:()=>q7,sparseReshapeImpl:()=>X7,sparseSegmentReductionImpl:()=>r1,squaredDifferenceImpl:()=>K7,stridedSliceImpl:()=>Z7,stringNGramsImpl:()=>Y7,stringSplitImpl:()=>J7,stringToHashBucketFastImpl:()=>Q7,subImpl:()=>ew,tileImpl:()=>tw,topKImpl:()=>sw,transposeImpl:()=>n1,uniqueImpl:()=>rw});function w7(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;ke(t,"abs");let s=new Float32Array(I.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=w7(r),n.makeOutput(s,t.shape,"float32")},kB={kernelName:pi,backendName:"cpu",kernelFunc:wB};function Mt(e){return(t,n,s,r,a)=>{let o=$.assertAndGetBroadcastShape(t,n),i=o.length,l=I.computeStrides(o),u=I.sizeFromShape(o),c=I.getTypedArrayFromDType(a,u),d=t.length,h=n.length,p=I.computeStrides(t),f=I.computeStrides(n),m=$.getBroadcastDims(t,o),A=$.getBroadcastDims(n,o);if(m.length+A.length===0)for(let g=0;gx[w]=0);let b=I.locToIndex(x,d,p),v=y.slice(-h);A.forEach(w=>v[w]=0);let k=I.locToIndex(v,h,f);c[g]=e(s[b],r[k])}return[c,o]}}function jn(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var IB={kernelName:Vd,backendName:"cpu",kernelFunc:jn};function Yp(e,t,n="float32"){if(n==="complex64"){let r=Yp(e,t,"float32"),a=Yp(e,t,"float32");return jn({inputs:{real:r,imag:a},backend:e})}let s=I.makeZerosTypedArray(I.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function rr(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var SB={kernelName:Ma,backendName:"cpu",kernelFunc:rr};function Bo(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var CB={kernelName:uh,backendName:"cpu",kernelFunc:Bo};function ra(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return rr({inputs:{x:r},backend:n});let o=Yp(n,r.shape,r.dtype),i=ra({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=jn({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=Bo({inputs:{input:r},backend:n}),i=ra({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!I.hasEncodingLoss(r.dtype,a)){let o=rr({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=I.toTypedArray([0],r.dtype),[l,u]=Mt((c,d)=>c!==d?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var TB={kernelName:ka,backendName:"cpu",kernelFunc:ra};function Jt(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;ke([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=o.dtype==="string"?$.fromUint8ToStringArray(u):u,h=o.dtype==="string"?$.fromUint8ToStringArray(c):c,p=s||o.dtype,[f,m]=t(o.shape,i.shape,d,h,p);return l.makeTensorInfo(m,p,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=ra({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),d=c.complexTensorInfos.real,h=c.complexTensorInfos.imag,p=l.data.get(d.dataId).values,f=l.data.get(h.dataId).values,m=ra({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(m.dataId),g=A.complexTensorInfos.real,y=A.complexTensorInfos.imag,x=l.data.get(g.dataId).values,b=l.data.get(y.dataId).values,[v,k,w]=n(o.shape,i.shape,p,f,x,b),C=l.makeTensorInfo(w,"float32",v),E=l.makeTensorInfo(w,"float32",k),O=jn({inputs:{real:C,imag:E},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(C),l.disposeIntermediateTensorInfo(E),O}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=s||o.dtype,[h,p]=t(o.shape,i.shape,u,c,d);return l.makeTensorInfo(p,d,h)}}}function J2(e){return(t,n,s,r,a,o)=>{let i=$.assertAndGetBroadcastShape(t,n),l=I.sizeFromShape(i),u=i.length,c=I.computeStrides(i),d=I.getTypedArrayFromDType("float32",l),h=I.getTypedArrayFromDType("float32",l),p=$.getBroadcastDims(t,i),f=$.getBroadcastDims(n,i),m=$.mergeRealAndImagArrays(s,r),A=$.mergeRealAndImagArrays(a,o),g=t.length,y=I.computeStrides(t),x=n.length,b=I.computeStrides(n);if(p.length+f.length===0)for(let v=0;vw[_]=0);let C=I.locToIndex(w,g,y),E=k.slice(-x);f.forEach(_=>E[_]=0);let O=I.locToIndex(E,x,b),R=e(m[C*2],m[C*2+1],A[O*2],A[O*2+1]);d[v]=R.real,h[v]=R.imag}return[d,h,i]}}var k7=Mt((e,t)=>e+t),NB=J2((e,t,n,s)=>({real:e+n,imag:t+s})),Fc=Jt(Pr,k7,NB),EB={kernelName:Pr,backendName:"cpu",kernelFunc:Fc};function Q2(e,t,n,s,r){let a=I.sizeFromShape(s),o=I.makeZerosTypedArray(r,n);for(let i=0;i=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function I7(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=Be([r,n],t.dtype);for(let i=0;i=n||(s?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function Ul(e){return(t,n,s)=>{let r=I.getTypedArrayFromDType(n,t.length);for(let a=0;a{let{x:o}=s;if(ke(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=I.sizeFromShape(o.shape),c=n||o.dtype,d=I.getArrayFromDType(c,u);for(let h=0;h{let{x:o}=s;if(ke(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,r);return i.makeTensorInfo(o.shape,u,c)}}var S7=Ul(e=>Math.ceil(e)),RB=Hl(Ia,S7),_B={kernelName:Ia,backendName:"cpu",kernelFunc:RB};function e1(e,t,n,s){let r=I.getArrayFromDType(n,I.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=I.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?$.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;ue===t?1:0),T7=Jt(Ei,C7,null,"bool"),$B={kernelName:Ei,backendName:"cpu",kernelFunc:T7},N7=Ul(e=>Math.exp(e)),E7=Hl($a,N7),FB={kernelName:$a,backendName:"cpu",kernelFunc:E7},R7=Ul(e=>Math.expm1(e)),DB=Hl(_i,R7),OB={kernelName:_i,backendName:"cpu",kernelFunc:DB},_7=Ul(e=>Math.floor(e)),PB=Hl(Fa,_7),MB={kernelName:Fa,backendName:"cpu",kernelFunc:PB};function $7(e,t,n,s,r,a,o,i,l){let u=Be([s,a],n);for(let c=0;c=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let p=0;pe>t?1:0),zB=Jt(Oi,D7,null,"bool"),LB={kernelName:Oi,backendName:"cpu",kernelFunc:zB},O7=Mt((e,t)=>e>=t?1:0),BB=Jt(Pa,O7,null,"bool"),WB={kernelName:Pa,backendName:"cpu",kernelFunc:BB},P7=Mt((e,t)=>ee<=t?1:0),HB=Jt(Bi,M7,null,"bool"),GB={kernelName:Bi,backendName:"cpu",kernelFunc:HB};function z7(e,t,n){let s=(t-e)/(n-1),r=I.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;aMath.log(e)),jB=Hl(La,L7),qB={kernelName:La,backendName:"cpu",kernelFunc:jB};function B7(e,t,n,s){let r=I.getTypedArrayFromDType(s,I.sizeFromShape(n));for(let a=0;ai)&&(i=u)}r[a]=i}return r}var W7=Mt((e,t)=>Math.max(e,t)),XB=Jt(Wa,W7),KB={kernelName:Wa,backendName:"cpu",kernelFunc:XB},V7=Mt((e,t)=>Math.min(e,t)),ZB=Jt(Ga,V7),YB={kernelName:Ga,backendName:"cpu",kernelFunc:ZB},t1=Mt((e,t)=>e*t),JB=J2((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),Jp=Jt(qa,t1,JB),QB={kernelName:qa,backendName:"cpu",kernelFunc:Jp};function U7(e,t,n){let s=I.createScalarValue(-1,n);return t1([],t,s,e,n)}function eW(e){let{inputs:t,backend:n}=e,{x:s}=t;ke(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=U7(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var tW={kernelName:Hi,backendName:"cpu",kernelFunc:eW},H7=Mt((e,t)=>e!==t?1:0),nW=Jt(Gi,H7,null,"bool"),sW={kernelName:Gi,backendName:"cpu",kernelFunc:nW};function n1(e,t,n,s,r){let a=t.length,o=I.sizeFromShape(t),i=I.computeStrides(t),l=I.computeStrides(r),u=I.getTypedArrayFromDType(n,I.sizeFromShape(r));for(let c=0;cn.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(g,A,f)}var oW={kernelName:Yi,backendName:"cpu",kernelFunc:aW};function s1(e,t,n,s){let r=e===t,a=e1;if(r||a||o)return I.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=I.makeZerosTypedArray(i,s);t1/Math.sqrt(e)),iW=Hl(so,j7),lW={kernelName:so,backendName:"cpu",kernelFunc:iW};function Qp(e,t,n,s,r){let a=An.isSliceContinous(s,t,n),o=I.sizeFromShape(n),i=I.computeStrides(s);if(a){let d=An.computeFlatOffset(t,i);return r==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=r==="string"?$.fromUint8ToStringArray(e):e,u=Be(s,r,l),c=Be(n,r);for(let d=0;df+t[m]);c.set(u.get(...p),...h)}return r==="string"?$.fromStringArrayToUint8(c.values):c.values}function Wo(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;ke(r,"slice");let[i,l]=An.parseSliceParams(r,a,o);An.assertParamsValid(r,i,l);let u=n.data.get(r.dataId).values,c=Qp(u,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}var uW={kernelName:sl,backendName:"cpu",kernelFunc:Wo};function q7(e,t,n,s,r,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but - indices.shape[0] = ${i}`);let A=I.getArrayFromDType(n,0),g=I.getArrayFromDType(r,0);return[A,[0,d],g,u,c]}let h=!0,p=0,f=new Array(l).fill(0);for(let A=0;A=l)throw new Error(`indices(${A}, 0) is invalid: ${g} >= ${l}`);++f[g],h=h&&g>=p,p=g}let m=!0;for(let A=0;A0&&(f[A]+=f[A-1])}if(m&&h){let A=e,g=s;for(let y=0;y0){p[h-1]=1;for(let A=h-2;A>=0;--A)p[A]=p[A+1]*s[A+1]}let f=[];if(i>0){f[i-1]=1;for(let A=i-2;A>=0;--A)f[A]=f[A+1]*l[A+1]}let m=I.getArrayFromDType(n,o*i);for(let A=0;A0?r[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let h=t.slice();h[0]=d;let p=h.reduce((x,b)=>x*b,1),f=I.getArrayFromDType(n,p);if(i===0)return d>0&&f.fill(o),[f,h];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,A=1,g=0,y=r[m];for(;;){let x=0;if(A=x)throw new Error("segment ids are not increasing")}if(y<0||y>=d)throw new Error(`Segment id ${y} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);y>g&&f.fill(o,g*u,y*u);for(let b=m;b=l[0])throw new Error(`Bad: indices[${b}] == ${s[b]} out of range [0, ${l[0]})`);for(let k=0;ki)break}return g{let n=e-t;return n*n}),cW=Jt(uo,K7),dW={kernelName:uo,backendName:"cpu",kernelFunc:cW};function Z7(e,t,n,s){let r=Be(e,t.dtype);for(let a=0;a0?0:o-i),h=0;h+=l*this.leftPad.length;for(let g=0;gg.forEach(y=>f[m++]=y);for(let g=0;g0){A(e[d+c-1]);for(let g=0;g0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=I.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[r]);for(let i=0;i{let d=t[i+1]-t[i],h=this.getNumNGrams(d,c);this.createNGrams(e,l,o,u,h,c),u+=h}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let d=c+2*this.padWidth,h=1;this.createNGrams(e,l,o,u,h,d)}}return[o,a]}};function Y7(e,t,n,s,r,a,o,i){return new hW(n,s,r,a,o,i).compute(e,t)}function pW(e,t,n){if(!e.length)return[];if(t.length===0){let a=new Array(e.length);for(let o=0;oe-t),fW=J2((e,t,n,s)=>({real:e-n,imag:t-s})),a1=Jt(co,ew,fW),mW={kernelName:co,backendName:"cpu",kernelFunc:a1};function tw(e,t){let n=new Array(e.rank);for(let r=0;r{let n=t.value-e.value;return n===0?e.index-t.index:n};function nw(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,u=Math.log(i),c=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*c*(i-c)/i)*Math.sign(l-i/2),h=Math.max(n,Math.floor(t-l*c/i+d)),p=Math.min(s,Math.floor(t+(i-l)*c/i+d));nw(e,t,h,p)}let r=e[t],a=n,o=s;for(I.swap(e,n,t),Dc(e[s],r)>0&&I.swap(e,n,s);a0;)o=o-1}Dc(e[n],r)===0?I.swap(e,n,o):(o=o+1,I.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function sw(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=I.getTypedArrayFromDType(n,o*s),u=I.getTypedArrayFromDType("int32",o*s);for(let d=0;df[x]={value:y,index:x}),s{for(let A=0;Anew Zp,1);var aw=rt(Ti,e=>e>=0?e:Math.exp(e)-1),gW={kernelName:Ti,backendName:"cpu",kernelFunc:aw};function ow(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;ke([r],"leakyRelu");let o=I.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=I.getTypedArrayFromDType("float32",o);for(let u=0;ue<0?t*e:e);function iw(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;ke([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=xW(s.shape,r.shape,a,o,s.dtype);return n.makeTensorInfo(l,s.dtype,i)}var bW={kernelName:Ya,backendName:"cpu",kernelFunc:iw},lw=rt(Ja,e=>Math.max(0,e)),vW={kernelName:Ja,backendName:"cpu",kernelFunc:lw},uw=rt(eo,e=>Math.min(Math.max(0,e),6)),wW={kernelName:eo,backendName:"cpu",kernelFunc:uw},cw=rt(ao,e=>1/(1+Math.exp(-e))),kW={kernelName:ao,backendName:"cpu",kernelFunc:cw};function o1(e,t,n,s,r){if(n==="linear")return rr({inputs:{x:t},backend:e});if(n==="relu")return lw({inputs:{x:t},backend:e});if(n==="elu")return aw({inputs:{x:t},backend:e});if(n==="relu6")return uw({inputs:{x:t},backend:e});if(n==="prelu")return iw({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return ow({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return cw({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function gt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=I.sizeFromShape(r.shape),i=I.inferFromImplicitShape(a,o),l=I.sizeFromShape(i);I.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;c.shape=i,d.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var IW={kernelName:Qi,backendName:"cpu",kernelFunc:gt};function dw(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;ke([r,a],"matMul");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[u-1]:a.shape[u-2],h=o?r.shape[l-1]:r.shape[l-2],p=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),A=I.sizeFromShape(f),g=I.sizeFromShape(m),y=A===g||A===1||g===1;I.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(A>g?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([h,p]);I.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[A,c,h]:[A,h,c],k=i?[g,p,d]:[g,d,p],w=gt({inputs:{x:r},backend:n,attrs:{shape:v}}),C=gt({inputs:{x:a},backend:n,attrs:{shape:k}}),E=o?w.shape[1]:w.shape[2],O=o?w.shape[2]:w.shape[1],R=i?C.shape[1]:C.shape[2],_=Math.max(A,g),N=n.data.get(w.dataId).values,P=n.data.get(C.dataId).values,W=I.computeStrides(w.shape),j=I.computeStrides(C.shape),[q,X,Q]=o?[W[0],1,W[1]]:[W[0],W[1],1],[ne,te,se]=i?[1,j[1],j[0]]:[j[1],1,j[0]],J=O*R,ie=Be([_,O,R],w.dtype),le=ie.values,he=n.blockSize;for(let ge=0;ge<_;ge++)for(let Ce=0;CeMath.acos(e)),EW={kernelName:fi,backendName:"cpu",kernelFunc:NW},RW=rt(mi,e=>Math.acosh(e)),_W={kernelName:mi,backendName:"cpu",kernelFunc:RW};function $W(e){let{inputs:t,backend:n}=e,s=t;ke(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=Be(s[0].shape,s[0].dtype),o=a.values;for(let i=0;iy&&(y=v,x=b)}p[A]=x}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var LW={kernelName:ba,backendName:"cpu",kernelFunc:zW};function BW(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;ke(r,"argMin");let o=I.parseAxisParam(a,r.shape),i=$.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=ps({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=$.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],$.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[c,d]=$.computeOutAndReduceShapes(l.shape,o),h=I.sizeFromShape(c),p=I.makeZerosTypedArray(h,"int32"),f=I.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let A=0;An.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var WW={kernelName:Tu,backendName:"cpu",kernelFunc:BW},VW=rt(yi,e=>Math.asin(e)),UW={kernelName:yi,backendName:"cpu",kernelFunc:VW},HW=rt(xi,e=>Math.asinh(e)),GW={kernelName:xi,backendName:"cpu",kernelFunc:HW},jW=rt(bi,e=>Math.atan(e)),qW={kernelName:bi,backendName:"cpu",kernelFunc:jW},XW=Mt((e,t)=>Math.atan2(e,t)),KW=Jt(wi,XW),ZW={kernelName:wi,backendName:"cpu",kernelFunc:KW},YW=rt(vi,e=>Math.atanh(e)),JW={kernelName:vi,backendName:"cpu",kernelFunc:YW};function i1(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,c=r.effectiveFilterHeight,d=r.effectiveFilterWidth,h=r.padInfo.top,p=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Be(r.outShape,n),A=m.values,g=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let b=0;bq?q=le:a==="avg"&&(X+=le,Q++)}if(isNaN(q))break}let ne=_+N*x+w;A[ne]=a==="avg"?X/Q:q}}}return m}function hw(e,t,n,s,r=!1,a=!1){let o=Be(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,u=s.dilationHeight,c=s.dilationWidth,d=s.effectiveFilterHeight,h=s.effectiveFilterWidth,p=s.padInfo.top,f=s.padInfo.left,m=Be(t,n,e);for(let A=0;AO&&(O=j,r?R=a?((A*s.inHeight+_)*s.inWidth+P)*s.inChannels+g:(_*s.inWidth+P)*s.inChannels+g:R=N*h+W)}}o.set(R,A,y,k,g)}}return o}function pw(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,c=r.dilationHeight,d=r.dilationWidth,h=r.effectiveFilterDepth,p=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,A=r.padInfo.top,g=r.padInfo.left,y=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Be(r.outShape,n),b=x.values,v=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],w=r.outShape[3]*r.outShape[4],C=r.outShape[4];for(let E=0;ECe?Ce=Ve:a==="avg"&&(Te+=Ve,$e++),isNaN(Ce))break}if(isNaN(Ce))break}if(isNaN(Ce))break}let Me=ge+_;b[Me]=a==="avg"?Te/$e:Ce}}}}return x}function QW(e,t){let n=Be(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,d=t.effectiveFilterWidth,h=t.padInfo.front,p=t.padInfo.top,f=t.padInfo.left;for(let m=0;m=N&&(N=te,P=j*c*d+X*c+ne)}}}n.set(P,m,g,v,E,A)}}}return n}function eV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;ke(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;I.assert($.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=$.computePool2DInfo(r.shape,a,o,u,i,l),d;if(c.filterWidth===1&&c.filterHeight===1&&I.arraysEqual(c.inShape,c.outShape))d=rr({inputs:{x:r},backend:n});else{let h=n.data.get(r.dataId).values,p=I.computeStrides(r.shape),f=i1(h,r.shape,r.dtype,p,c,"avg");d=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return d}var tV={kernelName:va,backendName:"cpu",kernelFunc:eV};function nV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;ke(r,"avgPool3d");let c=$.computePool3DInfo(r.shape,a,o,1,i,l,u),d=n.data.get(r.dataId).values,h=pw(d,r.shape,r.dtype,I.computeStrides(r.shape),c,"avg");return n.makeTensorInfo(h.shape,"float32",h.values)}var sV={kernelName:Nu,backendName:"cpu",kernelFunc:nV};function rV(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;ke([r,a],"avgPool3DGrad");let c=$.computePool3DInfo(a.shape,o,i,1,l,u),d=c.strideDepth,h=c.strideHeight,p=c.strideWidth,f=c.filterDepth,m=c.filterHeight,A=c.filterWidth,g=c.dilationDepth,y=c.dilationHeight,x=c.dilationWidth,b=c.effectiveFilterDepth,v=c.effectiveFilterHeight,k=c.effectiveFilterWidth,w=b-1-c.padInfo.front,C=k-1-c.padInfo.left,E=v-1-c.padInfo.top,O=Be(a.shape,"float32"),R=1/(f*m*A),_=n.bufferSync(r);for(let N=0;N=c.outDepth||Math.floor(J)!==J))for(let ie=0;ie=c.outHeight||Math.floor(le)!==le))for(let he=0;he=c.outWidth||Math.floor(ge)!==ge)continue;te+=_.get(N,J,le,ge,P)}}}O.set(te*R,N,W,j,q,P)}return n.makeTensorInfo(O.shape,O.dtype,O.values)}var aV={kernelName:Bd,backendName:"cpu",kernelFunc:rV};function oV(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;ke([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=$.computePool2DInfo(o.shape,i,l,1,u),d=c.strideHeight,h=c.strideWidth,p=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,A=c.dilationWidth,g=c.effectiveFilterHeight,y=c.effectiveFilterWidth,x=y-1-c.padInfo.left,b=g-1-c.padInfo.top,v=Be(o.shape,"float32"),k=1/(p*f),w=n.data.get(r.dataId).values,C=Be(r.shape,"float32",w);for(let E=0;E=c.outHeight||Math.floor(q)!==q))for(let X=0;X=c.outWidth||Math.floor(Q)!==Q)continue;W+=C.get(E,q,Q,O)}}v.set(W*k,E,R,_,O)}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var iV={kernelName:Ld,backendName:"cpu",kernelFunc:oV};function lV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;I.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),I.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),I.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ke([r,i,l,a,o],"batchNorm");let{varianceEpsilon:u}=s;u==null&&(u=.001);let c=n.data.get(r.dataId).values,d=n.data.get(i.dataId).values,h=n.data.get(l.dataId).values,p=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),A=f.length,g=p.length,y=h.length,x=d.length,b=0,v=0,k=0,w=0;for(let C=0;C=A&&(b=0),v>=x&&(v=0),k>=g&&(k=0),w>=y&&(w=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var uV={kernelName:Oa,backendName:"cpu",kernelFunc:lV};function cV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;ke([r],"batchToSpaceND");let i=a.reduce((g,y)=>g*y),l=$.getReshaped(r.shape,a,i),u=$.getPermuted(l.length,a.length),c=$.getReshapedPermuted(r.shape,a,i),d=$.getSliceBeginCoords(o,a.length),h=$.getSliceSize(c,o,a.length),p=gt({inputs:{x:r},backend:n,attrs:{shape:l}}),f=ps({inputs:{x:p},backend:n,attrs:{perm:u}}),m=gt({inputs:{x:f},backend:n,attrs:{shape:c}}),A=Wo({inputs:{x:m},backend:n,attrs:{begin:d,size:h}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var dV={kernelName:ki,backendName:"cpu",kernelFunc:cV};function hV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=Q2(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var pV={kernelName:Wd,backendName:"cpu",kernelFunc:hV},fV=rt(Mr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(I.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let u=0;um.shape),a);if(I.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>I.sizeFromShape(m.shape)>0);if(i.length===1)return rr({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if($.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>Bo({inputs:{input:b},backend:n})),A=i.map(b=>Gl({inputs:{input:b},backend:n})),g=jl({inputs:m,backend:n,attrs:{axis:a}}),y=jl({inputs:A,backend:n,attrs:{axis:a}}),x=jn({inputs:{real:g,imag:y},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),A.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(y),x}let u=i.map(m=>{let A=I.sizeFromShape(m.shape.slice(a));return gt({inputs:{x:m},backend:n,attrs:{shape:[-1,A]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=$.computeOutShape(u.map(m=>m.shape),1);let d=u[0].shape[0]===1,h=e1(c,o,t[0].dtype,d),p=$.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(p,t[0].dtype,h);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var xV={kernelName:Ii,backendName:"cpu",kernelFunc:jl};function fw(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s;ke([r,a],"conv2d");let d=$.convertConv2DDataFormat(l),h=$.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,d),p=h.filterHeight,f=h.filterWidth,m=h.dilationHeight,A=h.dilationWidth,g=h.padInfo.left,y=h.padInfo.top,x=h.dataFormat==="channelsLast",b=new Bt(h.outShape,r.dtype),v=I.computeStrides(r.shape),k=I.computeStrides(a.shape),w=v[0],C=x?v[1]:v[2],E=x?v[2]:1,O=x?1:v[1],R=b.strides[0],_=x?b.strides[1]:b.strides[2],N=x?b.strides[2]:1,P=x?1:b.strides[1],W=n.data.get(r.dataId).values,j=n.data.get(a.dataId).values,q=b.values;for(let X=0;X=h.inHeight)continue;let he=ie*k[0],ge=Q+le*C;for(let Ce=0;Ce=h.inWidth)continue;let it=he+Me*k[1],et=ge+De*E,tt=it;for(let Je=0;Je=u.inDepth)continue;let X=j*E[0],Q=R+q*C[1];for(let ne=0;ne=u.inHeight)continue;let le=X+J*E[1],he=Q+ie*C[2];for(let ge=0;ge=u.inWidth)continue;let De=le+$e*E[2],it=he+Me*u.inChannels,et=De;for(let tt=0;ttMath.cos(e)),$V={kernelName:Ta,backendName:"cpu",kernelFunc:_V},FV=rt(Na,e=>Math.cosh(e)),DV={kernelName:Na,backendName:"cpu",kernelFunc:FV};function OV(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,[c,d,h,p]=r.shape,f=a.shape[0],[m,A]=i,g=Be([f,m,A,p],"float32"),y=n.data.get(a.dataId).values,x=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,v=I.computeStrides(r.shape),k=I.computeStrides(g.shape);for(let w=0;w=c)continue;let P=m>1?(R-E)*(d-1)/(m-1):0,W=A>1?(_-O)*(h-1)/(A-1):0;for(let j=0;j1?E*(d-1)+j*P:.5*(E+R)*(d-1);if(q<0||q>d-1){for(let X=0;X1?O*(h-1)+te*W:.5*(O+_)*(h-1);if(se<0||se>h-1){for(let he=0;he1?O*(h-1)+X*W:.5*(O+_)*(h-1);if(Q<0||Q>h-1){for(let se=0;seg+f-y-1:(g,y)=>g+y;for(let g=0;g`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`),I.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=r.shape[1],u=r.shape[2],c=r.shape[3],d=l*a,h=u*a,p=c/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*d*h*p),A=0;for(let g=0;g`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${h}'`);let p=$.computeConv2DInfo(r.shape,a.shape,o,h,i,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:A,dilationWidth:g,padInfo:y}=p,x=y.left,b=y.top,v=p.outChannels/p.inChannels,k=new Bt(p.outShape,r.dtype),w=n.data.get(r.dataId).values,C=n.data.get(a.dataId).values,E=k.values;for(let O=0;O=p.inHeight)continue;let X=j*d[0],Q=R+q*c[1];for(let ne=0;ne=p.inWidth)continue;let le=X+J*d[1],he=Q+ie*p.inChannels,ge=te,Ce=le;for(let Te=0;Te{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,u=l.data.get(s.dataId).values,c=s.shape.length,d=l.data.get(r.dataId).values,h=r.shape.length,{batchSize:p,inHeight:f,inWidth:m,inChannels:A,outHeight:g,outWidth:y,padInfo:x,strideHeight:b,strideWidth:v,filterHeight:k,filterWidth:w,dilationHeight:C,dilationWidth:E,outShape:O}=$.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),R=I.sizeFromShape(O),_=O.length,N=I.getArrayFromDType(s.dtype,R);for(let W=0;W=0&&ie=0&&hete&&(te=Te)}}}let se=I.locToIndex([W,j,X,ne],_,I.computeStrides(O));N[se]=te}}}return{dataId:l.write(I.toTypedArray(N,s.dtype),O,s.dtype),shape:O,dtype:s.dtype}}},YV={kernelName:Yd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=I.toNestedArray(s.shape,u.data.get(s.dataId).values),d=I.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:h,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:g,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:k,dilationHeight:w,dilationWidth:C,outShape:E}=$.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);I.assert(a.rank===E.length,()=>`Error in ${Yd}, dy must have the same rank as output ${E.length}, but got ${a.rank}`);let O=I.toNestedArray(E,u.data.get(a.dataId).values),R=I.makeZerosNestedTypedArray(r.shape,r.dtype);for(let N=0;N=0&&J=0&&leQ&&(Q=he,ne=se,te=ie)}}}R[ne][te][X]+=O[N][P][j][X]}}}return{dataId:u.write(I.toTypedArray(R,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},JV={kernelName:Zd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=I.toNestedArray(s.shape,u.data.get(s.dataId).values),d=I.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:h,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:g,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:k,dilationHeight:w,dilationWidth:C,outShape:E}=$.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);I.assert(a.rank===E.length,()=>`Error in ${Zd}, dy must have the same rank as output ${E.length}, but got ${a.rank}`);let O=I.toNestedArray(E,u.data.get(a.dataId).values),R=I.makeZerosNestedTypedArray(s.shape,s.dtype);for(let N=0;N=0&&J=0&&leQ&&(Q=he,ne=J,te=le)}}}R[N][ne][te][X]+=O[N][P][j][X]}}}return{dataId:u.write(I.toTypedArray(R,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Oc(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;ke(r,"sum");let i;r.dtype==="bool"?i=ra({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=rr({inputs:{x:r},backend:n});let l=i.shape.length,u=I.parseAxisParam(a,i.shape),c=$.getAxesPermutation(u,l),d=u,h=i;c!=null&&(h=ps({inputs:{x:i},backend:n,attrs:{perm:c}}),d=$.getInnerMostAxes(d.length,l)),$.assertAxesAreInnerMostDims("sum",d,h.shape.length);let[p,f]=$.computeOutAndReduceShapes(h.shape,d),m=$.upcastType(h.dtype,"int32"),A=Yp(n,p,m),g=I.sizeFromShape(f),y=n.data.get(A.dataId).values,x=n.data.get(h.dataId).values;for(let b=0;b=0&&(h=Oc({inputs:{x:h},backend:n,attrs:{axis:u[m]-(o.length-p),keepDims:!1}}),f.push(h)),p--)}for(let m of f)m!==h&&n.disposeIntermediateTensorInfo(m);return h}var tU={kernelName:Jd,backendName:"cpu",kernelFunc:eU};function nU(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;ke([s,r],"eluGrad");let a=new Float32Array(I.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l=1?a[l]=i[l]:a[l]=i[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",a)}var sU={kernelName:Qd,backendName:"cpu",kernelFunc:nU},rU=$.ERF_P,aU=$.ERF_A1,oU=$.ERF_A2,iU=$.ERF_A3,lU=$.ERF_A4,uU=$.ERF_A5,cU=rt(Ni,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+rU*n);return t*(1-((((uU*s+lU)*s+iU)*s+oU)*s+aU)*s*Math.exp(-n*n))}),dU={kernelName:Ni,backendName:"cpu",kernelFunc:cU};function ef(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(I.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),gt({inputs:{x:r},backend:n,attrs:{shape:i}})}var hU={kernelName:Ri,backendName:"cpu",kernelFunc:ef},pU=Mt((e,t)=>e/t),l1=Jt(_a,pU),u1={kernelName:_a,backendName:"cpu",kernelFunc:l1};function Aw(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,u=[r,a],c=I.sizeFromShape(u),d=I.getTypedArrayFromDType("float32",c),h=I.getTypedArrayFromDType("float32",c);for(let A=0;A{let{image:s}=e,r=n,a=I.getTypedArrayFromDType(s.dtype,I.sizeFromShape(s.shape)),[o,i,l,u]=s.shape,c=r.data.get(s.dataId).values;for(let h=0;h=0&&xMath.floor(e/t)),kU=Jt(Da,wU,null,"int32"),IU={kernelName:Da,backendName:"cpu",kernelFunc:kU};function SU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=s,m=fw({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h}});if(o){let A=m;m=Fc({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=o1(n,m,p,i,f),n.disposeIntermediateTensorInfo(A)}return m}var CU={kernelName:Ao,backendName:"cpu",kernelFunc:SU};function TU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=s,m=mw({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h}});if(o){let A=m;m=Fc({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=o1(n,m,p,i,f),n.disposeIntermediateTensorInfo(A)}return m}var NU={kernelName:go,backendName:"cpu",kernelFunc:TU};function EU(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=I.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,u,c,d]=$.prepareAndValidate(s,r);if(u===0)return n.makeTensorInfo(l,s.dtype,[]);let h=n.data.get(r.dataId).values,p=n.bufferSync(s),f=$7(h,p,s.dtype,u,i,c,d,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var RU={kernelName:Di,backendName:"cpu",kernelFunc:EU};function _U(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;ke([r,a],"gatherV2");let l=i;i==null&&(l=0);let u=I.sizeFromShape(a.shape),c=I.parseAxisParam(o,r.shape)[0],d=$.segment_util.collectGatherOpShapeInfo(r,a,c,l),h=gt({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),p=gt({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,u/d.batchSize]}}),f=[d.batchSize,d.outerSize,u/d.batchSize,d.sliceSize],m=n.bufferSync(p),A=n.bufferSync(h),g=F7(A,m,f);return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.makeTensorInfo(d.outputShape,g.dtype,g.values)}var $U={kernelName:Fi,backendName:"cpu",kernelFunc:_U};function FU(e){let{inputs:t,backend:n}=e,{input:s}=t,r=I.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=gt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=Aw(i,!0,n),u=gt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var DU={kernelName:th,backendName:"cpu",kernelFunc:FU},OU=rt(Pi,e=>Number.isFinite(e)?1:0,"bool"),PU={kernelName:Pi,backendName:"cpu",kernelFunc:OU},MU=rt(Mi,e=>Math.abs(e)===1/0?1:0,"bool"),zU={kernelName:Mi,backendName:"cpu",kernelFunc:MU},LU=rt(zi,e=>Number.isNaN(e)?1:0,"bool"),BU={kernelName:zi,backendName:"cpu",kernelFunc:LU};function WU(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=z7(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var VU={kernelName:sh,backendName:"cpu",kernelFunc:WU},UU=rt(Wi,e=>Math.log1p(e)),HU={kernelName:Wi,backendName:"cpu",kernelFunc:UU},GU=Mt((e,t)=>e&&t),jU=Jt(Vi,GU,null,"bool"),qU={kernelName:Vi,backendName:"cpu",kernelFunc:jU},XU=rt(Fu,e=>e?0:1,"bool"),KU={kernelName:Fu,backendName:"cpu",kernelFunc:XU},ZU=Mt((e,t)=>e||t),YU=Jt(Du,ZU,null,"bool"),JU={kernelName:Du,backendName:"cpu",kernelFunc:YU};function QU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;ke(r,"LRN");let u=r.shape[3],c=u-1,d=n.data.get(r.dataId).values,h=I.sizeFromShape(r.shape),p=new Float32Array(h);function f(m){let A=m%u,g=m-A+Math.max(0,A-a),y=m-A+Math.min(A+a,c),x=0;for(;g<=y;g++){let b=d[g];x+=b*b}return x}for(let m=0;m`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=$.computePool2DInfo(r.shape,a,o,u,i,l),d;if(c.filterWidth===1&&c.filterHeight===1&&I.arraysEqual(c.inShape,c.outShape))d=rr({inputs:{x:r},backend:n});else{let h=n.data.get(r.dataId).values,p=I.computeStrides(r.shape),f=i1(h,r.shape,r.dtype,p,c,"max");d=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return d}var aH={kernelName:Va,backendName:"cpu",kernelFunc:rH};function oH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;ke(r,"maxPool3d");let c=$.computePool3DInfo(r.shape,a,o,1,i,l,u),d=n.data.get(r.dataId).values,h=pw(d,r.shape,r.dtype,I.computeStrides(r.shape),c,"max");return n.makeTensorInfo(h.shape,"float32",h.values)}var iH={kernelName:Pu,backendName:"cpu",kernelFunc:oH};function lH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;ke([r,a],"maxPool3DGrad");let c=$.computePool3DInfo(a.shape,o,i,1,l,u),d=n.bufferSync(a),h=QW(d,c),p=c.strideDepth,f=c.strideHeight,m=c.strideWidth,A=c.dilationDepth,g=c.dilationHeight,y=c.dilationWidth,x=c.effectiveFilterDepth,b=c.effectiveFilterHeight,v=c.effectiveFilterWidth,k=x-1-c.padInfo.front,w=v-1-c.padInfo.left,C=b-1-c.padInfo.top,E=Be(a.shape,"float32"),O=n.bufferSync(r);for(let R=0;R=c.outDepth||Math.floor(te)!==te))for(let se=0;se=c.outHeight||Math.floor(J)!==J))for(let ie=0;ie=c.outWidth||Math.floor(le)!==le)continue;let he=x*b*v-1-h.get(R,te,J,le,_),ge=ne*b*v+se*v+ie,Ce=he===ge?1:0;if(Ce===0)continue;Q+=O.get(R,te,J,le,_)*Ce}}}E.set(Q,R,N,P,W,_)}return n.makeTensorInfo(E.shape,E.dtype,E.values)}var uH={kernelName:oh,backendName:"cpu",kernelFunc:lH};function cH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;ke([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:d}=s,h=$.computePool2DInfo(i.shape,l,u,1,c,d),p=n.data.get(i.dataId).values,f=Be(h.outShape,i.dtype,hw(p,i.shape,i.dtype,h).values),m=h.strideHeight,A=h.strideWidth,g=h.dilationHeight,y=h.dilationWidth,x=h.effectiveFilterHeight,b=h.effectiveFilterWidth,v=b-1-h.padInfo.left,k=x-1-h.padInfo.top,w=Be(i.shape,"float32"),C=n.data.get(r.dataId).values,E=Be(r.shape,"float32",C);for(let O=0;O=h.outHeight||Math.floor(X)!==X))for(let Q=0;Q=h.outWidth||Math.floor(ne)!==ne)continue;let te=x*b-1-f.get(O,X,ne,R),se=q*b+Q,J=te===se?1:0;if(J===0)continue;j+=E.get(O,X,ne,R)*J}}w.set(j,O,_,N,R)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var dH={kernelName:ah,backendName:"cpu",kernelFunc:cH};function hH(e,t,n,s,r){let a=I.computeStrides(t),o=i1(e,t,n,a,r,"max"),i=hw(e,t,n,r,!0,s);return[o.values,i.values]}var pH={kernelName:ih,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;ke(s,"MaxPoolWithArgmax");let u=l.data.get(s.dataId).values,c=$.computePool2DInfo(s.shape,r,a,[1,1],o),[d,h]=hH(u,s.shape,s.dtype,i,c),p=l.write(d,c.outShape,s.dtype),f=l.write(h,c.outShape,s.dtype);return[{dataId:p,shape:c.outShape,dtype:s.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function fH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=I.parseAxisParam(a,r.shape),u=$.computeOutAndReduceShapes(r.shape,i)[1],c=I.sizeFromShape(u),d=[],h=n.makeTensorInfo([],"float32",new Float32Array([c]));d.push(h);let p=ra({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(p);let f=l1({inputs:{a:p,b:h},backend:n});d.push(f);let m=Oc({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(A=>n.disposeIntermediateTensorInfo(A)),m}var mH={kernelName:Ua,backendName:"cpu",kernelFunc:fH};function AH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;ke(r,"min");let i=I.parseAxisParam(a,r.shape),l=i,u=$.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=ps({inputs:{x:r},backend:n,attrs:{perm:u}}),l=$.getInnerMostAxes(l.length,r.shape.length)),$.assertAxesAreInnerMostDims("min",l,c.shape.length);let[d,h]=$.computeOutAndReduceShapes(c.shape,l),p=I.sizeFromShape(h),f=I.makeZerosTypedArray(I.sizeFromShape(d),c.dtype),m=n.data.get(c.dataId).values;for(let g=0;gx[0]+r.shape[b]+x[1]),l=a.map(x=>x[0]),u=a.map((x,b)=>x[0]+r.shape[b]),c=o==="reflect"?0:1,d=n.data.get(r.dataId).values,h=r.shape.length,p=I.computeStrides(r.shape),f=I.sizeFromShape(i),m=i.length,A=I.computeStrides(i),g=I.getTypedArrayFromDType(r.dtype,f);for(let x=0;x=u[k]&&(b[k]=(u[k]-1)*2-b[k]+c);b=b.map((k,w)=>k-l[w]);let v=I.locToIndex(b,h,p);g[x]=d[v]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var xH={kernelName:ja,backendName:"cpu",kernelFunc:yH},bH=Mt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),vH=Jt(Ui,bH),wH={kernelName:Ui,backendName:"cpu",kernelFunc:vH},kH=Aa(t5());function yw(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=I.parseAxisParam([i],r.shape),u=gw({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=$.expandShapeToKeepDim(u.shape,l),d=gt({inputs:{x:u},backend:n,attrs:{shape:c}}),h=a1({inputs:{a:r,b:d},backend:n}),p=E7({inputs:{x:h},backend:n}),f=Oc({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),m=gt({inputs:{x:f},backend:n,attrs:{shape:c}}),A=l1({inputs:{a:p,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var IH={kernelName:lo,backendName:"cpu",kernelFunc:yw};function SH(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;ke(r,"multinomial");let l=i?r:yw({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],d=n.data.get(l.dataId).values,h=[u,a],p=I.makeZerosTypedArray(I.sizeFromShape(h),"int32");for(let f=0;f=0&&c[d]{I.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),I.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=ef({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=jl({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var BH={kernelName:Zi,backendName:"cpu",kernelFunc:bw};function WH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;ke(r,"pad");let i=a.map((y,x)=>y[0]+r.shape[x]+y[1]),l=a.map(y=>y[0]),u=n.data.get(r.dataId).values,c=I.sizeFromShape(r.shape),d=r.shape.length,h=I.computeStrides(r.shape),p=I.sizeFromShape(i),f=i.length,m=I.computeStrides(i),A=I.getTypedArrayFromDType(r.dtype,p);o!==0&&A.fill(o);for(let y=0;yk+l[w]),v=I.locToIndex(b,f,m);A[v]=u[y]}return{dataId:n.write(A,i,r.dtype),shape:i,dtype:r.dtype}}var vw={kernelName:Ka,backendName:"cpu",kernelFunc:WH},VH=Mt((e,t)=>Math.pow(e,t)),UH=Jt(Za,VH),HH={kernelName:Za,backendName:"cpu",kernelFunc:UH};function GH(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=s1(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var jH={kernelName:Mu,backendName:"cpu",kernelFunc:GH},qH=rt(Ji,e=>1/e),XH={kernelName:Ji,backendName:"cpu",kernelFunc:qH};function KH(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;ke(r,"resizeBilinear");let l=I.computeStrides(r.shape),[u,c]=i,[d,h,p,f]=r.shape,m=n.data.get(r.dataId).values,A=new Float32Array(I.sizeFromShape([d,u,c,f])),g=[a&&u>1?h-1:h,a&&c>1?p-1:p],y=[a&&u>1?u-1:u,a&&c>1?c-1:c],x=0,b=g[0]/y[0],v=g[1]/y[1];for(let k=0;k1?u-1:u,o&&p>1?c-1:c],A=[o&&h>1?h-1:h,o&&p>1?p-1:p],g=m[0]/A[0],y=m[1]/A[1],x=n.data.get(a.dataId).values,b=0;for(let v=0;v1?h-1:h,a&&c>1?p-1:p],y=[a&&u>1?u-1:u,a&&c>1?c-1:c],x=g[0]/y[0],b=g[1]/y[1],v=0;for(let k=0;k1?c-1:c,o&&f>1?d-1:d],y=[o&&p>1?p-1:p,o&&f>1?f-1:f],x=g[0]/y[0],b=g[1]/y[1],v=1/x,k=1/b,w=Math.ceil(v)*2+2,C=Math.ceil(k)*2+2;for(let E=0;E=p)continue;let J=O+se*l[1],ie=se*x,le=Math.min(c-1,o?Math.round(ie):Math.floor(ie));if(R===le)for(let he=0;he=f)continue;let Ce=J+ge*l[2],Te=ge*b,$e=Math.min(d-1,o?Math.round(Te):Math.floor(Te));W===$e&&(ne+=A[Ce+Q])}}m[j+Q]=ne}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var nG={kernelName:ch,backendName:"cpu",kernelFunc:tG};function sG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;ke(r,"reverse");let o=r.shape.length,i=I.parseAxisParam(a,r.shape);if(o===0)return rr({inputs:{x:r},backend:n});let l=new Bt(r.shape,r.dtype),u=n.bufferSync(r);for(let c=0;ch[p]=r.shape[p]-1-h[p]),l.set(u.get(...h),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var rG={kernelName:to,backendName:"cpu",kernelFunc:sG},aG={kernelName:fl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=I.getTypedArrayFromDType(s.dtype,I.sizeFromShape(s.shape)),[u,c,d,h]=s.shape,[p,f]=$.getImageCenter(o,c,d),m=255,A=Math.sin(r),g=Math.cos(r),y=i.data.get(s.dataId).values;for(let b=0;b=0&&P=0&&W{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),iG={kernelName:no,backendName:"cpu",kernelFunc:oG};function ww(e,t,n,s,r,a,o,i,l,u){let c=[s/r,r],d=e.values,h=t.values;if(s===0)return Be(n,t.dtype);let p=Be(c,t.dtype);p.values.fill(l);for(let f=0;f=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let g=0;g1||r.shape.length===1?1:I.sizeFromShape(r.shape.slice(1));for(let f=0;fe>=0?pG*e:hG*(Math.exp(e)-1)),mG={kernelName:nl,backendName:"cpu",kernelFunc:fG},AG=rt(al,e=>e<0?-1:e>0?1:0),gG={kernelName:al,backendName:"cpu",kernelFunc:AG},yG=rt(ro,e=>Math.sin(e)),xG={kernelName:ro,backendName:"cpu",kernelFunc:yG},bG=rt(rl,e=>Math.sinh(e)),vG={kernelName:rl,backendName:"cpu",kernelFunc:bG},wG=11920928955078125e-23,kw=Math.log(wG)+2,kG=rt(ol,e=>{let t=e>-kw,n=e0&&I.isString(n[0])){let r=n.map(a=>I.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return $.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>I.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}makeOutput(e,t,n){let s=this.write(e,t,n);return br().makeTensorFromDataId(s,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=I.now();return e(),{kernelMs:I.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ke([e],"where");let t=this.readSync(e.dataId);return MB(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};sf.nextDataId=0;var r1={};Pe(r1,{addImpl:()=>_7,bincountImpl:()=>o1,bincountReduceImpl:()=>$7,ceilImpl:()=>D7,concatImpl:()=>i1,equalImpl:()=>F7,expImpl:()=>P7,expm1Impl:()=>z7,floorImpl:()=>L7,gatherNdImpl:()=>B7,gatherV2Impl:()=>W7,greaterEqualImpl:()=>U7,greaterImpl:()=>V7,lessEqualImpl:()=>G7,lessImpl:()=>H7,linSpaceImpl:()=>j7,logImpl:()=>q7,maxImpl:()=>X7,maximumImpl:()=>K7,minimumImpl:()=>Z7,multiplyImpl:()=>l1,negImpl:()=>Y7,notEqualImpl:()=>J7,prodImpl:()=>Q7,rangeImpl:()=>c1,rsqrtImpl:()=>ew,simpleAbsImpl:()=>R7,sliceImpl:()=>of,sparseFillEmptyRowsImpl:()=>tw,sparseReshapeImpl:()=>nw,sparseSegmentReductionImpl:()=>d1,squaredDifferenceImpl:()=>sw,stridedSliceImpl:()=>rw,stringNGramsImpl:()=>aw,stringSplitImpl:()=>ow,stringToHashBucketFastImpl:()=>iw,subImpl:()=>lw,tileImpl:()=>uw,topKImpl:()=>dw,transposeImpl:()=>u1,uniqueImpl:()=>hw});function R7(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;ke(t,"abs");let s=new Float32Array(I.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=R7(r),n.makeOutput(s,t.shape,"float32")},LB={kernelName:xi,backendName:"cpu",kernelFunc:zB};function Lt(e){return(t,n,s,r,a)=>{let o=$.assertAndGetBroadcastShape(t,n),i=o.length,l=I.computeStrides(o),u=I.sizeFromShape(o),c=I.getTypedArrayFromDType(a,u),d=t.length,h=n.length,p=I.computeStrides(t),f=I.computeStrides(n),m=$.getBroadcastDims(t,o),g=$.getBroadcastDims(n,o);if(m.length+g.length===0)for(let A=0;Ax[w]=0);let b=I.locToIndex(x,d,p),v=y.slice(-h);g.forEach(w=>v[w]=0);let k=I.locToIndex(v,h,f);c[A]=e(s[b],r[k])}return[c,o]}}function Zn(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var BB={kernelName:Kd,backendName:"cpu",kernelFunc:Zn};function rf(e,t,n="float32"){if(n==="complex64"){let r=rf(e,t,"float32"),a=rf(e,t,"float32");return Zn({inputs:{real:r,imag:a},backend:e})}let s=I.makeZerosTypedArray(I.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function lr(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var WB={kernelName:Va,backendName:"cpu",kernelFunc:lr};function Go(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var VB={kernelName:gh,backendName:"cpu",kernelFunc:Go};function la(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return lr({inputs:{x:r},backend:n});let o=rf(n,r.shape,r.dtype),i=la({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Zn({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=Go({inputs:{input:r},backend:n}),i=la({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!I.hasEncodingLoss(r.dtype,a)){let o=lr({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=I.toTypedArray([0],r.dtype),[l,u]=Lt((c,d)=>c!==d?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var UB={kernelName:Na,backendName:"cpu",kernelFunc:la};function tn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;ke([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=o.dtype==="string"?$.fromUint8ToStringArray(u):u,h=o.dtype==="string"?$.fromUint8ToStringArray(c):c,p=s||o.dtype,[f,m]=t(o.shape,i.shape,d,h,p);return l.makeTensorInfo(m,p,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=la({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),d=c.complexTensorInfos.real,h=c.complexTensorInfos.imag,p=l.data.get(d.dataId).values,f=l.data.get(h.dataId).values,m=la({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),A=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,x=l.data.get(A.dataId).values,b=l.data.get(y.dataId).values,[v,k,w]=n(o.shape,i.shape,p,f,x,b),C=l.makeTensorInfo(w,"float32",v),R=l.makeTensorInfo(w,"float32",k),P=Zn({inputs:{real:C,imag:R},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(C),l.disposeIntermediateTensorInfo(R),P}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=s||o.dtype,[h,p]=t(o.shape,i.shape,u,c,d);return l.makeTensorInfo(p,d,h)}}}function a1(e){return(t,n,s,r,a,o)=>{let i=$.assertAndGetBroadcastShape(t,n),l=I.sizeFromShape(i),u=i.length,c=I.computeStrides(i),d=I.getTypedArrayFromDType("float32",l),h=I.getTypedArrayFromDType("float32",l),p=$.getBroadcastDims(t,i),f=$.getBroadcastDims(n,i),m=$.mergeRealAndImagArrays(s,r),g=$.mergeRealAndImagArrays(a,o),A=t.length,y=I.computeStrides(t),x=n.length,b=I.computeStrides(n);if(p.length+f.length===0)for(let v=0;vw[_]=0);let C=I.locToIndex(w,A,y),R=k.slice(-x);f.forEach(_=>R[_]=0);let P=I.locToIndex(R,x,b),E=e(m[C*2],m[C*2+1],g[P*2],g[P*2+1]);d[v]=E.real,h[v]=E.imag}return[d,h,i]}}var _7=Lt((e,t)=>e+t),HB=a1((e,t,n,s)=>({real:e+n,imag:t+s})),Lc=tn(Br,_7,HB),GB={kernelName:Br,backendName:"cpu",kernelFunc:Lc};function o1(e,t,n,s,r){let a=I.sizeFromShape(s),o=I.makeZerosTypedArray(r,n);for(let i=0;i=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function $7(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=We([r,n],t.dtype);for(let i=0;i=n||(s?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function Kl(e){return(t,n,s)=>{let r=I.getTypedArrayFromDType(n,t.length);for(let a=0;a{let{x:o}=s;if(ke(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=I.sizeFromShape(o.shape),c=n||o.dtype,d=I.getArrayFromDType(c,u);for(let h=0;h{let{x:o}=s;if(ke(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,r);return i.makeTensorInfo(o.shape,u,c)}}var D7=Kl(e=>Math.ceil(e)),jB=Zl(Ea,D7),qB={kernelName:Ea,backendName:"cpu",kernelFunc:jB};function i1(e,t,n,s){let r=I.getArrayFromDType(n,I.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=I.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?$.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;ue===t?1:0),O7=tn(Oi,F7,null,"bool"),XB={kernelName:Oi,backendName:"cpu",kernelFunc:O7},P7=Kl(e=>Math.exp(e)),M7=Zl(Ma,P7),KB={kernelName:Ma,backendName:"cpu",kernelFunc:M7},z7=Kl(e=>Math.expm1(e)),ZB=Zl(Mi,z7),YB={kernelName:Mi,backendName:"cpu",kernelFunc:ZB},L7=Kl(e=>Math.floor(e)),JB=Zl(za,L7),QB={kernelName:za,backendName:"cpu",kernelFunc:JB};function B7(e,t,n,s,r,a,o,i,l){let u=We([s,a],n);for(let c=0;c=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let p=0;pe>t?1:0),eW=tn(Wi,V7,null,"bool"),tW={kernelName:Wi,backendName:"cpu",kernelFunc:eW},U7=Lt((e,t)=>e>=t?1:0),nW=tn(Wa,U7,null,"bool"),sW={kernelName:Wa,backendName:"cpu",kernelFunc:nW},H7=Lt((e,t)=>ee<=t?1:0),oW=tn(ji,G7,null,"bool"),iW={kernelName:ji,backendName:"cpu",kernelFunc:oW};function j7(e,t,n){let s=(t-e)/(n-1),r=I.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;aMath.log(e)),lW=Zl(Ha,q7),uW={kernelName:Ha,backendName:"cpu",kernelFunc:lW};function X7(e,t,n,s){let r=I.getTypedArrayFromDType(s,I.sizeFromShape(n));for(let a=0;ai)&&(i=u)}r[a]=i}return r}var K7=Lt((e,t)=>Math.max(e,t)),cW=tn(ja,K7),dW={kernelName:ja,backendName:"cpu",kernelFunc:cW},Z7=Lt((e,t)=>Math.min(e,t)),hW=tn(Za,Z7),pW={kernelName:Za,backendName:"cpu",kernelFunc:hW},l1=Lt((e,t)=>e*t),fW=a1((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),af=tn(Ja,l1,fW),mW={kernelName:Ja,backendName:"cpu",kernelFunc:af};function Y7(e,t,n){let s=I.createScalarValue(-1,n);return l1([],t,s,e,n)}function gW(e){let{inputs:t,backend:n}=e,{x:s}=t;ke(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=Y7(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var AW={kernelName:Zi,backendName:"cpu",kernelFunc:gW},J7=Lt((e,t)=>e!==t?1:0),yW=tn(Yi,J7,null,"bool"),xW={kernelName:Yi,backendName:"cpu",kernelFunc:yW};function u1(e,t,n,s,r){let a=t.length,o=I.sizeFromShape(t),i=I.computeStrides(t),l=I.computeStrides(r),u=I.getTypedArrayFromDType(n,I.sizeFromShape(r));for(let c=0;cn.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(A,g,f)}var wW={kernelName:sl,backendName:"cpu",kernelFunc:vW};function c1(e,t,n,s){let r=e===t,a=e1;if(r||a||o)return I.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=I.makeZerosTypedArray(i,s);t1/Math.sqrt(e)),kW=Zl(lo,ew),IW={kernelName:lo,backendName:"cpu",kernelFunc:kW};function of(e,t,n,s,r){let a=xn.isSliceContinous(s,t,n),o=I.sizeFromShape(n),i=I.computeStrides(s);if(a){let d=xn.computeFlatOffset(t,i);return r==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=r==="string"?$.fromUint8ToStringArray(e):e,u=We(s,r,l),c=We(n,r);for(let d=0;df+t[m]);c.set(u.get(...p),...h)}return r==="string"?$.fromStringArrayToUint8(c.values):c.values}function jo(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;ke(r,"slice");let[i,l]=xn.parseSliceParams(r,a,o);xn.assertParamsValid(r,i,l);let u=n.data.get(r.dataId).values,c=of(u,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}var SW={kernelName:ul,backendName:"cpu",kernelFunc:jo};function tw(e,t,n,s,r,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but + indices.shape[0] = ${i}`);let g=I.getArrayFromDType(n,0),A=I.getArrayFromDType(r,0);return[g,[0,d],A,u,c]}let h=!0,p=0,f=new Array(l).fill(0);for(let g=0;g=l)throw new Error(`indices(${g}, 0) is invalid: ${A} >= ${l}`);++f[A],h=h&&A>=p,p=A}let m=!0;for(let g=0;g0&&(f[g]+=f[g-1])}if(m&&h){let g=e,A=s;for(let y=0;y0){p[h-1]=1;for(let g=h-2;g>=0;--g)p[g]=p[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=I.getArrayFromDType(n,o*i);for(let g=0;g0?r[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let h=t.slice();h[0]=d;let p=h.reduce((x,b)=>x*b,1),f=I.getArrayFromDType(n,p);if(i===0)return d>0&&f.fill(o),[f,h];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,g=1,A=0,y=r[m];for(;;){let x=0;if(g=x)throw new Error("segment ids are not increasing")}if(y<0||y>=d)throw new Error(`Segment id ${y} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);y>A&&f.fill(o,A*u,y*u);for(let b=m;b=l[0])throw new Error(`Bad: indices[${b}] == ${s[b]} out of range [0, ${l[0]})`);for(let k=0;ki)break}return A{let n=e-t;return n*n}),CW=tn(mo,sw),TW={kernelName:mo,backendName:"cpu",kernelFunc:CW};function rw(e,t,n,s){let r=We(e,t.dtype);for(let a=0;a0?0:o-i),h=0;h+=l*this.leftPad.length;for(let A=0;AA.forEach(y=>f[m++]=y);for(let A=0;A0){g(e[d+c-1]);for(let A=0;A0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=I.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[r]);for(let i=0;i{let d=t[i+1]-t[i],h=this.getNumNGrams(d,c);this.createNGrams(e,l,o,u,h,c),u+=h}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let d=c+2*this.padWidth,h=1;this.createNGrams(e,l,o,u,h,d)}}return[o,a]}};function aw(e,t,n,s,r,a,o,i){return new NW(n,s,r,a,o,i).compute(e,t)}function EW(e,t,n){if(!e.length)return[];if(t.length===0){let a=new Array(e.length);for(let o=0;oe-t),RW=a1((e,t,n,s)=>({real:e-n,imag:t-s})),h1=tn(go,lw,RW),_W={kernelName:go,backendName:"cpu",kernelFunc:h1};function uw(e,t){let n=new Array(e.rank);for(let r=0;r{let n=t.value-e.value;return n===0?e.index-t.index:n};function cw(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,u=Math.log(i),c=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*c*(i-c)/i)*Math.sign(l-i/2),h=Math.max(n,Math.floor(t-l*c/i+d)),p=Math.min(s,Math.floor(t+(i-l)*c/i+d));cw(e,t,h,p)}let r=e[t],a=n,o=s;for(I.swap(e,n,t),Bc(e[s],r)>0&&I.swap(e,n,s);a0;)o=o-1}Bc(e[n],r)===0?I.swap(e,n,o):(o=o+1,I.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function dw(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=I.getTypedArrayFromDType(n,o*s),u=I.getTypedArrayFromDType("int32",o*s);for(let d=0;df[x]={value:y,index:x}),s{for(let g=0;gnew sf,1);var pw=ot(Di,e=>e>=0?e:Math.exp(e)-1),DW={kernelName:Di,backendName:"cpu",kernelFunc:pw};function fw(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;ke([r],"leakyRelu");let o=I.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=I.getTypedArrayFromDType("float32",o);for(let u=0;ue<0?t*e:e);function mw(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;ke([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=OW(s.shape,r.shape,a,o,s.dtype);return n.makeTensorInfo(l,s.dtype,i)}var PW={kernelName:no,backendName:"cpu",kernelFunc:mw},gw=ot(so,e=>Math.max(0,e)),MW={kernelName:so,backendName:"cpu",kernelFunc:gw},Aw=ot(ao,e=>Math.min(Math.max(0,e),6)),zW={kernelName:ao,backendName:"cpu",kernelFunc:Aw},yw=ot(co,e=>1/(1+Math.exp(-e))),LW={kernelName:co,backendName:"cpu",kernelFunc:yw};function p1(e,t,n,s,r){if(n==="linear")return lr({inputs:{x:t},backend:e});if(n==="relu")return gw({inputs:{x:t},backend:e});if(n==="elu")return pw({inputs:{x:t},backend:e});if(n==="relu6")return Aw({inputs:{x:t},backend:e});if(n==="prelu")return mw({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return fw({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return yw({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function xt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=I.sizeFromShape(r.shape),i=I.inferFromImplicitShape(a,o),l=I.sizeFromShape(i);I.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;c.shape=i,d.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var BW={kernelName:al,backendName:"cpu",kernelFunc:xt};function xw(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;ke([r,a],"matMul");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[u-1]:a.shape[u-2],h=o?r.shape[l-1]:r.shape[l-2],p=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=I.sizeFromShape(f),A=I.sizeFromShape(m),y=g===A||g===1||A===1;I.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>A?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([h,p]);I.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,c,h]:[g,h,c],k=i?[A,p,d]:[A,d,p],w=xt({inputs:{x:r},backend:n,attrs:{shape:v}}),C=xt({inputs:{x:a},backend:n,attrs:{shape:k}}),R=o?w.shape[1]:w.shape[2],P=o?w.shape[2]:w.shape[1],E=i?C.shape[1]:C.shape[2],_=Math.max(g,A),T=n.data.get(w.dataId).values,O=n.data.get(C.dataId).values,W=I.computeStrides(w.shape),j=I.computeStrides(C.shape),[q,X,Q]=o?[W[0],1,W[1]]:[W[0],W[1],1],[ne,te,se]=i?[1,j[1],j[0]]:[j[1],1,j[0]],J=P*E,ie=We([_,P,E],w.dtype),le=ie.values,he=n.blockSize;for(let Ae=0;Ae<_;Ae++)for(let Ce=0;CeMath.acos(e)),GW={kernelName:bi,backendName:"cpu",kernelFunc:HW},jW=ot(vi,e=>Math.acosh(e)),qW={kernelName:vi,backendName:"cpu",kernelFunc:jW};function XW(e){let{inputs:t,backend:n}=e,s=t;ke(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=We(s[0].shape,s[0].dtype),o=a.values;for(let i=0;iy&&(y=v,x=b)}p[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",p)}var tV={kernelName:Sa,backendName:"cpu",kernelFunc:eV};function nV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;ke(r,"argMin");let o=I.parseAxisParam(a,r.shape),i=$.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=As({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=$.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],$.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[c,d]=$.computeOutAndReduceShapes(l.shape,o),h=I.sizeFromShape(c),p=I.makeZerosTypedArray(h,"int32"),f=I.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;gn.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",p)}var sV={kernelName:Du,backendName:"cpu",kernelFunc:nV},rV=ot(Ii,e=>Math.asin(e)),aV={kernelName:Ii,backendName:"cpu",kernelFunc:rV},oV=ot(Si,e=>Math.asinh(e)),iV={kernelName:Si,backendName:"cpu",kernelFunc:oV},lV=ot(Ci,e=>Math.atan(e)),uV={kernelName:Ci,backendName:"cpu",kernelFunc:lV},cV=Lt((e,t)=>Math.atan2(e,t)),dV=tn(Ni,cV),hV={kernelName:Ni,backendName:"cpu",kernelFunc:dV},pV=ot(Ti,e=>Math.atanh(e)),fV={kernelName:Ti,backendName:"cpu",kernelFunc:pV};function f1(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,c=r.effectiveFilterHeight,d=r.effectiveFilterWidth,h=r.padInfo.top,p=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=We(r.outShape,n),g=m.values,A=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let b=0;bq?q=le:a==="avg"&&(X+=le,Q++)}if(isNaN(q))break}let ne=_+T*x+w;g[ne]=a==="avg"?X/Q:q}}}return m}function bw(e,t,n,s,r=!1,a=!1){let o=We(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,u=s.dilationHeight,c=s.dilationWidth,d=s.effectiveFilterHeight,h=s.effectiveFilterWidth,p=s.padInfo.top,f=s.padInfo.left,m=We(t,n,e);for(let g=0;gP&&(P=j,r?E=a?((g*s.inHeight+_)*s.inWidth+O)*s.inChannels+A:(_*s.inWidth+O)*s.inChannels+A:E=T*h+W)}}o.set(E,g,y,k,A)}}return o}function vw(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,c=r.dilationHeight,d=r.dilationWidth,h=r.effectiveFilterDepth,p=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,A=r.padInfo.left,y=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=We(r.outShape,n),b=x.values,v=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],w=r.outShape[3]*r.outShape[4],C=r.outShape[4];for(let R=0;RCe?Ce=He:a==="avg"&&(Te+=He,$e++),isNaN(Ce))break}if(isNaN(Ce))break}if(isNaN(Ce))break}let Me=Ae+_;b[Me]=a==="avg"?Te/$e:Ce}}}}return x}function mV(e,t){let n=We(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,d=t.effectiveFilterWidth,h=t.padInfo.front,p=t.padInfo.top,f=t.padInfo.left;for(let m=0;m=T&&(T=te,O=j*c*d+X*c+ne)}}}n.set(O,m,A,v,R,g)}}}return n}function gV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;ke(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;I.assert($.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=$.computePool2DInfo(r.shape,a,o,u,i,l),d;if(c.filterWidth===1&&c.filterHeight===1&&I.arraysEqual(c.inShape,c.outShape))d=lr({inputs:{x:r},backend:n});else{let h=n.data.get(r.dataId).values,p=I.computeStrides(r.shape),f=f1(h,r.shape,r.dtype,p,c,"avg");d=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return d}var AV={kernelName:Ca,backendName:"cpu",kernelFunc:gV};function yV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;ke(r,"avgPool3d");let c=$.computePool3DInfo(r.shape,a,o,1,i,l,u),d=n.data.get(r.dataId).values,h=vw(d,r.shape,r.dtype,I.computeStrides(r.shape),c,"avg");return n.makeTensorInfo(h.shape,"float32",h.values)}var xV={kernelName:Fu,backendName:"cpu",kernelFunc:yV};function bV(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;ke([r,a],"avgPool3DGrad");let c=$.computePool3DInfo(a.shape,o,i,1,l,u),d=c.strideDepth,h=c.strideHeight,p=c.strideWidth,f=c.filterDepth,m=c.filterHeight,g=c.filterWidth,A=c.dilationDepth,y=c.dilationHeight,x=c.dilationWidth,b=c.effectiveFilterDepth,v=c.effectiveFilterHeight,k=c.effectiveFilterWidth,w=b-1-c.padInfo.front,C=k-1-c.padInfo.left,R=v-1-c.padInfo.top,P=We(a.shape,"float32"),E=1/(f*m*g),_=n.bufferSync(r);for(let T=0;T=c.outDepth||Math.floor(J)!==J))for(let ie=0;ie=c.outHeight||Math.floor(le)!==le))for(let he=0;he=c.outWidth||Math.floor(Ae)!==Ae)continue;te+=_.get(T,J,le,Ae,O)}}}P.set(te*E,T,W,j,q,O)}return n.makeTensorInfo(P.shape,P.dtype,P.values)}var vV={kernelName:qd,backendName:"cpu",kernelFunc:bV};function wV(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;ke([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=$.computePool2DInfo(o.shape,i,l,1,u),d=c.strideHeight,h=c.strideWidth,p=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,g=c.dilationWidth,A=c.effectiveFilterHeight,y=c.effectiveFilterWidth,x=y-1-c.padInfo.left,b=A-1-c.padInfo.top,v=We(o.shape,"float32"),k=1/(p*f),w=n.data.get(r.dataId).values,C=We(r.shape,"float32",w);for(let R=0;R=c.outHeight||Math.floor(q)!==q))for(let X=0;X=c.outWidth||Math.floor(Q)!==Q)continue;W+=C.get(R,q,Q,P)}}v.set(W*k,R,E,_,P)}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var kV={kernelName:jd,backendName:"cpu",kernelFunc:wV};function IV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;I.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),I.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),I.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ke([r,i,l,a,o],"batchNorm");let{varianceEpsilon:u}=s;u==null&&(u=.001);let c=n.data.get(r.dataId).values,d=n.data.get(i.dataId).values,h=n.data.get(l.dataId).values,p=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),g=f.length,A=p.length,y=h.length,x=d.length,b=0,v=0,k=0,w=0;for(let C=0;C=g&&(b=0),v>=x&&(v=0),k>=A&&(k=0),w>=y&&(w=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var SV={kernelName:Ba,backendName:"cpu",kernelFunc:IV};function CV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;ke([r],"batchToSpaceND");let i=a.reduce((A,y)=>A*y),l=$.getReshaped(r.shape,a,i),u=$.getPermuted(l.length,a.length),c=$.getReshapedPermuted(r.shape,a,i),d=$.getSliceBeginCoords(o,a.length),h=$.getSliceSize(c,o,a.length),p=xt({inputs:{x:r},backend:n,attrs:{shape:l}}),f=As({inputs:{x:p},backend:n,attrs:{perm:u}}),m=xt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=jo({inputs:{x:m},backend:n,attrs:{begin:d,size:h}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var TV={kernelName:Ei,backendName:"cpu",kernelFunc:CV};function NV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=o1(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var EV={kernelName:Xd,backendName:"cpu",kernelFunc:NV},RV=ot(Wr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(I.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let u=0;um.shape),a);if(I.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>I.sizeFromShape(m.shape)>0);if(i.length===1)return lr({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if($.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>Go({inputs:{input:b},backend:n})),g=i.map(b=>Yl({inputs:{input:b},backend:n})),A=Jl({inputs:m,backend:n,attrs:{axis:a}}),y=Jl({inputs:g,backend:n,attrs:{axis:a}}),x=Zn({inputs:{real:A,imag:y},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(y),x}let u=i.map(m=>{let g=I.sizeFromShape(m.shape.slice(a));return xt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=$.computeOutShape(u.map(m=>m.shape),1);let d=u[0].shape[0]===1,h=i1(c,o,t[0].dtype,d),p=$.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(p,t[0].dtype,h);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var OV={kernelName:Ri,backendName:"cpu",kernelFunc:Jl};function ww(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s;ke([r,a],"conv2d");let d=$.convertConv2DDataFormat(l),h=$.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,d),p=h.filterHeight,f=h.filterWidth,m=h.dilationHeight,g=h.dilationWidth,A=h.padInfo.left,y=h.padInfo.top,x=h.dataFormat==="channelsLast",b=new Ut(h.outShape,r.dtype),v=I.computeStrides(r.shape),k=I.computeStrides(a.shape),w=v[0],C=x?v[1]:v[2],R=x?v[2]:1,P=x?1:v[1],E=b.strides[0],_=x?b.strides[1]:b.strides[2],T=x?b.strides[2]:1,O=x?1:b.strides[1],W=n.data.get(r.dataId).values,j=n.data.get(a.dataId).values,q=b.values;for(let X=0;X=h.inHeight)continue;let he=ie*k[0],Ae=Q+le*C;for(let Ce=0;Ce=h.inWidth)continue;let ut=he+Me*k[1],nt=Ae+Fe*R,st=ut;for(let et=0;et=u.inDepth)continue;let X=j*R[0],Q=E+q*C[1];for(let ne=0;ne=u.inHeight)continue;let le=X+J*R[1],he=Q+ie*C[2];for(let Ae=0;Ae=u.inWidth)continue;let Fe=le+$e*R[2],ut=he+Me*u.inChannels,nt=Fe;for(let st=0;stMath.cos(e)),XV={kernelName:$a,backendName:"cpu",kernelFunc:qV},KV=ot(Da,e=>Math.cosh(e)),ZV={kernelName:Da,backendName:"cpu",kernelFunc:KV};function YV(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,[c,d,h,p]=r.shape,f=a.shape[0],[m,g]=i,A=We([f,m,g,p],"float32"),y=n.data.get(a.dataId).values,x=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,v=I.computeStrides(r.shape),k=I.computeStrides(A.shape);for(let w=0;w=c)continue;let O=m>1?(E-R)*(d-1)/(m-1):0,W=g>1?(_-P)*(h-1)/(g-1):0;for(let j=0;j1?R*(d-1)+j*O:.5*(R+E)*(d-1);if(q<0||q>d-1){for(let X=0;X1?P*(h-1)+te*W:.5*(P+_)*(h-1);if(se<0||se>h-1){for(let he=0;he1?P*(h-1)+X*W:.5*(P+_)*(h-1);if(Q<0||Q>h-1){for(let se=0;seA+f-y-1:(A,y)=>A+y;for(let A=0;A`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`),I.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=r.shape[1],u=r.shape[2],c=r.shape[3],d=l*a,h=u*a,p=c/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*d*h*p),g=0;for(let A=0;A`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${h}'`);let p=$.computeConv2DInfo(r.shape,a.shape,o,h,i,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:A,padInfo:y}=p,x=y.left,b=y.top,v=p.outChannels/p.inChannels,k=new Ut(p.outShape,r.dtype),w=n.data.get(r.dataId).values,C=n.data.get(a.dataId).values,R=k.values;for(let P=0;P=p.inHeight)continue;let X=j*d[0],Q=E+q*c[1];for(let ne=0;ne=p.inWidth)continue;let le=X+J*d[1],he=Q+ie*p.inChannels,Ae=te,Ce=le;for(let Te=0;Te{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,u=l.data.get(s.dataId).values,c=s.shape.length,d=l.data.get(r.dataId).values,h=r.shape.length,{batchSize:p,inHeight:f,inWidth:m,inChannels:g,outHeight:A,outWidth:y,padInfo:x,strideHeight:b,strideWidth:v,filterHeight:k,filterWidth:w,dilationHeight:C,dilationWidth:R,outShape:P}=$.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),E=I.sizeFromShape(P),_=P.length,T=I.getArrayFromDType(s.dtype,E);for(let W=0;W=0&&ie=0&&hete&&(te=Te)}}}let se=I.locToIndex([W,j,X,ne],_,I.computeStrides(P));T[se]=te}}}return{dataId:l.write(I.toTypedArray(T,s.dtype),P,s.dtype),shape:P,dtype:s.dtype}}},pU={kernelName:rh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=I.toNestedArray(s.shape,u.data.get(s.dataId).values),d=I.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:h,inHeight:p,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:k,dilationHeight:w,dilationWidth:C,outShape:R}=$.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);I.assert(a.rank===R.length,()=>`Error in ${rh}, dy must have the same rank as output ${R.length}, but got ${a.rank}`);let P=I.toNestedArray(R,u.data.get(a.dataId).values),E=I.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T=0&&J=0&&leQ&&(Q=he,ne=se,te=ie)}}}E[ne][te][X]+=P[T][O][j][X]}}}return{dataId:u.write(I.toTypedArray(E,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},fU={kernelName:sh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=I.toNestedArray(s.shape,u.data.get(s.dataId).values),d=I.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:h,inHeight:p,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:k,dilationHeight:w,dilationWidth:C,outShape:R}=$.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);I.assert(a.rank===R.length,()=>`Error in ${sh}, dy must have the same rank as output ${R.length}, but got ${a.rank}`);let P=I.toNestedArray(R,u.data.get(a.dataId).values),E=I.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T=0&&J=0&&leQ&&(Q=he,ne=J,te=le)}}}E[T][ne][te][X]+=P[T][O][j][X]}}}return{dataId:u.write(I.toTypedArray(E,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Wc(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;ke(r,"sum");let i;r.dtype==="bool"?i=la({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=lr({inputs:{x:r},backend:n});let l=i.shape.length,u=I.parseAxisParam(a,i.shape),c=$.getAxesPermutation(u,l),d=u,h=i;c!=null&&(h=As({inputs:{x:i},backend:n,attrs:{perm:c}}),d=$.getInnerMostAxes(d.length,l)),$.assertAxesAreInnerMostDims("sum",d,h.shape.length);let[p,f]=$.computeOutAndReduceShapes(h.shape,d),m=$.upcastType(h.dtype,"int32"),g=rf(n,p,m),A=I.sizeFromShape(f),y=n.data.get(g.dataId).values,x=n.data.get(h.dataId).values;for(let b=0;b=0&&(h=Wc({inputs:{x:h},backend:n,attrs:{axis:u[m]-(o.length-p),keepDims:!1}}),f.push(h)),p--)}for(let m of f)m!==h&&n.disposeIntermediateTensorInfo(m);return h}var AU={kernelName:ah,backendName:"cpu",kernelFunc:gU};function yU(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;ke([s,r],"eluGrad");let a=new Float32Array(I.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l=1?a[l]=i[l]:a[l]=i[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",a)}var xU={kernelName:oh,backendName:"cpu",kernelFunc:yU},bU=$.ERF_P,vU=$.ERF_A1,wU=$.ERF_A2,kU=$.ERF_A3,IU=$.ERF_A4,SU=$.ERF_A5,CU=ot(Fi,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+bU*n);return t*(1-((((SU*s+IU)*s+kU)*s+wU)*s+vU)*s*Math.exp(-n*n))}),TU={kernelName:Fi,backendName:"cpu",kernelFunc:CU};function lf(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(I.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),xt({inputs:{x:r},backend:n,attrs:{shape:i}})}var NU={kernelName:Pi,backendName:"cpu",kernelFunc:lf},EU=Lt((e,t)=>e/t),m1=tn(Pa,EU),g1={kernelName:Pa,backendName:"cpu",kernelFunc:m1};function Iw(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,u=[r,a],c=I.sizeFromShape(u),d=I.getTypedArrayFromDType("float32",c),h=I.getTypedArrayFromDType("float32",c);for(let g=0;g{let{image:s}=e,r=n,a=I.getTypedArrayFromDType(s.dtype,I.sizeFromShape(s.shape)),[o,i,l,u]=s.shape,c=r.data.get(s.dataId).values;for(let h=0;h=0&&xMath.floor(e/t)),LU=tn(La,zU,null,"int32"),BU={kernelName:La,backendName:"cpu",kernelFunc:LU};function WU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=s,m=ww({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h}});if(o){let g=m;m=Lc({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(p){let g=m;m=p1(n,m,p,i,f),n.disposeIntermediateTensorInfo(g)}return m}var VU={kernelName:vo,backendName:"cpu",kernelFunc:WU};function UU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=s,m=kw({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h}});if(o){let g=m;m=Lc({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(p){let g=m;m=p1(n,m,p,i,f),n.disposeIntermediateTensorInfo(g)}return m}var HU={kernelName:wo,backendName:"cpu",kernelFunc:UU};function GU(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=I.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,u,c,d]=$.prepareAndValidate(s,r);if(u===0)return n.makeTensorInfo(l,s.dtype,[]);let h=n.data.get(r.dataId).values,p=n.bufferSync(s),f=B7(h,p,s.dtype,u,i,c,d,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var jU={kernelName:Bi,backendName:"cpu",kernelFunc:GU};function qU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;ke([r,a],"gatherV2");let l=i;i==null&&(l=0);let u=I.sizeFromShape(a.shape),c=I.parseAxisParam(o,r.shape)[0],d=$.segment_util.collectGatherOpShapeInfo(r,a,c,l),h=xt({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),p=xt({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,u/d.batchSize]}}),f=[d.batchSize,d.outerSize,u/d.batchSize,d.sliceSize],m=n.bufferSync(p),g=n.bufferSync(h),A=W7(g,m,f);return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.makeTensorInfo(d.outputShape,A.dtype,A.values)}var XU={kernelName:Li,backendName:"cpu",kernelFunc:qU};function KU(e){let{inputs:t,backend:n}=e,{input:s}=t,r=I.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=xt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=Iw(i,!0,n),u=xt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var ZU={kernelName:lh,backendName:"cpu",kernelFunc:KU},YU=ot(Vi,e=>Number.isFinite(e)?1:0,"bool"),JU={kernelName:Vi,backendName:"cpu",kernelFunc:YU},QU=ot(Ui,e=>Math.abs(e)===1/0?1:0,"bool"),eH={kernelName:Ui,backendName:"cpu",kernelFunc:QU},tH=ot(Hi,e=>Number.isNaN(e)?1:0,"bool"),nH={kernelName:Hi,backendName:"cpu",kernelFunc:tH};function sH(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=j7(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var rH={kernelName:ch,backendName:"cpu",kernelFunc:sH},aH=ot(qi,e=>Math.log1p(e)),oH={kernelName:qi,backendName:"cpu",kernelFunc:aH},iH=Lt((e,t)=>e&&t),lH=tn(Xi,iH,null,"bool"),uH={kernelName:Xi,backendName:"cpu",kernelFunc:lH},cH=ot(Lu,e=>e?0:1,"bool"),dH={kernelName:Lu,backendName:"cpu",kernelFunc:cH},hH=Lt((e,t)=>e||t),pH=tn(Bu,hH,null,"bool"),fH={kernelName:Bu,backendName:"cpu",kernelFunc:pH};function mH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;ke(r,"LRN");let u=r.shape[3],c=u-1,d=n.data.get(r.dataId).values,h=I.sizeFromShape(r.shape),p=new Float32Array(h);function f(m){let g=m%u,A=m-g+Math.max(0,g-a),y=m-g+Math.min(g+a,c),x=0;for(;A<=y;A++){let b=d[A];x+=b*b}return x}for(let m=0;m`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=$.computePool2DInfo(r.shape,a,o,u,i,l),d;if(c.filterWidth===1&&c.filterHeight===1&&I.arraysEqual(c.inShape,c.outShape))d=lr({inputs:{x:r},backend:n});else{let h=n.data.get(r.dataId).values,p=I.computeStrides(r.shape),f=f1(h,r.shape,r.dtype,p,c,"max");d=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return d}var vH={kernelName:qa,backendName:"cpu",kernelFunc:bH};function wH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;ke(r,"maxPool3d");let c=$.computePool3DInfo(r.shape,a,o,1,i,l,u),d=n.data.get(r.dataId).values,h=vw(d,r.shape,r.dtype,I.computeStrides(r.shape),c,"max");return n.makeTensorInfo(h.shape,"float32",h.values)}var kH={kernelName:Vu,backendName:"cpu",kernelFunc:wH};function IH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;ke([r,a],"maxPool3DGrad");let c=$.computePool3DInfo(a.shape,o,i,1,l,u),d=n.bufferSync(a),h=mV(d,c),p=c.strideDepth,f=c.strideHeight,m=c.strideWidth,g=c.dilationDepth,A=c.dilationHeight,y=c.dilationWidth,x=c.effectiveFilterDepth,b=c.effectiveFilterHeight,v=c.effectiveFilterWidth,k=x-1-c.padInfo.front,w=v-1-c.padInfo.left,C=b-1-c.padInfo.top,R=We(a.shape,"float32"),P=n.bufferSync(r);for(let E=0;E=c.outDepth||Math.floor(te)!==te))for(let se=0;se=c.outHeight||Math.floor(J)!==J))for(let ie=0;ie=c.outWidth||Math.floor(le)!==le)continue;let he=x*b*v-1-h.get(E,te,J,le,_),Ae=ne*b*v+se*v+ie,Ce=he===Ae?1:0;if(Ce===0)continue;Q+=P.get(E,te,J,le,_)*Ce}}}R.set(Q,E,T,O,W,_)}return n.makeTensorInfo(R.shape,R.dtype,R.values)}var SH={kernelName:ph,backendName:"cpu",kernelFunc:IH};function CH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;ke([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:d}=s,h=$.computePool2DInfo(i.shape,l,u,1,c,d),p=n.data.get(i.dataId).values,f=We(h.outShape,i.dtype,bw(p,i.shape,i.dtype,h).values),m=h.strideHeight,g=h.strideWidth,A=h.dilationHeight,y=h.dilationWidth,x=h.effectiveFilterHeight,b=h.effectiveFilterWidth,v=b-1-h.padInfo.left,k=x-1-h.padInfo.top,w=We(i.shape,"float32"),C=n.data.get(r.dataId).values,R=We(r.shape,"float32",C);for(let P=0;P=h.outHeight||Math.floor(X)!==X))for(let Q=0;Q=h.outWidth||Math.floor(ne)!==ne)continue;let te=x*b-1-f.get(P,X,ne,E),se=q*b+Q,J=te===se?1:0;if(J===0)continue;j+=R.get(P,X,ne,E)*J}}w.set(j,P,_,T,E)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var TH={kernelName:hh,backendName:"cpu",kernelFunc:CH};function NH(e,t,n,s,r){let a=I.computeStrides(t),o=f1(e,t,n,a,r,"max"),i=bw(e,t,n,r,!0,s);return[o.values,i.values]}var EH={kernelName:fh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;ke(s,"MaxPoolWithArgmax");let u=l.data.get(s.dataId).values,c=$.computePool2DInfo(s.shape,r,a,[1,1],o),[d,h]=NH(u,s.shape,s.dtype,i,c),p=l.write(d,c.outShape,s.dtype),f=l.write(h,c.outShape,s.dtype);return[{dataId:p,shape:c.outShape,dtype:s.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function RH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=I.parseAxisParam(a,r.shape),u=$.computeOutAndReduceShapes(r.shape,i)[1],c=I.sizeFromShape(u),d=[],h=n.makeTensorInfo([],"float32",new Float32Array([c]));d.push(h);let p=la({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(p);let f=m1({inputs:{a:p,b:h},backend:n});d.push(f);let m=Wc({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var _H={kernelName:Xa,backendName:"cpu",kernelFunc:RH};function $H(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;ke(r,"min");let i=I.parseAxisParam(a,r.shape),l=i,u=$.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=As({inputs:{x:r},backend:n,attrs:{perm:u}}),l=$.getInnerMostAxes(l.length,r.shape.length)),$.assertAxesAreInnerMostDims("min",l,c.shape.length);let[d,h]=$.computeOutAndReduceShapes(c.shape,l),p=I.sizeFromShape(h),f=I.makeZerosTypedArray(I.sizeFromShape(d),c.dtype),m=n.data.get(c.dataId).values;for(let A=0;Ax[0]+r.shape[b]+x[1]),l=a.map(x=>x[0]),u=a.map((x,b)=>x[0]+r.shape[b]),c=o==="reflect"?0:1,d=n.data.get(r.dataId).values,h=r.shape.length,p=I.computeStrides(r.shape),f=I.sizeFromShape(i),m=i.length,g=I.computeStrides(i),A=I.getTypedArrayFromDType(r.dtype,f);for(let x=0;x=u[k]&&(b[k]=(u[k]-1)*2-b[k]+c);b=b.map((k,w)=>k-l[w]);let v=I.locToIndex(b,h,p);A[x]=d[v]}return{dataId:n.write(A,i,r.dtype),shape:i,dtype:r.dtype}}var OH={kernelName:Ya,backendName:"cpu",kernelFunc:FH},PH=Lt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),MH=tn(Ki,PH),zH={kernelName:Ki,backendName:"cpu",kernelFunc:MH},LH=va(u5());function Cw(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=I.parseAxisParam([i],r.shape),u=Sw({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=$.expandShapeToKeepDim(u.shape,l),d=xt({inputs:{x:u},backend:n,attrs:{shape:c}}),h=h1({inputs:{a:r,b:d},backend:n}),p=M7({inputs:{x:h},backend:n}),f=Wc({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),m=xt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=m1({inputs:{a:p,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var BH={kernelName:fo,backendName:"cpu",kernelFunc:Cw};function WH(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;ke(r,"multinomial");let l=i?r:Cw({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],d=n.data.get(l.dataId).values,h=[u,a],p=I.makeZerosTypedArray(I.sizeFromShape(h),"int32");for(let f=0;f=0&&c[d]{I.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),I.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=lf({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=Jl({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var nG={kernelName:nl,backendName:"cpu",kernelFunc:Nw};function sG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;ke(r,"pad");let i=a.map((y,x)=>y[0]+r.shape[x]+y[1]),l=a.map(y=>y[0]),u=n.data.get(r.dataId).values,c=I.sizeFromShape(r.shape),d=r.shape.length,h=I.computeStrides(r.shape),p=I.sizeFromShape(i),f=i.length,m=I.computeStrides(i),g=I.getTypedArrayFromDType(r.dtype,p);o!==0&&g.fill(o);for(let y=0;yk+l[w]),v=I.locToIndex(b,f,m);g[v]=u[y]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var Ew={kernelName:eo,backendName:"cpu",kernelFunc:sG},rG=Lt((e,t)=>Math.pow(e,t)),aG=tn(to,rG),oG={kernelName:to,backendName:"cpu",kernelFunc:aG};function iG(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=c1(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var lG={kernelName:Uu,backendName:"cpu",kernelFunc:iG},uG=ot(rl,e=>1/e),cG={kernelName:rl,backendName:"cpu",kernelFunc:uG};function dG(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;ke(r,"resizeBilinear");let l=I.computeStrides(r.shape),[u,c]=i,[d,h,p,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(I.sizeFromShape([d,u,c,f])),A=[a&&u>1?h-1:h,a&&c>1?p-1:p],y=[a&&u>1?u-1:u,a&&c>1?c-1:c],x=0,b=A[0]/y[0],v=A[1]/y[1];for(let k=0;k1?u-1:u,o&&p>1?c-1:c],g=[o&&h>1?h-1:h,o&&p>1?p-1:p],A=m[0]/g[0],y=m[1]/g[1],x=n.data.get(a.dataId).values,b=0;for(let v=0;v1?h-1:h,a&&c>1?p-1:p],y=[a&&u>1?u-1:u,a&&c>1?c-1:c],x=A[0]/y[0],b=A[1]/y[1],v=0;for(let k=0;k1?c-1:c,o&&f>1?d-1:d],y=[o&&p>1?p-1:p,o&&f>1?f-1:f],x=A[0]/y[0],b=A[1]/y[1],v=1/x,k=1/b,w=Math.ceil(v)*2+2,C=Math.ceil(k)*2+2;for(let R=0;R=p)continue;let J=P+se*l[1],ie=se*x,le=Math.min(c-1,o?Math.round(ie):Math.floor(ie));if(E===le)for(let he=0;he=f)continue;let Ce=J+Ae*l[2],Te=Ae*b,$e=Math.min(d-1,o?Math.round(Te):Math.floor(Te));W===$e&&(ne+=g[Ce+Q])}}m[j+Q]=ne}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var yG={kernelName:Ah,backendName:"cpu",kernelFunc:AG};function xG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;ke(r,"reverse");let o=r.shape.length,i=I.parseAxisParam(a,r.shape);if(o===0)return lr({inputs:{x:r},backend:n});let l=new Ut(r.shape,r.dtype),u=n.bufferSync(r);for(let c=0;ch[p]=r.shape[p]-1-h[p]),l.set(u.get(...h),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var bG={kernelName:oo,backendName:"cpu",kernelFunc:xG},vG={kernelName:bl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=I.getTypedArrayFromDType(s.dtype,I.sizeFromShape(s.shape)),[u,c,d,h]=s.shape,[p,f]=$.getImageCenter(o,c,d),m=255,g=Math.sin(r),A=Math.cos(r),y=i.data.get(s.dataId).values;for(let b=0;b=0&&O=0&&W{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),kG={kernelName:io,backendName:"cpu",kernelFunc:wG};function Rw(e,t,n,s,r,a,o,i,l,u){let c=[s/r,r],d=e.values,h=t.values;if(s===0)return We(n,t.dtype);let p=We(c,t.dtype);p.values.fill(l);for(let f=0;f=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let A=0;A1||r.shape.length===1?1:I.sizeFromShape(r.shape.slice(1));for(let f=0;fe>=0?EG*e:NG*(Math.exp(e)-1)),_G={kernelName:ll,backendName:"cpu",kernelFunc:RG},$G=ot(dl,e=>e<0?-1:e>0?1:0),DG={kernelName:dl,backendName:"cpu",kernelFunc:$G},FG=ot(uo,e=>Math.sin(e)),OG={kernelName:uo,backendName:"cpu",kernelFunc:FG},PG=ot(cl,e=>Math.sinh(e)),MG={kernelName:cl,backendName:"cpu",kernelFunc:PG},zG=11920928955078125e-23,_w=Math.log(zG)+2,LG=ot(hl,e=>{let t=e>-_w,n=e<_w,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),BG={kernelName:hl,backendName:"cpu",kernelFunc:LG};function WG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;ke([r],"spaceToBatchND");let i=I.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;kNumber(A)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var NG={kernelName:hh,backendName:"cpu",kernelFunc:TG};function EG(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape + ${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values[0],[d,h,p,f,m]=tw(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(h,s.dtype,d),n.makeTensorInfo([h[0]],r.dtype,p),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var HG={kernelName:xh,backendName:"cpu",kernelFunc:UG};function GG(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape - ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[u,c,d]=X7(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var RG={kernelName:ph,backendName:"cpu",kernelFunc:EG};function _G(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape + ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[u,c,d]=nw(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var jG={kernelName:bh,backendName:"cpu",kernelFunc:GG};function qG(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape - ${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=r1(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var $G={kernelName:fh,backendName:"cpu",kernelFunc:_G};function FG(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape + ${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=d1(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var XG={kernelName:vh,backendName:"cpu",kernelFunc:qG};function KG(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape - ${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=r1(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var DG={kernelName:mh,backendName:"cpu",kernelFunc:FG};function OG(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:d,outputSize:h}=$.calculateShapes(a,r,i),p=!1,f=n.bufferSync(r),m=n.bufferSync(a),A=n.data.get(o.dataId).values[0],g=ww(f,m,i,h,c,u,l,d,A,p);return n.makeTensorInfo(i,g.dtype,g.values)}var PG={kernelName:Ah,backendName:"cpu",kernelFunc:OG};function MG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=I.parseAxisParam(o,r.shape)[0],l=$.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(d=>{let h=[...c];h[i]=d;let p=Wo({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=d,p})}var zG={kernelName:ll,backendName:"cpu",kernelFunc:MG},LG=rt(oo,e=>Math.sqrt(e)),BG={kernelName:oo,backendName:"cpu",kernelFunc:LG},WG={kernelName:Lu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;ke(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),UG={kernelName:Lr,backendName:"cpu",kernelFunc:VG};function HG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:h}=s;ke(r,"stridedSlice");let{nonStrided:p,$begin:f,$strides:m,size:A,newShape:g,outShape:y}=An.sliceInfo(r.shape,a,o,i,l,u,c,d,h),x=gt({inputs:{x:r},backend:n,attrs:{shape:g}}),b;if(p){let k=Wo({inputs:{x},backend:n,attrs:{begin:f,size:A}});b=gt({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else{let k=n.bufferSync(x),w=Z7(y,k,m,f);b=n.makeTensorInfo(w.shape,w.dtype,w.values)}let v=gt({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var GG={kernelName:ul,backendName:"cpu",kernelFunc:HG};function jG(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:d}=t,h=n.data.get(c.dataId).values,p=n.data.get(d.dataId).values,[f,m]=Y7(h,p,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var qG={kernelName:gh,backendName:"cpu",kernelFunc:jG};function XG(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[u,c,d]=J7(i,l,r),h=c.length;return[n.makeTensorInfo([h,2],"int32",u),n.makeTensorInfo([h],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var KG={kernelName:yh,backendName:"cpu",kernelFunc:XG};function ZG(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=Q7(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var YG={kernelName:xh,backendName:"cpu",kernelFunc:ZG},JG=rt(ho,e=>Math.tan(e)),QG={kernelName:ho,backendName:"cpu",kernelFunc:JG},ej=rt(po,e=>Math.tanh(e)),tj={kernelName:po,backendName:"cpu",kernelFunc:ej};function nj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;ke(r,"tile");let o=tw(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var sj={kernelName:zr,backendName:"cpu",kernelFunc:nj};function rj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;ke(r,"topk");let i=n.data.get(r.dataId).values,[l,u]=sw(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var aj={kernelName:cl,backendName:"cpu",kernelFunc:rj};function oj(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=n,[c,d,h,p]=r.shape,[f,m]=u!=null?u:[d,h],A=[c,f,m,p],g=I.computeStrides(r.shape),y=g[0],x=g[1],b=g[2],v=I.getTypedArrayFromDType(r.dtype,I.sizeFromShape(A));v.fill(l);let k=s.data.get(r.dataId).values,w=s.data.get(a.dataId).values;for(let E=0;Et-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return I.clamp(0,n,t-1)}function uj(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return I.clamp(0,n,t-1)}function cj(e,t){return e}function dj(e,t){return I.clamp(0,e,t-1)}function Pc(e,t,n,s,r,a,o,i,l,u,c){let d=o*s+i*r+l*a+u;return 0<=i&&in.disposeIntermediateTensorInfo(f)),p}var xj={kernelName:Bu,backendName:"cpu",kernelFunc:yj},bj=[TW,kB,EW,_W,EB,FW,OW,MW,LW,WW,UW,GW,qW,ZW,JW,tV,sV,aV,iV,SW,uV,dV,pV,TB,_B,mV,IB,gV,xV,wV,IV,bV,NV,RV,CV,$V,DV,PV,zV,BV,VV,UV,GV,qV,KV,ZV,JV,YV,u1,tU,gW,sU,$B,dU,FB,hU,OB,yU,xU,vU,MB,IU,CU,NU,RU,$U,LB,WB,SB,DU,yV,PU,zU,BU,yW,UB,GB,VU,qB,HU,qU,KU,JU,eH,nH,KB,aH,iH,uH,dH,pH,sH,mH,gH,YB,xH,wH,CH,QB,tW,EH,$H,OH,sW,MH,LH,BH,vw,HH,bW,oW,jH,CB,XH,vW,wW,IW,ZH,JH,eG,nG,rG,aG,iG,lW,uG,dG,mG,kW,gG,xG,vG,uW,IH,IG,CG,NG,RG,$G,DG,PG,zG,BG,WG,dW,UG,GG,qG,KG,YG,mW,QV,QG,tj,sj,aj,rW,ij,mj,gj,xj,zH];for(let e of bj)yo(e);var Sw={};Pe(Sw,{assertNotComplex:()=>Xl,bindCanvasToFramebuffer:()=>$j,bindColorTextureToFramebuffer:()=>rf,bindTextureToProgramUniformSampler:()=>Bw,bindTextureUnit:()=>Mw,bindVertexBufferToProgramAttribute:()=>f1,callAndCheck:()=>be,canBeRepresented:()=>Cw,createFragmentShader:()=>Ew,createFramebuffer:()=>Pw,createProgram:()=>Rw,createStaticIndexBuffer:()=>Fw,createStaticVertexBuffer:()=>$w,createTexture:()=>Dw,createVertexShader:()=>Nw,getBatchDim:()=>Uo,getExtensionOrThrow:()=>Bc,getFramebufferErrorMessage:()=>Ww,getMaxTexturesInShader:()=>Gw,getNumChannels:()=>Rj,getProgramUniformLocation:()=>Lw,getProgramUniformLocationOrThrow:()=>zw,getRowsCols:()=>Ho,getShapeAs3D:()=>af,getTextureShapeFromLogicalShape:()=>Uw,getWebGLDisjointQueryTimerVersion:()=>jw,getWebGLErrorMessage:()=>Tw,getWebGLMaxTextureSize:()=>Hw,hasExtension:()=>ms,isCapableOfRenderingToFloatTexture:()=>qw,isDownloadFloatTextureEnabled:()=>Xw,isReshapeFree:()=>Vc,isWebGLFenceEnabled:()=>Kw,isWebGLVersionEnabled:()=>A1,linkProgram:()=>_w,resetMaxTextureSize:()=>Fj,resetMaxTexturesInShader:()=>Dj,unbindColorTextureFromFramebuffer:()=>m1,unbindTextureUnit:()=>_j,validateFramebuffer:()=>Wc,validateProgram:()=>sf,validateTextureSize:()=>Ow});var Vo={},h1={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function nf(e,t){Vo[e]=t}function ar(e){if(!(e in Vo)){let n=wj(e);if(n!==null)Vo[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Vo[e];return t.isContextLost()?(delete Vo[e],ar(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Vo[e])}function vj(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function wj(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=vj(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Vo[e]},!1),e===1?t.getContext("webgl",h1)||t.getContext("experimental-webgl",h1):t.getContext("webgl2",h1)}var Mc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Mc||(Mc={}));var fs;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(fs||(fs={}));var sn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(sn||(sn={}));function zc(e,t){return[t,e]}function kj(e,t){return e*t}function Lc(e){let t=I.sizeFromShape(e),n=Math.ceil(t/4);return I.sizeToSquarishShape(n)}function ql(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function Ij(e,t){let[n,s]=ql(e,t);return n*s*4}function p1(e,t){let n=e,s,r,a,o,i,l,u,c,d,h;return ee().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,u=4,c=1,d=n.HALF_FLOAT,h=n.FLOAT):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,u=4,c=4,d=t!=null?t.HALF_FLOAT_OES:null,h=e.FLOAT),l=e.RGBA,{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:d,textureTypeFloat:h}}function be(e,t){let n=t();return ee().getBool("DEBUG")&&Sj(e),n}function Sj(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+Tw(e,t))}var Cj=596e-10,Tj=65504;function Cw(e){return!!(ee().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||Cje.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Nw(e,t){let n=Sr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function Ew(e,t){let n=Sr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw Ej(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var Nj=/ERROR: [0-9]+:([0-9]+):/g;function Ej(e,t){let n=Nj.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(` + ${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=d1(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var ZG={kernelName:wh,backendName:"cpu",kernelFunc:KG};function YG(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:d,outputSize:h}=$.calculateShapes(a,r,i),p=!1,f=n.bufferSync(r),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],A=Rw(f,m,i,h,c,u,l,d,g,p);return n.makeTensorInfo(i,A.dtype,A.values)}var JG={kernelName:kh,backendName:"cpu",kernelFunc:YG};function QG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=I.parseAxisParam(o,r.shape)[0],l=$.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(d=>{let h=[...c];h[i]=d;let p=jo({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=d,p})}var ej={kernelName:fl,backendName:"cpu",kernelFunc:QG},tj=ot(ho,e=>Math.sqrt(e)),nj={kernelName:ho,backendName:"cpu",kernelFunc:tj},sj={kernelName:Gu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;ke(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),aj={kernelName:Ur,backendName:"cpu",kernelFunc:rj};function oj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:h}=s;ke(r,"stridedSlice");let{nonStrided:p,$begin:f,$strides:m,size:g,newShape:A,outShape:y}=xn.sliceInfo(r.shape,a,o,i,l,u,c,d,h),x=xt({inputs:{x:r},backend:n,attrs:{shape:A}}),b;if(p){let k=jo({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=xt({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else{let k=n.bufferSync(x),w=rw(y,k,m,f);b=n.makeTensorInfo(w.shape,w.dtype,w.values)}let v=xt({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var ij={kernelName:ml,backendName:"cpu",kernelFunc:oj};function lj(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:d}=t,h=n.data.get(c.dataId).values,p=n.data.get(d.dataId).values,[f,m]=aw(h,p,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var uj={kernelName:Ih,backendName:"cpu",kernelFunc:lj};function cj(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[u,c,d]=ow(i,l,r),h=c.length;return[n.makeTensorInfo([h,2],"int32",u),n.makeTensorInfo([h],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var dj={kernelName:Sh,backendName:"cpu",kernelFunc:cj};function hj(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=iw(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var pj={kernelName:Ch,backendName:"cpu",kernelFunc:hj},fj=ot(Ao,e=>Math.tan(e)),mj={kernelName:Ao,backendName:"cpu",kernelFunc:fj},gj=ot(yo,e=>Math.tanh(e)),Aj={kernelName:yo,backendName:"cpu",kernelFunc:gj};function yj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;ke(r,"tile");let o=uw(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var xj={kernelName:Vr,backendName:"cpu",kernelFunc:yj};function bj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;ke(r,"topk");let i=n.data.get(r.dataId).values,[l,u]=dw(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var vj={kernelName:gl,backendName:"cpu",kernelFunc:bj};function wj(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=n,[c,d,h,p]=r.shape,[f,m]=u!=null?u:[d,h],g=[c,f,m,p],A=I.computeStrides(r.shape),y=A[0],x=A[1],b=A[2],v=I.getTypedArrayFromDType(r.dtype,I.sizeFromShape(g));v.fill(l);let k=s.data.get(r.dataId).values,w=s.data.get(a.dataId).values;for(let R=0;Rt-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return I.clamp(0,n,t-1)}function Sj(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return I.clamp(0,n,t-1)}function Cj(e,t){return e}function Tj(e,t){return I.clamp(0,e,t-1)}function Vc(e,t,n,s,r,a,o,i,l,u,c){let d=o*s+i*r+l*a+u;return 0<=i&&in.disposeIntermediateTensorInfo(f)),p}var Oj={kernelName:ju,backendName:"cpu",kernelFunc:Fj},Pj=[UW,LB,GW,qW,GB,KW,YW,QW,tV,sV,aV,iV,uV,hV,fV,AV,xV,vV,kV,WW,SV,TV,EV,UB,qB,_V,BB,DV,OV,zV,BV,PV,HV,jV,VV,XV,ZV,JV,eU,nU,rU,aU,iU,uU,dU,hU,fU,pU,g1,AU,DW,xU,XB,TU,KB,NU,YB,FU,OU,MU,QB,BU,VU,HU,jU,XU,tW,sW,WB,ZU,FV,JU,eH,nH,FW,aW,iW,rH,uW,oH,uH,dH,fH,gH,yH,dW,vH,kH,SH,TH,EH,xH,_H,DH,pW,OH,zH,VH,mW,AW,GH,XH,YH,xW,QH,tG,nG,Ew,oG,PW,wW,lG,VB,cG,MW,zW,BW,hG,fG,gG,yG,bG,vG,kG,IW,SG,TG,_G,LW,DG,OG,MG,SW,BH,BG,VG,HG,jG,XG,ZG,JG,ej,nj,sj,TW,aj,ij,uj,dj,pj,_W,mU,mj,Aj,xj,vj,bW,kj,_j,Dj,Oj,eG];for(let e of Pj)ko(e);var Dw={};Pe(Dw,{assertNotComplex:()=>eu,bindCanvasToFramebuffer:()=>Xj,bindColorTextureToFramebuffer:()=>hf,bindTextureToProgramUniformSampler:()=>Xw,bindTextureUnit:()=>Gw,bindVertexBufferToProgramAttribute:()=>v1,callAndCheck:()=>be,canBeRepresented:()=>Fw,createFragmentShader:()=>Mw,createFramebuffer:()=>Hw,createProgram:()=>zw,createStaticIndexBuffer:()=>Ww,createStaticVertexBuffer:()=>Bw,createTexture:()=>Vw,createVertexShader:()=>Pw,getBatchDim:()=>Xo,getExtensionOrThrow:()=>jc,getFramebufferErrorMessage:()=>Kw,getMaxTexturesInShader:()=>Qw,getNumChannels:()=>jj,getProgramUniformLocation:()=>qw,getProgramUniformLocationOrThrow:()=>jw,getRowsCols:()=>Ko,getShapeAs3D:()=>pf,getTextureShapeFromLogicalShape:()=>Yw,getWebGLDisjointQueryTimerVersion:()=>e6,getWebGLErrorMessage:()=>Ow,getWebGLMaxTextureSize:()=>Jw,hasExtension:()=>xs,isCapableOfRenderingToFloatTexture:()=>t6,isDownloadFloatTextureEnabled:()=>n6,isReshapeFree:()=>Xc,isWebGLFenceEnabled:()=>s6,isWebGLVersionEnabled:()=>k1,linkProgram:()=>Lw,resetMaxTextureSize:()=>Kj,resetMaxTexturesInShader:()=>Zj,unbindColorTextureFromFramebuffer:()=>w1,unbindTextureUnit:()=>qj,validateFramebuffer:()=>qc,validateProgram:()=>df,validateTextureSize:()=>Uw});var qo={},x1={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function cf(e,t){qo[e]=t}function ur(e){if(!(e in qo)){let n=zj(e);if(n!==null)qo[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=qo[e];return t.isContextLost()?(delete qo[e],ur(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),qo[e])}function Mj(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function zj(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=Mj(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete qo[e]},!1),e===1?t.getContext("webgl",x1)||t.getContext("experimental-webgl",x1):t.getContext("webgl2",x1)}var Uc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Uc||(Uc={}));var ys;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(ys||(ys={}));var on;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(on||(on={}));function Hc(e,t){return[t,e]}function Lj(e,t){return e*t}function Gc(e){let t=I.sizeFromShape(e),n=Math.ceil(t/4);return I.sizeToSquarishShape(n)}function Ql(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function Bj(e,t){let[n,s]=Ql(e,t);return n*s*4}function b1(e,t){let n=e,s,r,a,o,i,l,u,c,d,h;return ee().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,u=4,c=1,d=n.HALF_FLOAT,h=n.FLOAT):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,u=4,c=4,d=t!=null?t.HALF_FLOAT_OES:null,h=e.FLOAT),l=e.RGBA,{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:d,textureTypeFloat:h}}function be(e,t){let n=t();return ee().getBool("DEBUG")&&Wj(e),n}function Wj(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+Ow(e,t))}var Vj=596e-10,Uj=65504;function Fw(e){return!!(ee().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||Vje.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Pw(e,t){let n=Er(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function Mw(e,t){let n=Er(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw Gj(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var Hj=/ERROR: [0-9]+:([0-9]+):/g;function Gj(e,t){let n=Hj.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(` `),a=r.length.toString().length+2,o=r.map((d,h)=>I.rightPad((h+1).toString(),a)+d),i=0;for(let d=0;de.createProgram(),"Unable to create WebGLProgram.")}function _w(e,t){if(be(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function sf(e,t){if(be(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function $w(e,t){let n=Sr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Fw(e,t){let n=Sr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Rj(){return ee().getNumber("WEBGL_VERSION")===2?1:4}function Dw(e){return Sr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function Ow(e,t){let n=ee().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function Pw(e){return Sr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function f1(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),be(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),be(e,()=>e.enableVertexAttribArray(i)),!0)}function Mw(e,t,n){Vw(e,n),be(e,()=>e.activeTexture(e.TEXTURE0+n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function _j(e,t){Vw(e,t),be(e,()=>e.activeTexture(e.TEXTURE0+t)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function zw(e,t,n){return Sr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function Lw(e,t,n){return e.getUniformLocation(t,n)}function Bw(e,t,n,s){be(e,()=>Mw(e,t,s)),be(e,()=>e.uniform1i(n,s))}function $j(e){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),be(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function rf(e,t,n){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function m1(e,t){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Wc(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+Ww(e,t))}function Ww(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Sr(e,t,n){let s=be(e,()=>t());if(s==null)throw new Error(n);return s}function Vw(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(sn){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function Uo(e,t=2){return I.sizeFromShape(e.slice(0,e.length-t))}function Ho(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function af(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Uo(e),...Ho(e)]),t}function Uw(e,t=!1){let n=ee().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?I.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=I.squeezeShape(e).newShape);let s=I.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=Uo(e),a=2,o=2;return e.length&&([a,o]=Ho(e)),s=r*(a/2)*(o/2),I.sizeToSquarishShape(s).map(i=>i*2)}return I.sizeToSquarishShape(s)}function of(e){return e%2==0}function Vc(e,t){if(e=e.slice(-2),t=t.slice(-2),I.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||of(n)&&of(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&of(e[0])&&of(t[0])}var lf,uf;function Hw(e){if(lf==null){let t=ar(e);lf=t.getParameter(t.MAX_TEXTURE_SIZE)}return lf}function Fj(){lf=null}function Dj(){uf=null}function Gw(e){if(uf==null){let t=ar(e);uf=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,uf)}function jw(e){if(e===0)return 0;let t,n=ar(e);return ms(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:ms(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function ms(e,t){return e.getExtension(t)!=null}function A1(e){try{if(ar(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function qw(e){if(e===0)return!1;let t=ar(e);if(e===1){if(!ms(t,"OES_texture_float"))return!1}else if(!ms(t,"EXT_color_buffer_float"))return!1;return g1(t)}function Xw(e){if(e===0)return!1;let t=ar(e);if(e===1){if(!ms(t,"OES_texture_float")||!ms(t,"WEBGL_color_buffer_float"))return!1}else{if(ms(t,"EXT_color_buffer_float"))return g1(t);let s="EXT_color_buffer_half_float";if(ms(t,s)){let r=t.getExtension(s);return Oj(t,r)}return!1}return g1(t)}function g1(e){let t=p1(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function Oj(e,t){let n=p1(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function Kw(e){return e!==2?!1:ar(e).fenceSync!=null}function Xl(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&I.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ne=ee();Ne.registerFlag("HAS_WEBGL",()=>Ne.getNumber("WEBGL_VERSION")>0);Ne.registerFlag("WEBGL_VERSION",()=>A1(2)?2:A1(1)?1:0);Ne.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ne.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ne.get("WEBGL_VERSION")===2);Ne.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ne.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ne.registerFlag("WEBGL_PACK",()=>Ne.getBool("HAS_WEBGL"));Ne.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_CLIP",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_REDUCE",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_CONV_IM2COL",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>Hw(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>Gw(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ne.getNumber("WEBGL_VERSION");return e===0?0:jw(e)});Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ne.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Zu.isMobile());Ne.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>qw(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ne.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ne.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ne.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>Xw(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_FENCE_API_ENABLED",()=>Kw(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ne.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ne.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ne.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Zu.isMobile()&&Ne.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Ne.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Ne.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Ne.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Ne.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function bn(){let e,t,n,s,r,a,o,i,l,u;return ee().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=` +`))}function zw(e){return Er(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function Lw(e,t){if(be(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function df(e,t){if(be(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function Bw(e,t){let n=Er(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Ww(e,t){let n=Er(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function jj(){return ee().getNumber("WEBGL_VERSION")===2?1:4}function Vw(e){return Er(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function Uw(e,t){let n=ee().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function Hw(e){return Er(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function v1(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),be(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),be(e,()=>e.enableVertexAttribArray(i)),!0)}function Gw(e,t,n){Zw(e,n),be(e,()=>e.activeTexture(e.TEXTURE0+n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function qj(e,t){Zw(e,t),be(e,()=>e.activeTexture(e.TEXTURE0+t)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function jw(e,t,n){return Er(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function qw(e,t,n){return e.getUniformLocation(t,n)}function Xw(e,t,n,s){be(e,()=>Gw(e,t,s)),be(e,()=>e.uniform1i(n,s))}function Xj(e){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),be(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function hf(e,t,n){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function w1(e,t){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function qc(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+Kw(e,t))}function Kw(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Er(e,t,n){let s=be(e,()=>t());if(s==null)throw new Error(n);return s}function Zw(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(sn){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function Xo(e,t=2){return I.sizeFromShape(e.slice(0,e.length-t))}function Ko(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function pf(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Xo(e),...Ko(e)]),t}function Yw(e,t=!1){let n=ee().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?I.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=I.squeezeShape(e).newShape);let s=I.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=Xo(e),a=2,o=2;return e.length&&([a,o]=Ko(e)),s=r*(a/2)*(o/2),I.sizeToSquarishShape(s).map(i=>i*2)}return I.sizeToSquarishShape(s)}function ff(e){return e%2==0}function Xc(e,t){if(e=e.slice(-2),t=t.slice(-2),I.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||ff(n)&&ff(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&ff(e[0])&&ff(t[0])}var mf,gf;function Jw(e){if(mf==null){let t=ur(e);mf=t.getParameter(t.MAX_TEXTURE_SIZE)}return mf}function Kj(){mf=null}function Zj(){gf=null}function Qw(e){if(gf==null){let t=ur(e);gf=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,gf)}function e6(e){if(e===0)return 0;let t,n=ur(e);return xs(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:xs(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function xs(e,t){return e.getExtension(t)!=null}function k1(e){try{if(ur(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function t6(e){if(e===0)return!1;let t=ur(e);if(e===1){if(!xs(t,"OES_texture_float"))return!1}else if(!xs(t,"EXT_color_buffer_float"))return!1;return I1(t)}function n6(e){if(e===0)return!1;let t=ur(e);if(e===1){if(!xs(t,"OES_texture_float")||!xs(t,"WEBGL_color_buffer_float"))return!1}else{if(xs(t,"EXT_color_buffer_float"))return I1(t);let s="EXT_color_buffer_half_float";if(xs(t,s)){let r=t.getExtension(s);return Yj(t,r)}return!1}return I1(t)}function I1(e){let t=b1(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function Yj(e,t){let n=b1(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function s6(e){return e!==2?!1:ur(e).fenceSync!=null}function eu(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&I.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ne=ee();Ne.registerFlag("HAS_WEBGL",()=>Ne.getNumber("WEBGL_VERSION")>0);Ne.registerFlag("WEBGL_VERSION",()=>k1(2)?2:k1(1)?1:0);Ne.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ne.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ne.get("WEBGL_VERSION")===2);Ne.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ne.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ne.registerFlag("WEBGL_PACK",()=>Ne.getBool("HAS_WEBGL"));Ne.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_CLIP",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_REDUCE",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_CONV_IM2COL",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>Jw(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>Qw(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ne.getNumber("WEBGL_VERSION");return e===0?0:e6(e)});Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ne.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!nc.isMobile());Ne.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>t6(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ne.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ne.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ne.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>n6(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_FENCE_API_ENABLED",()=>s6(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ne.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ne.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ne.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>nc.isMobile()&&Ne.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Ne.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Ne.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Ne.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Ne.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function kn(){let e,t,n,s,r,a,o,i,l,u;return ee().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=` bool isnan_custom(float val) { return (val > 0.0 || val < 0.0) ? false : val != 0.0; } @@ -103,11 +103,11 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ivec4 round(vec4 value) { return ivec4(floor(value + vec4(0.5))); } - `),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function Go(e,t,n="index"){let s=I.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function Zw(e,t,n="index"){let s=I.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function y1(e){let t=I.computeStrides(e).map(n=>n.toString());return` + `),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function Zo(e,t,n="index"){let s=I.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function r6(e,t,n="index"){let s=I.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function S1(e){let t=I.computeStrides(e).map(n=>n.toString());return` int getFlatIndex(ivec3 coords) { return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z; } -`}var Yw=` +`}var a6=` const float FLOAT_MAX = 1.70141184e38; const float FLOAT_MIN = 1.17549435e-38; @@ -146,9 +146,9 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee return c / 255.0; } -`,Pj=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Mc.DENSE;let t=Lc(e),n=bn();this.outputShape=e,this.userCode=` +`,Jj=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Uc.DENSE;let t=Gc(e),n=kn();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { - ${Go(["r","c","d"],e)} + ${Zo(["r","c","d"],e)} return ivec3(r, c, d); } @@ -167,9 +167,9 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${n.output} = result; } - `}},Mj=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Mc.DENSE;let t=Lc(e),n=bn();this.outputShape=e,this.userCode=` + `}},Qj=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Uc.DENSE;let t=Gc(e),n=kn();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { - ${Go(["r","c","d"],e)} + ${Zo(["r","c","d"],e)} return ivec3(r, c, d); } @@ -188,23 +188,23 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${n.output} = result; } - `}},zj=class{constructor(e){this.variableNames=["A"],this.outTexUsage=fs.DOWNLOAD;let t=bn();this.outputShape=e,this.userCode=` - ${Yw} + `}},eq=class{constructor(e){this.variableNames=["A"],this.outTexUsage=ys.DOWNLOAD;let t=kn();this.outputShape=e,this.userCode=` + ${a6} void main() { float x = getAAtOutCoords(); ${t.output} = encode_float(x); } - `}},Lj=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=fs.DOWNLOAD;let t=bn();this.outputShape=e,this.userCode=` - ${Yw} + `}},tq=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=ys.DOWNLOAD;let t=kn();this.outputShape=e,this.userCode=` + ${a6} void main() { ivec3 coords = getOutputCoords(); float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z)); ${t.output} = encode_float(x); } - `}},Bj=class{constructor(e,t,n=!1){this.variableNames=["A"];let s=bn(),[r,a]=t;this.outputShape=e;let o="result";n&&(o="floor(result * 255. + 0.5)"),this.userCode=` - ${y1(e)} + `}},nq=class{constructor(e,t,n=!1){this.variableNames=["A"];let s=kn(),[r,a]=t;this.outputShape=e;let o="result";n&&(o="floor(result * 255. + 0.5)"),this.userCode=` + ${S1(e)} void main() { ivec3 coords = getOutputCoords(); @@ -233,7 +233,7 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${s.output} = vec4(${o}, 0., 0., 0.); } - `}},Wj=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let s=bn(),[r,a]=t;this.outputShape=e;let o="",i="result";n&&(i="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let u=0;u<=1;u++){let c=l*2+u;o+=` + `}},sq=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let s=kn(),[r,a]=t;this.outputShape=e;let o="",i="result";n&&(i="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let u=0;u<=1;u++){let c=l*2+u;o+=` localCoords = coords; if(localCoords[2] + ${u} < ${e[2]}) { localCoords[2] += ${u}; @@ -262,7 +262,7 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee } } `}this.userCode=` - ${y1(e)} + ${S1(e)} void main() { ivec3 coords = getOutputCoords(); @@ -277,7 +277,7 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${s.output} = ${i}; } - `}},Jw={};Pe(Jw,{bindVertexProgramAttributeStreams:()=>i6,createBufferFromOutputTexture:()=>c6,createFloat16MatrixTexture:()=>s6,createFloat16PackedMatrixTexture:()=>o6,createFloat32MatrixTexture:()=>n6,createIndexBuffer:()=>t6,createPackedMatrixTexture:()=>a6,createUnsignedBytesMatrixTexture:()=>r6,createVertexBuffer:()=>e6,createVertexShader:()=>Qw,downloadByteEncodedFloatMatrixFromOutputTexture:()=>h6,downloadFloat32MatrixFromBuffer:()=>d6,downloadMatrixFromPackedOutputTexture:()=>f6,downloadPackedMatrixFromBuffer:()=>p6,getInternalFormatForFloat16MatrixTexture:()=>b1,getInternalFormatForFloat16PackedMatrixTexture:()=>k1,getInternalFormatForFloat32MatrixTexture:()=>x1,getInternalFormatForPackedMatrixTexture:()=>w1,getInternalFormatForUnsignedBytesMatrixTexture:()=>v1,uploadDenseMatrixToTexture:()=>l6,uploadPixelDataToTexture:()=>u6});function Qw(e){let t=bn(),n=`${t.version} + `}},o6={};Pe(o6,{bindVertexProgramAttributeStreams:()=>m6,createBufferFromOutputTexture:()=>y6,createFloat16MatrixTexture:()=>d6,createFloat16PackedMatrixTexture:()=>f6,createFloat32MatrixTexture:()=>c6,createIndexBuffer:()=>u6,createPackedMatrixTexture:()=>p6,createUnsignedBytesMatrixTexture:()=>h6,createVertexBuffer:()=>l6,createVertexShader:()=>i6,downloadByteEncodedFloatMatrixFromOutputTexture:()=>b6,downloadFloat32MatrixFromBuffer:()=>x6,downloadMatrixFromPackedOutputTexture:()=>w6,downloadPackedMatrixFromBuffer:()=>v6,getInternalFormatForFloat16MatrixTexture:()=>T1,getInternalFormatForFloat16PackedMatrixTexture:()=>R1,getInternalFormatForFloat32MatrixTexture:()=>C1,getInternalFormatForPackedMatrixTexture:()=>E1,getInternalFormatForUnsignedBytesMatrixTexture:()=>N1,uploadDenseMatrixToTexture:()=>g6,uploadPixelDataToTexture:()=>A6});function i6(e){let t=kn(),n=`${t.version} precision highp float; ${t.attribute} vec3 clipSpacePos; ${t.attribute} vec2 uv; @@ -286,22 +286,22 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee void main() { gl_Position = vec4(clipSpacePos, 1); resultUV = uv; - }`;return Nw(e,n)}function e6(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return $w(e,t)}function t6(e){let t=new Uint16Array([0,1,2,2,1,3]);return Fw(e,t)}function Uc(e,t,n,s,r,a){Ow(t,n);let o=Dw(e),i=e.TEXTURE_2D;return be(e,()=>e.bindTexture(i,o)),be(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),be(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),be(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function x1(e){return e.internalFormatFloat}function n6(e,t,n,s){let[r,a]=zc(t,n);return Uc(e,r,a,x1(s),s.textureFormatFloat,e.FLOAT)}function b1(e){return e.internalFormatHalfFloat}function s6(e,t,n,s){let[r,a]=zc(t,n);return Uc(e,r,a,b1(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function v1(e){return e.downloadTextureFormat}function r6(e,t,n,s){let[r,a]=zc(t,n);return Uc(e,r,a,v1(s),e.RGBA,e.UNSIGNED_BYTE)}function w1(e){return e.internalFormatPackedFloat}function a6(e,t,n,s){let[r,a]=ql(t,n);return Uc(e,r,a,w1(s),e.RGBA,e.FLOAT)}function k1(e){return e.internalFormatPackedHalfFloat}function o6(e,t,n,s){let[r,a]=ql(t,n);return Uc(e,r,a,k1(s),e.RGBA,s.textureTypeHalfFloat)}function i6(e,t,n){let s=0,r=3*4,a=3*4+2*4;return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),f1(e,t,"clipSpacePos",n,3,a,s)&&f1(e,t,"uv",n,2,a,r)}function l6(e,t,n,s,r,a){be(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),be(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function u6(e,t,n){be(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function c6(e,t,n,s){let r=e.createBuffer();be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return be(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function d6(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function h6(e,t,n,s){let[r,a]=zc(t,n),o=4,i=new Uint8Array(kj(t*n,o));return be(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function p6(e,t,n,s,r,a,o,i){let l=e,u=new Float32Array(Ij(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function f6(e,t,n){let s=new Float32Array(t*n*4);return be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var cf=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=ee().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,nf(t,e)):this.gl=ar(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(ee().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=Bc(this.gl,r),ms(this.gl,a))this.textureHalfFloatExtension=Bc(this.gl,a);else if(ee().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),ms(this.gl,s))this.colorBufferHalfFloatExtension=Bc(this.gl,s);else if(ee().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",ms(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(ms(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=e6(this.gl),this.indexBuffer=t6(this.gl),this.framebuffer=Pw(this.gl),this.textureConfig=p1(this.gl,this.textureHalfFloatExtension)}get debug(){return ee().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;be(e,()=>e.finish()),be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.deleteFramebuffer(this.framebuffer)),be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),be(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),n6(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),s6(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),r6(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),u6(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),l6(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),o6(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),a6(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(m1(this.gl,this.framebuffer),this.outputTexture=null),be(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>h6(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return p6(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return d6(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=c6(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(ee().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>f6(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=Ew(t,e);this.vertexShader==null&&(this.vertexShader=Qw(t));let s=Rw(t);return be(t,()=>t.attachShader(s,this.vertexShader)),be(t,()=>t.attachShader(s,n)),_w(t,s),this.debug&&sf(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=i6(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&be(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&sf(this.gl,this.program),be(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?zw(this.gl,e,t):Lw(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),be(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),Bw(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=ql(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&sf(this.gl,this.program),Wc(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),be(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),be(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Bc(this.gl,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await I.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=Vj(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&I.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),rf(this.gl,e,this.framebuffer),this.debug&&Wc(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(rf(this.gl,this.outputTexture,this.framebuffer),this.debug&&Wc(this.gl)):m1(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;rf(s,e,this.framebuffer),this.debug&&Wc(s),this.outputTexture=e,be(s,()=>s.viewport(0,0,t,n)),be(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),be(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function Vj(e){let t=0;for(;t{let f=I.sizeFromShape(p.shapeInfo.logicalShape);if(p.shapeInfo.isUniform?s.push(`uniform float ${p.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${p.name};`),s.push(`uniform int offset${p.name};`)),n.enableShapeUniforms){let{uniformShape:m}=I1(n.packedInputs,p.shapeInfo.logicalShape,p.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${p.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${p.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${p.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${p.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${p.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(p=>{s.push(`uniform ${p.type} ${p.name}${p.arrayIndex?`[${p.arrayIndex}]`:""};`)});let r=s.join(` -`),a=e.map(p=>Hj(p,t,n.packedInputs,n.enableShapeUniforms)).join(` -`),o=t.texShape,i=bn(),l=qj(i),u,c,d=Zj(i);return t.isPacked?(u=Gj(t.logicalShape,o,n.enableShapeUniforms),c=Kj(i)):(u=jj(t.logicalShape,o,n.enableShapeUniforms),c=Xj(i)),n.packedInputs&&(d+=eq),[d,l,c,r,u,a,n.userCode].join(` -`)}function Kl(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return hq(e,t);case 1:return fq(e,t);case 2:return Aq(e,t);case 3:return yq(e,t);case 4:return bq(e,t);case 5:return vq(e);case 6:return wq(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function A6(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return dq(e);case 1:return pq(e,t);case 2:return mq(e,t);case 3:return gq(e,t);default:return xq(e,t)}}function Hj(e,t,n=!1,s){let r="";n?r+=A6(e,s):r+=Kl(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=kq(e,t):r+=Iq(e,t)),r}function Gj(e,t,n){switch(e.length){case 0:return g6();case 1:return tq(e,t,n);case 2:return uq(e,t,n);case 3:return sq(e,t,n);default:return aq(e,t,n)}}function jj(e,t,n){switch(e.length){case 0:return g6();case 1:return nq(e,t,n);case 2:return cq(e,t,n);case 3:return rq(e,t,n);case 4:return oq(e,t,n);case 5:return iq(e,t);case 6:return lq(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function qj(e){return` + }`;return Pw(e,n)}function l6(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return Bw(e,t)}function u6(e){let t=new Uint16Array([0,1,2,2,1,3]);return Ww(e,t)}function Kc(e,t,n,s,r,a){Uw(t,n);let o=Vw(e),i=e.TEXTURE_2D;return be(e,()=>e.bindTexture(i,o)),be(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),be(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),be(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function C1(e){return e.internalFormatFloat}function c6(e,t,n,s){let[r,a]=Hc(t,n);return Kc(e,r,a,C1(s),s.textureFormatFloat,e.FLOAT)}function T1(e){return e.internalFormatHalfFloat}function d6(e,t,n,s){let[r,a]=Hc(t,n);return Kc(e,r,a,T1(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function N1(e){return e.downloadTextureFormat}function h6(e,t,n,s){let[r,a]=Hc(t,n);return Kc(e,r,a,N1(s),e.RGBA,e.UNSIGNED_BYTE)}function E1(e){return e.internalFormatPackedFloat}function p6(e,t,n,s){let[r,a]=Ql(t,n);return Kc(e,r,a,E1(s),e.RGBA,e.FLOAT)}function R1(e){return e.internalFormatPackedHalfFloat}function f6(e,t,n,s){let[r,a]=Ql(t,n);return Kc(e,r,a,R1(s),e.RGBA,s.textureTypeHalfFloat)}function m6(e,t,n){let s=0,r=3*4,a=3*4+2*4;return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),v1(e,t,"clipSpacePos",n,3,a,s)&&v1(e,t,"uv",n,2,a,r)}function g6(e,t,n,s,r,a){be(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),be(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function A6(e,t,n){be(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function y6(e,t,n,s){let r=e.createBuffer();be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return be(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function x6(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function b6(e,t,n,s){let[r,a]=Hc(t,n),o=4,i=new Uint8Array(Lj(t*n,o));return be(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function v6(e,t,n,s,r,a,o,i){let l=e,u=new Float32Array(Bj(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function w6(e,t,n){let s=new Float32Array(t*n*4);return be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var Af=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=ee().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,cf(t,e)):this.gl=ur(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(ee().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=jc(this.gl,r),xs(this.gl,a))this.textureHalfFloatExtension=jc(this.gl,a);else if(ee().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),xs(this.gl,s))this.colorBufferHalfFloatExtension=jc(this.gl,s);else if(ee().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",xs(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(xs(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=l6(this.gl),this.indexBuffer=u6(this.gl),this.framebuffer=Hw(this.gl),this.textureConfig=b1(this.gl,this.textureHalfFloatExtension)}get debug(){return ee().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;be(e,()=>e.finish()),be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.deleteFramebuffer(this.framebuffer)),be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),be(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),c6(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),d6(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),h6(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),A6(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),g6(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),f6(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),p6(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(w1(this.gl,this.framebuffer),this.outputTexture=null),be(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>b6(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return v6(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return x6(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=y6(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(ee().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>w6(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=Mw(t,e);this.vertexShader==null&&(this.vertexShader=i6(t));let s=zw(t);return be(t,()=>t.attachShader(s,this.vertexShader)),be(t,()=>t.attachShader(s,n)),Lw(t,s),this.debug&&df(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=m6(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&be(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&df(this.gl,this.program),be(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?jw(this.gl,e,t):qw(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),be(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),Xw(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=Ql(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&df(this.gl,this.program),qc(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),be(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),be(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=jc(this.gl,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await I.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=rq(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&I.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),hf(this.gl,e,this.framebuffer),this.debug&&qc(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(hf(this.gl,this.outputTexture,this.framebuffer),this.debug&&qc(this.gl)):w1(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;hf(s,e,this.framebuffer),this.debug&&qc(s),this.outputTexture=e,be(s,()=>s.viewport(0,0,t,n)),be(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),be(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function rq(e){let t=0;for(;t{let f=I.sizeFromShape(p.shapeInfo.logicalShape);if(p.shapeInfo.isUniform?s.push(`uniform float ${p.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${p.name};`),s.push(`uniform int offset${p.name};`)),n.enableShapeUniforms){let{uniformShape:m}=_1(n.packedInputs,p.shapeInfo.logicalShape,p.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${p.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${p.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${p.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${p.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${p.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(p=>{s.push(`uniform ${p.type} ${p.name}${p.arrayIndex?`[${p.arrayIndex}]`:""};`)});let r=s.join(` +`),a=e.map(p=>oq(p,t,n.packedInputs,n.enableShapeUniforms)).join(` +`),o=t.texShape,i=kn(),l=uq(i),u,c,d=hq(i);return t.isPacked?(u=iq(t.logicalShape,o,n.enableShapeUniforms),c=dq(i)):(u=lq(t.logicalShape,o,n.enableShapeUniforms),c=cq(i)),n.packedInputs&&(d+=gq),[d,l,c,r,u,a,n.userCode].join(` +`)}function tu(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return Nq(e,t);case 1:return Rq(e,t);case 2:return $q(e,t);case 3:return Fq(e,t);case 4:return Pq(e,t);case 5:return Mq(e);case 6:return zq(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function I6(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return Tq(e);case 1:return Eq(e,t);case 2:return _q(e,t);case 3:return Dq(e,t);default:return Oq(e,t)}}function oq(e,t,n=!1,s){let r="";n?r+=I6(e,s):r+=tu(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=Lq(e,t):r+=Bq(e,t)),r}function iq(e,t,n){switch(e.length){case 0:return S6();case 1:return Aq(e,t,n);case 2:return Sq(e,t,n);case 3:return xq(e,t,n);default:return vq(e,t,n)}}function lq(e,t,n){switch(e.length){case 0:return S6();case 1:return yq(e,t,n);case 2:return Cq(e,t,n);case 3:return bq(e,t,n);case 4:return wq(e,t,n);case 5:return kq(e,t);case 6:return Iq(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function uq(e){return` float sampleTexture(sampler2D textureSampler, vec2 uv) { return ${e.texture2D}(textureSampler, uv).r; } - `}function Xj(e){return` + `}function cq(e){return` void setOutput(float val) { ${e.output} = vec4(val, 0, 0, 0); } - `}function Kj(e){return` + `}function dq(e){return` void setOutput(vec4 val) { ${e.output} = val; } - `}function Zj(e){return`${e.version} + `}function hq(e){return`${e.version} precision highp float; precision highp int; precision highp sampler2D; @@ -356,10 +356,10 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee return fract((p3.x + p3.y) * p3.z); } - ${Yj} - ${Jj} - ${Qj} - `}var Yj=` + ${pq} + ${fq} + ${mq} + `}var pq=` vec2 uvFromFlat(int texNumR, int texNumC, int index) { int texR = index / texNumC; int texC = index - texR * texNumC; @@ -371,7 +371,7 @@ vec2 packedUVfrom1D(int texNumR, int texNumC, int index) { int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } -`,Jj=` +`,fq=` vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texNumC, int row, int col) { int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2); @@ -379,7 +379,7 @@ vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } -`,Qj=` +`,mq=` vec2 packedUVfrom3D(int texNumR, int texNumC, int texelsInBatch, int texelsInLogicalRow, int b, int row, int col) { @@ -388,7 +388,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } -`,eq=` +`,gq=` float getChannel(vec4 frag, vec2 innerDims) { vec2 modCoord = mod(innerDims, 2.); return modCoord.x == 0. ? @@ -399,11 +399,11 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, float modCoord = mod(float(dim), 2.); return modCoord == 0. ? frag.r : frag.g; } -`;function g6(){return` +`;function S6(){return` int getOutputCoords() { return 0; } - `}function tq(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?` + `}function Aq(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?` int getOutputCoords() { return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0)); } @@ -432,7 +432,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec2(${s[0]}, ${s[1]})); return 2 * (resTexRC.x * ${s[1]} + resTexRC.y); } - `}function nq(e,t,n){return t[0]===1?n?` + `}function yq(e,t,n){return t[0]===1?n?` int getOutputCoords() { return int(resultUV.x * float(outTexShape[1])); } @@ -460,7 +460,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec2(${t[0]}, ${t[1]})); return resTexRC.x * ${t[1]} + resTexRC.y; } - `}function sq(e,t,n){if(n)return` + `}function xq(e,t,n){if(n)return` ivec3 getOutputCoords() { ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0)); int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0)); @@ -491,15 +491,15 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, return ivec3(b, r, c); } - `}function rq(e,t,n){if(n)return` + `}function bq(e,t,n){if(n)return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1])); int index = resTexRC.x * outTexShape[1] + resTexRC.y; - ${Zw(["r","c","d"],e)} + ${r6(["r","c","d"],e)} return ivec3(r, c, d); } -`;let s=Go(["r","c","d"],e);return` +`;let s=Zo(["r","c","d"],e);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); @@ -507,7 +507,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, ${s} return ivec3(r, c, d); } - `}function aq(e,t,n){if(n)return` + `}function vq(e,t,n){if(n)return` ivec4 getOutputCoords() { ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0)); ivec2 resTexRC = ivec2(resultUV.yx * @@ -548,15 +548,15 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, return ivec${e.length}(${l}); } - `}function oq(e,t,n){if(n)return` + `}function wq(e,t,n){if(n)return` ivec4 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1])); int index = resTexRC.x * outTexShape[1] + resTexRC.y; - ${Zw(["r","c","d","d2"],e)} + ${r6(["r","c","d","d2"],e)} return ivec4(r, c, d, d2); } - `;let s=Go(["r","c","d","d2"],e);return` + `;let s=Zo(["r","c","d","d2"],e);return` ivec4 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); @@ -564,7 +564,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, ${s} return ivec4(r, c, d, d2); } - `}function iq(e,t){let n=Go(["r","c","d","d2","d3"],e);return` + `}function kq(e,t){let n=Zo(["r","c","d","d2","d3"],e);return` ivec5 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); @@ -576,7 +576,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, ivec5 outShape = ivec5(r, c, d, d2, d3); return outShape; } - `}function lq(e,t){let n=Go(["r","c","d","d2","d3","d4"],e);return` + `}function Iq(e,t){let n=Zo(["r","c","d","d2","d3","d4"],e);return` ivec6 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); @@ -587,7 +587,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, ivec6 result = ivec6(r, c, d, d2, d3, d4); return result; } - `}function uq(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(I.arraysEqual(e,t))return n?` + `}function Sq(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(I.arraysEqual(e,t))return n?` ivec2 getOutputCoords() { ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0)); return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1])); @@ -620,7 +620,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, return ivec2(r, c); } - `}function cq(e,t,n){return I.arraysEqual(e,t)?n?` + `}function Cq(e,t,n){return I.arraysEqual(e,t)?n?` ivec2 getOutputCoords() { return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1])); } @@ -674,15 +674,15 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, int c = index - r * ${e[1]}; return ivec2(r, c); } - `}function jo(e){return`offset${e}`}function dq(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=bn();return` + `}function Yo(e){return`offset${e}`}function Tq(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=kn();return` vec4 ${n}() { return ${s.texture2D}(${t}, halfCR); } - `}function hq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return` + `}function Nq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return` float ${s}() { return sampleTexture(${n}, halfCR); } - `;let o=jo(n);if(t)return` + `;let o=Yo(n);if(t)return` float ${s}() { vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o}); return sampleTexture(${n}, uv); @@ -692,7 +692,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec2 uv = uvFromFlat(${i}, ${l}, ${o}); return sampleTexture(${n}, uv); } - `}function pq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=bn();if(t)return` + `}function Eq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=kn();if(t)return` vec4 ${s}(int index) { ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0)); vec2 uv = packedUVfrom1D( @@ -705,15 +705,15 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, ${o[0]}, ${o[1]}, index); return ${a.texture2D}(${n}, uv); } - `}function fq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return` + `}function Rq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return` float ${s}(int index) { - ${Zl(e)} + ${nu(e)} } `;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return` float ${s}(int index) { return sampleTexture(${n}, halfCR); } - `;let i=jo(n);return o===1?t?` + `;let i=Yo(n);return o===1?t?` float ${s}(int index) { vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0])); return sampleTexture(${n}, uv); @@ -743,7 +743,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec2 uv = uvFromFlat(${a}, ${o}, index + ${i}); return sampleTexture(${n}, uv); } - `}function mq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=bn();if(a!=null&&I.arraysEqual(n,a))return t?` + `}function _q(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=kn();if(a!=null&&I.arraysEqual(n,a))return t?` vec4 ${r}(int row, int col) { vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]); @@ -767,7 +767,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec2 uv = packedUVfrom2D(${c}, ${u[0]}, ${u[1]}, row, col); return ${l.texture2D}(${s}, uv); } - `}function Aq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&I.arraysEqual(n,a)){if(t)return` + `}function $q(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&I.arraysEqual(n,a)){if(t)return` float ${r}(int row, int col) { vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]); return sampleTexture(${s}, uv); @@ -777,17 +777,17 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec2 uv = (vec2(col, row) + halfCR) / vec2(${p}.0, ${h}.0); return sampleTexture(${s}, uv); } - `}let{newShape:o,keptDims:i}=I.squeezeShape(n),l=o;if(l.length=1?c="coords = 0;":c=i.map(y=>`coords.${d[y+u]} = 0;`).join(` -`);let h="";o<2&&a>0?h="coords":h=e.shapeInfo.logicalShape.map((y,x)=>`coords.${d[x+u]}`).join(", ");let p="return outputValue;",m=I.sizeFromShape(e.shapeInfo.logicalShape)===1,g=I.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!g)p=` + `}function Lq(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=k6(e.shapeInfo.logicalShape,t.logicalShape),l=ht(o),u=o-a,c,d=["x","y","z","w","u","v"];a===0?c="":o<2&&i.length>=1?c="coords = 0;":c=i.map(y=>`coords.${d[y+u]} = 0;`).join(` +`);let h="";o<2&&a>0?h="coords":h=e.shapeInfo.logicalShape.map((y,x)=>`coords.${d[x+u]}`).join(", ");let p="return outputValue;",m=I.sizeFromShape(e.shapeInfo.logicalShape)===1,A=I.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!A)p=` return vec4(outputValue.xy, outputValue.xy); - `;else if(m&&!g)o===1?p=` + `;else if(m&&!A)o===1?p=` return vec4(outputValue.x, outputValue.x, 0., 0.); `:p=` return vec4(outputValue.x); @@ -1104,22 +1104,22 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec4 outputValue = get${s}(${h}); ${p} } - `}function Iq(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&I.arraysEqual(o,a))return` + `}function Bq(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&I.arraysEqual(o,a))return` float ${r}() { return sampleTexture(${n}, resultUV); } - `;let u=ct(l),c=m6(e.shapeInfo.logicalShape,t.logicalShape),d=l-i,h,p=["x","y","z","w","u","v"];i===0?h="":l<2&&c.length>=1?h="coords = 0;":h=c.map(m=>`coords.${p[m+d]} = 0;`).join(` -`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,A)=>`coords.${p[A+d]}`).join(", "),` + `;let u=ht(l),c=k6(e.shapeInfo.logicalShape,t.logicalShape),d=l-i,h,p=["x","y","z","w","u","v"];i===0?h="":l<2&&c.length>=1?h="coords = 0;":h=c.map(m=>`coords.${p[m+d]} = 0;`).join(` +`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${p[g+d]}`).join(", "),` float ${r}() { ${u} coords = getOutputCoords(); ${h} return get${s}(${f}); } - `}function ct(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function I1(e,t,n){let{newShape:s}=I.squeezeShape(t),r=t.length,a=e&&r===3&&t[0]===1,o=a?t.slice(1):s,i=!e&&r>1&&!I.arraysEqual(t,n)&&s.lengthe[n]).join(", ")}function Sq(e,t,n,s){let r=n.map((x,b)=>{let v={logicalShape:x.shape,texShape:x.isUniform?null:x.texData.texShape,isUniform:x.isUniform,isPacked:x.isUniform?!1:x.texData.isPacked,flatOffset:null};return x.texData!=null&&x.texData.slice!=null&&x.texData.slice.flatOffset>0&&(v.flatOffset=x.texData.slice.flatOffset),{name:t.variableNames[b],shapeInfo:v}}),a=r.map(x=>x.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=Uj(r,o,t),l=e.createProgram(i),u=null,c=e.getUniformLocation(l,"NAN",!1);ee().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(l,"INFINITY",!1));let d=!1,h={},p={},f={};for(let x=0;x{y[b]=e.getUniformLocation(l,x.name,d)}),{program:t,source:i,webGLProgram:l,uniformLocations:h,customUniformLocations:y,inShapeInfos:a,outShapeInfo:o,infLoc:u,nanLoc:c,inShapesLocations:p,inTexShapesLocations:f,outShapeLocation:m,outShapeStridesLocation:g,outTexShapeLocation:A}}function y6(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!I.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!I.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function Cq(e,t,n,s,r){t.program.enableShapeUniforms||(y6(t.inShapeInfos,n),y6([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),ee().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let c=t.program.variableNames[u],d=t.uniformLocations[c],h=t.uniformLocations[`offset${c}`],p=t.inShapesLocations[`${c}Shape`],f=t.inTexShapesLocations[`${c}TexShape`];if(p){let{uniformShape:m}=I1(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(p,new Int32Array(m));break;case 2:e.gl.uniform2iv(p,new Int32Array(m));break;case 3:e.gl.uniform3iv(p,new Int32Array(m));break;case 4:e.gl.uniform4iv(p,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(I.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}l.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture,d,u)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=I.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let c=t.customUniformLocations[u],d=r[u];if(l.type==="float")e.gl.uniform1fv(c,d);else if(l.type==="vec2")e.gl.uniform2fv(c,d);else if(l.type==="vec3")e.gl.uniform3fv(c,d);else if(l.type==="vec4")e.gl.uniform4fv(c,d);else if(l.type==="int")e.gl.uniform1iv(c,d);else if(l.type==="ivec2")e.gl.uniform2iv(c,d);else if(l.type==="ivec3")e.gl.uniform3iv(c,d);else if(l.type==="ivec4")e.gl.uniform4iv(c,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function Tq(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:u,uniformShape:c}=I1(e.packedInputs,o.shape,l),d="",h="",p="";if(c.length===1&&e.packedInputs){let b=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];d=`${b[0]>1}_${b[1]>1}`}else if(c.length===2&&!e.packedInputs)h=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!e.packedInputs){let b=I.computeStrides(c);p=`${b[0]===l[1]}_${b[b.length-1]===l[1]}`}let f=o.shape.length,m=f===2&&I.arraysEqual(o.shape,l),A=I.sizeFromShape(o.shape)===1,g=$.getBroadcastDims(o.shape,n.shape),y=!e.packedInputs&&f===n.shape.length&&I.arraysEqual(l,n.texData.texShape),x=e.packedInputs||f>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${f}_${y}_${u}_${c.length}_${A}_${g}_${m}_${d}_${h}_${p}_${x}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${ee().getNumber("WEBGL_VERSION")}`,a}function df(e){return ee().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var{addImpl:Nq,bincountImpl:x6,bincountReduceImpl:Eq,ceilImpl:Rq,concatImpl:_q,equalImpl:$q,expImpl:Fq,expm1Impl:Dq,floorImpl:Oq,gatherNdImpl:Pq,gatherV2Impl:Mq,greaterImpl:zq,greaterEqualImpl:Lq,lessImpl:Bq,lessEqualImpl:Wq,linSpaceImpl:Vq,logImpl:Uq,maxImpl:Hq,maximumImpl:Gq,minimumImpl:jq,multiplyImpl:qq,negImpl:Xq,notEqualImpl:Kq,prodImpl:Zq,rangeImpl:Yq,rsqrtImpl:Jq,simpleAbsImpl:b6,sliceImpl:Qq,sparseFillEmptyRowsImpl:eX,sparseReshapeImpl:tX,sparseSegmentReductionImpl:v6,stridedSliceImpl:nX,stringNGramsImpl:sX,stringSplitImpl:rX,stringToHashBucketFastImpl:aX,subImpl:oX,tileImpl:iX,topKImpl:lX,transposeImpl:S1,uniqueImpl:uX}=Y2;function w6(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function vn(e,t){return t===1?[e]:w6(e,t)}function cX(e,t){if(e===1)return"rc";let n="";for(let s=0;s1&&!I.arraysEqual(t,n)&&s.lengthe[n]).join(", ")}function Wq(e,t,n,s){let r=n.map((x,b)=>{let v={logicalShape:x.shape,texShape:x.isUniform?null:x.texData.texShape,isUniform:x.isUniform,isPacked:x.isUniform?!1:x.texData.isPacked,flatOffset:null};return x.texData!=null&&x.texData.slice!=null&&x.texData.slice.flatOffset>0&&(v.flatOffset=x.texData.slice.flatOffset),{name:t.variableNames[b],shapeInfo:v}}),a=r.map(x=>x.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=aq(r,o,t),l=e.createProgram(i),u=null,c=e.getUniformLocation(l,"NAN",!1);ee().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(l,"INFINITY",!1));let d=!1,h={},p={},f={};for(let x=0;x{y[b]=e.getUniformLocation(l,x.name,d)}),{program:t,source:i,webGLProgram:l,uniformLocations:h,customUniformLocations:y,inShapeInfos:a,outShapeInfo:o,infLoc:u,nanLoc:c,inShapesLocations:p,inTexShapesLocations:f,outShapeLocation:m,outShapeStridesLocation:A,outTexShapeLocation:g}}function C6(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!I.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!I.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function Vq(e,t,n,s,r){t.program.enableShapeUniforms||(C6(t.inShapeInfos,n),C6([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),ee().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let c=t.program.variableNames[u],d=t.uniformLocations[c],h=t.uniformLocations[`offset${c}`],p=t.inShapesLocations[`${c}Shape`],f=t.inTexShapesLocations[`${c}TexShape`];if(p){let{uniformShape:m}=_1(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(p,new Int32Array(m));break;case 2:e.gl.uniform2iv(p,new Int32Array(m));break;case 3:e.gl.uniform3iv(p,new Int32Array(m));break;case 4:e.gl.uniform4iv(p,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(I.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}l.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture,d,u)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=I.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let c=t.customUniformLocations[u],d=r[u];if(l.type==="float")e.gl.uniform1fv(c,d);else if(l.type==="vec2")e.gl.uniform2fv(c,d);else if(l.type==="vec3")e.gl.uniform3fv(c,d);else if(l.type==="vec4")e.gl.uniform4fv(c,d);else if(l.type==="int")e.gl.uniform1iv(c,d);else if(l.type==="ivec2")e.gl.uniform2iv(c,d);else if(l.type==="ivec3")e.gl.uniform3iv(c,d);else if(l.type==="ivec4")e.gl.uniform4iv(c,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function Uq(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:u,uniformShape:c}=_1(e.packedInputs,o.shape,l),d="",h="",p="";if(c.length===1&&e.packedInputs){let b=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];d=`${b[0]>1}_${b[1]>1}`}else if(c.length===2&&!e.packedInputs)h=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!e.packedInputs){let b=I.computeStrides(c);p=`${b[0]===l[1]}_${b[b.length-1]===l[1]}`}let f=o.shape.length,m=f===2&&I.arraysEqual(o.shape,l),g=I.sizeFromShape(o.shape)===1,A=$.getBroadcastDims(o.shape,n.shape),y=!e.packedInputs&&f===n.shape.length&&I.arraysEqual(l,n.texData.texShape),x=e.packedInputs||f>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${f}_${y}_${u}_${c.length}_${g}_${A}_${m}_${d}_${h}_${p}_${x}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${ee().getNumber("WEBGL_VERSION")}`,a}function yf(e){return ee().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var{addImpl:Hq,bincountImpl:T6,bincountReduceImpl:Gq,ceilImpl:jq,concatImpl:qq,equalImpl:Xq,expImpl:Kq,expm1Impl:Zq,floorImpl:Yq,gatherNdImpl:Jq,gatherV2Impl:Qq,greaterImpl:eX,greaterEqualImpl:tX,lessImpl:nX,lessEqualImpl:sX,linSpaceImpl:rX,logImpl:aX,maxImpl:oX,maximumImpl:iX,minimumImpl:lX,multiplyImpl:uX,negImpl:cX,notEqualImpl:dX,prodImpl:hX,rangeImpl:pX,rsqrtImpl:fX,simpleAbsImpl:N6,sliceImpl:mX,sparseFillEmptyRowsImpl:gX,sparseReshapeImpl:AX,sparseSegmentReductionImpl:E6,stridedSliceImpl:yX,stringNGramsImpl:xX,stringSplitImpl:bX,stringToHashBucketFastImpl:vX,subImpl:wX,tileImpl:kX,topKImpl:IX,transposeImpl:$1,uniqueImpl:SX}=r1;function R6(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function In(e,t){return t===1?[e]:R6(e,t)}function CX(e,t){if(e===1)return"rc";let n="";for(let s=0;s ${t[0]}`;let s="";for(let r=e-2;r= ${t[r]}`,r ${t[0]}`;let s="";for(let r=e-2;r= ${t[r]}`,r= ${t}; bool rEdge = rp1 >= ${n}; - `}function mX(e,t){let n=e.length,s=hX(n,t);return n===1?`getA(rc), + `}function _X(e,t){let n=e.length,s=NX(n,t);return n===1?`getA(rc), rc + 1 >= ${e[0]} ? 0. : getA(rc + 1), 0, 0`:`getA(${s[0]}), cEdge ? 0. : getA(${s[1]}), rEdge ? 0. : getA(${s[2]}), - rEdge || cEdge ? 0. : getA(${s[3]})`}var k6=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2==1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=` + rEdge || cEdge ? 0. : getA(${s[3]})`}var _6=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2==1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=` ${r} ${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""} int flatIndex = getFlatIndex(thisRC); @@ -1156,8 +1156,8 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims); ${s>0?"}":""} `}this.userCode=` - ${AX(t)} - ${y1(e)} + ${$X(t)} + ${S1(e)} void main() { ivec3 rc = getOutputCoords(); @@ -1172,12 +1172,12 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(result); } - `}};function AX(e){return` + `}};function $X(e){return` ivec3 inputCoordsFromReshapedOutCoords(int index) { - ${Go(["r","c","d"],e)} + ${Zo(["r","c","d"],e)} return ivec3(r, c, d); } - `}var gX=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=S6(t,n),r=C6(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=I6(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===sn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===sn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===sn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===sn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===sn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=S6(n,s),a=C6(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=I6(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=ee().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function yX(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function I6(e,t,n,s,r){let a=xX(t,s),o;if(r){let[l,u]=ql(e[0],e[1]);o=l*u}else{let[l,u]=zc(e[0],e[1]);o=l*u}let i=yX(n,a);return o*i}function xX(e,t){switch(e){case sn.PACKED_2X2_FLOAT32:return w1(t);case sn.PACKED_2X2_FLOAT16:return k1(t);case sn.UNPACKED_FLOAT32:return x1(t);case sn.UNPACKED_FLOAT16:return b1(t);case sn.PACKED_4X1_UNSIGNED_BYTE:return v1(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function bX(e){return ee().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?sn.PACKED_2X2_FLOAT32:sn.UNPACKED_FLOAT32:e?sn.PACKED_2X2_FLOAT16:sn.UNPACKED_FLOAT16}function S6(e,t){if(e===fs.UPLOAD)return sn.PACKED_2X2_FLOAT32;if(e===fs.RENDER||e==null)return bX(t);if(e===fs.DOWNLOAD||e===fs.PIXELS)return sn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function C6(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var aa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=df(this.outputShape.length),this.userCode=` + `}var DX=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=D6(t,n),r=F6(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=$6(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===on.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===on.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===on.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===on.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===on.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=D6(n,s),a=F6(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=$6(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=ee().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function FX(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function $6(e,t,n,s,r){let a=OX(t,s),o;if(r){let[l,u]=Ql(e[0],e[1]);o=l*u}else{let[l,u]=Hc(e[0],e[1]);o=l*u}let i=FX(n,a);return o*i}function OX(e,t){switch(e){case on.PACKED_2X2_FLOAT32:return E1(t);case on.PACKED_2X2_FLOAT16:return R1(t);case on.UNPACKED_FLOAT32:return C1(t);case on.UNPACKED_FLOAT16:return T1(t);case on.PACKED_4X1_UNSIGNED_BYTE:return N1(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function PX(e){return ee().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?on.PACKED_2X2_FLOAT32:on.UNPACKED_FLOAT32:e?on.PACKED_2X2_FLOAT16:on.UNPACKED_FLOAT16}function D6(e,t){if(e===ys.UPLOAD)return on.PACKED_2X2_FLOAT32;if(e===ys.RENDER||e==null)return PX(t);if(e===ys.DOWNLOAD||e===ys.PIXELS)return on.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function F6(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var ua=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=yf(this.outputShape.length),this.userCode=` float unaryOperation(float x) { ${t} } @@ -1188,11 +1188,11 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(y); } - `}},Ws="if (isnan(x)) return x;",vX="return x;",T6="return abs(x);",wX="return (x >= 0.0) ? x : (exp(x) - 1.0);",kX=Ws+` + `}},Gs="if (isnan(x)) return x;",MX="return x;",O6="return abs(x);",zX="return (x >= 0.0) ? x : (exp(x) - 1.0);",LX=Gs+` return (x < 0.0) ? 0.0 : x; -`,IX=Ws+` +`,BX=Gs+` return (x < 0.0) ? 0.0 : min(6.0, x); -`,hf="return x;",SX="return 1.0 / (1.0 + exp(-1.0 * x));",CX="return x;",TX=` +`,xf="return x;",WX="return 1.0 / (1.0 + exp(-1.0 * x));",VX="return x;",UX=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); @@ -1201,7 +1201,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; -`,NX=` +`,HX=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -1211,7 +1211,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.a = isNaN.a ? x.a : result.a; return result; -`,EX=` +`,GX=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -1221,7 +1221,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.a = isNaN.a ? x.a : result.a; return result; -`,RX="return 1.0 / (1.0 + exp(-1.0 * x));",Ql=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=df(this.outputShape.length),this.userCode=` +`,jX="return 1.0 / (1.0 + exp(-1.0 * x));",au=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=yf(this.outputShape.length),this.userCode=` vec4 unaryOperation(vec4 x) { ${t} } @@ -1232,17 +1232,17 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(y); } - `}},_X=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=vn("rc",t),s=ct(t),r=cX(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=` + `}},qX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=In("rc",t),s=ht(t),r=CX(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=` void main() { ${s} rc = getOutputCoords(); vec4 packedInput = getA(${r}); setOutput(getChannel(packedInput, ${o})); } - `}},$X=Js.whereImpl,FX=1e-7,DX=1e-4,pf={};function OX(e){return e in pf||(pf[e]={}),pf[e]}var PX=ee().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),MX=600;function zX(){return ee().global.screen==null?1024:ee().global.screen.height*ee().global.screen.width*window.devicePixelRatio*MX/1024/1024}var eu=class extends Iu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!ee().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=ar(ee().getNumber("WEBGL_VERSION"));this.binaryCache=OX(ee().getNumber("WEBGL_VERSION")),this.gpgpu=new cf(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new gX(this.gpgpu),this.numMBBeforeWarning=zX(),this.texData=new Dd(this,Ar())}nextDataId(){return eu.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((ee().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||ee().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:fs.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(ee().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:fs.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new Ql(o,hf):d=new aa(o,hf);let h=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:s}],s),p=this.readSync(h.dataId);return this.disposeIntermediateTensorInfo(h),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,u;l&&(u=I.now());let c;if(s==="complex64"){let d=this.readSync(r.real.dataId),h=this.readSync(r.imag.dataId);c=$.mergeRealAndImagArrays(d,h)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=I.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(f=>p.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let p;i?p=new Ql(s,hf):p=new aa(s,hf);let f=this.runWebGLProgram(p,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!ee().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&ee().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(a!=="complex64"&&ee().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let p=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...Lc(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let p=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=p[0],m=p[1];c=$.mergeRealAndImagArrays(f,m)}else if(l==null)c=this.getValuesFromTexture(e);else{let p=I.sizeFromShape(s);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let p=this.gpgpu.gl;be(p,()=>p.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,c),h=this.pendingRead.get(e);return this.pendingRead.delete(e),h.forEach(p=>p(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Ar().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>I.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t0}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=I.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=I.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=I.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:I.now(),endMs:null}}endTimer(e){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=I.now(),e)}async getQueryTime(e){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=PX){return ee().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&I.sizeFromShape(n.shape)0&&I.isString(n[0])){let r=n.map(a=>I.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:s}=this.makeTensorInfo(e,t,n);return Ar().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){let t=new _X(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new dX(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Uo(e.shape),...Ho(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[Uo(t),...Ho(t)],a=new k6(r,n),o=!0,i=this.runWebGLProgram(a,[s],e.dtype,null,o);return{dataId:i.dataId,shape:t,dtype:i.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:s,dtype:r}=t,a=af(s),o;n?o=new Mj(a):o=new Pj(a);let i=!0,l=this.runWebGLProgram(o,[{shape:a,dtype:r,dataId:e}],r,null,i);return{dtype:r,shape:s,dataId:l.dataId}}runWebGLProgram(e,t,n,s,r=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===Mc.DENSE){let m=Lc(e.outputShape);o.texShape=m.map(A=>A*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),I.sizeFromShape(a.shape)===0)return o.values=I.getTypedArrayFromDType(a.dtype,0),a;let i=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(m.dataId);if(A.texture==null){if(!e.packedInputs&&I.sizeFromShape(m.shape)<=ee().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=m.shape)}else if(!!A.isPacked!=!!e.packedInputs)m=A.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),A=this.texData.get(m.dataId);else if(A.isPacked&&!Vc(A.shape,m.shape)){let g=m,y=m.shape;m.shape=A.shape,m=this.packedReshape(m,y),i.push(m),A=this.texData.get(m.dataId),g.shape=y}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:A,isUniform:!1}});this.uploadToGPU(a.dataId);let u={shape:a.shape,texData:o,isUniform:!1},c=Tq(e,l,u),d=this.getAndSaveBinary(c,()=>Sq(this.gpgpu,e,l,u)),h=this.activeTimers!=null,p;h&&(p=this.startTimer()),Cq(this.gpgpu,d,l,u,s),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),h&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let f=ee().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=I.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!ee().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(ee().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=H(()=>{if(!ee().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=ee().getBool("DEBUG");ee().set("DEBUG",!1);let t=this.abs(Ie(1e-8)).dataSync()[0];if(ee().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?FX:DX}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,u;l&&(u=I.now());let c=t.texShape;if(c==null&&(c=Uw(n,i),t.texShape=c),r!=null){let d=af(n),h,p=c[1],f=c[0],m=r instanceof Uint8Array;i?([p,f]=ql(c[0],c[1]),h=new Wj(d,[f,p],m)):h=new Bj(d,[f,p],m);let A=this.makeTensorInfo([f,p],s);m?this.texData.get(A.dataId).usage=fs.PIXELS:this.texData.get(A.dataId).usage=fs.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,f,r);let g=!0,y=this.runWebGLProgram(h,[A],s,null,g),x=this.texData.get(y.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(y.dataId),t.values=null,l&&(this.uploadWaitMs+=I.now()-u)}else{let d=this.acquireTexture(c,o,s,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=LX(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*I.bytesPerElement(t)}};eu.nextDataId=0;function LX(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;snew eu,2);var WX={forceHalfFloat:N6},E6=` + `}},XX=nr.whereImpl,KX=1e-7,ZX=1e-4,bf={};function YX(e){return e in bf||(bf[e]={}),bf[e]}var JX=ee().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),QX=600;function eK(){return ee().global.screen==null?1024:ee().global.screen.height*ee().global.screen.width*window.devicePixelRatio*QX/1024/1024}var ou=class extends Ru{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!ee().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=ur(ee().getNumber("WEBGL_VERSION"));this.binaryCache=YX(ee().getNumber("WEBGL_VERSION")),this.gpgpu=new Af(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new DX(this.gpgpu),this.numMBBeforeWarning=eK(),this.texData=new Wd(this,br())}nextDataId(){return ou.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((ee().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||ee().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:ys.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(ee().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:ys.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new au(o,xf):d=new ua(o,xf);let h=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:s}],s),p=this.readSync(h.dataId);return this.disposeIntermediateTensorInfo(h),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,u;l&&(u=I.now());let c;if(s==="complex64"){let d=this.readSync(r.real.dataId),h=this.readSync(r.imag.dataId);c=$.mergeRealAndImagArrays(d,h)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=I.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(f=>p.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let p;i?p=new au(s,xf):p=new ua(s,xf);let f=this.runWebGLProgram(p,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!ee().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&ee().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(a!=="complex64"&&ee().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let p=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...Gc(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let p=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=p[0],m=p[1];c=$.mergeRealAndImagArrays(f,m)}else if(l==null)c=this.getValuesFromTexture(e);else{let p=I.sizeFromShape(s);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let p=this.gpgpu.gl;be(p,()=>p.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,c),h=this.pendingRead.get(e);return this.pendingRead.delete(e),h.forEach(p=>p(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&br().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>I.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t0}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=I.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=I.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=I.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:I.now(),endMs:null}}endTimer(e){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=I.now(),e)}async getQueryTime(e){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=JX){return ee().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&I.sizeFromShape(n.shape)0&&I.isString(n[0])){let r=n.map(a=>I.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:s}=this.makeTensorInfo(e,t,n);return br().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){let t=new qX(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new TX(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Xo(e.shape),...Ko(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[Xo(t),...Ko(t)],a=new _6(r,n),o=!0,i=this.runWebGLProgram(a,[s],e.dtype,null,o);return{dataId:i.dataId,shape:t,dtype:i.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:s,dtype:r}=t,a=pf(s),o;n?o=new Qj(a):o=new Jj(a);let i=!0,l=this.runWebGLProgram(o,[{shape:a,dtype:r,dataId:e}],r,null,i);return{dtype:r,shape:s,dataId:l.dataId}}runWebGLProgram(e,t,n,s,r=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===Uc.DENSE){let m=Gc(e.outputShape);o.texShape=m.map(g=>g*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),I.sizeFromShape(a.shape)===0)return o.values=I.getTypedArrayFromDType(a.dtype,0),a;let i=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(m.dataId);if(g.texture==null){if(!e.packedInputs&&I.sizeFromShape(m.shape)<=ee().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=m.shape)}else if(!!g.isPacked!=!!e.packedInputs)m=g.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),g=this.texData.get(m.dataId);else if(g.isPacked&&!Xc(g.shape,m.shape)){let A=m,y=m.shape;m.shape=g.shape,m=this.packedReshape(m,y),i.push(m),g=this.texData.get(m.dataId),A.shape=y}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let u={shape:a.shape,texData:o,isUniform:!1},c=Uq(e,l,u),d=this.getAndSaveBinary(c,()=>Wq(this.gpgpu,e,l,u)),h=this.activeTimers!=null,p;h&&(p=this.startTimer()),Vq(this.gpgpu,d,l,u,s),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),h&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let f=ee().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=I.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!ee().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(ee().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=H(()=>{if(!ee().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=ee().getBool("DEBUG");ee().set("DEBUG",!1);let t=this.abs(Ie(1e-8)).dataSync()[0];if(ee().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?KX:ZX}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,u;l&&(u=I.now());let c=t.texShape;if(c==null&&(c=Yw(n,i),t.texShape=c),r!=null){let d=pf(n),h,p=c[1],f=c[0],m=r instanceof Uint8Array;i?([p,f]=Ql(c[0],c[1]),h=new sq(d,[f,p],m)):h=new nq(d,[f,p],m);let g=this.makeTensorInfo([f,p],s);m?this.texData.get(g.dataId).usage=ys.PIXELS:this.texData.get(g.dataId).usage=ys.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),p,f,r);let A=!0,y=this.runWebGLProgram(h,[g],s,null,A),x=this.texData.get(y.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(y.dataId),t.values=null,l&&(this.uploadWaitMs+=I.now()-u)}else{let d=this.acquireTexture(c,o,s,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=tK(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*I.bytesPerElement(t)}};ou.nextDataId=0;function tK(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;snew ou,2);var sK={forceHalfFloat:P6},M6=` if (isnan(a)) return a; if (isnan(b)) return b; -`,tu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=$.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=df(this.outputShape.length),this.userCode=` +`,iu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=$.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=yf(this.outputShape.length),this.userCode=` float binaryOperation(float a, float b) { ${e} } @@ -1252,17 +1252,17 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, float b = getBAtOutCoords(); setOutput(binaryOperation(a, b)); } - `}},ff=` + `}},vf=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; -`,Hc=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=$.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=df(r);let a="";if(s)if(r===0||I.sizeFromShape(this.outputShape)===1)a=` +`,Zc=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=$.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=yf(r);let a="";if(s)if(r===0||I.sizeFromShape(this.outputShape)===1)a=` result.y = 0.; result.z = 0.; result.w = 0.; `;else if(a=` - ${ct(r)} coords = getOutputCoords(); + ${ht(r)} coords = getOutputCoords(); `,r===1)this.enableShapeUniforms?a+=` result.y = (coords + 1) >= outShape ? 0. : result.y; result.z = 0.; @@ -1271,7 +1271,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y; result.z = 0.; result.w = 0.; - `;else{let i=vn("coords",r);this.enableShapeUniforms?a+=` + `;else{let i=In("coords",r);this.enableShapeUniforms?a+=` bool nextRowOutOfBounds = (${i[r-2]} + 1) >= outShape[${r} - 2]; bool nextColOutOfBounds = @@ -1301,21 +1301,21 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(result); } - `}};function qn(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var VX={kernelName:Ma,backendName:"webgl",kernelFunc:qn};function oa(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=qn({inputs:{x:s},backend:n}),l=qn({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var UX={kernelName:Vd,backendName:"webgl",kernelFunc:oa},R6="return (a < 0.) ? b * a : a;",_6=` + `}};function Yn(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var rK={kernelName:Va,backendName:"webgl",kernelFunc:Yn};function ca(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=Yn({inputs:{x:s},backend:n}),l=Yn({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var aK={kernelName:Kd,backendName:"webgl",kernelFunc:ca},z6="return (a < 0.) ? b * a : a;",L6=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); -`;function HX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",I.createScalarValue(a,"float32")),i=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Hc(_6,r.shape,o.shape):new tu(R6,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],r.dtype);return n.disposeIntermediateTensorInfo(o),l}var GX={kernelName:za,backendName:"webgl",kernelFunc:HX},$6="return (a < 0.) ? b * a : a;",F6=` +`;function oK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",I.createScalarValue(a,"float32")),i=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Zc(L6,r.shape,o.shape):new iu(z6,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],r.dtype);return n.disposeIntermediateTensorInfo(o),l}var iK={kernelName:Ua,backendName:"webgl",kernelFunc:oK},B6="return (a < 0.) ? b * a : a;",W6=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); -`;function jX(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Hc(F6,s.shape,r.shape):new tu($6,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)}var qX={kernelName:Ya,backendName:"webgl",kernelFunc:jX},D6="if (isnan(x)) return x;",XX=` +`;function lK(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Zc(W6,s.shape,r.shape):new iu(B6,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)}var uK={kernelName:no,backendName:"webgl",kernelFunc:lK},V6="if (isnan(x)) return x;",cK=` if (isnan(a)) return a; if (isnan(b)) return b; -`,KX=` +`,dK=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; -`;function Ze({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),h=n(d.values,l);return i.makeTensorInfo(o.shape,l,h)}let u=ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new Ql(o.shape,t):c=new aa(o.shape,e),i.runWebGLProgram(c,[o],l)}}function rn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:u}=o,c=i;if(s&&l.dtype==="complex64"){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[A,g]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(x=>{let[b,v]=x,k={dataId:b.dataId,dtype:b.dtype,shape:l.shape},w={dataId:v.dataId,dtype:v.dtype,shape:u.shape},C=new tu(e,l.shape,u.shape);return c.runWebGLProgram(C,[k,w],vs(b.dtype,v.dtype))}),y=oa({inputs:{real:A,imag:g},backend:c});return c.disposeIntermediateTensorInfo(A),c.disposeIntermediateTensorInfo(g),y}let d=a||vs(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||c.shouldExecuteOnCPU([l,u]))&&r!=null){let f=c.texData.get(l.dataId).values,m=c.texData.get(u.dataId).values,A=l.dtype==="string"?$.fromUint8ToStringArray(f):f,g=l.dtype==="string"?$.fromUint8ToStringArray(m):m,[y,x]=r(l.shape,u.shape,A,g,d),b=c.makeTensorInfo(x,d),v=c.texData.get(b.dataId);return v.values=y,b}let h=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return h?p=new Hc(t,l.shape,u.shape,n):p=new tu(e,l.shape,u.shape),c.runWebGLProgram(p,[l,u],d)}}function mf(e,t=!1){if(e==="linear")return t?CX:vX;if(e==="relu")return t?NX:kX;if(e==="elu")return t?TX:wX;if(e==="relu6")return t?EX:IX;if(e==="prelu")return t?F6:$6;if(e==="leakyrelu")return t?_6:R6;if(e==="sigmoid")return t?RX:SX;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var O6=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let u=s?e[1]:e[2],c=Math.ceil(u/2),d=s?"i * 2, rc.y":"rc.y, i * 2",h=r?"rc.z, i * 2":"i * 2, rc.z",p=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",A="";o&&(i?m=`vec4 activation(vec4 a) { +`;function Je({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),h=n(d.values,l);return i.makeTensorInfo(o.shape,l,h)}let u=ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new au(o.shape,t):c=new ua(o.shape,e),i.runWebGLProgram(c,[o],l)}}function ln({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:u}=o,c=i;if(s&&l.dtype==="complex64"){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[g,A]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(x=>{let[b,v]=x,k={dataId:b.dataId,dtype:b.dtype,shape:l.shape},w={dataId:v.dataId,dtype:v.dtype,shape:u.shape},C=new iu(e,l.shape,u.shape);return c.runWebGLProgram(C,[k,w],Ss(b.dtype,v.dtype))}),y=ca({inputs:{real:g,imag:A},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(A),y}let d=a||Ss(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||c.shouldExecuteOnCPU([l,u]))&&r!=null){let f=c.texData.get(l.dataId).values,m=c.texData.get(u.dataId).values,g=l.dtype==="string"?$.fromUint8ToStringArray(f):f,A=l.dtype==="string"?$.fromUint8ToStringArray(m):m,[y,x]=r(l.shape,u.shape,g,A,d),b=c.makeTensorInfo(x,d),v=c.texData.get(b.dataId);return v.values=y,b}let h=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return h?p=new Zc(t,l.shape,u.shape,n):p=new iu(e,l.shape,u.shape),c.runWebGLProgram(p,[l,u],d)}}function wf(e,t=!1){if(e==="linear")return t?VX:MX;if(e==="relu")return t?HX:LX;if(e==="elu")return t?UX:zX;if(e==="relu6")return t?GX:BX;if(e==="prelu")return t?W6:B6;if(e==="leakyrelu")return t?L6:z6;if(e==="sigmoid")return t?jX:WX;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var U6=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let u=s?e[1]:e[2],c=Math.ceil(u/2),d=s?"i * 2, rc.y":"rc.y, i * 2",h=r?"rc.z, i * 2":"i * 2, rc.z",p=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) { vec4 b = getPreluActivationWeightsAtOutCoords(); ${o} }`:l?m=`vec4 activation(vec4 a) { @@ -1323,7 +1323,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, ${o} }`:m=`vec4 activation(vec4 x) { ${o} - }`,A="result = activation(result);");let g=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let y="rc.x",x="rc.x";e[0]`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=o.texData.get(r.dataId);return c.isPacked&&!Vc(r.shape,l)&&!(c.texture!==null&&Vc(c.shape,l))?YX(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var JX={kernelName:Qi,backendName:"webgl",kernelFunc:ye},L6=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${I.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";r%n>0&&(u=` + `}},j6="return a * b;";function D1(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=$.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),u=new G6(H6.REAL,s.shape,r.shape),c=new G6(H6.IMAG,s.shape,r.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],h=n.runWebGLProgram(u,d,"float32"),p=n.runWebGLProgram(c,d,"float32"),f=ca({inputs:{real:h,imag:p},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[u,c]=uX(s.shape,r.shape,i.values,l.values,a),d=n.makeTensorInfo(c,a),h=n.texData.get(d.dataId);return h.values=u,d}let o;return ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new Zc(j6,s.shape,r.shape):o=new iu(j6,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var hK={kernelName:Ja,backendName:"webgl",kernelFunc:D1};function pK(e,t,n){let s=[Xo(e.shape),...Ko(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[Xo(t),...Ko(t)],o=new _6(a,s),i=!0,l=n.runWebGLProgram(o,[r],e.dtype,null,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function ye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=I.sizeFromShape(r.shape),l=I.inferFromImplicitShape(a,i),u=I.sizeFromShape(l);I.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=o.texData.get(r.dataId);return c.isPacked&&!Xc(r.shape,l)&&!(c.texture!==null&&Xc(c.shape,l))?pK(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var fK={kernelName:al,backendName:"webgl",kernelFunc:ye},q6=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${I.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";r%n>0&&(u=` if (inIdx < 0 || inIdx >= ${r}) { return 0.0; } @@ -1420,7 +1420,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, } setOutput(sumValue); } - `}},QX=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,d=` + `}},mK=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,d=` if (${t==="sum"}) { sumValue += dot(values, ones); } else if (${t==="prod"}) { @@ -1512,12 +1512,12 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, } setOutput(${l}); } - `}};function eK(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=$.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function qo(e,t,n,s){let r=eK(e.shape),a=e;for(let o=0;o6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=ct(this.rank),r=w6("rc",this.rank),a=new Array(this.rank);for(let u=0;u6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=ht(this.rank),r=R6("rc",this.rank),a=new Array(this.rank);for(let u=0;u=2&&c>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${A}).`);let v=(g>y?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,f]);I.assert(d===h,()=>`Error in matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[g,d,p]:[g,p,d],w=s?[y,f,h]:[y,h,f],C=ye({inputs:{x:e},backend:r,attrs:{shape:k}}),E=ye({inputs:{x:t},backend:r,attrs:{shape:w}}),O=[C,E],R=Math.max(g,y),_=n?C.shape[1]:C.shape[2],N=a!=null,P=o!=null,W=l==="leakyrelu",j=l!=null?mf(l,!0):null,q=N||P||W||j!=null,X;if((p===1||f===1)&&_>B6&&q===!1){let ne=C,te=E;n&&(ne=wn({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),O.push(ne)),s&&(te=wn({inputs:{x:E},backend:r,attrs:{perm:[0,2,1]}}),O.push(te));let se=f!==1,J=f===1,ie=ne;se&&(ie=ye({inputs:{x:ne},backend:r,attrs:{shape:[R,_,1]}}),O.push(ie));let le=f===1?2:1,he=te;J&&(he=ye({inputs:{x:te},backend:r,attrs:{shape:[R,1,_]}}),O.push(he));let ge=C1({inputs:{a:ie,b:he},backend:r});X=gf({inputs:{x:ge},backend:r,attrs:{axis:le,keepDims:!0}}),O.push(ge)}else{let ne=vs(e.dtype,t.dtype),te=new O6(k,w,[R,p,f],n,s,N,j,P,W),se=[C,E];if(a!=null&&se.push(a),P&&se.push(o),W){let J=r.makeTensorInfo([],"float32",I.createScalarValue(i,"float32"));se.push(J),O.push(J)}X=r.runWebGLProgram(te,se,ne)}let Q=ye({inputs:{x:X},backend:r,attrs:{shape:v}});O.push(X);for(let ne of O)r.disposeIntermediateTensorInfo(ne);return Q}function iK(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s;return yf({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:c})}var lK={kernelName:mo,backendName:"webgl",kernelFunc:iK},W6="return abs(x);";function uK(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=b6(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Ql(s.shape,W6):r=new aa(s.shape,W6),n.runWebGLProgram(r,[s],s.dtype)}var cK={kernelName:pi,backendName:"webgl",kernelFunc:uK},dK=Ws+` + `}};function kf(e,t,n){let s=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new xK(e.shape,t):new AK(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function bK(e,t,n,s){let r=t,a=e.shape.length,o=I.parseAxisParam(r,e.shape),i=o,l=$.getAxesPermutation(i,a),u=l!=null,c=e;u&&(c=kf(e,l,s),i=$.getInnerMostAxes(i.length,a)),$.assertAxesAreInnerMostDims("sum",i,a);let[d,h]=$.computeOutAndReduceShapes(c.shape,i),p=d;n&&(p=$.expandShapeToKeepDim(d,o));let f=I.sizeFromShape(h),g=I.sizeFromShape(e.shape)/f,A=ye({inputs:{x:c},attrs:{shape:[g,f]},backend:s}),y=Fh(e.dtype),x=Jo(A,y,"sum",s),b=ye({inputs:{x},attrs:{shape:p},backend:s});return s.disposeIntermediateTensorInfo(A),s.disposeIntermediateTensorInfo(x),u&&s.disposeIntermediateTensorInfo(c),b}function If(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return bK(r,a,o,n)}var vK={kernelName:po,backendName:"webgl",kernelFunc:If};function Sn(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let c=0;c=2&&c>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${g}).`);let v=(A>y?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,f]);I.assert(d===h,()=>`Error in matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[A,d,p]:[A,p,d],w=s?[y,f,h]:[y,h,f],C=ye({inputs:{x:e},backend:r,attrs:{shape:k}}),R=ye({inputs:{x:t},backend:r,attrs:{shape:w}}),P=[C,R],E=Math.max(A,y),_=n?C.shape[1]:C.shape[2],T=a!=null,O=o!=null,W=l==="leakyrelu",j=l!=null?wf(l,!0):null,q=T||O||W||j!=null,X;if((p===1||f===1)&&_>X6&&q===!1){let ne=C,te=R;n&&(ne=Sn({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),P.push(ne)),s&&(te=Sn({inputs:{x:R},backend:r,attrs:{perm:[0,2,1]}}),P.push(te));let se=f!==1,J=f===1,ie=ne;se&&(ie=ye({inputs:{x:ne},backend:r,attrs:{shape:[E,_,1]}}),P.push(ie));let le=f===1?2:1,he=te;J&&(he=ye({inputs:{x:te},backend:r,attrs:{shape:[E,1,_]}}),P.push(he));let Ae=D1({inputs:{a:ie,b:he},backend:r});X=If({inputs:{x:Ae},backend:r,attrs:{axis:le,keepDims:!0}}),P.push(Ae)}else{let ne=Ss(e.dtype,t.dtype),te=new U6(k,w,[E,p,f],n,s,T,j,O,W),se=[C,R];if(a!=null&&se.push(a),O&&se.push(o),W){let J=r.makeTensorInfo([],"float32",I.createScalarValue(i,"float32"));se.push(J),P.push(J)}X=r.runWebGLProgram(te,se,ne)}let Q=ye({inputs:{x:X},backend:r,attrs:{shape:v}});P.push(X);for(let ne of P)r.disposeIntermediateTensorInfo(ne);return Q}function kK(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s;return Sf({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:c})}var IK={kernelName:bo,backendName:"webgl",kernelFunc:kK},K6="return abs(x);";function SK(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=N6(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new au(s.shape,K6):r=new ua(s.shape,K6),n.runWebGLProgram(r,[s],s.dtype)}var CK={kernelName:xi,backendName:"webgl",kernelFunc:SK},TK=Gs+` if (abs(x) > 1.) { return NAN; } return acos(x); -`,hK=Ze({opSnippet:dK}),pK={kernelName:fi,backendName:"webgl",kernelFunc:hK},fK=Ws+` +`,NK=Je({opSnippet:TK}),EK={kernelName:bi,backendName:"webgl",kernelFunc:NK},RK=Gs+` if (x < 1.0) return NAN; -return log(x + sqrt(x * x - 1.0));`,mK=Ze({opSnippet:fK}),AK={kernelName:mi,backendName:"webgl",kernelFunc:mK},V6="return a + b;",gK=rn({opSnippet:V6,packedOpSnippet:V6,supportsComplex:!0,cpuKernelImpl:Nq}),yK={kernelName:Pr,backendName:"webgl",kernelFunc:gK},xK=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=` +return log(x + sqrt(x * x - 1.0));`,_K=Je({opSnippet:RK}),$K={kernelName:vi,backendName:"webgl",kernelFunc:_K},Z6="return a + b;",DK=ln({opSnippet:Z6,packedOpSnippet:Z6,supportsComplex:!0,cpuKernelImpl:Hq}),FK={kernelName:Br,backendName:"webgl",kernelFunc:DK},OK=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} @@ -1549,7 +1549,7 @@ return log(x + sqrt(x * x - 1.0));`,mK=Ze({opSnippet:fK}),AK={kernelName:mi,back float result = ${s}; setOutput(result); } - `}},bK=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=` + `}},PK=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} @@ -1557,7 +1557,7 @@ return log(x + sqrt(x * x - 1.0));`,mK=Ze({opSnippet:fK}),AK={kernelName:mi,back vec4 result = ${s}; setOutput(result); } - `}};function xf(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return qn({inputs:{x:s[0]},backend:n});if(s.length>ee().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),u=xf({inputs:s.slice(0,l),backend:n}),c=xf({inputs:s.slice(l),backend:n});return xf({inputs:[u,c],backend:n})}let r=s.map(l=>l.dtype).reduce((l,u)=>vs(l,u)),a=s.map(l=>l.shape),i=ee().getBool("WEBGL_PACK")?new bK(s[0].shape,a):new xK(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var vK={kernelName:xa,backendName:"webgl",kernelFunc:xf};function wK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=I.parseAxisParam(a,r.shape),u=l,c=$.getAxesPermutation(u,i),d=r;c!=null&&(d=wn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=$.getInnerMostAxes(u.length,i)),$.assertAxesAreInnerMostDims("all",u,i);let[h,p]=$.computeOutAndReduceShapes(d.shape,u),f=I.sizeFromShape(p),m=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),A=qo(m,m.dtype,"all",n),g;if(o){let y=$.expandShapeToKeepDim(h,l);g=ye({inputs:{x:A},backend:n,attrs:{shape:y}})}else g=ye({inputs:{x:A},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(d),g}var kK={kernelName:Ai,backendName:"webgl",kernelFunc:wK};function IK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=I.parseAxisParam(a,r.shape),u=l,c=$.getAxesPermutation(u,i),d=r;c!=null&&(d=wn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=$.getInnerMostAxes(u.length,i)),$.assertAxesAreInnerMostDims("any",u,i);let[h,p]=$.computeOutAndReduceShapes(d.shape,u),f=I.sizeFromShape(p),m=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),A=qo(m,m.dtype,"any",n),g;if(o){let y=$.expandShapeToKeepDim(h,l);g=ye({inputs:{x:A},backend:n,attrs:{shape:y}})}else g=ye({inputs:{x:A},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(d),g}var SK={kernelName:gi,backendName:"webgl",kernelFunc:IK},CK=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` + `}};function Cf(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Yn({inputs:{x:s[0]},backend:n});if(s.length>ee().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),u=Cf({inputs:s.slice(0,l),backend:n}),c=Cf({inputs:s.slice(l),backend:n});return Cf({inputs:[u,c],backend:n})}let r=s.map(l=>l.dtype).reduce((l,u)=>Ss(l,u)),a=s.map(l=>l.shape),i=ee().getBool("WEBGL_PACK")?new PK(s[0].shape,a):new OK(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var MK={kernelName:Ia,backendName:"webgl",kernelFunc:Cf};function zK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=I.parseAxisParam(a,r.shape),u=l,c=$.getAxesPermutation(u,i),d=r;c!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=$.getInnerMostAxes(u.length,i)),$.assertAxesAreInnerMostDims("all",u,i);let[h,p]=$.computeOutAndReduceShapes(d.shape,u),f=I.sizeFromShape(p),m=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Jo(m,m.dtype,"all",n),A;if(o){let y=$.expandShapeToKeepDim(h,l);A=ye({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=ye({inputs:{x:g},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(d),A}var LK={kernelName:wi,backendName:"webgl",kernelFunc:zK};function BK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=I.parseAxisParam(a,r.shape),u=l,c=$.getAxesPermutation(u,i),d=r;c!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=$.getInnerMostAxes(u.length,i)),$.assertAxesAreInnerMostDims("any",u,i);let[h,p]=$.computeOutAndReduceShapes(d.shape,u),f=I.sizeFromShape(p),m=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Jo(m,m.dtype,"any",n),A;if(o){let y=$.expandShapeToKeepDim(h,l);A=ye({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=ye({inputs:{x:g},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(d),A}var WK={kernelName:ki,backendName:"webgl",kernelFunc:BK},VK=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; @@ -1577,7 +1577,7 @@ return log(x + sqrt(x * x - 1.0));`,mK=Ze({opSnippet:fK}),AK={kernelName:mi,back } setOutput(float(bestIndex)); } - `}},TK=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,I.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=ct(i),u=vn("coords",i),c,d;if(a===1){d=i+1;let w=ct(d);c=` + `}},UK=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,I.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=ht(i),u=In("coords",i),c,d;if(a===1){d=i+1;let w=ht(d);c=` ${w} sourceLocR = ${w}(${u.join()}, 0); ++${u[i-1]}; ${w} sourceLocG = ${w}(${u.join()}, 0); @@ -1593,14 +1593,14 @@ return log(x + sqrt(x * x - 1.0));`,mK=Ze({opSnippet:fK}),AK={kernelName:mi,back ${l} sourceLocA = coords; --${u[i-1]}; ${l} sourceLocB = coords; - --${u[i-2]};`;let h=["x","y","z","w","u","v"].slice(0,d),p="."+h[d-1],f=h.map(w=>"int "+w),m=vn("sourceLocR",d-1).concat("inIdx.r"),A=vn("sourceLocG",d-1).concat("inIdx.g"),g=vn("sourceLocB",d-1).concat("inIdx.b"),y=vn("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",b=s?"":` + --${u[i-2]};`;let h=["x","y","z","w","u","v"].slice(0,d),p="."+h[d-1],f=h.map(w=>"int "+w),m=In("sourceLocR",d-1).concat("inIdx.r"),g=In("sourceLocG",d-1).concat("inIdx.g"),A=In("sourceLocB",d-1).concat("inIdx.b"),y=In("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",b=s?"":` inIdx = round(vec4(getBestIndicesAChannel(${m.join()}), - getBestIndicesAChannel(${A.join()}), getBestIndicesAChannel(${g.join()}), + getBestIndicesAChannel(${A.join()}), getBestIndicesAChannel(${y.join()})));`,v=`vec4( getAChannel(${m.join()}), - hasNextCol ? getAChannel(${A.join()}) : 0., - hasNextRow ? getAChannel(${g.join()}) : 0., + hasNextCol ? getAChannel(${g.join()}) : 0., + hasNextRow ? getAChannel(${A.join()}) : 0., hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,k=s?"":` float getBestIndicesAChannel(${f.join()}) { return getChannel(getBestIndicesA(${h.join()}), @@ -1639,23 +1639,23 @@ return log(x + sqrt(x * x - 1.0));`,mK=Ze({opSnippet:fK}),AK={kernelName:mi,back } setOutput(bestIndex); } - `}};function U6(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=$.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new CK(i,n,s==null),u=[t];s!=null&&u.push(s);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let d=U6(e,t,n,c);return e.disposeIntermediateTensorInfo(c),d}function H6(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=$.computeOptimalWindowSize(a),i=new TK(r,o,n,s==null),l=s==null?[t]:[t,s],u=e.runWebGLProgram(i,l,"int32");if(u.shape.length===t.shape.length){let c=H6(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function G6(e,t,n,s){let r=[n];if($.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!ee().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],[o,i]=$.computeOutAndReduceShapes(t.shape,r),l=I.sizeFromShape(i),u=ye({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});a.push(u);let c=U6(e,u,s);a.push(c);let d=ye({inputs:{x:c},backend:e,attrs:{shape:o}});return a.forEach(h=>e.disposeIntermediateTensorInfo(h)),d}return H6(e,t,s)}function NK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=I.parseAxisParam(a,r.shape),i=$.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=wn({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=$.getInnerMostAxes(o.length,l.shape.length)),$.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=G6(n,l,o[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var EK={kernelName:ba,backendName:"webgl",kernelFunc:NK};function RK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=I.parseAxisParam(a,r.shape),i=$.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=wn({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=$.getInnerMostAxes(o.length,l.shape.length)),$.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=G6(n,l,o[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var _K={kernelName:Tu,backendName:"webgl",kernelFunc:RK},$K=Ws+` + `}};function Y6(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=$.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new VK(i,n,s==null),u=[t];s!=null&&u.push(s);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let d=Y6(e,t,n,c);return e.disposeIntermediateTensorInfo(c),d}function J6(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=$.computeOptimalWindowSize(a),i=new UK(r,o,n,s==null),l=s==null?[t]:[t,s],u=e.runWebGLProgram(i,l,"int32");if(u.shape.length===t.shape.length){let c=J6(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function Q6(e,t,n,s){let r=[n];if($.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!ee().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],[o,i]=$.computeOutAndReduceShapes(t.shape,r),l=I.sizeFromShape(i),u=ye({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});a.push(u);let c=Y6(e,u,s);a.push(c);let d=ye({inputs:{x:c},backend:e,attrs:{shape:o}});return a.forEach(h=>e.disposeIntermediateTensorInfo(h)),d}return J6(e,t,s)}function HK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=I.parseAxisParam(a,r.shape),i=$.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=Sn({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=$.getInnerMostAxes(o.length,l.shape.length)),$.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=Q6(n,l,o[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var GK={kernelName:Sa,backendName:"webgl",kernelFunc:HK};function jK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=I.parseAxisParam(a,r.shape),i=$.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=Sn({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=$.getInnerMostAxes(o.length,l.shape.length)),$.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=Q6(n,l,o[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var qK={kernelName:Du,backendName:"webgl",kernelFunc:jK},XK=Gs+` if (abs(x) > 1.) { return NAN; } return asin(x); -`,FK=Ze({opSnippet:$K}),DK={kernelName:yi,backendName:"webgl",kernelFunc:FK},OK=Ws+"return log(x + sqrt(x * x + 1.0));",PK=Ze({opSnippet:OK}),MK={kernelName:xi,backendName:"webgl",kernelFunc:PK},zK=Ws+` +`,KK=Je({opSnippet:XK}),ZK={kernelName:Ii,backendName:"webgl",kernelFunc:KK},YK=Gs+"return log(x + sqrt(x * x + 1.0));",JK=Je({opSnippet:YK}),QK={kernelName:Si,backendName:"webgl",kernelFunc:JK},eZ=Gs+` return atan(x); -`,LK=Ze({opSnippet:zK}),BK={kernelName:bi,backendName:"webgl",kernelFunc:LK},WK=XX+` +`,tZ=Je({opSnippet:eZ}),nZ={kernelName:Ci,backendName:"webgl",kernelFunc:tZ},sZ=cK+` return atan(a, b); -`,VK=` +`,rZ=` vec4 result = atan(a, b); vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0)); - `+KX+` + `+dK+` return result; -`,UK=rn({opSnippet:WK,packedOpSnippet:VK}),HK={kernelName:wi,backendName:"webgl",kernelFunc:UK},GK=Ws+` +`,aZ=ln({opSnippet:sZ,packedOpSnippet:rZ}),oZ={kernelName:Ni,backendName:"webgl",kernelFunc:aZ},iZ=Gs+` if ((x < -1.0) || (x > 1.0)) return NAN; -return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelName:vi,backendName:"webgl",kernelFunc:jK},Gc=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,g="0.0";if(f||(g="-1.0 / 1e-20"),n){let w=">=";this.userCode=` +return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,lZ=Je({opSnippet:iZ}),uZ={kernelName:Ti,backendName:"webgl",kernelFunc:lZ},Yc=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,A="0.0";if(f||(A="-1.0 / 1e-20"),n){let w=">=";this.userCode=` const ivec2 strides = ivec2(${o}, ${i}); const ivec2 pads = ivec2(${h}, ${p}); @@ -1700,7 +1700,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam if (value ${w} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; - minMaxPosition = ${s?r?m:A:`wR * ${d} + wC`}; + minMaxPosition = ${s?r?m:g:`wR * ${d} + wC`}; } } } @@ -1715,7 +1715,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam `;this.userCode=` const ivec2 strides = ivec2(${o}, ${i}); const ivec2 pads = ivec2(${h}, ${p}); - const float initializationValue = ${g}; + const float initializationValue = ${A}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float count = 0.0; @@ -1739,7 +1739,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam // max/min x(?, ?, d) to get y(yR, yC, d). // ? = to be determined - vec4 minMaxValue = vec4(${g}); + vec4 minMaxValue = vec4(${A}); float avgValue = 0.0; count = 0.0; @@ -1796,10 +1796,10 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } setOutput(${x}); } - `}},T1=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,d=e.dilationWidth,h=e.effectiveFilterDepth,p=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,A=e.padInfo.top,g=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",x="0.0";if(y||(x="-1.0 / 1e-20"),n){let E=">=";this.userCode=` + `}},F1=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,d=e.dilationWidth,h=e.effectiveFilterDepth,p=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,A=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",x="0.0";if(y||(x="-1.0 / 1e-20"),n){let R=">=";this.userCode=` const ivec3 strides = ivec3(${o}, ${i}, ${l}); - const ivec3 pads = ivec3(${m}, ${A}, ${g}); + const ivec3 pads = ivec3(${m}, ${g}, ${A}); void main() { ivec5 coords = getOutputCoords(); @@ -1847,7 +1847,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); - if (value ${E} currMinMaxValue) { + if (value ${R} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${p} * ${f} + @@ -1867,7 +1867,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam `;this.userCode=` const ivec3 strides = ivec3(${o}, ${i}, ${l}); - const ivec3 pads = ivec3(${m}, ${A}, ${g}); + const ivec3 pads = ivec3(${m}, ${g}, ${A}); const float initializationValue = ${x}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); @@ -1959,7 +1959,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam setOutput(${v}); } } - `}};function XK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Xl(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;I.assert($.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=$.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&I.arraysEqual(c.inShape,c.outShape))return qn({inputs:{x:r},backend:n});let d=new Gc(c,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var KK={kernelName:va,backendName:"webgl",kernelFunc:XK};function ZK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s,c=[1,1,1],d=$.computePool3DInfo(r.shape,a,o,c,i,l,u),h=new T1(d,"avg",!1);return n.runWebGLProgram(h,[r],"float32")}var YK={kernelName:Nu,backendName:"webgl",kernelFunc:ZK},JK=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=i-1-e.padInfo.top,c=l-1-e.padInfo.left,d=1/(t*n);this.userCode=` + `}};function cZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;eu(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;I.assert($.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=$.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&I.arraysEqual(c.inShape,c.outShape))return Yn({inputs:{x:r},backend:n});let d=new Yc(c,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var dZ={kernelName:Ca,backendName:"webgl",kernelFunc:cZ};function hZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s,c=[1,1,1],d=$.computePool3DInfo(r.shape,a,o,c,i,l,u),h=new F1(d,"avg",!1);return n.runWebGLProgram(h,[r],"float32")}var pZ={kernelName:Fu,backendName:"webgl",kernelFunc:hZ},fZ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=i-1-e.padInfo.top,c=l-1-e.padInfo.left,d=1/(t*n);this.userCode=` const ivec2 pads = ivec2(${u}, ${c}); const float avgMultiplier = float(${d}); @@ -2001,9 +2001,9 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } setOutput(dotProd); } - `}},QK=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,p=c-1-e.padInfo.front,f=d-1-e.padInfo.top,m=h-1-e.padInfo.left,A=1/(t*n*s);this.userCode=` + `}},mZ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,p=c-1-e.padInfo.front,f=d-1-e.padInfo.top,m=h-1-e.padInfo.left,g=1/(t*n*s);this.userCode=` const ivec3 pads = ivec3(${p}, ${f}, ${m}); - const float avgMultiplier = float(${A}); + const float avgMultiplier = float(${g}); void main() { ivec5 coords = getOutputCoords(); @@ -2057,7 +2057,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } setOutput(dotProd); } - `}};function eZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,d=[1,1,1],h=$.computePool3DInfo(o.shape,i,l,d,u,c),p=new QK(h);return n.runWebGLProgram(p,[r],o.dtype)}var tZ={kernelName:Bd,backendName:"webgl",kernelFunc:eZ};function nZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Xl([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=$.computePool2DInfo(o.shape,i,l,1,u),d=new JK(c);return n.runWebGLProgram(d,[r],o.dtype)}var sZ={kernelName:Ld,backendName:"webgl",kernelFunc:nZ};function rZ(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return yf({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var aZ={kernelName:wa,backendName:"webgl",kernelFunc:rZ},oZ=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],$.assertAndGetBroadcastShape(e,t),$.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&($.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&($.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` + `}};function gZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,d=[1,1,1],h=$.computePool3DInfo(o.shape,i,l,d,u,c),p=new mZ(h);return n.runWebGLProgram(p,[r],o.dtype)}var AZ={kernelName:qd,backendName:"webgl",kernelFunc:gZ};function yZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;eu([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=$.computePool2DInfo(o.shape,i,l,1,u),d=new fZ(c);return n.runWebGLProgram(d,[r],o.dtype)}var xZ={kernelName:jd,backendName:"webgl",kernelFunc:yZ};function bZ(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return Sf({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var vZ={kernelName:Ta,backendName:"webgl",kernelFunc:bZ},wZ=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],$.assertAndGetBroadcastShape(e,t),$.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&($.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&($.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { float x = getXAtOutCoords(); float mean = getMeanAtOutCoords(); @@ -2067,7 +2067,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam float inv = scale * inversesqrt(variance + float(${a})); setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1))); } - `}},iZ=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],$.assertAndGetBroadcastShape(e,t),$.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&($.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&($.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` + `}},kZ=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],$.assertAndGetBroadcastShape(e,t),$.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&($.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&($.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { vec4 offset = ${o}; vec4 scale = ${i}; @@ -2080,7 +2080,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam setOutput((x - mean) * inv + offset); } - `}},lZ=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;I.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),I.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),I.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[s,r,a],c=null;o!=null&&(c=o.shape,u.push(o));let d=null;i!=null&&(d=i.shape,u.push(i));let h=ee().getBool("WEBGL_PACK_NORMALIZATION")?new iZ(s.shape,r.shape,a.shape,c,d,l):new oZ(s.shape,r.shape,a.shape,c,d,l);return t.runWebGLProgram(h,u,u[0].dtype)},uZ={kernelName:Oa,backendName:"webgl",kernelFunc:lZ},cZ=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ct(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=dZ(this.rank),s,r=e.map((a,o)=>`sourceLoc.${N1[o]} = start[${o}] + coords.${N1[o]};`);s=` + `}},IZ=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;I.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),I.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),I.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[s,r,a],c=null;o!=null&&(c=o.shape,u.push(o));let d=null;i!=null&&(d=i.shape,u.push(i));let h=ee().getBool("WEBGL_PACK_NORMALIZATION")?new kZ(s.shape,r.shape,a.shape,c,d,l):new wZ(s.shape,r.shape,a.shape,c,d,l);return t.runWebGLProgram(h,u,u[0].dtype)},SZ={kernelName:Ba,backendName:"webgl",kernelFunc:IZ},CZ=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ht(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=TZ(this.rank),s,r=e.map((a,o)=>`sourceLoc.${O1[o]} = start[${o}] + coords.${O1[o]};`);s=` ${t} sourceLoc; ${t} coords = getOutputCoords(); ${r.join(` @@ -2090,7 +2090,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam ${s} setOutput(getSource(${n})); } - `}},N1=["x","y","z","w","u","v"];function dZ(e){if(e===1)return"sourceLoc";if(e<=6)return N1.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var hZ=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=ct(this.rank),n=vn("coords",this.rank),s=vn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=` + `}},O1=["x","y","z","w","u","v"];function TZ(e){if(e===1)return"sourceLoc";if(e<=6)return O1.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var NZ=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=ht(this.rank),n=In("coords",this.rank),s=In("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=` result.x = ${a}; if (++${n[this.rank-1]} < ${e[this.rank-1]}) { ++${s[this.rank-1]}; @@ -2119,7 +2119,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam ${i} setOutput(result); } - `}};function pZ(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=An.computeFlatOffset(t,I.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function nu(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=An.parseSliceParams(r,a,o);if(An.assertParamsValid(r,i,l),I.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),h=Qq(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,h)}let{isPacked:u}=n.texData.get(r.dataId),c=An.isSliceContinous(r.shape,i,l);if(u||!c){let d=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new hZ(l):new cZ(l),h=[i];return n.runWebGLProgram(d,[r],r.dtype,h)}return n.uploadToGPU(r.dataId),pZ(r,i,l,n)}var fZ={kernelName:sl,backendName:"webgl",kernelFunc:nu},mZ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;I.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=$.getReshaped(r.shape,a,i),u=$.getPermuted(l.length,a.length),c=$.getReshapedPermuted(r.shape,a,i),d=$.getSliceBeginCoords(o,a.length),h=$.getSliceSize(c,o,a.length),p=[],f=ye({inputs:{x:r},backend:n,attrs:{shape:l}}),m=wn({inputs:{x:f},backend:n,attrs:{perm:u}}),A=ye({inputs:{x:m},backend:n,attrs:{shape:c}}),g=nu({inputs:{x:A},backend:n,attrs:{begin:d,size:h}});return p.push(f),p.push(m),p.push(A),p.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},AZ={kernelName:ki,backendName:"webgl",kernelFunc:mZ};function gZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),u=x6(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var yZ={kernelName:Wd,backendName:"webgl",kernelFunc:gZ},xZ="return float(a != b);",j6=rn({opSnippet:xZ,cpuKernelImpl:Kq,dtype:"bool"}),bZ={kernelName:Gi,backendName:"webgl",kernelFunc:j6};function jc(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return qn({inputs:{x:r.complexTensorInfos.real},backend:n})}var vZ={kernelName:uh,backendName:"webgl",kernelFunc:jc},wZ="return float(int(x));";function kZ(e,t){let n=new aa(e.shape,wZ),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function E1(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return qn({inputs:{x:r},backend:n});let o=Dt(r.shape),i=E1({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=oa({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=jc({inputs:{input:r},backend:n}),i=E1({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!I.hasEncodingLoss(r.dtype,a)){let o=qn({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return kZ(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",I.getTypedArrayFromDType("bool",1)),l=j6({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var IZ={kernelName:ka,backendName:"webgl",kernelFunc:E1},q6="return ceil(x);",SZ=Ze({opSnippet:q6,packedOpSnippet:q6,cpuKernelImpl:Rq}),CZ={kernelName:Ia,backendName:"webgl",kernelFunc:SZ},TZ=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=` + `}};function EZ(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=xn.computeFlatOffset(t,I.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function lu(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=xn.parseSliceParams(r,a,o);if(xn.assertParamsValid(r,i,l),I.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),h=mX(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,h)}let{isPacked:u}=n.texData.get(r.dataId),c=xn.isSliceContinous(r.shape,i,l);if(u||!c){let d=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new NZ(l):new CZ(l),h=[i];return n.runWebGLProgram(d,[r],r.dtype,h)}return n.uploadToGPU(r.dataId),EZ(r,i,l,n)}var RZ={kernelName:ul,backendName:"webgl",kernelFunc:lu},_Z=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;I.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=$.getReshaped(r.shape,a,i),u=$.getPermuted(l.length,a.length),c=$.getReshapedPermuted(r.shape,a,i),d=$.getSliceBeginCoords(o,a.length),h=$.getSliceSize(c,o,a.length),p=[],f=ye({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Sn({inputs:{x:f},backend:n,attrs:{perm:u}}),g=ye({inputs:{x:m},backend:n,attrs:{shape:c}}),A=lu({inputs:{x:g},backend:n,attrs:{begin:d,size:h}});return p.push(f),p.push(m),p.push(g),p.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},$Z={kernelName:Ei,backendName:"webgl",kernelFunc:_Z};function DZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),u=T6(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var FZ={kernelName:Xd,backendName:"webgl",kernelFunc:DZ},OZ="return float(a != b);",e4=ln({opSnippet:OZ,cpuKernelImpl:dX,dtype:"bool"}),PZ={kernelName:Yi,backendName:"webgl",kernelFunc:e4};function Jc(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Yn({inputs:{x:r.complexTensorInfos.real},backend:n})}var MZ={kernelName:gh,backendName:"webgl",kernelFunc:Jc},zZ="return float(int(x));";function LZ(e,t){let n=new ua(e.shape,zZ),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function P1(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Yn({inputs:{x:r},backend:n});let o=Pt(r.shape),i=P1({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=ca({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=Jc({inputs:{input:r},backend:n}),i=P1({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!I.hasEncodingLoss(r.dtype,a)){let o=Yn({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return LZ(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",I.getTypedArrayFromDType("bool",1)),l=e4({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var BZ={kernelName:Na,backendName:"webgl",kernelFunc:P1},t4="return ceil(x);",WZ=Je({opSnippet:t4,packedOpSnippet:t4,cpuKernelImpl:jq}),VZ={kernelName:Ea,backendName:"webgl",kernelFunc:WZ},UZ=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=` void main() { float value = getAAtOutCoords(); @@ -2130,7 +2130,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam setOutput(clamp(value, minVal, maxVal)); } - `}},NZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=` + `}},HZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=` void main() { vec4 value = getAAtOutCoords(); @@ -2141,7 +2141,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam setOutput(clamp(value, vec4(minVal), vec4(maxVal))); } - `}};function EZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;ee().getBool("WEBGL_PACK_CLIP")?i=new NZ(r.shape):i=new TZ(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var RZ={kernelName:Mr,backendName:"webgl",kernelFunc:EZ},_Z=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` + `}};function GZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;ee().getBool("WEBGL_PACK_CLIP")?i=new HZ(r.shape):i=new UZ(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var jZ={kernelName:Wr,backendName:"webgl",kernelFunc:GZ},qZ=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` void main() { float re = abs(getRealAtOutCoords()); float im = abs(getImagAtOutCoords()); @@ -2154,7 +2154,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx)) ); } - `}};function X6(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function $Z(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new _Z(s.shape),o=[X6(s,r.complexTensorInfos.real),X6(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var FZ={kernelName:Eu,backendName:"webgl",kernelFunc:$Z},DZ=class{constructor(e){this.outputShape=[],this.outputShape=$.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f= ${i[f-1]}) { return getChannel( - getT${f}(${bf(o,l,m)}), - vec2(${bf(u,l,m)})); + getT${f}(${Tf(o,l,m)}), + vec2(${Tf(u,l,m)})); }`}let h=i.length,p=i[i.length-1];d+=` return getChannel( - getT${h}(${bf(o,l,p)}), - vec2(${bf(u,l,p)}));`,this.userCode=` + getT${h}(${Tf(o,l,p)}), + vec2(${Tf(u,l,p)}));`,this.userCode=` float getValue(${o.map(f=>"int "+f)}) { ${d} } @@ -2200,7 +2200,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } setOutput(result); } - `}};function bf(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function vf(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return qn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var PZ={kernelName:nh,backendName:"webgl",kernelFunc:vf};function su(e,t,n){let s=e[0].dtype;if(s==="complex64"){let c=e.map(m=>jc({inputs:{input:m},backend:n})),d=e.map(m=>vf({inputs:{input:m},backend:n})),h=su(c,t,n),p=su(d,t,n),f=oa({inputs:{real:h,imag:p},backend:n});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let c=e.map(g=>{let y=I.sizeFromShape(g.shape.slice(t));return ye({inputs:{x:g},backend:n,attrs:{shape:[-1,y]}})}),d=c.map(g=>({vals:n.readSync(g.dataId),shape:g.shape})),h=$.computeOutShape(c.map(g=>g.shape),1),p=c[0].shape[0]===1,f=_q(d,h,s,p),m=$.computeOutShape(e.map(g=>g.shape),t),A=n.makeTensorInfo(m,s,f);return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),A}if(e.length>ee().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),d=su(e.slice(0,c),t,n),h=su(e.slice(c),t,n),p=su([d,h],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),p}if(ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new OZ(e.map(d=>d.shape),t);return n.runWebGLProgram(c,e,s)}let{tensors2D:a,outShape:o}=MZ(e,t,n),i=new DZ(a.map(c=>c.shape)),l=n.runWebGLProgram(i,a,s);a.forEach(c=>n.disposeIntermediateTensorInfo(c));let u=ye({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),u}function MZ(e,t,n){let s=$.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ye({inputs:{x:a},attrs:{shape:[-1,I.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function K6(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=I.parseAxisParam(r,t[0].shape)[0],o=$.computeOutShape(t.map(u=>u.shape),a);if(I.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>I.sizeFromShape(u.shape)>0);if(i.length===1)return qn({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return $.assertParamsConsistent(l,a),su(i,a,n)}var zZ={kernelName:Ii,backendName:"webgl",kernelFunc:K6},Z6=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",A=m?1:2,g=m?2:3,y=m?3:1,x="",b="";n&&(s?x=`float activation(float a) { + `}};function Tf(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function Nf(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Yn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var JZ={kernelName:uh,backendName:"webgl",kernelFunc:Nf};function uu(e,t,n){let s=e[0].dtype;if(s==="complex64"){let c=e.map(m=>Jc({inputs:{input:m},backend:n})),d=e.map(m=>Nf({inputs:{input:m},backend:n})),h=uu(c,t,n),p=uu(d,t,n),f=ca({inputs:{real:h,imag:p},backend:n});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let c=e.map(A=>{let y=I.sizeFromShape(A.shape.slice(t));return ye({inputs:{x:A},backend:n,attrs:{shape:[-1,y]}})}),d=c.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),h=$.computeOutShape(c.map(A=>A.shape),1),p=c[0].shape[0]===1,f=qq(d,h,s,p),m=$.computeOutShape(e.map(A=>A.shape),t),g=n.makeTensorInfo(m,s,f);return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),g}if(e.length>ee().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),d=uu(e.slice(0,c),t,n),h=uu(e.slice(c),t,n),p=uu([d,h],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),p}if(ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new YZ(e.map(d=>d.shape),t);return n.runWebGLProgram(c,e,s)}let{tensors2D:a,outShape:o}=QZ(e,t,n),i=new ZZ(a.map(c=>c.shape)),l=n.runWebGLProgram(i,a,s);a.forEach(c=>n.disposeIntermediateTensorInfo(c));let u=ye({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),u}function QZ(e,t,n){let s=$.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ye({inputs:{x:a},attrs:{shape:[-1,I.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function s4(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=I.parseAxisParam(r,t[0].shape)[0],o=$.computeOutShape(t.map(u=>u.shape),a);if(I.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>I.sizeFromShape(u.shape)>0);if(i.length===1)return Yn({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return $.assertParamsConsistent(l,a),uu(i,a,n)}var eY={kernelName:Ri,backendName:"webgl",kernelFunc:s4},r4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,A=m?2:3,y=m?3:1,x="",b="";n&&(s?x=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:r?x=`float activation(float a) { @@ -2222,7 +2222,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam int d2 = coords[${y}]; ivec2 xRCCorner = - ivec2(coords[${A}], coords[${g}]) * strides - pads; + ivec2(coords[${g}], coords[${A}]) * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; @@ -2334,7 +2334,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam ${b} setOutput(result); } - `}},LZ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,d=e.filterHeight,h=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=` + `}},tY=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,d=e.filterHeight,h=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=` const ivec3 strides = ivec3(${r}, ${a}, ${o}); const ivec3 pads = ivec3(${t}, ${n}, ${s}); @@ -2422,7 +2422,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } setOutput(dotProd); } - `}},BZ=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:s,inChannels:r,strideWidth:a,strideHeight:o,padInfo:i,outWidth:l,dilationWidth:u,dilationHeight:c,dataFormat:d}=n,{left:h,top:p}=i,f=r*s,m=bn(),A=d==="channelsLast",g=A?0:1,y=A?1:2,x="";for(let b=0;b<=1;b++)for(let v=0;v<=1;v++)x+=` + `}},nY=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:s,inChannels:r,strideWidth:a,strideHeight:o,padInfo:i,outWidth:l,dilationWidth:u,dilationHeight:c,dataFormat:d}=n,{left:h,top:p}=i,f=r*s,m=kn(),g=d==="channelsLast",A=g?0:1,y=g?1:2,x="";for(let b=0;b<=1;b++)for(let v=0;v<=1;v++)x+=` blockIndex = rc.y + ${v}; pos = rc.x + ${b}; @@ -2430,7 +2430,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam offsetY = int(blockIndex / (${l})) * ${o} - ${p}; d0 = offsetY + ${c} * (pos / ${f}); - if(d0 < ${t[g]} && d0 >= 0) { + if(d0 < ${t[A]} && d0 >= 0) { offsetX = int(mod(float(blockIndex), ${l}.) * ${a}. - ${h}.); d1 = offsetX + ${u} * (int(mod(float(pos), ${f}.) / ${r}.)); @@ -2439,7 +2439,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam ch = int(mod(float(pos), ${r}.)); - if (${A}) { + if (${g}) { innerDims = vec2(d1, ch); result[${b*2+v}] = getChannel( getA(d0, int(innerDims.x), @@ -2466,7 +2466,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam ${m.output} = result; } - `}};function Y6({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,u=s.texData.get(e.dataId),c=n.inChannels,d=l[0]*l[1]*l[2],h=n.outChannels,p=n.dataFormat==="channelsLast",f=!1,m=!1,A,g=[],y=(d===1||h===1)&&c>B6,x=l[2]%2!=0&&!!u.isPacked;if(y||!ee().getBool("WEBGL_LAZILY_UNPACK")||!ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let b=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],v=ye({inputs:{x:e},backend:s,attrs:{shape:[1,b,n.inChannels]}}),k=ye({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),w=yf({a:v,b:k,transposeA:f,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});A=ye({inputs:{x:w},backend:s,attrs:{shape:n.outShape}}),g.push(v),g.push(k),g.push(w)}else{let b=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),v={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},k=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,I.assert(Vc(u.shape,v.shape),()=>`packed reshape ${u.shape} to ${v.shape} isn't free`);let w=ye({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});g.push(w);let C=yf({a:v,b:w,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),E=s.texData.get(C.dataId);I.assert(E.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=k,E.shape=n.outShape,A=qn({inputs:{x:C},backend:s}),A.shape=n.outShape,g.push(C)}for(let b of g)s.disposeIntermediateTensorInfo(b);return A}function J6({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:d,outHeight:h,dataFormat:p}=n,f=p==="channelsLast",m=l*u*c,A=h*d,g=[m,A],y=!0,x=!1,b=[],v=ye({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),k=ye({inputs:{x:t},backend:s,attrs:{shape:[1,m,I.sizeFromShape(t.shape)/m]}});b.push(v),b.push(k);let w=new BZ(g,v.shape,n),C=s.runWebGLProgram(w,[v],"float32"),E=ye({inputs:{x:C},backend:s,attrs:{shape:[1,g[0],g[1]]}});b.push(C),b.push(E);let O=r!=null,R=a!=null,_=i==="leakyrelu",N=i?mf(i,!0):null,P=new O6(E.shape,k.shape,[1,A,n.outChannels],y,x,O,N,R,_),W=[E,k];if(r&&W.push(r),R&&W.push(a),_){let Q=s.makeTensorInfo([],"float32",I.createScalarValue(o,"float32"));W.push(Q),b.push(Q)}let j=s.runWebGLProgram(P,W,"float32"),q=f?[1,h,d,n.outChannels]:[1,n.outChannels,h,d],X=ye({inputs:{x:j},backend:s,attrs:{shape:q}});b.push(j);for(let Q of b)s.disposeIntermediateTensorInfo(Q);return X}function WZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,d=$.convertConv2DDataFormat(l),h=$.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,d),p;if(h.filterHeight===1&&h.filterWidth===1&&h.dilationHeight===1&&h.dilationWidth===1&&h.strideHeight===1&&h.strideWidth===1&&(h.padInfo.type==="SAME"||h.padInfo.type==="VALID"))p=Y6({x:r,filter:a,convInfo:h,backend:n});else if(ee().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)p=J6({x:r,filter:a,convInfo:h,backend:n});else{let m=new Z6(h);p=n.runWebGLProgram(m,[r,a],"float32")}let f=ye({inputs:{x:p},backend:n,attrs:{shape:h.outShape}});return n.disposeIntermediateTensorInfo(p),f}var VZ={kernelName:Sa,backendName:"webgl",kernelFunc:WZ},UZ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=` + `}};function a4({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,u=s.texData.get(e.dataId),c=n.inChannels,d=l[0]*l[1]*l[2],h=n.outChannels,p=n.dataFormat==="channelsLast",f=!1,m=!1,g,A=[],y=(d===1||h===1)&&c>X6,x=l[2]%2!=0&&!!u.isPacked;if(y||!ee().getBool("WEBGL_LAZILY_UNPACK")||!ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let b=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],v=ye({inputs:{x:e},backend:s,attrs:{shape:[1,b,n.inChannels]}}),k=ye({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),w=Sf({a:v,b:k,transposeA:f,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=ye({inputs:{x:w},backend:s,attrs:{shape:n.outShape}}),A.push(v),A.push(k),A.push(w)}else{let b=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),v={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},k=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,I.assert(Xc(u.shape,v.shape),()=>`packed reshape ${u.shape} to ${v.shape} isn't free`);let w=ye({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});A.push(w);let C=Sf({a:v,b:w,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),R=s.texData.get(C.dataId);I.assert(R.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=k,R.shape=n.outShape,g=Yn({inputs:{x:C},backend:s}),g.shape=n.outShape,A.push(C)}for(let b of A)s.disposeIntermediateTensorInfo(b);return g}function o4({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:d,outHeight:h,dataFormat:p}=n,f=p==="channelsLast",m=l*u*c,g=h*d,A=[m,g],y=!0,x=!1,b=[],v=ye({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),k=ye({inputs:{x:t},backend:s,attrs:{shape:[1,m,I.sizeFromShape(t.shape)/m]}});b.push(v),b.push(k);let w=new nY(A,v.shape,n),C=s.runWebGLProgram(w,[v],"float32"),R=ye({inputs:{x:C},backend:s,attrs:{shape:[1,A[0],A[1]]}});b.push(C),b.push(R);let P=r!=null,E=a!=null,_=i==="leakyrelu",T=i?wf(i,!0):null,O=new U6(R.shape,k.shape,[1,g,n.outChannels],y,x,P,T,E,_),W=[R,k];if(r&&W.push(r),E&&W.push(a),_){let Q=s.makeTensorInfo([],"float32",I.createScalarValue(o,"float32"));W.push(Q),b.push(Q)}let j=s.runWebGLProgram(O,W,"float32"),q=f?[1,h,d,n.outChannels]:[1,n.outChannels,h,d],X=ye({inputs:{x:j},backend:s,attrs:{shape:q}});b.push(j);for(let Q of b)s.disposeIntermediateTensorInfo(Q);return X}function sY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,d=$.convertConv2DDataFormat(l),h=$.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,d),p;if(h.filterHeight===1&&h.filterWidth===1&&h.dilationHeight===1&&h.dilationWidth===1&&h.strideHeight===1&&h.strideWidth===1&&(h.padInfo.type==="SAME"||h.padInfo.type==="VALID"))p=a4({x:r,filter:a,convInfo:h,backend:n});else if(ee().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)p=o4({x:r,filter:a,convInfo:h,backend:n});else{let m=new r4(h);p=n.runWebGLProgram(m,[r,a],"float32")}let f=ye({inputs:{x:p},backend:n,attrs:{shape:h.outShape}});return n.disposeIntermediateTensorInfo(p),f}var rY={kernelName:Ra,backendName:"webgl",kernelFunc:sY},aY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; @@ -2508,7 +2508,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } setOutput(dotProd); } - `}},HZ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,u=a?2:3,c=a?3:1;this.userCode=` + `}},oY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,u=a?2:3,c=a?3:1;this.userCode=` const ivec2 pads = ivec2(${o}, ${i}); void main() { @@ -2561,7 +2561,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } setOutput(dotProd); } - `}},GZ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=` + `}},iY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=` void main() { ivec5 coords = getOutputCoords(); int wF = coords.x; @@ -2603,7 +2603,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } setOutput(dotProd); } - `}},jZ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=s-1-e.padInfo.left;this.userCode=` + `}},lY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=s-1-e.padInfo.left;this.userCode=` const ivec3 pads = ivec3(${i}, ${l}, ${u}); void main() { @@ -2660,12 +2660,12 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } setOutput(dotProd); } - `}};function qZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s,d=$.convertConv2DDataFormat(l),h=$.computeConv2DInfo(r.shape,c,o,1,i,u,!1,d),p=new UZ(h);return n.runWebGLProgram(p,[r,a],"float32")}var XZ={kernelName:Ud,backendName:"webgl",kernelFunc:qZ};function KZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,d=$.convertConv2DDataFormat(u),h=$.computeConv2DInfo(o,a.shape,i,1,l,c,!1,d),p=new HZ(h);return n.runWebGLProgram(p,[r,a],"float32")}var ZZ={kernelName:Ca,backendName:"webgl",kernelFunc:KZ};function YZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=$.computeConv3DInfo(r.shape,a.shape,o,l,i),c=new LZ(u);return n.runWebGLProgram(c,[r,a],"float32")}var JZ={kernelName:Ru,backendName:"webgl",kernelFunc:YZ};function QZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,u=$.computeConv3DInfo(r.shape,l,o,1,i),c=new GZ(u);return n.runWebGLProgram(c,[r,a],"float32")}var eY={kernelName:Hd,backendName:"webgl",kernelFunc:QZ};function tY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,u=$.computeConv3DInfo(l,a.shape,i,1,o),c=new jZ(u);return n.runWebGLProgram(c,[r,a],"float32")}var nY={kernelName:Gd,backendName:"webgl",kernelFunc:tY},sY=D6+` + `}};function uY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s,d=$.convertConv2DDataFormat(l),h=$.computeConv2DInfo(r.shape,c,o,1,i,u,!1,d),p=new aY(h);return n.runWebGLProgram(p,[r,a],"float32")}var cY={kernelName:Zd,backendName:"webgl",kernelFunc:uY};function dY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,d=$.convertConv2DDataFormat(u),h=$.computeConv2DInfo(o,a.shape,i,1,l,c,!1,d),p=new oY(h);return n.runWebGLProgram(p,[r,a],"float32")}var hY={kernelName:_a,backendName:"webgl",kernelFunc:dY};function pY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=$.computeConv3DInfo(r.shape,a.shape,o,l,i),c=new tY(u);return n.runWebGLProgram(c,[r,a],"float32")}var fY={kernelName:Pu,backendName:"webgl",kernelFunc:pY};function mY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,u=$.computeConv3DInfo(r.shape,l,o,1,i),c=new iY(u);return n.runWebGLProgram(c,[r,a],"float32")}var gY={kernelName:Yd,backendName:"webgl",kernelFunc:mY};function AY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,u=$.computeConv3DInfo(l,a.shape,i,1,o),c=new lY(u);return n.runWebGLProgram(c,[r,a],"float32")}var yY={kernelName:Jd,backendName:"webgl",kernelFunc:AY},xY=V6+` return cos(x); -`,rY=Ze({opSnippet:sY}),aY={kernelName:Ta,backendName:"webgl",kernelFunc:rY},oY=` +`,bY=Je({opSnippet:xY}),vY={kernelName:$a,backendName:"webgl",kernelFunc:bY},wY=` float e2x = exp(-x); return (e2x + 1.0 / e2x) / 2.0; -`,iY=Ze({opSnippet:oY}),lY={kernelName:Na,backendName:"webgl",kernelFunc:iY},uY=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[u]=t,[c,d]=n;this.outputShape=[u,c,d,l];let h=s==="bilinear"?1:0,[p,f]=[`${o-1}.0`,`${i-1}.0`],[m,A,g]=c>1?[`${(o-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[y,x,b]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=` +`,kY=Je({opSnippet:wY}),IY={kernelName:Da,backendName:"webgl",kernelFunc:kY},SY=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[u]=t,[c,d]=n;this.outputShape=[u,c,d,l];let h=s==="bilinear"?1:0,[p,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,A]=c>1?[`${(o-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[y,x,b]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=` const float height_ratio = float(${m}); const float width_ratio = float(${y}); void main() { @@ -2687,10 +2687,10 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam return; } - float height_scale = ${A}; + float height_scale = ${g}; float width_scale = ${x}; - float in_y = ${g}; + float in_y = ${A}; if( in_y < 0.0 || in_y > ${p} ) { setOutput(float(${r})); return; @@ -2726,20 +2726,20 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam setOutput(newValue); } } - `}},cY=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new uY(r.shape,a.shape,i,l,u);return n.runWebGLProgram(c,[r,a,o],"float32")},dY={kernelName:Si,backendName:"webgl",kernelFunc:cY},Q6=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"0.0":`getX(${e4(s,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=` + `}},CY=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new SY(r.shape,a.shape,i,l,u);return n.runWebGLProgram(c,[r,a,o],"float32")},TY={kernelName:_i,backendName:"webgl",kernelFunc:CY},i4=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"0.0":`getX(${l4(s,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=` void main() { - ${ct(s)} coords = getOutputCoords(); - int end = ${t4(s,"coords")}; + ${ht(s)} coords = getOutputCoords(); + int end = ${u4(s,"coords")}; float val = ${r}; int pow2 = int(pow(2.0, index)); if (${o}) { int idx = ${i}; - ${t4(s,"coords")} = idx; - val += getX(${e4(s,"coords")}); + ${u4(s,"coords")} = idx; + val += getX(${l4(s,"coords")}); } setOutput(val); } - `}};function e4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function t4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function hY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length,u=$.getAxesPermutation([a],l),c=r;u!=null&&(c=wn({inputs:{x:r},backend:n,attrs:{perm:u}}));let d=$.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let h=c.shape[d],p=qn({inputs:{x:c},backend:n});for(let f=0;f<=Math.ceil(Math.log2(h))-1;f++){let m=new Q6(c.shape,!1,i),A=[[f]],g=p;p=n.runWebGLProgram(m,[p],p.dtype,A),n.disposeIntermediateTensorInfo(g)}if(o){let f=new Q6(c.shape,o,i),m=p;p=n.runWebGLProgram(f,[p],p.dtype),n.disposeIntermediateTensorInfo(m)}if(u!=null){let f=$.getUndoAxesPermutation(u),m=wn({inputs:{x:p},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),m}return p}var pY={kernelName:Ea,backendName:"webgl",kernelFunc:hY};function fY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=x6(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=Eq(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var mY={kernelName:jd,backendName:"webgl",kernelFunc:fY},AY=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=` + `}};function l4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function u4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function NY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length,u=$.getAxesPermutation([a],l),c=r;u!=null&&(c=Sn({inputs:{x:r},backend:n,attrs:{perm:u}}));let d=$.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let h=c.shape[d],p=Yn({inputs:{x:c},backend:n});for(let f=0;f<=Math.ceil(Math.log2(h))-1;f++){let m=new i4(c.shape,!1,i),g=[[f]],A=p;p=n.runWebGLProgram(m,[p],p.dtype,g),n.disposeIntermediateTensorInfo(A)}if(o){let f=new i4(c.shape,o,i),m=p;p=n.runWebGLProgram(f,[p],p.dtype),n.disposeIntermediateTensorInfo(m)}if(u!=null){let f=$.getUndoAxesPermutation(u),m=Sn({inputs:{x:p},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),m}return p}var EY={kernelName:Fa,backendName:"webgl",kernelFunc:NY};function RY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=T6(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=Gq(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var _Y={kernelName:Qd,backendName:"webgl",kernelFunc:RY},$Y=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -2758,18 +2758,18 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam float result = ${this.getInputSamplingString()}; setOutput(result); } - `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function gY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;I.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,h=u*a,p=c/(a*a),f=o==="NHWC"?[i,d,h,p]:[i,p,d,h],m=new AY(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var yY={kernelName:Ci,backendName:"webgl",kernelFunc:gY},n4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.inHeight,o=e.inWidth,i=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,d=e.dilationHeight,h=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=e.outChannels/e.inChannels,A="",g="";n&&(s?A=`float activation(float a) { + `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function DY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;I.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,h=u*a,p=c/(a*a),f=o==="NHWC"?[i,d,h,p]:[i,p,d,h],m=new $Y(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var FY={kernelName:$i,backendName:"webgl",kernelFunc:DY},c4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.inHeight,o=e.inWidth,i=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,d=e.dilationHeight,h=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=e.outChannels/e.inChannels,g="",A="";n&&(s?g=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} - }`:r?A=`float activation(float a) { + }`:r?g=`float activation(float a) { float b = getLeakyreluAlphaAtOutCoords(); ${n} - }`:A=` + }`:g=` float activation(float x) { ${n} } - `,g="result = activation(result);");let y=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=` - ${A} + `,A="result = activation(result);");let y=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=` + ${g} const ivec2 strides = ivec2(${u}, ${c}); const ivec2 pads = ivec2(${i}, ${l}); @@ -2811,27 +2811,27 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam float result = dotProd; ${y} - ${g} + ${A} setOutput(result); } - `}},s4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let a=e.outChannels/e.inChannels,o=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,d=e.strideWidth,h=e.dilationHeight,p=e.dilationWidth,f=e.filterHeight,m=e.filterWidth,A=m,g=` + `}},d4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let a=e.outChannels/e.inChannels,o=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,d=e.strideWidth,h=e.dilationHeight,p=e.dilationWidth,f=e.filterHeight,m=e.filterWidth,g=m,A=` int xR; int xC; int xCOffset; - vec4 wTexel; vec4 previous; vec4 final;`;for(let v=0;v=0 && xR < ${o}) { - `;for(let k=0;k<(A+1)/2;k++){let w=k*2,C=w*p;if(g+=` + `;for(let k=0;k<(g+1)/2;k++){let w=k*2,C=w*p;if(A+=` xC = xCCorner + ${C}; - `,d===1){if(w= 0 && xCOffset < ${i} && xTexelC${w}Ready == 0) { xTexelC${w} = getX(batch, xR, xCOffset, d1); @@ -2843,9 +2843,9 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } xTexelC${w}Ready = 1; } - `,p===1&&C>0?g+=` + `,p===1&&C>0?A+=` xC${w} = vec4(xTexelC${w-2}.zw, xTexelC${w}.xy); - `:g+=` + `:A+=` xCOffset = xC + 1 - 2; if (xCOffset >= 0 && xCOffset < ${i}) { @@ -2861,7 +2861,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } else { xC${w} = vec4(0.0, 0.0, xTexelC${w}.xy); } - `):g+=` + `):A+=` if (xC >= 0 && xC < ${i} && xTexelC${w}Ready == 0) { xTexelC${w} = getX(batch, xR, xC, d1); if (xC + 1 >= ${i}) { @@ -2871,8 +2871,8 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } xC${w} = xTexelC${w}; - `,C+1= 0 && xCOffset < ${i} && xTexelC${w+1}Ready == 0) { xTexelC${w+1} = getX(batch, xR, xCOffset, d1); @@ -2884,18 +2884,18 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } xTexelC${w+1}Ready = 1; } - `,p>1&&(g+=` + `,p>1&&(A+=` xCOffset -= 2; if (xCOffset >= 0 && xCOffset < ${i} && xTexelC${w}Ready == 0) { xTexelC${w} = getX(batch, xR, xCOffset, d1); xTexelC${w}Ready = 1; } - `),g+=` + `),A+=` xC${w+1} = vec4(xTexelC${w}.zw, xTexelC${w+1}.xy); - `):E===1?g+=` + `):R===1?A+=` xC${w+1} = xTexelC${w}; - `:g+=` - xCOffset = xC + ${E}; + `:A+=` + xCOffset = xC + ${R}; if (xCOffset >= 0 && xCOffset < ${i} && xTexelC${w+1}Ready == 0) { xTexelC${w+1} = getX(batch, xR, xCOffset, d1); @@ -2906,7 +2906,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } xC${w+1} = xTexelC${w+1}; - `}}else C= 0 && xCOffset < ${i} && xTexelC${w}Ready == 0) { xTexelC${w} = getX(batch, xR, xCOffset, d1); @@ -2929,14 +2929,14 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } xC${w} = vec4(xTexelC${w}.zw, xTexelC${w+1}.zw); - `,C+1= 0 && xCOffset < ${i}) { final = getX(batch, xR, xCOffset, d1); } xC${w+1} = vec4(xTexelC${w+1}.xy, final.xy); - `)):(g+=` + `)):(A+=` if(xC >= 0 && xC < ${i} && xTexelC${w}Ready == 0) { xTexelC${w} = getX(batch, xR, xC, d1); if (xC + 1 >= ${i}) { @@ -2956,15 +2956,15 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam xC${w} = vec4( xTexelC${w}.xy, xTexelC${w+1}.xy); - `,C+1`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let d=$.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!0),h;return ee().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?h=new s4(d):h=new n4(d),n.runWebGLProgram(h,[r,a],"float32")}var bY={kernelName:Ra,backendName:"webgl",kernelFunc:xY},vY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=` + `}};function OY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s,c=l;c==null&&(c=[1,1]),I.assert($.eitherStridesOrDilationsAreOne(o,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let d=$.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!0),h;return ee().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?h=new d4(d):h=new c4(d),n.runWebGLProgram(h,[r,a],"float32")}var PY={kernelName:Oa,backendName:"webgl",kernelFunc:OY},MY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; @@ -3036,7 +3036,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } setOutput(dotProd); } - `}},wY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=` + `}},zY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=` const ivec2 pads = ivec2(${a}, ${o}); void main() { @@ -3081,13 +3081,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } setOutput(dotProd); } - `}};function kY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s,d=$.computeConv2DInfo(r.shape,c,o,i,l,u,!0),h=new vY(d);return n.runWebGLProgram(h,[r,a],"float32")}var IY={kernelName:qd,backendName:"webgl",kernelFunc:kY};function SY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s,d=$.computeConv2DInfo(c,a.shape,o,i,l,u,!0),h=new wY(d);return n.runWebGLProgram(h,[r,a],"float32")}var CY={kernelName:Xd,backendName:"webgl",kernelFunc:SY},TY=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` + `}};function LY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s,d=$.computeConv2DInfo(r.shape,c,o,i,l,u,!0),h=new MY(d);return n.runWebGLProgram(h,[r,a],"float32")}var BY={kernelName:eh,backendName:"webgl",kernelFunc:LY};function WY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s,d=$.computeConv2DInfo(c,a.shape,o,i,l,u,!0),h=new zY(d);return n.runWebGLProgram(h,[r,a],"float32")}var VY={kernelName:th,backendName:"webgl",kernelFunc:WY},UY=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` void main() { ivec2 coords = getOutputCoords(); float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0; setOutput(val); } - `}};function NY(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=I.sizeFromShape(s.shape),o=ye({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new TY(a),l=n.runWebGLProgram(i,[o],o.dtype),u=ye({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var EY={kernelName:Kd,backendName:"webgl",kernelFunc:NY},RY=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:u}=e,{top:c,left:d}=s;this.userCode=` + `}};function HY(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=I.sizeFromShape(s.shape),o=ye({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new UY(a),l=n.runWebGLProgram(i,[o],o.dtype),u=ye({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var GY={kernelName:nh,backendName:"webgl",kernelFunc:HY},jY=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:u}=e,{top:c,left:d}=s;this.userCode=` const ivec2 strides = ivec2(${r}, ${a}); const ivec2 pads = ivec2(${c}, ${d}); const float neg_infinity = -3.4e38; @@ -3125,7 +3125,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam float result = curVal; setOutput(result); } - `}};function _Y(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=$.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),c,d=new RY(u);c=n.runWebGLProgram(d,[r,a],"float32");let h=ye({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),h}var $Y={kernelName:_u,backendName:"webgl",kernelFunc:_Y};function FY(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=$.decodeEinsumEquation(r,a.length);$.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=$.getEinsumComputePath(i,l),d=c.length,h=null,p=o.length,f=[];for(let m=0;m=0&&(h=gf({inputs:{x:h},backend:n,attrs:{axis:u[m]-(o.length-p),keepDims:!1}}),f.push(h)),p--)}for(let m of f)m!==h&&n.disposeIntermediateTensorInfo(m);return h}var DY={kernelName:Jd,backendName:"webgl",kernelFunc:FY},OY="return (x >= 0.0) ? x : (exp(x) - 1.0);",PY=` + `}};function qY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=$.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),c,d=new jY(u);c=n.runWebGLProgram(d,[r,a],"float32");let h=ye({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),h}var XY={kernelName:Mu,backendName:"webgl",kernelFunc:qY};function KY(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=$.decodeEinsumEquation(r,a.length);$.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=$.getEinsumComputePath(i,l),d=c.length,h=null,p=o.length,f=[];for(let m=0;m=0&&(h=If({inputs:{x:h},backend:n,attrs:{axis:u[m]-(o.length-p),keepDims:!1}}),f.push(h)),p--)}for(let m of f)m!==h&&n.disposeIntermediateTensorInfo(m);return h}var ZY={kernelName:ah,backendName:"webgl",kernelFunc:KY},YY="return (x >= 0.0) ? x : (exp(x) - 1.0);",JY=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); @@ -3134,12 +3134,12 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; -`,MY=Ze({opSnippet:OY,packedOpSnippet:PY}),zY={kernelName:Ti,backendName:"webgl",kernelFunc:MY},LY="return (b >= 1.0) ? a : a * (b + 1.0);",BY=` +`,QY=Je({opSnippet:YY,packedOpSnippet:JY}),eJ={kernelName:Di,backendName:"webgl",kernelFunc:QY},tJ="return (b >= 1.0) ? a : a * (b + 1.0);",nJ=` vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.))); return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0)))); -`,WY=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Hc(BY,s.shape,r.shape):new tu(LY,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},VY={kernelName:Qd,backendName:"webgl",kernelFunc:WY},UY=` +`,sJ=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Zc(nJ,s.shape,r.shape):new iu(tJ,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},rJ={kernelName:oh,backendName:"webgl",kernelFunc:sJ},aJ=` return vec4(equal(a, b)); -`,HY="return float(a == b);",GY=rn({opSnippet:HY,packedOpSnippet:UY,dtype:"bool",cpuKernelImpl:$q}),jY={kernelName:Ei,backendName:"webgl",kernelFunc:GY},qY=` +`,oJ="return float(a == b);",iJ=ln({opSnippet:oJ,packedOpSnippet:aJ,dtype:"bool",cpuKernelImpl:Xq}),lJ={kernelName:Oi,backendName:"webgl",kernelFunc:iJ},uJ=` // Error function is calculated approximately with elementary function. // See "Handbook of Mathematical Functions with Formulas, // Graphs, and Mathematical Tables", Abramowitz and Stegun. @@ -3154,7 +3154,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam x = abs(x); float t = 1.0 / (1.0 + p * x); return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x)); -`,XY=Ze({opSnippet:qY}),KY={kernelName:Ni,backendName:"webgl",kernelFunc:XY},r4="return exp(x);",a4=Ze({opSnippet:r4,packedOpSnippet:r4,cpuKernelImpl:Fq}),ZY={kernelName:$a,backendName:"webgl",kernelFunc:a4};function R1(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(I.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),ye({inputs:{x:a},backend:s,attrs:{shape:i}})}var YY={kernelName:Ri,backendName:"webgl",kernelFunc:R1},o4="return exp(x) - 1.0;",JY=Ze({opSnippet:o4,packedOpSnippet:o4,cpuKernelImpl:Dq}),QY={kernelName:_i,backendName:"webgl",kernelFunc:JY},i4=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` +`,cJ=Je({opSnippet:uJ}),dJ={kernelName:Fi,backendName:"webgl",kernelFunc:cJ},h4="return exp(x);",p4=Je({opSnippet:h4,packedOpSnippet:h4,cpuKernelImpl:Kq}),hJ={kernelName:Ma,backendName:"webgl",kernelFunc:p4};function M1(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(I.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),ye({inputs:{x:a},backend:s,attrs:{shape:i}})}var pJ={kernelName:Pi,backendName:"webgl",kernelFunc:M1},f4="return exp(x) - 1.0;",fJ=Je({opSnippet:f4,packedOpSnippet:f4,cpuKernelImpl:Zq}),mJ={kernelName:Mi,backendName:"webgl",kernelFunc:fJ},m4=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` const float exponentMultiplier = ${r}; float unaryOpComplex(float real, float expR, float imag, float expI) { @@ -3187,12 +3187,12 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam ivec2 coords = getOutputCoords(); setOutput(mulMatDFT(coords[0], coords[1])); } - `}};function l4(e,t,n){let s=n.texData.get(e.dataId),r=I.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=ye({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,u=new i4("real",l,t),c=new i4("imag",l,t),d=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],h=n.runWebGLProgram(u,d,"float32"),p=n.runWebGLProgram(c,d,"float32"),f=oa({inputs:{real:h,imag:p},backend:n});n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p);let m=ye({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function eJ(e){let{inputs:t,backend:n}=e,{input:s}=t;return l4(s,!1,n)}var tJ={kernelName:eh,backendName:"webgl",kernelFunc:eJ},nJ=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=` + `}};function g4(e,t,n){let s=n.texData.get(e.dataId),r=I.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=ye({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,u=new m4("real",l,t),c=new m4("imag",l,t),d=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],h=n.runWebGLProgram(u,d,"float32"),p=n.runWebGLProgram(c,d,"float32"),f=ca({inputs:{real:h,imag:p},backend:n});n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p);let m=ye({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function gJ(e){let{inputs:t,backend:n}=e,{input:s}=t;return g4(s,!1,n)}var AJ={kernelName:ih,backendName:"webgl",kernelFunc:gJ},yJ=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=` void main() { // Input can be obtained from uniform value. setOutput(value); } - `}};function wf(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||I.inferDtype(r),a==="string"){let o=I.getArrayFromDType(a,I.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new nJ(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var sJ={kernelName:$u,backendName:"webgl",kernelFunc:wf},rJ=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` + `}};function Ef(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||I.inferDtype(r),a==="string"){let o=I.getArrayFromDType(a,I.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new yJ(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var xJ={kernelName:zu,backendName:"webgl",kernelFunc:Ef},bJ=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; @@ -3206,7 +3206,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } setOutput(outputValue); } - `}},aJ={kernelName:$i,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new rJ(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},u4="return floor(x);",oJ=Ze({opSnippet:u4,packedOpSnippet:u4,cpuKernelImpl:Oq}),iJ={kernelName:Fa,backendName:"webgl",kernelFunc:oJ},lJ=` + `}},vJ={kernelName:zi,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new bJ(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},A4="return floor(x);",wJ=Je({opSnippet:A4,packedOpSnippet:A4,cpuKernelImpl:Yq}),kJ={kernelName:za,backendName:"webgl",kernelFunc:wJ},IJ=` float s = sign(a) * sign(b); int ia = round(a); int ib = round(b); @@ -3216,7 +3216,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } else { return NAN; } -`,uJ=` +`,SJ=` ivec4 ia = round(a); ivec4 ib = round(b); bvec4 cond = notEqual(ib, ivec4(0)); @@ -3237,7 +3237,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam result[3] = idiv(ia[3], ib[3], s[3]); } return vec4(result); -`,cJ=rn({opSnippet:lJ,packedOpSnippet:uJ,dtype:"int32"}),dJ={kernelName:Da,backendName:"webgl",kernelFunc:cJ},hJ=class{constructor(e){this.variableNames=["A"];let t=bn(),[n,s]=e;this.outputShape=e,this.userCode=` +`,CJ=ln({opSnippet:IJ,packedOpSnippet:SJ,dtype:"int32"}),TJ={kernelName:La,backendName:"webgl",kernelFunc:CJ},NJ=class{constructor(e){this.variableNames=["A"];let t=kn(),[n,s]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; @@ -3259,7 +3259,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam setOutput(floor(value * 255.0 + 0.5)); } - `}},pJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=bn(),[n,s]=e;this.outputShape=e,this.userCode=` + `}},EJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=kn(),[n,s]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; @@ -3293,7 +3293,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam ${t.output} = result; } - `}},fJ={kernelName:vh,backendName:"webgl",kernelFunc:mJ},ru;function mJ(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],c=[u,l],d=[u,l,a];(i||o)&&(ru==null&&(ru=document.createElement("canvas").getContext("2d")),ru.canvas.width=l,ru.canvas.height=u,ru.drawImage(r,0,0,l,u),r=ru.canvas);let h=n.makeTensorInfo(c,"int32");n.texData.get(h.dataId).usage=fs.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(h.dataId),r);let p=ee().getBool("WEBGL_PACK")?new pJ(d):new hJ(d),f=n.runWebGLProgram(p,[h],"int32");return n.disposeData(h.dataId),f}function AJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=s,m=$.convertConv2DDataFormat(c),A=$.computeConv2DInfo(r.shape,a.shape,l,d,u,h,!1,m),g,y=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))g=Y6({x:r,filter:a,convInfo:A,backend:n,bias:o,activation:p,preluActivationWeights:i,leakyreluAlpha:f});else if(ee().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)g=J6({x:r,filter:a,convInfo:A,backend:n,bias:o,activation:p,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,v=i!=null,k=p==="leakyrelu",w=p?mf(p,!1):null,C=new Z6(A,b,w,v,k),E=[r,a];if(o&&E.push(o),i&&E.push(i),k){let O=n.makeTensorInfo([],"float32",I.createScalarValue(f,"float32"));E.push(O),y.push(O)}g=n.runWebGLProgram(C,E,"float32")}let x=ye({inputs:{x:g},backend:n,attrs:{shape:A.outShape}});return y.push(g),y.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var gJ={kernelName:Ao,backendName:"webgl",kernelFunc:AJ};function yJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:d,activation:h,leakyreluAlpha:p}=s,f=[],m=c;m==null&&(m=[1,1]),I.assert($.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let A=$.computeConv2DInfo(r.shape,a.shape,l,m,u,d,!0),g=ee().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,y=h?mf(h,g):null,x=[r,a],b=o!=null,v=i!=null,k=h==="leakyrelu";if(b&&x.push(o),v&&x.push(i),k){let E=n.makeTensorInfo([],"float32",I.createScalarValue(p,"float32"));x.push(E),f.push(E)}let w;g?w=new s4(A,b,y,v,k):w=new n4(A,b,y,v,k);let C=n.runWebGLProgram(w,x,"float32");return f.forEach(E=>n.disposeIntermediateTensorInfo(E)),C}var xJ={kernelName:go,backendName:"webgl",kernelFunc:yJ},bJ=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=ct(t.length),r=ct(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=` + `}},RJ={kernelName:Nh,backendName:"webgl",kernelFunc:_J},cu;function _J(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],c=[u,l],d=[u,l,a];(i||o)&&(cu==null&&(cu=document.createElement("canvas").getContext("2d")),cu.canvas.width=l,cu.canvas.height=u,cu.drawImage(r,0,0,l,u),r=cu.canvas);let h=n.makeTensorInfo(c,"int32");n.texData.get(h.dataId).usage=ys.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(h.dataId),r);let p=ee().getBool("WEBGL_PACK")?new EJ(d):new NJ(d),f=n.runWebGLProgram(p,[h],"int32");return n.disposeData(h.dataId),f}function $J(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=s,m=$.convertConv2DDataFormat(c),g=$.computeConv2DInfo(r.shape,a.shape,l,d,u,h,!1,m),A,y=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))A=a4({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:p,preluActivationWeights:i,leakyreluAlpha:f});else if(ee().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)A=o4({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:p,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,v=i!=null,k=p==="leakyrelu",w=p?wf(p,!1):null,C=new r4(g,b,w,v,k),R=[r,a];if(o&&R.push(o),i&&R.push(i),k){let P=n.makeTensorInfo([],"float32",I.createScalarValue(f,"float32"));R.push(P),y.push(P)}A=n.runWebGLProgram(C,R,"float32")}let x=ye({inputs:{x:A},backend:n,attrs:{shape:g.outShape}});return y.push(A),y.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var DJ={kernelName:vo,backendName:"webgl",kernelFunc:$J};function FJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:d,activation:h,leakyreluAlpha:p}=s,f=[],m=c;m==null&&(m=[1,1]),I.assert($.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=$.computeConv2DInfo(r.shape,a.shape,l,m,u,d,!0),A=ee().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,y=h?wf(h,A):null,x=[r,a],b=o!=null,v=i!=null,k=h==="leakyrelu";if(b&&x.push(o),v&&x.push(i),k){let R=n.makeTensorInfo([],"float32",I.createScalarValue(p,"float32"));x.push(R),f.push(R)}let w;A?w=new d4(g,b,y,v,k):w=new c4(g,b,y,v,k);let C=n.runWebGLProgram(w,x,"float32");return f.forEach(R=>n.disposeIntermediateTensorInfo(R)),C}var OJ={kernelName:wo,backendName:"webgl",kernelFunc:FJ},PJ=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=ht(t.length),r=ht(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=` ${s} strides = ${s}(${this.strides}); void main() { ${r} coords = getOutputCoords(); @@ -3304,21 +3304,21 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } setOutput(getX(flattenIndex, coords[1])); } - `}};function vJ(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=I.sizeFromShape(s.shape),[l,u,c,d]=$.prepareAndValidate(s,r),h=ye({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),p=ye({inputs:{x:s},backend:n,attrs:{shape:[I.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let g=n.readSync(r.dataId),y=n.bufferSync(s),x=Pq(g,y,s.dtype,u,o,c,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,x.values)}let f=new bJ(o,d,[u,c]),m=n.runWebGLProgram(f,[p,h],p.dtype),A=ye({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),A}var wJ={kernelName:Di,backendName:"webgl",kernelFunc:vJ},kJ=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ct(this.rank),s=IJ(e,2);this.userCode=` + `}};function MJ(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=I.sizeFromShape(s.shape),[l,u,c,d]=$.prepareAndValidate(s,r),h=ye({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),p=ye({inputs:{x:s},backend:n,attrs:{shape:[I.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let A=n.readSync(r.dataId),y=n.bufferSync(s),x=Jq(A,y,s.dtype,u,o,c,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,x.values)}let f=new PJ(o,d,[u,c]),m=n.runWebGLProgram(f,[p,h],p.dtype),g=ye({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),g}var zJ={kernelName:Bi,backendName:"webgl",kernelFunc:MJ},LJ=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ht(this.rank),s=BJ(e,2);this.userCode=` void main() { ${n} resRC = getOutputCoords(); setOutput(getA(${s})); } - `}};function IJ(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;rn.disposeIntermediateTensorInfo(v)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new kJ(h.shape,f),A=n.runWebGLProgram(m,[h,p],h.dtype);d.push(A);let g=ye({inputs:{x:A},backend:n,attrs:{shape:u.outputShape}});return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),g}var SJ={kernelName:Fi,backendName:"webgl",kernelFunc:c4},CJ="return float(a > b);",TJ=` + `}};function BJ(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;rn.disposeIntermediateTensorInfo(v)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new LJ(h.shape,f),g=n.runWebGLProgram(m,[h,p],h.dtype);d.push(g);let A=ye({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),A}var WJ={kernelName:Li,backendName:"webgl",kernelFunc:y4},VJ="return float(a > b);",UJ=` return vec4(greaterThan(a, b)); -`,NJ=rn({opSnippet:CJ,packedOpSnippet:TJ,cpuKernelImpl:zq,dtype:"bool"}),EJ={kernelName:Oi,backendName:"webgl",kernelFunc:NJ},RJ="return float(a >= b);",_J=` +`,HJ=ln({opSnippet:VJ,packedOpSnippet:UJ,cpuKernelImpl:eX,dtype:"bool"}),GJ={kernelName:Wi,backendName:"webgl",kernelFunc:HJ},jJ="return float(a >= b);",qJ=` return vec4(greaterThanEqual(a, b)); -`,$J=rn({opSnippet:RJ,packedOpSnippet:_J,dtype:"bool",cpuKernelImpl:Lq}),FJ={kernelName:Pa,backendName:"webgl",kernelFunc:$J};function DJ(e){let{inputs:t,backend:n}=e,{input:s}=t;return l4(s,!0,n)}var OJ={kernelName:th,backendName:"webgl",kernelFunc:DJ},PJ="return float(!isnan(x) && !isinf(x));",MJ=Ze({opSnippet:PJ,dtype:"bool"}),zJ={kernelName:Pi,backendName:"webgl",kernelFunc:MJ},LJ="return float(isinf(x));",BJ=Ze({opSnippet:LJ,dtype:"bool"}),WJ={kernelName:Mi,backendName:"webgl",kernelFunc:BJ},VJ="return float(isnan(x));",UJ=Ze({opSnippet:VJ,dtype:"bool"}),HJ={kernelName:zi,backendName:"webgl",kernelFunc:UJ},GJ="return float(a < b);",jJ=` +`,XJ=ln({opSnippet:jJ,packedOpSnippet:qJ,dtype:"bool",cpuKernelImpl:tX}),KJ={kernelName:Wa,backendName:"webgl",kernelFunc:XJ};function ZJ(e){let{inputs:t,backend:n}=e,{input:s}=t;return g4(s,!0,n)}var YJ={kernelName:lh,backendName:"webgl",kernelFunc:ZJ},JJ="return float(!isnan(x) && !isinf(x));",QJ=Je({opSnippet:JJ,dtype:"bool"}),eQ={kernelName:Vi,backendName:"webgl",kernelFunc:QJ},tQ="return float(isinf(x));",nQ=Je({opSnippet:tQ,dtype:"bool"}),sQ={kernelName:Ui,backendName:"webgl",kernelFunc:nQ},rQ="return float(isnan(x));",aQ=Je({opSnippet:rQ,dtype:"bool"}),oQ={kernelName:Hi,backendName:"webgl",kernelFunc:aQ},iQ="return float(a < b);",lQ=` return vec4(lessThan(a, b)); -`,qJ=rn({opSnippet:GJ,packedOpSnippet:jJ,cpuKernelImpl:Bq,dtype:"bool"}),XJ={kernelName:Li,backendName:"webgl",kernelFunc:qJ},KJ="return float(a <= b);",ZJ=` +`,uQ=ln({opSnippet:iQ,packedOpSnippet:lQ,cpuKernelImpl:nX,dtype:"bool"}),cQ={kernelName:Gi,backendName:"webgl",kernelFunc:uQ},dQ="return float(a <= b);",hQ=` return vec4(lessThanEqual(a, b)); -`,YJ=rn({opSnippet:KJ,packedOpSnippet:ZJ,cpuKernelImpl:Wq,dtype:"bool"}),JJ={kernelName:Bi,backendName:"webgl",kernelFunc:YJ};function QJ(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=Vq(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var eQ={kernelName:sh,backendName:"webgl",kernelFunc:QJ},tQ=`if (x < 0.0) return NAN; - return log(x);`,nQ=` +`,pQ=ln({opSnippet:dQ,packedOpSnippet:hQ,cpuKernelImpl:sX,dtype:"bool"}),fQ={kernelName:ji,backendName:"webgl",kernelFunc:pQ};function mQ(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=rX(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var gQ={kernelName:ch,backendName:"webgl",kernelFunc:mQ},AQ=`if (x < 0.0) return NAN; + return log(x);`,yQ=` vec4 result = log(x); vec4 isNaN = vec4(lessThan(x, vec4(0.0))); result.r = isNaN.r == 1.0 ? NAN : result.r; @@ -3327,16 +3327,16 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam result.a = isNaN.a == 1.0 ? NAN : result.a; return result; -`,sQ=Ze({opSnippet:tQ,packedOpSnippet:nQ,cpuKernelImpl:Uq}),rQ={kernelName:La,backendName:"webgl",kernelFunc:sQ},aQ="return log(1.0 + x);",oQ=Ze({opSnippet:aQ}),iQ={kernelName:Wi,backendName:"webgl",kernelFunc:oQ},lQ="return float(a >= 1.0 && b >= 1.0);",uQ=` +`,xQ=Je({opSnippet:AQ,packedOpSnippet:yQ,cpuKernelImpl:aX}),bQ={kernelName:Ha,backendName:"webgl",kernelFunc:xQ},vQ="return log(1.0 + x);",wQ=Je({opSnippet:vQ}),kQ={kernelName:qi,backendName:"webgl",kernelFunc:wQ},IQ="return float(a >= 1.0 && b >= 1.0);",SQ=` return vec4( vec4(greaterThanEqual(a, vec4(1.0))) * vec4(greaterThanEqual(b, vec4(1.0)))); -`,cQ=rn({opSnippet:lQ,packedOpSnippet:uQ,dtype:"bool"}),dQ={kernelName:Vi,backendName:"webgl",kernelFunc:cQ},hQ="return float(!(x >= 1.0));",pQ=Ze({opSnippet:hQ}),fQ={kernelName:Fu,backendName:"webgl",kernelFunc:pQ},mQ="return float(a >= 1.0 || b >= 1.0);",AQ=` +`,CQ=ln({opSnippet:IQ,packedOpSnippet:SQ,dtype:"bool"}),TQ={kernelName:Xi,backendName:"webgl",kernelFunc:CQ},NQ="return float(!(x >= 1.0));",EQ=Je({opSnippet:NQ}),RQ={kernelName:Lu,backendName:"webgl",kernelFunc:EQ},_Q="return float(a >= 1.0 || b >= 1.0);",$Q=` return min( vec4(greaterThanEqual(a, vec4(1.0))) + vec4(greaterThanEqual(b, vec4(1.0))), vec4(1.0)); -`,gQ=rn({opSnippet:mQ,packedOpSnippet:AQ,dtype:"bool"}),yQ={kernelName:Du,backendName:"webgl",kernelFunc:gQ},xQ=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=` +`,DQ=ln({opSnippet:_Q,packedOpSnippet:$Q,dtype:"bool"}),FQ={kernelName:Bu,backendName:"webgl",kernelFunc:DQ},OQ=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3355,7 +3355,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam float val = x * ${i}; setOutput(val); } - `}},bQ=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=` + `}},PQ=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords.x; @@ -3417,7 +3417,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam vec4 result = xAtOutputCoords * ${i}; setOutput(result); } - `}},vQ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,u=ee().getBool("WEBGL_PACK_NORMALIZATION")?new bQ(r.shape,a,o,i,l):new xQ(r.shape,a,o,i,l);return n.runWebGLProgram(u,[r],r.dtype)},wQ={kernelName:Ou,backendName:"webgl",kernelFunc:vQ},kQ=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=` + `}},MQ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,u=ee().getBool("WEBGL_PACK_NORMALIZATION")?new PQ(r.shape,a,o,i,l):new OQ(r.shape,a,o,i,l);return n.runWebGLProgram(u,[r],r.dtype)},zQ={kernelName:Wu,backendName:"webgl",kernelFunc:MQ},LQ=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3472,14 +3472,14 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } setOutput(result); } - `}},IQ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s,d=new kQ(r.shape,i,l,u,c);return n.runWebGLProgram(d,[r,a,o],r.dtype)},SQ={kernelName:rh,backendName:"webgl",kernelFunc:IQ};function CQ(e,t,n,s){let r=I.sizeFromShape(t),o=I.sizeFromShape(e.shape)/r,i=ye({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=qo(i,e.dtype,"max",s),u=ye({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}function d4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=I.parseAxisParam(a,r.shape),u=l,c=$.getAxesPermutation(u,i),d=c!=null,h=n.shouldExecuteOnCPU([r]),p=r;if(d){if(h){let x=n.texData.get(p.dataId).values,b=new Array(i);for(let w=0;w{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s,d=new LQ(r.shape,i,l,u,c);return n.runWebGLProgram(d,[r,a,o],r.dtype)},WQ={kernelName:dh,backendName:"webgl",kernelFunc:BQ};function VQ(e,t,n,s){let r=I.sizeFromShape(t),o=I.sizeFromShape(e.shape)/r,i=ye({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Jo(i,e.dtype,"max",s),u=ye({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}function x4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=I.parseAxisParam(a,r.shape),u=l,c=$.getAxesPermutation(u,i),d=c!=null,h=n.shouldExecuteOnCPU([r]),p=r;if(d){if(h){let x=n.texData.get(p.dataId).values,b=new Array(i);for(let w=0;w`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=$.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&I.arraysEqual(c.inShape,c.outShape))return qn({inputs:{x:r},backend:n});let d=new Gc(c,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var FQ={kernelName:Va,backendName:"webgl",kernelFunc:$Q};function DQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:u}=s,c=[1,1,1],d=$.computePool3DInfo(r.shape,a,o,c,i,u,l),h=new T1(d,"max",!1);return n.runWebGLProgram(h,[r],r.dtype)}var OQ={kernelName:Pu,backendName:"webgl",kernelFunc:DQ},PQ=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=` +`,jQ=ln({opSnippet:HQ,packedOpSnippet:GQ,cpuKernelImpl:iX}),qQ={kernelName:ja,backendName:"webgl",kernelFunc:jQ};function XQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;eu(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;I.assert($.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=$.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&I.arraysEqual(c.inShape,c.outShape))return Yn({inputs:{x:r},backend:n});let d=new Yc(c,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var KQ={kernelName:qa,backendName:"webgl",kernelFunc:XQ};function ZQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:u}=s,c=[1,1,1],d=$.computePool3DInfo(r.shape,a,o,c,i,u,l),h=new F1(d,"max",!1);return n.runWebGLProgram(h,[r],r.dtype)}var YQ={kernelName:Vu,backendName:"webgl",kernelFunc:ZQ},JQ=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=` const ivec2 pads = ivec2(${o}, ${i}); void main() { @@ -3525,7 +3525,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } setOutput(dotProd); } - `}},MQ=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=i-1-e.padInfo.front,d=l-1-e.padInfo.top,h=u-1-e.padInfo.left,p=i*l*u-1;this.userCode=` + `}},QQ=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=i-1-e.padInfo.front,d=l-1-e.padInfo.top,h=u-1-e.padInfo.left,p=i*l*u-1;this.userCode=` const ivec3 pads = ivec3(${c}, ${d}, ${h}); void main() { @@ -3589,14 +3589,14 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam } setOutput(dotProd); } - `}};function zQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,d=[1,1,1],h=$.computePool3DInfo(o.shape,i,l,d,u,c),p=new T1(h,"max",!0),f=n.runWebGLProgram(p,[o],o.dtype),m=new MQ(h),A=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),A}var LQ={kernelName:oh,backendName:"webgl",kernelFunc:zQ};function BQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Xl([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:d}=s,h=$.computePool2DInfo(i.shape,l,u,1,c,d),p=!0,f=new Gc(h,"max",p),m=n.runWebGLProgram(f,[i],i.dtype),A=new PQ(h),g=n.runWebGLProgram(A,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var WQ={kernelName:ah,backendName:"webgl",kernelFunc:BQ};function VQ(e,t,n,s){let r=new Gc(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new Gc(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var UQ={kernelName:ih,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;I.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let u=[1,1];I.assert($.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=$.computePool2DInfo(s.shape,r,a,u,o),[d,h]=VQ(s,i,c,l);return[d,h]}};function HQ(e,t,n,s){let r=I.sizeFromShape(t),o=I.sizeFromShape(e.shape)/r,i=ye({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=qo(i,"float32","mean",s),u=ye({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}var GQ={kernelName:Ua,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=I.parseAxisParam(a,s.shape),u=l,c=$.getAxesPermutation(u,i),d=c!=null,h=o.shouldExecuteOnCPU([s]),p=[],f=s;if(d){if(h){let b=o.texData.get(f.dataId).values,v=new Array(i);for(let C=0;C{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;I.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let u=[1,1];I.assert($.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=$.computePool2DInfo(s.shape,r,a,u,o),[d,h]=ree(s,i,c,l);return[d,h]}};function oee(e,t,n,s){let r=I.sizeFromShape(t),o=I.sizeFromShape(e.shape)/r,i=ye({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Jo(i,"float32","mean",s),u=ye({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}var iee={kernelName:Xa,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=I.parseAxisParam(a,s.shape),u=l,c=$.getAxesPermutation(u,i),d=c!=null,h=o.shouldExecuteOnCPU([s]),p=[],f=s;if(d){if(h){let b=o.texData.get(f.dataId).values,v=new Array(i);for(let C=0;Cu[0]+e[c]+u[1]);let s=e.length,r=ct(s),a=t.map(u=>u[0]).join(","),o=t.map((u,c)=>u[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=` +`,hee=ln({opSnippet:cee,packedOpSnippet:dee,cpuKernelImpl:lX}),pee={kernelName:Za,backendName:"webgl",kernelFunc:hee},fee=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let s=e.length,r=ht(s),a=t.map(u=>u[0]).join(","),o=t.map((u,c)=>u[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=` int start = ${a}; int end = ${o}; @@ -3625,7 +3625,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam ${r} coords = outC - start; setOutput(getX(${i})); } - `}},QQ=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,f)=>p[0]+e[f]+p[1]);let s=e.length,r=ct(s),a=t.map(p=>p[0]).join(","),o=t.map((p,f)=>p[0]+e[f]).join(","),i=vn("rc",s),l=vn("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,h="";if(s===1){let p=` + `}},mee=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,f)=>p[0]+e[f]+p[1]);let s=e.length,r=ht(s),a=t.map(p=>p[0]).join(","),o=t.map((p,f)=>p[0]+e[f]).join(","),i=In("rc",s),l=In("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,h="";if(s===1){let p=` ${r} source = rc; if (source < start) { source = start * 2 - source - ${d}; @@ -3681,13 +3681,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam ${h} setOutput(result); } - `}},eee=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new QQ(s.shape,r,a):new JQ(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},tee={kernelName:ja,backendName:"webgl",kernelFunc:eee},nee=`if (b == 0.0) return NAN; - return mod(a, b);`,see=` + `}},gee=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new mee(s.shape,r,a):new fee(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},Aee={kernelName:Ya,backendName:"webgl",kernelFunc:gee},yee=`if (b == 0.0) return NAN; + return mod(a, b);`,xee=` vec4 result = mod(a, b); vec4 isNaN = vec4(equal(b, vec4(0.0))); - `+ff+` + `+vf+` return result; -`,ree=rn({opSnippet:nee,packedOpSnippet:see}),aee={kernelName:Ui,backendName:"webgl",kernelFunc:ree},oee=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=` +`,bee=ln({opSnippet:yee,packedOpSnippet:xee}),vee={kernelName:Ki,backendName:"webgl",kernelFunc:bee},wee=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; @@ -3707,11 +3707,11 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelNam // If no other event happened, last event happened. setOutput(float(${t-1})); } - `}},iee=` + `}},kee=` if (a == b) { return 1.0; }; -return a / b;`,lee=` +return a / b;`,Iee=` // vec4 one = vec4(equal(a, b)); // return one + (vec4(1.0) - one) * a / b; vec4 result = a / b; @@ -3729,14 +3729,14 @@ return a / b;`,lee=` } return result; -`,h4=rn({opSnippet:iee,packedOpSnippet:lee,checkOutOfBounds:!0}),uee={kernelName:_a,backendName:"webgl",kernelFunc:h4},p4="return a - b;",f4=rn({opSnippet:p4,packedOpSnippet:p4,supportsComplex:!0,cpuKernelImpl:oX}),cee={kernelName:co,backendName:"webgl",kernelFunc:f4};function m4(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=I.parseAxisParam([a],r.shape),i=d4({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=$.expandShapeToKeepDim(i.shape,o),u=ye({inputs:{x:i},backend:n,attrs:{shape:l}}),c=f4({inputs:{a:r,b:u},backend:n}),d=a4({inputs:{x:c},backend:n}),h=gf({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),p=ye({inputs:{x:h},backend:n,attrs:{shape:l}}),f=h4({inputs:{a:d,b:p},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),f}var dee={kernelName:lo,backendName:"webgl",kernelFunc:m4};function hee(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:m4({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],c=l.shape[1],d=new oee(u,c,a),h=[[o]],p=n.runWebGLProgram(d,[l],"int32",h);return i||n.disposeIntermediateTensorInfo(l),p}var pee={kernelName:lh,backendName:"webgl",kernelFunc:hee},A4="return -x;";function fee(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=Xq(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Ql(s.shape,A4):r=new aa(s.shape,A4),n.runWebGLProgram(r,[s],s.dtype)}var mee={kernelName:Hi,backendName:"webgl",kernelFunc:fee},Aee=Js.nonMaxSuppressionV3Impl;function gee(e){$.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:d}=Aee(u,c,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var yee={kernelName:ji,backendName:"webgl",kernelFunc:gee},xee=Js.nonMaxSuppressionV4Impl;function bee(e){$.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s,c=n.readSync(r.dataId),d=n.readSync(a.dataId),{selectedIndices:h,validOutputs:p}=xee(c,d,o,i,l,u);return[n.makeTensorInfo([h.length],"int32",new Int32Array(h)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var vee={kernelName:qi,backendName:"webgl",kernelFunc:bee},wee=Js.nonMaxSuppressionV5Impl;function kee(e){$.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),d=n.readSync(a.dataId),h=o,p=i,f=l,m=u,{selectedIndices:A,selectedScores:g}=wee(c,d,h,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([g.length],"float32",new Float32Array(g))]}var Iee={kernelName:Xi,backendName:"webgl",kernelFunc:kee},See=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` +`,b4=ln({opSnippet:kee,packedOpSnippet:Iee,checkOutOfBounds:!0}),See={kernelName:Pa,backendName:"webgl",kernelFunc:b4},v4="return a - b;",w4=ln({opSnippet:v4,packedOpSnippet:v4,supportsComplex:!0,cpuKernelImpl:wX}),Cee={kernelName:go,backendName:"webgl",kernelFunc:w4};function k4(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=I.parseAxisParam([a],r.shape),i=x4({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=$.expandShapeToKeepDim(i.shape,o),u=ye({inputs:{x:i},backend:n,attrs:{shape:l}}),c=w4({inputs:{a:r,b:u},backend:n}),d=p4({inputs:{x:c},backend:n}),h=If({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),p=ye({inputs:{x:h},backend:n,attrs:{shape:l}}),f=b4({inputs:{a:d,b:p},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),f}var Tee={kernelName:fo,backendName:"webgl",kernelFunc:k4};function Nee(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:k4({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],c=l.shape[1],d=new wee(u,c,a),h=[[o]],p=n.runWebGLProgram(d,[l],"int32",h);return i||n.disposeIntermediateTensorInfo(l),p}var Eee={kernelName:mh,backendName:"webgl",kernelFunc:Nee},I4="return -x;";function Ree(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=cX(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new au(s.shape,I4):r=new ua(s.shape,I4),n.runWebGLProgram(r,[s],s.dtype)}var _ee={kernelName:Zi,backendName:"webgl",kernelFunc:Ree},$ee=nr.nonMaxSuppressionV3Impl;function Dee(e){$.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:d}=$ee(u,c,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Fee={kernelName:Ji,backendName:"webgl",kernelFunc:Dee},Oee=nr.nonMaxSuppressionV4Impl;function Pee(e){$.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s,c=n.readSync(r.dataId),d=n.readSync(a.dataId),{selectedIndices:h,validOutputs:p}=Oee(c,d,o,i,l,u);return[n.makeTensorInfo([h.length],"int32",new Int32Array(h)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var Mee={kernelName:Qi,backendName:"webgl",kernelFunc:Pee},zee=nr.nonMaxSuppressionV5Impl;function Lee(e){$.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),d=n.readSync(a.dataId),h=o,p=i,f=l,m=u,{selectedIndices:g,selectedScores:A}=zee(c,d,h,p,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var Bee={kernelName:el,backendName:"webgl",kernelFunc:Lee},Wee=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int index = round(getIndices(coords.x)); setOutput(mix(float(${s}), float(${n}), float(index == coords.y))); } - `}},Cee=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=I.sizeFromShape(r.shape),u=new See(l,a,o,i),c=ye({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(u,[c],r.dtype);n.disposeIntermediateTensorInfo(c);let h=[...r.shape,a],p=ye({inputs:{x:d},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(d),p},Tee={kernelName:Xa,backendName:"webgl",kernelFunc:Cee};function kf(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=jc({inputs:{input:s},backend:n}),a=kf({inputs:{x:r},backend:n}),o=vf({inputs:{input:s},backend:n}),i=kf({inputs:{x:o},backend:n}),l=oa({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return wf({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var Nee={kernelName:pl,backendName:"webgl",kernelFunc:kf};function g4(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=jc({inputs:{input:s},backend:n}),a=g4({inputs:{x:r},backend:n}),o=vf({inputs:{input:s},backend:n}),i=kf({inputs:{x:o},backend:n}),l=oa({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return wf({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var Eee={kernelName:Ki,backendName:"webgl",kernelFunc:g4};function Ree(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return R1({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{I.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),I.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=R1({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=K6({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var _ee={kernelName:Zi,backendName:"webgl",kernelFunc:Ree},$ee=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let s=e.length,r=ct(s),a=t.map(l=>l[0]).join(","),o=t.map((l,u)=>l[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=` + `}},Vee=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=I.sizeFromShape(r.shape),u=new Wee(l,a,o,i),c=ye({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(u,[c],r.dtype);n.disposeIntermediateTensorInfo(c);let h=[...r.shape,a],p=ye({inputs:{x:d},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(d),p},Uee={kernelName:Qa,backendName:"webgl",kernelFunc:Vee};function Rf(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Jc({inputs:{input:s},backend:n}),a=Rf({inputs:{x:r},backend:n}),o=Nf({inputs:{input:s},backend:n}),i=Rf({inputs:{x:o},backend:n}),l=ca({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Ef({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var Hee={kernelName:xl,backendName:"webgl",kernelFunc:Rf};function S4(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Jc({inputs:{input:s},backend:n}),a=S4({inputs:{x:r},backend:n}),o=Nf({inputs:{input:s},backend:n}),i=Rf({inputs:{x:o},backend:n}),l=ca({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Ef({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var Gee={kernelName:tl,backendName:"webgl",kernelFunc:S4};function jee(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return M1({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{I.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),I.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=M1({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=s4({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var qee={kernelName:nl,backendName:"webgl",kernelFunc:jee},Xee=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let s=e.length,r=ht(s),a=t.map(l=>l[0]).join(","),o=t.map((l,u)=>l[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=` int start = ${a}; int end = ${o}; @@ -3761,7 +3761,7 @@ return a / b;`,lee=` setOutput(getX(${i})); } } - `}},Fee=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=ct(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=vn("rc",s),l=vn("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${i[s-1]} += 1; + `}},Kee=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=ht(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=In("rc",s),l=In("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${i[s-1]} += 1; if(${u}) { `,s===1?"":`} rc = outputLoc; @@ -3785,7 +3785,7 @@ return a / b;`,lee=` ${p} setOutput(result); } - `}},y4=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s,i=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Fee(r.shape,a,o):new $ee(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},Dee={kernelName:Ka,backendName:"webgl",kernelFunc:y4},Oee=` + `}},C4=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s,i=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Kee(r.shape,a,o):new Xee(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},Zee={kernelName:eo,backendName:"webgl",kernelFunc:C4},Yee=` if(a < 0.0 && floor(b) < b){ return NAN; } @@ -3794,7 +3794,7 @@ return a / b;`,lee=` } return (round(mod(b, 2.0)) != 1) ? pow(abs(a), b) : sign(a) * pow(abs(a), b); -`,Pee=` +`,Jee=` // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise. vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1))); vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); @@ -3808,11 +3808,11 @@ return a / b;`,lee=` result.a = isExpZero.a ? 1.0 : result.a; vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b)); - `+ff+` + `+vf+` return result; -`,Mee=rn({opSnippet:Oee,packedOpSnippet:Pee}),zee={kernelName:Za,backendName:"webgl",kernelFunc:Mee};function Lee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],u=I.parseAxisParam(a,r.shape),c=u,d=$.getAxesPermutation(c,i),h=r;d!=null&&(h=wn({inputs:{x:r},backend:n,attrs:{perm:d}}),c=$.getInnerMostAxes(c.length,i),l.push(h)),$.assertAxesAreInnerMostDims("prod",c,i);let p;if(n.shouldExecuteOnCPU([h])){let f=n.texData.get(h.dataId).values,{outVals:m,outShape:A,outDtype:g}=Zq(h.shape,h.dtype,f,c);p=n.makeTensorInfo(A,g,m)}else{let[f,m]=$.computeOutAndReduceShapes(h.shape,c),A=I.sizeFromShape(m),g=ye({inputs:{x:h},backend:n,attrs:{shape:[-1,A]}}),y=Th(r.dtype),x=qo(g,y,"prod",n);p=ye({inputs:{x},backend:n,attrs:{shape:f}}),l.push(g),l.push(x)}if(o){l.push(p);let f=$.expandShapeToKeepDim(p.shape,u);p=ye({inputs:{x:p},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var Bee={kernelName:Yi,backendName:"webgl",kernelFunc:Lee},x4=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=Yq(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},Wee={kernelName:Mu,backendName:"webgl",kernelFunc:x4},Vee="return 1.0 / x;",Uee=Ze({opSnippet:Vee}),Hee={kernelName:Ji,backendName:"webgl",kernelFunc:Uee},Gee=Ws+` +`,Qee=ln({opSnippet:Yee,packedOpSnippet:Jee}),ete={kernelName:to,backendName:"webgl",kernelFunc:Qee};function tte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],u=I.parseAxisParam(a,r.shape),c=u,d=$.getAxesPermutation(c,i),h=r;d!=null&&(h=Sn({inputs:{x:r},backend:n,attrs:{perm:d}}),c=$.getInnerMostAxes(c.length,i),l.push(h)),$.assertAxesAreInnerMostDims("prod",c,i);let p;if(n.shouldExecuteOnCPU([h])){let f=n.texData.get(h.dataId).values,{outVals:m,outShape:g,outDtype:A}=hX(h.shape,h.dtype,f,c);p=n.makeTensorInfo(g,A,m)}else{let[f,m]=$.computeOutAndReduceShapes(h.shape,c),g=I.sizeFromShape(m),A=ye({inputs:{x:h},backend:n,attrs:{shape:[-1,g]}}),y=Fh(r.dtype),x=Jo(A,y,"prod",n);p=ye({inputs:{x},backend:n,attrs:{shape:f}}),l.push(A),l.push(x)}if(o){l.push(p);let f=$.expandShapeToKeepDim(p.shape,u);p=ye({inputs:{x:p},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var nte={kernelName:sl,backendName:"webgl",kernelFunc:tte},T4=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=pX(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},ste={kernelName:Uu,backendName:"webgl",kernelFunc:T4},rte="return 1.0 / x;",ate=Je({opSnippet:rte}),ote={kernelName:rl,backendName:"webgl",kernelFunc:ate},ite=Gs+` return (x < 0.0) ? 0.0 : x; -`,jee=` +`,lte=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -3822,9 +3822,9 @@ return a / b;`,lee=` result.a = isNaN.a ? x.a : result.a; return result; -`,qee=Ze({opSnippet:Gee,packedOpSnippet:jee}),Xee={kernelName:Ja,backendName:"webgl",kernelFunc:qee},Kee=Ws+` +`,ute=Je({opSnippet:ite,packedOpSnippet:lte}),cte={kernelName:so,backendName:"webgl",kernelFunc:ute},dte=Gs+` return (x < 0.0) ? 0.0 : min(6.0, x); -`,Zee=` +`,hte=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -3834,7 +3834,7 @@ return a / b;`,lee=` result.a = isNaN.a ? x.a : result.a; return result; -`,Yee=Ze({opSnippet:Kee,packedOpSnippet:Zee}),Jee={kernelName:eo,backendName:"webgl",kernelFunc:Yee},Qee=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` +`,pte=Je({opSnippet:dte,packedOpSnippet:hte}),fte={kernelName:ao,backendName:"webgl",kernelFunc:pte},mte=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${u[0]/c[0]}, ${u[1]/c[1]}); @@ -3867,7 +3867,7 @@ return a / b;`,lee=` setOutput(newValue); } - `}},ete=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` + `}},gte=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${u[0]/c[0]}, ${u[1]/c[1]}, @@ -3944,7 +3944,7 @@ return a / b;`,lee=` setOutput(newValue); } - `}};function tte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=ee().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new ete(r.shape,l,u,a,o):new Qee(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],"float32")}var nte={kernelName:Qa,backendName:"webgl",kernelFunc:tte},ste=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],d=1/u,h=1/c,p=Math.ceil(d)*2+2,f=Math.ceil(h)*2+2;this.userCode=` + `}};function Ate(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=ee().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new gte(r.shape,l,u,a,o):new mte(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],"float32")}var yte={kernelName:ro,backendName:"webgl",kernelFunc:Ate},xte=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],d=1/u,h=1/c,p=Math.ceil(d)*2+2,f=Math.ceil(h)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -4025,7 +4025,7 @@ return a / b;`,lee=` setOutput(accumulator); } - `}};function rte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new ste(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var ate={kernelName:dh,backendName:"webgl",kernelFunc:rte},ote=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",h;r?h="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` + `}};function bte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new xte(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var vte={kernelName:yh,backendName:"webgl",kernelFunc:bte},wte=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",h;r?h="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${u[0]/c[0]}, ${u[1]/c[1]}); @@ -4047,7 +4047,7 @@ return a / b;`,lee=` setOutput(newValue); } - `}},ite=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",h;r?h="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` + `}},kte=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",h;r?h="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${u[0]/c[0]}, ${u[1]/c[1]}, @@ -4088,7 +4088,7 @@ return a / b;`,lee=` setOutput(newValue); } - `}};function lte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=ee().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new ite(r.shape,l,u,a,o):new ote(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],r.dtype)}var ute={kernelName:zu,backendName:"webgl",kernelFunc:lte},cte=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],d=1/u,h=1/c,p=Math.ceil(d)*2+2,f=Math.ceil(h)*2+2;this.userCode=` + `}};function Ite(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=ee().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new kte(r.shape,l,u,a,o):new wte(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],r.dtype)}var Ste={kernelName:Hu,backendName:"webgl",kernelFunc:Ite},Cte=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],d=1/u,h=1/c,p=Math.ceil(d)*2+2,f=Math.ceil(h)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -4158,17 +4158,17 @@ return a / b;`,lee=` setOutput(accumulator); } - `}};function dte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new cte(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var hte={kernelName:ch,backendName:"webgl",kernelFunc:dte},pte=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=` + `}};function Tte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Cte(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Nte={kernelName:Ah,backendName:"webgl",kernelFunc:Tte},Ete=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=` void main() { int coord = getOutputCoords(); setOutput(getX(${e[0]} - coord - 1)); } - `;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=ct(n);this.userCode=` + `;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=ht(n);this.userCode=` void main() { ${a} coords = getOutputCoords(); setOutput(getX(${r})); } - `}},fte=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=vn("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=ct(n);n===1?this.userCode=` + `}},Rte=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=In("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=ht(n);n===1?this.userCode=` void main(){ int rc = getOutputCoords(); vec4 result = vec4(0.); @@ -4196,7 +4196,7 @@ return a / b;`,lee=` } setOutput(result); } - `;function i(p){return d(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",d(p)}function u(p){return p[n-2]="("+p[n-2]+" + 1)",d(p)}function c(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",d(p)}function d(p){let f=e.map((g,y)=>h(y,p)),m=f.join(","),A=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${A}))`}function h(p,f){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${f[p]} - 1`:`${f[p]}`}}};function mte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=I.parseAxisParam(a,r.shape);if(o===0)return qn({inputs:{x:r},backend:n});let l=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new fte(r.shape,i):new pte(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var Ate={kernelName:to,backendName:"webgl",kernelFunc:mte},gte=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=` + `;function i(p){return d(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",d(p)}function u(p){return p[n-2]="("+p[n-2]+" + 1)",d(p)}function c(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",d(p)}function d(p){let f=e.map((A,y)=>h(y,p)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function h(p,f){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${f[p]} - 1`:`${f[p]}`}}};function _te(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=I.parseAxisParam(a,r.shape);if(o===0)return Yn({inputs:{x:r},backend:n});let l=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Rte(r.shape,i):new Ete(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var $te={kernelName:oo,backendName:"webgl",kernelFunc:_te},Dte=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=` vec3 fill = vec3(${t.join(",")}); float outputValue = fill[coords[3]];`,this.userCode=` void main() { @@ -4215,7 +4215,7 @@ return a / b;`,lee=` } setOutput(outputValue); } - `}},yte={kernelName:fl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new gte(s.shape,a),[u,c]=$.getImageCenter(o,s.shape[1],s.shape[2]),d=[[u,c,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,d)}},xte=` + `}},Fte={kernelName:bl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Dte(s.shape,a),[u,c]=$.getImageCenter(o,s.shape[1],s.shape[2]),d=[[u,c,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,d)}},Ote=` // OpenGL ES does not support round function. // The algorithm is based on banker's rounding. float base = floor(x); @@ -4230,7 +4230,7 @@ return a / b;`,lee=` return base + 1.0; } } -`,bte=Ze({opSnippet:xte}),vte={kernelName:no,backendName:"webgl",kernelFunc:bte},wte="return inversesqrt(x);",kte=Ze({opSnippet:wte,cpuKernelImpl:Jq}),Ite={kernelName:so,backendName:"webgl",kernelFunc:kte},b4=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=ct(r.length),l=ct(a.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,d="";s===1?d="i":s===2&&(d="i, coords[1]");let h=`getUpdates(${d})`,p=t>1?"strides[j]":"strides";this.userCode=` +`,Pte=Je({opSnippet:Ote}),Mte={kernelName:io,backendName:"webgl",kernelFunc:Pte},zte="return inversesqrt(x);",Lte=Je({opSnippet:zte,cpuKernelImpl:fX}),Bte={kernelName:lo,backendName:"webgl",kernelFunc:Lte},N4=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=ht(r.length),l=ht(a.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,d="";s===1?d="i":s===2&&(d="i, coords[1]");let h=`getUpdates(${d})`,p=t>1?"strides[j]":"strides";this.userCode=` ${i} strides = ${i}(${r}); void main() { @@ -4250,7 +4250,7 @@ return a / b;`,lee=` } setOutput(mix(getDefaultValue(), sum, float(found))); } - `}};function Ste(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:d}=$.calculateShapes(a,r,o),h=[d/u,u];if(d===0)return n.makeTensorInfo(o,r.dtype);let p=ye({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=ye({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new b4(l,i,p.shape.length,f.shape.length,c,h),g=n.runWebGLProgram(A,[f,p,m],f.dtype),y=ye({inputs:{x:g},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(m),y}var Cte={kernelName:el,backendName:"webgl",kernelFunc:Ste},Tte=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let u=0;u4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let u=0;u= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0); -`,_te=Ze({opSnippet:Rte}),$te={kernelName:nl,backendName:"webgl",kernelFunc:_te},Fte="return 1.0 / (1.0 + exp(-1.0 * x));",Dte=Ze({opSnippet:Fte}),Ote={kernelName:ao,backendName:"webgl",kernelFunc:Dte},Pte=` +`,qte=Je({opSnippet:jte}),Xte={kernelName:ll,backendName:"webgl",kernelFunc:qte},Kte="return 1.0 / (1.0 + exp(-1.0 * x));",Zte=Je({opSnippet:Kte}),Yte={kernelName:co,backendName:"webgl",kernelFunc:Zte},Jte=` if (isnan(x)) { return 0.0; } return sign(x); -`,Mte=Ze({opSnippet:Pte}),zte={kernelName:al,backendName:"webgl",kernelFunc:Mte},Lte=D6+` +`,Qte=Je({opSnippet:Jte}),ene={kernelName:dl,backendName:"webgl",kernelFunc:Qte},tne=V6+` return sin(x); -`,Bte=Ze({opSnippet:Lte}),Wte={kernelName:ro,backendName:"webgl",kernelFunc:Bte},Vte=` +`,nne=Je({opSnippet:tne}),sne={kernelName:uo,backendName:"webgl",kernelFunc:nne},rne=` float e2x = exp(x); return (e2x - 1.0 / e2x) / 2.0; -`,Ute=Ze({opSnippet:Vte}),Hte={kernelName:rl,backendName:"webgl",kernelFunc:Ute},Gte=` +`,ane=Je({opSnippet:rne}),one={kernelName:cl,backendName:"webgl",kernelFunc:ane},ine=` float epsilon = 1.1920928955078125e-7; float threshold = log(epsilon) + 2.0; @@ -4294,17 +4294,17 @@ return a / b;`,lee=` result = log(exp_x + 1.0); } return result; -`,jte=Ze({opSnippet:Gte}),qte={kernelName:ol,backendName:"webgl",kernelFunc:jte},Xte=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;I.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((g,y)=>g*y),l=[[0,0]];l.push(...o);for(let g=1+a.length;gn.disposeIntermediateTensorInfo(g)),A},Kte={kernelName:il,backendName:"webgl",kernelFunc:Xte};function Zte(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw: +`,lne=Je({opSnippet:ine}),une={kernelName:hl,backendName:"webgl",kernelFunc:lne},cne=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;I.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((A,y)=>A*y),l=[[0,0]];l.push(...o);for(let A=1+a.length;An.disposeIntermediateTensorInfo(A)),g},dne={kernelName:pl,backendName:"webgl",kernelFunc:cne};function hne(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw: ${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw: ${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw: ${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw: - ${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[d,h,p,f,m]=eX(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(h,s.dtype,d),n.makeTensorInfo([h[0]],r.dtype,p),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(A=>Number(A)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var Yte={kernelName:hh,backendName:"webgl",kernelFunc:Zte};function Jte(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[u,c,d]=tX(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var Qte={kernelName:ph,backendName:"webgl",kernelFunc:Jte};function ene(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape + ${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[d,h,p,f,m]=gX(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(h,s.dtype,d),n.makeTensorInfo([h[0]],r.dtype,p),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var pne={kernelName:xh,backendName:"webgl",kernelFunc:hne};function fne(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[u,c,d]=AX(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var mne={kernelName:bh,backendName:"webgl",kernelFunc:fne};function gne(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape - ${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=v6(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var tne={kernelName:fh,backendName:"webgl",kernelFunc:ene};function nne(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape + ${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=E6(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var Ane={kernelName:vh,backendName:"webgl",kernelFunc:gne};function yne(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape - ${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=v6(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var sne={kernelName:mh,backendName:"webgl",kernelFunc:nne};function rne(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,strides:c,outputSize:d}=$.calculateShapes(a,r,i),h=!1,p=new b4(u,l,r.shape.length,a.shape.length,c,[d,1],h),f=n.runWebGLProgram(p,[a,r,o],a.dtype),m=ye({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var ane={kernelName:Ah,backendName:"webgl",kernelFunc:rne};function one(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=I.parseAxisParam(o,r.shape)[0],l=$.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),d=r.shape.slice();return l.map(h=>{let p=[...d];p[i]=h;let f=nu({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});return c[i]+=h,f})}var ine={kernelName:ll,backendName:"webgl",kernelFunc:one},lne="return sqrt(x);",une=Ze({opSnippet:lne}),cne={kernelName:oo,backendName:"webgl",kernelFunc:une},dne="return x * x;",hne=Ze({opSnippet:dne}),pne={kernelName:Lu,backendName:"webgl",kernelFunc:hne},v4="return (a - b) * (a - b);",fne=rn({opSnippet:v4,packedOpSnippet:v4}),mne={kernelName:uo,backendName:"webgl",kernelFunc:fne};function Ane({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=Ws+` + ${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=E6(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var xne={kernelName:wh,backendName:"webgl",kernelFunc:yne};function bne(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,strides:c,outputSize:d}=$.calculateShapes(a,r,i),h=!1,p=new N4(u,l,r.shape.length,a.shape.length,c,[d,1],h),f=n.runWebGLProgram(p,[a,r,o],a.dtype),m=ye({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var vne={kernelName:kh,backendName:"webgl",kernelFunc:bne};function wne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=I.parseAxisParam(o,r.shape)[0],l=$.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),d=r.shape.slice();return l.map(h=>{let p=[...d];p[i]=h;let f=lu({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});return c[i]+=h,f})}var kne={kernelName:fl,backendName:"webgl",kernelFunc:wne},Ine="return sqrt(x);",Sne=Je({opSnippet:Ine}),Cne={kernelName:ho,backendName:"webgl",kernelFunc:Sne},Tne="return x * x;",Nne=Je({opSnippet:Tne}),Ene={kernelName:Gu,backendName:"webgl",kernelFunc:Nne},E4="return (a - b) * (a - b);",Rne=ln({opSnippet:E4,packedOpSnippet:E4}),_ne={kernelName:mo,backendName:"webgl",kernelFunc:Rne};function $ne({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=Gs+` return x > 0.0 ? 1.0 : float(${t.alpha}); - `,a=new aa(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var gne={kernelName:Lr,backendName:"webgl",kernelFunc:Ane},yne=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=ct(n.length),a=ct(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,u)=>(i++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${i-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=` + `,a=new ua(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var Dne={kernelName:Ur,backendName:"webgl",kernelFunc:$ne},Fne=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=ht(n.length),a=ht(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,u)=>(i++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${i-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=` ${r} begin = ${r}(${e}); ${r} strides = ${r}(${t}); @@ -4312,15 +4312,15 @@ return a / b;`,lee=` ${a} coords = getOutputCoords(); setOutput(getX(${o})); } - `}};function xne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:h}=s,{nonStrided:p,$begin:f,$strides:m,size:A,newShape:g,outShape:y}=An.sliceInfo(r.shape,a,o,i,l,u,c,d,h),x=ye({inputs:{x:r},backend:n,attrs:{shape:g}}),b;if(p){let k=nu({inputs:{x},backend:n,attrs:{begin:f,size:A}});b=ye({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let C=n.texData.get(x.dataId).values,E=Be(x.shape,x.dtype,C),O=nX(y,E,m,f);b=n.makeTensorInfo(y,x.dtype,O.values)}else{let w=new yne(f,m,y);b=n.runWebGLProgram(w,[x],x.dtype)}let v=ye({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var bne={kernelName:ul,backendName:"webgl",kernelFunc:xne};function vne(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:d}=t,h=n.readSync(c.dataId),p=n.readSync(d.dataId),[f,m]=sX(h,p,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var wne={kernelName:gh,backendName:"webgl",kernelFunc:vne};function kne(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[u,c,d]=rX(i,l,r),h=c.length;return[n.makeTensorInfo([h,2],"int32",u),n.makeTensorInfo([h],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Ine={kernelName:yh,backendName:"webgl",kernelFunc:kne};function Sne(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=aX(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var Cne={kernelName:xh,backendName:"webgl",kernelFunc:Sne},Tne="return tan(x);",Nne=Ze({opSnippet:Tne}),Ene={kernelName:ho,backendName:"webgl",kernelFunc:Nne},Rne=` + `}};function One(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:h}=s,{nonStrided:p,$begin:f,$strides:m,size:g,newShape:A,outShape:y}=xn.sliceInfo(r.shape,a,o,i,l,u,c,d,h),x=ye({inputs:{x:r},backend:n,attrs:{shape:A}}),b;if(p){let k=lu({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=ye({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let C=n.texData.get(x.dataId).values,R=We(x.shape,x.dtype,C),P=yX(y,R,m,f);b=n.makeTensorInfo(y,x.dtype,P.values)}else{let w=new Fne(f,m,y);b=n.runWebGLProgram(w,[x],x.dtype)}let v=ye({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var Pne={kernelName:ml,backendName:"webgl",kernelFunc:One};function Mne(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:d}=t,h=n.readSync(c.dataId),p=n.readSync(d.dataId),[f,m]=xX(h,p,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var zne={kernelName:Ih,backendName:"webgl",kernelFunc:Mne};function Lne(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[u,c,d]=bX(i,l,r),h=c.length;return[n.makeTensorInfo([h,2],"int32",u),n.makeTensorInfo([h],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Bne={kernelName:Sh,backendName:"webgl",kernelFunc:Lne};function Wne(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=vX(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var Vne={kernelName:Ch,backendName:"webgl",kernelFunc:Wne},Une="return tan(x);",Hne=Je({opSnippet:Une}),Gne={kernelName:Ao,backendName:"webgl",kernelFunc:Hne},jne=` float e2x = exp(-2.0 * abs(x)); return sign(x) * (1.0 - e2x) / (1.0 + e2x); -`,_ne=Ze({opSnippet:Rne}),$ne={kernelName:po,backendName:"webgl",kernelFunc:_ne},Fne=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(h=>I.decodeString(h)):l,c=Be(r.shape,r.dtype,u),d=iX(c,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new Fne(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var One={kernelName:zr,backendName:"webgl",kernelFunc:w4},Pne=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=` + `}};function Zne(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(h=>I.decodeString(h)):l,c=We(r.shape,r.dtype,u),d=kX(c,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new Kne(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var Yne={kernelName:Vr,backendName:"webgl",kernelFunc:R4},Jne=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; @@ -4360,7 +4360,7 @@ return a / b;`,lee=` setOutput(float(i1)); } } - `}},Mne=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=` + `}},Qne=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=` void main() { // Takes max of indices (0, k), (1, k + 1), (2, k + 2) ... ivec2 coords = getOutputCoords(); @@ -4394,7 +4394,7 @@ return a / b;`,lee=` setOutput(x0 >= x1 ? float(i0) : float(i1)); } - `}};function Xo(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function k4(e){let t=1;for(;tl){let O=n.readSync(r.dataId),[R,_]=lX(O,u,r.dtype,a,o);return[n.makeTensorInfo(R.shape,R.dtype,R.values),n.makeTensorInfo(_.shape,_.dtype,_.values)]}if(a===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(c===1)return[r,wf({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),h=d!==null&&d.isPacked,p=h?n.unpackTensor(r):r,m=I.sizeFromShape(u)/c,A=ye({inputs:{x:p},attrs:{shape:[m,c]},backend:n});h&&Xo(n,p);let g=k4(a),y=k4(c),x=null,b=()=>x===null?[A,A]:[A,x],v=(O,R,_)=>{let N=b(),P=new Pne(_),j=[[c],[x===null?1:0],[Number.NEGATIVE_INFINITY],[O],[R]],q=x;x=n.runWebGLProgram(P,N,"int32",j),Xo(n,q)};for(let O=1;O=1;_/=2)v(R,_,[m,y])}for(let O=y;O>g;O/=2){let R=b(),_=new Mne([m,O/2]),P=[[c],[x===null?1:0],[g]],W=x;x=n.runWebGLProgram(_,R,"int32",P),Xo(n,W);let j=g/2,q=j*2;for(let X=j;X>=1;X/=2)v(q,X,x.shape)}let k=x;x=nu({inputs:{x},backend:n,attrs:{begin:0,size:[m,a]}}),Xo(n,k);let w=c4({inputs:{x:A,indices:x},backend:n,attrs:{axis:1,batchDims:1}});Xo(n,A);let C=u.slice(0,-1);C.push(a),k=x,x=ye({inputs:{x},attrs:{shape:C},backend:n}),Xo(n,k);let E=w;return w=ye({inputs:{x:w},attrs:{shape:C},backend:n}),Xo(n,E),[w,x]}var Lne={kernelName:cl,backendName:"webgl",kernelFunc:zne},Bne=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=` + `}};function Qo(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function _4(e){let t=1;for(;tl){let P=n.readSync(r.dataId),[E,_]=IX(P,u,r.dtype,a,o);return[n.makeTensorInfo(E.shape,E.dtype,E.values),n.makeTensorInfo(_.shape,_.dtype,_.values)]}if(a===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(c===1)return[r,Ef({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),h=d!==null&&d.isPacked,p=h?n.unpackTensor(r):r,m=I.sizeFromShape(u)/c,g=ye({inputs:{x:p},attrs:{shape:[m,c]},backend:n});h&&Qo(n,p);let A=_4(a),y=_4(c),x=null,b=()=>x===null?[g,g]:[g,x],v=(P,E,_)=>{let T=b(),O=new Jne(_),j=[[c],[x===null?1:0],[Number.NEGATIVE_INFINITY],[P],[E]],q=x;x=n.runWebGLProgram(O,T,"int32",j),Qo(n,q)};for(let P=1;P=1;_/=2)v(E,_,[m,y])}for(let P=y;P>A;P/=2){let E=b(),_=new Qne([m,P/2]),O=[[c],[x===null?1:0],[A]],W=x;x=n.runWebGLProgram(_,E,"int32",O),Qo(n,W);let j=A/2,q=j*2;for(let X=j;X>=1;X/=2)v(q,X,x.shape)}let k=x;x=lu({inputs:{x},backend:n,attrs:{begin:0,size:[m,a]}}),Qo(n,k);let w=y4({inputs:{x:g,indices:x},backend:n,attrs:{axis:1,batchDims:1}});Qo(n,g);let C=u.slice(0,-1);C.push(a),k=x,x=ye({inputs:{x},attrs:{shape:C},backend:n}),Qo(n,k);let R=w;return w=ye({inputs:{x:w},attrs:{shape:C},backend:n}),Qo(n,R),[w,x]}var tse={kernelName:gl,backendName:"webgl",kernelFunc:ese},nse=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=` float mapCoord(float outCoord, float len) { float inCoord = outCoord; if(${i} == 2) { @@ -4506,7 +4506,7 @@ return a / b;`,lee=` } setOutput(outputValue); } - `}};function Wne(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,d,h,p]=r.shape,[f,m]=u!=null?u:[d,h],A=[c,f,m,p],g=new Bne(d,h,o,i,l,A);return n.runWebGLProgram(g,[r,a],"float32")}var Vne={kernelName:dl,backendName:"webgl",kernelFunc:Wne};function Une(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Xl(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:u}=uX(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var Hne={kernelName:bh,backendName:"webgl",kernelFunc:Une};function Gne(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;mn.disposeIntermediateTensorInfo(m)),f}var jne={kernelName:hl,backendName:"webgl",kernelFunc:Gne},qne=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,d=` + `}};function sse(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,d,h,p]=r.shape,[f,m]=u!=null?u:[d,h],g=[c,f,m,p],A=new nse(d,h,o,i,l,g);return n.runWebGLProgram(A,[r,a],"float32")}var rse={kernelName:Al,backendName:"webgl",kernelFunc:sse};function ase(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;eu(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:u}=SX(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var ose={kernelName:Th,backendName:"webgl",kernelFunc:ase};function ise(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;mn.disposeIntermediateTensorInfo(m)),f}var lse={kernelName:yl,backendName:"webgl",kernelFunc:ise},use=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,d=` sumValue += dot(values, segFilter); `,h="";r%n>0&&(h=` if (inIdx < 0 || inIdx >= ${r}) { @@ -4612,14 +4612,14 @@ return a / b;`,lee=` } setOutput(${l}); } - `}};function Xne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],u=0,c=$.getAxesPermutation([u],i),d=r;c!=null&&(d=wn({inputs:{x:r},backend:n,attrs:{perm:c}}),l.push(d),u=$.getInnerMostAxes(1,i)[0]);let h=$.segment_util.computeOutShape(d.shape,u,o),p=I.sizeFromShape([d.shape[u]]),f=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,p]}});l.push(f);let m=Th(r.dtype),A=(b,v,k,w,C)=>{let E=b.shape[0],O=b.shape[1],R=$.segment_util.segOpComputeOptimalWindowSize(O,C),_={windowSize:R,inSize:O,batchSize:E,numSegments:C},N=new qne(_,v),P=n.compileAndRun(N,[b,k],w);if(l.push(P),P.shape[1]===C)return P;let W=x4({backend:n,attrs:{start:0,stop:C,step:1,dtype:"float32"}}),j=w4({inputs:{x:W},backend:n,attrs:{reps:[O/R]}});return l.push(W),l.push(j),A(P,v,j,w,C)},g=A(f,"unsortedSegmentSum",a,m,o),y=ye({inputs:{x:g},backend:n,attrs:{shape:h}}),x=y;if(c!=null){l.push(y);let b=$.getUndoAxesPermutation(c);x=wn({inputs:{x},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var Kne={kernelName:Bu,backendName:"webgl",kernelFunc:Xne},Zne=[wQ,SQ,lK,cK,pK,AK,yK,vK,kK,SK,EK,_K,DK,MK,HK,BK,qK,YK,KK,tZ,sZ,aZ,uZ,AZ,yZ,IZ,CZ,RZ,FZ,UX,zZ,XZ,ZZ,VZ,eY,nY,JZ,aY,lY,dY,pY,mY,yY,IY,CY,bY,EY,$Y,DY,zY,VY,jY,KY,ZY,YY,QY,tJ,sJ,aJ,iJ,dJ,fJ,gJ,xJ,wJ,SJ,EJ,FJ,VX,OJ,PZ,zJ,WJ,HJ,GX,XJ,JJ,eQ,iQ,rQ,dQ,fQ,yQ,TQ,OQ,FQ,LQ,WQ,UQ,_Q,GQ,qQ,YQ,tee,aee,pee,ZX,mee,yee,vee,Iee,bZ,Tee,Eee,_ee,Dee,zee,qX,Bee,Wee,vZ,uee,Hee,Jee,Xee,JX,nte,ate,ute,hte,Ate,yte,vte,Ite,Cte,Ete,$te,Ote,zte,Wte,Hte,fZ,dee,qte,Kte,Yte,Qte,tne,sne,ane,ine,cne,pne,mne,gne,bne,wne,Ine,Cne,cee,aK,Ene,$ne,One,Lne,Vne,oK,Hne,jne,Kne,Nee];for(let e of Zne)yo(e);var $n;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})($n||($n={}));var qc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(qc||(qc={}));var I4;function Yne(e){I4=e.wasm.cwrap(mo,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Jne(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s,h=n.dataIdMap.get(r.dataId).id,p=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let C=n.dataIdMap.get(o.dataId);if(C.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${C.shape.length}.`);f=C.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,A=qc[c];if(A==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let g=l?r.shape[2]:r.shape[1],y=u?a.shape[1]:a.shape[2],x=r.shape[0],b=n.makeOutput([x,g,y],r.dtype),v=n.dataIdMap.get(b.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),w=new Uint8Array(new Int32Array(a.shape).buffer);return I4(h,k,r.shape.length,p,w,a.shape.length,l,u,A,f,m,d||0,v),b}var Qne={kernelName:mo,backendName:"wasm",setupFunc:Yne,kernelFunc:Jne};function un(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function s(r){let{backend:a,inputs:{x:o}}=r,i=a.dataIdMap.get(o.dataId).id,l=a.makeOutput(o.shape,o.dtype),u=a.dataIdMap.get(l.dataId).id;return I.sizeFromShape(l.shape)===0||t(i,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:s}}var ese=un(pi);function kn(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:u,b:c}=l,d=i.dataIdMap.get(u.dataId).id,h=i.dataIdMap.get(c.dataId).id,p=n!=null?n:u.dtype,f=$.assertAndGetBroadcastShape(u.shape,c.shape),m=i.makeOutput(f,p);if(I.sizeFromShape(f)===0)return m;let A=new Uint8Array(new Int32Array(u.shape).buffer),g=new Uint8Array(new Int32Array(c.shape).buffer),y=i.dataIdMap.get(m.dataId).id,x=()=>s(d,A,u.shape.length,h,g,c.shape.length,$n[u.dtype],y);if(t&&u.dtype==="float32")return x(),m;let b=$.getBroadcastDims(u.shape,f),v=$.getBroadcastDims(c.shape,f),k=b.every((C,E)=>C===E),w=v.every((C,E)=>C===E);if(k&&w)return x(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var tse=!0,nse=kn(Pr,tse),S4;function sse(e){S4=e.wasm.cwrap(xa,null,["array","number","number","number"])}function rse(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(I.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return S4(a,r.length,$n[s.dtype],o),s}var ase={kernelName:xa,backendName:"wasm",setupFunc:sse,kernelFunc:rse};function If(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var ose={kernelName:Ma,backendName:"wasm",kernelFunc:If},C4;function ise(e){C4=e.wasm.cwrap(fo,null,["number","array","number","number","number","array","number"])}function au(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=use(t.x.shape,s.perm),o=!0;for(let f=0;f=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var cse={kernelName:fo,backendName:"wasm",kernelFunc:au,setupFunc:ise};function ia(e,t,n){let s=e.shape,r=e.shape.length,a=I.parseAxisParam(t,s),o=a,i=$.getAxesPermutation(o,r),l=null,u=!1;if(i!=null){let c=new Array(r);for(let p=0;p`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var kse={kernelName:Qi,backendName:"wasm",kernelFunc:Fn},_4;function Ise(e){_4=e.wasm.cwrap(wa,null,["number","array","number","number","array","number","number","number","number"])}function Sse(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[u-1]:a.shape[u-2],h=o?r.shape[l-1]:r.shape[l-2],p=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),A=I.sizeFromShape(f),g=I.sizeFromShape(m),y=A===g||A===1||g===1;I.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(A>g?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([h,p]);I.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[A,c,h]:[A,h,c],k=i?[g,p,d]:[g,d,p],w=Fn({inputs:{x:r},backend:n,attrs:{shape:v}}),C=Fn({inputs:{x:a},backend:n,attrs:{shape:k}}),E=n.dataIdMap.get(w.dataId).id,O=n.dataIdMap.get(C.dataId).id,R=o?w.shape[2]:w.shape[1],_=i?C.shape[1]:C.shape[2],N=Math.max(A,g),P=n.makeOutput([N,R,_],w.dtype),W=n.dataIdMap.get(P.dataId).id,j=new Uint8Array(new Int32Array(w.shape).buffer),q=new Uint8Array(new Int32Array(C.shape).buffer);return _4(E,j,w.shape.length,O,q,C.shape.length,o,i,W),n.disposeData(w.dataId),n.disposeData(C.dataId),P.shape=b,P}var Cse={kernelName:wa,backendName:"wasm",setupFunc:Ise,kernelFunc:Sse};function Xc(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=An.parseSliceParams(t,n,s),i=An.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),u=r.makeOutput(o,t.dtype),c=I.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(i){let f=An.computeFlatOffset(a,c);return t.dtype==="string"?d.stringBytes=l.slice(f,f+I.sizeFromShape(o)):r.typedArrayFromHeap(u).set(l.subarray(f,f+I.sizeFromShape(o))),u}if(t.dtype==="string"){let f=Qp(l,a,o,t.shape,t.dtype);return d.stringBytes=f,u}let h=r.typedArrayFromHeap(u),p=t.shape.length;if(p===2)Tse(l,c[0],h,a,o);else if(p===3)Nse(l,c[0],c[1],h,a,o);else if(p===4)Ese(l,c[0],c[1],c[2],h,a,o);else{let f=Qp(l,a,o,t.shape,t.dtype);h.set(f)}return u}function Tse(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let u=o;ug*y),l=$.getReshaped(r.shape,a,i),u=$.getPermuted(l.length,a.length),c=$.getReshapedPermuted(r.shape,a,i),d=$.getSliceBeginCoords(o,a.length),h=$.getSliceSize(c,o,a.length),p=Fn({inputs:{x:r},backend:n,attrs:{shape:l}}),f=au({inputs:{x:p},backend:n,attrs:{perm:u}}),m=Fn({inputs:{x:f},backend:n,attrs:{shape:c}}),A=Xc({inputs:{x:m},backend:n,attrs:{begin:d,size:h}});return n.disposeData(p.dataId),n.disposeData(f.dataId),n.disposeData(p.dataId),A}var $se={kernelName:ki,backendName:"wasm",kernelFunc:_se};function Sf(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var Fse={kernelName:ka,backendName:"wasm",kernelFunc:Sf},Dse=un(Ia),$4;function Ose(e){$4=e.wasm.cwrap(Mr,null,["number","number","number","number"])}function Pse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return $4(i,a,o,u),l}var Mse={kernelName:Mr,backendName:"wasm",setupFunc:Ose,kernelFunc:Pse};function F4(e){let{inputs:t,backend:n}=e,s=I.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=$.computeOutShape(t.map(p=>p.shape),s),a=t.filter(p=>I.sizeFromShape(p.shape)>0);if(a.length===1)return If({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(I.sizeFromShape(r)===0)return o;let i=a.map(p=>p.shape);if($.assertParamsConsistent(i,s),a[0].dtype==="string"){let p=a.map(x=>{let b=I.sizeFromShape(x.shape.slice(s));return Fn({inputs:{x},backend:n,attrs:{shape:[-1,b]}})}),f=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=$.computeOutShape(p.map(x=>x.shape),1);let m=p[0].shape[0]===1,A=e1(f,r,t[0].dtype,m),g=$.computeOutShape(a.map(x=>x.shape),s);o.shape=g;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=$.fromStringArrayToUint8(A),p.forEach(x=>n.disposeData(x.dataId)),o}let l=I.sizeFromShape(a[0].shape.slice(0,s)),u=0,c=a.map(p=>{let f=I.sizeFromShape(p.shape.slice(s));return u+=f,f}),d=a.map(p=>n.typedArrayFromHeap(p)),h=n.typedArrayFromHeap(o);for(let p=0;p`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=$.getAxesPermutation([a],l),c=r;u!==null&&(c=au({inputs:{x:r},attrs:{perm:u},backend:n}));let d=$.getInnerMostAxes(1,l)[0];$.assertAxesAreInnerMostDims("cumsum",[d],l);let h=n.makeOutput(c.shape,c.dtype),p=c.shape[d],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(h.dataId).id;M4(f,o?1:0,i?1:0,p,m,$n[r.dtype]);let A=h;if(u!==null){let g=$.getUndoAxesPermutation(u);A=au({inputs:{x:h},attrs:{perm:g},backend:n}),n.disposeData(c.dataId),n.disposeData(h.dataId)}return A}var Jse={kernelName:Ea,backendName:"wasm",setupFunc:Zse,kernelFunc:Yse},z4;function Qse(e){z4=e.wasm.cwrap(Ci,null,["number","number","number","array","number","array","array","number","number"])}function ere(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s;I.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,h=u*a,p=c/(a*a),f=o==="NHWC"?[i,d,h,p]:[i,p,d,h],m=t.makeOutput(f,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(I.computeStrides(r.shape)).buffer),x=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(I.computeStrides(f)).buffer),v=t.dataIdMap.get(m.dataId).id;return z4(g,a,o==="NHWC"?1:0,y,r.shape.length-1,x,b,f.length,v),m}var tre={kernelName:Ci,backendName:"wasm",setupFunc:Qse,kernelFunc:ere},L4;function nre(e){L4=e.wasm.cwrap(Ra,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function sre(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:d}=n,h=u==null?[1,1]:u,p=$.computeConv2DInfo(r.shape,a.shape,l,h,c,d,!0),f=p.filterHeight,m=p.filterWidth,A=p.padInfo.top,g=p.padInfo.right,y=p.padInfo.bottom,x=p.padInfo.left,b=p.dilationHeight,v=p.dilationWidth,k=p.strideHeight,w=p.strideWidth,C=p.inChannels,E=p.outChannels,O=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let R=s.makeOutput(p.outShape,"float32"),_=s.dataIdMap.get(R.dataId).id;return L4(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,A,g,y,x,O,b,v,k,w,C,E,_),R}var rre={kernelName:Ra,backendName:"wasm",setupFunc:nre,kernelFunc:sre},are=!1,ore=kn(Ei,are,"bool"),ire=un($a);function $1(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(I.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Fn({inputs:{x:r},backend:s,attrs:{shape:i}})}var lre={kernelName:Ri,backendName:"wasm",kernelFunc:$1};function ure(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var cre={kernelName:$u,backendName:"wasm",kernelFunc:ure},B4;function dre(e){B4=e.wasm.cwrap($i,null,["number","number","number","number","number","number"])}function hre(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,u,c]=s.shape;return B4(a,i,l,u,c,o),r}var pre={kernelName:$i,backendName:"wasm",kernelFunc:hre,setupFunc:dre},fre=un(Fa),mre=!1,Are=kn(Da,mre),W4;function gre(e){W4=e.wasm.cwrap(Oa,null,["number","number","number","number","number","number","number"])}function yre(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:u}=n,c=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=t.dataIdMap.get(i.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(I.sizeFromShape(a.shape)===0)return m;let A=t.dataIdMap.get(m.dataId).id;return W4(c,d,h,p,f,r,A),m}var xre={kernelName:Oa,backendName:"wasm",setupFunc:gre,kernelFunc:yre},V4;function bre(e){V4=e.wasm.cwrap(Ao,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function vre(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=n,m=$.computeConv2DInfo(r.shape,a.shape,l,c,u,h),A=qc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let g=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let J=s.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let v=m.filterHeight,k=m.filterWidth,w=m.padInfo.top,C=m.padInfo.right,E=m.padInfo.bottom,O=m.padInfo.left,R=m.dilationHeight,_=m.dilationWidth,N=m.strideHeight,P=m.strideWidth,W=m.inChannels,j=m.padInfo.type==="SAME"?1:0,q=m.batchSize,X=m.inHeight,Q=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let ne=s.makeOutput(m.outShape,"float32"),te=s.dataIdMap.get(ne.dataId).id,se=i==null?0:s.dataIdMap.get(i.dataId).id;return V4(g,q,X,Q,y,v,k,b,w,C,E,O,j,R,_,N,P,W,x,A,se,f||0,te),ne}var wre={kernelName:Ao,backendName:"wasm",setupFunc:bre,kernelFunc:vre},U4;function kre(e){U4=e.wasm.cwrap(go,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ire(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=n,m=$.computeConv2DInfo(r.shape,a.shape,l,c,u,h,!0),A=qc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let g=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let J=s.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let v=m.filterHeight,k=m.filterWidth,w=m.padInfo.top,C=m.padInfo.right,E=m.padInfo.bottom,O=m.padInfo.left,R=m.dilationHeight,_=m.dilationWidth,N=m.strideHeight,P=m.strideWidth,W=m.inChannels,j=m.padInfo.type==="SAME"?1:0,q=m.batchSize,X=m.inHeight,Q=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let ne=s.makeOutput(m.outShape,"float32"),te=s.dataIdMap.get(ne.dataId).id,se=i==null?0:s.dataIdMap.get(i.dataId).id;return U4(g,q,X,Q,y,v,k,b,w,C,E,O,j,R,_,N,P,W,x,A,se,f||0,te),ne}var Sre={kernelName:go,backendName:"wasm",setupFunc:kre,kernelFunc:Ire},H4;function Cre(e){H4=e.wasm.cwrap(Di,null,["number","number","number","number","number","number","array","number"])}function Tre(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=Ym.prepareAndValidate(s,r),u=t.makeOutput(a,s.dtype);if(o===0)return u;let c=r.shape,d=c[c.length-1],p=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,A=new Uint8Array(new Int32Array(l).buffer),g=t.dataIdMap.get(u.dataId).id;return H4(p,$n[s.dtype],m,o,d,i,A,g),u}var Nre={kernelName:Di,backendName:"wasm",setupFunc:Cre,kernelFunc:Tre},G4;function Ere(e){G4=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Rre(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=I.parseAxisParam(o,r.shape)[0],u=$.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=Fn({inputs:{x:r},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),d=I.sizeFromShape(a.shape),h=Fn({inputs:{x:a},attrs:{shape:[u.batchSize,d/u.batchSize]},backend:t}),p=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize],f=t.makeOutput(p,r.dtype);if(I.sizeFromShape(r.shape)===0)return f;let m=c.shape.length-1,g=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(h.dataId).id,b=t.dataIdMap.get(f.dataId).id,v=new Uint8Array(new Int32Array(I.computeStrides(c.shape)).buffer),k=new Uint8Array(new Int32Array(I.computeStrides(p)).buffer);return G4(g,$n[r.dtype],v,m,x,u.batchSize,k,b),t.disposeData(c.dataId),t.disposeData(h.dataId),f.shape=u.outputShape,f}var _re={kernelName:Fi,backendName:"wasm",setupFunc:Ere,kernelFunc:Rre},$re=!1,Fre=kn(Oi,$re,"bool"),Dre=!1,Ore=kn(Pa,Dre,"bool"),j4;function Pre(e){j4=e.wasm.cwrap(za,null,["number","number","number"])}function Mre(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,t.dtype);if(I.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;j4(r,n,o)}return a}var zre={kernelName:za,backendName:"wasm",setupFunc:Pre,kernelFunc:Mre},Lre=!1,Bre=kn(Li,Lre,"bool"),Wre=!1,Vre=kn(Bi,Wre,"bool"),Ure=un(La),Hre=!1,Gre=kn(Vi,Hre,"bool"),q4;function jre(e){q4=e.wasm.cwrap(Ba,null,["number, number, number"])}function qre(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=ia(o,r,t);if(p){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let f=u.shape.length;$.assertAxesAreInnerMostDims("max",d,f);let[m,A]=$.computeOutAndReduceShapes(u.shape,d),g=I.sizeFromShape(A),y=t.makeOutput(m,o.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;q4(l,g,x)}if(p&&t.disposeData(c.dataId),a){let x=$.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var Xre={kernelName:Ba,backendName:"wasm",setupFunc:jre,kernelFunc:qre},Kre=!1,Zre=kn(Wa,Kre),X4;function Yre(e){X4=e.wasm.cwrap(Va,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Jre(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=$.computePool2DInfo(r.shape,o,i,1,l,u),d=c.filterHeight,h=c.filterWidth,p=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,A=c.padInfo.left,g=c.dilationHeight,y=c.dilationWidth,x=c.strideHeight,b=c.strideWidth,v=c.inChannels,k=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let w=s.makeOutput(c.outShape,"float32"),C=s.dataIdMap.get(w.dataId).id;return X4(a,r.shape[0],r.shape[1],r.shape[2],d,h,p,f,m,A,g,y,x,b,v,k,C),w}var Qre={kernelName:Va,backendName:"wasm",setupFunc:Yre,kernelFunc:Jre},K4;function eae(e){K4=e.wasm.cwrap(Ua,null,["number, number, number"])}function tae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=ia(o,r,t),f=d;if(p){let b=t.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,f=$.getInnerMostAxes(f.length,u.shape.length))}$.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,A]=$.computeOutAndReduceShapes(u.shape,f),g=I.sizeFromShape(A),y=u;u.dtype!=="float32"&&(y=Sf({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let x=t.makeOutput(m,"float32");if(I.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(x.dataId).id;K4(l,g,b)}if(p&&t.disposeData(c.dataId),a){let b=$.expandShapeToKeepDim(x.shape,h);x.shape=b}return u.dtype!=="float32"&&t.disposeData(y.dataId),x}var nae={kernelName:Ua,backendName:"wasm",setupFunc:eae,kernelFunc:tae},Z4;function sae(e){Z4=e.wasm.cwrap(Ha,null,["number, number, number"])}function rae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=ia(o,r,t);if(p){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x)}let f=u.shape.length;$.assertAxesAreInnerMostDims("min",d,f);let[m,A]=$.computeOutAndReduceShapes(u.shape,d),g=I.sizeFromShape(A),y=t.makeOutput(m,u.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;Z4(l,g,x)}if(p&&t.disposeData(c.dataId),a){let x=$.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var aae={kernelName:Ha,backendName:"wasm",setupFunc:sae,kernelFunc:rae},oae=!1,iae=kn(Ga,oae),F1;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(F1||(F1={}));var Y4;function lae(e){Y4=e.wasm.cwrap(ja,null,["number","array","number","number","array","array","number","number"])}function uae(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(f=>f[0]),d=s.map(f=>f[1]),h=new Uint8Array(new Int32Array(c).buffer),p=new Uint8Array(new Int32Array(d).buffer);return Y4(o,u,t.shape.length,$n[t.dtype],h,p,F1[r],l),i}var cae={kernelName:ja,backendName:"wasm",kernelFunc:uae,setupFunc:lae},dae=!0,hae=kn(qa,dae),pae=un(Hi);function D1(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var J4;function fae(e){J4=e.wasm.cwrap(ji,"number",["number","number","number","number","number"])}function mae(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,u=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(l.dataId).id,d=J4(u,c,a,r,o),{pSelectedIndices:h,selectedSize:p,pSelectedScores:f,pValidOutputs:m}=D1(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([p],"int32",h)}var Aae={kernelName:ji,backendName:"wasm",setupFunc:fae,kernelFunc:mae},Q4;function gae(e){Q4=e.wasm.cwrap(qi,"number",["number","number","number","number","number","bool"])}function yae(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,h=Q4(c,d,a,r,o,i),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=D1(t,h);t.wasm._free(m);let g=t.makeOutput([f],"int32",p),y=t.makeOutput([],"int32",A);return[g,y]}var xae={kernelName:qi,backendName:"wasm",setupFunc:gae,kernelFunc:yae},ek;function bae(e){ek=e.wasm.cwrap(Xi,"number",["number","number","number","number","number","number"])}function vae(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,h=ek(c,d,a,r,o,i),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=D1(t,h);t.wasm._free(A);let g=t.makeOutput([f],"int32",p),y=t.makeOutput([f],"float32",m);return[g,y]}var wae={kernelName:Xi,backendName:"wasm",setupFunc:bae,kernelFunc:vae},kae=!1,Iae=kn(Gi,kae,"bool"),tk;function Sae(e){tk=e.wasm.cwrap(Xa,null,["number","number","number","number","number"])}function Cae(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return tk(d,a,o,i,u),l}var Tae={kernelName:Xa,backendName:"wasm",setupFunc:Sae,kernelFunc:Cae};function Nae(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var Eae={kernelName:Ki,backendName:"wasm",kernelFunc:Nae};function Rae(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return $1({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{I.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),I.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=$1({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=F4({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var _ae={kernelName:Zi,backendName:"wasm",kernelFunc:Rae},nk;function $ae(e){nk=e.wasm.cwrap(Ka,null,["number","array","number","number","array","array","number","number"])}function Fae(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(f=>f[0]),d=s.map(f=>f[1]),h=new Uint8Array(new Int32Array(c).buffer),p=new Uint8Array(new Int32Array(d).buffer);return nk(o,u,t.shape.length,$n[t.dtype],h,p,r,l),i}var sk={kernelName:Ka,backendName:"wasm",kernelFunc:Fae,setupFunc:$ae},Dae=!1,Oae=kn(Za,Dae),rk;function Pae(e){rk=e.wasm.cwrap(Ya,null,["number","number","number"])}function Mae(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=n.makeOutput(s.shape,"float32"),l=n.dataIdMap.get(i.dataId).id;return rk(a,o,l),i}var zae={kernelName:Ya,backendName:"wasm",setupFunc:Pae,kernelFunc:Mae},ak;function Lae(e){ak=e.wasm.cwrap(Yi,null,["number","number","number","number"])}function Bae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=ia(o,r,t),f=d;if(p){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x,f=$.getInnerMostAxes(f.length,u.shape.length))}$.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,A]=$.computeOutAndReduceShapes(u.shape,f),g=I.sizeFromShape(A),y=t.makeOutput(m,u.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;ak(l,g,$n[y.dtype],x)}if(p&&t.disposeData(c.dataId),a){let x=$.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var Wae={kernelName:Yi,backendName:"wasm",setupFunc:Lae,kernelFunc:Bae},Vae=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=s1(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},Uae={kernelName:Mu,backendName:"wasm",kernelFunc:Vae},Hae=!0,Gae=kn(_a,Hae),jae=un(Ja),qae=un(eo),ok;function Xae(e){ok=e.wasm.cwrap(Qa,null,["number","number","number","number","number","number","number","number","number","number"])}function Kae(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,d,h,p]=r.shape,f=[c,l,u,p],m=t.dataIdMap.get(r.dataId),A;m.dtype!=="float32"&&(A=Sf({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(A.dataId));let g=m.id,y=t.makeOutput(f,"float32");if(I.sizeFromShape(r.shape)===0)return y;let x=t.dataIdMap.get(y.dataId).id;return ok(g,c,d,h,p,l,u,a?1:0,o?1:0,x),A!=null&&t.disposeData(A.dataId),y}var Zae={kernelName:Qa,backendName:"wasm",setupFunc:Xae,kernelFunc:Kae},ik;function Yae(e){ik=e.wasm.cwrap(to,null,["number","array","number","array","number","number"])}function Jae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=I.parseAxisParam(a,r.shape);if(r.shape.length===0)return If({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);ik(l,c,o.length,d,r.shape.length,u);let h=Fn({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),h}var Qae={kernelName:to,backendName:"wasm",kernelFunc:Jae,setupFunc:Yae},lk;function eoe(e){lk=e.wasm.cwrap(fl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function toe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(l.dataId).id,[d,h,p,f]=r.shape,[m,A]=$.getImageCenter(i,h,p),g=o===0,y=255,x=typeof o=="number"?[o,o,o,g?0:y]:[...o,y],b=new Uint8Array(new Int32Array(x).buffer);return lk(u,d,h,p,f,a,m,A,b,x.length,c),l}var noe={kernelName:fl,backendName:"wasm",kernelFunc:toe,setupFunc:eoe},soe=un(no),roe=un(so),uk;function aoe(e){uk=e.wasm.cwrap(el,null,["number","number","number","number","number","number","array","number","number"])}function ooe(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(I.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:d,outputSize:h}=Jm.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,A=t.dataIdMap.get(a.dataId).id,g=new Uint8Array(new Int32Array(d).buffer),y=t.dataIdMap.get(i.dataId).id;return uk(f,A,$n[a.dtype],l,u,c,g,h,y),i}var ioe={kernelName:el,backendName:"wasm",setupFunc:aoe,kernelFunc:ooe},ck;function loe(e){ck=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function uoe(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,u=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(u.dataId).id,d=s.shape.length,h=r.shape.length,p=d===0||d>1||h===1?1:I.sizeFromShape(r.shape.slice(1));return ck(o,i,l,p,c),u}var coe={kernelName:tl,backendName:"wasm",kernelFunc:uoe,setupFunc:loe},dk;function doe(e){dk=e.wasm.cwrap(ao,null,["number","number"])}function hoe(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return I.sizeFromShape(r.shape)===0||dk(s,a),r}var poe={kernelName:"Sigmoid",backendName:"wasm",setupFunc:doe,kernelFunc:hoe},foe=un(ro),hk;function moe(e){hk=e.wasm.cwrap(lo,null,["number","number","number","number"])}function Aoe(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=I.sizeFromShape(n.shape)/i;return I.sizeFromShape(a.shape)===0||hk(r,o,i,l),a}var goe={kernelName:lo,backendName:"wasm",setupFunc:moe,kernelFunc:Aoe};function yoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=I.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k{let h=[...c];h[i]=d;let p=Xc({inputs:{x:r},attrs:{begin:u,size:h},backend:s});return u[i]+=d,p})}var voe={kernelName:ll,backendName:"wasm",kernelFunc:boe},woe=un(oo),koe=un(Lu),Ioe=!0,Soe=kn(uo,Ioe),pk;function Coe(e){pk=e.wasm.cwrap(Lr,null,["number","number","number"])}function Toe(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return pk(o,r,l),i}var Noe={kernelName:Lr,backendName:"wasm",setupFunc:Coe,kernelFunc:Toe},fk;function Eoe(e){fk=e.wasm.cwrap(ul,null,["number","array","number","array","array","array","array","array","number","number"])}function Roe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i}=s;i==null&&(i=new Array(a.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:h}=s,p=$.slice_util.maskToAxes(c);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&d!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&h!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.shape.length-a.length,m=$.slice_util.maskToAxes(d),A=r.shape.slice();m.forEach(R=>{a[R]=0,o[R]=1,A.splice(R,0,1)});let g=Fn({inputs:{x:r},attrs:{shape:A},backend:t}),{begin:y,end:x,strides:b}=$.slice_util.getNormalizedAxes(g.shape,p,f,a,o,i,l,u,c);a=y,o=x,i=b;let v=$.slice_util.maskToAxes(h);v.forEach(R=>{o[R]=a[R]+1,i[R]=1});let k=$.slice_util.computeOutShape(a,o,i),w=k.filter((R,_)=>v.indexOf(_)===-1);if(i.every(R=>R===1)){let R=Xc({inputs:{x:g},attrs:{begin:a,size:k},backend:t});t.disposeData(g.dataId);let _=Fn({inputs:{x:R},attrs:{shape:w},backend:t});return t.disposeData(R.dataId),_}let E=t.makeOutput(w,"float32");if(!w.some(R=>R===0)){let R=t.dataIdMap.get(g.dataId).id,_=new Uint8Array(new Int32Array(I.computeStrides(g.shape)).buffer),N=new Uint8Array(new Int32Array(a).buffer),P=new Uint8Array(new Int32Array(o).buffer),W=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(w).buffer),q=new Uint8Array(new Int32Array(I.computeStrides(w)).buffer),X=t.dataIdMap.get(E.dataId).id;fk(R,_,g.shape.length,N,P,W,j,q,w.length,X)}t.disposeData(g.dataId);let O=Fn({inputs:{x:E},attrs:{shape:w},backend:t});return t.disposeData(E.dataId),O}var _oe={kernelName:ul,backendName:"wasm",setupFunc:Eoe,kernelFunc:Roe},$oe=!0,Foe=kn(co,$oe),mk;function Doe(e){mk=e.wasm.cwrap(io,null,["number, number, number"])}function Ooe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=ia(o,r,t),f=d;if(p){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x,f=$.getInnerMostAxes(f.length,u.shape.length))}$.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,A]=$.computeOutAndReduceShapes(u.shape,f),g=I.sizeFromShape(A),y=t.makeOutput(m,u.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;mk(l,g,x)}if(p&&t.disposeData(c.dataId),a){let x=$.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var Poe={kernelName:io,backendName:"wasm",setupFunc:Doe,kernelFunc:Ooe},Moe=un(ho),zoe=un(po),Ak;function Loe(e){Ak=e.wasm.cwrap(zr,null,["number","array","number","array","number","number"])}function Boe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let h=0;h{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,s.dtype),c=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),h=t.dataIdMap.get(d.dataId).id;return gk(o,i,s.shape.length,$n[s.dtype],r,a,c,h),[u,d]},Hoe={kernelName:cl,backendName:"wasm",setupFunc:Voe,kernelFunc:Uoe},yk;function Goe(e){yk=e.wasm.cwrap(dl,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function joe(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,d,h,p]=r.shape,[f,m]=u!=null?u:[d,h],A=[c,f,m,p],g=new Uint8Array(new Int32Array(I.computeStrides(r.shape)).buffer),y=t.makeOutput(A,r.dtype),x=t.dataIdMap.get(y.dataId).id,v=t.dataIdMap.get(r.dataId).id,w=t.dataIdMap.get(a.dataId).id,C=o==="nearest"?1:2,E;switch(i){case"constant":E=1;break;case"reflect":E=2;break;case"wrap":E=3;break;case"nearest":E=4;break;default:E=1;break}return yk(v,w,a.shape[0]>1,c,f,m,p,h,d,g,r.shape.length-1,C,E,l,x),y}var qoe={kernelName:dl,backendName:"wasm",setupFunc:Goe,kernelFunc:joe};function Xoe(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),u=0;for(let p=0;p({dataId:p,dtype:f,shape:l}))}var Koe={kernelName:hl,backendName:"wasm",kernelFunc:Xoe};function Zoe(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var Yoe={kernelName:pl,backendName:"wasm",kernelFunc:Zoe},Joe=[ese,nse,ase,pse,Ase,xse,wse,Cse,$se,Fse,Dse,Mse,zse,Wse,Hse,Gse,jse,Kse,Jse,tre,rre,ore,ire,lre,cre,pre,fre,Are,Qne,xre,wre,Sre,Nre,_re,Fre,Ore,ose,zre,Bre,Vre,Ure,Gre,Xre,Zre,Qre,nae,aae,iae,cae,hae,pae,Aae,xae,wae,Iae,Tae,Eae,_ae,sk,Oae,zae,Wae,Uae,Gae,jae,qae,kse,Zae,Qae,noe,roe,soe,ioe,coe,poe,foe,Rse,goe,xoe,voe,woe,koe,Soe,Noe,_oe,Foe,Poe,Moe,zoe,Woe,Hoe,qoe,cse,Koe,Yoe];for(let e of Joe)yo(e);var O1=ee();O1.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));O1.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(O1.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var xk=Aa(LI()),Qoe='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',eie=Aa(BI()),bk=class extends Iu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Dd(this,Ar())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=I.now();return e(),{kernelMs:I.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let u=t;this.dataIdMap.set(e,{id:a,stringBytes:u,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=I.sizeFromShape(n),i=o*I.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:s,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let a=this.wasm.HEAPU8.slice(t,t+I.sizeFromShape(s)*I.bytesPerElement(n));return sie(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=I.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=I.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function tie(e){return(t,n)=>(I.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function vk(e,t,n){if(Cf!=null)return Cf;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),Zc!=null&&Zc[s]!=null?Zc[s]:n+s}async function nie(){let[e,t]=await Promise.all([ee().getAsync("WASM_HAS_SIMD_SUPPORT"),ee().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=Qoe,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?vk(e,t,Kc!=null?Kc:l):l+i},P1&&(r.instantiateWasm=tie(vk(e,t,Kc!=null?Kc:"")));let a=!1;r.onAbort=()=>{if(a||Yc)return;Yc=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&Cf==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+xk.default.toString()],{type:"text/javascript"}),o=(0,xk.default)(r)):o=(0,eie.default)(r),o.then(i=>{a=!0,Yc=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function sie(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var rie=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Cf=null,Kc=null,Zc={},Yc=!1,P1=!1;function aie(e,t=!1){if(rA("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Yc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Cf=e,P1=t}function oie(e,t=!1){if(Yc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Kc=e;else{Zc=e;let n=rie.filter(s=>Zc[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}P1=t}var iie="3.8.0",lie=2;wl("wasm",async()=>{let{wasm:e}=await nie();return new bk(e)},lie);var uie={tfjs:WI,"tfjs-core":VI,"tfjs-data":UI,"tfjs-layers":HI,"tfjs-converter":GI,"tfjs-backend-cpu":jI,"tfjs-backend-webgl":qI,"tfjs-backend-wasm":XI};var Dn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function cie(){let e=Dn.gl;!e||(Dn.extensions=e.getSupportedExtensions())}function wk(){if(!aA(Dn.name)){try{Dn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Dn.width,Dn.height):document.createElement("canvas")}catch(e){ue("error: cannot create canvas:",e);return}try{Dn.gl=Dn.canvas.getContext("webgl2",Dn.webGLattr)}catch(e){ue("error: cannot get WebGL2 context:",e);return}try{nf(2,Dn.gl)}catch(e){ue("error: cannot set WebGL2 context:",e);return}try{let e=new cf(Dn.gl);wl(Dn.name,()=>new eu(e),Dn.priority)}catch(e){ue("error: cannot register WebGL backend:",e);return}try{Al("webgl").forEach(t=>{let n={...t,backendName:Dn.name};yo(n)})}catch(e){ue("error: cannot update WebGL backend registration:",e);return}try{ns.set("WEBGL_VERSION",2)}catch(e){ue("error: cannot set WebGL backend flags:",e);return}cie(),ue("backend registered:",Dn.name)}}function kk(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s}}function Qc(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function ed(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function td(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return _e.cropAndResize(t,a,[0],n)}function Tf(e,t=1.5){let n=ed(e),s=Qc(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,landmarks:e.landmarks}}function Nf(e){let t=ed(e),n=Qc(e),r=Math.max(...n)/2,a=[Math.round(t[0]-r),Math.round(t[1]-r)],o=[Math.round(t[0]+r),Math.round(t[1]+r)];return{startPoint:a,endPoint:o,landmarks:e.landmarks}}function M1(e){let t=e.map(a=>a[0]),n=e.map(a=>a[1]),s=[Math.min(...t),Math.min(...n)],r=[Math.max(...t),Math.max(...n)];return{startPoint:s,endPoint:r,landmarks:e}}var Ik=e=>({startPoint:Re(e,[0,0],[-1,2]),endPoint:Re(e,[0,2],[-1,2])});var Ef=[[1,0,0],[0,1,0],[0,0,1]];function die(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Sk(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return die(n)}function Ck(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function la(e,t){let n=0;for(let s=0;s{let c=_e.resizeBilinear(t,[this.inputSize,this.inputSize]),d=Ae(de(c,127.5),.5),h=this.model.execute(d),p;if(Array.isArray(h)){let g=h.sort((v,k)=>v.size-k.size),y=ht([g[0],g[2]],2),x=ht([g[1],g[3]],2),b=ht([x,y],1);p=ot(b,0)}else p=ot(h);let f=pie(p,this.anchors,[this.inputSize,this.inputSize]),m=Re(p,[0,0],[-1,1]),A=ot(Bn(m));return[p,f,A]});this.config=pn(this.config,n);let o=await _e.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxDetected,this.config.face.detector.iouThreshold,this.config.face.detector.minConfidence),i=await o.array();K(o);let l=[],u=await a.data();for(let c=0;cthis.config.face.detector.minConfidence){let h=Re(r,[i[c],0],[1,-1]),p=Ik(h);K(h);let f=this.anchorsData[i[c]],m=H(()=>U(ot(Re(s,[i[c],_k-1],[1,-1])),[_k,-1]));l.push({box:p,landmarks:m,anchor:f,confidence:d})}}return K(s),K(r),K(a),{boxes:l,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function Fk(e){let t=await pt(ft(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new $k(t,e);return!t||!t.modelUrl?ue("load model failed:",e.face.detector.modelPath):e.debug&&ue("load model:",t.modelUrl),n}var or={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},L1=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],nd=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],Ko=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var fie=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],mie=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Aie=[33,133,362,263,1,78,308],ule=fie.map(e=>nd[e]),cle=mie.map(e=>nd[e]),dle=Aie.map(e=>nd[e]);var B1=or.leftEyeLower0,W1=or.rightEyeLower0,ou={leftBounds:[B1[0],B1[B1.length-1]],rightBounds:[W1[0],W1[W1.length-1]]},Dk={count:468,mouth:13,symmetryLine:[13,or.midwayBetweenEyes[0]]},gie={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},iu={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function Rf(e,t,n,s){for(let r=0;r[a[0]/this.meshSize*(d[0]-this.meshSize/2),a[1]/this.meshSize*(d[1]-this.meshSize/2),d[2]]),i=s!==0?z1(s,[0,0]):Ef,l=s!==0?o.map(d=>[...Ek(d,i),d[2]]):o,u=s!==0?Nk(r):Ef,c=[...ed({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(d=>[Math.round(d[0]+la(c,u[0])),Math.round(d[1]+la(c,u[1])),Math.round(d[2])])}getLeftToRightEyeDepthDifference(t){let n=t[ou.leftBounds[0]][2],s=t[ou.rightBounds[0]][2];return n-s}getEyeBox(t,n,s,r,a=!1){let o=Nf(Tf(M1([t[s],t[r]]),this.irisEnlarge)),i=Qc(o),l=_e.cropAndResize(n,[[o.startPoint[1]/this.meshSize,o.startPoint[0]/this.meshSize,o.endPoint[1]/this.meshSize,o.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);if(a&&ns.flags.IS_BROWSER){let u=_e.flipLeftRight(l);K(l),l=u}return{box:o,boxSize:i,crop:l}}getEyeCoords(t,n,s,r=!1){let a=[];for(let o=0;o{let u=o;return l===2?u=r:l===4&&(u=a),[i[0],i[1],u]})}correctFaceRotation(t,n,s){let[r,a]=n.landmarks.length>=Dk.count?Dk.symmetryLine:gie.symmetryLine,o=Sk(n.landmarks[r],n.landmarks[a]),i=ed({startPoint:n.startPoint,endPoint:n.endPoint}),l=[i[0]/s.shape[2],i[1]/s.shape[1]],u=_e.rotateWithOffset(s,o,0,l),c=z1(-o,i),d=t.face.mesh.enabled?td({startPoint:n.startPoint,endPoint:n.endPoint},u,[this.meshSize,this.meshSize]):td({startPoint:n.startPoint,endPoint:n.endPoint},u,[this.boxSize,this.boxSize]),h=de(d,255);return K(d),K(u),[o,c,h]}async augmentIris(t,n){let{box:s,boxSize:r,crop:a}=this.getEyeBox(t,n,ou.leftBounds[0],ou.leftBounds[1],!0),{box:o,boxSize:i,crop:l}=this.getEyeBox(t,n,ou.rightBounds[0],ou.rightBounds[1]),u=ht([a,l]);K(a),K(l);let c=this.irisModel.predict(u);K(u);let d=await c.data();K(c);let h=d.slice(0,iu.numCoordinates*3),{rawCoords:p,iris:f}=this.getEyeCoords(h,s,r,!0),m=d.slice(iu.numCoordinates*3),{rawCoords:A,iris:g}=this.getEyeCoords(m,o,i),y=this.getLeftToRightEyeDepthDifference(t);Math.abs(y)<30?(Rf(t,p,"left",null),Rf(t,A,"right",null)):y<1?Rf(t,p,"left",["EyeUpper0","EyeLower0"]):Rf(t,A,"right",["EyeUpper0","EyeLower0"]);let x=this.getAdjustedIrisCoords(t,f,"left"),b=this.getAdjustedIrisCoords(t,g,"right");return t.concat(x).concat(b)}async predict(t,n){let s=!1,r;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.skipFrame)&&(r=await this.boundingBoxDetector.getBoundingBoxes(t,n),this.skipped=0),n.skipFrame&&this.skipped++,!n.skipFrame||r&&r.boxes&&(!n.face.mesh.enabled||r.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let i of r.boxes){let l=await i.box.startPoint.data(),u=await i.box.endPoint.data(),c=await i.landmarks.array();this.storedBoxes.push({startPoint:l,endPoint:u,landmarks:c,confidence:i.confidence})}this.storedBoxes.length>0&&(s=!0)}if(s){if(!r||!r.boxes||r.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i{K(i.box.startPoint),K(i.box.endPoint),K(i.landmarks)});let a=[],o=[];for(let i of this.storedBoxes){let l,u=0,c;if(n.face.detector.rotation&&n.face.mesh.enabled&&ns.flags.IS_BROWSER)[u,c,l]=this.correctFaceRotation(n,i,t);else{c=Ef;let d=t.clone(),h=n.face.mesh.enabled?td({startPoint:i.startPoint,endPoint:i.endPoint},d,[this.meshSize,this.meshSize]):td({startPoint:i.startPoint,endPoint:i.endPoint},d,[this.boxSize,this.boxSize]);l=de(h,255),K(h),K(d)}if(!n.face.mesh.enabled)a.push({mesh:[],box:i,faceConfidence:null,boxConfidence:i.confidence,confidence:i.confidence,image:l});else{let[d,h,p]=this.meshDetector.execute(l);K(d);let f=(await h.data())[0];K(h);let m=U(p,[-1,3]),A=await m.array();if(K(p),K(m),fi.confidence>n.face.detector.minConfidence)),this.detectedFaces=a.length,a}};var Rt=[null,null,null],U1;async function Ok(e,t){let n=await U1.predict(e,t),s=[],r=0;for(let a of n||[]){if(!a||a.isDisposedInternal)continue;let o=a.mesh.map(c=>[c[0]/(e.shape[2]||0),c[1]/(e.shape[1]||0),c[2]/U1.meshSize]),i={};if(a.mesh&&a.mesh.length>0)for(let c of Object.keys(or))i[c]=or[c].map(d=>a.mesh[d]);let l=a.box?[Math.trunc(Math.max(0,a.box.startPoint[0])),Math.trunc(Math.max(0,a.box.startPoint[1])),Math.trunc(Math.min(e.shape[2]||0,a.box.endPoint[0])-Math.max(0,a.box.startPoint[0])),Math.trunc(Math.min(e.shape[1]||0,a.box.endPoint[1])-Math.max(0,a.box.startPoint[1]))]:[0,0,0,0],u=a.box?[a.box.startPoint[0]/(e.shape[2]||0),a.box.startPoint[1]/(e.shape[1]||0),(a.box.endPoint[0]-a.box.startPoint[0])/(e.shape[2]||0),(a.box.endPoint[1]-a.box.startPoint[1])/(e.shape[1]||0)]:[0,0,0,0];s.push({id:r++,score:Math.round(100*a.faceConfidence||100*a.boxConfidence||0)/100,boxScore:Math.round(100*a.boxConfidence)/100,faceScore:Math.round(100*a.faceConfidence)/100,box:l,boxRaw:u,mesh:a.mesh,meshRaw:o,annotations:i,tensor:a.image}),a.coords&&K(a.coords)}return s}async function H1(e){return!Rt[0]&&e.face.enabled||!Rt[1]&&e.face.mesh.enabled||!Rt[2]&&e.face.iris.enabled?(Rt=await Promise.all([!Rt[0]&&e.face.enabled?Fk(e):null,!Rt[1]&&e.face.mesh.enabled?pt(ft(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Rt[2]&&e.face.iris.enabled?pt(ft(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Rt[1]||!Rt[1].modelUrl?ue("load model failed:",e.face.mesh.modelPath):e.debug&&ue("load model:",Rt[1].modelUrl)),e.face.iris.enabled&&(!Rt[2]||!Rt[2].modelUrl?ue("load model failed:",e.face.iris.modelPath):e.debug&&ue("load model:",Rt[2].modelUrl))):e.debug&&(Rt[0]&&ue("cached model:",Rt[0].model.modelUrl),Rt[1]&&ue("cached model:",Rt[1].modelUrl),Rt[2]&&ue("cached model:",Rt[2].modelUrl)),U1=new V1(Rt[0],Rt[1],Rt[2]),Rt}var Pk=Ko,Mk=nd;var Vs,_f=[],zk=0,G1=Number.MAX_SAFE_INTEGER;async function j1(e){let t=ft(e.modelBasePath,e.face.description.modelPath);return Vs?e.debug&&ue("cached model:",t):(Vs=await pt(t),Vs?e.debug&&ue("load model:",t):ue("load model failed:",e.face.description.modelPath)),Vs}function q1(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let s=5*e.map((a,o)=>Math.abs(e[o]-t[o])**n).reduce((a,o)=>a+o,0)**(1/n);return Math.max(0,100-s)/100}function Lk(e,t,n=0){let s={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return s;for(let r of t)if(r.embedding&&r.name){let a=q1(e,r.embedding);a>n&&a>s.similarity&&(s={...r,similarity:a})}return s}function X1(e){return H(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Ue))return null;let s=[[.05,.15,.85,.85]];if(!Vs.inputs[0].shape)return null;let r=n.shape.length===3?_e.cropAndResize(Ft(n,0),s,[0],[Vs.inputs[0].shape[2],Vs.inputs[0].shape[1]]):_e.cropAndResize(n,s,[0],[Vs.inputs[0].shape[2],Vs.inputs[0].shape[1]]);return z(r,255)})}async function K1(e,t,n,s){var r,a;return Vs?G10?(G1++,_f[n]):(G1=0,new Promise(async o=>{let i=X1(e),l,u={age:0,gender:"unknown",genderScore:0,descriptor:[]};if(t.face.description.enabled&&(l=await Vs.predict(i)),K(i),l){let c=await l.find(g=>g.shape[1]===1).data(),d=Math.trunc(200*Math.abs(c[0]-.5))/100;d>t.face.description.minConfidence&&(u.gender=c[0]<=.5?"female":"male",u.genderScore=Math.min(.99,d));let p=(await Xs(l.find(g=>g.shape[1]===100),1).data())[0],f=await l.find(g=>g.shape[1]===100).data();u.age=Math.round(f[p-1]>f[p+1]?10*p-100*f[p-1]:10*p+100*f[p+1])/10;let A=await l.find(g=>g.shape[1]===1024).data();u.descriptor=[...A],l.forEach(g=>K(g))}_f[n]=u,zk=s,o(u)})):null}var yie=["angry","disgust","fear","happy","sad","surprise","neutral"],Us,$f=[],Bk=0,Z1=Number.MAX_SAFE_INTEGER,Y1=[.2989,.587,.114];async function J1(e){return Us?e.debug&&ue("cached model:",Us.modelUrl):(Us=await pt(ft(e.modelBasePath,e.face.emotion.modelPath)),!Us||!Us.modelUrl?ue("load model failed:",e.face.emotion.modelPath):e.debug&&ue("load model:",Us.modelUrl)),Us}async function Q1(e,t,n,s){return Us?Z10?(Z1++,$f[n]):(Z1=0,new Promise(async r=>{let a=_e.resizeBilinear(e,[Us.inputs[0].shape[2],Us.inputs[0].shape[1]],!1),[o,i,l]=nn(a,3,3);K(a);let u=z(o,Y1[0]),c=z(i,Y1[1]),d=z(l,Y1[2]);K(o),K(i),K(l);let h=Fh([u,c,d]);K(u),K(c),K(d);let p=H(()=>z(Ae(h,.5),2));K(h);let f=[];if(t.face.emotion.enabled){let m=await Us.predict(p),A=await m.data();K(m);for(let g=0;gt.face.emotion.minConfidence&&f.push({score:Math.min(.99,Math.trunc(100*A[g])/100),emotion:yie[g]});f.sort((g,y)=>y.score-g.score)}K(p),$f[n]=f,Bk=s,r(f)})):null}var sd=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Wk=sd.length,rd=sd.reduce((e,t,n)=>(e[t]=n,e),{}),xie=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],bie=xie.map(([e,t])=>[rd[e],rd[t]]),Vk=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function Uk(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function Hk(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(u,c)=>({id:c,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/s,u.box[2]/r,u.box[3]/s],box:[Math.trunc(u.box[0]*o),Math.trunc(u.box[1]*a),Math.trunc(u.box[2]*o),Math.trunc(u.box[3]*a)],keypoints:u.keypoints.map(({score:d,part:h,position:p})=>({score:d,part:h,position:[Math.trunc(p.x*o),Math.trunc(p.y*a)],positionRaw:[p.x/s,p.y/s]}))});return e.map((u,c)=>i(u,c))}var ey=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(nn?n:e}function Gk(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function ry(e,t){return{x:e.x+t.x,y:e.y+t.y}}var Ff=1,lu=16,vie=50**2;function jk(e,t,n,s,r,a,o=2){let i=g=>({y:a.get(g.y,g.x,e),x:a.get(g.y,g.x,a.shape[2]/2+e)}),l=(g,y,x)=>({y:sy(Math.round(g.y/lu),0,y-1),x:sy(Math.round(g.x/lu),0,x-1)}),[u,c]=s.shape,d=l(t.position,u,c),h=i(d),f=ry(t.position,h);for(let g=0;g[rd[h],rd[p]]),o=a.map(([,h])=>h),i=a.map(([h])=>h),l=t.shape[2],u=o.length,c=new Array(l),d=ny(e.part,lu,n);c[e.part.id]={score:e.score,part:sd[e.part.id],position:d};for(let h=u-1;h>=0;--h){let p=o[h],f=i[h];c[p]&&!c[f]&&(c[f]=jk(h,c[p],f,t,n,r))}for(let h=0;ht){i=!1;break}if(!i)break}return i}function Iie(e,t){let[n,s,r]=t.shape,a=new ey(n*s*r,({score:o})=>o);for(let o=0;o{var o;let a=(o=r[s])==null?void 0:o.position;return a?Gk(n,t,a.y,a.x)<=vie:!1})}function Sie(e,t){return t.reduce((s,{position:r,score:a},o)=>(qk(e,r,o)||(s+=a),s),0)/t.length}function Xk(e,t,n,s,r,a){let o=[],i=Iie(a,t);for(;o.lengthp.score>a);let d=Sie(o,c),h=Uk(c);d>a&&o.push({keypoints:c,box:h,score:Math.round(100*d)/100})}return o}var Xn,Cie=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function ay(e,t){let n=H(()=>{if(!Xn.inputs[0].shape)return[];let o=_e.resizeBilinear(e,[Xn.inputs[0].shape[2],Xn.inputs[0].shape[1]]),i=Ae(de(ce(o,"float32"),127.5),1),u=Xn.execute(i,Cie).map(c=>ot(c,[0]));return u[1]=u[1].sigmoid(),u}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)K(o);let r=await Xk(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return Xn.inputs[0].shape?Hk(r,[e.shape[1],e.shape[2]],[Xn.inputs[0].shape[2],Xn.inputs[0].shape[1]]):[]}async function oy(e){return Xn?e.debug&&ue("cached model:",Xn.modelUrl):(Xn=await pt(ft(e.modelBasePath,e.body.modelPath)),!Xn||!Xn.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",Xn.modelUrl)),Xn}function Df(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function ad(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Kk(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return _e.cropAndResize(t,a,[0],n)}function Zk(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function Of(e,t=1.5){let n=ad(e),s=Df(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function Pf(e){let t=ad(e),n=Df(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}var Yk=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var iy=class{constructor(t){this.model=t,this.anchors=Yk.map(n=>[n.x,n.y]),this.anchorsTensor=$s(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=Ot([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Ot([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return H(()=>{let n=Re(t,[0,0],[-1,2]),s=Re(t,[0,2],[-1,2]),r=ae(de(n,this.inputSizeTensor),this.anchorsTensor),a=de(s,this.doubleInputSizeTensor),o=z(Ae(r,a),this.inputSizeTensor),i=z(ae(r,a),this.inputSizeTensor);return Cl([o,i],1)})}normalizeLandmarks(t,n){return H(()=>{let s=ae(de(U(t,[-1,7,2]),this.inputSizeTensor),this.anchors[n]);return z(s,this.inputSizeTensor)})}async getBoxes(t,n){let s=this.model.predict(t),r=ot(s);K(s);let a=H(()=>ot(Bn(Re(r,[0,0],[-1,1])))),o=await a.data(),i=Re(r,[0,1],[-1,4]),l=this.normalizeBoxes(i);K(i);let u=await _e.nonMaxSuppressionAsync(l,o,n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence),c=await u.array();K(a),K(u);let d=[];for(let h of c)if(o[h]>=n.hand.minConfidence){let p=Re(l,[h,0],[1,-1]),f=Re(r,[h,5],[1,14]),m=H(()=>U(this.normalizeLandmarks(f,h),[-1,2]));K(f),d.push({box:p,palmLandmarks:m,confidence:o[h]})}return K(r),K(l),d}async estimateHandBounds(t,n){let s=t.shape[1],r=t.shape[2],a=H(()=>Ae(de(_e.resizeBilinear(t,[this.inputSize,this.inputSize]),127.5),1)),o=await this.getBoxes(a,n);K(a);let i=[];if(!o||o.length===0)return i;for(let l of o){let u=await l.box.data(),c=u.slice(0,2),d=u.slice(2,4),h=await l.palmLandmarks.array();K(l.box),K(l.palmLandmarks),i.push(Zk({startPoint:c,endPoint:d,palmLandmarks:h,confidence:l.confidence},[r/this.inputSize,s/this.inputSize]))}return i}};function Tie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Jk(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Tie(n)}var Qk=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function ua(e,t){let n=0;for(let s=0;so[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>uy([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return Of(Pf(r),Eie)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=Of(Pf(n),n8);s.palmLandmarks=[];for(let r=0;r[o[0]*(p[0]-this.inputSize/2),o[1]*(p[1]-this.inputSize/2),o[2]*p[2]]),l=ly(s,[0,0]),u=i.map(p=>[...uy(p,l),p[2]]),c=t8(r),d=[...ad(n),1],h=[ua(d,c[0]),ua(d,c[1])];return u.map(p=>[Math.trunc(p[0]+h[0]),Math.trunc(p[1]+h[1]),Math.trunc(p[2])])}async estimateHands(t,n){let s=!1,r;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.skipFrame)&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipFrame&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let a=[];for(let o=0;o=n.hand.minConfidence){let x=U(g,[-1,3]),b=await x.array();K(g),K(x);let v=this.transformRawCoords(b,p,l,h),k=this.getBoxForHandLandmarks(v);this.storedBoxes[o]={...k,confidence:y};let w={landmarks:v,confidence:y,box:{topLeft:k.startPoint,bottomRight:k.endPoint}};a.push(w)}else this.storedBoxes[o]=null;K(g)}else{let l=Of(Pf(i),n8),u={confidence:i.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};a.push(u)}}return this.storedBoxes=this.storedBoxes.filter(o=>o!==null),this.detectedHands=a.length,a}};var r8={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},ca,da,a8;async function dy(e,t){let n=await a8.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;rn[r].landmarks[c]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let u of o)u[0]i[2]&&(i[2]=u[0]),u[1]>i[3]&&(i[3]=u[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];s.push({id:r,score:Math.round(100*n[r].confidence)/100,box:i,boxRaw:l,keypoints:o,annotations:a})}return s}async function hy(e){!ca||!da?([ca,da]=await Promise.all([e.hand.enabled?pt(ft(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?pt(ft(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!ca||!ca.modelUrl?ue("load model failed:",e.hand.detector.modelPath):e.debug&&ue("load model:",ca.modelUrl),!da||!da.modelUrl?ue("load model failed:",e.hand.skeleton.modelPath):e.debug&&ue("load model:",da.modelUrl))):(e.debug&&ue("cached model:",ca.modelUrl),e.debug&&ue("cached model:",da.modelUrl));let t=new iy(ca);return a8=new cy(t,da),[ca,da]}var o8=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],i8=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var On;async function Mf(e){return On?e.debug&&ue("cached model:",On.modelUrl):(On=await pt(ft(e.modelBasePath,e.body.modelPath)),On.width=parseInt(On.signature.inputs["input_1:0"].tensorShape.dim[2].size),On.height=parseInt(On.signature.inputs["input_1:0"].tensorShape.dim[1].size),!On||!On.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",On.modelUrl)),On}async function py(e,t){if(!On)return[];if(!t.body.enabled)return[];let n={width:e.shape[2]||0,height:e.shape[1]||0},s=_e.resizeBilinear(e,[On.width,On.height],!1),r=de(s,[255]);K(s);let a=await On.predict(r),o=a.find(A=>A.size===195||A.size===155),i=await(o==null?void 0:o.data())||[];a.forEach(A=>K(A)),K(r);let l=[],u=(i==null?void 0:i.length)===195?o8:i8,c=5;for(let A=0;AA.position[0]),h=l.map(A=>A.position[1]),p=[Math.min(...d),Math.min(...h),Math.max(...d)-Math.min(...d),Math.max(...h)-Math.min(...d)],f=[0,0,0,0],m=l.reduce((A,g)=>g.score>A?g.score:A,0);return[{id:0,score:m,box:p,boxRaw:f,keypoints:l}]}var Pn,ir=[],fy=[0,0,0,0],my=[0,0,0,0],zf=0,Ay=Number.MAX_SAFE_INTEGER,$ie=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function l8(e){return Pn?e.debug&&ue("cached model:",Pn.modelUrl):(Pn=await pt(ft(e.modelBasePath,e.body.modelPath)),!Pn||!Pn.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",Pn.modelUrl)),Pn}function Fie(e,t){let[n,s]=e.shape;return H(()=>{let r=(i,l)=>Ae(i,z(de(i,Ie(l,"int32")),Ie(l,"int32"))),a=U(e,[s*n]),o=ls(a,0).dataSync()[0];if(o>t){let i=Xs(a,0),l=r(i,n).dataSync()[0],u=de(i,Ie(n,"int32")).dataSync()[0];return[l,u,o]}return[0,0,o]})}async function gy(e,t){return Ay0?(Ay++,[{id:0,score:zf,box:fy,boxRaw:my,keypoints:ir}]):(Ay=0,new Promise(async n=>{let s=H(()=>{if(!Pn.inputs[0].shape)return null;let u=_e.resizeBilinear(e,[Pn.inputs[0].shape[2],Pn.inputs[0].shape[1]],!1);return z(u,2).sub(1)}),r;if(t.body.enabled&&(r=await Pn.predict(s)),K(s),r){ir.length=0;let u=r.squeeze();K(r);let c=u.unstack(2);K(u);for(let d=0;dt.body.minConfidence&&ir.push({score:Math.round(100*f)/100,part:$ie[d],positionRaw:[h/Pn.inputs[0].shape[2],p/Pn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*h/Pn.inputs[0].shape[2]),Math.round(e.shape[1]*p/Pn.inputs[0].shape[1])]})}c.forEach(d=>K(d))}zf=ir.reduce((u,c)=>c.score>u?c.score:u,0);let a=ir.map(u=>u.position[0]),o=ir.map(u=>u.position[1]);fy=[Math.min(...a),Math.min(...o),Math.max(...a)-Math.min(...a),Math.max(...o)-Math.min(...o)];let i=ir.map(u=>u.positionRaw[0]),l=ir.map(u=>u.positionRaw[1]);my=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)],n([{id:0,score:zf,box:fy,boxRaw:my,keypoints:ir}])}))}var lr,As=[],yy=[0,0,0,0],Cr=[0,0,0,0],Tr=0,xy=Number.MAX_SAFE_INTEGER,u8=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];async function by(e){return lr?e.debug&&ue("cached model:",lr.modelUrl):(lr=await pt(ft(e.modelBasePath,e.body.modelPath)),!lr||!lr.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",lr.modelUrl)),lr}async function Die(e,t,n){As.length=0;let s=e[0][0];for(let u=0;ut.body.minConfidence&&As.push({score:Math.round(100*Tr)/100,part:u8[u],positionRaw:[s[u][1],s[u][0]],position:[Math.round((n.shape[2]||0)*s[u][1]),Math.round((n.shape[1]||0)*s[u][0])]});Tr=As.reduce((u,c)=>c.score>u?c.score:u,0);let r=As.map(u=>u.position[0]),a=As.map(u=>u.position[1]);yy=[Math.min(...r),Math.min(...a),Math.max(...r)-Math.min(...r),Math.max(...a)-Math.min(...a)];let o=As.map(u=>u.positionRaw[0]),i=As.map(u=>u.positionRaw[1]);Cr=[Math.min(...o),Math.min(...i),Math.max(...o)-Math.min(...o),Math.max(...i)-Math.min(...i)];let l=[];return l.push({id:0,score:Tr,box:yy,boxRaw:Cr,keypoints:As}),l}async function Oie(e,t,n){let s=[];for(let r=0;rt.body.minConfidence&&As.push({part:u8[o],score:i,positionRaw:[a[3*o+1],a[3*o+0]],position:[Math.trunc(a[3*o+1]*(n.shape[2]||0)),Math.trunc(a[3*o+0]*(n.shape[1]||0))]})}Cr=[a[51+1],a[51+0],a[51+3]-a[51+1],a[51+2]-a[51+0]],s.push({id:r,score:Tr,boxRaw:Cr,box:[Math.trunc(Cr[0]*(n.shape[2]||0)),Math.trunc(Cr[1]*(n.shape[1]||0)),Math.trunc(Cr[2]*(n.shape[2]||0)),Math.trunc(Cr[3]*(n.shape[1]||0))],keypoints:As})}}return s}async function vy(e,t){return xy0?(xy++,[{id:0,score:Tr,box:yy,boxRaw:Cr,keypoints:As}]):(xy=0,new Promise(async n=>{let s=H(()=>{if(!lr.inputs[0].shape)return null;let i=lr.inputs[0].shape[2];i===-1&&(i=256);let l=_e.resizeBilinear(e,[i,i],!1);return ce(l,"int32")}),r;t.body.enabled&&(r=await lr.predict(s)),K(s),r||n([]);let a=await r.array(),o;r.shape[2]===17?o=await Die(a,t,e):r.shape[2]===56&&(o=await Oie(a,t,e)),K(r),n(o)}))}var uu=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Kn,wy=[],ky=Number.MAX_SAFE_INTEGER,Lf=2.5;async function Iy(e){if(Kn)e.debug&&ue("cached model:",Kn.modelUrl);else{Kn=await pt(ft(e.modelBasePath,e.object.modelPath));let t=Object.values(Kn.modelSignature.inputs);if(Kn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Kn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!Kn||!Kn.modelUrl?ue("load model failed:",e.object.modelPath):e.debug&&ue("load model:",Kn.modelUrl)}return Kn}async function Pie(e,t,n,s){let r=0,a=[];for(let u of[1,2,4])H(async()=>{var A,g;let c=u*13,d=(A=e.find(y=>y.shape[1]===c**2&&y.shape[2]===uu.length))==null?void 0:A.squeeze(),h=(g=e.find(y=>y.shape[1]===c**2&&y.shape[2]s.object.minConfidence&&x!==61){let v=(.5+Math.trunc(y%c))/c,k=(.5+Math.trunc(y/c))/c,w=f[y].map(W=>W*(c/u/t)),[C,E]=[v-Lf/u*w[0],k-Lf/u*w[1]],[O,R]=[v+Lf/u*w[2]-C,k+Lf/u*w[3]-E],_=[C,E,O,R];_=_.map(W=>Math.max(0,Math.min(W,1)));let N=[_[0]*n[0],_[1]*n[1],_[2]*n[0],_[3]*n[1]],P={id:r++,score:Math.round(100*b)/100,class:x+1,label:uu[x].label,box:N.map(W=>Math.trunc(W)),boxRaw:_};a.push(P)}}});e.forEach(u=>K(u));let o=a.map(u=>[u.boxRaw[1],u.boxRaw[0],u.boxRaw[3],u.boxRaw[2]]),i=a.map(u=>u.score),l=[];if(o&&o.length>0){let u=await _e.nonMaxSuppressionAsync(o,i,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);l=await u.data(),K(u)}return a=a.filter((u,c)=>l.includes(c)).sort((u,c)=>c.score-u.score),a}async function Sy(e,t){return ky0?(ky++,wy):(ky=0,new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=_e.resizeBilinear(e,[Kn.inputSize,Kn.inputSize],!1),a=de(r,255),o=a.transpose([0,3,1,2]);K(a),K(r);let i;t.object.enabled&&(i=await Kn.predict(o)),K(o);let l=await Pie(i,Kn.inputSize,s,t);wy=l,n(l)}))}var Zn,Cy=[],Ty=Number.MAX_SAFE_INTEGER;async function Ny(e){if(Zn)e.debug&&ue("cached model:",Zn.modelUrl);else{Zn=await pt(ft(e.modelBasePath,e.object.modelPath));let t=Object.values(Zn.modelSignature.inputs);if(Zn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Zn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!Zn||!Zn.modelUrl?ue("load model failed:",e.object.modelPath):e.debug&&ue("load model:",Zn.modelUrl)}return Zn}async function Mie(e,t,n,s){if(!e)return[];let r=[],a=await e.array(),o=ot(e);K(e);let i=nn(o,6,1);K(o);let l=Nn([i[1],i[0],i[3],i[2]],1),u=ot(l),c=ot(i[4]),d=ot(i[5]);i.forEach(m=>K(m));let h=await _e.nonMaxSuppressionAsync(u,c,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);K(u),K(c),K(d);let p=await h.data();K(h);let f=0;for(let m of p){let A=Math.trunc(100*a[0][m][4])/100,g=a[0][m][5],y=uu[g].label,[x,b]=[a[0][m][0]/t,a[0][m][1]/t],v=[x,b,a[0][m][2]/t-x,a[0][m][3]/t-b],k=[Math.trunc(v[0]*n[0]),Math.trunc(v[1]*n[1]),Math.trunc(v[2]*n[0]),Math.trunc(v[3]*n[1])];r.push({id:f++,score:A,class:g,label:y,box:k,boxRaw:v})}return r}async function Ey(e,t){return Ty0?(Ty++,Cy):(Ty=0,new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=_e.resizeBilinear(e,[Zn.inputSize,Zn.inputSize]),a=t.object.enabled?Zn.execute(r,["tower_0/detections"]):null;K(r);let o=await Mie(a,Zn.inputSize,s,t);Cy=o,n(o)}))}function zie(e,t,n){let s=function(i,l,u){let c=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");i.replace(c,(d,h)=>(u[h]=0,d))},r=function(i,l){let u=e.createShader(l);if(e.shaderSource(u,i),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let a=r(t,e.VERTEX_SHADER),o=r(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,a),e.attachShader(this.id,o),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),s(t,"attribute",this.attribute);for(let i in this.attribute)this.attribute[i]=e.getAttribLocation(this.id,i);s(t,"uniform",this.uniform),s(n,"uniform",this.uniform);for(let i in this.uniform)this.uniform[i]=e.getUniformLocation(this.id,i)}function c8(e){e||(e={});let t=0,n=null,s=!1,r=-1,a=[null,null],o=[],i=-1,l=-1,u=null,c=null,d={},h=e.canvas||document.createElement("canvas"),p={},f={INTERMEDIATE:1},m=h.getContext("webgl");if(!m)throw new Error("Filter: getContext() failed");this.addFilter=function(v){let k=Array.prototype.slice.call(arguments,1),w=d[v];o.push({func:w,args:k})},this.reset=function(){o=[]};let A=function(v,k){if(!(v===i&&k===l)){if(h.width=v,i=v,h.height=k,l=k,!u){let w=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=m.createBuffer(),m.bindBuffer(m.ARRAY_BUFFER,u),m.bufferData(m.ARRAY_BUFFER,w,m.STATIC_DRAW),m.pixelStorei(m.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}m.viewport(0,0,i,l),a=[null,null]}},g=function(v,k){let w=m.createFramebuffer();m.bindFramebuffer(m.FRAMEBUFFER,w);let C=m.createRenderbuffer();m.bindRenderbuffer(m.RENDERBUFFER,C);let E=m.createTexture();return m.bindTexture(m.TEXTURE_2D,E),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,v,k,0,m.RGBA,m.UNSIGNED_BYTE,null),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.framebufferTexture2D(m.FRAMEBUFFER,m.COLOR_ATTACHMENT0,m.TEXTURE_2D,E,0),m.bindTexture(m.TEXTURE_2D,null),m.bindFramebuffer(m.FRAMEBUFFER,null),{fbo:w,texture:E}},y=function(v){return a[v]=a[v]||g(i,l),a[v]},x=function(v=null){var E,O;let k=null,w=null,C=!1;t===0?k=n:k=(E=y(r))==null?void 0:E.texture,t++,s&&!(v&f.INTERMEDIATE)?(w=null,C=t%2==0):(r=(r+1)%2,w=(O=y(r))==null?void 0:O.fbo),m.bindTexture(m.TEXTURE_2D,k),m.bindFramebuffer(m.FRAMEBUFFER,w),m.uniform1f(c.uniform.flipY,C?-1:1),m.drawArrays(m.TRIANGLES,0,6)};this.apply=function(v){if(A(v.width,v.height),t=0,n||(n=m.createTexture()),m.bindTexture(m.TEXTURE_2D,n),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.NEAREST),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.NEAREST),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,m.RGBA,m.UNSIGNED_BYTE,v),o.length===0)return x(),h;for(let k=0;k{let R=b.shape[0],P=b.shape[1],E=$.segment_util.segOpComputeOptimalWindowSize(P,C),_={windowSize:E,inSize:P,batchSize:R,numSegments:C},T=new use(_,v),O=n.compileAndRun(T,[b,k],w);if(l.push(O),O.shape[1]===C)return O;let W=T4({backend:n,attrs:{start:0,stop:C,step:1,dtype:"float32"}}),j=R4({inputs:{x:W},backend:n,attrs:{reps:[P/E]}});return l.push(W),l.push(j),g(O,v,j,w,C)},A=g(f,"unsortedSegmentSum",a,m,o),y=ye({inputs:{x:A},backend:n,attrs:{shape:h}}),x=y;if(c!=null){l.push(y);let b=$.getUndoAxesPermutation(c);x=Sn({inputs:{x},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var dse={kernelName:ju,backendName:"webgl",kernelFunc:cse},hse=[zQ,WQ,IK,CK,EK,$K,FK,MK,LK,WK,GK,qK,ZK,QK,oZ,nZ,uZ,pZ,dZ,AZ,xZ,vZ,SZ,$Z,FZ,BZ,VZ,jZ,KZ,aK,eY,cY,hY,rY,gY,yY,fY,vY,IY,TY,EY,_Y,FY,BY,VY,PY,GY,XY,ZY,eJ,rJ,lJ,dJ,hJ,pJ,mJ,AJ,xJ,vJ,kJ,TJ,RJ,DJ,OJ,zJ,WJ,GJ,KJ,rK,YJ,JZ,eQ,sQ,oQ,iK,cQ,fQ,gQ,kQ,bQ,TQ,RQ,FQ,UQ,YQ,KQ,tee,see,aee,qQ,iee,uee,pee,Aee,vee,Eee,hK,_ee,Fee,Mee,Bee,PZ,Uee,Gee,qee,Zee,ete,uK,nte,ste,MZ,See,ote,fte,cte,fK,yte,vte,Ste,Nte,$te,Fte,Mte,Bte,Vte,Gte,Xte,Yte,ene,sne,one,RZ,Tee,une,dne,pne,mne,Ane,xne,vne,kne,Cne,Ene,_ne,Dne,Pne,zne,Bne,Vne,Cee,vK,Gne,Xne,Yne,tse,rse,wK,ose,lse,dse,Hee];for(let e of hse)ko(e);var Pn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Pn||(Pn={}));var Qc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(Qc||(Qc={}));var $4;function pse(e){$4=e.wasm.cwrap(bo,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function fse(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s,h=n.dataIdMap.get(r.dataId).id,p=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let C=n.dataIdMap.get(o.dataId);if(C.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${C.shape.length}.`);f=C.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=Qc[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let A=l?r.shape[2]:r.shape[1],y=u?a.shape[1]:a.shape[2],x=r.shape[0],b=n.makeOutput([x,A,y],r.dtype),v=n.dataIdMap.get(b.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),w=new Uint8Array(new Int32Array(a.shape).buffer);return $4(h,k,r.shape.length,p,w,a.shape.length,l,u,g,f,m,d||0,v),b}var mse={kernelName:bo,backendName:"wasm",setupFunc:pse,kernelFunc:fse};function hn(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function s(r){let{backend:a,inputs:{x:o}}=r,i=a.dataIdMap.get(o.dataId).id,l=a.makeOutput(o.shape,o.dtype),u=a.dataIdMap.get(l.dataId).id;return I.sizeFromShape(l.shape)===0||t(i,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:s}}var gse=hn(xi);function Cn(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:u,b:c}=l,d=i.dataIdMap.get(u.dataId).id,h=i.dataIdMap.get(c.dataId).id,p=n!=null?n:u.dtype,f=$.assertAndGetBroadcastShape(u.shape,c.shape),m=i.makeOutput(f,p);if(I.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(u.shape).buffer),A=new Uint8Array(new Int32Array(c.shape).buffer),y=i.dataIdMap.get(m.dataId).id,x=()=>s(d,g,u.shape.length,h,A,c.shape.length,Pn[u.dtype],y);if(t&&u.dtype==="float32")return x(),m;let b=$.getBroadcastDims(u.shape,f),v=$.getBroadcastDims(c.shape,f),k=b.every((C,R)=>C===R),w=v.every((C,R)=>C===R);if(k&&w)return x(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var Ase=!0,yse=Cn(Br,Ase),D4;function xse(e){D4=e.wasm.cwrap(Ia,null,["array","number","number","number"])}function bse(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(I.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return D4(a,r.length,Pn[s.dtype],o),s}var vse={kernelName:Ia,backendName:"wasm",setupFunc:xse,kernelFunc:bse};function _f(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var wse={kernelName:Va,backendName:"wasm",kernelFunc:_f},F4;function kse(e){F4=e.wasm.cwrap(xo,null,["number","array","number","number","number","array","number"])}function du(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=Sse(t.x.shape,s.perm),o=!0;for(let f=0;f=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var Cse={kernelName:xo,backendName:"wasm",kernelFunc:du,setupFunc:kse};function da(e,t,n){let s=e.shape,r=e.shape.length,a=I.parseAxisParam(t,s),o=a,i=$.getAxesPermutation(o,r),l=null,u=!1;if(i!=null){let c=new Array(r);for(let p=0;p`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var Lse={kernelName:al,backendName:"wasm",kernelFunc:Mn},L4;function Bse(e){L4=e.wasm.cwrap(Ta,null,["number","array","number","number","array","number","number","number","number"])}function Wse(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[u-1]:a.shape[u-2],h=o?r.shape[l-1]:r.shape[l-2],p=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=I.sizeFromShape(f),A=I.sizeFromShape(m),y=g===A||g===1||A===1;I.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>A?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([h,p]);I.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,c,h]:[g,h,c],k=i?[A,p,d]:[A,d,p],w=Mn({inputs:{x:r},backend:n,attrs:{shape:v}}),C=Mn({inputs:{x:a},backend:n,attrs:{shape:k}}),R=n.dataIdMap.get(w.dataId).id,P=n.dataIdMap.get(C.dataId).id,E=o?w.shape[2]:w.shape[1],_=i?C.shape[1]:C.shape[2],T=Math.max(g,A),O=n.makeOutput([T,E,_],w.dtype),W=n.dataIdMap.get(O.dataId).id,j=new Uint8Array(new Int32Array(w.shape).buffer),q=new Uint8Array(new Int32Array(C.shape).buffer);return L4(R,j,w.shape.length,P,q,C.shape.length,o,i,W),n.disposeData(w.dataId),n.disposeData(C.dataId),O.shape=b,O}var Vse={kernelName:Ta,backendName:"wasm",setupFunc:Bse,kernelFunc:Wse};function ed(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=xn.parseSliceParams(t,n,s),i=xn.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),u=r.makeOutput(o,t.dtype),c=I.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(i){let f=xn.computeFlatOffset(a,c);return t.dtype==="string"?d.stringBytes=l.slice(f,f+I.sizeFromShape(o)):r.typedArrayFromHeap(u).set(l.subarray(f,f+I.sizeFromShape(o))),u}if(t.dtype==="string"){let f=of(l,a,o,t.shape,t.dtype);return d.stringBytes=f,u}let h=r.typedArrayFromHeap(u),p=t.shape.length;if(p===2)Use(l,c[0],h,a,o);else if(p===3)Hse(l,c[0],c[1],h,a,o);else if(p===4)Gse(l,c[0],c[1],c[2],h,a,o);else{let f=of(l,a,o,t.shape,t.dtype);h.set(f)}return u}function Use(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let u=o;uA*y),l=$.getReshaped(r.shape,a,i),u=$.getPermuted(l.length,a.length),c=$.getReshapedPermuted(r.shape,a,i),d=$.getSliceBeginCoords(o,a.length),h=$.getSliceSize(c,o,a.length),p=Mn({inputs:{x:r},backend:n,attrs:{shape:l}}),f=du({inputs:{x:p},backend:n,attrs:{perm:u}}),m=Mn({inputs:{x:f},backend:n,attrs:{shape:c}}),g=ed({inputs:{x:m},backend:n,attrs:{begin:d,size:h}});return n.disposeData(p.dataId),n.disposeData(f.dataId),n.disposeData(p.dataId),g}var Xse={kernelName:Ei,backendName:"wasm",kernelFunc:qse};function $f(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var Kse={kernelName:Na,backendName:"wasm",kernelFunc:$f},Zse=hn(Ea),B4;function Yse(e){B4=e.wasm.cwrap(Wr,null,["number","number","number","number"])}function Jse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return B4(i,a,o,u),l}var Qse={kernelName:Wr,backendName:"wasm",setupFunc:Yse,kernelFunc:Jse};function W4(e){let{inputs:t,backend:n}=e,s=I.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=$.computeOutShape(t.map(p=>p.shape),s),a=t.filter(p=>I.sizeFromShape(p.shape)>0);if(a.length===1)return _f({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(I.sizeFromShape(r)===0)return o;let i=a.map(p=>p.shape);if($.assertParamsConsistent(i,s),a[0].dtype==="string"){let p=a.map(x=>{let b=I.sizeFromShape(x.shape.slice(s));return Mn({inputs:{x},backend:n,attrs:{shape:[-1,b]}})}),f=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=$.computeOutShape(p.map(x=>x.shape),1);let m=p[0].shape[0]===1,g=i1(f,r,t[0].dtype,m),A=$.computeOutShape(a.map(x=>x.shape),s);o.shape=A;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=$.fromStringArrayToUint8(g),p.forEach(x=>n.disposeData(x.dataId)),o}let l=I.sizeFromShape(a[0].shape.slice(0,s)),u=0,c=a.map(p=>{let f=I.sizeFromShape(p.shape.slice(s));return u+=f,f}),d=a.map(p=>n.typedArrayFromHeap(p)),h=n.typedArrayFromHeap(o);for(let p=0;p`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=$.getAxesPermutation([a],l),c=r;u!==null&&(c=du({inputs:{x:r},attrs:{perm:u},backend:n}));let d=$.getInnerMostAxes(1,l)[0];$.assertAxesAreInnerMostDims("cumsum",[d],l);let h=n.makeOutput(c.shape,c.dtype),p=c.shape[d],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(h.dataId).id;G4(f,o?1:0,i?1:0,p,m,Pn[r.dtype]);let g=h;if(u!==null){let A=$.getUndoAxesPermutation(u);g=du({inputs:{x:h},attrs:{perm:A},backend:n}),n.disposeData(c.dataId),n.disposeData(h.dataId)}return g}var fre={kernelName:Fa,backendName:"wasm",setupFunc:hre,kernelFunc:pre},j4;function mre(e){j4=e.wasm.cwrap($i,null,["number","number","number","array","number","array","array","number","number"])}function gre(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s;I.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,h=u*a,p=c/(a*a),f=o==="NHWC"?[i,d,h,p]:[i,p,d,h],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(I.computeStrides(r.shape)).buffer),x=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(I.computeStrides(f)).buffer),v=t.dataIdMap.get(m.dataId).id;return j4(A,a,o==="NHWC"?1:0,y,r.shape.length-1,x,b,f.length,v),m}var Are={kernelName:$i,backendName:"wasm",setupFunc:mre,kernelFunc:gre},q4;function yre(e){q4=e.wasm.cwrap(Oa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function xre(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:d}=n,h=u==null?[1,1]:u,p=$.computeConv2DInfo(r.shape,a.shape,l,h,c,d,!0),f=p.filterHeight,m=p.filterWidth,g=p.padInfo.top,A=p.padInfo.right,y=p.padInfo.bottom,x=p.padInfo.left,b=p.dilationHeight,v=p.dilationWidth,k=p.strideHeight,w=p.strideWidth,C=p.inChannels,R=p.outChannels,P=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let E=s.makeOutput(p.outShape,"float32"),_=s.dataIdMap.get(E.dataId).id;return q4(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,A,y,x,P,b,v,k,w,C,R,_),E}var bre={kernelName:Oa,backendName:"wasm",setupFunc:yre,kernelFunc:xre},vre=!1,wre=Cn(Oi,vre,"bool"),kre=hn(Ma);function L1(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(I.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Mn({inputs:{x:r},backend:s,attrs:{shape:i}})}var Ire={kernelName:Pi,backendName:"wasm",kernelFunc:L1};function Sre(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var Cre={kernelName:zu,backendName:"wasm",kernelFunc:Sre},X4;function Tre(e){X4=e.wasm.cwrap(zi,null,["number","number","number","number","number","number"])}function Nre(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,u,c]=s.shape;return X4(a,i,l,u,c,o),r}var Ere={kernelName:zi,backendName:"wasm",kernelFunc:Nre,setupFunc:Tre},Rre=hn(za),_re=!1,$re=Cn(La,_re),K4;function Dre(e){K4=e.wasm.cwrap(Ba,null,["number","number","number","number","number","number","number"])}function Fre(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:u}=n,c=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=t.dataIdMap.get(i.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(I.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return K4(c,d,h,p,f,r,g),m}var Ore={kernelName:Ba,backendName:"wasm",setupFunc:Dre,kernelFunc:Fre},Z4;function Pre(e){Z4=e.wasm.cwrap(vo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Mre(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=n,m=$.computeConv2DInfo(r.shape,a.shape,l,c,u,h),g=Qc[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let J=s.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let v=m.filterHeight,k=m.filterWidth,w=m.padInfo.top,C=m.padInfo.right,R=m.padInfo.bottom,P=m.padInfo.left,E=m.dilationHeight,_=m.dilationWidth,T=m.strideHeight,O=m.strideWidth,W=m.inChannels,j=m.padInfo.type==="SAME"?1:0,q=m.batchSize,X=m.inHeight,Q=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let ne=s.makeOutput(m.outShape,"float32"),te=s.dataIdMap.get(ne.dataId).id,se=i==null?0:s.dataIdMap.get(i.dataId).id;return Z4(A,q,X,Q,y,v,k,b,w,C,R,P,j,E,_,T,O,W,x,g,se,f||0,te),ne}var zre={kernelName:vo,backendName:"wasm",setupFunc:Pre,kernelFunc:Mre},Y4;function Lre(e){Y4=e.wasm.cwrap(wo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Bre(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=n,m=$.computeConv2DInfo(r.shape,a.shape,l,c,u,h,!0),g=Qc[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let J=s.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let v=m.filterHeight,k=m.filterWidth,w=m.padInfo.top,C=m.padInfo.right,R=m.padInfo.bottom,P=m.padInfo.left,E=m.dilationHeight,_=m.dilationWidth,T=m.strideHeight,O=m.strideWidth,W=m.inChannels,j=m.padInfo.type==="SAME"?1:0,q=m.batchSize,X=m.inHeight,Q=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let ne=s.makeOutput(m.outShape,"float32"),te=s.dataIdMap.get(ne.dataId).id,se=i==null?0:s.dataIdMap.get(i.dataId).id;return Y4(A,q,X,Q,y,v,k,b,w,C,R,P,j,E,_,T,O,W,x,g,se,f||0,te),ne}var Wre={kernelName:wo,backendName:"wasm",setupFunc:Lre,kernelFunc:Bre},J4;function Vre(e){J4=e.wasm.cwrap(Bi,null,["number","number","number","number","number","number","array","number"])}function Ure(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=rg.prepareAndValidate(s,r),u=t.makeOutput(a,s.dtype);if(o===0)return u;let c=r.shape,d=c[c.length-1],p=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),A=t.dataIdMap.get(u.dataId).id;return J4(p,Pn[s.dtype],m,o,d,i,g,A),u}var Hre={kernelName:Bi,backendName:"wasm",setupFunc:Vre,kernelFunc:Ure},Q4;function Gre(e){Q4=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function jre(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=I.parseAxisParam(o,r.shape)[0],u=$.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=Mn({inputs:{x:r},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),d=I.sizeFromShape(a.shape),h=Mn({inputs:{x:a},attrs:{shape:[u.batchSize,d/u.batchSize]},backend:t}),p=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize],f=t.makeOutput(p,r.dtype);if(I.sizeFromShape(r.shape)===0)return f;let m=c.shape.length-1,A=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(h.dataId).id,b=t.dataIdMap.get(f.dataId).id,v=new Uint8Array(new Int32Array(I.computeStrides(c.shape)).buffer),k=new Uint8Array(new Int32Array(I.computeStrides(p)).buffer);return Q4(A,Pn[r.dtype],v,m,x,u.batchSize,k,b),t.disposeData(c.dataId),t.disposeData(h.dataId),f.shape=u.outputShape,f}var qre={kernelName:Li,backendName:"wasm",setupFunc:Gre,kernelFunc:jre},Xre=!1,Kre=Cn(Wi,Xre,"bool"),Zre=!1,Yre=Cn(Wa,Zre,"bool"),ek;function Jre(e){ek=e.wasm.cwrap(Ua,null,["number","number","number"])}function Qre(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,t.dtype);if(I.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;ek(r,n,o)}return a}var eae={kernelName:Ua,backendName:"wasm",setupFunc:Jre,kernelFunc:Qre},tae=!1,nae=Cn(Gi,tae,"bool"),sae=!1,rae=Cn(ji,sae,"bool"),aae=hn(Ha),oae=!1,iae=Cn(Xi,oae,"bool"),tk;function lae(e){tk=e.wasm.cwrap(Ga,null,["number, number, number"])}function uae(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=da(o,r,t);if(p){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let f=u.shape.length;$.assertAxesAreInnerMostDims("max",d,f);let[m,g]=$.computeOutAndReduceShapes(u.shape,d),A=I.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;tk(l,A,x)}if(p&&t.disposeData(c.dataId),a){let x=$.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var cae={kernelName:Ga,backendName:"wasm",setupFunc:lae,kernelFunc:uae},dae=!1,hae=Cn(ja,dae),nk;function pae(e){nk=e.wasm.cwrap(qa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function fae(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=$.computePool2DInfo(r.shape,o,i,1,l,u),d=c.filterHeight,h=c.filterWidth,p=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,A=c.dilationHeight,y=c.dilationWidth,x=c.strideHeight,b=c.strideWidth,v=c.inChannels,k=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let w=s.makeOutput(c.outShape,"float32"),C=s.dataIdMap.get(w.dataId).id;return nk(a,r.shape[0],r.shape[1],r.shape[2],d,h,p,f,m,g,A,y,x,b,v,k,C),w}var mae={kernelName:qa,backendName:"wasm",setupFunc:pae,kernelFunc:fae},sk;function gae(e){sk=e.wasm.cwrap(Xa,null,["number, number, number"])}function Aae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=da(o,r,t),f=d;if(p){let b=t.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,f=$.getInnerMostAxes(f.length,u.shape.length))}$.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,g]=$.computeOutAndReduceShapes(u.shape,f),A=I.sizeFromShape(g),y=u;u.dtype!=="float32"&&(y=$f({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let x=t.makeOutput(m,"float32");if(I.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(x.dataId).id;sk(l,A,b)}if(p&&t.disposeData(c.dataId),a){let b=$.expandShapeToKeepDim(x.shape,h);x.shape=b}return u.dtype!=="float32"&&t.disposeData(y.dataId),x}var yae={kernelName:Xa,backendName:"wasm",setupFunc:gae,kernelFunc:Aae},rk;function xae(e){rk=e.wasm.cwrap(Ka,null,["number, number, number"])}function bae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=da(o,r,t);if(p){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x)}let f=u.shape.length;$.assertAxesAreInnerMostDims("min",d,f);let[m,g]=$.computeOutAndReduceShapes(u.shape,d),A=I.sizeFromShape(g),y=t.makeOutput(m,u.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;rk(l,A,x)}if(p&&t.disposeData(c.dataId),a){let x=$.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var vae={kernelName:Ka,backendName:"wasm",setupFunc:xae,kernelFunc:bae},wae=!1,kae=Cn(Za,wae),B1;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(B1||(B1={}));var ak;function Iae(e){ak=e.wasm.cwrap(Ya,null,["number","array","number","number","array","array","number","number"])}function Sae(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(f=>f[0]),d=s.map(f=>f[1]),h=new Uint8Array(new Int32Array(c).buffer),p=new Uint8Array(new Int32Array(d).buffer);return ak(o,u,t.shape.length,Pn[t.dtype],h,p,B1[r],l),i}var Cae={kernelName:Ya,backendName:"wasm",kernelFunc:Sae,setupFunc:Iae},Tae=!0,Nae=Cn(Ja,Tae),Eae=hn(Zi);function W1(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var ok;function Rae(e){ok=e.wasm.cwrap(Ji,"number",["number","number","number","number","number"])}function _ae(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,u=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(l.dataId).id,d=ok(u,c,a,r,o),{pSelectedIndices:h,selectedSize:p,pSelectedScores:f,pValidOutputs:m}=W1(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([p],"int32",h)}var $ae={kernelName:Ji,backendName:"wasm",setupFunc:Rae,kernelFunc:_ae},ik;function Dae(e){ik=e.wasm.cwrap(Qi,"number",["number","number","number","number","number","bool"])}function Fae(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,h=ik(c,d,a,r,o,i),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=W1(t,h);t.wasm._free(m);let A=t.makeOutput([f],"int32",p),y=t.makeOutput([],"int32",g);return[A,y]}var Oae={kernelName:Qi,backendName:"wasm",setupFunc:Dae,kernelFunc:Fae},lk;function Pae(e){lk=e.wasm.cwrap(el,"number",["number","number","number","number","number","number"])}function Mae(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,h=lk(c,d,a,r,o,i),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=W1(t,h);t.wasm._free(g);let A=t.makeOutput([f],"int32",p),y=t.makeOutput([f],"float32",m);return[A,y]}var zae={kernelName:el,backendName:"wasm",setupFunc:Pae,kernelFunc:Mae},Lae=!1,Bae=Cn(Yi,Lae,"bool"),uk;function Wae(e){uk=e.wasm.cwrap(Qa,null,["number","number","number","number","number"])}function Vae(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return uk(d,a,o,i,u),l}var Uae={kernelName:Qa,backendName:"wasm",setupFunc:Wae,kernelFunc:Vae};function Hae(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var Gae={kernelName:tl,backendName:"wasm",kernelFunc:Hae};function jae(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return L1({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{I.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),I.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=L1({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=W4({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var qae={kernelName:nl,backendName:"wasm",kernelFunc:jae},ck;function Xae(e){ck=e.wasm.cwrap(eo,null,["number","array","number","number","array","array","number","number"])}function Kae(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(f=>f[0]),d=s.map(f=>f[1]),h=new Uint8Array(new Int32Array(c).buffer),p=new Uint8Array(new Int32Array(d).buffer);return ck(o,u,t.shape.length,Pn[t.dtype],h,p,r,l),i}var dk={kernelName:eo,backendName:"wasm",kernelFunc:Kae,setupFunc:Xae},Zae=!1,Yae=Cn(to,Zae),hk;function Jae(e){hk=e.wasm.cwrap(no,null,["number","number","number"])}function Qae(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=n.makeOutput(s.shape,"float32"),l=n.dataIdMap.get(i.dataId).id;return hk(a,o,l),i}var eoe={kernelName:no,backendName:"wasm",setupFunc:Jae,kernelFunc:Qae},pk;function toe(e){pk=e.wasm.cwrap(sl,null,["number","number","number","number"])}function noe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=da(o,r,t),f=d;if(p){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x,f=$.getInnerMostAxes(f.length,u.shape.length))}$.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,g]=$.computeOutAndReduceShapes(u.shape,f),A=I.sizeFromShape(g),y=t.makeOutput(m,u.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;pk(l,A,Pn[y.dtype],x)}if(p&&t.disposeData(c.dataId),a){let x=$.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var soe={kernelName:sl,backendName:"wasm",setupFunc:toe,kernelFunc:noe},roe=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=c1(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},aoe={kernelName:Uu,backendName:"wasm",kernelFunc:roe},ooe=!0,ioe=Cn(Pa,ooe),loe=hn(so),uoe=hn(ao),fk;function coe(e){fk=e.wasm.cwrap(ro,null,["number","number","number","number","number","number","number","number","number","number"])}function doe(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,d,h,p]=r.shape,f=[c,l,u,p],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=$f({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let A=m.id,y=t.makeOutput(f,"float32");if(I.sizeFromShape(r.shape)===0)return y;let x=t.dataIdMap.get(y.dataId).id;return fk(A,c,d,h,p,l,u,a?1:0,o?1:0,x),g!=null&&t.disposeData(g.dataId),y}var hoe={kernelName:ro,backendName:"wasm",setupFunc:coe,kernelFunc:doe},mk;function poe(e){mk=e.wasm.cwrap(oo,null,["number","array","number","array","number","number"])}function foe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=I.parseAxisParam(a,r.shape);if(r.shape.length===0)return _f({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);mk(l,c,o.length,d,r.shape.length,u);let h=Mn({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),h}var moe={kernelName:oo,backendName:"wasm",kernelFunc:foe,setupFunc:poe},gk;function goe(e){gk=e.wasm.cwrap(bl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Aoe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(l.dataId).id,[d,h,p,f]=r.shape,[m,g]=$.getImageCenter(i,h,p),A=o===0,y=255,x=typeof o=="number"?[o,o,o,A?0:y]:[...o,y],b=new Uint8Array(new Int32Array(x).buffer);return gk(u,d,h,p,f,a,m,g,b,x.length,c),l}var yoe={kernelName:bl,backendName:"wasm",kernelFunc:Aoe,setupFunc:goe},xoe=hn(io),boe=hn(lo),Ak;function voe(e){Ak=e.wasm.cwrap(ol,null,["number","number","number","number","number","number","array","number","number"])}function woe(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(I.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:d,outputSize:h}=ag.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,A=new Uint8Array(new Int32Array(d).buffer),y=t.dataIdMap.get(i.dataId).id;return Ak(f,g,Pn[a.dtype],l,u,c,A,h,y),i}var koe={kernelName:ol,backendName:"wasm",setupFunc:voe,kernelFunc:woe},yk;function Ioe(e){yk=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Soe(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,u=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(u.dataId).id,d=s.shape.length,h=r.shape.length,p=d===0||d>1||h===1?1:I.sizeFromShape(r.shape.slice(1));return yk(o,i,l,p,c),u}var Coe={kernelName:il,backendName:"wasm",kernelFunc:Soe,setupFunc:Ioe},xk;function Toe(e){xk=e.wasm.cwrap(co,null,["number","number"])}function Noe(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return I.sizeFromShape(r.shape)===0||xk(s,a),r}var Eoe={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Toe,kernelFunc:Noe},Roe=hn(uo),bk;function _oe(e){bk=e.wasm.cwrap(fo,null,["number","number","number","number"])}function $oe(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=I.sizeFromShape(n.shape)/i;return I.sizeFromShape(a.shape)===0||bk(r,o,i,l),a}var Doe={kernelName:fo,backendName:"wasm",setupFunc:_oe,kernelFunc:$oe};function Foe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=I.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k{let h=[...c];h[i]=d;let p=ed({inputs:{x:r},attrs:{begin:u,size:h},backend:s});return u[i]+=d,p})}var Moe={kernelName:fl,backendName:"wasm",kernelFunc:Poe},zoe=hn(ho),Loe=hn(Gu),Boe=!0,Woe=Cn(mo,Boe),vk;function Voe(e){vk=e.wasm.cwrap(Ur,null,["number","number","number"])}function Uoe(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return vk(o,r,l),i}var Hoe={kernelName:Ur,backendName:"wasm",setupFunc:Voe,kernelFunc:Uoe},wk;function Goe(e){wk=e.wasm.cwrap(ml,null,["number","array","number","array","array","array","array","array","number","number"])}function joe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i}=s;i==null&&(i=new Array(a.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:h}=s,p=$.slice_util.maskToAxes(c);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&d!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&h!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.shape.length-a.length,m=$.slice_util.maskToAxes(d),g=r.shape.slice();m.forEach(E=>{a[E]=0,o[E]=1,g.splice(E,0,1)});let A=Mn({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:y,end:x,strides:b}=$.slice_util.getNormalizedAxes(A.shape,p,f,a,o,i,l,u,c);a=y,o=x,i=b;let v=$.slice_util.maskToAxes(h);v.forEach(E=>{o[E]=a[E]+1,i[E]=1});let k=$.slice_util.computeOutShape(a,o,i),w=k.filter((E,_)=>v.indexOf(_)===-1);if(i.every(E=>E===1)){let E=ed({inputs:{x:A},attrs:{begin:a,size:k},backend:t});t.disposeData(A.dataId);let _=Mn({inputs:{x:E},attrs:{shape:w},backend:t});return t.disposeData(E.dataId),_}let R=t.makeOutput(w,"float32");if(!w.some(E=>E===0)){let E=t.dataIdMap.get(A.dataId).id,_=new Uint8Array(new Int32Array(I.computeStrides(A.shape)).buffer),T=new Uint8Array(new Int32Array(a).buffer),O=new Uint8Array(new Int32Array(o).buffer),W=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(w).buffer),q=new Uint8Array(new Int32Array(I.computeStrides(w)).buffer),X=t.dataIdMap.get(R.dataId).id;wk(E,_,A.shape.length,T,O,W,j,q,w.length,X)}t.disposeData(A.dataId);let P=Mn({inputs:{x:R},attrs:{shape:w},backend:t});return t.disposeData(R.dataId),P}var qoe={kernelName:ml,backendName:"wasm",setupFunc:Goe,kernelFunc:joe},Xoe=!0,Koe=Cn(go,Xoe),kk;function Zoe(e){kk=e.wasm.cwrap(po,null,["number, number, number"])}function Yoe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=da(o,r,t),f=d;if(p){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x,f=$.getInnerMostAxes(f.length,u.shape.length))}$.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,g]=$.computeOutAndReduceShapes(u.shape,f),A=I.sizeFromShape(g),y=t.makeOutput(m,u.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;kk(l,A,x)}if(p&&t.disposeData(c.dataId),a){let x=$.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var Joe={kernelName:po,backendName:"wasm",setupFunc:Zoe,kernelFunc:Yoe},Qoe=hn(Ao),eie=hn(yo),Ik;function tie(e){Ik=e.wasm.cwrap(Vr,null,["number","array","number","array","number","number"])}function nie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let h=0;h{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,s.dtype),c=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),h=t.dataIdMap.get(d.dataId).id;return Sk(o,i,s.shape.length,Pn[s.dtype],r,a,c,h),[u,d]},oie={kernelName:gl,backendName:"wasm",setupFunc:rie,kernelFunc:aie},Ck;function iie(e){Ck=e.wasm.cwrap(Al,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function lie(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,d,h,p]=r.shape,[f,m]=u!=null?u:[d,h],g=[c,f,m,p],A=new Uint8Array(new Int32Array(I.computeStrides(r.shape)).buffer),y=t.makeOutput(g,r.dtype),x=t.dataIdMap.get(y.dataId).id,v=t.dataIdMap.get(r.dataId).id,w=t.dataIdMap.get(a.dataId).id,C=o==="nearest"?1:2,R;switch(i){case"constant":R=1;break;case"reflect":R=2;break;case"wrap":R=3;break;case"nearest":R=4;break;default:R=1;break}return Ck(v,w,a.shape[0]>1,c,f,m,p,h,d,A,r.shape.length-1,C,R,l,x),y}var uie={kernelName:Al,backendName:"wasm",setupFunc:iie,kernelFunc:lie};function cie(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),u=0;for(let p=0;p({dataId:p,dtype:f,shape:l}))}var die={kernelName:yl,backendName:"wasm",kernelFunc:cie};function hie(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var pie={kernelName:xl,backendName:"wasm",kernelFunc:hie},fie=[gse,yse,vse,Ese,$se,Ose,zse,Vse,Xse,Kse,Zse,Qse,ere,sre,ore,ire,lre,dre,fre,Are,bre,wre,kre,Ire,Cre,Ere,Rre,$re,mse,Ore,zre,Wre,Hre,qre,Kre,Yre,wse,eae,nae,rae,aae,iae,cae,hae,mae,yae,vae,kae,Cae,Nae,Eae,$ae,Oae,zae,Bae,Uae,Gae,qae,dk,Yae,eoe,soe,aoe,ioe,loe,uoe,Lse,hoe,moe,yoe,boe,xoe,koe,Coe,Eoe,Roe,jse,Doe,Ooe,Moe,zoe,Loe,Woe,Hoe,qoe,Koe,Joe,Qoe,eie,sie,oie,uie,Cse,die,pie];for(let e of fie)ko(e);var V1=ee();V1.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));V1.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(V1.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var Tk=va(tS()),mie='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',gie=va(nS()),Nk=class extends Ru{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Wd(this,br())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=I.now();return e(),{kernelMs:I.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let u=t;this.dataIdMap.set(e,{id:a,stringBytes:u,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=I.sizeFromShape(n),i=o*I.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:s,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let a=this.wasm.HEAPU8.slice(t,t+I.sizeFromShape(s)*I.bytesPerElement(n));return xie(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=I.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=I.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function Aie(e){return(t,n)=>(I.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function Ek(e,t,n){if(Df!=null)return Df;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),nd!=null&&nd[s]!=null?nd[s]:n+s}async function yie(){let[e,t]=await Promise.all([ee().getAsync("WASM_HAS_SIMD_SUPPORT"),ee().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=mie,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?Ek(e,t,td!=null?td:l):l+i},U1&&(r.instantiateWasm=Aie(Ek(e,t,td!=null?td:"")));let a=!1;r.onAbort=()=>{if(a||sd)return;sd=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&Df==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Tk.default.toString()],{type:"text/javascript"}),o=(0,Tk.default)(r)):o=(0,gie.default)(r),o.then(i=>{a=!0,sd=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function xie(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var bie=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Df=null,td=null,nd={},sd=!1,U1=!1;function vie(e,t=!1){if(dg("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),sd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Df=e,U1=t}function wie(e,t=!1){if(sd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")td=e;else{nd=e;let n=bie.filter(s=>nd[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}U1=t}var kie="3.8.0",Iie=2;Nl("wasm",async()=>{let{wasm:e}=await yie();return new Nk(e)},Iie);var Sie={tfjs:sS,"tfjs-core":rS,"tfjs-data":aS,"tfjs-layers":oS,"tfjs-converter":iS,"tfjs-backend-cpu":lS,"tfjs-backend-webgl":uS,"tfjs-backend-wasm":cS};var zn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Cie(){let e=zn.gl;!e||(zn.extensions=e.getSupportedExtensions())}function Rk(){if(!hg(zn.name)){try{zn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(zn.width,zn.height):document.createElement("canvas")}catch(e){ue("error: cannot create canvas:",e);return}try{zn.gl=zn.canvas.getContext("webgl2",zn.webGLattr)}catch(e){ue("error: cannot get WebGL2 context:",e);return}try{cf(2,zn.gl)}catch(e){ue("error: cannot set WebGL2 context:",e);return}try{let e=new Af(zn.gl);Nl(zn.name,()=>new ou(e),zn.priority)}catch(e){ue("error: cannot register WebGL backend:",e);return}try{wl("webgl").forEach(t=>{let n={...t,backendName:zn.name};ko(n)})}catch(e){ue("error: cannot update WebGL backend registration:",e);return}try{os.set("WEBGL_VERSION",2)}catch(e){ue("error: cannot set WebGL backend flags:",e);return}Cie(),ue("backend registered:",zn.name)}}function _k(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s}}function ad(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function od(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function id(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return _e.cropAndResize(t,a,[0],n)}function Ff(e,t=1.5){let n=od(e),s=ad(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,landmarks:e.landmarks}}function Of(e){let t=od(e),n=ad(e),r=Math.max(...n)/2,a=[Math.round(t[0]-r),Math.round(t[1]-r)],o=[Math.round(t[0]+r),Math.round(t[1]+r)];return{startPoint:a,endPoint:o,landmarks:e.landmarks}}function H1(e){let t=e.map(a=>a[0]),n=e.map(a=>a[1]),s=[Math.min(...t),Math.min(...n)],r=[Math.max(...t),Math.max(...n)];return{startPoint:s,endPoint:r,landmarks:e}}var $k=e=>({startPoint:Re(e,[0,0],[-1,2]),endPoint:Re(e,[0,2],[-1,2])});var Pf=[[1,0,0],[0,1,0],[0,0,1]];function Tie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Dk(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Tie(n)}function Fk(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function ha(e,t){let n=0;for(let s=0;s{let c=_e.resizeBilinear(t,[this.inputSize,this.inputSize]),d=ge(de(c,127.5),.5),h=this.model.execute(d),p;if(Array.isArray(h)){let A=h.sort((v,k)=>v.size-k.size),y=ft([A[0],A[2]],2),x=ft([A[1],A[3]],2),b=ft([x,y],1);p=lt(b,0)}else p=lt(h);let f=Eie(p,this.anchors,[this.inputSize,this.inputSize]),m=Re(p,[0,0],[-1,1]),g=lt(Hn(m));return[p,f,g]});this.config=gn(this.config,n);let o=await _e.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxDetected,this.config.face.detector.iouThreshold,this.config.face.detector.minConfidence),i=await o.array();K(o);let l=[],u=await a.data();for(let c=0;cthis.config.face.detector.minConfidence){let h=Re(r,[i[c],0],[1,-1]),p=$k(h);K(h);let f=this.anchorsData[i[c]],m=H(()=>U(lt(Re(s,[i[c],Lk-1],[1,-1])),[Lk,-1]));l.push({box:p,landmarks:m,anchor:f,confidence:d})}}return K(s),K(r),K(a),{boxes:l,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function Wk(e){let t=await mt(gt(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new Bk(t,e);return!t||!t.modelUrl?ue("load model failed:",e.face.detector.modelPath):e.debug&&ue("load model:",t.modelUrl),n}var cr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},j1=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],ld=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],ei=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Rie=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],_ie=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],$ie=[33,133,362,263,1,78,308],Ele=Rie.map(e=>ld[e]),Rle=_ie.map(e=>ld[e]),_le=$ie.map(e=>ld[e]);var q1=cr.leftEyeLower0,X1=cr.rightEyeLower0,hu={leftBounds:[q1[0],q1[q1.length-1]],rightBounds:[X1[0],X1[X1.length-1]]},Vk={count:468,mouth:13,symmetryLine:[13,cr.midwayBetweenEyes[0]]},Die={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},pu={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function Mf(e,t,n,s){for(let r=0;r[a[0]/this.meshSize*(d[0]-this.meshSize/2),a[1]/this.meshSize*(d[1]-this.meshSize/2),d[2]]),i=s!==0?G1(s,[0,0]):Pf,l=s!==0?o.map(d=>[...Mk(d,i),d[2]]):o,u=s!==0?Pk(r):Pf,c=[...od({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(d=>[Math.round(d[0]+ha(c,u[0])),Math.round(d[1]+ha(c,u[1])),Math.round(d[2])])}getLeftToRightEyeDepthDifference(t){let n=t[hu.leftBounds[0]][2],s=t[hu.rightBounds[0]][2];return n-s}getEyeBox(t,n,s,r,a=!1){let o=Of(Ff(H1([t[s],t[r]]),this.irisEnlarge)),i=ad(o),l=_e.cropAndResize(n,[[o.startPoint[1]/this.meshSize,o.startPoint[0]/this.meshSize,o.endPoint[1]/this.meshSize,o.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);if(a&&os.flags.IS_BROWSER){let u=_e.flipLeftRight(l);K(l),l=u}return{box:o,boxSize:i,crop:l}}getEyeCoords(t,n,s,r=!1){let a=[];for(let o=0;o{let u=o;return l===2?u=r:l===4&&(u=a),[i[0],i[1],u]})}correctFaceRotation(t,n,s){let[r,a]=n.landmarks.length>=Vk.count?Vk.symmetryLine:Die.symmetryLine,o=Dk(n.landmarks[r],n.landmarks[a]),i=od({startPoint:n.startPoint,endPoint:n.endPoint}),l=[i[0]/s.shape[2],i[1]/s.shape[1]],u=_e.rotateWithOffset(s,o,0,l),c=G1(-o,i),d=t.face.mesh.enabled?id({startPoint:n.startPoint,endPoint:n.endPoint},u,[this.meshSize,this.meshSize]):id({startPoint:n.startPoint,endPoint:n.endPoint},u,[this.boxSize,this.boxSize]),h=de(d,255);return K(d),K(u),[o,c,h]}async augmentIris(t,n){let{box:s,boxSize:r,crop:a}=this.getEyeBox(t,n,hu.leftBounds[0],hu.leftBounds[1],!0),{box:o,boxSize:i,crop:l}=this.getEyeBox(t,n,hu.rightBounds[0],hu.rightBounds[1]),u=ft([a,l]);K(a),K(l);let c=this.irisModel.predict(u);K(u);let d=await c.data();K(c);let h=d.slice(0,pu.numCoordinates*3),{rawCoords:p,iris:f}=this.getEyeCoords(h,s,r,!0),m=d.slice(pu.numCoordinates*3),{rawCoords:g,iris:A}=this.getEyeCoords(m,o,i),y=this.getLeftToRightEyeDepthDifference(t);Math.abs(y)<30?(Mf(t,p,"left",null),Mf(t,g,"right",null)):y<1?Mf(t,p,"left",["EyeUpper0","EyeLower0"]):Mf(t,g,"right",["EyeUpper0","EyeLower0"]);let x=this.getAdjustedIrisCoords(t,f,"left"),b=this.getAdjustedIrisCoords(t,A,"right");return t.concat(x).concat(b)}async predict(t,n){let s=!1,r;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.skipFrame)&&(r=await this.boundingBoxDetector.getBoundingBoxes(t,n),this.skipped=0),n.skipFrame&&this.skipped++,!n.skipFrame||r&&r.boxes&&(!n.face.mesh.enabled||r.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let i of r.boxes){let l=await i.box.startPoint.data(),u=await i.box.endPoint.data(),c=await i.landmarks.array();this.storedBoxes.push({startPoint:l,endPoint:u,landmarks:c,confidence:i.confidence})}this.storedBoxes.length>0&&(s=!0)}if(s){if(!r||!r.boxes||r.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i{K(i.box.startPoint),K(i.box.endPoint),K(i.landmarks)});let a=[],o=[];for(let i of this.storedBoxes){let l,u=0,c;if(n.face.detector.rotation&&n.face.mesh.enabled&&os.flags.IS_BROWSER)[u,c,l]=this.correctFaceRotation(n,i,t);else{c=Pf;let d=t.clone(),h=n.face.mesh.enabled?id({startPoint:i.startPoint,endPoint:i.endPoint},d,[this.meshSize,this.meshSize]):id({startPoint:i.startPoint,endPoint:i.endPoint},d,[this.boxSize,this.boxSize]);l=de(h,255),K(h),K(d)}if(!n.face.mesh.enabled)a.push({mesh:[],box:i,faceConfidence:null,boxConfidence:i.confidence,confidence:i.confidence,image:l});else{let[d,h,p]=this.meshDetector.execute(l);K(d);let f=(await h.data())[0];K(h);let m=U(p,[-1,3]),g=await m.array();if(K(p),K(m),fi.confidence>n.face.detector.minConfidence)),this.detectedFaces=a.length,a}};var $t=[null,null,null],Z1;async function Uk(e,t){let n=await Z1.predict(e,t),s=[],r=0;for(let a of n||[]){if(!a||a.isDisposedInternal)continue;let o=a.mesh.map(c=>[c[0]/(e.shape[2]||0),c[1]/(e.shape[1]||0),c[2]/Z1.meshSize]),i={};if(a.mesh&&a.mesh.length>0)for(let c of Object.keys(cr))i[c]=cr[c].map(d=>a.mesh[d]);let l=a.box?[Math.trunc(Math.max(0,a.box.startPoint[0])),Math.trunc(Math.max(0,a.box.startPoint[1])),Math.trunc(Math.min(e.shape[2]||0,a.box.endPoint[0])-Math.max(0,a.box.startPoint[0])),Math.trunc(Math.min(e.shape[1]||0,a.box.endPoint[1])-Math.max(0,a.box.startPoint[1]))]:[0,0,0,0],u=a.box?[a.box.startPoint[0]/(e.shape[2]||0),a.box.startPoint[1]/(e.shape[1]||0),(a.box.endPoint[0]-a.box.startPoint[0])/(e.shape[2]||0),(a.box.endPoint[1]-a.box.startPoint[1])/(e.shape[1]||0)]:[0,0,0,0];s.push({id:r++,score:Math.round(100*a.faceConfidence||100*a.boxConfidence||0)/100,boxScore:Math.round(100*a.boxConfidence)/100,faceScore:Math.round(100*a.faceConfidence)/100,box:l,boxRaw:u,mesh:a.mesh,meshRaw:o,annotations:i,tensor:a.image}),a.coords&&K(a.coords)}return s}async function Y1(e){return!$t[0]&&e.face.enabled||!$t[1]&&e.face.mesh.enabled||!$t[2]&&e.face.iris.enabled?($t=await Promise.all([!$t[0]&&e.face.enabled?Wk(e):null,!$t[1]&&e.face.mesh.enabled?mt(gt(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!$t[2]&&e.face.iris.enabled?mt(gt(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!$t[1]||!$t[1].modelUrl?ue("load model failed:",e.face.mesh.modelPath):e.debug&&ue("load model:",$t[1].modelUrl)),e.face.iris.enabled&&(!$t[2]||!$t[2].modelUrl?ue("load model failed:",e.face.iris.modelPath):e.debug&&ue("load model:",$t[2].modelUrl))):e.debug&&($t[0]&&ue("cached model:",$t[0].model.modelUrl),$t[1]&&ue("cached model:",$t[1].modelUrl),$t[2]&&ue("cached model:",$t[2].modelUrl)),Z1=new K1($t[0],$t[1],$t[2]),$t}var Hk=ei,Gk=ld;var js,zf=[],jk=0,J1=Number.MAX_SAFE_INTEGER;async function Q1(e){let t=gt(e.modelBasePath,e.face.description.modelPath);return js?e.debug&&ue("cached model:",t):(js=await mt(t),js?e.debug&&ue("load model:",t):ue("load model failed:",e.face.description.modelPath)),js}function ey(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let s=5*e.map((a,o)=>Math.abs(e[o]-t[o])**n).reduce((a,o)=>a+o,0)**(1/n);return Math.max(0,100-s)/100}function qk(e,t,n=0){let s={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return s;for(let r of t)if(r.embedding&&r.name){let a=ey(e,r.embedding);a>n&&a>s.similarity&&(s={...r,similarity:a})}return s}function ty(e){return H(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Ge))return null;let s=[[.05,.15,.85,.85]];if(!js.inputs[0].shape)return null;let r=n.shape.length===3?_e.cropAndResize(Ot(n,0),s,[0],[js.inputs[0].shape[2],js.inputs[0].shape[1]]):_e.cropAndResize(n,s,[0],[js.inputs[0].shape[2],js.inputs[0].shape[1]]);return z(r,255)})}async function ny(e,t,n,s){var r,a;return js?J10?(J1++,zf[n]):(J1=0,new Promise(async o=>{let i=ty(e),l,u={age:0,gender:"unknown",genderScore:0,descriptor:[]};if(t.face.description.enabled&&(l=await js.predict(i)),K(i),l){let c=await l.find(A=>A.shape[1]===1).data(),d=Math.trunc(200*Math.abs(c[0]-.5))/100;d>t.face.description.minConfidence&&(u.gender=c[0]<=.5?"female":"male",u.genderScore=Math.min(.99,d));let p=(await Js(l.find(A=>A.shape[1]===100),1).data())[0],f=await l.find(A=>A.shape[1]===100).data();u.age=Math.round(f[p-1]>f[p+1]?10*p-100*f[p-1]:10*p+100*f[p+1])/10;let g=await l.find(A=>A.shape[1]===1024).data();u.descriptor=[...g],l.forEach(A=>K(A))}zf[n]=u,jk=s,o(u)})):null}var Fie=["angry","disgust","fear","happy","sad","surprise","neutral"],qs,Lf=[],Xk=0,sy=Number.MAX_SAFE_INTEGER,ry=[.2989,.587,.114];async function ay(e){return qs?e.debug&&ue("cached model:",qs.modelUrl):(qs=await mt(gt(e.modelBasePath,e.face.emotion.modelPath)),!qs||!qs.modelUrl?ue("load model failed:",e.face.emotion.modelPath):e.debug&&ue("load model:",qs.modelUrl)),qs}async function oy(e,t,n,s){return qs?sy0?(sy++,Lf[n]):(sy=0,new Promise(async r=>{let a=_e.resizeBilinear(e,[qs.inputs[0].shape[2],qs.inputs[0].shape[1]],!1),[o,i,l]=an(a,3,3);K(a);let u=z(o,ry[0]),c=z(i,ry[1]),d=z(l,ry[2]);K(o),K(i),K(l);let h=Bh([u,c,d]);K(u),K(c),K(d);let p=H(()=>z(ge(h,.5),2));K(h);let f=[];if(t.face.emotion.enabled){let m=await qs.predict(p),g=await m.data();K(m);for(let A=0;At.face.emotion.minConfidence&&f.push({score:Math.min(.99,Math.trunc(100*g[A])/100),emotion:Fie[A]});f.sort((A,y)=>y.score-A.score)}K(p),Lf[n]=f,Xk=s,r(f)})):null}var ud=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Kk=ud.length,cd=ud.reduce((e,t,n)=>(e[t]=n,e),{}),Oie=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Pie=Oie.map(([e,t])=>[cd[e],cd[t]]),Zk=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function Yk(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function Jk(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(u,c)=>({id:c,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/s,u.box[2]/r,u.box[3]/s],box:[Math.trunc(u.box[0]*o),Math.trunc(u.box[1]*a),Math.trunc(u.box[2]*o),Math.trunc(u.box[3]*a)],keypoints:u.keypoints.map(({score:d,part:h,position:p})=>({score:d,part:h,position:[Math.trunc(p.x*o),Math.trunc(p.y*a)],positionRaw:[p.x/s,p.y/s]}))});return e.map((u,c)=>i(u,c))}var iy=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(nn?n:e}function Qk(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function dy(e,t){return{x:e.x+t.x,y:e.y+t.y}}var Bf=1,fu=16,Mie=50**2;function e8(e,t,n,s,r,a,o=2){let i=A=>({y:a.get(A.y,A.x,e),x:a.get(A.y,A.x,a.shape[2]/2+e)}),l=(A,y,x)=>({y:cy(Math.round(A.y/fu),0,y-1),x:cy(Math.round(A.x/fu),0,x-1)}),[u,c]=s.shape,d=l(t.position,u,c),h=i(d),f=dy(t.position,h);for(let A=0;A[cd[h],cd[p]]),o=a.map(([,h])=>h),i=a.map(([h])=>h),l=t.shape[2],u=o.length,c=new Array(l),d=uy(e.part,fu,n);c[e.part.id]={score:e.score,part:ud[e.part.id],position:d};for(let h=u-1;h>=0;--h){let p=o[h],f=i[h];c[p]&&!c[f]&&(c[f]=e8(h,c[p],f,t,n,r))}for(let h=0;ht){i=!1;break}if(!i)break}return i}function Bie(e,t){let[n,s,r]=t.shape,a=new iy(n*s*r,({score:o})=>o);for(let o=0;o{var o;let a=(o=r[s])==null?void 0:o.position;return a?Qk(n,t,a.y,a.x)<=Mie:!1})}function Wie(e,t){return t.reduce((s,{position:r,score:a},o)=>(t8(e,r,o)||(s+=a),s),0)/t.length}function n8(e,t,n,s,r,a){let o=[],i=Bie(a,t);for(;o.lengthp.score>a);let d=Wie(o,c),h=Yk(c);d>a&&o.push({keypoints:c,box:h,score:Math.round(100*d)/100})}return o}var Jn,Vie=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function hy(e,t){let n=H(()=>{if(!Jn.inputs[0].shape)return[];let o=_e.resizeBilinear(e,[Jn.inputs[0].shape[2],Jn.inputs[0].shape[1]]),i=ge(de(ce(o,"float32"),127.5),1),u=Jn.execute(i,Vie).map(c=>lt(c,[0]));return u[1]=u[1].sigmoid(),u}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)K(o);let r=await n8(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return Jn.inputs[0].shape?Jk(r,[e.shape[1],e.shape[2]],[Jn.inputs[0].shape[2],Jn.inputs[0].shape[1]]):[]}async function py(e){return Jn?e.debug&&ue("cached model:",Jn.modelUrl):(Jn=await mt(gt(e.modelBasePath,e.body.modelPath)),!Jn||!Jn.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",Jn.modelUrl)),Jn}function Wf(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function dd(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function s8(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return _e.cropAndResize(t,a,[0],n)}function r8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function Vf(e,t=1.5){let n=dd(e),s=Wf(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function Uf(e){let t=dd(e),n=Wf(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}var a8=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var fy=class{constructor(t){this.model=t,this.anchors=a8.map(n=>[n.x,n.y]),this.anchorsTensor=Ps(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=Mt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Mt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return H(()=>{let n=Re(t,[0,0],[-1,2]),s=Re(t,[0,2],[-1,2]),r=ae(de(n,this.inputSizeTensor),this.anchorsTensor),a=de(s,this.doubleInputSizeTensor),o=z(ge(r,a),this.inputSizeTensor),i=z(ae(r,a),this.inputSizeTensor);return $l([o,i],1)})}normalizeLandmarks(t,n){return H(()=>{let s=ae(de(U(t,[-1,7,2]),this.inputSizeTensor),this.anchors[n]);return z(s,this.inputSizeTensor)})}async getBoxes(t,n){let s=this.model.predict(t),r=lt(s);K(s);let a=H(()=>lt(Hn(Re(r,[0,0],[-1,1])))),o=await a.data(),i=Re(r,[0,1],[-1,4]),l=this.normalizeBoxes(i);K(i);let u=await _e.nonMaxSuppressionAsync(l,o,n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence),c=await u.array();K(a),K(u);let d=[];for(let h of c)if(o[h]>=n.hand.minConfidence){let p=Re(l,[h,0],[1,-1]),f=Re(r,[h,5],[1,14]),m=H(()=>U(this.normalizeLandmarks(f,h),[-1,2]));K(f),d.push({box:p,palmLandmarks:m,confidence:o[h]})}return K(r),K(l),d}async estimateHandBounds(t,n){let s=t.shape[1],r=t.shape[2],a=H(()=>ge(de(_e.resizeBilinear(t,[this.inputSize,this.inputSize]),127.5),1)),o=await this.getBoxes(a,n);K(a);let i=[];if(!o||o.length===0)return i;for(let l of o){let u=await l.box.data(),c=u.slice(0,2),d=u.slice(2,4),h=await l.palmLandmarks.array();K(l.box),K(l.palmLandmarks),i.push(r8({startPoint:c,endPoint:d,palmLandmarks:h,confidence:l.confidence},[r/this.inputSize,s/this.inputSize]))}return i}};function Uie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function o8(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Uie(n)}var i8=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function pa(e,t){let n=0;for(let s=0;so[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>gy([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return Vf(Uf(r),Gie)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=Vf(Uf(n),c8);s.palmLandmarks=[];for(let r=0;r[o[0]*(p[0]-this.inputSize/2),o[1]*(p[1]-this.inputSize/2),o[2]*p[2]]),l=my(s,[0,0]),u=i.map(p=>[...gy(p,l),p[2]]),c=u8(r),d=[...dd(n),1],h=[pa(d,c[0]),pa(d,c[1])];return u.map(p=>[Math.trunc(p[0]+h[0]),Math.trunc(p[1]+h[1]),Math.trunc(p[2])])}async estimateHands(t,n){let s=!1,r;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.skipFrame)&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipFrame&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let a=[];for(let o=0;o=n.hand.minConfidence){let x=U(A,[-1,3]),b=await x.array();K(A),K(x);let v=this.transformRawCoords(b,p,l,h),k=this.getBoxForHandLandmarks(v);this.storedBoxes[o]={...k,confidence:y};let w={landmarks:v,confidence:y,box:{topLeft:k.startPoint,bottomRight:k.endPoint}};a.push(w)}else this.storedBoxes[o]=null;K(A)}else{let l=Vf(Uf(i),c8),u={confidence:i.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};a.push(u)}}return this.storedBoxes=this.storedBoxes.filter(o=>o!==null),this.detectedHands=a.length,a}};var Ue={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>Ue.nameMapping[e],getPoints:e=>Ue.pointsMapping[e]},Tn={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>Tn.nameMapping[e]},Be={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>Be.nameMapping[e]};var ti={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function h8(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function p8(e,t){let n=h8(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=h8(e[1],e[2],t[1],t[2]);return[n,s]}function f8(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function Xie(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],u=e[2]-t[2],c=e[2]-n[2],d=t[2]-n[2],h=Math.sqrt(s*s+o*o+u*u),p=Math.sqrt(r*r+i*i+c*c),f=Math.sqrt(a*a+l*l+d*d),m=(f*f+h*h-p*p)/(2*f*h);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let A;return g>ti.NO_CURL_START_LIMIT?A=Tn.none:g>ti.HALF_CURL_START_LIMIT?A=Tn.half:A=Tn.full,A}function m8(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=Be.horizontalLeft:r=Be.horizontalRight:s===Math.abs(t)?t>0?r=Be.horizontalLeft:r=Be.horizontalRight:n>0?r=Be.horizontalLeft:r=Be.horizontalRight,r}function g8(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=Be.verticalDown:r=Be.verticalUp:s===Math.abs(t)?t<0?r=Be.verticalDown:r=Be.verticalUp:n<0?r=Be.verticalDown:r=Be.verticalUp,r}function Kie(e,t,n,s,r,a,o,i){let l,u=g8(e,t,n,s),c=m8(r,a,o,i);return u===Be.verticalUp?c===Be.horizontalLeft?l=Be.diagonalUpLeft:l=Be.diagonalUpRight:c===Be.horizontalLeft?l=Be.diagonalDownLeft:l=Be.diagonalDownRight,l}function Zie(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],u=t[1]-n[1],c=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),d=Math.max(Math.abs(i),Math.abs(l),Math.abs(u)),h=0,p=0,f=0,m=d/(c+1e-5);m>1.5?h+=ti.DISTANCE_VOTE_POWER:m>.66?p+=ti.DISTANCE_VOTE_POWER:f+=ti.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),A=Math.sqrt(a*a+l*l),y=Math.sqrt(o*o+u*u),x=Math.max(g,A,y),b=e[0],v=e[1],k=n[0],w=n[1];x===g?(k=n[0],w=n[1]):x===y&&(b=t[0],v=t[1]);let P=p8([b,v],[k,w]),E=f8(P,ti.TOTAL_ANGLE_VOTE_POWER);h+=E[0],p+=E[1],f+=E[2];for(let T of s){let O=f8(T,ti.SINGLE_ANGLE_VOTE_POWER);h+=O[0],p+=O[1],f+=O[2]}let _;return h===Math.max(h,p,f)?_=g8(l,i,u,d):f===Math.max(p,f)?_=m8(a,r,o,c):_=Kie(l,i,u,d,a,r,o,c),_}function yy(e){let t=[],n=[];for(let a of Ue.all){let o=Ue.getPoints(a),i=[],l=[];for(let u of o){let c=e[u[0]],d=e[u[1]],h=p8(c,d),p=h[0],f=h[1];i.push(p),l.push(f)}t.push(i),n.push(l)}let s=[],r=[];for(let a of Ue.all){let o=a===Ue.thumb?1:0,i=Ue.getPoints(a),l=e[i[o][0]],u=e[i[o+1][1]],c=e[i[3][1]],d=Xie(l,u,c),h=Zie(l,u,c,t[a].slice(o));s[a]=d,r[a]=h}return{curls:s,directions:r}}var hd=class{constructor(t){this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}addCurl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}addDirection(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}setWeight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var fa=new hd("thumbs up");fa.addCurl(Ue.thumb,Tn.none,1);fa.addDirection(Ue.thumb,Be.verticalUp,1);fa.addDirection(Ue.thumb,Be.diagonalUpLeft,.25);fa.addDirection(Ue.thumb,Be.diagonalUpRight,.25);for(let e of[Ue.index,Ue.middle,Ue.ring,Ue.pinky])fa.addCurl(e,Tn.full,1),fa.addDirection(e,Be.horizontalLeft,1),fa.addDirection(e,Be.horizontalRight,1);var Bt=new hd("victory");Bt.addCurl(Ue.thumb,Tn.half,.5);Bt.addCurl(Ue.thumb,Tn.none,.5);Bt.addDirection(Ue.thumb,Be.verticalUp,1);Bt.addDirection(Ue.thumb,Be.diagonalUpLeft,1);Bt.addCurl(Ue.index,Tn.none,1);Bt.addDirection(Ue.index,Be.verticalUp,.75);Bt.addDirection(Ue.index,Be.diagonalUpLeft,1);Bt.addCurl(Ue.middle,Tn.none,1);Bt.addDirection(Ue.middle,Be.verticalUp,1);Bt.addDirection(Ue.middle,Be.diagonalUpLeft,.75);Bt.addCurl(Ue.ring,Tn.full,1);Bt.addDirection(Ue.ring,Be.verticalUp,.2);Bt.addDirection(Ue.ring,Be.diagonalUpLeft,1);Bt.addDirection(Ue.ring,Be.horizontalLeft,.2);Bt.addCurl(Ue.pinky,Tn.full,1);Bt.addDirection(Ue.pinky,Be.verticalUp,.2);Bt.addDirection(Ue.pinky,Be.diagonalUpLeft,1);Bt.addDirection(Ue.pinky,Be.horizontalLeft,.2);Bt.setWeight(Ue.index,2);Bt.setWeight(Ue.middle,2);var A8=[fa,Bt];var Yie=.7;function y8(e){let t=yy(e),n={};for(let s of Ue.all)n[Ue.getName(s)]={curl:Tn.getName(t.curls[s]),direction:Be.getName(t.directions[s])};return n}function x8(e){let t=yy(e),n=[];for(let s of A8){let r=s.matchAgainst(t.curls,t.directions);r>=Yie&&n.push({name:s.name,confidence:r})}return n}var b8={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},ma,ga,v8;async function xy(e,t){let n=await v8.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;rn[r].landmarks[d]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let c of o)c[0]i[2]&&(i[2]=c[0]),c[1]>i[3]&&(i[3]=c[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let u=y8(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:u})}return s}async function by(e){!ma||!ga?([ma,ga]=await Promise.all([e.hand.enabled?mt(gt(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?mt(gt(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!ma||!ma.modelUrl?ue("load model failed:",e.hand.detector.modelPath):e.debug&&ue("load model:",ma.modelUrl),!ga||!ga.modelUrl?ue("load model failed:",e.hand.skeleton.modelPath):e.debug&&ue("load model:",ga.modelUrl))):(e.debug&&ue("cached model:",ma.modelUrl),e.debug&&ue("cached model:",ga.modelUrl));let t=new fy(ma);return v8=new Ay(t,ga),[ma,ga]}var w8=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],k8=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var Ln;async function Hf(e){return Ln?e.debug&&ue("cached model:",Ln.modelUrl):(Ln=await mt(gt(e.modelBasePath,e.body.modelPath)),Ln.width=parseInt(Ln.signature.inputs["input_1:0"].tensorShape.dim[2].size),Ln.height=parseInt(Ln.signature.inputs["input_1:0"].tensorShape.dim[1].size),!Ln||!Ln.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",Ln.modelUrl)),Ln}async function vy(e,t){if(!Ln)return[];if(!t.body.enabled)return[];let n={width:e.shape[2]||0,height:e.shape[1]||0},s=_e.resizeBilinear(e,[Ln.width,Ln.height],!1),r=de(s,[255]);K(s);let a=await Ln.predict(r),o=a.find(g=>g.size===195||g.size===155),i=await(o==null?void 0:o.data())||[];a.forEach(g=>K(g)),K(r);let l=[],u=(i==null?void 0:i.length)===195?w8:k8,c=5;for(let g=0;gg.position[0]),h=l.map(g=>g.position[1]),p=[Math.min(...d),Math.min(...h),Math.max(...d)-Math.min(...d),Math.max(...h)-Math.min(...d)],f=[0,0,0,0],m=l.reduce((g,A)=>A.score>g?A.score:g,0);return[{id:0,score:m,box:p,boxRaw:f,keypoints:l}]}var Bn,dr=[],wy=[0,0,0,0],ky=[0,0,0,0],Gf=0,Iy=Number.MAX_SAFE_INTEGER,Jie=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function I8(e){return Bn?e.debug&&ue("cached model:",Bn.modelUrl):(Bn=await mt(gt(e.modelBasePath,e.body.modelPath)),!Bn||!Bn.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",Bn.modelUrl)),Bn}function Qie(e,t){let[n,s]=e.shape;return H(()=>{let r=(i,l)=>ge(i,z(de(i,Ie(l,"int32")),Ie(l,"int32"))),a=U(e,[s*n]),o=hs(a,0).dataSync()[0];if(o>t){let i=Js(a,0),l=r(i,n).dataSync()[0],u=de(i,Ie(n,"int32")).dataSync()[0];return[l,u,o]}return[0,0,o]})}async function Sy(e,t){return Iy0?(Iy++,[{id:0,score:Gf,box:wy,boxRaw:ky,keypoints:dr}]):(Iy=0,new Promise(async n=>{let s=H(()=>{if(!Bn.inputs[0].shape)return null;let u=_e.resizeBilinear(e,[Bn.inputs[0].shape[2],Bn.inputs[0].shape[1]],!1);return z(u,2).sub(1)}),r;if(t.body.enabled&&(r=await Bn.predict(s)),K(s),r){dr.length=0;let u=r.squeeze();K(r);let c=u.unstack(2);K(u);for(let d=0;dt.body.minConfidence&&dr.push({score:Math.round(100*f)/100,part:Jie[d],positionRaw:[h/Bn.inputs[0].shape[2],p/Bn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*h/Bn.inputs[0].shape[2]),Math.round(e.shape[1]*p/Bn.inputs[0].shape[1])]})}c.forEach(d=>K(d))}Gf=dr.reduce((u,c)=>c.score>u?c.score:u,0);let a=dr.map(u=>u.position[0]),o=dr.map(u=>u.position[1]);wy=[Math.min(...a),Math.min(...o),Math.max(...a)-Math.min(...a),Math.max(...o)-Math.min(...o)];let i=dr.map(u=>u.positionRaw[0]),l=dr.map(u=>u.positionRaw[1]);ky=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)],n([{id:0,score:Gf,box:wy,boxRaw:ky,keypoints:dr}])}))}var hr,bs=[],Cy=[0,0,0,0],Rr=[0,0,0,0],_r=0,Ty=Number.MAX_SAFE_INTEGER,S8=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];async function Ny(e){return hr?e.debug&&ue("cached model:",hr.modelUrl):(hr=await mt(gt(e.modelBasePath,e.body.modelPath)),!hr||!hr.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",hr.modelUrl)),hr}async function ele(e,t,n){bs.length=0;let s=e[0][0];for(let u=0;ut.body.minConfidence&&bs.push({score:Math.round(100*_r)/100,part:S8[u],positionRaw:[s[u][1],s[u][0]],position:[Math.round((n.shape[2]||0)*s[u][1]),Math.round((n.shape[1]||0)*s[u][0])]});_r=bs.reduce((u,c)=>c.score>u?c.score:u,0);let r=bs.map(u=>u.position[0]),a=bs.map(u=>u.position[1]);Cy=[Math.min(...r),Math.min(...a),Math.max(...r)-Math.min(...r),Math.max(...a)-Math.min(...a)];let o=bs.map(u=>u.positionRaw[0]),i=bs.map(u=>u.positionRaw[1]);Rr=[Math.min(...o),Math.min(...i),Math.max(...o)-Math.min(...o),Math.max(...i)-Math.min(...i)];let l=[];return l.push({id:0,score:_r,box:Cy,boxRaw:Rr,keypoints:bs}),l}async function tle(e,t,n){let s=[];for(let r=0;rt.body.minConfidence&&bs.push({part:S8[o],score:i,positionRaw:[a[3*o+1],a[3*o+0]],position:[Math.trunc(a[3*o+1]*(n.shape[2]||0)),Math.trunc(a[3*o+0]*(n.shape[1]||0))]})}Rr=[a[51+1],a[51+0],a[51+3]-a[51+1],a[51+2]-a[51+0]],s.push({id:r,score:_r,boxRaw:Rr,box:[Math.trunc(Rr[0]*(n.shape[2]||0)),Math.trunc(Rr[1]*(n.shape[1]||0)),Math.trunc(Rr[2]*(n.shape[2]||0)),Math.trunc(Rr[3]*(n.shape[1]||0))],keypoints:bs})}}return s}async function Ey(e,t){return Ty0?(Ty++,[{id:0,score:_r,box:Cy,boxRaw:Rr,keypoints:bs}]):(Ty=0,new Promise(async n=>{let s=H(()=>{if(!hr.inputs[0].shape)return null;let i=hr.inputs[0].shape[2];i===-1&&(i=256);let l=_e.resizeBilinear(e,[i,i],!1);return ce(l,"int32")}),r;t.body.enabled&&(r=await hr.predict(s)),K(s),r||n([]);let a=await r.array(),o;r.shape[2]===17?o=await ele(a,t,e):r.shape[2]===56&&(o=await tle(a,t,e)),K(r),n(o)}))}var mu=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Qn,Ry=[],_y=Number.MAX_SAFE_INTEGER,jf=2.5;async function $y(e){if(Qn)e.debug&&ue("cached model:",Qn.modelUrl);else{Qn=await mt(gt(e.modelBasePath,e.object.modelPath));let t=Object.values(Qn.modelSignature.inputs);if(Qn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Qn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!Qn||!Qn.modelUrl?ue("load model failed:",e.object.modelPath):e.debug&&ue("load model:",Qn.modelUrl)}return Qn}async function nle(e,t,n,s){let r=0,a=[];for(let u of[1,2,4])H(async()=>{var g,A;let c=u*13,d=(g=e.find(y=>y.shape[1]===c**2&&y.shape[2]===mu.length))==null?void 0:g.squeeze(),h=(A=e.find(y=>y.shape[1]===c**2&&y.shape[2]s.object.minConfidence&&x!==61){let v=(.5+Math.trunc(y%c))/c,k=(.5+Math.trunc(y/c))/c,w=f[y].map(W=>W*(c/u/t)),[C,R]=[v-jf/u*w[0],k-jf/u*w[1]],[P,E]=[v+jf/u*w[2]-C,k+jf/u*w[3]-R],_=[C,R,P,E];_=_.map(W=>Math.max(0,Math.min(W,1)));let T=[_[0]*n[0],_[1]*n[1],_[2]*n[0],_[3]*n[1]],O={id:r++,score:Math.round(100*b)/100,class:x+1,label:mu[x].label,box:T.map(W=>Math.trunc(W)),boxRaw:_};a.push(O)}}});e.forEach(u=>K(u));let o=a.map(u=>[u.boxRaw[1],u.boxRaw[0],u.boxRaw[3],u.boxRaw[2]]),i=a.map(u=>u.score),l=[];if(o&&o.length>0){let u=await _e.nonMaxSuppressionAsync(o,i,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);l=await u.data(),K(u)}return a=a.filter((u,c)=>l.includes(c)).sort((u,c)=>c.score-u.score),a}async function Dy(e,t){return _y0?(_y++,Ry):(_y=0,new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=_e.resizeBilinear(e,[Qn.inputSize,Qn.inputSize],!1),a=de(r,255),o=a.transpose([0,3,1,2]);K(a),K(r);let i;t.object.enabled&&(i=await Qn.predict(o)),K(o);let l=await nle(i,Qn.inputSize,s,t);Ry=l,n(l)}))}var es,Fy=[],Oy=Number.MAX_SAFE_INTEGER;async function Py(e){if(es)e.debug&&ue("cached model:",es.modelUrl);else{es=await mt(gt(e.modelBasePath,e.object.modelPath));let t=Object.values(es.modelSignature.inputs);if(es.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!es.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!es||!es.modelUrl?ue("load model failed:",e.object.modelPath):e.debug&&ue("load model:",es.modelUrl)}return es}async function sle(e,t,n,s){if(!e)return[];let r=[],a=await e.array(),o=lt(e);K(e);let i=an(o,6,1);K(o);let l=$n([i[1],i[0],i[3],i[2]],1),u=lt(l),c=lt(i[4]),d=lt(i[5]);i.forEach(m=>K(m));let h=await _e.nonMaxSuppressionAsync(u,c,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);K(u),K(c),K(d);let p=await h.data();K(h);let f=0;for(let m of p){let g=Math.trunc(100*a[0][m][4])/100,A=a[0][m][5],y=mu[A].label,[x,b]=[a[0][m][0]/t,a[0][m][1]/t],v=[x,b,a[0][m][2]/t-x,a[0][m][3]/t-b],k=[Math.trunc(v[0]*n[0]),Math.trunc(v[1]*n[1]),Math.trunc(v[2]*n[0]),Math.trunc(v[3]*n[1])];r.push({id:f++,score:g,class:A,label:y,box:k,boxRaw:v})}return r}async function My(e,t){return Oy0?(Oy++,Fy):(Oy=0,new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=_e.resizeBilinear(e,[es.inputSize,es.inputSize]),a=t.object.enabled?es.execute(r,["tower_0/detections"]):null;K(r);let o=await sle(a,es.inputSize,s,t);Fy=o,n(o)}))}function rle(e,t,n){let s=function(i,l,u){let c=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");i.replace(c,(d,h)=>(u[h]=0,d))},r=function(i,l){let u=e.createShader(l);if(e.shaderSource(u,i),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let a=r(t,e.VERTEX_SHADER),o=r(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,a),e.attachShader(this.id,o),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),s(t,"attribute",this.attribute);for(let i in this.attribute)this.attribute[i]=e.getAttribLocation(this.id,i);s(t,"uniform",this.uniform),s(n,"uniform",this.uniform);for(let i in this.uniform)this.uniform[i]=e.getUniformLocation(this.id,i)}function C8(e){e||(e={});let t=0,n=null,s=!1,r=-1,a=[null,null],o=[],i=-1,l=-1,u=null,c=null,d={},h=e.canvas||document.createElement("canvas"),p={},f={INTERMEDIATE:1},m=h.getContext("webgl");if(!m)throw new Error("Filter: getContext() failed");this.addFilter=function(v){let k=Array.prototype.slice.call(arguments,1),w=d[v];o.push({func:w,args:k})},this.reset=function(){o=[]};let g=function(v,k){if(!(v===i&&k===l)){if(h.width=v,i=v,h.height=k,l=k,!u){let w=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=m.createBuffer(),m.bindBuffer(m.ARRAY_BUFFER,u),m.bufferData(m.ARRAY_BUFFER,w,m.STATIC_DRAW),m.pixelStorei(m.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}m.viewport(0,0,i,l),a=[null,null]}},A=function(v,k){let w=m.createFramebuffer();m.bindFramebuffer(m.FRAMEBUFFER,w);let C=m.createRenderbuffer();m.bindRenderbuffer(m.RENDERBUFFER,C);let R=m.createTexture();return m.bindTexture(m.TEXTURE_2D,R),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,v,k,0,m.RGBA,m.UNSIGNED_BYTE,null),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.framebufferTexture2D(m.FRAMEBUFFER,m.COLOR_ATTACHMENT0,m.TEXTURE_2D,R,0),m.bindTexture(m.TEXTURE_2D,null),m.bindFramebuffer(m.FRAMEBUFFER,null),{fbo:w,texture:R}},y=function(v){return a[v]=a[v]||A(i,l),a[v]},x=function(v=null){var R,P;let k=null,w=null,C=!1;t===0?k=n:k=(R=y(r))==null?void 0:R.texture,t++,s&&!(v&f.INTERMEDIATE)?(w=null,C=t%2==0):(r=(r+1)%2,w=(P=y(r))==null?void 0:P.fbo),m.bindTexture(m.TEXTURE_2D,k),m.bindFramebuffer(m.FRAMEBUFFER,w),m.uniform1f(c.uniform.flipY,C?-1:1),m.drawArrays(m.TRIANGLES,0,6)};this.apply=function(v){if(g(v.width,v.height),t=0,n||(n=m.createTexture()),m.bindTexture(m.TEXTURE_2D,n),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.NEAREST),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.NEAREST),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,m.RGBA,m.UNSIGNED_BYTE,v),o.length===0)return x(),h;for(let k=0;k0,a=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!r||!a)return{tensor:null,canvas:Ee};let o=r,i=a;if(o>Bf&&(o=Bf,i=o*a/r),i>Bf&&(i=Bf,o=i*r/a),t.filter.width>0?o=t.filter.width:t.filter.height>0&&(o=r*(t.filter.height/a)),t.filter.height>0?i=t.filter.height:t.filter.width>0&&(i=a*(t.filter.width/r)),!o||!i)throw new Error("Human: Input cannot determine dimension");(!Ee||(Ee==null?void 0:Ee.width)!==o||(Ee==null?void 0:Ee.height)!==i)&&(Ee=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(o,i):document.createElement("canvas"),(Ee==null?void 0:Ee.width)!==o&&(Ee.width=o),(Ee==null?void 0:Ee.height)!==i&&(Ee.height=i));let l=Ee.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(r,0),l.scale(-1,1),l.drawImage(e,0,0,r,a,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,r,a,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),t.filter.enabled){if((!zt||!wt||Ee.width!==wt.width||(Ee==null?void 0:Ee.height)!==(wt==null?void 0:wt.height))&&(wt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height):document.createElement("canvas"),(wt==null?void 0:wt.width)!==(Ee==null?void 0:Ee.width)&&(wt.width=Ee==null?void 0:Ee.width),(wt==null?void 0:wt.height)!==(Ee==null?void 0:Ee.height)&&(wt.height=Ee==null?void 0:Ee.height),zt=ns.flags.IS_BROWSER?new c8({canvas:wt}):null),!zt)return{tensor:null,canvas:Ee};zt.reset(),zt.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&zt.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&zt.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&zt.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&zt.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&zt.addFilter("hue",t.filter.hue),t.filter.negative&&zt.addFilter("negative"),t.filter.sepia&&zt.addFilter("sepia"),t.filter.vintage&&zt.addFilter("brownie"),t.filter.sepia&&zt.addFilter("sepia"),t.filter.kodachrome&&zt.addFilter("kodachrome"),t.filter.technicolor&&zt.addFilter("technicolor"),t.filter.polaroid&&zt.addFilter("polaroid"),t.filter.pixelate!==0&&zt.addFilter("pixelate",t.filter.pixelate),zt.apply(Ee)}else wt=Ee,zt&&(zt=null);if(!n){let u;if(wt.data){let c=[wt.height,wt.width,3];u=Rh(wt.data,c,"int32")}else if(wt instanceof ImageData)u=rs?rs.fromPixels(wt):null;else if(t.backend==="webgl"||t.backend==="humangl"){let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(o,i):document.createElement("canvas");c.width=o,c.height=i;let d=c.getContext("2d");d==null||d.drawImage(wt,0,0),u=rs?rs.fromPixels(c):null}else{let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(o,i):document.createElement("canvas");c.width=o,c.height=i;let d=c.getContext("2d");d==null||d.drawImage(wt,0,0);let h=d==null?void 0:d.getImageData(0,0,o,i);u=rs?rs.fromPixels(h):null}if(u){let c=ce(u,"float32");n=Ft(c,0),K(u),K(c)}}}let s=t.filter.return?wt:null;return{tensor:n,canvas:s}}var gs,Ry=!1;async function Wf(e){return gs?e.debug&&ue("cached model:",gs.modelUrl):(gs=await pt(ft(e.modelBasePath,e.segmentation.modelPath)),!gs||!gs.modelUrl?ue("load model failed:",e.segmentation.modelPath):e.debug&&ue("load model:",gs.modelUrl)),gs}async function _y(e){var f,m;let t=((f=e.tensor)==null?void 0:f.shape[1])||0,n=((m=e.tensor)==null?void 0:m.shape[2])||0;if(!e.tensor||!gs||!gs.inputs[0].shape)return null;let s=_e.resizeBilinear(e.tensor,[gs.inputs[0].shape[1],gs.inputs[0].shape[2]],!1),r=de(s,255),a=gs.predict(r);K(s),K(r);let o=ot(a,0),i;if(o.shape[2]===2){let A=o.softmax(),[g,y]=ds(A,2),x=Ft(y,2),b=Ft(x,0);K(A),K(g),K(y);let v=_e.cropAndResize(b,[[0,0,.5,.5]],[0],[t,n]);i=ot(v,0),K(v),K(x),K(b)}else i=_e.resizeBilinear(o,[t,n]);if(typeof document=="undefined")return i.data();let l=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");l.width=t,l.height=n,rs&&await rs.toPixels(i,l),K(i),K(o),K(a);let u=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");u.width=t,u.height=n;let c=u.getContext("2d");c.filter="blur(8px",await c.drawImage(l,0,0);let d=c.getImageData(0,0,t,n).data,h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");h.width=t,h.height=n;let p=h.getContext("2d");return e.canvas&&await p.drawImage(e.canvas,0,0),p.globalCompositeOperation="darken",p.filter="blur(8px)",await p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none",e.canvas=h,d}async function d8(e,t,n){var a;if(Ry)return null;Ry=!0,gs||await Wf(n);let s=Zo(e,n),r=await _y(s);if(K(s.tensor),t&&r){let o=Zo(t,n),i=o.canvas;K(o.tensor);let l=s.canvas,u=(a=l.getContext("2d"))==null?void 0:a.getImageData(0,0,l.width,l.height).data,c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(l.width,l.height):document.createElement("canvas");c.width=l.width,c.height=l.height;let d=c.getContext("2d");d.globalCompositeOperation="copy",d.drawImage(i,0,0,c.width,c.height);let h=d.getImageData(0,0,c.width,c.height);for(let p=0;p{let t=(d,h)=>Math.atan2(d[1]-h[1],d[0]-h[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=e.mesh[33][2]>e.mesh[263][2],a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],u=Math.sqrt(l[0]**2+l[1]**2);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},Bie=(e,t)=>{let n=A=>{let g=Math.sqrt(A[0]*A[0]+A[1]*A[1]+A[2]*A[2]);return A[0]/=g,A[1]/=g,A[2]/=g,A},s=(A,g)=>{let y=A[0]-g[0],x=A[1]-g[1],b=A[2]-g[2];return[y,x,b]},r=(A,g)=>{let y=A[1]*g[2]-A[2]*g[1],x=A[2]*g[0]-A[0]*g[2],b=A[0]*g[1]-A[1]*g[0];return[y,x,b]},a=A=>{let[g,y,x,b,v,k,w,C,E]=A,O,R,_;return b<1?b>-1?(_=Math.asin(b),R=Math.atan2(-w,g),O=Math.atan2(-k,v)):(_=-Math.PI/2,R=-Math.atan2(C,E),O=0):(_=Math.PI/2,R=Math.atan2(C,E),O=0),isNaN(O)&&(O=0),isNaN(R)&&(R=0),isNaN(_)&&(_=0),{pitch:2*-O,yaw:2*-R,roll:2*-_}},o=A=>{let g=(x,b,v,k)=>Math.atan2(k-b,v-x);return{pitch:g(A[10][1],A[10][2],A[152][1],A[152][2]),yaw:g(A[33][0],A[33][2],A[263][0],A[263][2]),roll:g(A[33][0],A[33][1],A[263][0],A[263][1])}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[i[10],i[152],i[234],i[454]].map(A=>[A[0]*t[0]/l,A[1]*t[1]/l,A[2]]),c=n(s(u[1],u[0])),d=n(s(u[3],u[2])),h=n(r(d,c));d=r(c,h);let p=[d[0],d[1],d[2],c[0],c[1],c[2],h[0],h[1],h[2]],f=a(p),m=i.length===478?Lie(e):{bearing:0,strength:0};return{angle:f,matrix:p,gaze:m}},$y=async(e,t)=>{var d,h,p,f,m,A;let n,s,r,a,o,i,l,u=[];e.state="run:face",n=Ke();let c=await Ok(t,e.config);if(e.performance.face=Math.trunc(Ke()-n),!t.shape||t.shape.length!==4)return[];if(!c)return[];for(let g=0;g{if(!e)return[];let t=[];for(let n=0;nl.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position.yl.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&t.push({body:n,gesture:`leaning ${o.position.y>i.position.y?"left":"right"}`})}return t},f8=e=>{if(!e)return[];let t=[];for(let n=0;n0){let s=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(s)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));o>10&&t.push({face:n,gesture:`mouth ${Math.trunc(o)}% open`});let i=e[n].mesh[152][2];Math.abs(i)>10&&t.push({face:n,gesture:`head ${i<0?"up":"down"}`})}return t},m8=e=>{if(!e)return[];let t=[];for(let n=0;n.06||d>.06)&&(u=!1),h>.06&&t.push({iris:n,gesture:"looking right"}),d>.06&&t.push({iris:n,gesture:"looking left"});let p=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||p<.01||f>.022||p>.022)&&(u=!1),(f<.01||p<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||p>.022)&&t.push({iris:n,gesture:"looking up"}),u&&t.push({iris:n,gesture:"looking center"})}return t},A8=e=>{if(!e)return[];let t=[];for(let n=0;n0){let r=s.reduce((o,i)=>o.position[2]o.position[1]Uie,body:()=>x8,canvas:()=>Vie,face:()=>y8,gesture:()=>g8,hand:()=>b8,object:()=>v8,options:()=>ha,person:()=>Wie});var ha={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},Vf=e=>Math.round(e*180/Math.PI);function Fy(e,t,n,s=0,r){e.fillStyle=r.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function od(e,t,n,s,r,a){if(e.beginPath(),a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function Dy(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t){let r=s[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(s[0],Math.round(s[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function id(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){Dy(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s1&&l[1].length>0){let u=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${u}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(c,6,0+a*s.lineHeight),a+=1}}}async function y8(e,t,n){var a,o,i,l;let s=pn(ha,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r)for(let u of t){r.font=s.font,r.strokeStyle=s.color,r.fillStyle=s.color,s.drawBoxes&&od(r,u.box[0],u.box[1],u.box[2],u.box[3],s);let c=[];if(c.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&c.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&c.push(`age: ${u.age||""}`),u.iris&&c.push(`distance: ${u.iris}`),u.emotion&&u.emotion.length>0){let d=u.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);d.length>3&&(d.length=3),c.push(d.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&c.push(`roll: ${Vf(u.rotation.angle.roll)}\xB0 yaw:${Vf(u.rotation.angle.yaw)}\xB0 pitch:${Vf(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&c.push(`gaze: ${Vf(u.rotation.gaze.bearing)}\xB0`)),c.length===0&&c.push("face"),r.fillStyle=s.color;for(let d=c.length-1;d>=0;d--){let h=Math.max(u.box[0],0),p=d*s.lineHeight+u.box[1];s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c[d],h+5,p+16)),r.fillStyle=s.labelColor,r.fillText(c[d],h+4,p+15)}if(r.lineWidth=1,u.mesh&&u.mesh.length>0){if(s.drawPoints)for(let d of u.mesh)Fy(r,d[0],d[1],d[2],s);if(s.drawPolygons){r.lineWidth=1;for(let d=0;du.mesh[p]);Dy(r,h,s)}if(u.annotations&&u.annotations.leftEyeIris){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,h=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;r.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],d,h,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(u.annotations&&u.annotations.rightEyeIris){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,h=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;r.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],d,h,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(s.drawGaze&&((o=(a=u.rotation)==null?void 0:a.gaze)==null?void 0:o.strength)&&((l=(i=u.rotation)==null?void 0:i.gaze)==null?void 0:l.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.beginPath();let d=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]),r.lineTo(d[0],d[1]);let h=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]),r.lineTo(h[0],h[1]),r.stroke()}}}}}async function x8(e,t,n){var a;let s=pn(ha,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round";for(let o=0;ou.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),id(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),l.length===4&&Dy(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="leftHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftKnee"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftAnkle"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftHeel"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftFoot"),i&&l.push([i.position[0],i.position[1]]),id(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightKnee"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightAnkle"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightHeel"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightFoot"),i&&l.push([i.position[0],i.position[1]]),id(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftElbow"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftWrist"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftPalm"),i&&l.push([i.position[0],i.position[1]]),id(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightElbow"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightWrist"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightPalm"),i&&l.push([i.position[0],i.position[1]]),id(r,l,s)}}}}async function b8(e,t,n){let s=pn(ha,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,od(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText("hand",a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText("hand",a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=s.useDepth?`rgba(${127.5+2*o[2]}, ${127.5-2*o[2]}, 255, 0.5)`:s.color,Fy(r,o[0],o[1],0,s);if(s.drawLabels){let o=(i,l)=>{r.fillStyle=s.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:s.color,r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4)};r.font=s.font,o(a.annotations.indexFinger,"index"),o(a.annotations.middleFinger,"middle"),o(a.annotations.ringFinger,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palmBase,"palm")}if(s.drawPolygons){let o=i=>{if(!!i)for(let l=0;l0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()};r.lineWidth=s.lineWidth,o(a.annotations.indexFinger),o(a.annotations.middleFinger),o(a.annotations.ringFinger),o(a.annotations.pinky),o(a.annotations.thumb)}}}}async function v8(e,t,n){let s=pn(ha,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,od(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}}async function Wie(e,t,n){let s=pn(ha,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=s.font;for(let a=0;aP.box[0]&&w.box[0]P.box[1]&&w.box[1]+w.box[3]C.body.box[0]&&P.box[0]+P.box[2]C.body.box[1]&&P.box[1]+P.box[3]C.body.box[0]&&P.box[1]+P.box[3]>C.body.box[1]&&P.box[1]+P.box[3]{P&&P.length===4&&(E.push(P[0],P[0]+P[2]),O.push(P[1],P[1]+P[3]))};R((g=C.face)==null?void 0:g.box),R((y=C.body)==null?void 0:y.box),R((b=(x=C.hands)==null?void 0:x.left)==null?void 0:b.box),R((k=(v=C.hands)==null?void 0:v.right)==null?void 0:k.box);let _=Math.min(...E),N=Math.min(...O);C.box=[_,N,Math.max(...E)-_,Math.max(...O)-N],r&&r[1]&&r[2]&&(C.boxRaw=[C.box[0]/r[2],C.box[1]/r[1],C.box[2]/r[2],C.box[3]/r[1]]),o.push(C)}return o}var Fe={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function k8(e){var s,r,a,o,i,l,u,c,d,h,p,f,m,A,g,y,x,b,v,k,w;if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};let t=Date.now()-e.timestamp,n=t<1e3?8-Math.log(t+1):1;if(Fe.canvas=e.canvas,!Fe.body||e.body.length!==Fe.body.length)Fe.body=JSON.parse(JSON.stringify(e.body));else for(let C=0;C((n-1)*Fe.body[C].box[N]+_)/n),O=e.body[C].boxRaw.map((_,N)=>((n-1)*Fe.body[C].boxRaw[N]+_)/n),R=e.body[C].keypoints.map((_,N)=>({score:_.score,part:_.part,position:[Fe.body[C].keypoints[N]?((n-1)*Fe.body[C].keypoints[N].position[0]+_.position[0])/n:_.position[0],Fe.body[C].keypoints[N]?((n-1)*Fe.body[C].keypoints[N].position[1]+_.position[1])/n:_.position[1]],positionRaw:[Fe.body[C].keypoints[N]?((n-1)*Fe.body[C].keypoints[N].positionRaw[0]+_.positionRaw[0])/n:_.position[0],Fe.body[C].keypoints[N]?((n-1)*Fe.body[C].keypoints[N].positionRaw[1]+_.positionRaw[1])/n:_.position[1]]}));Fe.body[C]={...e.body[C],box:E,boxRaw:O,keypoints:R}}if(!Fe.hand||e.hand.length!==Fe.hand.length)Fe.hand=JSON.parse(JSON.stringify(e.hand));else for(let C=0;C((n-1)*Fe.hand[C].box[W]+P)/n),O=e.hand[C].boxRaw.map((P,W)=>((n-1)*Fe.hand[C].boxRaw[W]+P)/n),R=e.hand[C].keypoints.map((P,W)=>P.map((j,q)=>((n-1)*Fe.hand[C].keypoints[W][q]+j)/n)),_=Object.keys(e.hand[C].annotations),N={};for(let P of _)N[P]=e.hand[C].annotations[P].map((W,j)=>W.map((q,X)=>((n-1)*Fe.hand[C].annotations[P][j][X]+q)/n));Fe.hand[C]={...e.hand[C],box:E,boxRaw:O,keypoints:R,annotations:N}}if(!Fe.face||e.face.length!==Fe.face.length)Fe.face=JSON.parse(JSON.stringify(e.face));else for(let C=0;C((n-1)*Fe.face[C].box[N]+_)/n),O=e.face[C].boxRaw.map((_,N)=>((n-1)*Fe.face[C].boxRaw[N]+_)/n),R={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};R.matrix=(s=e.face[C].rotation)==null?void 0:s.matrix,R.angle={roll:((n-1)*(((a=(r=Fe.face[C].rotation)==null?void 0:r.angle)==null?void 0:a.roll)||0)+(((i=(o=e.face[C].rotation)==null?void 0:o.angle)==null?void 0:i.roll)||0))/n,yaw:((n-1)*(((u=(l=Fe.face[C].rotation)==null?void 0:l.angle)==null?void 0:u.yaw)||0)+(((d=(c=e.face[C].rotation)==null?void 0:c.angle)==null?void 0:d.yaw)||0))/n,pitch:((n-1)*(((p=(h=Fe.face[C].rotation)==null?void 0:h.angle)==null?void 0:p.pitch)||0)+(((m=(f=e.face[C].rotation)==null?void 0:f.angle)==null?void 0:m.pitch)||0))/n},R.gaze={bearing:((n-1)*(((g=(A=Fe.face[C].rotation)==null?void 0:A.gaze)==null?void 0:g.bearing)||0)+(((x=(y=e.face[C].rotation)==null?void 0:y.gaze)==null?void 0:x.bearing)||0))/n,strength:((n-1)*(((v=(b=Fe.face[C].rotation)==null?void 0:b.gaze)==null?void 0:v.strength)||0)+(((w=(k=e.face[C].rotation)==null?void 0:k.gaze)==null?void 0:w.strength)||0))/n},Fe.face[C]={...e.face[C],rotation:R,box:E,boxRaw:O}}if(!Fe.object||e.object.length!==Fe.object.length)Fe.object=JSON.parse(JSON.stringify(e.object));else for(let C=0;C((n-1)*Fe.object[C].box[_]+R)/n),O=e.object[C].boxRaw.map((R,_)=>((n-1)*Fe.object[C].boxRaw[_]+R)/n);Fe.object[C]={...e.object[C],box:E,boxRaw:O}}if(e.persons){let C=e.persons;if(!Fe.persons||C.length!==Fe.persons.length)Fe.persons=JSON.parse(JSON.stringify(C));else for(let E=0;E((n-1)*Fe.persons[E].box[R]+O)/n)}return e.gesture&&(Fe.gesture=e.gesture),e.performance&&(Fe.performance=e.performance),Fe}var Uf=` +`)}var qf=2048,Ee,It,Wt;function ni(e,t){let n;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof Ge)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof Ge)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=Ds(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let r=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,a=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!r||!a)return{tensor:null,canvas:Ee};let o=r,i=a;if(o>qf&&(o=qf,i=o*a/r),i>qf&&(i=qf,o=i*r/a),t.filter.width>0?o=t.filter.width:t.filter.height>0&&(o=r*(t.filter.height/a)),t.filter.height>0?i=t.filter.height:t.filter.width>0&&(i=a*(t.filter.width/r)),!o||!i)throw new Error("Human: Input cannot determine dimension");(!Ee||(Ee==null?void 0:Ee.width)!==o||(Ee==null?void 0:Ee.height)!==i)&&(Ee=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(o,i):document.createElement("canvas"),(Ee==null?void 0:Ee.width)!==o&&(Ee.width=o),(Ee==null?void 0:Ee.height)!==i&&(Ee.height=i));let l=Ee.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(r,0),l.scale(-1,1),l.drawImage(e,0,0,r,a,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,r,a,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),t.filter.enabled){if((!Wt||!It||Ee.width!==It.width||(Ee==null?void 0:Ee.height)!==(It==null?void 0:It.height))&&(It=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height):document.createElement("canvas"),(It==null?void 0:It.width)!==(Ee==null?void 0:Ee.width)&&(It.width=Ee==null?void 0:Ee.width),(It==null?void 0:It.height)!==(Ee==null?void 0:Ee.height)&&(It.height=Ee==null?void 0:Ee.height),Wt=os.flags.IS_BROWSER?new C8({canvas:It}):null),!Wt)return{tensor:null,canvas:Ee};Wt.reset(),Wt.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&Wt.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&Wt.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&Wt.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&Wt.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&Wt.addFilter("hue",t.filter.hue),t.filter.negative&&Wt.addFilter("negative"),t.filter.sepia&&Wt.addFilter("sepia"),t.filter.vintage&&Wt.addFilter("brownie"),t.filter.sepia&&Wt.addFilter("sepia"),t.filter.kodachrome&&Wt.addFilter("kodachrome"),t.filter.technicolor&&Wt.addFilter("technicolor"),t.filter.polaroid&&Wt.addFilter("polaroid"),t.filter.pixelate!==0&&Wt.addFilter("pixelate",t.filter.pixelate),Wt.apply(Ee)}else It=Ee,Wt&&(Wt=null);if(!n){let u;if(It.data){let c=[It.height,It.width,3];u=Mh(It.data,c,"int32")}else if(It instanceof ImageData)u=ls?ls.fromPixels(It):null;else if(t.backend==="webgl"||t.backend==="humangl"){let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(o,i):document.createElement("canvas");c.width=o,c.height=i;let d=c.getContext("2d");d==null||d.drawImage(It,0,0),u=ls?ls.fromPixels(c):null}else{let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(o,i):document.createElement("canvas");c.width=o,c.height=i;let d=c.getContext("2d");d==null||d.drawImage(It,0,0);let h=d==null?void 0:d.getImageData(0,0,o,i);u=ls?ls.fromPixels(h):null}if(u){let c=ce(u,"float32");n=Ot(c,0),K(u),K(c)}}}let s=t.filter.return?It:null;return{tensor:n,canvas:s}}var vs,zy=!1;async function Xf(e){return vs?e.debug&&ue("cached model:",vs.modelUrl):(vs=await mt(gt(e.modelBasePath,e.segmentation.modelPath)),!vs||!vs.modelUrl?ue("load model failed:",e.segmentation.modelPath):e.debug&&ue("load model:",vs.modelUrl)),vs}async function Ly(e){var f,m;let t=((f=e.tensor)==null?void 0:f.shape[1])||0,n=((m=e.tensor)==null?void 0:m.shape[2])||0;if(!e.tensor||!vs||!vs.inputs[0].shape)return null;let s=_e.resizeBilinear(e.tensor,[vs.inputs[0].shape[1],vs.inputs[0].shape[2]],!1),r=de(s,255),a=vs.predict(r);K(s),K(r);let o=lt(a,0),i;if(o.shape[2]===2){let g=o.softmax(),[A,y]=ms(g,2),x=Ot(y,2),b=Ot(x,0);K(g),K(A),K(y);let v=_e.cropAndResize(b,[[0,0,.5,.5]],[0],[t,n]);i=lt(v,0),K(v),K(x),K(b)}else i=_e.resizeBilinear(o,[t,n]);if(typeof document=="undefined")return i.data();let l=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");l.width=t,l.height=n,ls&&await ls.toPixels(i,l),K(i),K(o),K(a);let u=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");u.width=t,u.height=n;let c=u.getContext("2d");c.filter="blur(8px",await c.drawImage(l,0,0);let d=c.getImageData(0,0,t,n).data,h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");h.width=t,h.height=n;let p=h.getContext("2d");return e.canvas&&await p.drawImage(e.canvas,0,0),p.globalCompositeOperation="darken",p.filter="blur(8px)",await p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none",e.canvas=h,d}async function T8(e,t,n){var a;if(zy)return null;zy=!0,vs||await Xf(n);let s=ni(e,n),r=await Ly(s);if(K(s.tensor),t&&r){let o=ni(t,n),i=o.canvas;K(o.tensor);let l=s.canvas,u=(a=l.getContext("2d"))==null?void 0:a.getImageData(0,0,l.width,l.height).data,c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(l.width,l.height):document.createElement("canvas");c.width=l.width,c.height=l.height;let d=c.getContext("2d");d.globalCompositeOperation="copy",d.drawImage(i,0,0,c.width,c.height);let h=d.getImageData(0,0,c.width,c.height);for(let p=0;p{let t=(d,h)=>Math.atan2(d[1]-h[1],d[0]-h[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=e.mesh[33][2]>e.mesh[263][2],a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],u=Math.sqrt(l[0]**2+l[1]**2);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},ole=(e,t)=>{let n=g=>{let A=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=A,g[1]/=A,g[2]/=A,g},s=(g,A)=>{let y=g[0]-A[0],x=g[1]-A[1],b=g[2]-A[2];return[y,x,b]},r=(g,A)=>{let y=g[1]*A[2]-g[2]*A[1],x=g[2]*A[0]-g[0]*A[2],b=g[0]*A[1]-g[1]*A[0];return[y,x,b]},a=g=>{let[A,y,x,b,v,k,w,C,R]=g,P,E,_;return b<1?b>-1?(_=Math.asin(b),E=Math.atan2(-w,A),P=Math.atan2(-k,v)):(_=-Math.PI/2,E=-Math.atan2(C,R),P=0):(_=Math.PI/2,E=Math.atan2(C,R),P=0),isNaN(P)&&(P=0),isNaN(E)&&(E=0),isNaN(_)&&(_=0),{pitch:2*-P,yaw:2*-E,roll:2*-_}},o=g=>{let A=(x,b,v,k)=>Math.atan2(k-b,v-x);return{pitch:A(g[10][1],g[10][2],g[152][1],g[152][2]),yaw:A(g[33][0],g[33][2],g[263][0],g[263][2]),roll:A(g[33][0],g[33][1],g[263][0],g[263][1])}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[i[10],i[152],i[234],i[454]].map(g=>[g[0]*t[0]/l,g[1]*t[1]/l,g[2]]),c=n(s(u[1],u[0])),d=n(s(u[3],u[2])),h=n(r(d,c));d=r(c,h);let p=[d[0],d[1],d[2],c[0],c[1],c[2],h[0],h[1],h[2]],f=a(p),m=i.length===478?ale(e):{bearing:0,strength:0};return{angle:f,matrix:p,gaze:m}},By=async(e,t)=>{var d,h,p,f,m,g;let n,s,r,a,o,i,l,u=[];e.state="run:face",n=Ye();let c=await Uk(t,e.config);if(e.performance.face=Math.trunc(Ye()-n),!t.shape||t.shape.length!==4)return[];if(!c)return[];for(let A=0;A{if(!e)return[];let t=[];for(let n=0;nl.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position.yl.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&t.push({body:n,gesture:`leaning ${o.position.y>i.position.y?"left":"right"}`})}return t},R8=e=>{if(!e)return[];let t=[];for(let n=0;n0){let s=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(s)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));o>10&&t.push({face:n,gesture:`mouth ${Math.trunc(o)}% open`});let i=e[n].mesh[152][2];Math.abs(i)>10&&t.push({face:n,gesture:`head ${i<0?"up":"down"}`})}return t},_8=e=>{if(!e)return[];let t=[];for(let n=0;n.06||d>.06)&&(u=!1),h>.06&&t.push({iris:n,gesture:"looking right"}),d>.06&&t.push({iris:n,gesture:"looking left"});let p=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||p<.01||f>.022||p>.022)&&(u=!1),(f<.01||p<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||p>.022)&&t.push({iris:n,gesture:"looking up"}),u&&t.push({iris:n,gesture:"looking center"})}return t},$8=e=>{if(!e)return[];let t=[];for(let n=0;n0){let a=s.reduce((i,l)=>i.position[2]i.position[1]ule,body:()=>O8,canvas:()=>lle,face:()=>F8,gesture:()=>D8,hand:()=>P8,object:()=>M8,options:()=>Aa,person:()=>ile});var Aa={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},Kf=e=>Math.round(e*180/Math.PI);function Wy(e,t,n,s=0,r){e.fillStyle=r.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function pd(e,t,n,s,r,a){if(e.beginPath(),a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function Vy(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t){let r=s[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(s[0],Math.round(s[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function fd(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){Vy(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s1&&l[1].length>0){let u=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${u}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(c,6,0+a*s.lineHeight),a+=1}}}async function F8(e,t,n){var a,o,i,l;let s=gn(Aa,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r)for(let u of t){r.font=s.font,r.strokeStyle=s.color,r.fillStyle=s.color,s.drawBoxes&&pd(r,u.box[0],u.box[1],u.box[2],u.box[3],s);let c=[];if(c.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&c.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&c.push(`age: ${u.age||""}`),u.iris&&c.push(`distance: ${u.iris}`),u.emotion&&u.emotion.length>0){let d=u.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);d.length>3&&(d.length=3),c.push(d.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&c.push(`roll: ${Kf(u.rotation.angle.roll)}\xB0 yaw:${Kf(u.rotation.angle.yaw)}\xB0 pitch:${Kf(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&c.push(`gaze: ${Kf(u.rotation.gaze.bearing)}\xB0`)),c.length===0&&c.push("face"),r.fillStyle=s.color;for(let d=c.length-1;d>=0;d--){let h=Math.max(u.box[0],0),p=d*s.lineHeight+u.box[1];s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c[d],h+5,p+16)),r.fillStyle=s.labelColor,r.fillText(c[d],h+4,p+15)}if(r.lineWidth=1,u.mesh&&u.mesh.length>0){if(s.drawPoints)for(let d of u.mesh)Wy(r,d[0],d[1],d[2],s);if(s.drawPolygons){r.lineWidth=1;for(let d=0;du.mesh[p]);Vy(r,h,s)}if(u.annotations&&u.annotations.leftEyeIris){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,h=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;r.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],d,h,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(u.annotations&&u.annotations.rightEyeIris){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,h=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;r.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],d,h,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(s.drawGaze&&((o=(a=u.rotation)==null?void 0:a.gaze)==null?void 0:o.strength)&&((l=(i=u.rotation)==null?void 0:i.gaze)==null?void 0:l.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.beginPath();let d=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]),r.lineTo(d[0],d[1]);let h=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]),r.lineTo(h[0],h[1]),r.stroke()}}}}}async function O8(e,t,n){var a;let s=gn(Aa,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round";for(let o=0;ou.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),fd(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),l.length===4&&Vy(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="leftHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftKnee"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftAnkle"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftHeel"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftFoot"),i&&l.push([i.position[0],i.position[1]]),fd(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightKnee"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightAnkle"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightHeel"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightFoot"),i&&l.push([i.position[0],i.position[1]]),fd(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftElbow"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftWrist"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftPalm"),i&&l.push([i.position[0],i.position[1]]),fd(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightElbow"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightWrist"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightPalm"),i&&l.push([i.position[0],i.position[1]]),fd(r,l,s)}}}}async function P8(e,t,n){let s=gn(Aa,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,pd(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText("hand",a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText("hand",a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=s.useDepth?`rgba(${127.5+2*o[2]}, ${127.5-2*o[2]}, 255, 0.5)`:s.color,Wy(r,o[0],o[1],0,s);if(s.drawLabels){let o=(i,l)=>{r.fillStyle=s.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:s.color,r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4)};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons){let o=i=>{if(!!i)for(let l=0;l0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}}async function M8(e,t,n){let s=gn(Aa,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,pd(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}}async function ile(e,t,n){let s=gn(Aa,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=s.font;for(let a=0;aO.box[0]&&w.box[0]O.box[1]&&w.box[1]+w.box[3]C.body.box[0]&&O.box[0]+O.box[2]C.body.box[1]&&O.box[1]+O.box[3]C.body.box[0]&&O.box[1]+O.box[3]>C.body.box[1]&&O.box[1]+O.box[3]{O&&O.length===4&&(R.push(O[0],O[0]+O[2]),P.push(O[1],O[1]+O[3]))};E((A=C.face)==null?void 0:A.box),E((y=C.body)==null?void 0:y.box),E((b=(x=C.hands)==null?void 0:x.left)==null?void 0:b.box),E((k=(v=C.hands)==null?void 0:v.right)==null?void 0:k.box);let _=Math.min(...R),T=Math.min(...P);C.box=[_,T,Math.max(...R)-_,Math.max(...P)-T],r&&r[1]&&r[2]&&(C.boxRaw=[C.box[0]/r[2],C.box[1]/r[1],C.box[2]/r[2],C.box[3]/r[1]]),o.push(C)}return o}var De={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function L8(e){var s,r,a,o,i,l,u,c,d,h,p,f,m,g,A,y,x,b,v,k,w;if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};let t=Date.now()-e.timestamp,n=t<1e3?8-Math.log(t+1):1;if(De.canvas=e.canvas,!De.body||e.body.length!==De.body.length)De.body=JSON.parse(JSON.stringify(e.body));else for(let C=0;C((n-1)*De.body[C].box[T]+_)/n),P=e.body[C].boxRaw.map((_,T)=>((n-1)*De.body[C].boxRaw[T]+_)/n),E=e.body[C].keypoints.map((_,T)=>({score:_.score,part:_.part,position:[De.body[C].keypoints[T]?((n-1)*De.body[C].keypoints[T].position[0]+_.position[0])/n:_.position[0],De.body[C].keypoints[T]?((n-1)*De.body[C].keypoints[T].position[1]+_.position[1])/n:_.position[1]],positionRaw:[De.body[C].keypoints[T]?((n-1)*De.body[C].keypoints[T].positionRaw[0]+_.positionRaw[0])/n:_.position[0],De.body[C].keypoints[T]?((n-1)*De.body[C].keypoints[T].positionRaw[1]+_.positionRaw[1])/n:_.position[1]]}));De.body[C]={...e.body[C],box:R,boxRaw:P,keypoints:E}}if(!De.hand||e.hand.length!==De.hand.length)De.hand=JSON.parse(JSON.stringify(e.hand));else for(let C=0;C((n-1)*De.hand[C].box[W]+O)/n),P=e.hand[C].boxRaw.map((O,W)=>((n-1)*De.hand[C].boxRaw[W]+O)/n),E=e.hand[C].keypoints.map((O,W)=>O.map((j,q)=>((n-1)*De.hand[C].keypoints[W][q]+j)/n)),_=Object.keys(e.hand[C].annotations),T={};for(let O of _)T[O]=e.hand[C].annotations[O].map((W,j)=>W.map((q,X)=>((n-1)*De.hand[C].annotations[O][j][X]+q)/n));De.hand[C]={...e.hand[C],box:R,boxRaw:P,keypoints:E,annotations:T}}if(!De.face||e.face.length!==De.face.length)De.face=JSON.parse(JSON.stringify(e.face));else for(let C=0;C((n-1)*De.face[C].box[T]+_)/n),P=e.face[C].boxRaw.map((_,T)=>((n-1)*De.face[C].boxRaw[T]+_)/n),E={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};E.matrix=(s=e.face[C].rotation)==null?void 0:s.matrix,E.angle={roll:((n-1)*(((a=(r=De.face[C].rotation)==null?void 0:r.angle)==null?void 0:a.roll)||0)+(((i=(o=e.face[C].rotation)==null?void 0:o.angle)==null?void 0:i.roll)||0))/n,yaw:((n-1)*(((u=(l=De.face[C].rotation)==null?void 0:l.angle)==null?void 0:u.yaw)||0)+(((d=(c=e.face[C].rotation)==null?void 0:c.angle)==null?void 0:d.yaw)||0))/n,pitch:((n-1)*(((p=(h=De.face[C].rotation)==null?void 0:h.angle)==null?void 0:p.pitch)||0)+(((m=(f=e.face[C].rotation)==null?void 0:f.angle)==null?void 0:m.pitch)||0))/n},E.gaze={bearing:((n-1)*(((A=(g=De.face[C].rotation)==null?void 0:g.gaze)==null?void 0:A.bearing)||0)+(((x=(y=e.face[C].rotation)==null?void 0:y.gaze)==null?void 0:x.bearing)||0))/n,strength:((n-1)*(((v=(b=De.face[C].rotation)==null?void 0:b.gaze)==null?void 0:v.strength)||0)+(((w=(k=e.face[C].rotation)==null?void 0:k.gaze)==null?void 0:w.strength)||0))/n},De.face[C]={...e.face[C],rotation:E,box:R,boxRaw:P}}if(!De.object||e.object.length!==De.object.length)De.object=JSON.parse(JSON.stringify(e.object));else for(let C=0;C((n-1)*De.object[C].box[_]+E)/n),P=e.object[C].boxRaw.map((E,_)=>((n-1)*De.object[C].boxRaw[_]+E)/n);De.object[C]={...e.object[C],box:R,boxRaw:P}}if(e.persons){let C=e.persons;if(!De.persons||C.length!==De.persons.length)De.persons=JSON.parse(JSON.stringify(C));else for(let R=0;R((n-1)*De.persons[R].box[E]+P)/n)}return e.gesture&&(De.gesture=e.gesture),e.performance&&(De.performance=e.performance),De}var Zf=` /9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob @@ -4770,7 +4770,7 @@ PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1 8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3 ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY -euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,Hf=` +euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,Yf=` /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA @@ -5338,7 +5338,7 @@ AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2 SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/ -2Q==`;var I8="2.1.4";var cu,ld,ud,Yo,Jo,du,Gf,cd,jf,qf,Xf,Kf,Gie=class{constructor(t){ts(this,cu,void 0);ts(this,ld,void 0);ts(this,ud,void 0);ts(this,Yo,void 0);ts(this,Jo,void 0);ts(this,du,void 0);this.analyze=(...t)=>{if(!hn(this,ld))return;let n=this.tf.engine().state.numTensors,s=hn(this,cu);Cs(this,cu,n);let r=n-s;r!==0&&ue(...t,r)};ts(this,Gf,t=>{if(!hn(this,ud))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof Ue))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});ts(this,cd,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let s=Ke();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&this.config.debug&&ue("running inside web worker"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(ue("override: backend set to tensorflow while running in browser"),this.config.backend="humangl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(ue("override: backend set to webgl while running in nodejs"),this.config.backend="tensorflow"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")ue("override: backend set to webgpu but browser does not support webgpu"),this.config.backend="humangl";else{let a=await navigator.gpu.requestAdapter();this.config.debug&&ue("enumerated webgpu adapter:",a)}this.config.backend==="humangl"&&wk();let r=Object.keys(this.tf.engine().registryFactory);if(this.config.debug&&ue("available backends:",r),r.includes(this.config.backend)||(ue(`error: backend ${this.config.backend} not found in registry`),this.config.backend=this.tf.ENV.flags.IS_NODE?"tensorflow":"humangl",ue(`override: using backend ${this.config.backend} instead`)),this.config.debug&&ue("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&ue("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let a=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),o=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&ue(`wasm execution: ${a?"SIMD":"no SIMD"} ${o?"multithreaded":"singlethreaded"}`),this.config.debug&&!a&&ue("warning: wasm simd support is not enabled")}try{await this.tf.setBackend(this.config.backend)}catch(a){ue("error: cannot set backend:",this.config.backend,a)}}if(this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_CPU_FORWARD",!0),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!1),this.tf.ENV.set("WEBGL_USE_SHAPES_UNIFORMS",!0),typeof this.config.deallocate!="undefined"&&this.config.deallocate&&(ue("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let r=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&ue(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}this.tf.enableProdMode(),await this.tf.ready(),this.performance.backend=Math.trunc(Ke()-s)}});this.next=t=>k8(t||this.result);ts(this,jf,async t=>{if(this.config.cacheSensitivity===0)return!1;let n=32;if(!t.shape[1]||!t.shape[2])return!1;let s=_e.resizeBilinear(t,[Math.trunc(t.shape[1]/n),Math.trunc(t.shape[2]/n)]),r=await s.data(),a=0;for(let l=0;l10*this.config.cacheSensitivity?0:o),i});ts(this,qf,async()=>{let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(this.config.warmup){case"face":n=await t(Uf);break;case"full":n=await t(Hf);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await this.detect(r,this.config),r.close()}return s});ts(this,Xf,async()=>new Promise(t=>{let n,s=0;switch(this.config.warmup){case"face":s=256,n="data:image/jpeg;base64,"+Uf;break;case"full":case"body":s=1200,n="data:image/jpeg;base64,"+Hf;break;default:n=null}let r=new Image;r.onload=async()=>{let a=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,s):document.createElement("canvas");a.width=r.naturalWidth,a.height=r.naturalHeight;let o=a.getContext("2d");o==null||o.drawImage(r,0,0);let i=await this.detect(a,this.config);t(i)},n?r.src=n:t(null)}));ts(this,Kf,async()=>{let t=r=>Buffer.from(r,"base64"),n;if(this.config.warmup==="face"&&(n=t(Uf)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(Hf)),!n)return null;let s;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);this.tf.dispose(r),s=await this.detect(a,this.config),this.tf.dispose(a)}else this.config.debug&&ue("Warmup tfjs-node not loaded");return s});this.config=pn(Yy,t||{}),this.tf=Jc,this.draw=Oy,this.version=I8,this.state="idle",Cs(this,cu,0),Cs(this,ld,!1),Cs(this,ud,!1),Cs(this,Yo,!0),Cs(this,du,0),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,movenet:null,handpose:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,centernet:null,faceres:null,segmentation:null},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[]},this.image=n=>Zo(n,this.config),this.faceTriangulation=Pk,this.faceUVMap=Mk,this.sysinfo=Jy(),Cs(this,Jo,1)}similarity(t,n){return q1(t,n)}segmentation(t,n){return d8(t,n,this.config)}enhance(t){return X1(t)}match(t,n,s=0){return Lk(t,n,s)}async load(t){this.state="load";let n=Ke();t&&(this.config=pn(this.config,t)),hn(this,Yo)&&(this.config.debug&&ue(`version: ${this.version}`),this.config.debug&&ue(`tfjs version: ${this.tf.version_core}`),this.config.debug&&ue("platform:",this.sysinfo.platform),this.config.debug&&ue("agent:",this.sysinfo.agent),await hn(this,cd).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&ue("configuration:",this.config),this.config.debug&&ue("tf flags:",this.tf.ENV.flags))),await h8(this),hn(this,Yo)&&(this.config.debug&&ue("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),Cs(this,Yo,!1));let s=Math.trunc(Ke()-n);s>(this.performance.load||0)&&(this.performance.load=s)}async detect(t,n){return new Promise(async s=>{this.state="config";let r,a;this.config=pn(this.config,n),this.state="check";let o=hn(this,Gf).call(this,t);o&&(ue(o,t),s({error:o}));let i=Ke();await hn(this,cd).call(this),await this.load(),r=Ke();let l=Zo(t,this.config);if(this.performance.image=Math.trunc(Ke()-r),this.analyze("Get Image:"),this.config.segmentation.enabled&&l&&l.tensor&&(this.analyze("Start Segmentation:"),this.state="run:segmentation",r=Ke(),await _y(l),a=Math.trunc(Ke()-r),a>0&&(this.performance.segmentation=a),l.canvas&&(K(l.tensor),l=Zo(l.canvas,this.config)),this.analyze("End Segmentation:")),!l||!l.tensor){ue("could not convert input to tensor"),s({error:"could not convert input to tensor"});return}r=Ke(),this.config.skipFrame=await hn(this,jf).call(this,l.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(Ke()-r),this.analyze("Check Changed:");let u=[],c=[],d=[],h=[];this.config.async?(u=this.config.face.enabled?$y(this,l.tensor):[],this.performance.face&&delete this.performance.face):(this.state="run:face",r=Ke(),u=this.config.face.enabled?await $y(this,l.tensor):[],a=Math.trunc(Ke()-r),a>0&&(this.performance.face=a)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?ay(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?py(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?c=this.config.body.enabled?gy(l.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(c=this.config.body.enabled?vy(l.tensor,this.config):[]),this.performance.body&&delete this.performance.body):(this.state="run:body",r=Ke(),this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?await ay(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?await py(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?c=this.config.body.enabled?await gy(l.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(c=this.config.body.enabled?await vy(l.tensor,this.config):[]),a=Math.trunc(Ke()-r),a>0&&(this.performance.body=a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(d=this.config.hand.enabled?dy(l.tensor,this.config):[],this.performance.hand&&delete this.performance.hand):(this.state="run:hand",r=Ke(),d=this.config.hand.enabled?await dy(l.tensor,this.config):[],a=Math.trunc(Ke()-r),a>0&&(this.performance.hand=a)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(this.config.object.modelPath.includes("nanodet")?h=this.config.object.enabled?Sy(l.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(h=this.config.object.enabled?Ey(l.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(this.state="run:object",r=Ke(),this.config.object.modelPath.includes("nanodet")?h=this.config.object.enabled?await Sy(l.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(h=this.config.object.enabled?await Ey(l.tensor,this.config):[]),a=Math.trunc(Ke()-r),a>0&&(this.performance.object=a)),this.analyze("End Object:"),this.config.async&&([u,c,d,h]=await Promise.all([u,c,d,h]));let p=[];this.config.gesture.enabled&&(r=Ke(),p=[...f8(u),...p8(c),...A8(d),...m8(u)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(Ke()-r)),this.performance.total=Math.trunc(Ke()-i),this.state="idle",this.result={face:u,body:c,hand:d,gesture:p,object:h,performance:this.performance,canvas:l.canvas,timestamp:Date.now(),get persons(){var f;return w8(u,c,d,p,(f=l==null?void 0:l.tensor)==null?void 0:f.shape)}},K(l.tensor),s(this.result)})}async warmup(t){let n=Ke();if(t&&(this.config=pn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let s;typeof createImageBitmap=="function"?s=await hn(this,qf).call(this):typeof Image!="undefined"?s=await hn(this,Xf).call(this):s=await hn(this,Kf).call(this);let r=Ke();return this.config.debug&&ue("Warmup",this.config.warmup,Math.round(r-n),"ms",s),s}};cu=new WeakMap,ld=new WeakMap,ud=new WeakMap,Yo=new WeakMap,Jo=new WeakMap,du=new WeakMap,Gf=new WeakMap,cd=new WeakMap,jf=new WeakMap,qf=new WeakMap,Xf=new WeakMap,Kf=new WeakMap;export{Gie as Human,Gie as default}; +2Q==`;var B8="2.1.4";var gu,md,gd,si,ri,Au,Jf,Ad,Qf,e0,t0,n0,dle=class{constructor(t){as(this,gu,void 0);as(this,md,void 0);as(this,gd,void 0);as(this,si,void 0);as(this,ri,void 0);as(this,Au,void 0);this.analyze=(...t)=>{if(!mn(this,md))return;let n=this.tf.engine().state.numTensors,s=mn(this,gu);Rs(this,gu,n);let r=n-s;r!==0&&ue(...t,r)};as(this,Jf,t=>{if(!mn(this,gd))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof Ge))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});as(this,Ad,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let s=Ye();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&this.config.debug&&ue("running inside web worker"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(ue("override: backend set to tensorflow while running in browser"),this.config.backend="humangl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(ue("override: backend set to webgl while running in nodejs"),this.config.backend="tensorflow"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")ue("override: backend set to webgpu but browser does not support webgpu"),this.config.backend="humangl";else{let a=await navigator.gpu.requestAdapter();this.config.debug&&ue("enumerated webgpu adapter:",a)}this.config.backend==="humangl"&&Rk();let r=Object.keys(this.tf.engine().registryFactory);if(this.config.debug&&ue("available backends:",r),r.includes(this.config.backend)||(ue(`error: backend ${this.config.backend} not found in registry`),this.config.backend=this.tf.ENV.flags.IS_NODE?"tensorflow":"humangl",ue(`override: using backend ${this.config.backend} instead`)),this.config.debug&&ue("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&ue("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let a=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),o=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&ue(`wasm execution: ${a?"SIMD":"no SIMD"} ${o?"multithreaded":"singlethreaded"}`),this.config.debug&&!a&&ue("warning: wasm simd support is not enabled")}try{await this.tf.setBackend(this.config.backend)}catch(a){ue("error: cannot set backend:",this.config.backend,a)}}if(this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_CPU_FORWARD",!0),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!1),this.tf.ENV.set("WEBGL_USE_SHAPES_UNIFORMS",!0),typeof this.config.deallocate!="undefined"&&this.config.deallocate&&(ue("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let r=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&ue(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}this.tf.enableProdMode(),await this.tf.ready(),this.performance.backend=Math.trunc(Ye()-s)}});this.next=t=>L8(t||this.result);as(this,Qf,async t=>{if(this.config.cacheSensitivity===0)return!1;let n=32;if(!t.shape[1]||!t.shape[2])return!1;let s=_e.resizeBilinear(t,[Math.trunc(t.shape[1]/n),Math.trunc(t.shape[2]/n)]),r=await s.data(),a=0;for(let l=0;l10*this.config.cacheSensitivity?0:o),i});as(this,e0,async()=>{let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(this.config.warmup){case"face":n=await t(Zf);break;case"full":n=await t(Yf);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await this.detect(r,this.config),r.close()}return s});as(this,t0,async()=>new Promise(t=>{let n,s=0;switch(this.config.warmup){case"face":s=256,n="data:image/jpeg;base64,"+Zf;break;case"full":case"body":s=1200,n="data:image/jpeg;base64,"+Yf;break;default:n=null}let r=new Image;r.onload=async()=>{let a=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,s):document.createElement("canvas");a.width=r.naturalWidth,a.height=r.naturalHeight;let o=a.getContext("2d");o==null||o.drawImage(r,0,0);let i=await this.detect(a,this.config);t(i)},n?r.src=n:t(null)}));as(this,n0,async()=>{let t=r=>Buffer.from(r,"base64"),n;if(this.config.warmup==="face"&&(n=t(Zf)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(Yf)),!n)return null;let s;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);this.tf.dispose(r),s=await this.detect(a,this.config),this.tf.dispose(a)}else this.config.debug&&ue("Warmup tfjs-node not loaded");return s});this.config=gn(a5,t||{}),this.tf=rd,this.draw=Uy,this.version=B8,this.state="idle",Rs(this,gu,0),Rs(this,md,!1),Rs(this,gd,!1),Rs(this,si,!0),Rs(this,Au,0),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,movenet:null,handpose:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,centernet:null,faceres:null,segmentation:null},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[]},this.image=n=>ni(n,this.config),this.faceTriangulation=Hk,this.faceUVMap=Gk,this.sysinfo=o5(),Rs(this,ri,1)}similarity(t,n){return ey(t,n)}segmentation(t,n){return T8(t,n,this.config)}enhance(t){return ty(t)}match(t,n,s=0){return qk(t,n,s)}async load(t){this.state="load";let n=Ye();t&&(this.config=gn(this.config,t)),mn(this,si)&&(this.config.debug&&ue(`version: ${this.version}`),this.config.debug&&ue(`tfjs version: ${this.tf.version_core}`),this.config.debug&&ue("platform:",this.sysinfo.platform),this.config.debug&&ue("agent:",this.sysinfo.agent),await mn(this,Ad).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&ue("configuration:",this.config),this.config.debug&&ue("tf flags:",this.tf.ENV.flags))),await N8(this),mn(this,si)&&(this.config.debug&&ue("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),Rs(this,si,!1));let s=Math.trunc(Ye()-n);s>(this.performance.load||0)&&(this.performance.load=s)}async detect(t,n){return new Promise(async s=>{this.state="config";let r,a;this.config=gn(this.config,n),this.state="check";let o=mn(this,Jf).call(this,t);o&&(ue(o,t),s({error:o}));let i=Ye();await mn(this,Ad).call(this),await this.load(),r=Ye();let l=ni(t,this.config);if(this.performance.image=Math.trunc(Ye()-r),this.analyze("Get Image:"),this.config.segmentation.enabled&&l&&l.tensor&&(this.analyze("Start Segmentation:"),this.state="run:segmentation",r=Ye(),await Ly(l),a=Math.trunc(Ye()-r),a>0&&(this.performance.segmentation=a),l.canvas&&(K(l.tensor),l=ni(l.canvas,this.config)),this.analyze("End Segmentation:")),!l||!l.tensor){ue("could not convert input to tensor"),s({error:"could not convert input to tensor"});return}r=Ye(),this.config.skipFrame=await mn(this,Qf).call(this,l.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(Ye()-r),this.analyze("Check Changed:");let u=[],c=[],d=[],h=[];this.config.async?(u=this.config.face.enabled?By(this,l.tensor):[],this.performance.face&&delete this.performance.face):(this.state="run:face",r=Ye(),u=this.config.face.enabled?await By(this,l.tensor):[],a=Math.trunc(Ye()-r),a>0&&(this.performance.face=a)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?hy(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?vy(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?c=this.config.body.enabled?Sy(l.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(c=this.config.body.enabled?Ey(l.tensor,this.config):[]),this.performance.body&&delete this.performance.body):(this.state="run:body",r=Ye(),this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?await hy(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?await vy(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?c=this.config.body.enabled?await Sy(l.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(c=this.config.body.enabled?await Ey(l.tensor,this.config):[]),a=Math.trunc(Ye()-r),a>0&&(this.performance.body=a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(d=this.config.hand.enabled?xy(l.tensor,this.config):[],this.performance.hand&&delete this.performance.hand):(this.state="run:hand",r=Ye(),d=this.config.hand.enabled?await xy(l.tensor,this.config):[],a=Math.trunc(Ye()-r),a>0&&(this.performance.hand=a)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(this.config.object.modelPath.includes("nanodet")?h=this.config.object.enabled?Dy(l.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(h=this.config.object.enabled?My(l.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(this.state="run:object",r=Ye(),this.config.object.modelPath.includes("nanodet")?h=this.config.object.enabled?await Dy(l.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(h=this.config.object.enabled?await My(l.tensor,this.config):[]),a=Math.trunc(Ye()-r),a>0&&(this.performance.object=a)),this.analyze("End Object:"),this.config.async&&([u,c,d,h]=await Promise.all([u,c,d,h]));let p=[];this.config.gesture.enabled&&(r=Ye(),p=[...R8(u),...E8(c),...$8(d),..._8(u)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(Ye()-r)),this.performance.total=Math.trunc(Ye()-i),this.state="idle",this.result={face:u,body:c,hand:d,gesture:p,object:h,performance:this.performance,canvas:l.canvas,timestamp:Date.now(),get persons(){var f;return z8(u,c,d,p,(f=l==null?void 0:l.tensor)==null?void 0:f.shape)}},K(l.tensor),s(this.result)})}async warmup(t){let n=Ye();if(t&&(this.config=gn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let s;typeof createImageBitmap=="function"?s=await mn(this,e0).call(this):typeof Image!="undefined"?s=await mn(this,t0).call(this):s=await mn(this,n0).call(this);let r=Ye();return this.config.debug&&ue("Warmup",this.config.warmup,Math.round(r-n),"ms",s),s}};gu=new WeakMap,md=new WeakMap,gd=new WeakMap,si=new WeakMap,ri=new WeakMap,Au=new WeakMap,Jf=new WeakMap,Ad=new WeakMap,Qf=new WeakMap,e0=new WeakMap,t0=new WeakMap,n0=new WeakMap;export{dle as Human,dle as default}; /** * @license * Copyright 2017 Google LLC. All Rights Reserved. diff --git a/dist/human.esm.js.map b/dist/human.esm.js.map index e192c499..98221629 100644 --- a/dist/human.esm.js.map +++ b/dist/human.esm.js.map @@ -1,7 +1,7 @@ { "version": 3, - "sources": ["../src/helpers.ts", "../src/config.ts", "../src/sysinfo.ts", "../node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js", "../node_modules/.pnpm/node-fetch@2.6.1/node_modules/node-fetch/browser.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js", "(disabled):crypto", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js", "../node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js", "(disabled):path", "(disabled):worker_threads", "(disabled):perf_hooks", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/backends/backend.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/util_base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/environment.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/global_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/kernel_names.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/kernel_registry.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/hash_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/profiler.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/tape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/tensor_format.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/tensor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/tensor_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/engine.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/device_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/flags.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/tensor_util_env.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/operation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/complex.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor_ops_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/io/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/io/io_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/io/router_registry.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/io/indexed_db.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/io/local_storage.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/io/model_management.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/platforms/platform_browser.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/platforms/platform_node.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/buffer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/clone.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/print.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/base_side_effects.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/io/io.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/io/browser_files.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/io/progress.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/io/weights_loader.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/io/http.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/io/passthrough.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/math.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/mat_mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/one_hot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/confusion_matrix.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/browser.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/gather_nd_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/scatter_nd_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/slice_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/serialization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/test_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/globals.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/floorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/div.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/add_n.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/all.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/arg_max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/arg_min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/conv_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/basic_lstm_cell.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/batch_to_space_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/broadcast_to.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/clip_by_value.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/conv1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d_backprop_input.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d_transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d_backprop_input.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d_transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/dense_bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/depth_to_space.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/depthwise_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/diag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/dilation2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/broadcast_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/where.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/zeros_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/div_no_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/dot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/einsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/expand_dims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/eye.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/gather.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/greater_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/imag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/is_finite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/is_inf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/is_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/leaky_relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/less_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/linspace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/local_response_normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/log_sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/log_softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/axis_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/log_sum_exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_and.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_not.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_or.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_xor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_with_argmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/zeros.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/ones.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/meshgrid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/mirror_pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/moments.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/multi_rnn_cell.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/multinomial.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/not_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/ones_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/outer_product.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/pad1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/pad2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/pad3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/pad4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/space_to_batch_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/rand.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/rand_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/random_gamma.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/random_normal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/random_uniform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/real.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/scalar.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/separable_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/setdiff1d_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/slice1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/slice2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/slice3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/slice4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/fft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/ifft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/irfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/split.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/rfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/squared_difference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/squeeze.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/stack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/strided_slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor5d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor6d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/topk.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/truncated_normal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/unsorted_segment_sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/unstack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/variable.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/backends/where_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/where_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/boolean_mask.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/norm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/moving_average.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/scatter_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse_to_dense_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse_to_dense.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/gather_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/dropout_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/dropout.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/signal_ops_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/in_top_k.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/fused_ops.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d_backprop_filter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/fused_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/fused/conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/depthwise_conv2d_native_backprop_filter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/depthwise_conv2d_native_backprop_input.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/fused/depthwise_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/fused/mat_mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/hamming_window.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/hann_window.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/frame.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/stft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/image/crop_and_resize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/image/flip_left_right.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/image/rotate_with_offset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/nonmax_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/backends/non_max_suppression_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/backends/non_max_suppression_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_with_score.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_with_score_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_padded.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_padded_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/image/resize_bilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/image/resize_nearest_neighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/image/threshold.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/image/transform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/linalg/band_part.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/linalg/gram_schmidt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/linalg/qr.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/loss_ops_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/compute_weighted_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/absolute_difference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/cosine_distance.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/hinge_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/huber_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/log_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/mean_squared_error.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/sigmoid_cross_entropy.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/softmax_cross_entropy.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse/sparse_fill_empty_rows.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse/sparse_reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse/sparse_segment_mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse/sparse_segment_sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/string/string_n_grams.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/string/string_split.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/string/string_to_hash_bucket_fast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/ops.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/optimizers/optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adadelta_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adagrad_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adam_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adamax_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/optimizers/sgd_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/optimizers/momentum_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/optimizers/rmsprop_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/optimizers/optimizer_constructors.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/train.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/browser_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/backends/backend_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/reduce_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/rotate_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/array_ops_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/selu_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/erf_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/backends/complex_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/backends/einsum_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/split_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/segment_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/backends/kernel_impls.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Abs_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Acos_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Acosh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Add_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/AddN_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/ArgMax_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/ArgMin_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Asin_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Asinh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Atan2_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Atan_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Atanh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool_3d_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/AvgPool3D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/AvgPool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/BatchMatMul_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/BatchToSpaceND_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/BroadcastTo_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cast_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Ceil_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/ClipByValue_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/ComplexAbs_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Concat_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Conv2D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Conv2DBackpropInput_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d_backprop_filter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Conv3D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cos_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cosh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cumsum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/DepthwiseConv2dNative_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Dilation2D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Elu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Erf_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Exp_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/ExpandDims_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Expm1_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Floor_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/FloorDiv_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/FusedBatchNorm_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/GatherV2_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/GreaterEqual_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Identity_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/IsFinite_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/IsInf_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/IsNan_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/LeakyRelu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Log1p_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Log_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/LogSoftmax_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/local_response_normalization_backprop.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/LRN_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/min_max_grad_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Max_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Maximum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_3d_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/MaxPool3D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/MaxPool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Mean_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Min_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Minimum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/MirrorPad_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Mod_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Multiply_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Neg_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/OneHot_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/OnesLike_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Pack_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/PadV2_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Pow_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Prelu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/RealDiv_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Reciprocal_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Relu6_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Relu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Reshape_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/ResizeBilinear_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/ResizeNearestNeighbor_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Reverse_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Round_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Rsqrt_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Select_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Selu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sigmoid_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sign_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sin_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sinh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Slice_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Softmax_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Softplus_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/SpaceToBatchND_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/SplitV_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sqrt_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Square_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/SquaredDifference_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Step_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sub_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Tan_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Tanh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Tile_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Transpose_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/Unpack_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/UnsortedSegmentSum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/gradients/ZerosLike_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-core/src/register_all_gradients.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/exports_constraints.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/backend/common.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/errors.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/utils/generic_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/constraints.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/exports_initializers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/keras_format/common.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/common.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/utils/math_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/backend/tfjs_backend.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/keras_format/initializer_config.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/initializers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/exports_layers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/backend/state.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/utils/types_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/utils/variable_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/variables.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/engine/topology.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/engine/input_layer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/logs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/base_callbacks.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/layers/serialization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/losses.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/metrics.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/optimizers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/user_defined_metadata.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/utils/layer_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/utils/serialization_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/engine/executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/engine/container.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/engine/training_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/engine/training_dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/engine/training_tensors.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/engine/training.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/models.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/exports.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/activations.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/regularizers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/layers/advanced_activations.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/utils/conv_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/layers/convolutional.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/layers/convolutional_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/layers/recurrent.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/layers/convolutional_recurrent.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/layers/core.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/layers/embeddings.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/layers/merge.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/layers/noise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/layers/normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/layers/padding.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/layers/pooling.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/layers/wrappers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/exports_metrics.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/exports_models.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/exports_regularizers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/callbacks.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-layers/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/data/compiled_api.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/custom_op/register.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/arithmetic.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/basic_math.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/control.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/convolution.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/creation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/dynamic.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/evaluation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/graph.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/hash_table.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/image.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/logical.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/matrices.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/reduction.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/slice_join.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/sparse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/spectral.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/string.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/transformation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/operation_mapper.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/custom_op/node_value_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/arithmetic_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/basic_math_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/executor/tensor_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/executor/tensor_array.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/executor/tensor_list.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/control_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/convolution_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/creation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/dynamic_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/evaluation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/graph_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/executor/hash_table.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/hash_table_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/image_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/logical_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/matrices_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/normalization_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/reduction_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/slice_join_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/sparse_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/spectral_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/string_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/transformation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/operations/operation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/executor/execution_context.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/executor/model_analysis.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/executor/graph_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/executor/resource_manager.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/executor/graph_model.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-converter/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.8.0_05bdadccdefc03588ef42dcd00574ff5/node_modules/@tensorflow/tfjs-data/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.8.0_05bdadccdefc03588ef42dcd00574ff5/node_modules/@tensorflow/tfjs-data/src/dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.8.0_05bdadccdefc03588ef42dcd00574ff5/node_modules/@tensorflow/tfjs-data/src/iterators/lazy_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.8.0_05bdadccdefc03588ef42dcd00574ff5/node_modules/@tensorflow/tfjs-data/src/util/deep_map.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.8.0_05bdadccdefc03588ef42dcd00574ff5/node_modules/@tensorflow/tfjs-data/src/util/deep_clone.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.8.0_05bdadccdefc03588ef42dcd00574ff5/node_modules/@tensorflow/tfjs-data/src/util/ring_buffer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.8.0_05bdadccdefc03588ef42dcd00574ff5/node_modules/@tensorflow/tfjs-data/src/util/growing_ring_buffer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.8.0_05bdadccdefc03588ef42dcd00574ff5/node_modules/@tensorflow/tfjs-data/src/datasets/text_line_dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.8.0_05bdadccdefc03588ef42dcd00574ff5/node_modules/@tensorflow/tfjs-data/src/datasets/csv_dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.8.0_05bdadccdefc03588ef42dcd00574ff5/node_modules/@tensorflow/tfjs-data/src/iterators/microphone_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.8.0_05bdadccdefc03588ef42dcd00574ff5/node_modules/@tensorflow/tfjs-data/src/iterators/webcam_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.8.0_05bdadccdefc03588ef42dcd00574ff5/node_modules/@tensorflow/tfjs-data/src/datasource.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.8.0_05bdadccdefc03588ef42dcd00574ff5/node_modules/@tensorflow/tfjs-data/src/iterators/string_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.8.0_05bdadccdefc03588ef42dcd00574ff5/node_modules/@tensorflow/tfjs-data/src/iterators/byte_chunk_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.8.0_05bdadccdefc03588ef42dcd00574ff5/node_modules/@tensorflow/tfjs-data/src/iterators/file_chunk_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.8.0_05bdadccdefc03588ef42dcd00574ff5/node_modules/@tensorflow/tfjs-data/src/iterators/url_chunk_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.8.0_05bdadccdefc03588ef42dcd00574ff5/node_modules/@tensorflow/tfjs-data/src/util/source_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.8.0_05bdadccdefc03588ef42dcd00574ff5/node_modules/@tensorflow/tfjs-data/src/sources/file_data_source.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.8.0_05bdadccdefc03588ef42dcd00574ff5/node_modules/@tensorflow/tfjs-data/src/sources/url_data_source.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.8.0_05bdadccdefc03588ef42dcd00574ff5/node_modules/@tensorflow/tfjs-data/src/readers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.8.0_05bdadccdefc03588ef42dcd00574ff5/node_modules/@tensorflow/tfjs-data/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/cpu_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/backend_cpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/shared.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/binary_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Complex.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/zeros_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Identity.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Real.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/binary_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Bincount_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/unary_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/unary_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Concat_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherNd_Impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherV2_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GreaterEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LessEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LinSpace_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Max_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Multiply.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NotEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Transpose_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Range_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseFillEmptyRows_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseReshape_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseSegmentReduction_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SquaredDifference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StridedSlice_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StringNGrams_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StringSplit_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StringToHashBucketFast_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tile_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/TopK_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Unique_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LeakyRelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/fused_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/BatchMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/_FusedMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AddN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/All.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ArgMax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ArgMin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/pool_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/BatchNorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/BatchToSpaceND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Clip.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ComplexAbs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Imag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv2DBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv3DBackpropFilterV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv3DBackpropInputV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/CropAndResize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DenseBincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthToSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthwiseConv2dNative.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthwiseConv2dNativeBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthwiseConv2dNativeBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Diag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Dilation2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Dilation2DBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Dilation2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Einsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/EluGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ExpandDims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/RealDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/fft_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FlipLeftRight.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FloorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FusedConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FusedDepthwiseConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IFFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IsFinite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IsInf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IsNaN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LinSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LogicalAnd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LogicalNot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LogicalOr.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LRN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LRNGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPoolWithArgmax_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPoolWithArgmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MirrorPad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Multinomial.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NonMaxSuppressionV3.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NonMaxSuppressionV4.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NonMaxSuppressionV5.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/OneHot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ZerosLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/OnesLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Pack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/PadV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeBilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeBilinearGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeNearestNeighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeNearestNeighborGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/RotateWithOffset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Scatter_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ScatterNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Select.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SpaceToBatchND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseFillEmptyRows.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseReshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseSegmentMean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseSegmentSum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseToDense.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SplitV.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StridedSlice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StringNGrams.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StringSplit.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StringToHashBucketFast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/TopK.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Transform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Unpack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/UnsortedSegmentSum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/register_all_kernels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-cpu/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/webgl_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/canvas_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/tex_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/flags_webgl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/glsl_version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/shader_compiler_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/decode_matrix_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/decode_matrix_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_float_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_float_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_matrix_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_matrix_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gpgpu_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gpgpu_context.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/shader_compiler.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gpgpu_math.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/shared.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/packing_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pack_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reshape_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/texture_manager.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/unaryop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/unaryop_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/unpack_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/backend_webgl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/webgl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/binaryop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/binaryop_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Identity.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Complex.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LeakyRelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/kernel_funcs_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mulmat_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/binaryop_complex_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Multiply.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mean_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reduce_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/reduce.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/transpose_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/transpose_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Transpose_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sum_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchMatMul_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/_FusedMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/addn_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/addn_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AddN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/All.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/argminmax_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/argminmax_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/arg_min_max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ArgMax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ArgMin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pool_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/avg_pool_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/batchnorm_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/batchnorm_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchNorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/slice_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/slice_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchToSpaceND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NotEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Real.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/int.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/clip_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/clip_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ClipByValue.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/complex_abs_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ComplexAbs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/concat_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/concat_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Imag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Concat_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/im2col_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2D_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2DBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv3DBackpropFilterV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv3DBackpropInputV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/crop_and_resize_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/CropAndResize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/cumsum_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DenseBincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/depth_to_space_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthToSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_gpu_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_packed_gpu_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthwiseConv2dNative.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_backprop_gpu_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthwiseConv2dNativeBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthwiseConv2dNativeBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/diag_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Diag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/dilation_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Dilation2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Einsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/EluGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ExpandDims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/fft_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FFT_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/fill_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/flip_left_right_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FlipLeftRight.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FloorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FromPixels_utils/from_pixels_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FromPixels_utils/from_pixels_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FromPixels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FusedConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FusedDepthwiseConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gather_nd_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/GatherNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gather_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/GatherV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/GreaterEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IFFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IsFinite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IsInf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IsNaN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LessEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LinSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LogicalAnd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LogicalNot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LogicalOr.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/lrn_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/lrn_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LRN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/lrn_grad_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LRNGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Max_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/max_pool_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPoolWithArgmax_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPoolWithArgmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Mean_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mirror_pad_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mirror_pad_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MirrorPad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/multinomial_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/RealDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Multinomial.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NonMaxSuppressionV3.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NonMaxSuppressionV4.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NonMaxSuppressionV5.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/onehot_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/OneHot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ZerosLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/OnesLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Pack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pad_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pad_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/PadV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_bilinear_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_bilinear_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeBilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_bilinear_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeBilinearGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_nearest_neighbor_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_nearest_neighbor_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeNearestNeighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_nearest_neighbor_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeNearestNeighborGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reverse_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reverse_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/rotate_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/RotateWithOffset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/scatter_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ScatterNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/select_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Select.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SpaceToBatchND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SparseFillEmptyRows.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SparseReshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SparseSegmentMean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SparseSegmentSum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SparseToDense.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SplitV.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SquaredDifference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/strided_slice_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/StridedSlice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/StringNGrams.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/StringSplit.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/StringToHashBucketFast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/tile_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/top_k_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/TopK.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/transform_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Transform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Unpack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/segment_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/UnsortedSegmentSum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/register_all_kernels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-webgl/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/_FusedMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/unary_kernel.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/binary_kernel.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/AddN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Identity.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/kernel_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/All.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ArgMax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/AvgPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/BatchMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernel_utils/shared.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/BatchToSpaceND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ClipByValue.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Conv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Conv2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/CropAndResize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/DepthToSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/DepthwiseConv2dNative.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ExpandDims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FlipLeftRight.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FloorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FusedBatchNorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FusedConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FusedDepthwiseConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/GatherNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/GatherV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/GreaterEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/LeakyRelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/LessEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/LogicalAnd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/MaxPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/MirrorPad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Multiply.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppression_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppressionV3.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppressionV4.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppressionV5.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NotEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/OneHot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/OnesLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Pack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/PadV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/RealDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ResizeBilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/RotateWithOffset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ScatterNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Select.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/SpaceToBatchND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/SplitV.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/SquaredDifference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/StridedSlice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/TopK.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Transform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Unpack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ZerosLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/register_all_kernels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/flags_wasm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/backend_wasm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.worker.js", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/src/index.ts", "../tfjs/tf-browser.ts", "../src/tfjs/backend.ts", "../src/blazeface/box.ts", "../src/blazeface/util.ts", "../src/blazeface/blazeface.ts", "../src/blazeface/coords.ts", "../src/blazeface/facepipeline.ts", "../src/blazeface/facemesh.ts", "../src/faceres/faceres.ts", "../src/emotion/emotion.ts", "../src/posenet/keypoints.ts", "../src/posenet/utils.ts", "../src/posenet/poses.ts", "../src/posenet/posenet.ts", "../src/handpose/box.ts", "../src/handpose/anchors.ts", "../src/handpose/handdetector.ts", "../src/handpose/util.ts", "../src/handpose/handpipeline.ts", "../src/handpose/handpose.ts", "../src/blazepose/annotations.ts", "../src/blazepose/blazepose.ts", "../src/efficientpose/efficientpose.ts", "../src/movenet/movenet.ts", "../src/object/labels.ts", "../src/object/nanodet.ts", "../src/object/centernet.ts", "../src/image/imagefx.js", "../src/image/image.ts", "../src/segmentation/segmentation.ts", "../src/models.ts", "../src/face.ts", "../src/gesture/gesture.ts", "../src/draw/draw.ts", "../src/persons.ts", "../src/interpolate.ts", "../src/sample.ts", "../src/human.ts"], - "sourcesContent": ["/**\n * Simple helper functions used accross codebase\n */\n\n// helper function: join two paths\nexport function join(folder: string, file: string): string {\n const separator = folder.endsWith('/') ? '' : '/';\n const skipJoin = file.startsWith('.') || file.startsWith('/') || file.startsWith('http:') || file.startsWith('https:') || file.startsWith('file:');\n const path = skipJoin ? `${file}` : `${folder}${separator}${file}`;\n if (!path.toLocaleLowerCase().includes('.json')) throw new Error(`Human: ModelPath Error: ${path} Expecting JSON file`);\n return path;\n}\n\n// helper function: wrapper around console output\nexport function log(...msg): void {\n const dt = new Date();\n const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;\n // eslint-disable-next-line no-console\n if (msg) console.log(ts, 'Human:', ...msg);\n}\n\n// helper function: gets elapsed time on both browser and nodejs\nexport const now = () => {\n if (typeof performance !== 'undefined') return performance.now();\n return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());\n};\n\n// helper function: perform deep merge of multiple objects so it allows full inheriance with overrides\nexport function mergeDeep(...objects) {\n const isObject = (obj) => obj && typeof obj === 'object';\n return objects.reduce((prev, obj) => {\n Object.keys(obj || {}).forEach((key) => {\n const pVal = prev[key];\n const oVal = obj[key];\n if (Array.isArray(pVal) && Array.isArray(oVal)) prev[key] = pVal.concat(...oVal);\n else if (isObject(pVal) && isObject(oVal)) prev[key] = mergeDeep(pVal, oVal);\n else prev[key] = oVal;\n });\n return prev;\n }, {});\n}\n\n// helper function: return min and max from input array\nexport const minmax = (data: Array) => data.reduce((acc: Array, val) => {\n acc[0] = (acc[0] === undefined || val < acc[0]) ? val : acc[0];\n acc[1] = (acc[1] === undefined || val > acc[1]) ? val : acc[1];\n return acc;\n}, []);\n", "/* eslint-disable indent */\n/* eslint-disable no-multi-spaces */\n\n/**\n * Configuration interface definition for **Human** library\n *\n * Contains all configurable parameters\n * @typedef Config\n */\nexport interface Config {\n /** Backend used for TFJS operations */\n backend: null | '' | 'cpu' | 'wasm' | 'webgl' | 'humangl' | 'tensorflow' | 'webgpu',\n\n /** Path to *.wasm files if backend is set to `wasm` */\n wasmPath: string,\n\n /** Print debug statements to console */\n debug: boolean,\n\n /** Perform model loading and inference concurrently or sequentially */\n async: boolean,\n\n /** What to use for `human.warmup()`\n * - warmup pre-initializes all models for faster inference but can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n */\n warmup: 'none' | 'face' | 'full' | 'body',\n\n /** Base model path (typically starting with file://, http:// or https://) for all models\n * - individual modelPath values are relative to this path\n */\n modelBasePath: string,\n\n /** Cache sensitivity\n * - values 0..1 where 0.01 means reset cache if input changed more than 1%\n * - set to 0 to disable caching\n */\n cacheSensitivity: number;\n\n /** Cache sensitivity\n * - values 0..1 where 0.01 means reset cache if input changed more than 1%\n * - set to 0 to disable caching\n */\n skipFrame: boolean;\n\n /** Run input through image filters before inference\n * - image filters run with near-zero latency as they are executed on the GPU\n */\n filter: {\n enabled: boolean,\n /** Resize input width\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n width: number,\n /** Resize input height\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n height: number,\n /** Return processed canvas imagedata in result */\n return: boolean,\n /** Flip input as mirror image */\n flip: boolean,\n /** Range: -1 (darken) to 1 (lighten) */\n brightness: number,\n /** Range: -1 (reduce contrast) to 1 (increase contrast) */\n contrast: number,\n /** Range: 0 (no sharpening) to 1 (maximum sharpening) */\n sharpness: number,\n /** Range: 0 (no blur) to N (blur radius in pixels) */\n blur: number\n /** Range: -1 (reduce saturation) to 1 (increase saturation) */\n saturation: number,\n /** Range: 0 (no change) to 360 (hue rotation in degrees) */\n hue: number,\n /** Image negative */\n negative: boolean,\n /** Image sepia colors */\n sepia: boolean,\n /** Image vintage colors */\n vintage: boolean,\n /** Image kodachrome colors */\n kodachrome: boolean,\n /** Image technicolor colors */\n technicolor: boolean,\n /** Image polaroid camera effect */\n polaroid: boolean,\n /** Range: 0 (no pixelate) to N (number of pixels to pixelate) */\n pixelate: number,\n },\n // type definition end\n\n /** Controlls gesture detection */\n gesture: {\n enabled: boolean,\n },\n\n /** Controlls and configures all face-specific options:\n * - face detection, face mesh detection, age, gender, emotion detection and face description\n * Parameters:\n * - enabled: true/false\n * - modelPath: path for each of face models\n * - minConfidence: threshold for discarding a prediction\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxDetected: maximum number of faces detected in the input, should be set to the minimum number for performance\n * - rotation: use calculated rotated face image or just box with rotation as-is, false means higher performance, but incorrect mesh mapping on higher face angles\n * - return: return extracted face as tensor for futher user processing, in which case user is reponsible for manually disposing the tensor\n */\n face: {\n enabled: boolean,\n detector: {\n modelPath: string,\n rotation: boolean,\n maxDetected: number,\n skipFrames: number,\n minConfidence: number,\n iouThreshold: number,\n return: boolean,\n },\n mesh: {\n enabled: boolean,\n modelPath: string,\n },\n iris: {\n enabled: boolean,\n modelPath: string,\n },\n description: {\n enabled: boolean,\n modelPath: string,\n skipFrames: number,\n minConfidence: number,\n },\n emotion: {\n enabled: boolean,\n minConfidence: number,\n skipFrames: number,\n modelPath: string,\n },\n },\n\n /** Controlls and configures all body detection specific options\n * - enabled: true/false\n * - modelPath: body pose model, can be absolute path or relative to modelBasePath\n * - minConfidence: threshold for discarding a prediction\n * - maxDetected: maximum number of people detected in the input, should be set to the minimum number for performance\n */\n body: {\n enabled: boolean,\n modelPath: string,\n maxDetected: number,\n minConfidence: number,\n skipFrames: number,\n },\n\n /** Controlls and configures all hand detection specific options\n * - enabled: true/false\n * - landmarks: detect hand landmarks or just hand boundary box\n * - modelPath: paths for hand detector and hand skeleton models, can be absolute path or relative to modelBasePath\n * - minConfidence: threshold for discarding a prediction\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxDetected: maximum number of hands detected in the input, should be set to the minimum number for performance\n * - rotation: use best-guess rotated hand image or just box with rotation as-is, false means higher performance, but incorrect finger mapping if hand is inverted\n */\n hand: {\n enabled: boolean,\n rotation: boolean,\n skipFrames: number,\n minConfidence: number,\n iouThreshold: number,\n maxDetected: number,\n landmarks: boolean,\n detector: {\n modelPath: string,\n },\n skeleton: {\n modelPath: string,\n },\n },\n\n /** Controlls and configures all object detection specific options\n * - enabled: true/false\n * - modelPath: object detection model, can be absolute path or relative to modelBasePath\n * - minConfidence: minimum score that detection must have to return as valid object\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxDetected: maximum number of detections to return\n */\n object: {\n enabled: boolean,\n modelPath: string,\n minConfidence: number,\n iouThreshold: number,\n maxDetected: number,\n skipFrames: number,\n },\n\n /** Controlls and configures all body segmentation module\n * removes background from input containing person\n * if segmentation is enabled it will run as preprocessing task before any other model\n * alternatively leave it disabled and use it on-demand using human.segmentation method which can\n * remove background or replace it with user-provided background\n *\n * - enabled: true/false\n * - modelPath: object detection model, can be absolute path or relative to modelBasePath\n */\n segmentation: {\n enabled: boolean,\n modelPath: string,\n },\n}\n\nconst config: Config = {\n backend: 'webgl', // select tfjs backend to use, leave empty to use default backend\n // can be 'webgl', 'wasm', 'cpu', or 'humangl' which is a custom version of webgl\n modelBasePath: '../models/', // base path for all models\n wasmPath: '../node_modules/@tensorflow/tfjs-backend-wasm/dist/', // path for wasm binaries, only used for backend: wasm\n debug: true, // print additional status messages to console\n async: true, // execute enabled models in parallel\n warmup: 'full', // what to use for human.warmup(), can be 'none', 'face', 'full'\n // warmup pre-initializes all models for faster inference but can take\n // significant time on startup\n // only used for `webgl` and `humangl` backends\n cacheSensitivity: 0.75, // cache sensitivity\n // values 0..1 where 0.01 means reset cache if input changed more than 1%\n // set to 0 to disable caching\n skipFrame: false, // internal & dynamic\n filter: { // run input through image filters before inference\n // image filters run with near-zero latency as they are executed on the GPU\n enabled: true, // enable image pre-processing filters\n width: 0, // resize input width\n height: 0, // resize input height\n // if both width and height are set to 0, there is no resizing\n // if just one is set, second one is scaled automatically\n // if both are set, values are used as-is\n flip: false, // flip input as mirror image\n return: true, // return processed canvas imagedata in result\n brightness: 0, // range: -1 (darken) to 1 (lighten)\n contrast: 0, // range: -1 (reduce contrast) to 1 (increase contrast)\n sharpness: 0, // range: 0 (no sharpening) to 1 (maximum sharpening)\n blur: 0, // range: 0 (no blur) to N (blur radius in pixels)\n saturation: 0, // range: -1 (reduce saturation) to 1 (increase saturation)\n hue: 0, // range: 0 (no change) to 360 (hue rotation in degrees)\n negative: false, // image negative\n sepia: false, // image sepia colors\n vintage: false, // image vintage colors\n kodachrome: false, // image kodachrome colors\n technicolor: false, // image technicolor colors\n polaroid: false, // image polaroid camera effect\n pixelate: 0, // range: 0 (no pixelate) to N (number of pixels to pixelate)\n },\n\n gesture: {\n enabled: true, // enable gesture recognition based on model results\n },\n\n face: {\n enabled: true, // controls if specified modul is enabled\n // face.enabled is required for all face models:\n // detector, mesh, iris, age, gender, emotion\n // (note: module is not loaded until it is required)\n detector: {\n modelPath: 'blazeface.json', // detector model, can be absolute path or relative to modelBasePath\n rotation: true, // use best-guess rotated face image or just box with rotation as-is\n // false means higher performance, but incorrect mesh mapping if face angle is above 20 degrees\n // this parameter is not valid in nodejs\n maxDetected: 15, // maximum number of faces detected in the input\n // should be set to the minimum number for performance\n skipFrames: 15, // how many max frames to go without re-running the face bounding box detector\n // only used when cacheSensitivity is not zero\n // e.g., if model is running st 25 FPS, we can re-use existing bounding\n // box for updated face analysis as the head probably hasn't moved much\n // in short time (10 * 1/25 = 0.25 sec)\n minConfidence: 0.2, // threshold for discarding a prediction\n iouThreshold: 0.1, // ammount of overlap between two detected objects before one object is removed\n return: false, // return extracted face as tensor\n // in which case user is reponsible for disposing the tensor\n },\n\n mesh: {\n enabled: true,\n modelPath: 'facemesh.json', // facemesh model, can be absolute path or relative to modelBasePath\n },\n\n iris: {\n enabled: true,\n modelPath: 'iris.json', // face iris model\n // can be either absolute path or relative to modelBasePath\n },\n\n description: {\n enabled: true, // to improve accuracy of face description extraction it is\n // recommended to enable detector.rotation and mesh.enabled\n modelPath: 'faceres.json', // face description model\n // can be either absolute path or relative to modelBasePath\n skipFrames: 11, // how many max frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n minConfidence: 0.1, // threshold for discarding a prediction\n },\n\n emotion: {\n enabled: true,\n minConfidence: 0.1, // threshold for discarding a prediction\n skipFrames: 17, // how max many frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n modelPath: 'emotion.json', // face emotion model, can be absolute path or relative to modelBasePath\n },\n },\n\n body: {\n enabled: true,\n modelPath: 'movenet-lightning.json', // body model, can be absolute path or relative to modelBasePath\n // can be 'posenet', 'blazepose', 'efficientpose', 'movenet-lightning', 'movenet-thunder'\n maxDetected: 1, // maximum number of people detected in the input\n // should be set to the minimum number for performance\n // only valid for posenet as other models detects single pose\n minConfidence: 0.2, // threshold for discarding a prediction\n skipFrames: 1, // how many max frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n},\n\n hand: {\n enabled: true,\n rotation: true, // use best-guess rotated hand image or just box with rotation as-is\n // false means higher performance, but incorrect finger mapping if hand is inverted\n skipFrames: 18, // how many max frames to go without re-running the hand bounding box detector\n // only used when cacheSensitivity is not zero\n // e.g., if model is running st 25 FPS, we can re-use existing bounding\n // box for updated hand skeleton analysis as the hand probably\n // hasn't moved much in short time (10 * 1/25 = 0.25 sec)\n minConfidence: 0.1, // threshold for discarding a prediction\n iouThreshold: 0.1, // ammount of overlap between two detected objects before one object is removed\n maxDetected: 2, // maximum number of hands detected in the input\n // should be set to the minimum number for performance\n landmarks: true, // detect hand landmarks or just hand boundary box\n detector: {\n modelPath: 'handdetect.json', // hand detector model, can be absolute path or relative to modelBasePath\n },\n skeleton: {\n modelPath: 'handskeleton.json', // hand skeleton model, can be absolute path or relative to modelBasePath\n },\n },\n\n object: {\n enabled: false,\n modelPath: 'mb3-centernet.json', // experimental: object detection model, can be absolute path or relative to modelBasePath\n // can be 'mb3-centernet' or 'nanodet'\n minConfidence: 0.2, // threshold for discarding a prediction\n iouThreshold: 0.4, // ammount of overlap between two detected objects before one object is removed\n maxDetected: 10, // maximum number of objects detected in the input\n skipFrames: 19, // how many max frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n },\n\n segmentation: {\n enabled: false, // controlls and configures all body segmentation module\n // removes background from input containing person\n // if segmentation is enabled it will run as preprocessing task before any other model\n // alternatively leave it disabled and use it on-demand using human.segmentation method which can\n // remove background or replace it with user-provided background\n modelPath: 'selfie.json', // experimental: object detection model, can be absolute path or relative to modelBasePath\n // can be 'selfie' or 'meet'\n },\n};\nexport { config as defaults };\n", "/**\n * Helper function that returns basic system info\n */\nexport function info(): { platform: string, agent: string } {\n let platform = '';\n let agent = '';\n if (typeof navigator !== 'undefined') {\n const raw = navigator.userAgent.match(/\\(([^()]+)\\)/g);\n if (raw && raw[0]) {\n const platformMatch = raw[0].match(/\\(([^()]+)\\)/g);\n platform = (platformMatch && platformMatch[0]) ? platformMatch[0].replace(/\\(|\\)/g, '') : '';\n agent = navigator.userAgent.replace(raw[0], '');\n if (platform[1]) agent = agent.replace(raw[1], '');\n agent = agent.replace(/ /g, ' ');\n }\n } else if (typeof process !== 'undefined') {\n platform = `${process.platform} ${process.arch}`;\n agent = `NodeJS ${process.version}`;\n }\n return { platform, agent };\n}\n", "module.exports = Long;\r\n\r\n/**\r\n * wasm optimizations, to do native i64 multiplication and divide\r\n */\r\nvar wasm = null;\r\n\r\ntry {\r\n wasm = new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([\r\n 0, 97, 115, 109, 1, 0, 0, 0, 1, 13, 2, 96, 0, 1, 127, 96, 4, 127, 127, 127, 127, 1, 127, 3, 7, 6, 0, 1, 1, 1, 1, 1, 6, 6, 1, 127, 1, 65, 0, 11, 7, 50, 6, 3, 109, 117, 108, 0, 1, 5, 100, 105, 118, 95, 115, 0, 2, 5, 100, 105, 118, 95, 117, 0, 3, 5, 114, 101, 109, 95, 115, 0, 4, 5, 114, 101, 109, 95, 117, 0, 5, 8, 103, 101, 116, 95, 104, 105, 103, 104, 0, 0, 10, 191, 1, 6, 4, 0, 35, 0, 11, 36, 1, 1, 126, 32, 0, 173, 32, 1, 173, 66, 32, 134, 132, 32, 2, 173, 32, 3, 173, 66, 32, 134, 132, 126, 34, 4, 66, 32, 135, 167, 36, 0, 32, 4, 167, 11, 36, 1, 1, 126, 32, 0, 173, 32, 1, 173, 66, 32, 134, 132, 32, 2, 173, 32, 3, 173, 66, 32, 134, 132, 127, 34, 4, 66, 32, 135, 167, 36, 0, 32, 4, 167, 11, 36, 1, 1, 126, 32, 0, 173, 32, 1, 173, 66, 32, 134, 132, 32, 2, 173, 32, 3, 173, 66, 32, 134, 132, 128, 34, 4, 66, 32, 135, 167, 36, 0, 32, 4, 167, 11, 36, 1, 1, 126, 32, 0, 173, 32, 1, 173, 66, 32, 134, 132, 32, 2, 173, 32, 3, 173, 66, 32, 134, 132, 129, 34, 4, 66, 32, 135, 167, 36, 0, 32, 4, 167, 11, 36, 1, 1, 126, 32, 0, 173, 32, 1, 173, 66, 32, 134, 132, 32, 2, 173, 32, 3, 173, 66, 32, 134, 132, 130, 34, 4, 66, 32, 135, 167, 36, 0, 32, 4, 167, 11\r\n ])), {}).exports;\r\n} catch (e) {\r\n // no wasm support :(\r\n}\r\n\r\n/**\r\n * Constructs a 64 bit two's-complement integer, given its low and high 32 bit values as *signed* integers.\r\n * See the from* functions below for more convenient ways of constructing Longs.\r\n * @exports Long\r\n * @class A Long class for representing a 64 bit two's-complement integer value.\r\n * @param {number} low The low (signed) 32 bits of the long\r\n * @param {number} high The high (signed) 32 bits of the long\r\n * @param {boolean=} unsigned Whether unsigned or not, defaults to signed\r\n * @constructor\r\n */\r\nfunction Long(low, high, unsigned) {\r\n\r\n /**\r\n * The low 32 bits as a signed value.\r\n * @type {number}\r\n */\r\n this.low = low | 0;\r\n\r\n /**\r\n * The high 32 bits as a signed value.\r\n * @type {number}\r\n */\r\n this.high = high | 0;\r\n\r\n /**\r\n * Whether unsigned or not.\r\n * @type {boolean}\r\n */\r\n this.unsigned = !!unsigned;\r\n}\r\n\r\n// The internal representation of a long is the two given signed, 32-bit values.\r\n// We use 32-bit pieces because these are the size of integers on which\r\n// Javascript performs bit-operations. For operations like addition and\r\n// multiplication, we split each number into 16 bit pieces, which can easily be\r\n// multiplied within Javascript's floating-point representation without overflow\r\n// or change in sign.\r\n//\r\n// In the algorithms below, we frequently reduce the negative case to the\r\n// positive case by negating the input(s) and then post-processing the result.\r\n// Note that we must ALWAYS check specially whether those values are MIN_VALUE\r\n// (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as\r\n// a positive number, it overflows back into a negative). Not handling this\r\n// case would often result in infinite recursion.\r\n//\r\n// Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the from*\r\n// methods on which they depend.\r\n\r\n/**\r\n * An indicator used to reliably determine if an object is a Long or not.\r\n * @type {boolean}\r\n * @const\r\n * @private\r\n */\r\nLong.prototype.__isLong__;\r\n\r\nObject.defineProperty(Long.prototype, \"__isLong__\", { value: true });\r\n\r\n/**\r\n * @function\r\n * @param {*} obj Object\r\n * @returns {boolean}\r\n * @inner\r\n */\r\nfunction isLong(obj) {\r\n return (obj && obj[\"__isLong__\"]) === true;\r\n}\r\n\r\n/**\r\n * Tests if the specified object is a Long.\r\n * @function\r\n * @param {*} obj Object\r\n * @returns {boolean}\r\n */\r\nLong.isLong = isLong;\r\n\r\n/**\r\n * A cache of the Long representations of small integer values.\r\n * @type {!Object}\r\n * @inner\r\n */\r\nvar INT_CACHE = {};\r\n\r\n/**\r\n * A cache of the Long representations of small unsigned integer values.\r\n * @type {!Object}\r\n * @inner\r\n */\r\nvar UINT_CACHE = {};\r\n\r\n/**\r\n * @param {number} value\r\n * @param {boolean=} unsigned\r\n * @returns {!Long}\r\n * @inner\r\n */\r\nfunction fromInt(value, unsigned) {\r\n var obj, cachedObj, cache;\r\n if (unsigned) {\r\n value >>>= 0;\r\n if (cache = (0 <= value && value < 256)) {\r\n cachedObj = UINT_CACHE[value];\r\n if (cachedObj)\r\n return cachedObj;\r\n }\r\n obj = fromBits(value, (value | 0) < 0 ? -1 : 0, true);\r\n if (cache)\r\n UINT_CACHE[value] = obj;\r\n return obj;\r\n } else {\r\n value |= 0;\r\n if (cache = (-128 <= value && value < 128)) {\r\n cachedObj = INT_CACHE[value];\r\n if (cachedObj)\r\n return cachedObj;\r\n }\r\n obj = fromBits(value, value < 0 ? -1 : 0, false);\r\n if (cache)\r\n INT_CACHE[value] = obj;\r\n return obj;\r\n }\r\n}\r\n\r\n/**\r\n * Returns a Long representing the given 32 bit integer value.\r\n * @function\r\n * @param {number} value The 32 bit integer in question\r\n * @param {boolean=} unsigned Whether unsigned or not, defaults to signed\r\n * @returns {!Long} The corresponding Long value\r\n */\r\nLong.fromInt = fromInt;\r\n\r\n/**\r\n * @param {number} value\r\n * @param {boolean=} unsigned\r\n * @returns {!Long}\r\n * @inner\r\n */\r\nfunction fromNumber(value, unsigned) {\r\n if (isNaN(value))\r\n return unsigned ? UZERO : ZERO;\r\n if (unsigned) {\r\n if (value < 0)\r\n return UZERO;\r\n if (value >= TWO_PWR_64_DBL)\r\n return MAX_UNSIGNED_VALUE;\r\n } else {\r\n if (value <= -TWO_PWR_63_DBL)\r\n return MIN_VALUE;\r\n if (value + 1 >= TWO_PWR_63_DBL)\r\n return MAX_VALUE;\r\n }\r\n if (value < 0)\r\n return fromNumber(-value, unsigned).neg();\r\n return fromBits((value % TWO_PWR_32_DBL) | 0, (value / TWO_PWR_32_DBL) | 0, unsigned);\r\n}\r\n\r\n/**\r\n * Returns a Long representing the given value, provided that it is a finite number. Otherwise, zero is returned.\r\n * @function\r\n * @param {number} value The number in question\r\n * @param {boolean=} unsigned Whether unsigned or not, defaults to signed\r\n * @returns {!Long} The corresponding Long value\r\n */\r\nLong.fromNumber = fromNumber;\r\n\r\n/**\r\n * @param {number} lowBits\r\n * @param {number} highBits\r\n * @param {boolean=} unsigned\r\n * @returns {!Long}\r\n * @inner\r\n */\r\nfunction fromBits(lowBits, highBits, unsigned) {\r\n return new Long(lowBits, highBits, unsigned);\r\n}\r\n\r\n/**\r\n * Returns a Long representing the 64 bit integer that comes by concatenating the given low and high bits. Each is\r\n * assumed to use 32 bits.\r\n * @function\r\n * @param {number} lowBits The low 32 bits\r\n * @param {number} highBits The high 32 bits\r\n * @param {boolean=} unsigned Whether unsigned or not, defaults to signed\r\n * @returns {!Long} The corresponding Long value\r\n */\r\nLong.fromBits = fromBits;\r\n\r\n/**\r\n * @function\r\n * @param {number} base\r\n * @param {number} exponent\r\n * @returns {number}\r\n * @inner\r\n */\r\nvar pow_dbl = Math.pow; // Used 4 times (4*8 to 15+4)\r\n\r\n/**\r\n * @param {string} str\r\n * @param {(boolean|number)=} unsigned\r\n * @param {number=} radix\r\n * @returns {!Long}\r\n * @inner\r\n */\r\nfunction fromString(str, unsigned, radix) {\r\n if (str.length === 0)\r\n throw Error('empty string');\r\n if (str === \"NaN\" || str === \"Infinity\" || str === \"+Infinity\" || str === \"-Infinity\")\r\n return ZERO;\r\n if (typeof unsigned === 'number') {\r\n // For goog.math.long compatibility\r\n radix = unsigned,\r\n unsigned = false;\r\n } else {\r\n unsigned = !! unsigned;\r\n }\r\n radix = radix || 10;\r\n if (radix < 2 || 36 < radix)\r\n throw RangeError('radix');\r\n\r\n var p;\r\n if ((p = str.indexOf('-')) > 0)\r\n throw Error('interior hyphen');\r\n else if (p === 0) {\r\n return fromString(str.substring(1), unsigned, radix).neg();\r\n }\r\n\r\n // Do several (8) digits each time through the loop, so as to\r\n // minimize the calls to the very expensive emulated div.\r\n var radixToPower = fromNumber(pow_dbl(radix, 8));\r\n\r\n var result = ZERO;\r\n for (var i = 0; i < str.length; i += 8) {\r\n var size = Math.min(8, str.length - i),\r\n value = parseInt(str.substring(i, i + size), radix);\r\n if (size < 8) {\r\n var power = fromNumber(pow_dbl(radix, size));\r\n result = result.mul(power).add(fromNumber(value));\r\n } else {\r\n result = result.mul(radixToPower);\r\n result = result.add(fromNumber(value));\r\n }\r\n }\r\n result.unsigned = unsigned;\r\n return result;\r\n}\r\n\r\n/**\r\n * Returns a Long representation of the given string, written using the specified radix.\r\n * @function\r\n * @param {string} str The textual representation of the Long\r\n * @param {(boolean|number)=} unsigned Whether unsigned or not, defaults to signed\r\n * @param {number=} radix The radix in which the text is written (2-36), defaults to 10\r\n * @returns {!Long} The corresponding Long value\r\n */\r\nLong.fromString = fromString;\r\n\r\n/**\r\n * @function\r\n * @param {!Long|number|string|!{low: number, high: number, unsigned: boolean}} val\r\n * @param {boolean=} unsigned\r\n * @returns {!Long}\r\n * @inner\r\n */\r\nfunction fromValue(val, unsigned) {\r\n if (typeof val === 'number')\r\n return fromNumber(val, unsigned);\r\n if (typeof val === 'string')\r\n return fromString(val, unsigned);\r\n // Throws for non-objects, converts non-instanceof Long:\r\n return fromBits(val.low, val.high, typeof unsigned === 'boolean' ? unsigned : val.unsigned);\r\n}\r\n\r\n/**\r\n * Converts the specified value to a Long using the appropriate from* function for its type.\r\n * @function\r\n * @param {!Long|number|string|!{low: number, high: number, unsigned: boolean}} val Value\r\n * @param {boolean=} unsigned Whether unsigned or not, defaults to signed\r\n * @returns {!Long}\r\n */\r\nLong.fromValue = fromValue;\r\n\r\n// NOTE: the compiler should inline these constant values below and then remove these variables, so there should be\r\n// no runtime penalty for these.\r\n\r\n/**\r\n * @type {number}\r\n * @const\r\n * @inner\r\n */\r\nvar TWO_PWR_16_DBL = 1 << 16;\r\n\r\n/**\r\n * @type {number}\r\n * @const\r\n * @inner\r\n */\r\nvar TWO_PWR_24_DBL = 1 << 24;\r\n\r\n/**\r\n * @type {number}\r\n * @const\r\n * @inner\r\n */\r\nvar TWO_PWR_32_DBL = TWO_PWR_16_DBL * TWO_PWR_16_DBL;\r\n\r\n/**\r\n * @type {number}\r\n * @const\r\n * @inner\r\n */\r\nvar TWO_PWR_64_DBL = TWO_PWR_32_DBL * TWO_PWR_32_DBL;\r\n\r\n/**\r\n * @type {number}\r\n * @const\r\n * @inner\r\n */\r\nvar TWO_PWR_63_DBL = TWO_PWR_64_DBL / 2;\r\n\r\n/**\r\n * @type {!Long}\r\n * @const\r\n * @inner\r\n */\r\nvar TWO_PWR_24 = fromInt(TWO_PWR_24_DBL);\r\n\r\n/**\r\n * @type {!Long}\r\n * @inner\r\n */\r\nvar ZERO = fromInt(0);\r\n\r\n/**\r\n * Signed zero.\r\n * @type {!Long}\r\n */\r\nLong.ZERO = ZERO;\r\n\r\n/**\r\n * @type {!Long}\r\n * @inner\r\n */\r\nvar UZERO = fromInt(0, true);\r\n\r\n/**\r\n * Unsigned zero.\r\n * @type {!Long}\r\n */\r\nLong.UZERO = UZERO;\r\n\r\n/**\r\n * @type {!Long}\r\n * @inner\r\n */\r\nvar ONE = fromInt(1);\r\n\r\n/**\r\n * Signed one.\r\n * @type {!Long}\r\n */\r\nLong.ONE = ONE;\r\n\r\n/**\r\n * @type {!Long}\r\n * @inner\r\n */\r\nvar UONE = fromInt(1, true);\r\n\r\n/**\r\n * Unsigned one.\r\n * @type {!Long}\r\n */\r\nLong.UONE = UONE;\r\n\r\n/**\r\n * @type {!Long}\r\n * @inner\r\n */\r\nvar NEG_ONE = fromInt(-1);\r\n\r\n/**\r\n * Signed negative one.\r\n * @type {!Long}\r\n */\r\nLong.NEG_ONE = NEG_ONE;\r\n\r\n/**\r\n * @type {!Long}\r\n * @inner\r\n */\r\nvar MAX_VALUE = fromBits(0xFFFFFFFF|0, 0x7FFFFFFF|0, false);\r\n\r\n/**\r\n * Maximum signed value.\r\n * @type {!Long}\r\n */\r\nLong.MAX_VALUE = MAX_VALUE;\r\n\r\n/**\r\n * @type {!Long}\r\n * @inner\r\n */\r\nvar MAX_UNSIGNED_VALUE = fromBits(0xFFFFFFFF|0, 0xFFFFFFFF|0, true);\r\n\r\n/**\r\n * Maximum unsigned value.\r\n * @type {!Long}\r\n */\r\nLong.MAX_UNSIGNED_VALUE = MAX_UNSIGNED_VALUE;\r\n\r\n/**\r\n * @type {!Long}\r\n * @inner\r\n */\r\nvar MIN_VALUE = fromBits(0, 0x80000000|0, false);\r\n\r\n/**\r\n * Minimum signed value.\r\n * @type {!Long}\r\n */\r\nLong.MIN_VALUE = MIN_VALUE;\r\n\r\n/**\r\n * @alias Long.prototype\r\n * @inner\r\n */\r\nvar LongPrototype = Long.prototype;\r\n\r\n/**\r\n * Converts the Long to a 32 bit integer, assuming it is a 32 bit integer.\r\n * @returns {number}\r\n */\r\nLongPrototype.toInt = function toInt() {\r\n return this.unsigned ? this.low >>> 0 : this.low;\r\n};\r\n\r\n/**\r\n * Converts the Long to a the nearest floating-point representation of this value (double, 53 bit mantissa).\r\n * @returns {number}\r\n */\r\nLongPrototype.toNumber = function toNumber() {\r\n if (this.unsigned)\r\n return ((this.high >>> 0) * TWO_PWR_32_DBL) + (this.low >>> 0);\r\n return this.high * TWO_PWR_32_DBL + (this.low >>> 0);\r\n};\r\n\r\n/**\r\n * Converts the Long to a string written in the specified radix.\r\n * @param {number=} radix Radix (2-36), defaults to 10\r\n * @returns {string}\r\n * @override\r\n * @throws {RangeError} If `radix` is out of range\r\n */\r\nLongPrototype.toString = function toString(radix) {\r\n radix = radix || 10;\r\n if (radix < 2 || 36 < radix)\r\n throw RangeError('radix');\r\n if (this.isZero())\r\n return '0';\r\n if (this.isNegative()) { // Unsigned Longs are never negative\r\n if (this.eq(MIN_VALUE)) {\r\n // We need to change the Long value before it can be negated, so we remove\r\n // the bottom-most digit in this base and then recurse to do the rest.\r\n var radixLong = fromNumber(radix),\r\n div = this.div(radixLong),\r\n rem1 = div.mul(radixLong).sub(this);\r\n return div.toString(radix) + rem1.toInt().toString(radix);\r\n } else\r\n return '-' + this.neg().toString(radix);\r\n }\r\n\r\n // Do several (6) digits each time through the loop, so as to\r\n // minimize the calls to the very expensive emulated div.\r\n var radixToPower = fromNumber(pow_dbl(radix, 6), this.unsigned),\r\n rem = this;\r\n var result = '';\r\n while (true) {\r\n var remDiv = rem.div(radixToPower),\r\n intval = rem.sub(remDiv.mul(radixToPower)).toInt() >>> 0,\r\n digits = intval.toString(radix);\r\n rem = remDiv;\r\n if (rem.isZero())\r\n return digits + result;\r\n else {\r\n while (digits.length < 6)\r\n digits = '0' + digits;\r\n result = '' + digits + result;\r\n }\r\n }\r\n};\r\n\r\n/**\r\n * Gets the high 32 bits as a signed integer.\r\n * @returns {number} Signed high bits\r\n */\r\nLongPrototype.getHighBits = function getHighBits() {\r\n return this.high;\r\n};\r\n\r\n/**\r\n * Gets the high 32 bits as an unsigned integer.\r\n * @returns {number} Unsigned high bits\r\n */\r\nLongPrototype.getHighBitsUnsigned = function getHighBitsUnsigned() {\r\n return this.high >>> 0;\r\n};\r\n\r\n/**\r\n * Gets the low 32 bits as a signed integer.\r\n * @returns {number} Signed low bits\r\n */\r\nLongPrototype.getLowBits = function getLowBits() {\r\n return this.low;\r\n};\r\n\r\n/**\r\n * Gets the low 32 bits as an unsigned integer.\r\n * @returns {number} Unsigned low bits\r\n */\r\nLongPrototype.getLowBitsUnsigned = function getLowBitsUnsigned() {\r\n return this.low >>> 0;\r\n};\r\n\r\n/**\r\n * Gets the number of bits needed to represent the absolute value of this Long.\r\n * @returns {number}\r\n */\r\nLongPrototype.getNumBitsAbs = function getNumBitsAbs() {\r\n if (this.isNegative()) // Unsigned Longs are never negative\r\n return this.eq(MIN_VALUE) ? 64 : this.neg().getNumBitsAbs();\r\n var val = this.high != 0 ? this.high : this.low;\r\n for (var bit = 31; bit > 0; bit--)\r\n if ((val & (1 << bit)) != 0)\r\n break;\r\n return this.high != 0 ? bit + 33 : bit + 1;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value equals zero.\r\n * @returns {boolean}\r\n */\r\nLongPrototype.isZero = function isZero() {\r\n return this.high === 0 && this.low === 0;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value equals zero. This is an alias of {@link Long#isZero}.\r\n * @returns {boolean}\r\n */\r\nLongPrototype.eqz = LongPrototype.isZero;\r\n\r\n/**\r\n * Tests if this Long's value is negative.\r\n * @returns {boolean}\r\n */\r\nLongPrototype.isNegative = function isNegative() {\r\n return !this.unsigned && this.high < 0;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value is positive.\r\n * @returns {boolean}\r\n */\r\nLongPrototype.isPositive = function isPositive() {\r\n return this.unsigned || this.high >= 0;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value is odd.\r\n * @returns {boolean}\r\n */\r\nLongPrototype.isOdd = function isOdd() {\r\n return (this.low & 1) === 1;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value is even.\r\n * @returns {boolean}\r\n */\r\nLongPrototype.isEven = function isEven() {\r\n return (this.low & 1) === 0;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value equals the specified's.\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.equals = function equals(other) {\r\n if (!isLong(other))\r\n other = fromValue(other);\r\n if (this.unsigned !== other.unsigned && (this.high >>> 31) === 1 && (other.high >>> 31) === 1)\r\n return false;\r\n return this.high === other.high && this.low === other.low;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value equals the specified's. This is an alias of {@link Long#equals}.\r\n * @function\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.eq = LongPrototype.equals;\r\n\r\n/**\r\n * Tests if this Long's value differs from the specified's.\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.notEquals = function notEquals(other) {\r\n return !this.eq(/* validates */ other);\r\n};\r\n\r\n/**\r\n * Tests if this Long's value differs from the specified's. This is an alias of {@link Long#notEquals}.\r\n * @function\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.neq = LongPrototype.notEquals;\r\n\r\n/**\r\n * Tests if this Long's value differs from the specified's. This is an alias of {@link Long#notEquals}.\r\n * @function\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.ne = LongPrototype.notEquals;\r\n\r\n/**\r\n * Tests if this Long's value is less than the specified's.\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.lessThan = function lessThan(other) {\r\n return this.comp(/* validates */ other) < 0;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value is less than the specified's. This is an alias of {@link Long#lessThan}.\r\n * @function\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.lt = LongPrototype.lessThan;\r\n\r\n/**\r\n * Tests if this Long's value is less than or equal the specified's.\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.lessThanOrEqual = function lessThanOrEqual(other) {\r\n return this.comp(/* validates */ other) <= 0;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value is less than or equal the specified's. This is an alias of {@link Long#lessThanOrEqual}.\r\n * @function\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.lte = LongPrototype.lessThanOrEqual;\r\n\r\n/**\r\n * Tests if this Long's value is less than or equal the specified's. This is an alias of {@link Long#lessThanOrEqual}.\r\n * @function\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.le = LongPrototype.lessThanOrEqual;\r\n\r\n/**\r\n * Tests if this Long's value is greater than the specified's.\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.greaterThan = function greaterThan(other) {\r\n return this.comp(/* validates */ other) > 0;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value is greater than the specified's. This is an alias of {@link Long#greaterThan}.\r\n * @function\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.gt = LongPrototype.greaterThan;\r\n\r\n/**\r\n * Tests if this Long's value is greater than or equal the specified's.\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.greaterThanOrEqual = function greaterThanOrEqual(other) {\r\n return this.comp(/* validates */ other) >= 0;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value is greater than or equal the specified's. This is an alias of {@link Long#greaterThanOrEqual}.\r\n * @function\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.gte = LongPrototype.greaterThanOrEqual;\r\n\r\n/**\r\n * Tests if this Long's value is greater than or equal the specified's. This is an alias of {@link Long#greaterThanOrEqual}.\r\n * @function\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.ge = LongPrototype.greaterThanOrEqual;\r\n\r\n/**\r\n * Compares this Long's value with the specified's.\r\n * @param {!Long|number|string} other Other value\r\n * @returns {number} 0 if they are the same, 1 if the this is greater and -1\r\n * if the given one is greater\r\n */\r\nLongPrototype.compare = function compare(other) {\r\n if (!isLong(other))\r\n other = fromValue(other);\r\n if (this.eq(other))\r\n return 0;\r\n var thisNeg = this.isNegative(),\r\n otherNeg = other.isNegative();\r\n if (thisNeg && !otherNeg)\r\n return -1;\r\n if (!thisNeg && otherNeg)\r\n return 1;\r\n // At this point the sign bits are the same\r\n if (!this.unsigned)\r\n return this.sub(other).isNegative() ? -1 : 1;\r\n // Both are positive if at least one is unsigned\r\n return (other.high >>> 0) > (this.high >>> 0) || (other.high === this.high && (other.low >>> 0) > (this.low >>> 0)) ? -1 : 1;\r\n};\r\n\r\n/**\r\n * Compares this Long's value with the specified's. This is an alias of {@link Long#compare}.\r\n * @function\r\n * @param {!Long|number|string} other Other value\r\n * @returns {number} 0 if they are the same, 1 if the this is greater and -1\r\n * if the given one is greater\r\n */\r\nLongPrototype.comp = LongPrototype.compare;\r\n\r\n/**\r\n * Negates this Long's value.\r\n * @returns {!Long} Negated Long\r\n */\r\nLongPrototype.negate = function negate() {\r\n if (!this.unsigned && this.eq(MIN_VALUE))\r\n return MIN_VALUE;\r\n return this.not().add(ONE);\r\n};\r\n\r\n/**\r\n * Negates this Long's value. This is an alias of {@link Long#negate}.\r\n * @function\r\n * @returns {!Long} Negated Long\r\n */\r\nLongPrototype.neg = LongPrototype.negate;\r\n\r\n/**\r\n * Returns the sum of this and the specified Long.\r\n * @param {!Long|number|string} addend Addend\r\n * @returns {!Long} Sum\r\n */\r\nLongPrototype.add = function add(addend) {\r\n if (!isLong(addend))\r\n addend = fromValue(addend);\r\n\r\n // Divide each number into 4 chunks of 16 bits, and then sum the chunks.\r\n\r\n var a48 = this.high >>> 16;\r\n var a32 = this.high & 0xFFFF;\r\n var a16 = this.low >>> 16;\r\n var a00 = this.low & 0xFFFF;\r\n\r\n var b48 = addend.high >>> 16;\r\n var b32 = addend.high & 0xFFFF;\r\n var b16 = addend.low >>> 16;\r\n var b00 = addend.low & 0xFFFF;\r\n\r\n var c48 = 0, c32 = 0, c16 = 0, c00 = 0;\r\n c00 += a00 + b00;\r\n c16 += c00 >>> 16;\r\n c00 &= 0xFFFF;\r\n c16 += a16 + b16;\r\n c32 += c16 >>> 16;\r\n c16 &= 0xFFFF;\r\n c32 += a32 + b32;\r\n c48 += c32 >>> 16;\r\n c32 &= 0xFFFF;\r\n c48 += a48 + b48;\r\n c48 &= 0xFFFF;\r\n return fromBits((c16 << 16) | c00, (c48 << 16) | c32, this.unsigned);\r\n};\r\n\r\n/**\r\n * Returns the difference of this and the specified Long.\r\n * @param {!Long|number|string} subtrahend Subtrahend\r\n * @returns {!Long} Difference\r\n */\r\nLongPrototype.subtract = function subtract(subtrahend) {\r\n if (!isLong(subtrahend))\r\n subtrahend = fromValue(subtrahend);\r\n return this.add(subtrahend.neg());\r\n};\r\n\r\n/**\r\n * Returns the difference of this and the specified Long. This is an alias of {@link Long#subtract}.\r\n * @function\r\n * @param {!Long|number|string} subtrahend Subtrahend\r\n * @returns {!Long} Difference\r\n */\r\nLongPrototype.sub = LongPrototype.subtract;\r\n\r\n/**\r\n * Returns the product of this and the specified Long.\r\n * @param {!Long|number|string} multiplier Multiplier\r\n * @returns {!Long} Product\r\n */\r\nLongPrototype.multiply = function multiply(multiplier) {\r\n if (this.isZero())\r\n return ZERO;\r\n if (!isLong(multiplier))\r\n multiplier = fromValue(multiplier);\r\n\r\n // use wasm support if present\r\n if (wasm) {\r\n var low = wasm.mul(this.low,\r\n this.high,\r\n multiplier.low,\r\n multiplier.high);\r\n return fromBits(low, wasm.get_high(), this.unsigned);\r\n }\r\n\r\n if (multiplier.isZero())\r\n return ZERO;\r\n if (this.eq(MIN_VALUE))\r\n return multiplier.isOdd() ? MIN_VALUE : ZERO;\r\n if (multiplier.eq(MIN_VALUE))\r\n return this.isOdd() ? MIN_VALUE : ZERO;\r\n\r\n if (this.isNegative()) {\r\n if (multiplier.isNegative())\r\n return this.neg().mul(multiplier.neg());\r\n else\r\n return this.neg().mul(multiplier).neg();\r\n } else if (multiplier.isNegative())\r\n return this.mul(multiplier.neg()).neg();\r\n\r\n // If both longs are small, use float multiplication\r\n if (this.lt(TWO_PWR_24) && multiplier.lt(TWO_PWR_24))\r\n return fromNumber(this.toNumber() * multiplier.toNumber(), this.unsigned);\r\n\r\n // Divide each long into 4 chunks of 16 bits, and then add up 4x4 products.\r\n // We can skip products that would overflow.\r\n\r\n var a48 = this.high >>> 16;\r\n var a32 = this.high & 0xFFFF;\r\n var a16 = this.low >>> 16;\r\n var a00 = this.low & 0xFFFF;\r\n\r\n var b48 = multiplier.high >>> 16;\r\n var b32 = multiplier.high & 0xFFFF;\r\n var b16 = multiplier.low >>> 16;\r\n var b00 = multiplier.low & 0xFFFF;\r\n\r\n var c48 = 0, c32 = 0, c16 = 0, c00 = 0;\r\n c00 += a00 * b00;\r\n c16 += c00 >>> 16;\r\n c00 &= 0xFFFF;\r\n c16 += a16 * b00;\r\n c32 += c16 >>> 16;\r\n c16 &= 0xFFFF;\r\n c16 += a00 * b16;\r\n c32 += c16 >>> 16;\r\n c16 &= 0xFFFF;\r\n c32 += a32 * b00;\r\n c48 += c32 >>> 16;\r\n c32 &= 0xFFFF;\r\n c32 += a16 * b16;\r\n c48 += c32 >>> 16;\r\n c32 &= 0xFFFF;\r\n c32 += a00 * b32;\r\n c48 += c32 >>> 16;\r\n c32 &= 0xFFFF;\r\n c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;\r\n c48 &= 0xFFFF;\r\n return fromBits((c16 << 16) | c00, (c48 << 16) | c32, this.unsigned);\r\n};\r\n\r\n/**\r\n * Returns the product of this and the specified Long. This is an alias of {@link Long#multiply}.\r\n * @function\r\n * @param {!Long|number|string} multiplier Multiplier\r\n * @returns {!Long} Product\r\n */\r\nLongPrototype.mul = LongPrototype.multiply;\r\n\r\n/**\r\n * Returns this Long divided by the specified. The result is signed if this Long is signed or\r\n * unsigned if this Long is unsigned.\r\n * @param {!Long|number|string} divisor Divisor\r\n * @returns {!Long} Quotient\r\n */\r\nLongPrototype.divide = function divide(divisor) {\r\n if (!isLong(divisor))\r\n divisor = fromValue(divisor);\r\n if (divisor.isZero())\r\n throw Error('division by zero');\r\n\r\n // use wasm support if present\r\n if (wasm) {\r\n // guard against signed division overflow: the largest\r\n // negative number / -1 would be 1 larger than the largest\r\n // positive number, due to two's complement.\r\n if (!this.unsigned &&\r\n this.high === -0x80000000 &&\r\n divisor.low === -1 && divisor.high === -1) {\r\n // be consistent with non-wasm code path\r\n return this;\r\n }\r\n var low = (this.unsigned ? wasm.div_u : wasm.div_s)(\r\n this.low,\r\n this.high,\r\n divisor.low,\r\n divisor.high\r\n );\r\n return fromBits(low, wasm.get_high(), this.unsigned);\r\n }\r\n\r\n if (this.isZero())\r\n return this.unsigned ? UZERO : ZERO;\r\n var approx, rem, res;\r\n if (!this.unsigned) {\r\n // This section is only relevant for signed longs and is derived from the\r\n // closure library as a whole.\r\n if (this.eq(MIN_VALUE)) {\r\n if (divisor.eq(ONE) || divisor.eq(NEG_ONE))\r\n return MIN_VALUE; // recall that -MIN_VALUE == MIN_VALUE\r\n else if (divisor.eq(MIN_VALUE))\r\n return ONE;\r\n else {\r\n // At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|.\r\n var halfThis = this.shr(1);\r\n approx = halfThis.div(divisor).shl(1);\r\n if (approx.eq(ZERO)) {\r\n return divisor.isNegative() ? ONE : NEG_ONE;\r\n } else {\r\n rem = this.sub(divisor.mul(approx));\r\n res = approx.add(rem.div(divisor));\r\n return res;\r\n }\r\n }\r\n } else if (divisor.eq(MIN_VALUE))\r\n return this.unsigned ? UZERO : ZERO;\r\n if (this.isNegative()) {\r\n if (divisor.isNegative())\r\n return this.neg().div(divisor.neg());\r\n return this.neg().div(divisor).neg();\r\n } else if (divisor.isNegative())\r\n return this.div(divisor.neg()).neg();\r\n res = ZERO;\r\n } else {\r\n // The algorithm below has not been made for unsigned longs. It's therefore\r\n // required to take special care of the MSB prior to running it.\r\n if (!divisor.unsigned)\r\n divisor = divisor.toUnsigned();\r\n if (divisor.gt(this))\r\n return UZERO;\r\n if (divisor.gt(this.shru(1))) // 15 >>> 1 = 7 ; with divisor = 8 ; true\r\n return UONE;\r\n res = UZERO;\r\n }\r\n\r\n // Repeat the following until the remainder is less than other: find a\r\n // floating-point that approximates remainder / other *from below*, add this\r\n // into the result, and subtract it from the remainder. It is critical that\r\n // the approximate value is less than or equal to the real value so that the\r\n // remainder never becomes negative.\r\n rem = this;\r\n while (rem.gte(divisor)) {\r\n // Approximate the result of division. This may be a little greater or\r\n // smaller than the actual value.\r\n approx = Math.max(1, Math.floor(rem.toNumber() / divisor.toNumber()));\r\n\r\n // We will tweak the approximate result by changing it in the 48-th digit or\r\n // the smallest non-fractional digit, whichever is larger.\r\n var log2 = Math.ceil(Math.log(approx) / Math.LN2),\r\n delta = (log2 <= 48) ? 1 : pow_dbl(2, log2 - 48),\r\n\r\n // Decrease the approximation until it is smaller than the remainder. Note\r\n // that if it is too large, the product overflows and is negative.\r\n approxRes = fromNumber(approx),\r\n approxRem = approxRes.mul(divisor);\r\n while (approxRem.isNegative() || approxRem.gt(rem)) {\r\n approx -= delta;\r\n approxRes = fromNumber(approx, this.unsigned);\r\n approxRem = approxRes.mul(divisor);\r\n }\r\n\r\n // We know the answer can't be zero... and actually, zero would cause\r\n // infinite recursion since we would make no progress.\r\n if (approxRes.isZero())\r\n approxRes = ONE;\r\n\r\n res = res.add(approxRes);\r\n rem = rem.sub(approxRem);\r\n }\r\n return res;\r\n};\r\n\r\n/**\r\n * Returns this Long divided by the specified. This is an alias of {@link Long#divide}.\r\n * @function\r\n * @param {!Long|number|string} divisor Divisor\r\n * @returns {!Long} Quotient\r\n */\r\nLongPrototype.div = LongPrototype.divide;\r\n\r\n/**\r\n * Returns this Long modulo the specified.\r\n * @param {!Long|number|string} divisor Divisor\r\n * @returns {!Long} Remainder\r\n */\r\nLongPrototype.modulo = function modulo(divisor) {\r\n if (!isLong(divisor))\r\n divisor = fromValue(divisor);\r\n\r\n // use wasm support if present\r\n if (wasm) {\r\n var low = (this.unsigned ? wasm.rem_u : wasm.rem_s)(\r\n this.low,\r\n this.high,\r\n divisor.low,\r\n divisor.high\r\n );\r\n return fromBits(low, wasm.get_high(), this.unsigned);\r\n }\r\n\r\n return this.sub(this.div(divisor).mul(divisor));\r\n};\r\n\r\n/**\r\n * Returns this Long modulo the specified. This is an alias of {@link Long#modulo}.\r\n * @function\r\n * @param {!Long|number|string} divisor Divisor\r\n * @returns {!Long} Remainder\r\n */\r\nLongPrototype.mod = LongPrototype.modulo;\r\n\r\n/**\r\n * Returns this Long modulo the specified. This is an alias of {@link Long#modulo}.\r\n * @function\r\n * @param {!Long|number|string} divisor Divisor\r\n * @returns {!Long} Remainder\r\n */\r\nLongPrototype.rem = LongPrototype.modulo;\r\n\r\n/**\r\n * Returns the bitwise NOT of this Long.\r\n * @returns {!Long}\r\n */\r\nLongPrototype.not = function not() {\r\n return fromBits(~this.low, ~this.high, this.unsigned);\r\n};\r\n\r\n/**\r\n * Returns the bitwise AND of this Long and the specified.\r\n * @param {!Long|number|string} other Other Long\r\n * @returns {!Long}\r\n */\r\nLongPrototype.and = function and(other) {\r\n if (!isLong(other))\r\n other = fromValue(other);\r\n return fromBits(this.low & other.low, this.high & other.high, this.unsigned);\r\n};\r\n\r\n/**\r\n * Returns the bitwise OR of this Long and the specified.\r\n * @param {!Long|number|string} other Other Long\r\n * @returns {!Long}\r\n */\r\nLongPrototype.or = function or(other) {\r\n if (!isLong(other))\r\n other = fromValue(other);\r\n return fromBits(this.low | other.low, this.high | other.high, this.unsigned);\r\n};\r\n\r\n/**\r\n * Returns the bitwise XOR of this Long and the given one.\r\n * @param {!Long|number|string} other Other Long\r\n * @returns {!Long}\r\n */\r\nLongPrototype.xor = function xor(other) {\r\n if (!isLong(other))\r\n other = fromValue(other);\r\n return fromBits(this.low ^ other.low, this.high ^ other.high, this.unsigned);\r\n};\r\n\r\n/**\r\n * Returns this Long with bits shifted to the left by the given amount.\r\n * @param {number|!Long} numBits Number of bits\r\n * @returns {!Long} Shifted Long\r\n */\r\nLongPrototype.shiftLeft = function shiftLeft(numBits) {\r\n if (isLong(numBits))\r\n numBits = numBits.toInt();\r\n if ((numBits &= 63) === 0)\r\n return this;\r\n else if (numBits < 32)\r\n return fromBits(this.low << numBits, (this.high << numBits) | (this.low >>> (32 - numBits)), this.unsigned);\r\n else\r\n return fromBits(0, this.low << (numBits - 32), this.unsigned);\r\n};\r\n\r\n/**\r\n * Returns this Long with bits shifted to the left by the given amount. This is an alias of {@link Long#shiftLeft}.\r\n * @function\r\n * @param {number|!Long} numBits Number of bits\r\n * @returns {!Long} Shifted Long\r\n */\r\nLongPrototype.shl = LongPrototype.shiftLeft;\r\n\r\n/**\r\n * Returns this Long with bits arithmetically shifted to the right by the given amount.\r\n * @param {number|!Long} numBits Number of bits\r\n * @returns {!Long} Shifted Long\r\n */\r\nLongPrototype.shiftRight = function shiftRight(numBits) {\r\n if (isLong(numBits))\r\n numBits = numBits.toInt();\r\n if ((numBits &= 63) === 0)\r\n return this;\r\n else if (numBits < 32)\r\n return fromBits((this.low >>> numBits) | (this.high << (32 - numBits)), this.high >> numBits, this.unsigned);\r\n else\r\n return fromBits(this.high >> (numBits - 32), this.high >= 0 ? 0 : -1, this.unsigned);\r\n};\r\n\r\n/**\r\n * Returns this Long with bits arithmetically shifted to the right by the given amount. This is an alias of {@link Long#shiftRight}.\r\n * @function\r\n * @param {number|!Long} numBits Number of bits\r\n * @returns {!Long} Shifted Long\r\n */\r\nLongPrototype.shr = LongPrototype.shiftRight;\r\n\r\n/**\r\n * Returns this Long with bits logically shifted to the right by the given amount.\r\n * @param {number|!Long} numBits Number of bits\r\n * @returns {!Long} Shifted Long\r\n */\r\nLongPrototype.shiftRightUnsigned = function shiftRightUnsigned(numBits) {\r\n if (isLong(numBits))\r\n numBits = numBits.toInt();\r\n numBits &= 63;\r\n if (numBits === 0)\r\n return this;\r\n else {\r\n var high = this.high;\r\n if (numBits < 32) {\r\n var low = this.low;\r\n return fromBits((low >>> numBits) | (high << (32 - numBits)), high >>> numBits, this.unsigned);\r\n } else if (numBits === 32)\r\n return fromBits(high, 0, this.unsigned);\r\n else\r\n return fromBits(high >>> (numBits - 32), 0, this.unsigned);\r\n }\r\n};\r\n\r\n/**\r\n * Returns this Long with bits logically shifted to the right by the given amount. This is an alias of {@link Long#shiftRightUnsigned}.\r\n * @function\r\n * @param {number|!Long} numBits Number of bits\r\n * @returns {!Long} Shifted Long\r\n */\r\nLongPrototype.shru = LongPrototype.shiftRightUnsigned;\r\n\r\n/**\r\n * Returns this Long with bits logically shifted to the right by the given amount. This is an alias of {@link Long#shiftRightUnsigned}.\r\n * @function\r\n * @param {number|!Long} numBits Number of bits\r\n * @returns {!Long} Shifted Long\r\n */\r\nLongPrototype.shr_u = LongPrototype.shiftRightUnsigned;\r\n\r\n/**\r\n * Converts this Long to signed.\r\n * @returns {!Long} Signed long\r\n */\r\nLongPrototype.toSigned = function toSigned() {\r\n if (!this.unsigned)\r\n return this;\r\n return fromBits(this.low, this.high, false);\r\n};\r\n\r\n/**\r\n * Converts this Long to unsigned.\r\n * @returns {!Long} Unsigned long\r\n */\r\nLongPrototype.toUnsigned = function toUnsigned() {\r\n if (this.unsigned)\r\n return this;\r\n return fromBits(this.low, this.high, true);\r\n};\r\n\r\n/**\r\n * Converts this Long to its byte representation.\r\n * @param {boolean=} le Whether little or big endian, defaults to big endian\r\n * @returns {!Array.} Byte representation\r\n */\r\nLongPrototype.toBytes = function toBytes(le) {\r\n return le ? this.toBytesLE() : this.toBytesBE();\r\n};\r\n\r\n/**\r\n * Converts this Long to its little endian byte representation.\r\n * @returns {!Array.} Little endian byte representation\r\n */\r\nLongPrototype.toBytesLE = function toBytesLE() {\r\n var hi = this.high,\r\n lo = this.low;\r\n return [\r\n lo & 0xff,\r\n lo >>> 8 & 0xff,\r\n lo >>> 16 & 0xff,\r\n lo >>> 24 ,\r\n hi & 0xff,\r\n hi >>> 8 & 0xff,\r\n hi >>> 16 & 0xff,\r\n hi >>> 24\r\n ];\r\n};\r\n\r\n/**\r\n * Converts this Long to its big endian byte representation.\r\n * @returns {!Array.} Big endian byte representation\r\n */\r\nLongPrototype.toBytesBE = function toBytesBE() {\r\n var hi = this.high,\r\n lo = this.low;\r\n return [\r\n hi >>> 24 ,\r\n hi >>> 16 & 0xff,\r\n hi >>> 8 & 0xff,\r\n hi & 0xff,\r\n lo >>> 24 ,\r\n lo >>> 16 & 0xff,\r\n lo >>> 8 & 0xff,\r\n lo & 0xff\r\n ];\r\n};\r\n\r\n/**\r\n * Creates a Long from its byte representation.\r\n * @param {!Array.} bytes Byte representation\r\n * @param {boolean=} unsigned Whether unsigned or not, defaults to signed\r\n * @param {boolean=} le Whether little or big endian, defaults to big endian\r\n * @returns {Long} The corresponding Long value\r\n */\r\nLong.fromBytes = function fromBytes(bytes, unsigned, le) {\r\n return le ? Long.fromBytesLE(bytes, unsigned) : Long.fromBytesBE(bytes, unsigned);\r\n};\r\n\r\n/**\r\n * Creates a Long from its little endian byte representation.\r\n * @param {!Array.} bytes Little endian byte representation\r\n * @param {boolean=} unsigned Whether unsigned or not, defaults to signed\r\n * @returns {Long} The corresponding Long value\r\n */\r\nLong.fromBytesLE = function fromBytesLE(bytes, unsigned) {\r\n return new Long(\r\n bytes[0] |\r\n bytes[1] << 8 |\r\n bytes[2] << 16 |\r\n bytes[3] << 24,\r\n bytes[4] |\r\n bytes[5] << 8 |\r\n bytes[6] << 16 |\r\n bytes[7] << 24,\r\n unsigned\r\n );\r\n};\r\n\r\n/**\r\n * Creates a Long from its big endian byte representation.\r\n * @param {!Array.} bytes Big endian byte representation\r\n * @param {boolean=} unsigned Whether unsigned or not, defaults to signed\r\n * @returns {Long} The corresponding Long value\r\n */\r\nLong.fromBytesBE = function fromBytesBE(bytes, unsigned) {\r\n return new Long(\r\n bytes[4] << 24 |\r\n bytes[5] << 16 |\r\n bytes[6] << 8 |\r\n bytes[7],\r\n bytes[0] << 24 |\r\n bytes[1] << 16 |\r\n bytes[2] << 8 |\r\n bytes[3],\r\n unsigned\r\n );\r\n};\r\n", "", "// A port of an algorithm by Johannes Baag\u00F8e , 2010\n// http://baagoe.com/en/RandomMusings/javascript/\n// https://github.com/nquinlan/better-random-numbers-for-javascript-mirror\n// Original work is under MIT license -\n\n// Copyright (C) 2010 by Johannes Baag\u00F8e \n//\n// Permission is hereby granted, free of charge, to any person obtaining a copy\n// of this software and associated documentation files (the \"Software\"), to deal\n// in the Software without restriction, including without limitation the rights\n// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n// copies of the Software, and to permit persons to whom the Software is\n// furnished to do so, subject to the following conditions:\n// \n// The above copyright notice and this permission notice shall be included in\n// all copies or substantial portions of the Software.\n// \n// THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\n// THE SOFTWARE.\n\n\n\n(function(global, module, define) {\n\nfunction Alea(seed) {\n var me = this, mash = Mash();\n\n me.next = function() {\n var t = 2091639 * me.s0 + me.c * 2.3283064365386963e-10; // 2^-32\n me.s0 = me.s1;\n me.s1 = me.s2;\n return me.s2 = t - (me.c = t | 0);\n };\n\n // Apply the seeding algorithm from Baagoe.\n me.c = 1;\n me.s0 = mash(' ');\n me.s1 = mash(' ');\n me.s2 = mash(' ');\n me.s0 -= mash(seed);\n if (me.s0 < 0) { me.s0 += 1; }\n me.s1 -= mash(seed);\n if (me.s1 < 0) { me.s1 += 1; }\n me.s2 -= mash(seed);\n if (me.s2 < 0) { me.s2 += 1; }\n mash = null;\n}\n\nfunction copy(f, t) {\n t.c = f.c;\n t.s0 = f.s0;\n t.s1 = f.s1;\n t.s2 = f.s2;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new Alea(seed),\n state = opts && opts.state,\n prng = xg.next;\n prng.int32 = function() { return (xg.next() * 0x100000000) | 0; }\n prng.double = function() {\n return prng() + (prng() * 0x200000 | 0) * 1.1102230246251565e-16; // 2^-53\n };\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nfunction Mash() {\n var n = 0xefc8249d;\n\n var mash = function(data) {\n data = data.toString();\n for (var i = 0; i < data.length; i++) {\n n += data.charCodeAt(i);\n var h = 0.02519603282416938 * n;\n n = h >>> 0;\n h -= n;\n h *= n;\n n = h >>> 0;\n h -= n;\n n += h * 0x100000000; // 2^32\n }\n return (n >>> 0) * 2.3283064365386963e-10; // 2^-32\n };\n\n return mash;\n}\n\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.alea = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xor128\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n\n // Set up generator function.\n me.next = function() {\n var t = me.x ^ (me.x << 11);\n me.x = me.y;\n me.y = me.z;\n me.z = me.w;\n return me.w ^= (me.w >>> 19) ^ t ^ (t >>> 8);\n };\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor128 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorwow\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var t = (me.x ^ (me.x >>> 2));\n me.x = me.y; me.y = me.z; me.z = me.w; me.w = me.v;\n return (me.d = (me.d + 362437 | 0)) +\n (me.v = (me.v ^ (me.v << 4)) ^ (t ^ (t << 1))) | 0;\n };\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n me.v = 0;\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n if (k == strseed.length) {\n me.d = me.x << 10 ^ me.x >>> 4;\n }\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n t.v = f.v;\n t.d = f.d;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorwow = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorshift7\" algorithm by\n// Fran\u00E7ois Panneton and Pierre L'ecuyer:\n// \"On the Xorgshift Random Number Generators\"\n// http://saluc.engr.uconn.edu/refs/crypto/rng/panneton05onthexorshift.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n // Update xor generator.\n var X = me.x, i = me.i, t, v, w;\n t = X[i]; t ^= (t >>> 7); v = t ^ (t << 24);\n t = X[(i + 1) & 7]; v ^= t ^ (t >>> 10);\n t = X[(i + 3) & 7]; v ^= t ^ (t >>> 3);\n t = X[(i + 4) & 7]; v ^= t ^ (t << 7);\n t = X[(i + 7) & 7]; t = t ^ (t << 13); v ^= t ^ (t << 9);\n X[i] = v;\n me.i = (i + 1) & 7;\n return v;\n };\n\n function init(me, seed) {\n var j, w, X = [];\n\n if (seed === (seed | 0)) {\n // Seed state array using a 32-bit integer.\n w = X[0] = seed;\n } else {\n // Seed state using a string.\n seed = '' + seed;\n for (j = 0; j < seed.length; ++j) {\n X[j & 7] = (X[j & 7] << 15) ^\n (seed.charCodeAt(j) + X[(j + 1) & 7] << 13);\n }\n }\n // Enforce an array length of 8, not all zeroes.\n while (X.length < 8) X.push(0);\n for (j = 0; j < 8 && X[j] === 0; ++j);\n if (j == 8) w = X[7] = -1; else w = X[j];\n\n me.x = X;\n me.i = 0;\n\n // Discard an initial 256 values.\n for (j = 256; j > 0; --j) {\n me.next();\n }\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.x = f.x.slice();\n t.i = f.i;\n return t;\n}\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.x) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorshift7 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n", "// A Javascript implementaion of Richard Brent's Xorgens xor4096 algorithm.\n//\n// This fast non-cryptographic random number generator is designed for\n// use in Monte-Carlo algorithms. It combines a long-period xorshift\n// generator with a Weyl generator, and it passes all common batteries\n// of stasticial tests for randomness while consuming only a few nanoseconds\n// for each prng generated. For background on the generator, see Brent's\n// paper: \"Some long-period random number generators using shifts and xors.\"\n// http://arxiv.org/pdf/1004.3115v1.pdf\n//\n// Usage:\n//\n// var xor4096 = require('xor4096');\n// random = xor4096(1); // Seed with int32 or string.\n// assert.equal(random(), 0.1520436450538547); // (0, 1) range, 53 bits.\n// assert.equal(random.int32(), 1806534897); // signed int32, 32 bits.\n//\n// For nonzero numeric keys, this impelementation provides a sequence\n// identical to that by Brent's xorgens 3 implementaion in C. This\n// implementation also provides for initalizing the generator with\n// string seeds, or for saving and restoring the state of the generator.\n//\n// On Chrome, this prng benchmarks about 2.1 times slower than\n// Javascript's built-in Math.random().\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n var w = me.w,\n X = me.X, i = me.i, t, v;\n // Update Weyl generator.\n me.w = w = (w + 0x61c88647) | 0;\n // Update xor generator.\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n // Update Xor generator array state.\n v = X[i] = v ^ t;\n me.i = i;\n // Result is the combination.\n return (v + (w ^ (w >>> 16))) | 0;\n };\n\n function init(me, seed) {\n var t, v, i, j, w, X = [], limit = 128;\n if (seed === (seed | 0)) {\n // Numeric seeds initialize v, which is used to generates X.\n v = seed;\n seed = null;\n } else {\n // String seeds are mixed into v and X one character at a time.\n seed = seed + '\\0';\n v = 0;\n limit = Math.max(limit, seed.length);\n }\n // Initialize circular array and weyl value.\n for (i = 0, j = -32; j < limit; ++j) {\n // Put the unicode characters into the array, and shuffle them.\n if (seed) v ^= seed.charCodeAt((j + 32) % seed.length);\n // After 32 shuffles, take v as the starting w value.\n if (j === 0) w = v;\n v ^= v << 10;\n v ^= v >>> 15;\n v ^= v << 4;\n v ^= v >>> 13;\n if (j >= 0) {\n w = (w + 0x61c88647) | 0; // Weyl.\n t = (X[j & 127] ^= (v + w)); // Combine xor and weyl to init array.\n i = (0 == t) ? i + 1 : 0; // Count zeroes.\n }\n }\n // We have detected all zeroes; make the key nonzero.\n if (i >= 128) {\n X[(seed && seed.length || 0) & 127] = -1;\n }\n // Run the generator 512 times to further mix the state before using it.\n // Factoring this as a function slows the main generator, so it is just\n // unrolled here. The weyl generator is not advanced while warming up.\n i = 127;\n for (j = 4 * 128; j > 0; --j) {\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n X[i] = v ^ t;\n }\n // Storing state as object members is faster than using closure variables.\n me.w = w;\n me.X = X;\n me.i = i;\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.i = f.i;\n t.w = f.w;\n t.X = f.X.slice();\n return t;\n};\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.X) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor4096 = impl;\n}\n\n})(\n this, // window object or global\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n", "// A Javascript implementaion of the \"Tyche-i\" prng algorithm by\n// Samuel Neves and Filipe Araujo.\n// See https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var b = me.b, c = me.c, d = me.d, a = me.a;\n b = (b << 25) ^ (b >>> 7) ^ c;\n c = (c - d) | 0;\n d = (d << 24) ^ (d >>> 8) ^ a;\n a = (a - b) | 0;\n me.b = b = (b << 20) ^ (b >>> 12) ^ c;\n me.c = c = (c - d) | 0;\n me.d = (d << 16) ^ (c >>> 16) ^ a;\n return me.a = (a - b) | 0;\n };\n\n /* The following is non-inverted tyche, which has better internal\n * bit diffusion, but which is about 25% slower than tyche-i in JS.\n me.next = function() {\n var a = me.a, b = me.b, c = me.c, d = me.d;\n a = (me.a + me.b | 0) >>> 0;\n d = me.d ^ a; d = d << 16 ^ d >>> 16;\n c = me.c + d | 0;\n b = me.b ^ c; b = b << 12 ^ d >>> 20;\n me.a = a = a + b | 0;\n d = d ^ a; me.d = d = d << 8 ^ d >>> 24;\n me.c = c = c + d | 0;\n b = b ^ c;\n return me.b = (b << 7 ^ b >>> 25);\n }\n */\n\n me.a = 0;\n me.b = 0;\n me.c = 2654435769 | 0;\n me.d = 1367130551;\n\n if (seed === Math.floor(seed)) {\n // Integer seed.\n me.a = (seed / 0x100000000) | 0;\n me.b = seed | 0;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 20; k++) {\n me.b ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.a = f.a;\n t.b = f.b;\n t.c = f.c;\n t.d = f.d;\n return t;\n};\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.tychei = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "", "/*\nCopyright 2014 David Bau.\n\nPermission is hereby granted, free of charge, to any person obtaining\na copy of this software and associated documentation files (the\n\"Software\"), to deal in the Software without restriction, including\nwithout limitation the rights to use, copy, modify, merge, publish,\ndistribute, sublicense, and/or sell copies of the Software, and to\npermit persons to whom the Software is furnished to do so, subject to\nthe following conditions:\n\nThe above copyright notice and this permission notice shall be\nincluded in all copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND,\nEXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF\nMERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.\nIN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY\nCLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,\nTORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE\nSOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.\n\n*/\n\n(function (pool, math) {\n//\n// The following constants are related to IEEE 754 limits.\n//\nvar global = this,\n width = 256, // each RC4 output is 0 <= x < 256\n chunks = 6, // at least six RC4 outputs for each double\n digits = 52, // there are 52 significant digits in a double\n rngname = 'random', // rngname: name for Math.random and Math.seedrandom\n startdenom = math.pow(width, chunks),\n significance = math.pow(2, digits),\n overflow = significance * 2,\n mask = width - 1,\n nodecrypto; // node.js crypto module, initialized at the bottom.\n\n//\n// seedrandom()\n// This is the seedrandom function described above.\n//\nfunction seedrandom(seed, options, callback) {\n var key = [];\n options = (options == true) ? { entropy: true } : (options || {});\n\n // Flatten the seed string or build one from local entropy if needed.\n var shortseed = mixkey(flatten(\n options.entropy ? [seed, tostring(pool)] :\n (seed == null) ? autoseed() : seed, 3), key);\n\n // Use the seed to initialize an ARC4 generator.\n var arc4 = new ARC4(key);\n\n // This function returns a random double in [0, 1) that contains\n // randomness in every bit of the mantissa of the IEEE 754 value.\n var prng = function() {\n var n = arc4.g(chunks), // Start with a numerator n < 2 ^ 48\n d = startdenom, // and denominator d = 2 ^ 48.\n x = 0; // and no 'extra last byte'.\n while (n < significance) { // Fill up all significant digits by\n n = (n + x) * width; // shifting numerator and\n d *= width; // denominator and generating a\n x = arc4.g(1); // new least-significant-byte.\n }\n while (n >= overflow) { // To avoid rounding up, before adding\n n /= 2; // last byte, shift everything\n d /= 2; // right using integer math until\n x >>>= 1; // we have exactly the desired bits.\n }\n return (n + x) / d; // Form the number within [0, 1).\n };\n\n prng.int32 = function() { return arc4.g(4) | 0; }\n prng.quick = function() { return arc4.g(4) / 0x100000000; }\n prng.double = prng;\n\n // Mix the randomness into accumulated entropy.\n mixkey(tostring(arc4.S), pool);\n\n // Calling convention: what to return as a function of prng, seed, is_math.\n return (options.pass || callback ||\n function(prng, seed, is_math_call, state) {\n if (state) {\n // Load the arc4 state from the given state if it has an S array.\n if (state.S) { copy(state, arc4); }\n // Only provide the .state method if requested via options.state.\n prng.state = function() { return copy(arc4, {}); }\n }\n\n // If called as a method of Math (Math.seedrandom()), mutate\n // Math.random because that is how seedrandom.js has worked since v1.0.\n if (is_math_call) { math[rngname] = prng; return seed; }\n\n // Otherwise, it is a newer calling convention, so return the\n // prng directly.\n else return prng;\n })(\n prng,\n shortseed,\n 'global' in options ? options.global : (this == math),\n options.state);\n}\nmath['seed' + rngname] = seedrandom;\n\n//\n// ARC4\n//\n// An ARC4 implementation. The constructor takes a key in the form of\n// an array of at most (width) integers that should be 0 <= x < (width).\n//\n// The g(count) method returns a pseudorandom integer that concatenates\n// the next (count) outputs from ARC4. Its return value is a number x\n// that is in the range 0 <= x < (width ^ count).\n//\nfunction ARC4(key) {\n var t, keylen = key.length,\n me = this, i = 0, j = me.i = me.j = 0, s = me.S = [];\n\n // The empty key [] is treated as [0].\n if (!keylen) { key = [keylen++]; }\n\n // Set up S using the standard key scheduling algorithm.\n while (i < width) {\n s[i] = i++;\n }\n for (i = 0; i < width; i++) {\n s[i] = s[j = mask & (j + key[i % keylen] + (t = s[i]))];\n s[j] = t;\n }\n\n // The \"g\" method returns the next (count) outputs as one number.\n (me.g = function(count) {\n // Using instance members instead of closure state nearly doubles speed.\n var t, r = 0,\n i = me.i, j = me.j, s = me.S;\n while (count--) {\n t = s[i = mask & (i + 1)];\n r = r * width + s[mask & ((s[i] = s[j = mask & (j + t)]) + (s[j] = t))];\n }\n me.i = i; me.j = j;\n return r;\n // For robust unpredictability, the function call below automatically\n // discards an initial batch of values. This is called RC4-drop[256].\n // See http://google.com/search?q=rsa+fluhrer+response&btnI\n })(width);\n}\n\n//\n// copy()\n// Copies internal state of ARC4 to or from a plain object.\n//\nfunction copy(f, t) {\n t.i = f.i;\n t.j = f.j;\n t.S = f.S.slice();\n return t;\n};\n\n//\n// flatten()\n// Converts an object tree to nested arrays of strings.\n//\nfunction flatten(obj, depth) {\n var result = [], typ = (typeof obj), prop;\n if (depth && typ == 'object') {\n for (prop in obj) {\n try { result.push(flatten(obj[prop], depth - 1)); } catch (e) {}\n }\n }\n return (result.length ? result : typ == 'string' ? obj : obj + '\\0');\n}\n\n//\n// mixkey()\n// Mixes a string seed into a key that is an array of integers, and\n// returns a shortened string seed that is equivalent to the result key.\n//\nfunction mixkey(seed, key) {\n var stringseed = seed + '', smear, j = 0;\n while (j < stringseed.length) {\n key[mask & j] =\n mask & ((smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++));\n }\n return tostring(key);\n}\n\n//\n// autoseed()\n// Returns an object for autoseeding, using window.crypto and Node crypto\n// module if available.\n//\nfunction autoseed() {\n try {\n var out;\n if (nodecrypto && (out = nodecrypto.randomBytes)) {\n // The use of 'out' to remember randomBytes makes tight minified code.\n out = out(width);\n } else {\n out = new Uint8Array(width);\n (global.crypto || global.msCrypto).getRandomValues(out);\n }\n return tostring(out);\n } catch (e) {\n var browser = global.navigator,\n plugins = browser && browser.plugins;\n return [+new Date, global, plugins, global.screen, tostring(pool)];\n }\n}\n\n//\n// tostring()\n// Converts an array of charcodes to a string\n//\nfunction tostring(a) {\n return String.fromCharCode.apply(0, a);\n}\n\n//\n// When seedrandom.js is loaded, we immediately mix a few bits\n// from the built-in RNG into the entropy pool. Because we do\n// not want to interfere with deterministic PRNG state later,\n// seedrandom will not call math.random on its own again after\n// initialization.\n//\nmixkey(math.random(), pool);\n\n//\n// Nodejs and AMD support: export the implementation as a module using\n// either convention.\n//\nif ((typeof module) == 'object' && module.exports) {\n module.exports = seedrandom;\n // When in node.js, try using crypto package for autoseeding.\n try {\n nodecrypto = require('crypto');\n } catch (ex) {}\n} else if ((typeof define) == 'function' && define.amd) {\n define(function() { return seedrandom; });\n}\n\n// End anonymous scope, and pass initial values.\n})(\n [], // pool: entropy pool starts empty\n Math // math: package containing random, pow, and seedrandom\n);\n", "// A library of seedable RNGs implemented in Javascript.\n//\n// Usage:\n//\n// var seedrandom = require('seedrandom');\n// var random = seedrandom(1); // or any seed.\n// var x = random(); // 0 <= x < 1. Every bit is random.\n// var x = random.quick(); // 0 <= x < 1. 32 bits of randomness.\n\n// alea, a 53-bit multiply-with-carry generator by Johannes Baag\u00F8e.\n// Period: ~2^116\n// Reported to pass all BigCrush tests.\nvar alea = require('./lib/alea');\n\n// xor128, a pure xor-shift generator by George Marsaglia.\n// Period: 2^128-1.\n// Reported to fail: MatrixRank and LinearComp.\nvar xor128 = require('./lib/xor128');\n\n// xorwow, George Marsaglia's 160-bit xor-shift combined plus weyl.\n// Period: 2^192-2^32\n// Reported to fail: CollisionOver, SimpPoker, and LinearComp.\nvar xorwow = require('./lib/xorwow');\n\n// xorshift7, by Fran\u00E7ois Panneton and Pierre L'ecuyer, takes\n// a different approach: it adds robustness by allowing more shifts\n// than Marsaglia's original three. It is a 7-shift generator\n// with 256 bits, that passes BigCrush with no systmatic failures.\n// Period 2^256-1.\n// No systematic BigCrush failures reported.\nvar xorshift7 = require('./lib/xorshift7');\n\n// xor4096, by Richard Brent, is a 4096-bit xor-shift with a\n// very long period that also adds a Weyl generator. It also passes\n// BigCrush with no systematic failures. Its long period may\n// be useful if you have many generators and need to avoid\n// collisions.\n// Period: 2^4128-2^32.\n// No systematic BigCrush failures reported.\nvar xor4096 = require('./lib/xor4096');\n\n// Tyche-i, by Samuel Neves and Filipe Araujo, is a bit-shifting random\n// number generator derived from ChaCha, a modern stream cipher.\n// https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n// Period: ~2^127\n// No systematic BigCrush failures reported.\nvar tychei = require('./lib/tychei');\n\n// The original ARC4-based prng included in this library.\n// Period: ~2^1600\nvar sr = require('./seedrandom');\n\nsr.alea = alea;\nsr.xor128 = xor128;\nsr.xorwow = xorwow;\nsr.xorshift7 = xorshift7;\nsr.xor4096 = xor4096;\nsr.tychei = tychei;\n\nmodule.exports = sr;\n", "// A port of an algorithm by Johannes Baag\u00F8e , 2010\n// http://baagoe.com/en/RandomMusings/javascript/\n// https://github.com/nquinlan/better-random-numbers-for-javascript-mirror\n// Original work is under MIT license -\n\n// Copyright (C) 2010 by Johannes Baag\u00F8e \n//\n// Permission is hereby granted, free of charge, to any person obtaining a copy\n// of this software and associated documentation files (the \"Software\"), to deal\n// in the Software without restriction, including without limitation the rights\n// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n// copies of the Software, and to permit persons to whom the Software is\n// furnished to do so, subject to the following conditions:\n//\n// The above copyright notice and this permission notice shall be included in\n// all copies or substantial portions of the Software.\n//\n// THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\n// THE SOFTWARE.\n\n\n\n(function(global, module, define) {\n\nfunction Alea(seed) {\n var me = this, mash = Mash();\n\n me.next = function() {\n var t = 2091639 * me.s0 + me.c * 2.3283064365386963e-10; // 2^-32\n me.s0 = me.s1;\n me.s1 = me.s2;\n return me.s2 = t - (me.c = t | 0);\n };\n\n // Apply the seeding algorithm from Baagoe.\n me.c = 1;\n me.s0 = mash(' ');\n me.s1 = mash(' ');\n me.s2 = mash(' ');\n me.s0 -= mash(seed);\n if (me.s0 < 0) { me.s0 += 1; }\n me.s1 -= mash(seed);\n if (me.s1 < 0) { me.s1 += 1; }\n me.s2 -= mash(seed);\n if (me.s2 < 0) { me.s2 += 1; }\n mash = null;\n}\n\nfunction copy(f, t) {\n t.c = f.c;\n t.s0 = f.s0;\n t.s1 = f.s1;\n t.s2 = f.s2;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new Alea(seed),\n state = opts && opts.state,\n prng = xg.next;\n prng.int32 = function() { return (xg.next() * 0x100000000) | 0; }\n prng.double = function() {\n return prng() + (prng() * 0x200000 | 0) * 1.1102230246251565e-16; // 2^-53\n };\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nfunction Mash() {\n var n = 0xefc8249d;\n\n var mash = function(data) {\n data = String(data);\n for (var i = 0; i < data.length; i++) {\n n += data.charCodeAt(i);\n var h = 0.02519603282416938 * n;\n n = h >>> 0;\n h -= n;\n h *= n;\n n = h >>> 0;\n h -= n;\n n += h * 0x100000000; // 2^32\n }\n return (n >>> 0) * 2.3283064365386963e-10; // 2^-32\n };\n\n return mash;\n}\n\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.alea = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xor128\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n\n // Set up generator function.\n me.next = function() {\n var t = me.x ^ (me.x << 11);\n me.x = me.y;\n me.y = me.z;\n me.z = me.w;\n return me.w ^= (me.w >>> 19) ^ t ^ (t >>> 8);\n };\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor128 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorwow\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var t = (me.x ^ (me.x >>> 2));\n me.x = me.y; me.y = me.z; me.z = me.w; me.w = me.v;\n return (me.d = (me.d + 362437 | 0)) +\n (me.v = (me.v ^ (me.v << 4)) ^ (t ^ (t << 1))) | 0;\n };\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n me.v = 0;\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n if (k == strseed.length) {\n me.d = me.x << 10 ^ me.x >>> 4;\n }\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n t.v = f.v;\n t.d = f.d;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorwow = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorshift7\" algorithm by\n// Fran\u00E7ois Panneton and Pierre L'ecuyer:\n// \"On the Xorgshift Random Number Generators\"\n// http://saluc.engr.uconn.edu/refs/crypto/rng/panneton05onthexorshift.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n // Update xor generator.\n var X = me.x, i = me.i, t, v, w;\n t = X[i]; t ^= (t >>> 7); v = t ^ (t << 24);\n t = X[(i + 1) & 7]; v ^= t ^ (t >>> 10);\n t = X[(i + 3) & 7]; v ^= t ^ (t >>> 3);\n t = X[(i + 4) & 7]; v ^= t ^ (t << 7);\n t = X[(i + 7) & 7]; t = t ^ (t << 13); v ^= t ^ (t << 9);\n X[i] = v;\n me.i = (i + 1) & 7;\n return v;\n };\n\n function init(me, seed) {\n var j, w, X = [];\n\n if (seed === (seed | 0)) {\n // Seed state array using a 32-bit integer.\n w = X[0] = seed;\n } else {\n // Seed state using a string.\n seed = '' + seed;\n for (j = 0; j < seed.length; ++j) {\n X[j & 7] = (X[j & 7] << 15) ^\n (seed.charCodeAt(j) + X[(j + 1) & 7] << 13);\n }\n }\n // Enforce an array length of 8, not all zeroes.\n while (X.length < 8) X.push(0);\n for (j = 0; j < 8 && X[j] === 0; ++j);\n if (j == 8) w = X[7] = -1; else w = X[j];\n\n me.x = X;\n me.i = 0;\n\n // Discard an initial 256 values.\n for (j = 256; j > 0; --j) {\n me.next();\n }\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.x = f.x.slice();\n t.i = f.i;\n return t;\n}\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.x) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorshift7 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n", "// A Javascript implementaion of Richard Brent's Xorgens xor4096 algorithm.\n//\n// This fast non-cryptographic random number generator is designed for\n// use in Monte-Carlo algorithms. It combines a long-period xorshift\n// generator with a Weyl generator, and it passes all common batteries\n// of stasticial tests for randomness while consuming only a few nanoseconds\n// for each prng generated. For background on the generator, see Brent's\n// paper: \"Some long-period random number generators using shifts and xors.\"\n// http://arxiv.org/pdf/1004.3115v1.pdf\n//\n// Usage:\n//\n// var xor4096 = require('xor4096');\n// random = xor4096(1); // Seed with int32 or string.\n// assert.equal(random(), 0.1520436450538547); // (0, 1) range, 53 bits.\n// assert.equal(random.int32(), 1806534897); // signed int32, 32 bits.\n//\n// For nonzero numeric keys, this impelementation provides a sequence\n// identical to that by Brent's xorgens 3 implementaion in C. This\n// implementation also provides for initalizing the generator with\n// string seeds, or for saving and restoring the state of the generator.\n//\n// On Chrome, this prng benchmarks about 2.1 times slower than\n// Javascript's built-in Math.random().\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n var w = me.w,\n X = me.X, i = me.i, t, v;\n // Update Weyl generator.\n me.w = w = (w + 0x61c88647) | 0;\n // Update xor generator.\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n // Update Xor generator array state.\n v = X[i] = v ^ t;\n me.i = i;\n // Result is the combination.\n return (v + (w ^ (w >>> 16))) | 0;\n };\n\n function init(me, seed) {\n var t, v, i, j, w, X = [], limit = 128;\n if (seed === (seed | 0)) {\n // Numeric seeds initialize v, which is used to generates X.\n v = seed;\n seed = null;\n } else {\n // String seeds are mixed into v and X one character at a time.\n seed = seed + '\\0';\n v = 0;\n limit = Math.max(limit, seed.length);\n }\n // Initialize circular array and weyl value.\n for (i = 0, j = -32; j < limit; ++j) {\n // Put the unicode characters into the array, and shuffle them.\n if (seed) v ^= seed.charCodeAt((j + 32) % seed.length);\n // After 32 shuffles, take v as the starting w value.\n if (j === 0) w = v;\n v ^= v << 10;\n v ^= v >>> 15;\n v ^= v << 4;\n v ^= v >>> 13;\n if (j >= 0) {\n w = (w + 0x61c88647) | 0; // Weyl.\n t = (X[j & 127] ^= (v + w)); // Combine xor and weyl to init array.\n i = (0 == t) ? i + 1 : 0; // Count zeroes.\n }\n }\n // We have detected all zeroes; make the key nonzero.\n if (i >= 128) {\n X[(seed && seed.length || 0) & 127] = -1;\n }\n // Run the generator 512 times to further mix the state before using it.\n // Factoring this as a function slows the main generator, so it is just\n // unrolled here. The weyl generator is not advanced while warming up.\n i = 127;\n for (j = 4 * 128; j > 0; --j) {\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n X[i] = v ^ t;\n }\n // Storing state as object members is faster than using closure variables.\n me.w = w;\n me.X = X;\n me.i = i;\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.i = f.i;\n t.w = f.w;\n t.X = f.X.slice();\n return t;\n};\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.X) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor4096 = impl;\n}\n\n})(\n this, // window object or global\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n", "// A Javascript implementaion of the \"Tyche-i\" prng algorithm by\n// Samuel Neves and Filipe Araujo.\n// See https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var b = me.b, c = me.c, d = me.d, a = me.a;\n b = (b << 25) ^ (b >>> 7) ^ c;\n c = (c - d) | 0;\n d = (d << 24) ^ (d >>> 8) ^ a;\n a = (a - b) | 0;\n me.b = b = (b << 20) ^ (b >>> 12) ^ c;\n me.c = c = (c - d) | 0;\n me.d = (d << 16) ^ (c >>> 16) ^ a;\n return me.a = (a - b) | 0;\n };\n\n /* The following is non-inverted tyche, which has better internal\n * bit diffusion, but which is about 25% slower than tyche-i in JS.\n me.next = function() {\n var a = me.a, b = me.b, c = me.c, d = me.d;\n a = (me.a + me.b | 0) >>> 0;\n d = me.d ^ a; d = d << 16 ^ d >>> 16;\n c = me.c + d | 0;\n b = me.b ^ c; b = b << 12 ^ d >>> 20;\n me.a = a = a + b | 0;\n d = d ^ a; me.d = d = d << 8 ^ d >>> 24;\n me.c = c = c + d | 0;\n b = b ^ c;\n return me.b = (b << 7 ^ b >>> 25);\n }\n */\n\n me.a = 0;\n me.b = 0;\n me.c = 2654435769 | 0;\n me.d = 1367130551;\n\n if (seed === Math.floor(seed)) {\n // Integer seed.\n me.a = (seed / 0x100000000) | 0;\n me.b = seed | 0;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 20; k++) {\n me.b ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.a = f.a;\n t.b = f.b;\n t.c = f.c;\n t.d = f.d;\n return t;\n};\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.tychei = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "/*\nCopyright 2019 David Bau.\n\nPermission is hereby granted, free of charge, to any person obtaining\na copy of this software and associated documentation files (the\n\"Software\"), to deal in the Software without restriction, including\nwithout limitation the rights to use, copy, modify, merge, publish,\ndistribute, sublicense, and/or sell copies of the Software, and to\npermit persons to whom the Software is furnished to do so, subject to\nthe following conditions:\n\nThe above copyright notice and this permission notice shall be\nincluded in all copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND,\nEXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF\nMERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.\nIN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY\nCLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,\nTORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE\nSOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.\n\n*/\n\n(function (global, pool, math) {\n//\n// The following constants are related to IEEE 754 limits.\n//\n\nvar width = 256, // each RC4 output is 0 <= x < 256\n chunks = 6, // at least six RC4 outputs for each double\n digits = 52, // there are 52 significant digits in a double\n rngname = 'random', // rngname: name for Math.random and Math.seedrandom\n startdenom = math.pow(width, chunks),\n significance = math.pow(2, digits),\n overflow = significance * 2,\n mask = width - 1,\n nodecrypto; // node.js crypto module, initialized at the bottom.\n\n//\n// seedrandom()\n// This is the seedrandom function described above.\n//\nfunction seedrandom(seed, options, callback) {\n var key = [];\n options = (options == true) ? { entropy: true } : (options || {});\n\n // Flatten the seed string or build one from local entropy if needed.\n var shortseed = mixkey(flatten(\n options.entropy ? [seed, tostring(pool)] :\n (seed == null) ? autoseed() : seed, 3), key);\n\n // Use the seed to initialize an ARC4 generator.\n var arc4 = new ARC4(key);\n\n // This function returns a random double in [0, 1) that contains\n // randomness in every bit of the mantissa of the IEEE 754 value.\n var prng = function() {\n var n = arc4.g(chunks), // Start with a numerator n < 2 ^ 48\n d = startdenom, // and denominator d = 2 ^ 48.\n x = 0; // and no 'extra last byte'.\n while (n < significance) { // Fill up all significant digits by\n n = (n + x) * width; // shifting numerator and\n d *= width; // denominator and generating a\n x = arc4.g(1); // new least-significant-byte.\n }\n while (n >= overflow) { // To avoid rounding up, before adding\n n /= 2; // last byte, shift everything\n d /= 2; // right using integer math until\n x >>>= 1; // we have exactly the desired bits.\n }\n return (n + x) / d; // Form the number within [0, 1).\n };\n\n prng.int32 = function() { return arc4.g(4) | 0; }\n prng.quick = function() { return arc4.g(4) / 0x100000000; }\n prng.double = prng;\n\n // Mix the randomness into accumulated entropy.\n mixkey(tostring(arc4.S), pool);\n\n // Calling convention: what to return as a function of prng, seed, is_math.\n return (options.pass || callback ||\n function(prng, seed, is_math_call, state) {\n if (state) {\n // Load the arc4 state from the given state if it has an S array.\n if (state.S) { copy(state, arc4); }\n // Only provide the .state method if requested via options.state.\n prng.state = function() { return copy(arc4, {}); }\n }\n\n // If called as a method of Math (Math.seedrandom()), mutate\n // Math.random because that is how seedrandom.js has worked since v1.0.\n if (is_math_call) { math[rngname] = prng; return seed; }\n\n // Otherwise, it is a newer calling convention, so return the\n // prng directly.\n else return prng;\n })(\n prng,\n shortseed,\n 'global' in options ? options.global : (this == math),\n options.state);\n}\n\n//\n// ARC4\n//\n// An ARC4 implementation. The constructor takes a key in the form of\n// an array of at most (width) integers that should be 0 <= x < (width).\n//\n// The g(count) method returns a pseudorandom integer that concatenates\n// the next (count) outputs from ARC4. Its return value is a number x\n// that is in the range 0 <= x < (width ^ count).\n//\nfunction ARC4(key) {\n var t, keylen = key.length,\n me = this, i = 0, j = me.i = me.j = 0, s = me.S = [];\n\n // The empty key [] is treated as [0].\n if (!keylen) { key = [keylen++]; }\n\n // Set up S using the standard key scheduling algorithm.\n while (i < width) {\n s[i] = i++;\n }\n for (i = 0; i < width; i++) {\n s[i] = s[j = mask & (j + key[i % keylen] + (t = s[i]))];\n s[j] = t;\n }\n\n // The \"g\" method returns the next (count) outputs as one number.\n (me.g = function(count) {\n // Using instance members instead of closure state nearly doubles speed.\n var t, r = 0,\n i = me.i, j = me.j, s = me.S;\n while (count--) {\n t = s[i = mask & (i + 1)];\n r = r * width + s[mask & ((s[i] = s[j = mask & (j + t)]) + (s[j] = t))];\n }\n me.i = i; me.j = j;\n return r;\n // For robust unpredictability, the function call below automatically\n // discards an initial batch of values. This is called RC4-drop[256].\n // See http://google.com/search?q=rsa+fluhrer+response&btnI\n })(width);\n}\n\n//\n// copy()\n// Copies internal state of ARC4 to or from a plain object.\n//\nfunction copy(f, t) {\n t.i = f.i;\n t.j = f.j;\n t.S = f.S.slice();\n return t;\n};\n\n//\n// flatten()\n// Converts an object tree to nested arrays of strings.\n//\nfunction flatten(obj, depth) {\n var result = [], typ = (typeof obj), prop;\n if (depth && typ == 'object') {\n for (prop in obj) {\n try { result.push(flatten(obj[prop], depth - 1)); } catch (e) {}\n }\n }\n return (result.length ? result : typ == 'string' ? obj : obj + '\\0');\n}\n\n//\n// mixkey()\n// Mixes a string seed into a key that is an array of integers, and\n// returns a shortened string seed that is equivalent to the result key.\n//\nfunction mixkey(seed, key) {\n var stringseed = seed + '', smear, j = 0;\n while (j < stringseed.length) {\n key[mask & j] =\n mask & ((smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++));\n }\n return tostring(key);\n}\n\n//\n// autoseed()\n// Returns an object for autoseeding, using window.crypto and Node crypto\n// module if available.\n//\nfunction autoseed() {\n try {\n var out;\n if (nodecrypto && (out = nodecrypto.randomBytes)) {\n // The use of 'out' to remember randomBytes makes tight minified code.\n out = out(width);\n } else {\n out = new Uint8Array(width);\n (global.crypto || global.msCrypto).getRandomValues(out);\n }\n return tostring(out);\n } catch (e) {\n var browser = global.navigator,\n plugins = browser && browser.plugins;\n return [+new Date, global, plugins, global.screen, tostring(pool)];\n }\n}\n\n//\n// tostring()\n// Converts an array of charcodes to a string\n//\nfunction tostring(a) {\n return String.fromCharCode.apply(0, a);\n}\n\n//\n// When seedrandom.js is loaded, we immediately mix a few bits\n// from the built-in RNG into the entropy pool. Because we do\n// not want to interfere with deterministic PRNG state later,\n// seedrandom will not call math.random on its own again after\n// initialization.\n//\nmixkey(math.random(), pool);\n\n//\n// Nodejs and AMD support: export the implementation as a module using\n// either convention.\n//\nif ((typeof module) == 'object' && module.exports) {\n module.exports = seedrandom;\n // When in node.js, try using crypto package for autoseeding.\n try {\n nodecrypto = require('crypto');\n } catch (ex) {}\n} else if ((typeof define) == 'function' && define.amd) {\n define(function() { return seedrandom; });\n} else {\n // When included as a plain script, set up Math.seedrandom global.\n math['seed' + rngname] = seedrandom;\n}\n\n\n// End anonymous scope, and pass initial values.\n})(\n // global: `self` in browsers (including strict mode and web workers),\n // otherwise `this` in Node and other environments\n (typeof self !== 'undefined') ? self : this,\n [], // pool: entropy pool starts empty\n Math // math: package containing random, pow, and seedrandom\n);\n", "// A library of seedable RNGs implemented in Javascript.\n//\n// Usage:\n//\n// var seedrandom = require('seedrandom');\n// var random = seedrandom(1); // or any seed.\n// var x = random(); // 0 <= x < 1. Every bit is random.\n// var x = random.quick(); // 0 <= x < 1. 32 bits of randomness.\n\n// alea, a 53-bit multiply-with-carry generator by Johannes Baag\u00F8e.\n// Period: ~2^116\n// Reported to pass all BigCrush tests.\nvar alea = require('./lib/alea');\n\n// xor128, a pure xor-shift generator by George Marsaglia.\n// Period: 2^128-1.\n// Reported to fail: MatrixRank and LinearComp.\nvar xor128 = require('./lib/xor128');\n\n// xorwow, George Marsaglia's 160-bit xor-shift combined plus weyl.\n// Period: 2^192-2^32\n// Reported to fail: CollisionOver, SimpPoker, and LinearComp.\nvar xorwow = require('./lib/xorwow');\n\n// xorshift7, by Fran\u00E7ois Panneton and Pierre L'ecuyer, takes\n// a different approach: it adds robustness by allowing more shifts\n// than Marsaglia's original three. It is a 7-shift generator\n// with 256 bits, that passes BigCrush with no systmatic failures.\n// Period 2^256-1.\n// No systematic BigCrush failures reported.\nvar xorshift7 = require('./lib/xorshift7');\n\n// xor4096, by Richard Brent, is a 4096-bit xor-shift with a\n// very long period that also adds a Weyl generator. It also passes\n// BigCrush with no systematic failures. Its long period may\n// be useful if you have many generators and need to avoid\n// collisions.\n// Period: 2^4128-2^32.\n// No systematic BigCrush failures reported.\nvar xor4096 = require('./lib/xor4096');\n\n// Tyche-i, by Samuel Neves and Filipe Araujo, is a bit-shifting random\n// number generator derived from ChaCha, a modern stream cipher.\n// https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n// Period: ~2^127\n// No systematic BigCrush failures reported.\nvar tychei = require('./lib/tychei');\n\n// The original ARC4-based prng included in this library.\n// Period: ~2^1600\nvar sr = require('./seedrandom');\n\nsr.alea = alea;\nsr.xor128 = xor128;\nsr.xorwow = xorwow;\nsr.xorshift7 = xorshift7;\nsr.xor4096 = xor4096;\nsr.tychei = tychei;\n\nmodule.exports = sr;\n", "", "", "", "", "\nvar WasmBackendModuleThreadedSimd = (function() {\n var _scriptDir = typeof document !== 'undefined' && document.currentScript ? document.currentScript.src : undefined;\n if (typeof __filename !== 'undefined') _scriptDir = _scriptDir || __filename;\n return (\nfunction(WasmBackendModuleThreadedSimd) {\n WasmBackendModuleThreadedSimd = WasmBackendModuleThreadedSimd || {};\n\nfunction GROWABLE_HEAP_I8(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAP8}function GROWABLE_HEAP_U8(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAPU8}function GROWABLE_HEAP_I32(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAP32}function GROWABLE_HEAP_U32(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAPU32}function GROWABLE_HEAP_F64(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAPF64}var Module=typeof WasmBackendModuleThreadedSimd!==\"undefined\"?WasmBackendModuleThreadedSimd:{};var readyPromiseResolve,readyPromiseReject;Module[\"ready\"]=new Promise(function(resolve,reject){readyPromiseResolve=resolve;readyPromiseReject=reject});var moduleOverrides={};var key;for(key in Module){if(Module.hasOwnProperty(key)){moduleOverrides[key]=Module[key]}}var arguments_=[];var thisProgram=\"./this.program\";var quit_=function(status,toThrow){throw toThrow};var ENVIRONMENT_IS_WEB=false;var ENVIRONMENT_IS_WORKER=false;var ENVIRONMENT_IS_NODE=false;var ENVIRONMENT_IS_SHELL=false;ENVIRONMENT_IS_WEB=typeof window===\"object\";ENVIRONMENT_IS_WORKER=typeof importScripts===\"function\";ENVIRONMENT_IS_NODE=typeof process===\"object\"&&typeof process.versions===\"object\"&&typeof process.versions.node===\"string\";ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER;var ENVIRONMENT_IS_PTHREAD=Module[\"ENVIRONMENT_IS_PTHREAD\"]||false;if(ENVIRONMENT_IS_PTHREAD){buffer=Module[\"buffer\"]}var scriptDirectory=\"\";function locateFile(path){if(Module[\"locateFile\"]){return Module[\"locateFile\"](path,scriptDirectory)}return scriptDirectory+path}var read_,readAsync,readBinary,setWindowTitle;var nodeFS;var nodePath;if(ENVIRONMENT_IS_NODE){if(ENVIRONMENT_IS_WORKER){scriptDirectory=require(\"path\").dirname(scriptDirectory)+\"/\"}else{scriptDirectory=__dirname+\"/\"}read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require(\"fs\");if(!nodePath)nodePath=require(\"path\");filename=nodePath[\"normalize\"](filename);return nodeFS[\"readFileSync\"](filename,binary?null:\"utf8\")};readBinary=function readBinary(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret};if(process[\"argv\"].length>1){thisProgram=process[\"argv\"][1].replace(/\\\\/g,\"/\")}arguments_=process[\"argv\"].slice(2);process[\"on\"](\"uncaughtException\",function(ex){if(!(ex instanceof ExitStatus)){throw ex}});process[\"on\"](\"unhandledRejection\",abort);quit_=function(status){process[\"exit\"](status)};Module[\"inspect\"]=function(){return\"[Emscripten Module object]\"};var nodeWorkerThreads;try{nodeWorkerThreads=require(\"worker_threads\")}catch(e){console.error('The \"worker_threads\" module is not supported in this node.js build - perhaps a newer version is needed?');throw e}global.Worker=nodeWorkerThreads.Worker}else if(ENVIRONMENT_IS_SHELL){if(typeof read!=\"undefined\"){read_=function shell_read(f){return read(f)}}readBinary=function readBinary(f){var data;if(typeof readbuffer===\"function\"){return new Uint8Array(readbuffer(f))}data=read(f,\"binary\");assert(typeof data===\"object\");return data};if(typeof scriptArgs!=\"undefined\"){arguments_=scriptArgs}else if(typeof arguments!=\"undefined\"){arguments_=arguments}if(typeof quit===\"function\"){quit_=function(status){quit(status)}}if(typeof print!==\"undefined\"){if(typeof console===\"undefined\")console={};console.log=print;console.warn=console.error=typeof printErr!==\"undefined\"?printErr:print}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){if(ENVIRONMENT_IS_WORKER){scriptDirectory=self.location.href}else if(typeof document!==\"undefined\"&&document.currentScript){scriptDirectory=document.currentScript.src}if(typeof _scriptDir !== \"undefined\" && _scriptDir){scriptDirectory=_scriptDir}if(scriptDirectory.indexOf(\"blob:\")!==0){scriptDirectory=scriptDirectory.substr(0,scriptDirectory.lastIndexOf(\"/\")+1)}else{scriptDirectory=\"\"}if(ENVIRONMENT_IS_NODE){read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require(\"fs\");if(!nodePath)nodePath=require(\"path\");filename=nodePath[\"normalize\"](filename);return nodeFS[\"readFileSync\"](filename,binary?null:\"utf8\")};readBinary=function readBinary(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret}}else{read_=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.send(null);return xhr.responseText};if(ENVIRONMENT_IS_WORKER){readBinary=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.responseType=\"arraybuffer\";xhr.send(null);return new Uint8Array(xhr.response)}}readAsync=function(url,onload,onerror){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,true);xhr.responseType=\"arraybuffer\";xhr.onload=function(){if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response);return}onerror()};xhr.onerror=onerror;xhr.send(null)}}setWindowTitle=function(title){document.title=title}}else{}if(ENVIRONMENT_IS_NODE){if(typeof performance===\"undefined\"){global.performance=require(\"perf_hooks\").performance}}var out=Module[\"print\"]||console.log.bind(console);var err=Module[\"printErr\"]||console.warn.bind(console);for(key in moduleOverrides){if(moduleOverrides.hasOwnProperty(key)){Module[key]=moduleOverrides[key]}}moduleOverrides=null;if(Module[\"arguments\"])arguments_=Module[\"arguments\"];if(Module[\"thisProgram\"])thisProgram=Module[\"thisProgram\"];if(Module[\"quit\"])quit_=Module[\"quit\"];var Atomics_load=Atomics.load;var Atomics_store=Atomics.store;var Atomics_compareExchange=Atomics.compareExchange;var wasmBinary;if(Module[\"wasmBinary\"])wasmBinary=Module[\"wasmBinary\"];var noExitRuntime=Module[\"noExitRuntime\"]||true;if(typeof WebAssembly!==\"object\"){abort(\"no native wasm support detected\")}var wasmMemory;var wasmModule;var ABORT=false;var EXITSTATUS;function assert(condition,text){if(!condition){abort(\"Assertion failed: \"+text)}}function getCFunc(ident){var func=Module[\"_\"+ident];assert(func,\"Cannot call unknown function \"+ident+\", make sure it is exported\");return func}function ccall(ident,returnType,argTypes,args,opts){var toC={\"string\":function(str){var ret=0;if(str!==null&&str!==undefined&&str!==0){var len=(str.length<<2)+1;ret=stackAlloc(len);stringToUTF8(str,ret,len)}return ret},\"array\":function(arr){var ret=stackAlloc(arr.length);writeArrayToMemory(arr,ret);return ret}};function convertReturnValue(ret){if(returnType===\"string\")return UTF8ToString(ret);if(returnType===\"boolean\")return Boolean(ret);return ret}var func=getCFunc(ident);var cArgs=[];var stack=0;if(args){for(var i=0;i=endIdx)){var u0=heap[idx++];if(!u0)return str;if(!(u0&128)){str+=String.fromCharCode(u0);continue}var u1=heap[idx++]&63;if((u0&224)==192){str+=String.fromCharCode((u0&31)<<6|u1);continue}var u2=heap[idx++]&63;if((u0&240)==224){u0=(u0&15)<<12|u1<<6|u2}else{u0=(u0&7)<<18|u1<<12|u2<<6|heap[idx++]&63}if(u0<65536){str+=String.fromCharCode(u0)}else{var ch=u0-65536;str+=String.fromCharCode(55296|ch>>10,56320|ch&1023)}}return str}function UTF8ToString(ptr,maxBytesToRead){return ptr?UTF8ArrayToString(GROWABLE_HEAP_U8(),ptr,maxBytesToRead):\"\"}function stringToUTF8Array(str,heap,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;var startIdx=outIdx;var endIdx=outIdx+maxBytesToWrite-1;for(var i=0;i=55296&&u<=57343){var u1=str.charCodeAt(++i);u=65536+((u&1023)<<10)|u1&1023}if(u<=127){if(outIdx>=endIdx)break;heap[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;heap[outIdx++]=192|u>>6;heap[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;heap[outIdx++]=224|u>>12;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}else{if(outIdx+3>=endIdx)break;heap[outIdx++]=240|u>>18;heap[outIdx++]=128|u>>12&63;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}}heap[outIdx]=0;return outIdx-startIdx}function stringToUTF8(str,outPtr,maxBytesToWrite){return stringToUTF8Array(str,GROWABLE_HEAP_U8(),outPtr,maxBytesToWrite)}function lengthBytesUTF8(str){var len=0;for(var i=0;i=55296&&u<=57343)u=65536+((u&1023)<<10)|str.charCodeAt(++i)&1023;if(u<=127)++len;else if(u<=2047)len+=2;else if(u<=65535)len+=3;else len+=4}return len}function writeArrayToMemory(array,buffer){GROWABLE_HEAP_I8().set(array,buffer)}function alignUp(x,multiple){if(x%multiple>0){x+=multiple-x%multiple}return x}var buffer,HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateGlobalBufferAndViews(buf){buffer=buf;Module[\"HEAP8\"]=HEAP8=new Int8Array(buf);Module[\"HEAP16\"]=HEAP16=new Int16Array(buf);Module[\"HEAP32\"]=HEAP32=new Int32Array(buf);Module[\"HEAPU8\"]=HEAPU8=new Uint8Array(buf);Module[\"HEAPU16\"]=HEAPU16=new Uint16Array(buf);Module[\"HEAPU32\"]=HEAPU32=new Uint32Array(buf);Module[\"HEAPF32\"]=HEAPF32=new Float32Array(buf);Module[\"HEAPF64\"]=HEAPF64=new Float64Array(buf)}var INITIAL_MEMORY=Module[\"INITIAL_MEMORY\"]||16777216;if(ENVIRONMENT_IS_PTHREAD){wasmMemory=Module[\"wasmMemory\"];buffer=Module[\"buffer\"]}else{if(Module[\"wasmMemory\"]){wasmMemory=Module[\"wasmMemory\"]}else{wasmMemory=new WebAssembly.Memory({\"initial\":INITIAL_MEMORY/65536,\"maximum\":2147483648/65536,\"shared\":true});if(!(wasmMemory.buffer instanceof SharedArrayBuffer)){err(\"requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag\");if(ENVIRONMENT_IS_NODE){console.log(\"(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)\")}throw Error(\"bad memory\")}}}if(wasmMemory){buffer=wasmMemory.buffer}INITIAL_MEMORY=buffer.byteLength;updateGlobalBufferAndViews(buffer);var wasmTable;var __ATPRERUN__=[];var __ATINIT__=[];var __ATMAIN__=[];var __ATEXIT__=[];var __ATPOSTRUN__=[];var runtimeInitialized=false;var runtimeExited=false;if(!ENVIRONMENT_IS_PTHREAD)__ATINIT__.push({func:function(){___wasm_call_ctors()}});function preRun(){if(ENVIRONMENT_IS_PTHREAD)return;if(Module[\"preRun\"]){if(typeof Module[\"preRun\"]==\"function\")Module[\"preRun\"]=[Module[\"preRun\"]];while(Module[\"preRun\"].length){addOnPreRun(Module[\"preRun\"].shift())}}callRuntimeCallbacks(__ATPRERUN__)}function initRuntime(){runtimeInitialized=true;if(ENVIRONMENT_IS_PTHREAD)return;callRuntimeCallbacks(__ATINIT__)}function preMain(){if(ENVIRONMENT_IS_PTHREAD)return;callRuntimeCallbacks(__ATMAIN__)}function exitRuntime(){if(ENVIRONMENT_IS_PTHREAD)return;runtimeExited=true}function postRun(){if(ENVIRONMENT_IS_PTHREAD)return;if(Module[\"postRun\"]){if(typeof Module[\"postRun\"]==\"function\")Module[\"postRun\"]=[Module[\"postRun\"]];while(Module[\"postRun\"].length){addOnPostRun(Module[\"postRun\"].shift())}}callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}var runDependencies=0;var runDependencyWatcher=null;var dependenciesFulfilled=null;function addRunDependency(id){assert(!ENVIRONMENT_IS_PTHREAD,\"addRunDependency cannot be used in a pthread worker\");runDependencies++;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}}function removeRunDependency(id){runDependencies--;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}if(runDependencies==0){if(runDependencyWatcher!==null){clearInterval(runDependencyWatcher);runDependencyWatcher=null}if(dependenciesFulfilled){var callback=dependenciesFulfilled;dependenciesFulfilled=null;callback()}}}Module[\"preloadedImages\"]={};Module[\"preloadedAudios\"]={};function abort(what){if(Module[\"onAbort\"]){Module[\"onAbort\"](what)}if(ENVIRONMENT_IS_PTHREAD)console.error(\"Pthread aborting at \"+(new Error).stack);what+=\"\";err(what);ABORT=true;EXITSTATUS=1;what=\"abort(\"+what+\"). Build with -s ASSERTIONS=1 for more info.\";var e=new WebAssembly.RuntimeError(what);readyPromiseReject(e);throw e}function hasPrefix(str,prefix){return String.prototype.startsWith?str.startsWith(prefix):str.indexOf(prefix)===0}var dataURIPrefix=\"data:application/octet-stream;base64,\";function isDataURI(filename){return hasPrefix(filename,dataURIPrefix)}var fileURIPrefix=\"file://\";function isFileURI(filename){return hasPrefix(filename,fileURIPrefix)}var wasmBinaryFile=\"tfjs-backend-wasm-threaded-simd.wasm\";if(!isDataURI(wasmBinaryFile)){wasmBinaryFile=locateFile(wasmBinaryFile)}function getBinary(file){try{if(file==wasmBinaryFile&&wasmBinary){return new Uint8Array(wasmBinary)}if(readBinary){return readBinary(file)}else{throw\"both async and sync fetching of the wasm failed\"}}catch(err){abort(err)}}function getBinaryPromise(){if(!wasmBinary&&(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER)){if(typeof fetch===\"function\"&&!isFileURI(wasmBinaryFile)){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){if(!response[\"ok\"]){throw\"failed to load wasm binary file at '\"+wasmBinaryFile+\"'\"}return response[\"arrayBuffer\"]()}).catch(function(){return getBinary(wasmBinaryFile)})}else{if(readAsync){return new Promise(function(resolve,reject){readAsync(wasmBinaryFile,function(response){resolve(new Uint8Array(response))},reject)})}}}return Promise.resolve().then(function(){return getBinary(wasmBinaryFile)})}function createWasm(){var info={\"a\":asmLibraryArg};function receiveInstance(instance,module){var exports=instance.exports;Module[\"asm\"]=exports;wasmTable=Module[\"asm\"][\"F\"];wasmModule=module;if(!ENVIRONMENT_IS_PTHREAD){var numWorkersToLoad=PThread.unusedWorkers.length;PThread.unusedWorkers.forEach(function(w){PThread.loadWasmModuleToWorker(w,function(){if(!--numWorkersToLoad)removeRunDependency(\"wasm-instantiate\")})})}}if(!ENVIRONMENT_IS_PTHREAD){addRunDependency(\"wasm-instantiate\")}function receiveInstantiatedSource(output){receiveInstance(output[\"instance\"],output[\"module\"])}function instantiateArrayBuffer(receiver){return getBinaryPromise().then(function(binary){return WebAssembly.instantiate(binary,info)}).then(receiver,function(reason){err(\"failed to asynchronously prepare wasm: \"+reason);abort(reason)})}function instantiateAsync(){if(!wasmBinary&&typeof WebAssembly.instantiateStreaming===\"function\"&&!isDataURI(wasmBinaryFile)&&!isFileURI(wasmBinaryFile)&&typeof fetch===\"function\"){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){var result=WebAssembly.instantiateStreaming(response,info);return result.then(receiveInstantiatedSource,function(reason){err(\"wasm streaming compile failed: \"+reason);err(\"falling back to ArrayBuffer instantiation\");return instantiateArrayBuffer(receiveInstantiatedSource)})})}else{return instantiateArrayBuffer(receiveInstantiatedSource)}}if(Module[\"instantiateWasm\"]){try{var exports=Module[\"instantiateWasm\"](info,receiveInstance);return exports}catch(e){err(\"Module.instantiateWasm callback failed with error: \"+e);return false}}instantiateAsync().catch(readyPromiseReject);return{}}var ASM_CONSTS={9832:function(){throw\"Canceled!\"},9850:function($0,$1){setTimeout(function(){__emscripten_do_dispatch_to_thread($0,$1)},0)}};function initPthreadsJS(){PThread.initRuntime()}function callRuntimeCallbacks(callbacks){while(callbacks.length>0){var callback=callbacks.shift();if(typeof callback==\"function\"){callback(Module);continue}var func=callback.func;if(typeof func===\"number\"){if(callback.arg===undefined){wasmTable.get(func)()}else{wasmTable.get(func)(callback.arg)}}else{func(callback.arg===undefined?null:callback.arg)}}}function _emscripten_futex_wake(addr,count){if(addr<=0||addr>GROWABLE_HEAP_I8().length||addr&3!=0||count<0)return-28;if(count==0)return 0;if(count>=2147483647)count=Infinity;var mainThreadWaitAddress=Atomics.load(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2);var mainThreadWoken=0;if(mainThreadWaitAddress==addr){var loadedAddr=Atomics.compareExchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,mainThreadWaitAddress,0);if(loadedAddr==mainThreadWaitAddress){--count;mainThreadWoken=1;if(count<=0)return 1}}var ret=Atomics.notify(GROWABLE_HEAP_I32(),addr>>2,count);if(ret>=0)return ret+mainThreadWoken;throw\"Atomics.notify returned an unexpected value \"+ret}Module[\"_emscripten_futex_wake\"]=_emscripten_futex_wake;function killThread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! killThread() can only ever be called from main application thread!\";if(!pthread_ptr)throw\"Internal Error! Null pthread_ptr in killThread!\";GROWABLE_HEAP_I32()[pthread_ptr+12>>2]=0;var pthread=PThread.pthreads[pthread_ptr];pthread.worker.terminate();PThread.freeThreadData(pthread);PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(pthread.worker),1);pthread.worker.pthread=undefined}function cancelThread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! cancelThread() can only ever be called from main application thread!\";if(!pthread_ptr)throw\"Internal Error! Null pthread_ptr in cancelThread!\";var pthread=PThread.pthreads[pthread_ptr];pthread.worker.postMessage({\"cmd\":\"cancel\"})}function cleanupThread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! cleanupThread() can only ever be called from main application thread!\";if(!pthread_ptr)throw\"Internal Error! Null pthread_ptr in cleanupThread!\";var pthread=PThread.pthreads[pthread_ptr];if(pthread){GROWABLE_HEAP_I32()[pthread_ptr+12>>2]=0;var worker=pthread.worker;PThread.returnWorkerToPool(worker)}}var PThread={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){var pthreadPoolSize=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2));for(var i=0;i>2]=tb;var headPtr=tb+152;GROWABLE_HEAP_I32()[headPtr>>2]=headPtr;var tlsMemory=_malloc(512);for(var i=0;i<128;++i)GROWABLE_HEAP_U32()[tlsMemory/4+i]=0;Atomics.store(GROWABLE_HEAP_U32(),tb+100>>2,tlsMemory);Atomics.store(GROWABLE_HEAP_U32(),tb+40>>2,tb);__emscripten_thread_init(tb,!ENVIRONMENT_IS_WORKER,1);_emscripten_register_main_browser_thread_id(tb)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){while(PThread.threadExitHandlers.length>0){PThread.threadExitHandlers.pop()()}if(ENVIRONMENT_IS_PTHREAD&&_pthread_self())___pthread_tsd_run_dtors()},runExitHandlersAndDeinitThread:function(tb,exitCode){Atomics.store(GROWABLE_HEAP_U32(),tb+56>>2,1);Atomics.store(GROWABLE_HEAP_U32(),tb+60>>2,0);PThread.runExitHandlers();Atomics.store(GROWABLE_HEAP_U32(),tb+4>>2,exitCode);Atomics.store(GROWABLE_HEAP_U32(),tb+0>>2,1);_emscripten_futex_wake(tb+0,2147483647);__emscripten_thread_init(0,0,0)},threadExit:function(exitCode){var tb=_pthread_self();if(tb){PThread.runExitHandlersAndDeinitThread(tb,exitCode);if(ENVIRONMENT_IS_PTHREAD){postMessage({\"cmd\":\"exit\"})}}},threadCancel:function(){PThread.runExitHandlersAndDeinitThread(_pthread_self(),-1);postMessage({\"cmd\":\"cancelDone\"})},terminateAllThreads:function(){for(var t in PThread.pthreads){var pthread=PThread.pthreads[t];if(pthread&&pthread.worker){PThread.returnWorkerToPool(pthread.worker)}}PThread.pthreads={};for(var i=0;i>2];GROWABLE_HEAP_I32()[pthread.threadInfoStruct+100>>2]=0;_free(tlsMemory);_free(pthread.threadInfoStruct)}pthread.threadInfoStruct=0;if(pthread.allocatedOwnStack&&pthread.stackBase)_free(pthread.stackBase);pthread.stackBase=0;if(pthread.worker)pthread.worker.pthread=null},returnWorkerToPool:function(worker){PThread.runWithoutMainThreadQueuedCalls(function(){delete PThread.pthreads[worker.pthread.threadInfoStruct];PThread.unusedWorkers.push(worker);PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(worker),1);PThread.freeThreadData(worker.pthread);worker.pthread=undefined})},runWithoutMainThreadQueuedCalls:function(func){GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls>>2]=0;try{func()}finally{GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls>>2]=1}},receiveObjectTransfer:function(data){},loadWasmModuleToWorker:function(worker,onFinishedLoading){worker.onmessage=function(e){var d=e[\"data\"];var cmd=d[\"cmd\"];if(worker.pthread)PThread.currentProxiedOperationCallerThread=worker.pthread.threadInfoStruct;if(d[\"targetThread\"]&&d[\"targetThread\"]!=_pthread_self()){var thread=PThread.pthreads[d.targetThread];if(thread){thread.worker.postMessage(e.data,d[\"transferList\"])}else{console.error('Internal error! Worker sent a message \"'+cmd+'\" to target pthread '+d[\"targetThread\"]+\", but that thread no longer exists!\")}PThread.currentProxiedOperationCallerThread=undefined;return}if(cmd===\"processQueuedMainThreadWork\"){_emscripten_main_thread_process_queued_calls()}else if(cmd===\"spawnThread\"){spawnThread(e.data)}else if(cmd===\"cleanupThread\"){cleanupThread(d[\"thread\"])}else if(cmd===\"killThread\"){killThread(d[\"thread\"])}else if(cmd===\"cancelThread\"){cancelThread(d[\"thread\"])}else if(cmd===\"loaded\"){worker.loaded=true;if(onFinishedLoading)onFinishedLoading(worker);if(worker.runPthread){worker.runPthread();delete worker.runPthread}}else if(cmd===\"print\"){out(\"Thread \"+d[\"threadId\"]+\": \"+d[\"text\"])}else if(cmd===\"printErr\"){err(\"Thread \"+d[\"threadId\"]+\": \"+d[\"text\"])}else if(cmd===\"alert\"){alert(\"Thread \"+d[\"threadId\"]+\": \"+d[\"text\"])}else if(cmd===\"exit\"){var detached=worker.pthread&&Atomics.load(GROWABLE_HEAP_U32(),worker.pthread.threadInfoStruct+64>>2);if(detached){PThread.returnWorkerToPool(worker)}}else if(cmd===\"exitProcess\"){try{exit(d[\"returnCode\"])}catch(e){if(e instanceof ExitStatus)return;throw e}}else if(cmd===\"cancelDone\"){PThread.returnWorkerToPool(worker)}else if(cmd===\"objectTransfer\"){PThread.receiveObjectTransfer(e.data)}else if(e.data.target===\"setimmediate\"){worker.postMessage(e.data)}else{err(\"worker sent an unknown command \"+cmd)}PThread.currentProxiedOperationCallerThread=undefined};worker.onerror=function(e){err(\"pthread sent an error! \"+e.filename+\":\"+e.lineno+\": \"+e.message)};if(ENVIRONMENT_IS_NODE){worker.on(\"message\",function(data){worker.onmessage({data:data})});worker.on(\"error\",function(data){worker.onerror(data)});worker.on(\"exit\",function(data){})}worker.postMessage({\"cmd\":\"load\",\"urlOrBlob\":Module[\"mainScriptUrlOrBlob\"]||_scriptDir,\"wasmMemory\":wasmMemory,\"wasmModule\":wasmModule})},allocateUnusedWorker:function(){var pthreadMainJs=locateFile(\"tfjs-backend-wasm-threaded-simd.worker.js\");PThread.unusedWorkers.push(new Worker(pthreadMainJs))},getNewWorker:function(){if(PThread.unusedWorkers.length==0){PThread.allocateUnusedWorker();PThread.loadWasmModuleToWorker(PThread.unusedWorkers[0])}if(PThread.unusedWorkers.length>0)return PThread.unusedWorkers.pop();else return null},busySpinWait:function(msecs){var t=performance.now()+msecs;while(performance.now()>2]=value;return value}function _atexit(func,arg){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(1,1,func,arg)}function __emscripten_notify_thread_queue(targetThreadId,mainThreadId){if(targetThreadId==mainThreadId){postMessage({\"cmd\":\"processQueuedMainThreadWork\"})}else if(ENVIRONMENT_IS_PTHREAD){postMessage({\"targetThread\":targetThreadId,\"cmd\":\"processThreadQueue\"})}else{var pthread=PThread.pthreads[targetThreadId];var worker=pthread&&pthread.worker;if(!worker){return}worker.postMessage({\"cmd\":\"processThreadQueue\"})}return 1}function _abort(){abort()}function _emscripten_asm_const_int(code,sigPtr,argbuf){var args=readAsmConstArgs(sigPtr,argbuf);return ASM_CONSTS[code].apply(null,args)}function _emscripten_conditional_set_current_thread_status(expectedStatus,newStatus){}function _emscripten_futex_wait(addr,val,timeout){if(addr<=0||addr>GROWABLE_HEAP_I8().length||addr&3!=0)return-28;if(!ENVIRONMENT_IS_WEB){var ret=Atomics.wait(GROWABLE_HEAP_I32(),addr>>2,val,timeout);if(ret===\"timed-out\")return-73;if(ret===\"not-equal\")return-6;if(ret===\"ok\")return 0;throw\"Atomics.wait returned an unexpected value \"+ret}else{if(Atomics.load(GROWABLE_HEAP_I32(),addr>>2)!=val){return-6}var tNow=performance.now();var tEnd=tNow+timeout;var lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,addr);while(1){tNow=performance.now();if(tNow>tEnd){lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,0);return-73}lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,0);if(lastAddr==0){break}_emscripten_main_thread_process_queued_calls();if(Atomics.load(GROWABLE_HEAP_I32(),addr>>2)!=val){return-6}lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,addr)}return 0}}function _emscripten_memcpy_big(dest,src,num){GROWABLE_HEAP_U8().copyWithin(dest,src,src+num)}function _emscripten_num_logical_cores(){if(ENVIRONMENT_IS_NODE)return require(\"os\").cpus().length;return navigator[\"hardwareConcurrency\"]}function _emscripten_proxy_to_main_thread_js(index,sync){var numCallArgs=arguments.length-2;var stack=stackSave();var serializedNumCallArgs=numCallArgs;var args=stackAlloc(serializedNumCallArgs*8);var b=args>>3;for(var i=0;i>=2;while(ch=GROWABLE_HEAP_U8()[sigPtr++]){var double=ch<105;if(double&&buf&1)buf++;readAsmConstArgsArray.push(double?GROWABLE_HEAP_F64()[buf++>>1]:GROWABLE_HEAP_I32()[buf]);++buf}return readAsmConstArgsArray}function _emscripten_receive_on_main_thread_js(index,numCallArgs,args){_emscripten_receive_on_main_thread_js_callArgs.length=numCallArgs;var b=args>>3;for(var i=0;i>>16);updateGlobalBufferAndViews(wasmMemory.buffer);return 1}catch(e){}}function _emscripten_resize_heap(requestedSize){var oldSize=_emscripten_get_heap_size();if(requestedSize<=oldSize){return false}var maxHeapSize=2147483648;if(requestedSize>maxHeapSize){return false}for(var cutDown=1;cutDown<=4;cutDown*=2){var overGrownHeapSize=oldSize*(1+.2/cutDown);overGrownHeapSize=Math.min(overGrownHeapSize,requestedSize+100663296);var newSize=Math.min(maxHeapSize,alignUp(Math.max(requestedSize,overGrownHeapSize),65536));var replacement=emscripten_realloc_buffer(newSize);if(replacement){return true}}return false}var JSEvents={inEventHandler:0,removeAllEventListeners:function(){for(var i=JSEvents.eventHandlers.length-1;i>=0;--i){JSEvents._removeHandler(i)}JSEvents.eventHandlers=[];JSEvents.deferredCalls=[]},registerRemoveEventListeners:function(){if(!JSEvents.removeEventListenersRegistered){__ATEXIT__.push(JSEvents.removeAllEventListeners);JSEvents.removeEventListenersRegistered=true}},deferredCalls:[],deferCall:function(targetFunction,precedence,argsList){function arraysHaveEqualContent(arrA,arrB){if(arrA.length!=arrB.length)return false;for(var i in arrA){if(arrA[i]!=arrB[i])return false}return true}for(var i in JSEvents.deferredCalls){var call=JSEvents.deferredCalls[i];if(call.targetFunction==targetFunction&&arraysHaveEqualContent(call.argsList,argsList)){return}}JSEvents.deferredCalls.push({targetFunction:targetFunction,precedence:precedence,argsList:argsList});JSEvents.deferredCalls.sort(function(x,y){return x.precedence>2]=eventTypeId;GROWABLE_HEAP_I32()[varargs+4>>2]=eventData;GROWABLE_HEAP_I32()[varargs+8>>2]=userData;__emscripten_call_on_thread(0,targetThread,637534208,eventHandlerFunc,eventData,varargs);stackRestore(stackTop)},getTargetThreadForEventCallback:function(targetThread){switch(targetThread){case 1:return 0;case 2:return PThread.currentProxiedOperationCallerThread;default:return targetThread}},getNodeNameForTarget:function(target){if(!target)return\"\";if(target==window)return\"#window\";if(target==screen)return\"#screen\";return target&&target.nodeName?target.nodeName:\"\"},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function stringToNewUTF8(jsString){var length=lengthBytesUTF8(jsString)+1;var cString=_malloc(length);stringToUTF8(jsString,cString,length);return cString}function _emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread,targetCanvas,width,height){var stackTop=stackSave();var varargs=stackAlloc(12);var targetCanvasPtr=0;if(targetCanvas){targetCanvasPtr=stringToNewUTF8(targetCanvas)}GROWABLE_HEAP_I32()[varargs>>2]=targetCanvasPtr;GROWABLE_HEAP_I32()[varargs+4>>2]=width;GROWABLE_HEAP_I32()[varargs+8>>2]=height;__emscripten_call_on_thread(0,targetThread,657457152,0,targetCanvasPtr,varargs);stackRestore(stackTop)}function _emscripten_set_offscreencanvas_size_on_target_thread(targetThread,targetCanvas,width,height){targetCanvas=targetCanvas?UTF8ToString(targetCanvas):\"\";_emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread,targetCanvas,width,height)}function maybeCStringToJsString(cString){return cString>2?UTF8ToString(cString):cString}var specialHTMLTargets=[0,typeof document!==\"undefined\"?document:0,typeof window!==\"undefined\"?window:0];function findEventTarget(target){target=maybeCStringToJsString(target);var domElement=specialHTMLTargets[target]||(typeof document!==\"undefined\"?document.querySelector(target):undefined);return domElement}function findCanvasEventTarget(target){return findEventTarget(target)}function _emscripten_set_canvas_element_size_calling_thread(target,width,height){var canvas=findCanvasEventTarget(target);if(!canvas)return-4;if(canvas.canvasSharedPtr){GROWABLE_HEAP_I32()[canvas.canvasSharedPtr>>2]=width;GROWABLE_HEAP_I32()[canvas.canvasSharedPtr+4>>2]=height}if(canvas.offscreenCanvas||!canvas.controlTransferredOffscreen){if(canvas.offscreenCanvas)canvas=canvas.offscreenCanvas;var autoResizeViewport=false;if(canvas.GLctxObject&&canvas.GLctxObject.GLctx){var prevViewport=canvas.GLctxObject.GLctx.getParameter(2978);autoResizeViewport=prevViewport[0]===0&&prevViewport[1]===0&&prevViewport[2]===canvas.width&&prevViewport[3]===canvas.height}canvas.width=width;canvas.height=height;if(autoResizeViewport){canvas.GLctxObject.GLctx.viewport(0,0,width,height)}}else if(canvas.canvasSharedPtr){var targetThread=GROWABLE_HEAP_I32()[canvas.canvasSharedPtr+8>>2];_emscripten_set_offscreencanvas_size_on_target_thread(targetThread,target,width,height);return 1}else{return-4}return 0}function _emscripten_set_canvas_element_size_main_thread(target,width,height){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(2,1,target,width,height);return _emscripten_set_canvas_element_size_calling_thread(target,width,height)}function _emscripten_set_canvas_element_size(target,width,height){var canvas=findCanvasEventTarget(target);if(canvas){return _emscripten_set_canvas_element_size_calling_thread(target,width,height)}else{return _emscripten_set_canvas_element_size_main_thread(target,width,height)}}function _emscripten_set_current_thread_status(newStatus){}function _emscripten_set_thread_name(threadId,name){}function __webgl_enable_ANGLE_instanced_arrays(ctx){var ext=ctx.getExtension(\"ANGLE_instanced_arrays\");if(ext){ctx[\"vertexAttribDivisor\"]=function(index,divisor){ext[\"vertexAttribDivisorANGLE\"](index,divisor)};ctx[\"drawArraysInstanced\"]=function(mode,first,count,primcount){ext[\"drawArraysInstancedANGLE\"](mode,first,count,primcount)};ctx[\"drawElementsInstanced\"]=function(mode,count,type,indices,primcount){ext[\"drawElementsInstancedANGLE\"](mode,count,type,indices,primcount)};return 1}}function __webgl_enable_OES_vertex_array_object(ctx){var ext=ctx.getExtension(\"OES_vertex_array_object\");if(ext){ctx[\"createVertexArray\"]=function(){return ext[\"createVertexArrayOES\"]()};ctx[\"deleteVertexArray\"]=function(vao){ext[\"deleteVertexArrayOES\"](vao)};ctx[\"bindVertexArray\"]=function(vao){ext[\"bindVertexArrayOES\"](vao)};ctx[\"isVertexArray\"]=function(vao){return ext[\"isVertexArrayOES\"](vao)};return 1}}function __webgl_enable_WEBGL_draw_buffers(ctx){var ext=ctx.getExtension(\"WEBGL_draw_buffers\");if(ext){ctx[\"drawBuffers\"]=function(n,bufs){ext[\"drawBuffersWEBGL\"](n,bufs)};return 1}}function __webgl_enable_WEBGL_multi_draw(ctx){return!!(ctx.multiDrawWebgl=ctx.getExtension(\"WEBGL_multi_draw\"))}var GL={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function recordError(errorCode){if(!GL.lastError){GL.lastError=errorCode}},getNewId:function(table){var ret=GL.counter++;for(var i=table.length;i>2]:-1;source+=UTF8ToString(GROWABLE_HEAP_I32()[string+i*4>>2],len<0?undefined:len)}return source},createContext:function(canvas,webGLContextAttributes){var ctx=canvas.getContext(\"webgl\",webGLContextAttributes);if(!ctx)return 0;var handle=GL.registerContext(ctx,webGLContextAttributes);return handle},registerContext:function(ctx,webGLContextAttributes){var handle=_malloc(8);GROWABLE_HEAP_I32()[handle+4>>2]=_pthread_self();var context={handle:handle,attributes:webGLContextAttributes,version:webGLContextAttributes.majorVersion,GLctx:ctx};if(ctx.canvas)ctx.canvas.GLctxObject=context;GL.contexts[handle]=context;if(typeof webGLContextAttributes.enableExtensionsByDefault===\"undefined\"||webGLContextAttributes.enableExtensionsByDefault){GL.initExtensions(context)}return handle},makeContextCurrent:function(contextHandle){GL.currentContext=GL.contexts[contextHandle];Module.ctx=GLctx=GL.currentContext&&GL.currentContext.GLctx;return!(contextHandle&&!GLctx)},getContext:function(contextHandle){return GL.contexts[contextHandle]},deleteContext:function(contextHandle){if(GL.currentContext===GL.contexts[contextHandle])GL.currentContext=null;if(typeof JSEvents===\"object\")JSEvents.removeAllHandlersOnTarget(GL.contexts[contextHandle].GLctx.canvas);if(GL.contexts[contextHandle]&&GL.contexts[contextHandle].GLctx.canvas)GL.contexts[contextHandle].GLctx.canvas.GLctxObject=undefined;_free(GL.contexts[contextHandle].handle);GL.contexts[contextHandle]=null},initExtensions:function(context){if(!context)context=GL.currentContext;if(context.initExtensionsDone)return;context.initExtensionsDone=true;var GLctx=context.GLctx;__webgl_enable_ANGLE_instanced_arrays(GLctx);__webgl_enable_OES_vertex_array_object(GLctx);__webgl_enable_WEBGL_draw_buffers(GLctx);GLctx.disjointTimerQueryExt=GLctx.getExtension(\"EXT_disjoint_timer_query\");__webgl_enable_WEBGL_multi_draw(GLctx);var exts=GLctx.getSupportedExtensions()||[];exts.forEach(function(ext){if(ext.indexOf(\"lose_context\")<0&&ext.indexOf(\"debug\")<0){GLctx.getExtension(ext)}})},populateUniformTable:function(program){var p=GL.programs[program];var ptable=GL.programInfos[program]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1};var utable=ptable.uniforms;var numUniforms=GLctx.getProgramParameter(p,35718);for(var i=0;i>2;var powerPreference=GROWABLE_HEAP_I32()[a+(24>>2)];var contextAttributes={\"alpha\":!!GROWABLE_HEAP_I32()[a+(0>>2)],\"depth\":!!GROWABLE_HEAP_I32()[a+(4>>2)],\"stencil\":!!GROWABLE_HEAP_I32()[a+(8>>2)],\"antialias\":!!GROWABLE_HEAP_I32()[a+(12>>2)],\"premultipliedAlpha\":!!GROWABLE_HEAP_I32()[a+(16>>2)],\"preserveDrawingBuffer\":!!GROWABLE_HEAP_I32()[a+(20>>2)],\"powerPreference\":__emscripten_webgl_power_preferences[powerPreference],\"failIfMajorPerformanceCaveat\":!!GROWABLE_HEAP_I32()[a+(28>>2)],majorVersion:GROWABLE_HEAP_I32()[a+(32>>2)],minorVersion:GROWABLE_HEAP_I32()[a+(36>>2)],enableExtensionsByDefault:GROWABLE_HEAP_I32()[a+(40>>2)],explicitSwapControl:GROWABLE_HEAP_I32()[a+(44>>2)],proxyContextToMainThread:GROWABLE_HEAP_I32()[a+(48>>2)],renderViaOffscreenBackBuffer:GROWABLE_HEAP_I32()[a+(52>>2)]};var canvas=findCanvasEventTarget(target);if(!canvas){return 0}if(contextAttributes.explicitSwapControl){return 0}var contextHandle=GL.createContext(canvas,contextAttributes);return contextHandle}function _emscripten_webgl_create_context(a0,a1){return _emscripten_webgl_do_create_context(a0,a1)}var SYSCALLS={mappings:{},buffers:[null,[],[]],printChar:function(stream,curr){var buffer=SYSCALLS.buffers[stream];if(curr===0||curr===10){(stream===1?out:err)(UTF8ArrayToString(buffer,0));buffer.length=0}else{buffer.push(curr)}},varargs:undefined,get:function(){SYSCALLS.varargs+=4;var ret=GROWABLE_HEAP_I32()[SYSCALLS.varargs-4>>2];return ret},getStr:function(ptr){var ret=UTF8ToString(ptr);return ret},get64:function(low,high){return low}};function _fd_close(fd){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(3,1,fd);return 0}function _fd_seek(fd,offset_low,offset_high,whence,newOffset){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(4,1,fd,offset_low,offset_high,whence,newOffset)}function _fd_write(fd,iov,iovcnt,pnum){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(5,1,fd,iov,iovcnt,pnum);var num=0;for(var i=0;i>2];var len=GROWABLE_HEAP_I32()[iov+(i*8+4)>>2];for(var j=0;j>2]=num;return 0}function _pthread_cleanup_pop(execute){var routine=PThread.threadExitHandlers.pop();if(execute)routine()}function _pthread_cleanup_push(routine,arg){PThread.threadExitHandlers.push(function(){wasmTable.get(routine)(arg)})}function spawnThread(threadParams){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! spawnThread() can only ever be called from main application thread!\";var worker=PThread.getNewWorker();if(worker.pthread!==undefined)throw\"Internal error!\";if(!threadParams.pthread_ptr)throw\"Internal error, no pthread ptr!\";PThread.runningWorkers.push(worker);var tlsMemory=_malloc(128*4);for(var i=0;i<128;++i){GROWABLE_HEAP_I32()[tlsMemory+i*4>>2]=0}var stackHigh=threadParams.stackBase+threadParams.stackSize;var pthread=PThread.pthreads[threadParams.pthread_ptr]={worker:worker,stackBase:threadParams.stackBase,stackSize:threadParams.stackSize,allocatedOwnStack:threadParams.allocatedOwnStack,threadInfoStruct:threadParams.pthread_ptr};var tis=pthread.threadInfoStruct>>2;Atomics.store(GROWABLE_HEAP_U32(),tis+(64>>2),threadParams.detached);Atomics.store(GROWABLE_HEAP_U32(),tis+(100>>2),tlsMemory);Atomics.store(GROWABLE_HEAP_U32(),tis+(40>>2),pthread.threadInfoStruct);Atomics.store(GROWABLE_HEAP_U32(),tis+(80>>2),threadParams.stackSize);Atomics.store(GROWABLE_HEAP_U32(),tis+(76>>2),stackHigh);Atomics.store(GROWABLE_HEAP_U32(),tis+(104>>2),threadParams.stackSize);Atomics.store(GROWABLE_HEAP_U32(),tis+(104+8>>2),stackHigh);Atomics.store(GROWABLE_HEAP_U32(),tis+(104+12>>2),threadParams.detached);var global_libc=_emscripten_get_global_libc();var global_locale=global_libc+40;Atomics.store(GROWABLE_HEAP_U32(),tis+(172>>2),global_locale);worker.pthread=pthread;var msg={\"cmd\":\"run\",\"start_routine\":threadParams.startRoutine,\"arg\":threadParams.arg,\"threadInfoStruct\":threadParams.pthread_ptr,\"stackBase\":threadParams.stackBase,\"stackSize\":threadParams.stackSize};worker.runPthread=function(){msg.time=performance.now();worker.postMessage(msg,threadParams.transferList)};if(worker.loaded){worker.runPthread();delete worker.runPthread}}function _pthread_create(pthread_ptr,attr,start_routine,arg){if(typeof SharedArrayBuffer===\"undefined\"){err(\"Current environment does not support SharedArrayBuffer, pthreads are not available!\");return 6}if(!pthread_ptr){err(\"pthread_create called with a null thread pointer!\");return 28}var transferList=[];var error=0;if(ENVIRONMENT_IS_PTHREAD&&(transferList.length===0||error)){return _emscripten_sync_run_in_main_thread_4(687865856,pthread_ptr,attr,start_routine,arg)}if(error)return error;var stackSize=0;var stackBase=0;var detached=0;if(attr&&attr!=-1){stackSize=GROWABLE_HEAP_I32()[attr>>2];stackSize+=81920;stackBase=GROWABLE_HEAP_I32()[attr+8>>2];detached=GROWABLE_HEAP_I32()[attr+12>>2]!==0}else{stackSize=2097152}var allocatedOwnStack=stackBase==0;if(allocatedOwnStack){stackBase=_memalign(16,stackSize)}else{stackBase-=stackSize;assert(stackBase>0)}var threadInfoStruct=_malloc(228);for(var i=0;i<228>>2;++i)GROWABLE_HEAP_U32()[(threadInfoStruct>>2)+i]=0;GROWABLE_HEAP_I32()[pthread_ptr>>2]=threadInfoStruct;GROWABLE_HEAP_I32()[threadInfoStruct+12>>2]=threadInfoStruct;var headPtr=threadInfoStruct+152;GROWABLE_HEAP_I32()[headPtr>>2]=headPtr;var threadParams={stackBase:stackBase,stackSize:stackSize,allocatedOwnStack:allocatedOwnStack,detached:detached,startRoutine:start_routine,pthread_ptr:threadInfoStruct,arg:arg,transferList:transferList};if(ENVIRONMENT_IS_PTHREAD){threadParams.cmd=\"spawnThread\";postMessage(threadParams,transferList)}else{spawnThread(threadParams)}return 0}function _sysconf(name){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(6,1,name);switch(name){case 30:return 16384;case 85:var maxHeapSize=2147483648;return maxHeapSize/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:{if(typeof navigator===\"object\")return navigator[\"hardwareConcurrency\"]||1;return 1}}setErrNo(28);return-1}if(!ENVIRONMENT_IS_PTHREAD)PThread.initMainThreadBlock();var GLctx;var proxiedFunctionTable=[null,_atexit,_emscripten_set_canvas_element_size_main_thread,_fd_close,_fd_seek,_fd_write,_sysconf];var asmLibraryArg={\"e\":___assert_fail,\"r\":___call_main,\"x\":__emscripten_notify_thread_queue,\"b\":_abort,\"y\":_emscripten_asm_const_int,\"j\":_emscripten_conditional_set_current_thread_status,\"c\":_emscripten_futex_wait,\"d\":_emscripten_futex_wake,\"f\":_emscripten_get_now,\"p\":_emscripten_memcpy_big,\"z\":_emscripten_num_logical_cores,\"u\":_emscripten_receive_on_main_thread_js,\"q\":_emscripten_resize_heap,\"v\":_emscripten_set_canvas_element_size,\"i\":_emscripten_set_current_thread_status,\"t\":_emscripten_set_thread_name,\"w\":_emscripten_webgl_create_context,\"m\":_fd_close,\"n\":_fd_seek,\"g\":_fd_write,\"o\":initPthreadsJS,\"a\":wasmMemory||Module[\"wasmMemory\"],\"k\":_pthread_cleanup_pop,\"l\":_pthread_cleanup_push,\"h\":_pthread_create,\"s\":_sysconf};var asm=createWasm();var ___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=function(){return(___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=Module[\"asm\"][\"A\"]).apply(null,arguments)};var _init=Module[\"_init\"]=function(){return(_init=Module[\"_init\"]=Module[\"asm\"][\"B\"]).apply(null,arguments)};var _register_tensor=Module[\"_register_tensor\"]=function(){return(_register_tensor=Module[\"_register_tensor\"]=Module[\"asm\"][\"C\"]).apply(null,arguments)};var _dispose_data=Module[\"_dispose_data\"]=function(){return(_dispose_data=Module[\"_dispose_data\"]=Module[\"asm\"][\"D\"]).apply(null,arguments)};var _dispose=Module[\"_dispose\"]=function(){return(_dispose=Module[\"_dispose\"]=Module[\"asm\"][\"E\"]).apply(null,arguments)};var _Abs=Module[\"_Abs\"]=function(){return(_Abs=Module[\"_Abs\"]=Module[\"asm\"][\"G\"]).apply(null,arguments)};var _Add=Module[\"_Add\"]=function(){return(_Add=Module[\"_Add\"]=Module[\"asm\"][\"H\"]).apply(null,arguments)};var _AddN=Module[\"_AddN\"]=function(){return(_AddN=Module[\"_AddN\"]=Module[\"asm\"][\"I\"]).apply(null,arguments)};var _All=Module[\"_All\"]=function(){return(_All=Module[\"_All\"]=Module[\"asm\"][\"J\"]).apply(null,arguments)};var _Any=Module[\"_Any\"]=function(){return(_Any=Module[\"_Any\"]=Module[\"asm\"][\"K\"]).apply(null,arguments)};var _ArgMax=Module[\"_ArgMax\"]=function(){return(_ArgMax=Module[\"_ArgMax\"]=Module[\"asm\"][\"L\"]).apply(null,arguments)};var _AvgPool=Module[\"_AvgPool\"]=function(){return(_AvgPool=Module[\"_AvgPool\"]=Module[\"asm\"][\"M\"]).apply(null,arguments)};var _BatchMatMul=Module[\"_BatchMatMul\"]=function(){return(_BatchMatMul=Module[\"_BatchMatMul\"]=Module[\"asm\"][\"N\"]).apply(null,arguments)};var _Ceil=Module[\"_Ceil\"]=function(){return(_Ceil=Module[\"_Ceil\"]=Module[\"asm\"][\"O\"]).apply(null,arguments)};var _ClipByValue=Module[\"_ClipByValue\"]=function(){return(_ClipByValue=Module[\"_ClipByValue\"]=Module[\"asm\"][\"P\"]).apply(null,arguments)};var _Conv2D=Module[\"_Conv2D\"]=function(){return(_Conv2D=Module[\"_Conv2D\"]=Module[\"asm\"][\"Q\"]).apply(null,arguments)};var _Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=function(){return(_Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=Module[\"asm\"][\"R\"]).apply(null,arguments)};var _Cos=Module[\"_Cos\"]=function(){return(_Cos=Module[\"_Cos\"]=Module[\"asm\"][\"S\"]).apply(null,arguments)};var _Cosh=Module[\"_Cosh\"]=function(){return(_Cosh=Module[\"_Cosh\"]=Module[\"asm\"][\"T\"]).apply(null,arguments)};var _CropAndResize=Module[\"_CropAndResize\"]=function(){return(_CropAndResize=Module[\"_CropAndResize\"]=Module[\"asm\"][\"U\"]).apply(null,arguments)};var _Cumsum=Module[\"_Cumsum\"]=function(){return(_Cumsum=Module[\"_Cumsum\"]=Module[\"asm\"][\"V\"]).apply(null,arguments)};var _DepthToSpace=Module[\"_DepthToSpace\"]=function(){return(_DepthToSpace=Module[\"_DepthToSpace\"]=Module[\"asm\"][\"W\"]).apply(null,arguments)};var _DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=function(){return(_DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=Module[\"asm\"][\"X\"]).apply(null,arguments)};var _Equal=Module[\"_Equal\"]=function(){return(_Equal=Module[\"_Equal\"]=Module[\"asm\"][\"Y\"]).apply(null,arguments)};var _Exp=Module[\"_Exp\"]=function(){return(_Exp=Module[\"_Exp\"]=Module[\"asm\"][\"Z\"]).apply(null,arguments)};var _FlipLeftRight=Module[\"_FlipLeftRight\"]=function(){return(_FlipLeftRight=Module[\"_FlipLeftRight\"]=Module[\"asm\"][\"_\"]).apply(null,arguments)};var _Floor=Module[\"_Floor\"]=function(){return(_Floor=Module[\"_Floor\"]=Module[\"asm\"][\"$\"]).apply(null,arguments)};var _FloorDiv=Module[\"_FloorDiv\"]=function(){return(_FloorDiv=Module[\"_FloorDiv\"]=Module[\"asm\"][\"aa\"]).apply(null,arguments)};var _FusedBatchNorm=Module[\"_FusedBatchNorm\"]=function(){return(_FusedBatchNorm=Module[\"_FusedBatchNorm\"]=Module[\"asm\"][\"ba\"]).apply(null,arguments)};var _FusedConv2D=Module[\"_FusedConv2D\"]=function(){return(_FusedConv2D=Module[\"_FusedConv2D\"]=Module[\"asm\"][\"ca\"]).apply(null,arguments)};var _FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=function(){return(_FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=Module[\"asm\"][\"da\"]).apply(null,arguments)};var _Gather=Module[\"_Gather\"]=function(){return(_Gather=Module[\"_Gather\"]=Module[\"asm\"][\"ea\"]).apply(null,arguments)};var _GatherNd=Module[\"_GatherNd\"]=function(){return(_GatherNd=Module[\"_GatherNd\"]=Module[\"asm\"][\"fa\"]).apply(null,arguments)};var _Greater=Module[\"_Greater\"]=function(){return(_Greater=Module[\"_Greater\"]=Module[\"asm\"][\"ga\"]).apply(null,arguments)};var _GreaterEqual=Module[\"_GreaterEqual\"]=function(){return(_GreaterEqual=Module[\"_GreaterEqual\"]=Module[\"asm\"][\"ha\"]).apply(null,arguments)};var _LeakyRelu=Module[\"_LeakyRelu\"]=function(){return(_LeakyRelu=Module[\"_LeakyRelu\"]=Module[\"asm\"][\"ia\"]).apply(null,arguments)};var _Less=Module[\"_Less\"]=function(){return(_Less=Module[\"_Less\"]=Module[\"asm\"][\"ja\"]).apply(null,arguments)};var _LessEqual=Module[\"_LessEqual\"]=function(){return(_LessEqual=Module[\"_LessEqual\"]=Module[\"asm\"][\"ka\"]).apply(null,arguments)};var _Log=Module[\"_Log\"]=function(){return(_Log=Module[\"_Log\"]=Module[\"asm\"][\"la\"]).apply(null,arguments)};var _LogicalAnd=Module[\"_LogicalAnd\"]=function(){return(_LogicalAnd=Module[\"_LogicalAnd\"]=Module[\"asm\"][\"ma\"]).apply(null,arguments)};var _Max=Module[\"_Max\"]=function(){return(_Max=Module[\"_Max\"]=Module[\"asm\"][\"na\"]).apply(null,arguments)};var _MaxPool=Module[\"_MaxPool\"]=function(){return(_MaxPool=Module[\"_MaxPool\"]=Module[\"asm\"][\"oa\"]).apply(null,arguments)};var _Maximum=Module[\"_Maximum\"]=function(){return(_Maximum=Module[\"_Maximum\"]=Module[\"asm\"][\"pa\"]).apply(null,arguments)};var _Mean=Module[\"_Mean\"]=function(){return(_Mean=Module[\"_Mean\"]=Module[\"asm\"][\"qa\"]).apply(null,arguments)};var _Min=Module[\"_Min\"]=function(){return(_Min=Module[\"_Min\"]=Module[\"asm\"][\"ra\"]).apply(null,arguments)};var _Minimum=Module[\"_Minimum\"]=function(){return(_Minimum=Module[\"_Minimum\"]=Module[\"asm\"][\"sa\"]).apply(null,arguments)};var _MirrorPad=Module[\"_MirrorPad\"]=function(){return(_MirrorPad=Module[\"_MirrorPad\"]=Module[\"asm\"][\"ta\"]).apply(null,arguments)};var _Multiply=Module[\"_Multiply\"]=function(){return(_Multiply=Module[\"_Multiply\"]=Module[\"asm\"][\"ua\"]).apply(null,arguments)};var _Neg=Module[\"_Neg\"]=function(){return(_Neg=Module[\"_Neg\"]=Module[\"asm\"][\"va\"]).apply(null,arguments)};var _NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=function(){return(_NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=Module[\"asm\"][\"wa\"]).apply(null,arguments)};var _NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=function(){return(_NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=Module[\"asm\"][\"xa\"]).apply(null,arguments)};var _NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=function(){return(_NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=Module[\"asm\"][\"ya\"]).apply(null,arguments)};var _NotEqual=Module[\"_NotEqual\"]=function(){return(_NotEqual=Module[\"_NotEqual\"]=Module[\"asm\"][\"za\"]).apply(null,arguments)};var _OneHot=Module[\"_OneHot\"]=function(){return(_OneHot=Module[\"_OneHot\"]=Module[\"asm\"][\"Aa\"]).apply(null,arguments)};var _PadV2=Module[\"_PadV2\"]=function(){return(_PadV2=Module[\"_PadV2\"]=Module[\"asm\"][\"Ba\"]).apply(null,arguments)};var _Pow=Module[\"_Pow\"]=function(){return(_Pow=Module[\"_Pow\"]=Module[\"asm\"][\"Ca\"]).apply(null,arguments)};var _Prelu=Module[\"_Prelu\"]=function(){return(_Prelu=Module[\"_Prelu\"]=Module[\"asm\"][\"Da\"]).apply(null,arguments)};var _Prod=Module[\"_Prod\"]=function(){return(_Prod=Module[\"_Prod\"]=Module[\"asm\"][\"Ea\"]).apply(null,arguments)};var _RealDiv=Module[\"_RealDiv\"]=function(){return(_RealDiv=Module[\"_RealDiv\"]=Module[\"asm\"][\"Fa\"]).apply(null,arguments)};var _Relu=Module[\"_Relu\"]=function(){return(_Relu=Module[\"_Relu\"]=Module[\"asm\"][\"Ga\"]).apply(null,arguments)};var _Relu6=Module[\"_Relu6\"]=function(){return(_Relu6=Module[\"_Relu6\"]=Module[\"asm\"][\"Ha\"]).apply(null,arguments)};var _ResizeBilinear=Module[\"_ResizeBilinear\"]=function(){return(_ResizeBilinear=Module[\"_ResizeBilinear\"]=Module[\"asm\"][\"Ia\"]).apply(null,arguments)};var _Reverse=Module[\"_Reverse\"]=function(){return(_Reverse=Module[\"_Reverse\"]=Module[\"asm\"][\"Ja\"]).apply(null,arguments)};var _RotateWithOffset=Module[\"_RotateWithOffset\"]=function(){return(_RotateWithOffset=Module[\"_RotateWithOffset\"]=Module[\"asm\"][\"Ka\"]).apply(null,arguments)};var _Round=Module[\"_Round\"]=function(){return(_Round=Module[\"_Round\"]=Module[\"asm\"][\"La\"]).apply(null,arguments)};var _Rsqrt=Module[\"_Rsqrt\"]=function(){return(_Rsqrt=Module[\"_Rsqrt\"]=Module[\"asm\"][\"Ma\"]).apply(null,arguments)};var _ScatterNd=Module[\"_ScatterNd\"]=function(){return(_ScatterNd=Module[\"_ScatterNd\"]=Module[\"asm\"][\"Na\"]).apply(null,arguments)};var _SelectV2=Module[\"_SelectV2\"]=function(){return(_SelectV2=Module[\"_SelectV2\"]=Module[\"asm\"][\"Oa\"]).apply(null,arguments)};var _Sigmoid=Module[\"_Sigmoid\"]=function(){return(_Sigmoid=Module[\"_Sigmoid\"]=Module[\"asm\"][\"Pa\"]).apply(null,arguments)};var _Sin=Module[\"_Sin\"]=function(){return(_Sin=Module[\"_Sin\"]=Module[\"asm\"][\"Qa\"]).apply(null,arguments)};var _Softmax=Module[\"_Softmax\"]=function(){return(_Softmax=Module[\"_Softmax\"]=Module[\"asm\"][\"Ra\"]).apply(null,arguments)};var _Sqrt=Module[\"_Sqrt\"]=function(){return(_Sqrt=Module[\"_Sqrt\"]=Module[\"asm\"][\"Sa\"]).apply(null,arguments)};var _Square=Module[\"_Square\"]=function(){return(_Square=Module[\"_Square\"]=Module[\"asm\"][\"Ta\"]).apply(null,arguments)};var _SquaredDifference=Module[\"_SquaredDifference\"]=function(){return(_SquaredDifference=Module[\"_SquaredDifference\"]=Module[\"asm\"][\"Ua\"]).apply(null,arguments)};var _Step=Module[\"_Step\"]=function(){return(_Step=Module[\"_Step\"]=Module[\"asm\"][\"Va\"]).apply(null,arguments)};var _StridedSlice=Module[\"_StridedSlice\"]=function(){return(_StridedSlice=Module[\"_StridedSlice\"]=Module[\"asm\"][\"Wa\"]).apply(null,arguments)};var _Sub=Module[\"_Sub\"]=function(){return(_Sub=Module[\"_Sub\"]=Module[\"asm\"][\"Xa\"]).apply(null,arguments)};var _Sum=Module[\"_Sum\"]=function(){return(_Sum=Module[\"_Sum\"]=Module[\"asm\"][\"Ya\"]).apply(null,arguments)};var _Tan=Module[\"_Tan\"]=function(){return(_Tan=Module[\"_Tan\"]=Module[\"asm\"][\"Za\"]).apply(null,arguments)};var _Tanh=Module[\"_Tanh\"]=function(){return(_Tanh=Module[\"_Tanh\"]=Module[\"asm\"][\"_a\"]).apply(null,arguments)};var _Tile=Module[\"_Tile\"]=function(){return(_Tile=Module[\"_Tile\"]=Module[\"asm\"][\"$a\"]).apply(null,arguments)};var _TopK=Module[\"_TopK\"]=function(){return(_TopK=Module[\"_TopK\"]=Module[\"asm\"][\"ab\"]).apply(null,arguments)};var _Transform=Module[\"_Transform\"]=function(){return(_Transform=Module[\"_Transform\"]=Module[\"asm\"][\"bb\"]).apply(null,arguments)};var _Transpose=Module[\"_Transpose\"]=function(){return(_Transpose=Module[\"_Transpose\"]=Module[\"asm\"][\"cb\"]).apply(null,arguments)};var __FusedMatMul=Module[\"__FusedMatMul\"]=function(){return(__FusedMatMul=Module[\"__FusedMatMul\"]=Module[\"asm\"][\"db\"]).apply(null,arguments)};var _malloc=Module[\"_malloc\"]=function(){return(_malloc=Module[\"_malloc\"]=Module[\"asm\"][\"eb\"]).apply(null,arguments)};var _free=Module[\"_free\"]=function(){return(_free=Module[\"_free\"]=Module[\"asm\"][\"fb\"]).apply(null,arguments)};var ___errno_location=Module[\"___errno_location\"]=function(){return(___errno_location=Module[\"___errno_location\"]=Module[\"asm\"][\"gb\"]).apply(null,arguments)};var _emscripten_get_global_libc=Module[\"_emscripten_get_global_libc\"]=function(){return(_emscripten_get_global_libc=Module[\"_emscripten_get_global_libc\"]=Module[\"asm\"][\"hb\"]).apply(null,arguments)};var _pthread_self=Module[\"_pthread_self\"]=function(){return(_pthread_self=Module[\"_pthread_self\"]=Module[\"asm\"][\"ib\"]).apply(null,arguments)};var ___pthread_tsd_run_dtors=Module[\"___pthread_tsd_run_dtors\"]=function(){return(___pthread_tsd_run_dtors=Module[\"___pthread_tsd_run_dtors\"]=Module[\"asm\"][\"jb\"]).apply(null,arguments)};var _emscripten_main_thread_process_queued_calls=Module[\"_emscripten_main_thread_process_queued_calls\"]=function(){return(_emscripten_main_thread_process_queued_calls=Module[\"_emscripten_main_thread_process_queued_calls\"]=Module[\"asm\"][\"kb\"]).apply(null,arguments)};var _emscripten_current_thread_process_queued_calls=Module[\"_emscripten_current_thread_process_queued_calls\"]=function(){return(_emscripten_current_thread_process_queued_calls=Module[\"_emscripten_current_thread_process_queued_calls\"]=Module[\"asm\"][\"lb\"]).apply(null,arguments)};var _emscripten_register_main_browser_thread_id=Module[\"_emscripten_register_main_browser_thread_id\"]=function(){return(_emscripten_register_main_browser_thread_id=Module[\"_emscripten_register_main_browser_thread_id\"]=Module[\"asm\"][\"mb\"]).apply(null,arguments)};var __emscripten_do_dispatch_to_thread=Module[\"__emscripten_do_dispatch_to_thread\"]=function(){return(__emscripten_do_dispatch_to_thread=Module[\"__emscripten_do_dispatch_to_thread\"]=Module[\"asm\"][\"nb\"]).apply(null,arguments)};var _emscripten_sync_run_in_main_thread_4=Module[\"_emscripten_sync_run_in_main_thread_4\"]=function(){return(_emscripten_sync_run_in_main_thread_4=Module[\"_emscripten_sync_run_in_main_thread_4\"]=Module[\"asm\"][\"ob\"]).apply(null,arguments)};var _emscripten_run_in_main_runtime_thread_js=Module[\"_emscripten_run_in_main_runtime_thread_js\"]=function(){return(_emscripten_run_in_main_runtime_thread_js=Module[\"_emscripten_run_in_main_runtime_thread_js\"]=Module[\"asm\"][\"pb\"]).apply(null,arguments)};var __emscripten_call_on_thread=Module[\"__emscripten_call_on_thread\"]=function(){return(__emscripten_call_on_thread=Module[\"__emscripten_call_on_thread\"]=Module[\"asm\"][\"qb\"]).apply(null,arguments)};var _emscripten_tls_init=Module[\"_emscripten_tls_init\"]=function(){return(_emscripten_tls_init=Module[\"_emscripten_tls_init\"]=Module[\"asm\"][\"rb\"]).apply(null,arguments)};var __emscripten_thread_init=Module[\"__emscripten_thread_init\"]=function(){return(__emscripten_thread_init=Module[\"__emscripten_thread_init\"]=Module[\"asm\"][\"sb\"]).apply(null,arguments)};var stackSave=Module[\"stackSave\"]=function(){return(stackSave=Module[\"stackSave\"]=Module[\"asm\"][\"tb\"]).apply(null,arguments)};var stackRestore=Module[\"stackRestore\"]=function(){return(stackRestore=Module[\"stackRestore\"]=Module[\"asm\"][\"ub\"]).apply(null,arguments)};var stackAlloc=Module[\"stackAlloc\"]=function(){return(stackAlloc=Module[\"stackAlloc\"]=Module[\"asm\"][\"vb\"]).apply(null,arguments)};var _emscripten_stack_set_limits=Module[\"_emscripten_stack_set_limits\"]=function(){return(_emscripten_stack_set_limits=Module[\"_emscripten_stack_set_limits\"]=Module[\"asm\"][\"wb\"]).apply(null,arguments)};var _memalign=Module[\"_memalign\"]=function(){return(_memalign=Module[\"_memalign\"]=Module[\"asm\"][\"xb\"]).apply(null,arguments)};var __emscripten_allow_main_runtime_queued_calls=Module[\"__emscripten_allow_main_runtime_queued_calls\"]=9824;var __emscripten_main_thread_futex=Module[\"__emscripten_main_thread_futex\"]=11448;Module[\"cwrap\"]=cwrap;Module[\"PThread\"]=PThread;Module[\"PThread\"]=PThread;Module[\"wasmMemory\"]=wasmMemory;Module[\"ExitStatus\"]=ExitStatus;var calledRun;function ExitStatus(status){this.name=\"ExitStatus\";this.message=\"Program terminated with exit(\"+status+\")\";this.status=status}dependenciesFulfilled=function runCaller(){if(!calledRun)run();if(!calledRun)dependenciesFulfilled=runCaller};function run(args){args=args||arguments_;if(runDependencies>0){return}if(ENVIRONMENT_IS_PTHREAD){readyPromiseResolve(Module);initRuntime();postMessage({\"cmd\":\"loaded\"});return}preRun();if(runDependencies>0){return}function doRun(){if(calledRun)return;calledRun=true;Module[\"calledRun\"]=true;if(ABORT)return;initRuntime();preMain();readyPromiseResolve(Module);if(Module[\"onRuntimeInitialized\"])Module[\"onRuntimeInitialized\"]();postRun()}if(Module[\"setStatus\"]){Module[\"setStatus\"](\"Running...\");setTimeout(function(){setTimeout(function(){Module[\"setStatus\"](\"\")},1);doRun()},1)}else{doRun()}}Module[\"run\"]=run;function exit(status,implicit){if(implicit&&noExitRuntime&&status===0){return}if(!implicit){if(ENVIRONMENT_IS_PTHREAD){postMessage({\"cmd\":\"exitProcess\",\"returnCode\":status});throw new ExitStatus(status)}else{}}if(noExitRuntime){}else{PThread.terminateAllThreads();EXITSTATUS=status;exitRuntime();if(Module[\"onExit\"])Module[\"onExit\"](status);ABORT=true}quit_(status,new ExitStatus(status))}if(Module[\"preInit\"]){if(typeof Module[\"preInit\"]==\"function\")Module[\"preInit\"]=[Module[\"preInit\"]];while(Module[\"preInit\"].length>0){Module[\"preInit\"].pop()()}}if(ENVIRONMENT_IS_PTHREAD){noExitRuntime=false;PThread.initWorker()}run();\n\n\n return WasmBackendModuleThreadedSimd.ready\n}\n);\n})();\nif (typeof exports === 'object' && typeof module === 'object')\n module.exports = WasmBackendModuleThreadedSimd;\nelse if (typeof define === 'function' && define['amd'])\n define([], function() { return WasmBackendModuleThreadedSimd; });\nelse if (typeof exports === 'object')\n exports[\"WasmBackendModuleThreadedSimd\"] = WasmBackendModuleThreadedSimd;\n", "\nvar WasmBackendModule = (function() {\n var _scriptDir = typeof document !== 'undefined' && document.currentScript ? document.currentScript.src : undefined;\n if (typeof __filename !== 'undefined') _scriptDir = _scriptDir || __filename;\n return (\nfunction(WasmBackendModule) {\n WasmBackendModule = WasmBackendModule || {};\n\nvar Module=typeof WasmBackendModule!==\"undefined\"?WasmBackendModule:{};var readyPromiseResolve,readyPromiseReject;Module[\"ready\"]=new Promise(function(resolve,reject){readyPromiseResolve=resolve;readyPromiseReject=reject});var moduleOverrides={};var key;for(key in Module){if(Module.hasOwnProperty(key)){moduleOverrides[key]=Module[key]}}var arguments_=[];var thisProgram=\"./this.program\";var quit_=function(status,toThrow){throw toThrow};var ENVIRONMENT_IS_WEB=false;var ENVIRONMENT_IS_WORKER=false;var ENVIRONMENT_IS_NODE=false;var ENVIRONMENT_IS_SHELL=false;ENVIRONMENT_IS_WEB=typeof window===\"object\";ENVIRONMENT_IS_WORKER=typeof importScripts===\"function\";ENVIRONMENT_IS_NODE=typeof process===\"object\"&&typeof process.versions===\"object\"&&typeof process.versions.node===\"string\";ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER;var scriptDirectory=\"\";function locateFile(path){if(Module[\"locateFile\"]){return Module[\"locateFile\"](path,scriptDirectory)}return scriptDirectory+path}var read_,readAsync,readBinary,setWindowTitle;var nodeFS;var nodePath;if(ENVIRONMENT_IS_NODE){if(ENVIRONMENT_IS_WORKER){scriptDirectory=require(\"path\").dirname(scriptDirectory)+\"/\"}else{scriptDirectory=__dirname+\"/\"}read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require(\"fs\");if(!nodePath)nodePath=require(\"path\");filename=nodePath[\"normalize\"](filename);return nodeFS[\"readFileSync\"](filename,binary?null:\"utf8\")};readBinary=function readBinary(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret};if(process[\"argv\"].length>1){thisProgram=process[\"argv\"][1].replace(/\\\\/g,\"/\")}arguments_=process[\"argv\"].slice(2);process[\"on\"](\"uncaughtException\",function(ex){if(!(ex instanceof ExitStatus)){throw ex}});process[\"on\"](\"unhandledRejection\",abort);quit_=function(status){process[\"exit\"](status)};Module[\"inspect\"]=function(){return\"[Emscripten Module object]\"}}else if(ENVIRONMENT_IS_SHELL){if(typeof read!=\"undefined\"){read_=function shell_read(f){return read(f)}}readBinary=function readBinary(f){var data;if(typeof readbuffer===\"function\"){return new Uint8Array(readbuffer(f))}data=read(f,\"binary\");assert(typeof data===\"object\");return data};if(typeof scriptArgs!=\"undefined\"){arguments_=scriptArgs}else if(typeof arguments!=\"undefined\"){arguments_=arguments}if(typeof quit===\"function\"){quit_=function(status){quit(status)}}if(typeof print!==\"undefined\"){if(typeof console===\"undefined\")console={};console.log=print;console.warn=console.error=typeof printErr!==\"undefined\"?printErr:print}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){if(ENVIRONMENT_IS_WORKER){scriptDirectory=self.location.href}else if(typeof document!==\"undefined\"&&document.currentScript){scriptDirectory=document.currentScript.src}if(_scriptDir){scriptDirectory=_scriptDir}if(scriptDirectory.indexOf(\"blob:\")!==0){scriptDirectory=scriptDirectory.substr(0,scriptDirectory.lastIndexOf(\"/\")+1)}else{scriptDirectory=\"\"}{read_=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.send(null);return xhr.responseText};if(ENVIRONMENT_IS_WORKER){readBinary=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.responseType=\"arraybuffer\";xhr.send(null);return new Uint8Array(xhr.response)}}readAsync=function(url,onload,onerror){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,true);xhr.responseType=\"arraybuffer\";xhr.onload=function(){if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response);return}onerror()};xhr.onerror=onerror;xhr.send(null)}}setWindowTitle=function(title){document.title=title}}else{}var out=Module[\"print\"]||console.log.bind(console);var err=Module[\"printErr\"]||console.warn.bind(console);for(key in moduleOverrides){if(moduleOverrides.hasOwnProperty(key)){Module[key]=moduleOverrides[key]}}moduleOverrides=null;if(Module[\"arguments\"])arguments_=Module[\"arguments\"];if(Module[\"thisProgram\"])thisProgram=Module[\"thisProgram\"];if(Module[\"quit\"])quit_=Module[\"quit\"];var wasmBinary;if(Module[\"wasmBinary\"])wasmBinary=Module[\"wasmBinary\"];var noExitRuntime=Module[\"noExitRuntime\"]||true;if(typeof WebAssembly!==\"object\"){abort(\"no native wasm support detected\")}var wasmMemory;var ABORT=false;var EXITSTATUS;function assert(condition,text){if(!condition){abort(\"Assertion failed: \"+text)}}function getCFunc(ident){var func=Module[\"_\"+ident];assert(func,\"Cannot call unknown function \"+ident+\", make sure it is exported\");return func}function ccall(ident,returnType,argTypes,args,opts){var toC={\"string\":function(str){var ret=0;if(str!==null&&str!==undefined&&str!==0){var len=(str.length<<2)+1;ret=stackAlloc(len);stringToUTF8(str,ret,len)}return ret},\"array\":function(arr){var ret=stackAlloc(arr.length);writeArrayToMemory(arr,ret);return ret}};function convertReturnValue(ret){if(returnType===\"string\")return UTF8ToString(ret);if(returnType===\"boolean\")return Boolean(ret);return ret}var func=getCFunc(ident);var cArgs=[];var stack=0;if(args){for(var i=0;i=endIdx))++endPtr;if(endPtr-idx>16&&heap.subarray&&UTF8Decoder){return UTF8Decoder.decode(heap.subarray(idx,endPtr))}else{var str=\"\";while(idx>10,56320|ch&1023)}}}return str}function UTF8ToString(ptr,maxBytesToRead){return ptr?UTF8ArrayToString(HEAPU8,ptr,maxBytesToRead):\"\"}function stringToUTF8Array(str,heap,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;var startIdx=outIdx;var endIdx=outIdx+maxBytesToWrite-1;for(var i=0;i=55296&&u<=57343){var u1=str.charCodeAt(++i);u=65536+((u&1023)<<10)|u1&1023}if(u<=127){if(outIdx>=endIdx)break;heap[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;heap[outIdx++]=192|u>>6;heap[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;heap[outIdx++]=224|u>>12;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}else{if(outIdx+3>=endIdx)break;heap[outIdx++]=240|u>>18;heap[outIdx++]=128|u>>12&63;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}}heap[outIdx]=0;return outIdx-startIdx}function stringToUTF8(str,outPtr,maxBytesToWrite){return stringToUTF8Array(str,HEAPU8,outPtr,maxBytesToWrite)}function writeArrayToMemory(array,buffer){HEAP8.set(array,buffer)}function alignUp(x,multiple){if(x%multiple>0){x+=multiple-x%multiple}return x}var buffer,HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateGlobalBufferAndViews(buf){buffer=buf;Module[\"HEAP8\"]=HEAP8=new Int8Array(buf);Module[\"HEAP16\"]=HEAP16=new Int16Array(buf);Module[\"HEAP32\"]=HEAP32=new Int32Array(buf);Module[\"HEAPU8\"]=HEAPU8=new Uint8Array(buf);Module[\"HEAPU16\"]=HEAPU16=new Uint16Array(buf);Module[\"HEAPU32\"]=HEAPU32=new Uint32Array(buf);Module[\"HEAPF32\"]=HEAPF32=new Float32Array(buf);Module[\"HEAPF64\"]=HEAPF64=new Float64Array(buf)}var INITIAL_MEMORY=Module[\"INITIAL_MEMORY\"]||16777216;var wasmTable;var __ATPRERUN__=[];var __ATINIT__=[];var __ATMAIN__=[];var __ATPOSTRUN__=[];var runtimeInitialized=false;__ATINIT__.push({func:function(){___wasm_call_ctors()}});function preRun(){if(Module[\"preRun\"]){if(typeof Module[\"preRun\"]==\"function\")Module[\"preRun\"]=[Module[\"preRun\"]];while(Module[\"preRun\"].length){addOnPreRun(Module[\"preRun\"].shift())}}callRuntimeCallbacks(__ATPRERUN__)}function initRuntime(){runtimeInitialized=true;callRuntimeCallbacks(__ATINIT__)}function preMain(){callRuntimeCallbacks(__ATMAIN__)}function postRun(){if(Module[\"postRun\"]){if(typeof Module[\"postRun\"]==\"function\")Module[\"postRun\"]=[Module[\"postRun\"]];while(Module[\"postRun\"].length){addOnPostRun(Module[\"postRun\"].shift())}}callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}var runDependencies=0;var runDependencyWatcher=null;var dependenciesFulfilled=null;function addRunDependency(id){runDependencies++;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}}function removeRunDependency(id){runDependencies--;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}if(runDependencies==0){if(runDependencyWatcher!==null){clearInterval(runDependencyWatcher);runDependencyWatcher=null}if(dependenciesFulfilled){var callback=dependenciesFulfilled;dependenciesFulfilled=null;callback()}}}Module[\"preloadedImages\"]={};Module[\"preloadedAudios\"]={};function abort(what){if(Module[\"onAbort\"]){Module[\"onAbort\"](what)}what+=\"\";err(what);ABORT=true;EXITSTATUS=1;what=\"abort(\"+what+\"). Build with -s ASSERTIONS=1 for more info.\";var e=new WebAssembly.RuntimeError(what);readyPromiseReject(e);throw e}function hasPrefix(str,prefix){return String.prototype.startsWith?str.startsWith(prefix):str.indexOf(prefix)===0}var dataURIPrefix=\"data:application/octet-stream;base64,\";function isDataURI(filename){return hasPrefix(filename,dataURIPrefix)}var fileURIPrefix=\"file://\";function isFileURI(filename){return hasPrefix(filename,fileURIPrefix)}var wasmBinaryFile=\"tfjs-backend-wasm.wasm\";if(!isDataURI(wasmBinaryFile)){wasmBinaryFile=locateFile(wasmBinaryFile)}function getBinary(file){try{if(file==wasmBinaryFile&&wasmBinary){return new Uint8Array(wasmBinary)}if(readBinary){return readBinary(file)}else{throw\"both async and sync fetching of the wasm failed\"}}catch(err){abort(err)}}function getBinaryPromise(){if(!wasmBinary&&(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER)){if(typeof fetch===\"function\"&&!isFileURI(wasmBinaryFile)){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){if(!response[\"ok\"]){throw\"failed to load wasm binary file at '\"+wasmBinaryFile+\"'\"}return response[\"arrayBuffer\"]()}).catch(function(){return getBinary(wasmBinaryFile)})}else{if(readAsync){return new Promise(function(resolve,reject){readAsync(wasmBinaryFile,function(response){resolve(new Uint8Array(response))},reject)})}}}return Promise.resolve().then(function(){return getBinary(wasmBinaryFile)})}function createWasm(){var info={\"a\":asmLibraryArg};function receiveInstance(instance,module){var exports=instance.exports;Module[\"asm\"]=exports;wasmMemory=Module[\"asm\"][\"i\"];updateGlobalBufferAndViews(wasmMemory.buffer);wasmTable=Module[\"asm\"][\"o\"];removeRunDependency(\"wasm-instantiate\")}addRunDependency(\"wasm-instantiate\");function receiveInstantiatedSource(output){receiveInstance(output[\"instance\"])}function instantiateArrayBuffer(receiver){return getBinaryPromise().then(function(binary){return WebAssembly.instantiate(binary,info)}).then(receiver,function(reason){err(\"failed to asynchronously prepare wasm: \"+reason);abort(reason)})}function instantiateAsync(){if(!wasmBinary&&typeof WebAssembly.instantiateStreaming===\"function\"&&!isDataURI(wasmBinaryFile)&&!isFileURI(wasmBinaryFile)&&typeof fetch===\"function\"){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){var result=WebAssembly.instantiateStreaming(response,info);return result.then(receiveInstantiatedSource,function(reason){err(\"wasm streaming compile failed: \"+reason);err(\"falling back to ArrayBuffer instantiation\");return instantiateArrayBuffer(receiveInstantiatedSource)})})}else{return instantiateArrayBuffer(receiveInstantiatedSource)}}if(Module[\"instantiateWasm\"]){try{var exports=Module[\"instantiateWasm\"](info,receiveInstance);return exports}catch(e){err(\"Module.instantiateWasm callback failed with error: \"+e);return false}}instantiateAsync().catch(readyPromiseReject);return{}}function callRuntimeCallbacks(callbacks){while(callbacks.length>0){var callback=callbacks.shift();if(typeof callback==\"function\"){callback(Module);continue}var func=callback.func;if(typeof func===\"number\"){if(callback.arg===undefined){wasmTable.get(func)()}else{wasmTable.get(func)(callback.arg)}}else{func(callback.arg===undefined?null:callback.arg)}}}function _abort(){abort()}function _emscripten_memcpy_big(dest,src,num){HEAPU8.copyWithin(dest,src,src+num)}function _emscripten_get_heap_size(){return HEAPU8.length}function emscripten_realloc_buffer(size){try{wasmMemory.grow(size-buffer.byteLength+65535>>>16);updateGlobalBufferAndViews(wasmMemory.buffer);return 1}catch(e){}}function _emscripten_resize_heap(requestedSize){var oldSize=_emscripten_get_heap_size();var maxHeapSize=2147483648;if(requestedSize>maxHeapSize){return false}for(var cutDown=1;cutDown<=4;cutDown*=2){var overGrownHeapSize=oldSize*(1+.2/cutDown);overGrownHeapSize=Math.min(overGrownHeapSize,requestedSize+100663296);var newSize=Math.min(maxHeapSize,alignUp(Math.max(requestedSize,overGrownHeapSize),65536));var replacement=emscripten_realloc_buffer(newSize);if(replacement){return true}}return false}var SYSCALLS={mappings:{},buffers:[null,[],[]],printChar:function(stream,curr){var buffer=SYSCALLS.buffers[stream];if(curr===0||curr===10){(stream===1?out:err)(UTF8ArrayToString(buffer,0));buffer.length=0}else{buffer.push(curr)}},varargs:undefined,get:function(){SYSCALLS.varargs+=4;var ret=HEAP32[SYSCALLS.varargs-4>>2];return ret},getStr:function(ptr){var ret=UTF8ToString(ptr);return ret},get64:function(low,high){return low}};function _fd_close(fd){return 0}function _fd_seek(fd,offset_low,offset_high,whence,newOffset){}function _fd_write(fd,iov,iovcnt,pnum){var num=0;for(var i=0;i>2];var len=HEAP32[iov+(i*8+4)>>2];for(var j=0;j>2]=num;return 0}function _pthread_create(){return 6}function setErrNo(value){HEAP32[___errno_location()>>2]=value;return value}function _sysconf(name){switch(name){case 30:return 16384;case 85:var maxHeapSize=2147483648;return maxHeapSize/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:{if(typeof navigator===\"object\")return navigator[\"hardwareConcurrency\"]||1;return 1}}setErrNo(28);return-1}var asmLibraryArg={\"a\":_abort,\"d\":_emscripten_memcpy_big,\"e\":_emscripten_resize_heap,\"f\":_fd_close,\"c\":_fd_seek,\"b\":_fd_write,\"g\":_pthread_create,\"h\":_sysconf};var asm=createWasm();var ___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=function(){return(___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=Module[\"asm\"][\"j\"]).apply(null,arguments)};var _init=Module[\"_init\"]=function(){return(_init=Module[\"_init\"]=Module[\"asm\"][\"k\"]).apply(null,arguments)};var _register_tensor=Module[\"_register_tensor\"]=function(){return(_register_tensor=Module[\"_register_tensor\"]=Module[\"asm\"][\"l\"]).apply(null,arguments)};var _dispose_data=Module[\"_dispose_data\"]=function(){return(_dispose_data=Module[\"_dispose_data\"]=Module[\"asm\"][\"m\"]).apply(null,arguments)};var _dispose=Module[\"_dispose\"]=function(){return(_dispose=Module[\"_dispose\"]=Module[\"asm\"][\"n\"]).apply(null,arguments)};var _Abs=Module[\"_Abs\"]=function(){return(_Abs=Module[\"_Abs\"]=Module[\"asm\"][\"p\"]).apply(null,arguments)};var _Add=Module[\"_Add\"]=function(){return(_Add=Module[\"_Add\"]=Module[\"asm\"][\"q\"]).apply(null,arguments)};var _AddN=Module[\"_AddN\"]=function(){return(_AddN=Module[\"_AddN\"]=Module[\"asm\"][\"r\"]).apply(null,arguments)};var _All=Module[\"_All\"]=function(){return(_All=Module[\"_All\"]=Module[\"asm\"][\"s\"]).apply(null,arguments)};var _Any=Module[\"_Any\"]=function(){return(_Any=Module[\"_Any\"]=Module[\"asm\"][\"t\"]).apply(null,arguments)};var _ArgMax=Module[\"_ArgMax\"]=function(){return(_ArgMax=Module[\"_ArgMax\"]=Module[\"asm\"][\"u\"]).apply(null,arguments)};var _AvgPool=Module[\"_AvgPool\"]=function(){return(_AvgPool=Module[\"_AvgPool\"]=Module[\"asm\"][\"v\"]).apply(null,arguments)};var _BatchMatMul=Module[\"_BatchMatMul\"]=function(){return(_BatchMatMul=Module[\"_BatchMatMul\"]=Module[\"asm\"][\"w\"]).apply(null,arguments)};var _Ceil=Module[\"_Ceil\"]=function(){return(_Ceil=Module[\"_Ceil\"]=Module[\"asm\"][\"x\"]).apply(null,arguments)};var _ClipByValue=Module[\"_ClipByValue\"]=function(){return(_ClipByValue=Module[\"_ClipByValue\"]=Module[\"asm\"][\"y\"]).apply(null,arguments)};var _Conv2D=Module[\"_Conv2D\"]=function(){return(_Conv2D=Module[\"_Conv2D\"]=Module[\"asm\"][\"z\"]).apply(null,arguments)};var _Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=function(){return(_Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=Module[\"asm\"][\"A\"]).apply(null,arguments)};var _Cos=Module[\"_Cos\"]=function(){return(_Cos=Module[\"_Cos\"]=Module[\"asm\"][\"B\"]).apply(null,arguments)};var _Cosh=Module[\"_Cosh\"]=function(){return(_Cosh=Module[\"_Cosh\"]=Module[\"asm\"][\"C\"]).apply(null,arguments)};var _CropAndResize=Module[\"_CropAndResize\"]=function(){return(_CropAndResize=Module[\"_CropAndResize\"]=Module[\"asm\"][\"D\"]).apply(null,arguments)};var _Cumsum=Module[\"_Cumsum\"]=function(){return(_Cumsum=Module[\"_Cumsum\"]=Module[\"asm\"][\"E\"]).apply(null,arguments)};var _DepthToSpace=Module[\"_DepthToSpace\"]=function(){return(_DepthToSpace=Module[\"_DepthToSpace\"]=Module[\"asm\"][\"F\"]).apply(null,arguments)};var _DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=function(){return(_DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=Module[\"asm\"][\"G\"]).apply(null,arguments)};var _Equal=Module[\"_Equal\"]=function(){return(_Equal=Module[\"_Equal\"]=Module[\"asm\"][\"H\"]).apply(null,arguments)};var _Exp=Module[\"_Exp\"]=function(){return(_Exp=Module[\"_Exp\"]=Module[\"asm\"][\"I\"]).apply(null,arguments)};var _FlipLeftRight=Module[\"_FlipLeftRight\"]=function(){return(_FlipLeftRight=Module[\"_FlipLeftRight\"]=Module[\"asm\"][\"J\"]).apply(null,arguments)};var _Floor=Module[\"_Floor\"]=function(){return(_Floor=Module[\"_Floor\"]=Module[\"asm\"][\"K\"]).apply(null,arguments)};var _FloorDiv=Module[\"_FloorDiv\"]=function(){return(_FloorDiv=Module[\"_FloorDiv\"]=Module[\"asm\"][\"L\"]).apply(null,arguments)};var _FusedBatchNorm=Module[\"_FusedBatchNorm\"]=function(){return(_FusedBatchNorm=Module[\"_FusedBatchNorm\"]=Module[\"asm\"][\"M\"]).apply(null,arguments)};var _FusedConv2D=Module[\"_FusedConv2D\"]=function(){return(_FusedConv2D=Module[\"_FusedConv2D\"]=Module[\"asm\"][\"N\"]).apply(null,arguments)};var _FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=function(){return(_FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=Module[\"asm\"][\"O\"]).apply(null,arguments)};var _Gather=Module[\"_Gather\"]=function(){return(_Gather=Module[\"_Gather\"]=Module[\"asm\"][\"P\"]).apply(null,arguments)};var _GatherNd=Module[\"_GatherNd\"]=function(){return(_GatherNd=Module[\"_GatherNd\"]=Module[\"asm\"][\"Q\"]).apply(null,arguments)};var _Greater=Module[\"_Greater\"]=function(){return(_Greater=Module[\"_Greater\"]=Module[\"asm\"][\"R\"]).apply(null,arguments)};var _GreaterEqual=Module[\"_GreaterEqual\"]=function(){return(_GreaterEqual=Module[\"_GreaterEqual\"]=Module[\"asm\"][\"S\"]).apply(null,arguments)};var _LeakyRelu=Module[\"_LeakyRelu\"]=function(){return(_LeakyRelu=Module[\"_LeakyRelu\"]=Module[\"asm\"][\"T\"]).apply(null,arguments)};var _Less=Module[\"_Less\"]=function(){return(_Less=Module[\"_Less\"]=Module[\"asm\"][\"U\"]).apply(null,arguments)};var _LessEqual=Module[\"_LessEqual\"]=function(){return(_LessEqual=Module[\"_LessEqual\"]=Module[\"asm\"][\"V\"]).apply(null,arguments)};var _Log=Module[\"_Log\"]=function(){return(_Log=Module[\"_Log\"]=Module[\"asm\"][\"W\"]).apply(null,arguments)};var _LogicalAnd=Module[\"_LogicalAnd\"]=function(){return(_LogicalAnd=Module[\"_LogicalAnd\"]=Module[\"asm\"][\"X\"]).apply(null,arguments)};var _Max=Module[\"_Max\"]=function(){return(_Max=Module[\"_Max\"]=Module[\"asm\"][\"Y\"]).apply(null,arguments)};var _MaxPool=Module[\"_MaxPool\"]=function(){return(_MaxPool=Module[\"_MaxPool\"]=Module[\"asm\"][\"Z\"]).apply(null,arguments)};var _Maximum=Module[\"_Maximum\"]=function(){return(_Maximum=Module[\"_Maximum\"]=Module[\"asm\"][\"_\"]).apply(null,arguments)};var _Mean=Module[\"_Mean\"]=function(){return(_Mean=Module[\"_Mean\"]=Module[\"asm\"][\"$\"]).apply(null,arguments)};var _Min=Module[\"_Min\"]=function(){return(_Min=Module[\"_Min\"]=Module[\"asm\"][\"aa\"]).apply(null,arguments)};var _Minimum=Module[\"_Minimum\"]=function(){return(_Minimum=Module[\"_Minimum\"]=Module[\"asm\"][\"ba\"]).apply(null,arguments)};var _MirrorPad=Module[\"_MirrorPad\"]=function(){return(_MirrorPad=Module[\"_MirrorPad\"]=Module[\"asm\"][\"ca\"]).apply(null,arguments)};var _Multiply=Module[\"_Multiply\"]=function(){return(_Multiply=Module[\"_Multiply\"]=Module[\"asm\"][\"da\"]).apply(null,arguments)};var _Neg=Module[\"_Neg\"]=function(){return(_Neg=Module[\"_Neg\"]=Module[\"asm\"][\"ea\"]).apply(null,arguments)};var _NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=function(){return(_NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=Module[\"asm\"][\"fa\"]).apply(null,arguments)};var _NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=function(){return(_NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=Module[\"asm\"][\"ga\"]).apply(null,arguments)};var _NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=function(){return(_NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=Module[\"asm\"][\"ha\"]).apply(null,arguments)};var _NotEqual=Module[\"_NotEqual\"]=function(){return(_NotEqual=Module[\"_NotEqual\"]=Module[\"asm\"][\"ia\"]).apply(null,arguments)};var _OneHot=Module[\"_OneHot\"]=function(){return(_OneHot=Module[\"_OneHot\"]=Module[\"asm\"][\"ja\"]).apply(null,arguments)};var _PadV2=Module[\"_PadV2\"]=function(){return(_PadV2=Module[\"_PadV2\"]=Module[\"asm\"][\"ka\"]).apply(null,arguments)};var _Pow=Module[\"_Pow\"]=function(){return(_Pow=Module[\"_Pow\"]=Module[\"asm\"][\"la\"]).apply(null,arguments)};var _Prelu=Module[\"_Prelu\"]=function(){return(_Prelu=Module[\"_Prelu\"]=Module[\"asm\"][\"ma\"]).apply(null,arguments)};var _Prod=Module[\"_Prod\"]=function(){return(_Prod=Module[\"_Prod\"]=Module[\"asm\"][\"na\"]).apply(null,arguments)};var _RealDiv=Module[\"_RealDiv\"]=function(){return(_RealDiv=Module[\"_RealDiv\"]=Module[\"asm\"][\"oa\"]).apply(null,arguments)};var _Relu=Module[\"_Relu\"]=function(){return(_Relu=Module[\"_Relu\"]=Module[\"asm\"][\"pa\"]).apply(null,arguments)};var _Relu6=Module[\"_Relu6\"]=function(){return(_Relu6=Module[\"_Relu6\"]=Module[\"asm\"][\"qa\"]).apply(null,arguments)};var _ResizeBilinear=Module[\"_ResizeBilinear\"]=function(){return(_ResizeBilinear=Module[\"_ResizeBilinear\"]=Module[\"asm\"][\"ra\"]).apply(null,arguments)};var _Reverse=Module[\"_Reverse\"]=function(){return(_Reverse=Module[\"_Reverse\"]=Module[\"asm\"][\"sa\"]).apply(null,arguments)};var _RotateWithOffset=Module[\"_RotateWithOffset\"]=function(){return(_RotateWithOffset=Module[\"_RotateWithOffset\"]=Module[\"asm\"][\"ta\"]).apply(null,arguments)};var _Round=Module[\"_Round\"]=function(){return(_Round=Module[\"_Round\"]=Module[\"asm\"][\"ua\"]).apply(null,arguments)};var _Rsqrt=Module[\"_Rsqrt\"]=function(){return(_Rsqrt=Module[\"_Rsqrt\"]=Module[\"asm\"][\"va\"]).apply(null,arguments)};var _ScatterNd=Module[\"_ScatterNd\"]=function(){return(_ScatterNd=Module[\"_ScatterNd\"]=Module[\"asm\"][\"wa\"]).apply(null,arguments)};var _SelectV2=Module[\"_SelectV2\"]=function(){return(_SelectV2=Module[\"_SelectV2\"]=Module[\"asm\"][\"xa\"]).apply(null,arguments)};var _Sigmoid=Module[\"_Sigmoid\"]=function(){return(_Sigmoid=Module[\"_Sigmoid\"]=Module[\"asm\"][\"ya\"]).apply(null,arguments)};var _Sin=Module[\"_Sin\"]=function(){return(_Sin=Module[\"_Sin\"]=Module[\"asm\"][\"za\"]).apply(null,arguments)};var _Softmax=Module[\"_Softmax\"]=function(){return(_Softmax=Module[\"_Softmax\"]=Module[\"asm\"][\"Aa\"]).apply(null,arguments)};var _Sqrt=Module[\"_Sqrt\"]=function(){return(_Sqrt=Module[\"_Sqrt\"]=Module[\"asm\"][\"Ba\"]).apply(null,arguments)};var _Square=Module[\"_Square\"]=function(){return(_Square=Module[\"_Square\"]=Module[\"asm\"][\"Ca\"]).apply(null,arguments)};var _SquaredDifference=Module[\"_SquaredDifference\"]=function(){return(_SquaredDifference=Module[\"_SquaredDifference\"]=Module[\"asm\"][\"Da\"]).apply(null,arguments)};var _Step=Module[\"_Step\"]=function(){return(_Step=Module[\"_Step\"]=Module[\"asm\"][\"Ea\"]).apply(null,arguments)};var _StridedSlice=Module[\"_StridedSlice\"]=function(){return(_StridedSlice=Module[\"_StridedSlice\"]=Module[\"asm\"][\"Fa\"]).apply(null,arguments)};var _Sub=Module[\"_Sub\"]=function(){return(_Sub=Module[\"_Sub\"]=Module[\"asm\"][\"Ga\"]).apply(null,arguments)};var _Sum=Module[\"_Sum\"]=function(){return(_Sum=Module[\"_Sum\"]=Module[\"asm\"][\"Ha\"]).apply(null,arguments)};var _Tan=Module[\"_Tan\"]=function(){return(_Tan=Module[\"_Tan\"]=Module[\"asm\"][\"Ia\"]).apply(null,arguments)};var _Tanh=Module[\"_Tanh\"]=function(){return(_Tanh=Module[\"_Tanh\"]=Module[\"asm\"][\"Ja\"]).apply(null,arguments)};var _Tile=Module[\"_Tile\"]=function(){return(_Tile=Module[\"_Tile\"]=Module[\"asm\"][\"Ka\"]).apply(null,arguments)};var _TopK=Module[\"_TopK\"]=function(){return(_TopK=Module[\"_TopK\"]=Module[\"asm\"][\"La\"]).apply(null,arguments)};var _Transform=Module[\"_Transform\"]=function(){return(_Transform=Module[\"_Transform\"]=Module[\"asm\"][\"Ma\"]).apply(null,arguments)};var _Transpose=Module[\"_Transpose\"]=function(){return(_Transpose=Module[\"_Transpose\"]=Module[\"asm\"][\"Na\"]).apply(null,arguments)};var __FusedMatMul=Module[\"__FusedMatMul\"]=function(){return(__FusedMatMul=Module[\"__FusedMatMul\"]=Module[\"asm\"][\"Oa\"]).apply(null,arguments)};var _malloc=Module[\"_malloc\"]=function(){return(_malloc=Module[\"_malloc\"]=Module[\"asm\"][\"Pa\"]).apply(null,arguments)};var _free=Module[\"_free\"]=function(){return(_free=Module[\"_free\"]=Module[\"asm\"][\"Qa\"]).apply(null,arguments)};var ___errno_location=Module[\"___errno_location\"]=function(){return(___errno_location=Module[\"___errno_location\"]=Module[\"asm\"][\"Ra\"]).apply(null,arguments)};var stackSave=Module[\"stackSave\"]=function(){return(stackSave=Module[\"stackSave\"]=Module[\"asm\"][\"Sa\"]).apply(null,arguments)};var stackRestore=Module[\"stackRestore\"]=function(){return(stackRestore=Module[\"stackRestore\"]=Module[\"asm\"][\"Ta\"]).apply(null,arguments)};var stackAlloc=Module[\"stackAlloc\"]=function(){return(stackAlloc=Module[\"stackAlloc\"]=Module[\"asm\"][\"Ua\"]).apply(null,arguments)};Module[\"cwrap\"]=cwrap;var calledRun;function ExitStatus(status){this.name=\"ExitStatus\";this.message=\"Program terminated with exit(\"+status+\")\";this.status=status}dependenciesFulfilled=function runCaller(){if(!calledRun)run();if(!calledRun)dependenciesFulfilled=runCaller};function run(args){args=args||arguments_;if(runDependencies>0){return}preRun();if(runDependencies>0){return}function doRun(){if(calledRun)return;calledRun=true;Module[\"calledRun\"]=true;if(ABORT)return;initRuntime();preMain();readyPromiseResolve(Module);if(Module[\"onRuntimeInitialized\"])Module[\"onRuntimeInitialized\"]();postRun()}if(Module[\"setStatus\"]){Module[\"setStatus\"](\"Running...\");setTimeout(function(){setTimeout(function(){Module[\"setStatus\"](\"\")},1);doRun()},1)}else{doRun()}}Module[\"run\"]=run;if(Module[\"preInit\"]){if(typeof Module[\"preInit\"]==\"function\")Module[\"preInit\"]=[Module[\"preInit\"]];while(Module[\"preInit\"].length>0){Module[\"preInit\"].pop()()}}run();\n\n\n return WasmBackendModule.ready\n}\n);\n})();\nif (typeof exports === 'object' && typeof module === 'object')\n module.exports = WasmBackendModule;\nelse if (typeof define === 'function' && define['amd'])\n define([], function() { return WasmBackendModule; });\nelse if (typeof exports === 'object')\n exports[\"WasmBackendModule\"] = WasmBackendModule;\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Backend, DataId} from '../tensor';\nimport {BackendValues, DataType} from '../types';\n\nexport const EPSILON_FLOAT32 = 1e-7;\nexport const EPSILON_FLOAT16 = 1e-4;\n\n// Required information for all backends.\nexport interface BackendTimingInfo {\n kernelMs: number|{error: string};\n getExtraProfileInfo?(): string; // a field for additional timing information\n // e.g. packing / unpacking for WebGL backend\n}\n\nexport interface TensorStorage {\n read(dataId: DataId): Promise;\n readSync(dataId: DataId): BackendValues;\n disposeData(dataId: DataId, force?: boolean): boolean;\n write(values: BackendValues, shape: number[], dtype: DataType): DataId;\n move(\n dataId: DataId, values: BackendValues, shape: number[], dtype: DataType,\n refCount: number): void;\n memory(): {unreliable: boolean;}; // Backend-specific information.\n /** Returns number of data ids currently in the storage. */\n numDataIds(): number;\n refCount(dataId: DataId): number;\n}\n\n/** Convenient class for storing tensor-related data. */\nexport class DataStorage {\n private data = new WeakMap();\n private dataIdsCount = 0;\n\n constructor(private backend: KernelBackend, private dataMover: DataMover) {}\n\n get(dataId: DataId) {\n if (!this.data.has(dataId)) {\n this.dataMover.moveData(this.backend, dataId);\n }\n return this.data.get(dataId);\n }\n\n set(dataId: DataId, value: T): void {\n this.dataIdsCount++;\n this.data.set(dataId, value);\n }\n\n has(dataId: DataId): boolean {\n return this.data.has(dataId);\n }\n\n delete(dataId: DataId): boolean {\n this.dataIdsCount--;\n return this.data.delete(dataId);\n }\n\n numDataIds(): number {\n return this.dataIdsCount;\n }\n}\n\nexport interface DataMover {\n /**\n * To be called by backends whenever they see a dataId that they don't own.\n * Upon calling this method, the mover will fetch the tensor from another\n * backend and register it with the current active backend.\n */\n moveData(backend: KernelBackend, dataId: DataId): void;\n}\n\nexport interface BackendTimer {\n // check if backend timer is available\n timerAvailable(): boolean;\n time(f: () => void): Promise;\n}\n\n/**\n * The interface that defines the kernels that should be implemented when\n * adding a new backend. New backends don't need to implement every one of the\n * methods, this can be done gradually (throw an error for unimplemented\n * methods).\n */\nexport class KernelBackend implements TensorStorage, Backend, BackendTimer {\n refCount(dataId: DataId): number {\n return notYetImplemented('refCount');\n }\n incRef(dataId: DataId): void {\n return notYetImplemented('incRef');\n }\n timerAvailable(): boolean {\n return true;\n }\n time(f: () => void): Promise {\n return notYetImplemented('time');\n }\n read(dataId: object): Promise {\n return notYetImplemented('read');\n }\n readSync(dataId: object): BackendValues {\n return notYetImplemented('readSync');\n }\n numDataIds(): number {\n return notYetImplemented('numDataIds');\n }\n disposeData(dataId: object, force?: boolean): boolean {\n return notYetImplemented('disposeData');\n }\n write(values: BackendValues, shape: number[], dtype: DataType): DataId {\n return notYetImplemented('write');\n }\n move(\n dataId: DataId, values: BackendValues, shape: number[], dtype: DataType,\n refCount: number): void {\n return notYetImplemented('move');\n }\n memory(): {unreliable: boolean; reasons?: string[]} {\n return notYetImplemented('memory');\n }\n /** Returns the highest precision for floats in bits (e.g. 16 or 32) */\n floatPrecision(): 16|32 {\n return notYetImplemented('floatPrecision');\n }\n /** Returns the smallest representable number. */\n epsilon(): number {\n return this.floatPrecision() === 32 ? EPSILON_FLOAT32 : EPSILON_FLOAT16;\n }\n dispose(): void {\n return notYetImplemented('dispose');\n }\n}\n\nfunction notYetImplemented(kernelName: string): never {\n throw new Error(\n `'${kernelName}' not yet implemented or not found in the registry. ` +\n `This kernel may not be supported by the tfjs backend you have chosen`);\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {DataType, DataTypeMap, FlatVector, NumericDataType, RecursiveArray, TensorLike, TypedArray} from './types';\n\n/**\n * Shuffles the array in-place using Fisher-Yates algorithm.\n *\n * ```js\n * const a = [1, 2, 3, 4, 5];\n * tf.util.shuffle(a);\n * console.log(a);\n * ```\n *\n * @param array The array to shuffle in-place.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\n// tslint:disable-next-line:no-any\nexport function shuffle(array: any[]|Uint32Array|Int32Array|\n Float32Array): void {\n let counter = array.length;\n let index = 0;\n // While there are elements in the array\n while (counter > 0) {\n // Pick a random index\n index = (Math.random() * counter) | 0;\n // Decrease counter by 1\n counter--;\n // And swap the last element with it\n swap(array, counter, index);\n }\n}\n\n/**\n * Shuffles two arrays in-place the same way using Fisher-Yates algorithm.\n *\n * ```js\n * const a = [1,2,3,4,5];\n * const b = [11,22,33,44,55];\n * tf.util.shuffleCombo(a, b);\n * console.log(a, b);\n * ```\n *\n * @param array The first array to shuffle in-place.\n * @param array2 The second array to shuffle in-place with the same permutation\n * as the first array.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function shuffleCombo(\n // tslint:disable-next-line:no-any\n array: any[]|Uint32Array|Int32Array|Float32Array,\n // tslint:disable-next-line:no-any\n array2: any[]|Uint32Array|Int32Array|Float32Array): void {\n if (array.length !== array2.length) {\n throw new Error(\n `Array sizes must match to be shuffled together ` +\n `First array length was ${array.length}` +\n `Second array length was ${array2.length}`);\n }\n let counter = array.length;\n let index = 0;\n // While there are elements in the array\n while (counter > 0) {\n // Pick a random index\n index = (Math.random() * counter) | 0;\n // Decrease counter by 1\n counter--;\n // And swap the last element of each array with it\n swap(array, counter, index);\n swap(array2, counter, index);\n }\n}\n\n/** Clamps a value to a specified range. */\nexport function clamp(min: number, x: number, max: number): number {\n return Math.max(min, Math.min(x, max));\n}\n\nexport function nearestLargerEven(val: number): number {\n return val % 2 === 0 ? val : val + 1;\n}\n\nexport function swap(\n object: {[index: number]: T}, left: number, right: number) {\n const temp = object[left];\n object[left] = object[right];\n object[right] = temp;\n}\n\nexport function sum(arr: number[]): number {\n let sum = 0;\n for (let i = 0; i < arr.length; i++) {\n sum += arr[i];\n }\n return sum;\n}\n\n/**\n * Returns a sample from a uniform [a, b) distribution.\n *\n * @param a The minimum support (inclusive).\n * @param b The maximum support (exclusive).\n * @return A pseudorandom number on the half-open interval [a,b).\n */\nexport function randUniform(a: number, b: number) {\n const r = Math.random();\n return (b * r) + (1 - r) * a;\n}\n\n/** Returns the squared Euclidean distance between two vectors. */\nexport function distSquared(a: FlatVector, b: FlatVector): number {\n let result = 0;\n for (let i = 0; i < a.length; i++) {\n const diff = Number(a[i]) - Number(b[i]);\n result += diff * diff;\n }\n return result;\n}\n\n/**\n * Asserts that the expression is true. Otherwise throws an error with the\n * provided message.\n *\n * ```js\n * const x = 2;\n * tf.util.assert(x === 2, 'x is not 2');\n * ```\n *\n * @param expr The expression to assert (as a boolean).\n * @param msg A function that returns the message to report when throwing an\n * error. We use a function for performance reasons.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function assert(expr: boolean, msg: () => string) {\n if (!expr) {\n throw new Error(typeof msg === 'string' ? msg : msg());\n }\n}\n\nexport function assertShapesMatch(\n shapeA: number[], shapeB: number[], errorMessagePrefix = ''): void {\n assert(\n arraysEqual(shapeA, shapeB),\n () => errorMessagePrefix + ` Shapes ${shapeA} and ${shapeB} must match`);\n}\n\nexport function assertNonNull(a: TensorLike): void {\n assert(\n a != null,\n () => `The input to the tensor constructor must be a non-null value.`);\n}\n\n// NOTE: We explicitly type out what T extends instead of any so that\n// util.flatten on a nested array of number doesn't try to infer T as a\n// number[][], causing us to explicitly type util.flatten().\n/**\n * Flattens an arbitrarily nested array.\n *\n * ```js\n * const a = [[1, 2], [3, 4], [5, [6, [7]]]];\n * const flat = tf.util.flatten(a);\n * console.log(flat);\n * ```\n *\n * @param arr The nested array to flatten.\n * @param result The destination array which holds the elements.\n * @param skipTypedArray If true, avoids flattening the typed arrays. Defaults\n * to false.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function\nflatten|TypedArray>(\n arr: T|RecursiveArray, result: T[] = [], skipTypedArray = false): T[] {\n if (result == null) {\n result = [];\n }\n if (Array.isArray(arr) || isTypedArray(arr) && !skipTypedArray) {\n for (let i = 0; i < arr.length; ++i) {\n flatten(arr[i], result, skipTypedArray);\n }\n } else {\n result.push(arr as T);\n }\n return result;\n}\n\n/**\n * Returns the size (number of elements) of the tensor given its shape.\n *\n * ```js\n * const shape = [3, 4, 2];\n * const size = tf.util.sizeFromShape(shape);\n * console.log(size);\n * ```\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function sizeFromShape(shape: number[]): number {\n if (shape.length === 0) {\n // Scalar.\n return 1;\n }\n let size = shape[0];\n for (let i = 1; i < shape.length; i++) {\n size *= shape[i];\n }\n return size;\n}\n\nexport function isScalarShape(shape: number[]): boolean {\n return shape.length === 0;\n}\n\nexport function arraysEqual(n1: FlatVector, n2: FlatVector) {\n if (n1 === n2) {\n return true;\n }\n if (n1 == null || n2 == null) {\n return false;\n }\n\n if (n1.length !== n2.length) {\n return false;\n }\n for (let i = 0; i < n1.length; i++) {\n if (n1[i] !== n2[i]) {\n return false;\n }\n }\n return true;\n}\n\nexport function isInt(a: number): boolean {\n return a % 1 === 0;\n}\n\nexport function tanh(x: number): number {\n // tslint:disable-next-line:no-any\n if ((Math as any).tanh != null) {\n // tslint:disable-next-line:no-any\n return (Math as any).tanh(x);\n }\n if (x === Infinity) {\n return 1;\n } else if (x === -Infinity) {\n return -1;\n } else {\n const e2x = Math.exp(2 * x);\n return (e2x - 1) / (e2x + 1);\n }\n}\n\nexport function sizeToSquarishShape(size: number): [number, number] {\n const width = Math.ceil(Math.sqrt(size));\n return [width, Math.ceil(size / width)];\n}\n\n/**\n * Creates a new array with randomized indicies to a given quantity.\n *\n * ```js\n * const randomTen = tf.util.createShuffledIndices(10);\n * console.log(randomTen);\n * ```\n *\n * @param number Quantity of how many shuffled indicies to create.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function createShuffledIndices(n: number): Uint32Array {\n const shuffledIndices = new Uint32Array(n);\n for (let i = 0; i < n; ++i) {\n shuffledIndices[i] = i;\n }\n shuffle(shuffledIndices);\n return shuffledIndices;\n}\n\nexport function rightPad(a: string, size: number): string {\n if (size <= a.length) {\n return a;\n }\n return a + ' '.repeat(size - a.length);\n}\n\nexport function repeatedTry(\n checkFn: () => boolean, delayFn = (counter: number) => 0,\n maxCounter?: number): Promise {\n return new Promise((resolve, reject) => {\n let tryCount = 0;\n\n const tryFn = () => {\n if (checkFn()) {\n resolve();\n return;\n }\n\n tryCount++;\n\n const nextBackoff = delayFn(tryCount);\n\n if (maxCounter != null && tryCount >= maxCounter) {\n reject();\n return;\n }\n setTimeout(tryFn, nextBackoff);\n };\n\n tryFn();\n });\n}\n\n/**\n * Given the full size of the array and a shape that may contain -1 as the\n * implicit dimension, returns the inferred shape where -1 is replaced.\n * E.g. For shape=[2, -1, 3] and size=24, it will return [2, 4, 3].\n *\n * @param shape The shape, which may contain -1 in some dimension.\n * @param size The full size (number of elements) of the array.\n * @return The inferred shape where -1 is replaced with the inferred size.\n */\nexport function inferFromImplicitShape(\n shape: number[], size: number): number[] {\n let shapeProd = 1;\n let implicitIdx = -1;\n\n for (let i = 0; i < shape.length; ++i) {\n if (shape[i] >= 0) {\n shapeProd *= shape[i];\n } else if (shape[i] === -1) {\n if (implicitIdx !== -1) {\n throw Error(\n `Shapes can only have 1 implicit size. ` +\n `Found -1 at dim ${implicitIdx} and dim ${i}`);\n }\n implicitIdx = i;\n } else if (shape[i] < 0) {\n throw Error(`Shapes can not be < 0. Found ${shape[i]} at dim ${i}`);\n }\n }\n\n if (implicitIdx === -1) {\n if (size > 0 && size !== shapeProd) {\n throw Error(`Size(${size}) must match the product of shape ${shape}`);\n }\n return shape;\n }\n\n if (shapeProd === 0) {\n throw Error(\n `Cannot infer the missing size in [${shape}] when ` +\n `there are 0 elements`);\n }\n if (size % shapeProd !== 0) {\n throw Error(\n `The implicit shape can't be a fractional number. ` +\n `Got ${size} / ${shapeProd}`);\n }\n\n const newShape = shape.slice();\n newShape[implicitIdx] = size / shapeProd;\n return newShape;\n}\n\nexport function parseAxisParam(\n axis: number|number[], shape: number[]): number[] {\n const rank = shape.length;\n\n // Normalize input\n axis = axis == null ? shape.map((s, i) => i) : [].concat(axis);\n\n // Check for valid range\n assert(\n axis.every(ax => ax >= -rank && ax < rank),\n () =>\n `All values in axis param must be in range [-${rank}, ${rank}) but ` +\n `got axis ${axis}`);\n\n // Check for only integers\n assert(\n axis.every(ax => isInt(ax)),\n () => `All values in axis param must be integers but ` +\n `got axis ${axis}`);\n\n // Handle negative axis.\n return axis.map(a => a < 0 ? rank + a : a);\n}\n\n/** Reduces the shape by removing all dimensions of shape 1. */\nexport function squeezeShape(shape: number[], axis?: number[]):\n {newShape: number[], keptDims: number[]} {\n const newShape: number[] = [];\n const keptDims: number[] = [];\n const isEmptyArray = axis != null && Array.isArray(axis) && axis.length === 0;\n const axes = (axis == null || isEmptyArray) ?\n null :\n parseAxisParam(axis, shape).sort();\n let j = 0;\n for (let i = 0; i < shape.length; ++i) {\n if (axes != null) {\n if (axes[j] === i && shape[i] !== 1) {\n throw new Error(\n `Can't squeeze axis ${i} since its dim '${shape[i]}' is not 1`);\n }\n if ((axes[j] == null || axes[j] > i) && shape[i] === 1) {\n newShape.push(shape[i]);\n keptDims.push(i);\n }\n if (axes[j] <= i) {\n j++;\n }\n }\n if (shape[i] !== 1) {\n newShape.push(shape[i]);\n keptDims.push(i);\n }\n }\n return {newShape, keptDims};\n}\n\nexport function getTypedArrayFromDType(\n dtype: D, size: number): DataTypeMap[D] {\n let values = null;\n if (dtype == null || dtype === 'float32') {\n values = new Float32Array(size);\n } else if (dtype === 'int32') {\n values = new Int32Array(size);\n } else if (dtype === 'bool') {\n values = new Uint8Array(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n return values as DataTypeMap[D];\n}\n\nexport function getArrayFromDType(\n dtype: D, size: number): DataTypeMap[D] {\n let values = null;\n if (dtype == null || dtype === 'float32') {\n values = new Float32Array(size);\n } else if (dtype === 'int32') {\n values = new Int32Array(size);\n } else if (dtype === 'bool') {\n values = new Uint8Array(size);\n } else if (dtype === 'string') {\n values = new Array<'string'>(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n return values as DataTypeMap[D];\n}\n\nexport function checkConversionForErrors(\n vals: DataTypeMap[D]|number[], dtype: D): void {\n for (let i = 0; i < vals.length; i++) {\n const num = vals[i] as number;\n if (isNaN(num) || !isFinite(num)) {\n throw Error(`A tensor of type ${dtype} being uploaded contains ${num}.`);\n }\n }\n}\n\n/** Returns true if the dtype is valid. */\nexport function isValidDtype(dtype: DataType): boolean {\n return dtype === 'bool' || dtype === 'complex64' || dtype === 'float32' ||\n dtype === 'int32' || dtype === 'string';\n}\n\n/**\n * Returns true if the new type can't encode the old type without loss of\n * precision.\n */\nexport function hasEncodingLoss(oldType: DataType, newType: DataType): boolean {\n if (newType === 'complex64') {\n return false;\n }\n if (newType === 'float32' && oldType !== 'complex64') {\n return false;\n }\n if (newType === 'int32' && oldType !== 'float32' && oldType !== 'complex64') {\n return false;\n }\n if (newType === 'bool' && oldType === 'bool') {\n return false;\n }\n return true;\n}\n\nexport function isTypedArray(a: {}): a is Float32Array|Int32Array|Uint8Array {\n return a instanceof Float32Array || a instanceof Int32Array ||\n a instanceof Uint8Array;\n}\n\nexport function bytesPerElement(dtype: DataType): number {\n if (dtype === 'float32' || dtype === 'int32') {\n return 4;\n } else if (dtype === 'complex64') {\n return 8;\n } else if (dtype === 'bool') {\n return 1;\n } else {\n throw new Error(`Unknown dtype ${dtype}`);\n }\n}\n\n/**\n * Returns the approximate number of bytes allocated in the string array - 2\n * bytes per character. Computing the exact bytes for a native string in JS is\n * not possible since it depends on the encoding of the html page that serves\n * the website.\n */\nexport function bytesFromStringArray(arr: Uint8Array[]): number {\n if (arr == null) {\n return 0;\n }\n let bytes = 0;\n arr.forEach(x => bytes += x.length);\n return bytes;\n}\n\n/** Returns true if the value is a string. */\nexport function isString(value: {}): value is string {\n return typeof value === 'string' || value instanceof String;\n}\n\nexport function isBoolean(value: {}): boolean {\n return typeof value === 'boolean';\n}\n\nexport function isNumber(value: {}): boolean {\n return typeof value === 'number';\n}\n\nexport function inferDtype(values: TensorLike): DataType {\n if (Array.isArray(values)) {\n return inferDtype(values[0]);\n }\n if (values instanceof Float32Array) {\n return 'float32';\n } else if (values instanceof Int32Array || values instanceof Uint8Array) {\n return 'int32';\n } else if (isNumber(values)) {\n return 'float32';\n } else if (isString(values)) {\n return 'string';\n } else if (isBoolean(values)) {\n return 'bool';\n }\n return 'float32';\n}\n\nexport function isFunction(f: Function) {\n return !!(f && f.constructor && f.call && f.apply);\n}\n\nexport function nearestDivisor(size: number, start: number): number {\n for (let i = start; i < size; ++i) {\n if (size % i === 0) {\n return i;\n }\n }\n return size;\n}\n\nexport function computeStrides(shape: number[]): number[] {\n const rank = shape.length;\n if (rank < 2) {\n return [];\n }\n\n // Last dimension has implicit stride of 1, thus having D-1 (instead of D)\n // strides.\n const strides = new Array(rank - 1);\n strides[rank - 2] = shape[rank - 1];\n for (let i = rank - 3; i >= 0; --i) {\n strides[i] = strides[i + 1] * shape[i + 1];\n }\n return strides;\n}\n\nfunction createNestedArray(\n offset: number, shape: number[], a: TypedArray, isComplex = false) {\n const ret = new Array();\n if (shape.length === 1) {\n const d = shape[0] * (isComplex ? 2 : 1);\n for (let i = 0; i < d; i++) {\n ret[i] = a[offset + i];\n }\n } else {\n const d = shape[0];\n const rest = shape.slice(1);\n const len = rest.reduce((acc, c) => acc * c) * (isComplex ? 2 : 1);\n for (let i = 0; i < d; i++) {\n ret[i] = createNestedArray(offset + i * len, rest, a, isComplex);\n }\n }\n return ret;\n}\n\n// Provide a nested array of TypedArray in given shape.\nexport function toNestedArray(\n shape: number[], a: TypedArray, isComplex = false) {\n if (shape.length === 0) {\n // Scalar type should return a single number.\n return a[0];\n }\n const size = shape.reduce((acc, c) => acc * c) * (isComplex ? 2 : 1);\n if (size === 0) {\n // A tensor with shape zero should be turned into empty list.\n return [];\n }\n if (size !== a.length) {\n throw new Error(`[${shape}] does not match the input size ${a.length}${\n isComplex ? ' for a complex tensor' : ''}.`);\n }\n\n return createNestedArray(0, shape, a, isComplex);\n}\n\nexport function makeOnesTypedArray(\n size: number, dtype: D): DataTypeMap[D] {\n const array = makeZerosTypedArray(size, dtype);\n for (let i = 0; i < array.length; i++) {\n array[i] = 1;\n }\n return array;\n}\n\nexport function makeZerosTypedArray(\n size: number, dtype: D): DataTypeMap[D] {\n if (dtype == null || dtype === 'float32' || dtype === 'complex64') {\n return new Float32Array(size) as DataTypeMap[D];\n } else if (dtype === 'int32') {\n return new Int32Array(size) as DataTypeMap[D];\n } else if (dtype === 'bool') {\n return new Uint8Array(size) as DataTypeMap[D];\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\n\n/**\n * Make nested `TypedArray` filled with zeros.\n * @param shape The shape information for the nested array.\n * @param dtype dtype of the array element.\n */\nexport function makeZerosNestedTypedArray(\n shape: number[], dtype: D) {\n const size = shape.reduce((prev, curr) => prev * curr, 1);\n if (dtype == null || dtype === 'float32') {\n return toNestedArray(shape, new Float32Array(size));\n } else if (dtype === 'int32') {\n return toNestedArray(shape, new Int32Array(size));\n } else if (dtype === 'bool') {\n return toNestedArray(shape, new Uint8Array(size));\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\n\nexport function assertNonNegativeIntegerDimensions(shape: number[]) {\n shape.forEach(dimSize => {\n assert(\n Number.isInteger(dimSize) && dimSize >= 0,\n () =>\n `Tensor must have a shape comprised of positive integers but got ` +\n `shape [${shape}].`);\n });\n}\n\n/**\n * Computes flat index for a given location (multidimentionsal index) in a\n * Tensor/multidimensional array.\n *\n * @param locs Location in the tensor.\n * @param rank Rank of the tensor.\n * @param strides Tensor strides.\n */\nexport function locToIndex(\n locs: number[], rank: number, strides: number[]): number {\n if (rank === 0) {\n return 0;\n } else if (rank === 1) {\n return locs[0];\n }\n let index = locs[locs.length - 1];\n for (let i = 0; i < locs.length - 1; ++i) {\n index += strides[i] * locs[i];\n }\n return index;\n}\n\n/**\n * Computes the location (multidimensional index) in a tensor/multidimentional\n * array for a given flat index.\n *\n * @param index Index in flat array.\n * @param rank Rank of tensor.\n * @param strides Strides of tensor.\n */\nexport function indexToLoc(\n index: number, rank: number, strides: number[]): number[] {\n if (rank === 0) {\n return [];\n } else if (rank === 1) {\n return [index];\n }\n const locs: number[] = new Array(rank);\n for (let i = 0; i < locs.length - 1; ++i) {\n locs[i] = Math.floor(index / strides[i]);\n index -= locs[i] * strides[i];\n }\n locs[locs.length - 1] = index;\n return locs;\n}\n\n/**\n * This method asserts whether an object is a Promise instance.\n * @param object\n */\n// tslint:disable-next-line: no-any\nexport function isPromise(object: any) {\n // We chose to not use 'obj instanceOf Promise' for two reasons:\n // 1. It only reliably works for es6 Promise, not other Promise\n // implementations.\n // 2. It doesn't work with framework that uses zone.js. zone.js monkey patch\n // the async calls, so it is possible the obj (patched) is comparing to a\n // pre-patched Promise.\n return object && object.then && typeof object.then === 'function';\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Platform} from './platforms/platform';\nimport {isPromise} from './util_base';\n\n// Expects flags from URL in the format ?tfjsflags=FLAG1:1,FLAG2:true.\nconst TENSORFLOWJS_FLAGS_PREFIX = 'tfjsflags';\n\ntype FlagValue = number|boolean;\ntype FlagEvaluationFn = (() => FlagValue)|(() => Promise);\nexport type Flags = {\n [featureName: string]: FlagValue\n};\nexport type FlagRegistryEntry = {\n evaluationFn: FlagEvaluationFn;\n setHook?: (value: FlagValue) => void;\n};\n\n/**\n * The environment contains evaluated flags as well as the registered platform.\n * This is always used as a global singleton and can be retrieved with\n * `tf.env()`.\n *\n * @doc {heading: 'Environment'}\n */\nexport class Environment {\n private flags: Flags = {};\n private flagRegistry: {[flagName: string]: FlagRegistryEntry} = {};\n\n private urlFlags: Flags = {};\n\n platformName: string;\n platform: Platform;\n\n // Jasmine spies on this in 'environment_test.ts'\n getQueryParams = getQueryParams;\n\n // tslint:disable-next-line: no-any\n constructor(public global: any) {\n this.populateURLFlags();\n }\n\n setPlatform(platformName: string, platform: Platform) {\n if (this.platform != null) {\n console.warn(\n `Platform ${this.platformName} has already been set. ` +\n `Overwriting the platform with ${platform}.`);\n }\n this.platformName = platformName;\n this.platform = platform;\n }\n\n registerFlag(\n flagName: string, evaluationFn: FlagEvaluationFn,\n setHook?: (value: FlagValue) => void) {\n this.flagRegistry[flagName] = {evaluationFn, setHook};\n\n // Override the flag value from the URL. This has to happen here because the\n // environment is initialized before flags get registered.\n if (this.urlFlags[flagName] != null) {\n const flagValue = this.urlFlags[flagName];\n console.warn(\n `Setting feature override from URL ${flagName}: ${flagValue}.`);\n this.set(flagName, flagValue);\n }\n }\n\n async getAsync(flagName: string): Promise {\n if (flagName in this.flags) {\n return this.flags[flagName];\n }\n\n this.flags[flagName] = await this.evaluateFlag(flagName);\n return this.flags[flagName];\n }\n\n get(flagName: string): FlagValue {\n if (flagName in this.flags) {\n return this.flags[flagName];\n }\n\n const flagValue = this.evaluateFlag(flagName);\n if (isPromise(flagValue)) {\n throw new Error(\n `Flag ${flagName} cannot be synchronously evaluated. ` +\n `Please use getAsync() instead.`);\n }\n\n this.flags[flagName] = flagValue as number | boolean;\n\n return this.flags[flagName];\n }\n\n getNumber(flagName: string): number {\n return this.get(flagName) as number;\n }\n\n getBool(flagName: string): boolean {\n return this.get(flagName) as boolean;\n }\n\n getFlags(): Flags {\n return this.flags;\n }\n // For backwards compatibility.\n get features(): Flags {\n return this.flags;\n }\n\n set(flagName: string, value: FlagValue): void {\n if (this.flagRegistry[flagName] == null) {\n throw new Error(\n `Cannot set flag ${flagName} as it has not been registered.`);\n }\n this.flags[flagName] = value;\n if (this.flagRegistry[flagName].setHook != null) {\n this.flagRegistry[flagName].setHook(value);\n }\n }\n\n private evaluateFlag(flagName: string): FlagValue|Promise {\n if (this.flagRegistry[flagName] == null) {\n throw new Error(\n `Cannot evaluate flag '${flagName}': no evaluation function found.`);\n }\n return this.flagRegistry[flagName].evaluationFn();\n }\n\n setFlags(flags: Flags) {\n this.flags = Object.assign({}, flags);\n }\n\n reset() {\n this.flags = {};\n this.urlFlags = {};\n this.populateURLFlags();\n }\n\n private populateURLFlags(): void {\n if (typeof this.global === 'undefined' ||\n typeof this.global.location === 'undefined' ||\n typeof this.global.location.search === 'undefined') {\n return;\n }\n\n const urlParams = this.getQueryParams(this.global.location.search);\n if (TENSORFLOWJS_FLAGS_PREFIX in urlParams) {\n const keyValues = urlParams[TENSORFLOWJS_FLAGS_PREFIX].split(',');\n keyValues.forEach(keyValue => {\n const [key, value] = keyValue.split(':') as [string, string];\n this.urlFlags[key] = parseValue(key, value);\n });\n }\n }\n}\n\nexport function getQueryParams(queryString: string): {[key: string]: string} {\n const params = {};\n queryString.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g, (s, ...t) => {\n decodeParam(params, t[0], t[1]);\n return t.join('=');\n });\n return params;\n}\n\nfunction decodeParam(\n params: {[key: string]: string}, name: string, value?: string) {\n params[decodeURIComponent(name)] = decodeURIComponent(value || '');\n}\n\nfunction parseValue(flagName: string, value: string): FlagValue {\n value = value.toLowerCase();\n if (value === 'true' || value === 'false') {\n return value === 'true';\n } else if (`${+ value}` === value) {\n return +value;\n }\n throw new Error(\n `Could not parse value flag value ${value} for flag ${flagName}.`);\n}\n\n/**\n * Returns the current environment (a global singleton).\n *\n * The environment object contains the evaluated feature values as well as the\n * active platform.\n *\n * @doc {heading: 'Environment'}\n */\nexport function env() {\n return ENV;\n}\n\nexport let ENV: Environment = null;\nexport function setEnvironmentGlobal(environment: Environment) {\n ENV = environment;\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// Note that the identifier globalNameSpace is scoped to this module, but will\n// always resolve to the same global object regardless of how the module is\n// resolved.\n// tslint:disable-next-line:no-any\nlet globalNameSpace: {_tfGlobals: Map};\n// tslint:disable-next-line:no-any\nexport function getGlobalNamespace(): {_tfGlobals: Map} {\n if (globalNameSpace == null) {\n // tslint:disable-next-line:no-any\n let ns: any;\n if (typeof (window) !== 'undefined') {\n ns = window;\n } else if (typeof (global) !== 'undefined') {\n ns = global;\n } else if (typeof (process) !== 'undefined') {\n ns = process;\n } else if (typeof (self) !== 'undefined') {\n ns = self;\n } else {\n throw new Error('Could not find a global object');\n }\n globalNameSpace = ns;\n }\n return globalNameSpace;\n}\n\n// tslint:disable-next-line:no-any\nfunction getGlobalMap(): Map {\n const ns = getGlobalNamespace();\n if (ns._tfGlobals == null) {\n ns._tfGlobals = new Map();\n }\n return ns._tfGlobals;\n}\n\n/**\n * Returns a globally accessible 'singleton' object.\n *\n * @param key the name of the object\n * @param init a function to initialize to initialize this object\n * the first time it is fetched.\n */\nexport function getGlobal(key: string, init: () => T): T {\n const globalMap = getGlobalMap();\n if (globalMap.has(key)) {\n return globalMap.get(key);\n } else {\n const singleton = init();\n globalMap.set(key, singleton);\n return globalMap.get(key);\n }\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n// Allow UpperCamelCase variable names\n// tslint:disable: variable-name\n// Unfortunately just enabling PascalCase per file (tslint:enable:\n// allow-pascal-case) doesn't work.\nimport {NamedTensorInfoMap, TensorInfo} from './kernel_registry';\nimport {ExplicitPadding} from './ops/conv_util';\nimport {Activation} from './ops/fused_types';\nimport {DataType, PixelData} from './types';\n\nexport const Abs = 'Abs';\nexport type AbsInputs = UnaryInputs;\n\nexport const Acos = 'Acos';\nexport type AcosInputs = UnaryInputs;\n\nexport const Acosh = 'Acosh';\nexport type AcoshInputs = UnaryInputs;\n\nexport const Add = 'Add';\nexport type AddInputs = BinaryInputs;\n\nexport const AddN = 'AddN';\nexport type AddNInputs = TensorInfo[];\n\nexport const All = 'All';\nexport type AllInputs = Pick;\nexport interface AllAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Any = 'Any';\nexport type AnyInputs = Pick;\nexport interface AnyAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const ArgMax = 'ArgMax';\nexport type ArgMaxInputs = Pick;\nexport interface ArgMaxAttrs {\n axis: number;\n}\n\nexport const ArgMin = 'ArgMin';\nexport type ArgMinInputs = Pick;\nexport interface ArgMinAttrs {\n axis: number;\n}\n\nexport const Asin = 'Asin';\nexport type AsinInputs = UnaryInputs;\n\nexport const Asinh = 'Asinh';\nexport type AsinhInputs = UnaryInputs;\n\nexport const Atan = 'Atan';\nexport type AtanInputs = UnaryInputs;\n\nexport const Atanh = 'Atanh';\nexport type AtanhInputs = UnaryInputs;\n\nexport const Atan2 = 'Atan2';\nexport type Atan2Inputs = BinaryInputs;\n\nexport const AvgPool = 'AvgPool';\nexport type AvgPoolInputs = Pick;\nexport interface AvgPoolAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const AvgPoolGrad = 'AvgPoolGrad';\nexport type AvgPoolGradInputs = Pick;\nexport interface AvgPoolGradAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n}\n\nexport const AvgPool3D = 'AvgPool3D';\nexport type AvgPool3DInputs = Pick;\nexport interface AvgPool3DAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n dataFormat: 'NDHWC'|'NCDHW';\n}\n\nexport const AvgPool3DGrad = 'AvgPool3DGrad';\nexport type AvgPool3DGradInputs = Pick;\nexport interface AvgPool3DGradAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const BatchMatMul = 'BatchMatMul';\nexport type BatchMatMulInputs = Pick;\nexport interface BatchMatMulAttrs {\n transposeA: boolean;\n transposeB: boolean;\n}\n\nexport const BatchToSpaceND = 'BatchToSpaceND';\nexport type BatchToSpaceNDInputs = Pick;\nexport interface BatchToSpaceNDAttrs {\n blockShape: number[];\n crops: number[][];\n}\n\nexport type BinaryInputs = Pick;\n\nexport const Bincount = 'Bincount';\nexport type BincountInputs = Pick;\nexport interface BincountAttrs {\n size: number;\n}\n\nexport const BroadcastTo = 'BroadcastTo';\nexport type BroadcastToInputs = Pick;\nexport interface BroadCastToAttrs {\n shape: number[];\n inputShape: number[]; // for gradient\n}\n\nexport const Cast = 'Cast';\nexport type CastInputs = UnaryInputs;\nexport interface CastAttrs {\n dtype: DataType;\n}\n\nexport const Ceil = 'Ceil';\nexport type CeilInputs = UnaryInputs;\n\nexport const ClipByValue = 'ClipByValue';\nexport type ClipByValueInputs = UnaryInputs;\nexport interface ClipByValueAttrs {\n clipValueMin: number;\n clipValueMax: number;\n}\n\nexport const Complex = 'Complex';\nexport type ComplexInputs = Pick;\n\nexport const ComplexAbs = 'ComplexAbs';\nexport type ComplexAbsInputs = UnaryInputs;\n\nexport const Concat = 'Concat';\nexport type ConcatInputs = TensorInfo[];\nexport interface ConcatAttrs {\n axis: number;\n}\n\nexport const Conv2D = 'Conv2D';\nexport type Conv2DInputs = Pick;\nexport interface Conv2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const Conv2DBackpropFilter = 'Conv2DBackpropFilter';\nexport type Conv2DBackpropFilterInputs = Pick;\nexport interface Conv2DBackpropFilterAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dimRoundingMode?: 'floor'|'round'|'ceil';\n filterShape: [number, number, number, number];\n}\n\nexport const Conv2DBackpropInput = 'Conv2DBackpropInput';\nexport type Conv2DBackpropInputInputs = Pick;\nexport interface Conv2DBackpropInputAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dimRoundingMode?: 'floor'|'round'|'ceil';\n inputShape: [number, number, number, number];\n}\n\nexport const Conv3D = 'Conv3D';\nexport type Conv3DInputs = Pick;\nexport interface Conv3DAttrs {\n strides: [number, number, number]|number;\n pad: 'valid'|'same';\n dataFormat: 'NDHWC'|'NCDHW';\n dilations: [number, number, number]|number;\n}\n\nexport const Conv3DBackpropFilterV2 = 'Conv3DBackpropFilterV2';\nexport type Conv3DBackpropFilterV2Inputs = Pick;\n\nexport interface Conv3DBackpropFilterV2Attrs {\n strides: [number, number, number]|number;\n pad: 'valid'|'same';\n filterShape: [number, number, number, number, number];\n}\n\nexport const Conv3DBackpropInputV2 = 'Conv3DBackpropInputV2';\nexport type Conv3DBackpropInputV2Inputs =\n Pick;\nexport interface Conv3DBackpropInputV2Attrs {\n strides: [number, number, number]|number;\n pad: 'valid'|'same';\n inputShape: [number, number, number, number, number];\n}\n\nexport const Cos = 'Cos';\nexport type CosInputs = UnaryInputs;\n\nexport const Cosh = 'Cosh';\nexport type CoshInputs = UnaryInputs;\n\nexport const Cumsum = 'Cumsum';\nexport type CumsumInputs = Pick;\nexport interface CumsumAttrs {\n axis: number;\n exclusive: boolean;\n reverse: boolean;\n}\n\nexport const CropAndResize = 'CropAndResize';\nexport type CropAndResizeInputs =\n Pick;\nexport interface CropAndResizeAttrs {\n cropSize: [number, number];\n method: 'bilinear'|'nearest';\n extrapolationValue: number;\n}\n\nexport const DenseBincount = 'DenseBincount';\nexport type DenseBincountInputs = Pick;\nexport interface DenseBincountAttrs {\n size: number;\n binaryOutput?: boolean;\n}\n\nexport const DepthToSpace = 'DepthToSpace';\nexport type DepthToSpaceInputs = Pick;\nexport interface DepthToSpaceAttrs {\n blockSize: number;\n dataFormat: 'NHWC'|'NCHW';\n}\n\nexport const DepthwiseConv2dNative = 'DepthwiseConv2dNative';\nexport type DepthwiseConv2dNativeInputs =\n Pick;\nexport interface DepthwiseConv2dNativeAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const DepthwiseConv2dNativeBackpropFilter =\n 'DepthwiseConv2dNativeBackpropFilter';\nexport type DepthwiseConv2dNativeBackpropFilterInputs =\n Pick;\nexport interface DepthwiseConv2dNativeBackpropFilterAttrs {\n strides: [number, number]|number;\n dilations: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n filterShape: [number, number, number, number];\n}\n\nexport const DepthwiseConv2dNativeBackpropInput =\n 'DepthwiseConv2dNativeBackpropInput';\nexport type DepthwiseConv2dNativeBackpropInputInputs =\n Pick;\nexport interface DepthwiseConv2dNativeBackpropInputAttrs {\n strides: [number, number]|number;\n dilations: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n inputShape: [number, number, number, number];\n}\n\nexport const Diag = 'Diag';\nexport type DiagInputs = Pick;\n\nexport const Dilation2D = 'Dilation2D';\nexport type Dilation2DInputs = Pick;\nexport interface Dilation2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n dilations: [number, number]|number;\n}\n\nexport const Dilation2DBackpropInput = 'Dilation2DBackpropInput';\nexport type Dilation2DBackpropInputInputs =\n Pick;\n\nexport const Dilation2DBackpropFilter = 'Dilation2DBackpropFilter';\nexport type Dilation2DBackpropFilterInputs =\n Pick;\n\nexport const RealDiv = 'RealDiv';\nexport type RealDivInputs = BinaryInputs;\n\nexport const Einsum = 'Einsum';\nexport type EinsumInputs = TensorInfo[];\nexport interface EinsumAttrs {\n equation: string;\n}\n\nexport const Elu = 'Elu';\nexport type EluInputs = Pick;\n\nexport const EluGrad = 'EluGrad';\nexport type EluGradInputs = Pick;\n\nexport const Erf = 'Erf';\nexport type ErfInputs = UnaryInputs;\n\nexport const Equal = 'Equal';\nexport type EqualInputs = BinaryInputs;\n\nexport const Exp = 'Exp';\nexport type ExpInputs = UnaryInputs;\n\nexport const ExpandDims = 'ExpandDims';\nexport type ExpandDimsInputs = Pick;\nexport interface ExpandDimsAttrs {\n dim: number;\n}\n\nexport const Expm1 = 'Expm1';\nexport type Expm1Inputs = UnaryInputs;\n\nexport const FFT = 'FFT';\nexport type FFTInputs = Pick;\n\nexport const Fill = 'Fill';\nexport interface FillAttrs {\n shape: number[];\n value: number|string;\n dtype: DataType;\n}\n\nexport const FlipLeftRight = 'FlipLeftRight';\nexport type FlipLeftRightInputs = Pick;\n\nexport const Floor = 'Floor';\nexport type FloorInputs = UnaryInputs;\n\nexport const FloorDiv = 'FloorDiv';\nexport type FloorDivInputs = BinaryInputs;\n\nexport const FusedBatchNorm = 'FusedBatchNorm';\nexport type FusedBatchNormInputs =\n Pick;\nexport interface FusedBatchNormAttrs {\n varianceEpsilon: number;\n}\n\nexport const GatherV2 = 'GatherV2';\nexport type GatherV2Inputs = Pick;\nexport interface GatherV2Attrs {\n axis: number;\n batchDims: number;\n}\n\nexport const GatherNd = 'GatherNd';\nexport type GatherNdInputs = Pick;\n\nexport const Greater = 'Greater';\nexport type GreaterInputs = BinaryInputs;\n\nexport const GreaterEqual = 'GreaterEqual';\nexport type GreaterEqualInputs = BinaryInputs;\n\nexport const Identity = 'Identity';\nexport type IdentityInputs = Pick;\n\nexport const IFFT = 'IFFT';\nexport type IFFTInputs = Pick;\n\nexport const Imag = 'Imag';\nexport type ImagInputs = Pick;\n\nexport const IsFinite = 'IsFinite';\nexport type IsFiniteInputs = UnaryInputs;\n\nexport const IsInf = 'IsInf';\nexport type IsInfInputs = UnaryInputs;\n\nexport const IsNan = 'IsNan';\nexport type IsNanInputs = UnaryInputs;\n\nexport const LeakyRelu = 'LeakyRelu';\nexport type LeakyReluInputs = Pick;\nexport interface LeakyReluAttrs {\n alpha: number;\n}\n\nexport const Less = 'Less';\nexport type LessInputs = BinaryInputs;\n\nexport const LessEqual = 'LessEqual';\nexport type LessEqualInputs = BinaryInputs;\n\nexport const LinSpace = 'LinSpace';\nexport interface LinSpaceAttrs {\n start: number;\n stop: number;\n num: number;\n}\nexport const Log = 'Log';\nexport type LogInputs = UnaryInputs;\n\nexport const Log1p = 'Log1p';\nexport type Log1pInputs = UnaryInputs;\n\nexport const LogicalAnd = 'LogicalAnd';\nexport type LogicalAndInputs = BinaryInputs;\n\nexport const LogicalNot = 'LogicalNot';\nexport type LogicalNotInputs = Pick;\n\nexport const LogicalOr = 'LogicalOr';\nexport type LogicalOrInputs = BinaryInputs;\n\nexport const LogSoftmax = 'LogSoftmax';\nexport type LogSoftmaxInputs = Pick;\nexport interface LogSoftmaxAttrs {\n axis: number;\n}\n\nexport const LRN = 'LRN';\nexport type LRNInputs = Pick;\nexport interface LRNAttrs {\n depthRadius: number;\n bias: number;\n alpha: number;\n beta: number;\n}\n\nexport const LRNGrad = 'LRNGrad';\nexport type LRNGradInputs = Pick;\nexport interface LRNGradAttrs {\n depthRadius: number;\n bias: number;\n alpha: number;\n beta: number;\n}\n\nexport const Max = 'Max';\nexport type MaxInputs = Pick;\nexport interface MaxAttrs {\n reductionIndices: number|number[];\n keepDims: boolean;\n}\n\nexport const Maximum = 'Maximum';\nexport type MaximumInputs = BinaryInputs;\n\nexport const MaxPool = 'MaxPool';\nexport type MaxPoolInputs = Pick;\nexport interface MaxPoolAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPoolGrad = 'MaxPoolGrad';\nexport type MaxPoolGradInputs = Pick;\nexport interface MaxPoolGradAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPool3D = 'MaxPool3D';\nexport type MaxPool3DInputs = Pick;\nexport interface MaxPool3DAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dataFormat: 'NDHWC'|'NCDHW';\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPool3DGrad = 'MaxPool3DGrad';\nexport type MaxPool3DGradInputs =\n Pick;\nexport interface MaxPool3DGradAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPoolWithArgmax = 'MaxPoolWithArgmax';\nexport type MaxPoolWithArgmaxInputs = Pick;\nexport interface MaxPoolWithArgmaxAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n includeBatchInIndex: boolean;\n}\n\nexport const Mean = 'Mean';\nexport type MeanInputs = Pick;\nexport interface MeanAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Min = 'Min';\nexport type MinInputs = Pick;\nexport interface MinAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Minimum = 'Minimum';\nexport type MinimumInputs = BinaryInputs;\n\nexport const MirrorPad = 'MirrorPad';\nexport type MirrorPadInputs = Pick;\nexport interface MirrorPadAttrs {\n paddings: Array<[number, number]>;\n mode: 'reflect'|'symmetric';\n}\n\nexport const Mod = 'Mod';\nexport type ModInputs = BinaryInputs;\n\nexport const Multinomial = 'Multinomial';\nexport type MultinomialInputs = Pick;\nexport interface MultinomialAttrs {\n numSamples: number;\n seed: number;\n normalized: boolean;\n}\n\nexport const Multiply = 'Multiply';\nexport type MultiplyInputs = BinaryInputs;\n\nexport const Neg = 'Neg';\nexport type NegInputs = UnaryInputs;\n\nexport const NotEqual = 'NotEqual';\nexport type NotEqualInputs = BinaryInputs;\n\nexport const NonMaxSuppressionV3 = 'NonMaxSuppressionV3';\nexport type NonMaxSuppressionV3Inputs =\n Pick;\nexport interface NonMaxSuppressionV3Attrs {\n maxOutputSize: number;\n iouThreshold: number;\n scoreThreshold: number;\n}\n\nexport const NonMaxSuppressionV4 = 'NonMaxSuppressionV4';\nexport type NonMaxSuppressionV4Inputs =\n Pick;\nexport interface NonMaxSuppressionV4Attrs {\n maxOutputSize: number;\n iouThreshold: number;\n scoreThreshold: number;\n padToMaxOutputSize: boolean;\n}\n\nexport const NonMaxSuppressionV5 = 'NonMaxSuppressionV5';\nexport type NonMaxSuppressionV5Inputs =\n Pick;\nexport interface NonMaxSuppressionV5Attrs {\n maxOutputSize: number;\n iouThreshold: number;\n scoreThreshold: number;\n softNmsSigma: number;\n}\n\nexport const OnesLike = 'OnesLike';\nexport type OnesLikeInputs = UnaryInputs;\n\nexport const OneHot = 'OneHot';\nexport type OneHotInputs = Pick;\nexport interface OneHotAttrs {\n depth: number;\n onValue: number;\n offValue: number;\n}\n\nexport const Pack = 'Pack';\nexport type PackInputs = TensorInfo[];\nexport interface PackAttrs {\n axis: number;\n}\n\nexport const PadV2 = 'PadV2';\nexport type PadV2Inputs = Pick;\nexport interface PadV2Attrs {\n paddings: Array<[number, number]>;\n constantValue: number;\n}\n\nexport const Pool = 'Pool';\nexport type PoolInputs = Pick;\n\nexport const Pow = 'Pow';\nexport type PowInputs = BinaryInputs;\n\nexport const Prelu = 'Prelu';\nexport type PreluInputs = Pick;\n\nexport const Prod = 'Prod';\nexport type ProdInputs = Pick;\nexport interface ProdAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Range = 'Range';\nexport interface RangeAttrs {\n start: number;\n stop: number;\n step: number;\n dtype: 'float32'|'int32';\n}\n\nexport const Real = 'Real';\nexport type RealInputs = Pick;\n\nexport const Reciprocal = 'Reciprocal';\nexport type ReciprocalInputs = UnaryInputs;\n\nexport const Relu = 'Relu';\nexport type ReluInputs = Pick;\n\nexport const Reshape = 'Reshape';\nexport type ReshapeInputs = Pick;\nexport interface ReshapeAttrs {\n shape: number[];\n}\n\nexport const ResizeNearestNeighbor = 'ResizeNearestNeighbor';\nexport type ResizeNearestNeighborInputs = Pick;\nexport interface ResizeNearestNeighborAttrs {\n alignCorners: boolean;\n halfPixelCenters: boolean;\n size: [number, number];\n}\n\nexport const ResizeNearestNeighborGrad = 'ResizeNearestNeighborGrad';\nexport type ResizeNearestNeighborGradInputs =\n Pick;\nexport type ResizeNearestNeighborGradAttrs = ResizeNearestNeighborAttrs;\n\nexport const ResizeBilinear = 'ResizeBilinear';\nexport type ResizeBilinearInputs = Pick;\nexport interface ResizeBilinearAttrs {\n alignCorners: boolean;\n halfPixelCenters: boolean;\n size: [number, number];\n}\n\nexport const ResizeBilinearGrad = 'ResizeBilinearGrad';\nexport type ResizeBilinearGradInputs = Pick;\nexport type ResizeBilinearGradAttrs = ResizeBilinearAttrs;\n\nexport const Relu6 = 'Relu6';\nexport type Relu6Inputs = Pick;\n\nexport const Reverse = 'Reverse';\nexport type ReverseInputs = Pick;\nexport interface ReverseAttrs {\n dims: number|number[];\n}\n\nexport const Round = 'Round';\nexport type RoundInputs = UnaryInputs;\n\nexport const Rsqrt = 'Rsqrt';\nexport type RsqrtInputs = UnaryInputs;\n\nexport const ScatterNd = 'ScatterNd';\nexport type ScatterNdInputs = Pick;\nexport interface ScatterNdAttrs {\n shape: number[];\n}\n\nexport const Select = 'Select';\nexport type SelectInputs = Pick;\n\nexport const Selu = 'Selu';\nexport type SeluInputs = Pick;\n\nexport const Slice = 'Slice';\nexport type SliceInputs = Pick;\nexport interface SliceAttrs {\n begin: number|number[];\n size: number|number[];\n}\nexport const Sin = 'Sin';\nexport type SinInputs = UnaryInputs;\n\nexport const Sinh = 'Sinh';\nexport type SinhInputs = UnaryInputs;\n\nexport const Sign = 'Sign';\nexport type SignInputs = UnaryInputs;\n\nexport const Sigmoid = 'Sigmoid';\nexport type SigmoidInputs = UnaryInputs;\n\nexport const Softplus = 'Softplus';\nexport type SoftplusInputs = UnaryInputs;\n\nexport const Sqrt = 'Sqrt';\nexport type SqrtInputs = UnaryInputs;\n\nexport const Sum = 'Sum';\nexport type SumInputs = Pick;\nexport interface SumAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const SpaceToBatchND = 'SpaceToBatchND';\nexport type SpaceToBatchNDInputs = Pick;\nexport interface SpaceToBatchNDAttrs {\n blockShape: number[];\n paddings: number[][];\n}\n\nexport const SplitV = 'SplitV';\nexport type SplitVInputs = Pick;\nexport interface SplitVAttrs {\n numOrSizeSplits: number[]|number;\n axis: number;\n}\n\nexport const Softmax = 'Softmax';\nexport type SoftmaxInputs = Pick;\nexport interface SoftmaxAttrs {\n dim: number;\n}\n\nexport const SparseFillEmptyRows = 'SparseFillEmptyRows';\nexport type SparseFillEmptyRowsInputs =\n Pick;\n\nexport const SparseReshape = 'SparseReshape';\nexport type SparseReshapeInputs =\n Pick;\n\nexport const SparseSegmentMean = 'SparseSegmentMean';\nexport type SparseSegmentMeanInputs =\n Pick;\n\nexport const SparseSegmentSum = 'SparseSegmentSum';\nexport type SparseSegmentSumInputs =\n Pick;\n\nexport const SparseToDense = 'SparseToDense';\nexport type SparseToDenseInputs =\n Pick;\nexport interface SparseToDenseAttrs {\n outputShape: number[];\n}\n\nexport const SquaredDifference = 'SquaredDifference';\nexport type SquaredDifferenceInputs = BinaryInputs;\n\nexport const Square = 'Square';\nexport type SquareInputs = Pick;\n\nexport const StridedSlice = 'StridedSlice';\nexport type StridedSliceInputs = Pick;\nexport interface StridedSliceAttrs {\n begin: number[];\n end: number[];\n strides: number[];\n beginMask: number;\n endMask: number;\n ellipsisMask: number;\n newAxisMask: number;\n shrinkAxisMask: number;\n}\n\nexport const StringNGrams = 'StringNGrams';\nexport type StringNGramsInputs = Pick;\nexport interface StringNGramsAttrs {\n separator: string;\n nGramWidths: number[];\n leftPad: string;\n rightPad: string;\n padWidth: number;\n preserveShortSequences: boolean;\n}\n\nexport const StringSplit = 'StringSplit';\nexport type StringSplitInputs = Pick;\nexport interface StringSplitAttrs {\n skipEmpty: boolean;\n}\n\nexport const StringToHashBucketFast = 'StringToHashBucketFast';\nexport type StringToHashBucketFastInputs = Pick;\nexport interface StringToHashBucketFastAttrs {\n numBuckets: number;\n}\n\nexport const Sub = 'Sub';\nexport type SubInputs = BinaryInputs;\n\nexport const Tan = 'Tan';\nexport type TanInputs = UnaryInputs;\n\nexport const Tanh = 'Tanh';\nexport type TanhInputs = UnaryInputs;\n\nexport const Tile = 'Tile';\nexport type TileInputs = Pick;\nexport interface TileAttrs {\n reps: number[];\n}\n\nexport const TopK = 'TopK';\nexport type TopKInputs = Pick;\nexport interface TopKAttrs {\n k: number;\n sorted: boolean;\n}\n\nexport const Transform = 'Transform';\nexport type TransformInputs = Pick;\nexport interface TransformAttrs {\n interpolation: 'nearest'|'bilinear';\n fillMode: 'constant'|'reflect'|'wrap'|'nearest';\n fillValue: number;\n outputShape?: [number, number];\n}\n\nexport const Transpose = 'Transpose';\nexport type TransposeInputs = Pick;\nexport interface TransposeAttrs {\n perm: number[];\n}\n\nexport const Unique = 'Unique';\nexport type UniqueInputs = Pick;\nexport interface UniqueAttrs {\n axis: number;\n}\n\nexport type UnaryInputs = Pick;\n\nexport const Unpack = 'Unpack';\nexport type UnpackInputs = Pick;\nexport interface UnpackAttrs {\n axis: number;\n}\n\nexport const UnsortedSegmentSum = 'UnsortedSegmentSum';\nexport type UnsortedSegmentSumInputs =\n Pick;\nexport interface UnsortedSegmentSumAttrs {\n numSegments: number;\n}\n\nexport const ZerosLike = 'ZerosLike';\nexport type ZerosLikeInputs = UnaryInputs;\n\n/**\n * TensorFlow.js-only kernels\n */\nexport const Step = 'Step';\nexport type StepInputs = UnaryInputs;\nexport interface StepAttrs {\n alpha: number;\n}\n\nexport const FromPixels = 'FromPixels';\nexport interface FromPixelsInputs {\n pixels: PixelData|ImageData|HTMLImageElement|HTMLCanvasElement|\n HTMLVideoElement|ImageBitmap;\n}\nexport interface FromPixelsAttrs {\n numChannels: number;\n}\n\nexport const RotateWithOffset = 'RotateWithOffset';\nexport type RotateWithOffsetInputs = Pick;\nexport interface RotateWithOffsetAttrs {\n radians: number;\n fillValue: number|[number, number, number];\n center: number|[number, number];\n}\n\nexport const _FusedMatMul = '_FusedMatMul';\n// tslint:disable-next-line: class-name\nexport interface _FusedMatMulInputs extends NamedTensorInfoMap {\n a: TensorInfo;\n b: TensorInfo;\n bias?: TensorInfo;\n preluActivationWeights?: TensorInfo;\n}\n// tslint:disable-next-line: class-name\nexport interface _FusedMatMulAttrs {\n transposeA: boolean;\n transposeB: boolean;\n activation: Activation;\n leakyreluAlpha?: number;\n}\n\nexport const FusedConv2D = 'FusedConv2D';\nexport interface FusedConv2DInputs extends NamedTensorInfoMap {\n x: TensorInfo;\n filter: TensorInfo;\n bias?: TensorInfo;\n preluActivationWeights?: TensorInfo;\n}\nexport interface FusedConv2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode: 'floor'|'round'|'ceil';\n activation: Activation;\n leakyreluAlpha?: number;\n}\n\nexport const FusedDepthwiseConv2D = 'FusedDepthwiseConv2D';\nexport interface FusedDepthwiseConv2DInputs extends NamedTensorInfoMap {\n x: TensorInfo;\n filter: TensorInfo;\n bias?: TensorInfo;\n preluActivationWeights?: TensorInfo;\n}\nexport interface FusedDepthwiseConv2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode: 'floor'|'round'|'ceil';\n activation: Activation;\n leakyreluAlpha?: number;\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {env} from './environment';\n\nimport {getGlobal} from './global_util';\nimport {NamedGradientMap} from './tape';\nimport {Tensor} from './tensor';\nimport {DataType, RecursiveArray} from './types';\n\nconst kernelRegistry =\n getGlobal('kernelRegistry', () => new Map());\nconst gradRegistry =\n getGlobal('gradRegistry', () => new Map());\n\nexport type DataId = object;\n\ntype AttributeValue =\n number|number[]|boolean|boolean[]|string|string[]|NamedAttrMap;\n\n/** These are extra non-tensor/primitive params passed to kernel functions. */\nexport type Attribute = AttributeValue|RecursiveArray;\n\n/** Specifies the code to run when executing a kernel. */\nexport type KernelFunc = (params: {\n inputs: NamedTensorInfoMap,\n backend: {},\n attrs?: NamedAttrMap,\n}) => TensorInfo|TensorInfo[];\n\n/** The function to run when computing a gradient during backprop. */\nexport type GradFunc =\n (dy: Tensor|Tensor[], saved: Tensor[], attrs: NamedAttrMap) =>\n NamedGradientMap;\n\n/** Function that gets called after the backend initializes. */\nexport type KernelSetupFunc = (backend: {}) => void;\n/** Function that gets called right before the backend is disposed. */\nexport type KernelDisposeFunc = KernelSetupFunc;\n\n/** Config object for registering a kernel in the global registry. */\nexport interface KernelConfig {\n kernelName: string;\n backendName: string;\n kernelFunc: KernelFunc;\n setupFunc?: KernelSetupFunc;\n disposeFunc?: KernelDisposeFunc;\n}\n\n/** Config object for registering a gradient in the global registry. */\nexport interface GradConfig {\n kernelName: string;\n inputsToSave?: string[];\n // When saveAllInputs is true, all inputs will be saved. Only use this flag\n // if inputs is an array of Tensors.\n saveAllInputs?: boolean;\n outputsToSave?: boolean[];\n gradFunc: GradFunc;\n}\n\n/** Holds metadata for a given tensor. */\nexport interface TensorInfo {\n dataId: DataId;\n shape: number[];\n dtype: DataType;\n}\n\nexport interface NamedTensorInfoMap {\n [name: string]: TensorInfo;\n}\n\nexport interface NamedAttrMap {\n [name: string]: Attribute;\n}\n\n/**\n * Returns the kernel function (code) associated with the provided names.\n *\n * @param kernelName The official name of the kernel.\n * @param backendName The official name of the backend.\n */\nexport function getKernel(\n kernelName: string, backendName: string): KernelConfig {\n const key = makeKey(kernelName, backendName);\n return kernelRegistry.get(key);\n}\n\n/**\n * Returns the registered gradient info associated with the provided kernel.\n * @param kernelName The official TF kernel name.\n */\nexport function getGradient(kernelName: string): GradConfig {\n return gradRegistry.get(kernelName);\n}\n\nexport function getKernelsForBackend(backendName: string): KernelConfig[] {\n const it = kernelRegistry.entries();\n const result: KernelConfig[] = [];\n\n while (true) {\n const {done, value} = it.next();\n if (done) {\n break;\n }\n const [key, config] = value;\n const [backend, ] = key.split('_');\n if (backend === backendName) {\n result.push(config);\n }\n }\n return result;\n}\n\n/**\n * Registers the function (forward pass) for the kernel in a global registry.\n *\n * @param config A config object with the following properties:\n * - `kernelName` The official name of the kernel.\n * - `backendName` The official name of the backend.\n * - `kernelFunc` The function to run during the forward pass of the kernel.\n * - `setupFunc` Optional. Gets called once, after the backend initializes.\n * - `disposeFunc` Optional. Gets called once, right before the backend is\n * disposed.\n */\nexport function registerKernel(config: KernelConfig) {\n const {kernelName, backendName} = config;\n const key = makeKey(kernelName, backendName);\n if (kernelRegistry.has(key)) {\n console.warn(\n `The kernel '${kernelName}' for backend ` +\n `'${backendName}' is already registered`);\n }\n kernelRegistry.set(key, config);\n}\n\n/**\n * Registers a gradient function for a given kernel in the global registry,\n * to be used during the back-propagation of that kernel.\n *\n * @param config An object with the following properties:\n * - `kernelName` The name of the kernel that the gradient function is for.\n * - `gradFunc` The function to run during back-propagation.\n */\nexport function registerGradient(config: GradConfig) {\n const {kernelName} = config;\n\n if (gradRegistry.has(kernelName)) {\n // TODO (yassogba) after 3.0 assess whether we need to keep this gated\n // to debug mode.\n if (env().getBool('DEBUG')) {\n console.warn(`Overriding the gradient for '${kernelName}'`);\n }\n }\n gradRegistry.set(kernelName, config);\n}\n\n/**\n * Removes the kernel function from the registry.\n *\n * @param kernelName The official name of the kernel.\n * @param backendName The official name of the backend.\n *\n */\nexport function unregisterKernel(\n kernelName: string, backendName: string): void {\n const key = makeKey(kernelName, backendName);\n if (!kernelRegistry.has(key)) {\n throw new Error(\n `The kernel '${kernelName}' for backend ` +\n `'${backendName}' is not registered`);\n }\n kernelRegistry.delete(key);\n}\n\n/** Removes the registered gradient from the global registry. */\nexport function unregisterGradient(kernelName: string): void {\n if (!gradRegistry.has(kernelName)) {\n throw new Error(\n `The gradient '${kernelName}' for backend is not registered`);\n }\n gradRegistry.delete(kernelName);\n}\n\n/**\n * Finds kernels that have already been registered to a backend and re-registers\n * them for a new backend. Useful for registering custom backends.\n * @param registeredBackendName Already registered backend.\n * @param newBackendName New backend.\n */\nexport function copyRegisteredKernels(\n registeredBackendName: string, newBackendName: string): void {\n const kernels = getKernelsForBackend(registeredBackendName);\n kernels.forEach(kernelConfig => {\n const newKernelConfig =\n Object.assign({}, kernelConfig, {backendName: newBackendName});\n registerKernel(newKernelConfig);\n });\n}\n\nfunction makeKey(kernelName: string, backendName: string) {\n return `${backendName}_${kernelName}`;\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {env} from './environment';\nimport {BackendValues, DataType, TensorLike, TypedArray} from './types';\nimport * as base from './util_base';\nexport * from './util_base';\nexport * from './hash_util';\n\n/**\n * Create typed array for scalar value. Used for storing in `DataStorage`.\n */\nexport function createScalarValue(\n value: DataType, dtype: DataType): BackendValues {\n if (dtype === 'string') {\n return encodeString(value);\n }\n\n return toTypedArray([value], dtype);\n}\n\nfunction noConversionNeeded(a: TensorLike, dtype: DataType): boolean {\n return (a instanceof Float32Array && dtype === 'float32') ||\n (a instanceof Int32Array && dtype === 'int32') ||\n (a instanceof Uint8Array && dtype === 'bool');\n}\n\nexport function toTypedArray(a: TensorLike, dtype: DataType): TypedArray {\n if (dtype === 'string') {\n throw new Error('Cannot convert a string[] to a TypedArray');\n }\n if (Array.isArray(a)) {\n a = base.flatten(a);\n }\n\n if (env().getBool('DEBUG')) {\n base.checkConversionForErrors(a as number[], dtype);\n }\n if (noConversionNeeded(a, dtype)) {\n return a as TypedArray;\n }\n if (dtype == null || dtype === 'float32' || dtype === 'complex64') {\n return new Float32Array(a as number[]);\n } else if (dtype === 'int32') {\n return new Int32Array(a as number[]);\n } else if (dtype === 'bool') {\n const bool = new Uint8Array((a as number[]).length);\n for (let i = 0; i < bool.length; ++i) {\n if (Math.round((a as number[])[i]) !== 0) {\n bool[i] = 1;\n }\n }\n return bool;\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\n\n/**\n * Returns the current high-resolution time in milliseconds relative to an\n * arbitrary time in the past. It works across different platforms (node.js,\n * browsers).\n *\n * ```js\n * console.log(tf.util.now());\n * ```\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function now(): number {\n return env().platform.now();\n}\n\n/**\n * Returns a platform-specific implementation of\n * [`fetch`](https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API).\n *\n * If `fetch` is defined on the global object (`window`, `process`, etc.),\n * `tf.util.fetch` returns that function.\n *\n * If not, `tf.util.fetch` returns a platform-specific solution.\n *\n * ```js\n * const resource = await tf.util.fetch('https://unpkg.com/@tensorflow/tfjs');\n * // handle response\n * ```\n *\n * @doc {heading: 'Util'}\n */\nexport function fetch(\n path: string, requestInits?: RequestInit): Promise {\n return env().platform.fetch(path, requestInits);\n}\n\n/**\n * Encodes the provided string into bytes using the provided encoding scheme.\n *\n * @param s The string to encode.\n * @param encoding The encoding scheme. Defaults to utf-8.\n *\n * @doc {heading: 'Util'}\n */\nexport function encodeString(s: string, encoding = 'utf-8'): Uint8Array {\n encoding = encoding || 'utf-8';\n return env().platform.encode(s, encoding);\n}\n\n/**\n * Decodes the provided bytes into a string using the provided encoding scheme.\n * @param bytes The bytes to decode.\n *\n * @param encoding The encoding scheme. Defaults to utf-8.\n *\n * @doc {heading: 'Util'}\n */\nexport function decodeString(bytes: Uint8Array, encoding = 'utf-8'): string {\n encoding = encoding || 'utf-8';\n return env().platform.decode(bytes, encoding);\n}\n", "/**\n * @license\n * Copyright 2021 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n// Workaround for allowing cjs module to be included in bundle created by\n// rollup.\nimport * as LongExports from 'long';\n// tslint:disable-next-line\nconst Long: LongExports.LongConstructor =\n // tslint:disable-next-line\n (LongExports as any).default || LongExports;\n\nexport function hexToLong(hex: string): Long {\n return Long.fromString(hex, true, 16);\n}\n\n// Some primes between 2^63 and 2^64 for various uses.\n// Hex 0xc3a5c85c97cb3127\nconst k0: Long = hexToLong('c3a5c85c97cb3127');\n// Hex 0xb492b66fbe98f273\nconst k1: Long = hexToLong('b492b66fbe98f273');\n// Hex 0x9ae16a3b2f90404f\nconst k2: Long = hexToLong('9ae16a3b2f90404f');\n\nfunction shiftMix(val: Long): Long {\n return val.xor(val.shru(47));\n}\n\nfunction fetch(s: Uint8Array, offset: number, numBytes: number): Long {\n const bytes = s.slice(offset, offset + numBytes);\n return Long.fromBytes(Array.from(bytes), true, true);\n}\n\nfunction fetch64(s: Uint8Array, offset: number): Long {\n return fetch(s, offset, 8);\n}\n\nfunction fetch32(s: Uint8Array, offset: number): Long {\n return fetch(s, offset, 4);\n}\n\nfunction rotate64(val: Long, shift: number): Long {\n // Avoid shifting by 64: doing so yields an undefined result.\n return shift === 0 ? val : val.shru(shift).or(val.shl(64 - shift));\n}\n\nfunction hashLen16(u: Long, v: Long, mul = hexToLong('9ddfea08eb382d69')) {\n // Murmur-inspired hashing.\n let a = u.xor(v).mul(mul);\n a = a.xor(a.shru(47));\n let b = v.xor(a).mul(mul);\n b = b.xor(b.shru(47));\n b = b.mul(mul);\n return b;\n}\n\n// Return a 16-byte hash for 48 bytes. Quick and dirty.\n// Callers do best to use \"random-looking\" values for a and b.\nfunction weakHashLen32WithSeeds(\n w: Long, x: Long, y: Long, z: Long, a: Long, b: Long) {\n a = a.add(w);\n b = rotate64(b.add(a).add(z), 21);\n const c = a;\n a = a.add(x);\n a = a.add(y);\n b = b.add(rotate64(a, 44));\n return [a.add(z), b.add(c)];\n}\n\nfunction weakHashLen32WithSeedsStr(\n s: Uint8Array, offset: number, a: Long, b: Long) {\n return weakHashLen32WithSeeds(\n fetch64(s, offset), fetch64(s, offset + 8), fetch64(s, offset + 16),\n fetch64(s, offset + 24), a, b);\n}\n\nfunction hashLen0to16(s: Uint8Array, len = s.length): Long {\n if (len >= 8) {\n const mul = k2.add(len * 2);\n const a = fetch64(s, 0).add(k2);\n const b = fetch64(s, len - 8);\n const c = rotate64(b, 37).mul(mul).add(a);\n const d = rotate64(a, 25).add(b).mul(mul);\n return hashLen16(c, d, mul);\n }\n if (len >= 4) {\n const mul = k2.add(len * 2);\n const a = fetch32(s, 0);\n return hashLen16(a.shl(3).add(len), fetch32(s, len - 4), mul);\n }\n if (len > 0) {\n const a = s[0];\n const b = s[len >> 1];\n const c = s[len - 1];\n const y = a + (b << 8);\n const z = len + (c << 2);\n return shiftMix(k2.mul(y).xor(k0.mul(z))).mul(k2);\n }\n return k2;\n}\n\nfunction hashLen17to32(s: Uint8Array, len = s.length): Long {\n const mul = k2.add(len * 2);\n const a = fetch64(s, 0).mul(k1);\n const b = fetch64(s, 8);\n const c = fetch64(s, len - 8).mul(mul);\n const d = fetch64(s, len - 16).mul(k2);\n return hashLen16(\n rotate64(a.add(b), 43).add(rotate64(c, 30)).add(d),\n a.add(rotate64(b.add(k2), 18)).add(c), mul);\n}\n\nfunction hashLen33to64(s: Uint8Array, len = s.length): Long {\n const mul = k2.add(len * 2);\n const a = fetch64(s, 0).mul(k2);\n const b = fetch64(s, 8);\n const c = fetch64(s, len - 8).mul(mul);\n const d = fetch64(s, len - 16).mul(k2);\n const y = rotate64(a.add(b), 43).add(rotate64(c, 30)).add(d);\n const z = hashLen16(y, a.add(rotate64(b.add(k2), 18)).add(c), mul);\n const e = fetch64(s, 16).mul(mul);\n const f = fetch64(s, 24);\n const g = y.add(fetch64(s, len - 32)).mul(mul);\n const h = z.add(fetch64(s, len - 24)).mul(mul);\n return hashLen16(\n rotate64(e.add(f), 43).add(rotate64(g, 30)).add(h),\n e.add(rotate64(f.add(a), 18)).add(g), mul);\n}\n\nexport function fingerPrint64(s: Uint8Array, len = s.length): Long {\n const seed: Long = Long.fromNumber(81, true);\n if (len <= 32) {\n if (len <= 16) {\n return hashLen0to16(s, len);\n } else {\n return hashLen17to32(s, len);\n }\n } else if (len <= 64) {\n return hashLen33to64(s, len);\n }\n\n // For strings over 64 bytes we loop. Internal state consists of\n // 56 bytes: v, w, x, y, and z.\n let x = seed;\n let y = seed.mul(k1).add(113);\n\n let z = shiftMix(y.mul(k2).add(113)).mul(k2);\n let v = [Long.UZERO, Long.UZERO];\n let w = [Long.UZERO, Long.UZERO];\n x = x.mul(k2).add(fetch64(s, 0));\n\n let offset = 0;\n // Set end so that after the loop we have 1 to 64 bytes left to process.\n const end = ((len - 1) >> 6) * 64;\n const last64 = end + ((len - 1) & 63) - 63;\n\n do {\n x = rotate64(x.add(y).add(v[0]).add(fetch64(s, offset + 8)), 37).mul(k1);\n y = rotate64(y.add(v[1]).add(fetch64(s, offset + 48)), 42).mul(k1);\n x = x.xor(w[1]);\n y = y.add(v[0]).add(fetch64(s, offset + 40));\n z = rotate64(z.add(w[0]), 33).mul(k1);\n v = weakHashLen32WithSeedsStr(s, offset, v[1].mul(k1), x.add(w[0]));\n w = weakHashLen32WithSeedsStr(\n s, offset + 32, z.add(w[1]), y.add(fetch64(s, offset + 16)));\n\n [z, x] = [x, z];\n offset += 64;\n } while (offset !== end);\n const mul = k1.add(z.and(0xff).shl(1));\n // Point to the last 64 bytes of input.\n offset = last64;\n\n w[0] = w[0].add((len - 1) & 63);\n v[0] = v[0].add(w[0]);\n w[0] = w[0].add(v[0]);\n\n x = rotate64(x.add(y).add(v[0]).add(fetch64(s, offset + 8)), 37).mul(mul);\n y = rotate64(y.add(v[1]).add(fetch64(s, offset + 48)), 42).mul(mul);\n x = x.xor(w[1].mul(9));\n y = y.add(v[0].mul(9).add(fetch64(s, offset + 40)));\n z = rotate64(z.add(w[0]), 33).mul(mul);\n v = weakHashLen32WithSeedsStr(s, offset, v[1].mul(mul), x.add(w[0]));\n w = weakHashLen32WithSeedsStr(\n s, offset + 32, z.add(w[1]), y.add(fetch64(s, offset + 16)));\n\n [z, x] = [x, z];\n\n return hashLen16(\n hashLen16(v[0], w[0], mul).add(shiftMix(y).mul(k0)).add(z),\n hashLen16(v[1], w[1], mul).add(x), mul);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {BackendTimer, BackendTimingInfo} from './backends/backend';\nimport {env} from './environment';\nimport {Tensor} from './tensor';\nimport {NamedTensorMap} from './tensor_types';\nimport {DataType, DataTypeMap, TypedArray} from './types';\nimport * as util from './util';\n\nexport type KernelProfile = {\n kernelName: string,\n outputs: Tensor[],\n inputs: NamedTensorMap,\n timeMs: Promise,\n extraInfo: Promise\n};\n\nexport class Profiler {\n constructor(private backendTimer: BackendTimer, private logger?: Logger) {\n if (logger == null) {\n this.logger = new Logger();\n }\n }\n\n profileKernel(kernelName: string, inputs: NamedTensorMap, f: () => Tensor[]):\n KernelProfile {\n let outputs: Tensor[];\n const holdResultWrapperFn = () => {\n outputs = f();\n };\n let timer: Promise;\n const start = util.now();\n if (this.backendTimer.timerAvailable()) {\n timer = this.backendTimer.time(holdResultWrapperFn);\n } else {\n holdResultWrapperFn();\n for (const output of outputs) {\n output.dataSync();\n }\n timer = Promise.resolve({kernelMs: util.now() - start});\n }\n if (env().getBool('CHECK_COMPUTATION_FOR_ERRORS')) {\n for (let i = 0; i < outputs.length; i++) {\n const output = outputs[i];\n // Dangling promise here because we don't want to propagate up\n // asynchronicity.\n output.data().then(tensorVals => {\n checkComputationForErrors(tensorVals, output.dtype, kernelName);\n });\n }\n }\n\n const kernelProfile = {\n kernelName,\n outputs,\n inputs,\n timeMs: timer.then(timing => timing.kernelMs),\n extraInfo: timer.then(\n timing => timing.getExtraProfileInfo != null ?\n timing.getExtraProfileInfo() :\n '')\n };\n return kernelProfile;\n }\n\n logKernelProfile(kernelProfile: KernelProfile): void {\n const {kernelName, outputs, timeMs, inputs, extraInfo} = kernelProfile;\n\n outputs.forEach(result => {\n Promise.all([result.data(), timeMs, extraInfo]).then(valueContainer => {\n this.logger.logKernelProfile(\n kernelName, result, valueContainer[0], valueContainer[1], inputs,\n valueContainer[2]);\n });\n });\n }\n}\n\nexport function checkComputationForErrors(\n vals: DataTypeMap[D], dtype: D, kernelName: string): boolean {\n if (dtype !== 'float32') {\n // Only floating point computations will generate NaN values\n return false;\n }\n for (let i = 0; i < vals.length; i++) {\n const num = vals[i] as number;\n if (isNaN(num) || !isFinite(num)) {\n // Throwing custom exception so behavior is testable.\n console.warn(`Found ${num} in the result of '${kernelName}'`);\n return true;\n }\n }\n return false;\n}\n\nexport class Logger {\n logKernelProfile(\n name: string, result: Tensor, vals: TypedArray,\n timeMs: number|{error: string}, inputs: NamedTensorMap,\n extraInfo?: string) {\n const time = typeof timeMs === 'number' ? util.rightPad(`${timeMs}ms`, 9) :\n timeMs['error'];\n const paddedName = util.rightPad(name, 25);\n const rank = result.rank;\n const size = result.size;\n const shape = util.rightPad(result.shape.toString(), 14);\n let inputShapesDescription = '';\n\n for (const name in inputs) {\n const input = inputs[name];\n if (input != null) {\n // The input might be a non-tensor (e.g HTMLImageElement), in which case\n // we claim the output shape as input shape.\n const inputShape = input.shape || result.shape;\n const inputRank = inputShape.length;\n inputShapesDescription +=\n `${name}: ${inputRank}D ${inputRank > 0 ? inputShape : ''} `;\n }\n }\n\n console.log(\n `%c${paddedName}\\t%c${time}\\t%c${rank}D ${shape}\\t%c${size}\\t%c${\n inputShapesDescription}\\t%c${extraInfo}`,\n 'font-weight:bold', 'color:red', 'color:blue', 'color: orange',\n 'color: green', 'color: steelblue');\n }\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from './tensor';\nimport {NamedTensorMap} from './tensor_types';\nimport * as util from './util';\n\nexport interface TapeNode {\n id: number;\n kernelName: string;\n outputs: Tensor[];\n inputs: NamedTensorMap;\n // Optional params, defined only for ops with gradient impl.\n gradient?: (dys: Tensor[]) => NamedGradientMap;\n saved?: Tensor[];\n}\n\nexport type NamedGradientMap = {\n [inputName: string]: () => Tensor;\n};\n\n/**\n * Computes a list of TapeNodes that connect x to y, filtering everything else\n * out and preserving the order of the original tape elements.\n *\n * @param tape The tape elements to filter.\n * @param xs The input Tensors.\n * @param y The output Tensor.\n */\nexport function getFilteredNodesXToY(\n tape: TapeNode[], xs: Tensor[], y: Tensor): TapeNode[] {\n // Forward pass to compute all the nodes and Tensors that are transitively a\n // function of x.\n const tensorsFromX: {[tensorId: number]: boolean} = {};\n const nodesFromX: {[nodeId: number]: boolean} = {};\n for (let i = 0; i < xs.length; i++) {\n tensorsFromX[xs[i].id] = true;\n }\n\n for (let i = 0; i < tape.length; i++) {\n const node = tape[i];\n const nodeInputs = node.inputs;\n for (const inputName in nodeInputs) {\n const input = nodeInputs[inputName];\n\n let anyInputFromX = false;\n for (let j = 0; j < xs.length; j++) {\n if (tensorsFromX[input.id]) {\n node.outputs.forEach(output => tensorsFromX[output.id] = true);\n anyInputFromX = true;\n nodesFromX[node.id] = true;\n break;\n }\n }\n\n if (anyInputFromX) {\n break;\n }\n }\n }\n\n // Backward pass to find all of the nodes and Tensors that lead to y.\n const tensorsLeadToY: {[tensorId: number]: boolean} = {};\n tensorsLeadToY[y.id] = true;\n const nodesToY: {[nodeId: number]: boolean} = {};\n\n for (let i = tape.length - 1; i >= 0; i--) {\n const node = tape[i];\n const nodeInputs = node.inputs;\n\n // If any of the outputs lead to y, mark all of the inputs as leading to y.\n for (let j = 0; j < node.outputs.length; j++) {\n if (tensorsLeadToY[node.outputs[j].id]) {\n for (const inputName in nodeInputs) {\n tensorsLeadToY[nodeInputs[inputName].id] = true;\n nodesToY[node.id] = true;\n }\n break;\n }\n }\n }\n\n // Return the paths that come from x and lead to y.\n const filteredTape: TapeNode[] = [];\n for (let i = 0; i < tape.length; i++) {\n const node = tape[i];\n\n if (nodesFromX[node.id] && nodesToY[node.id]) {\n // Prune the inputs from the node that aren't a function of x.\n const prunedInputs: {[inputName: string]: Tensor} = {};\n for (const inputName in node.inputs) {\n const nodeInput = node.inputs[inputName];\n if (tensorsFromX[nodeInput.id]) {\n prunedInputs[inputName] = nodeInput;\n }\n }\n\n // Copy the node and overwrite inputsAndArgs to the pruned version.\n const prunedNode = Object.assign({}, node);\n prunedNode.inputs = prunedInputs;\n prunedNode.outputs = node.outputs;\n\n filteredTape.push(prunedNode);\n }\n }\n\n return filteredTape;\n}\n\n/**\n * Backpropagate gradients through the filtered TapeNodes.\n *\n * @param tensorAccumulatedGradientMap A map of Tensor to its gradient. This map\n * is mutated by this method.\n * @param filteredTape The filtered TapeNodes to backprop through.\n */\nexport function backpropagateGradients(\n tensorAccumulatedGradientMap: {[tensorId: number]: Tensor},\n filteredTape: TapeNode[], tidy: (f: Function) => Tensor,\n add: (a: Tensor, b: Tensor) => Tensor) {\n // Walk the tape backward and keep a map of Tensor to its gradient.\n for (let i = filteredTape.length - 1; i >= 0; i--) {\n const node = filteredTape[i];\n\n const dys: Tensor[] = [];\n node.outputs.forEach(o => {\n const gradTensor = tensorAccumulatedGradientMap[o.id];\n if (gradTensor != null) {\n dys.push(gradTensor);\n } else {\n // This particular output is not in the back-propagation subgraph, so it\n // does not affect the final output, thus we put null for its dy.\n dys.push(null);\n }\n });\n\n if (node.gradient == null) {\n throw new Error(\n `Cannot compute gradient: gradient function not found ` +\n `for ${node.kernelName}.`);\n }\n\n // Backprop dy through this node and accumulate gradients over the inputs.\n const inputGradients = node.gradient(dys);\n\n for (const inputName in node.inputs) {\n if (!(inputName in inputGradients)) {\n throw new Error(\n `Cannot backprop through input ${inputName}. ` +\n `Available gradients found: ${Object.keys(inputGradients)}.`);\n }\n\n // Call the gradient function.\n const dx = tidy(() => inputGradients[inputName]());\n if (dx.dtype !== 'float32') {\n throw new Error(\n `Error in gradient for op ${\n node.kernelName}. The gradient of input ` +\n `${inputName} must have 'float32' dtype, but has '${dx.dtype}'`);\n }\n const x = node.inputs[inputName];\n if (!util.arraysEqual(dx.shape, x.shape)) {\n throw new Error(\n `Error in gradient for op ${\n node.kernelName}. The gradient of input ` +\n `'${inputName}' has shape '${dx.shape}', which does not match ` +\n `the shape of the input '${x.shape}'`);\n }\n\n if (tensorAccumulatedGradientMap[x.id] == null) {\n tensorAccumulatedGradientMap[x.id] = dx;\n } else {\n const curGradient = tensorAccumulatedGradientMap[x.id];\n tensorAccumulatedGradientMap[x.id] = add(curGradient, dx);\n curGradient.dispose();\n }\n }\n }\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {DataType, TypedArray} from './types';\nimport {computeStrides, isString, rightPad, sizeFromShape} from './util';\n\n// Maximum number of values before we decide to show ellipsis.\nconst FORMAT_LIMIT_NUM_VALS = 20;\n// Number of first and last values to show when displaying a, b,...,y, z.\nconst FORMAT_NUM_FIRST_LAST_VALS = 3;\n// Number of significant digits to show.\nconst FORMAT_NUM_SIG_DIGITS = 7;\n\nexport function tensorToString(\n vals: TypedArray|string[], shape: number[], dtype: DataType,\n verbose: boolean) {\n const strides = computeStrides(shape);\n const padPerCol = computeMaxSizePerColumn(vals, shape, dtype, strides);\n const rank = shape.length;\n const valsLines = subTensorToString(vals, shape, dtype, strides, padPerCol);\n const lines = ['Tensor'];\n if (verbose) {\n lines.push(` dtype: ${dtype}`);\n lines.push(` rank: ${rank}`);\n lines.push(` shape: [${shape}]`);\n lines.push(` values:`);\n }\n lines.push(valsLines.map(l => ' ' + l).join('\\n'));\n return lines.join('\\n');\n}\n\nfunction computeMaxSizePerColumn(\n vals: TypedArray|string[], shape: number[], dtype: DataType,\n strides: number[]): number[] {\n const n = sizeFromShape(shape);\n const numCols = strides[strides.length - 1];\n const padPerCol = new Array(numCols).fill(0);\n const rank = shape.length;\n const valuesOrTuples =\n dtype === 'complex64' ? createComplexTuples(vals) : vals;\n\n if (rank > 1) {\n for (let row = 0; row < n / numCols; row++) {\n const offset = row * numCols;\n for (let j = 0; j < numCols; j++) {\n padPerCol[j] = Math.max(\n padPerCol[j],\n valToString(valuesOrTuples[offset + j], 0, dtype).length);\n }\n }\n }\n return padPerCol;\n}\n\nfunction valToString(\n val: number|string|[number, number], pad: number, dtype: DataType) {\n let valStr: string;\n if (Array.isArray(val)) {\n valStr = `${parseFloat(val[0].toFixed(FORMAT_NUM_SIG_DIGITS))} + ` +\n `${parseFloat(val[1].toFixed(FORMAT_NUM_SIG_DIGITS))}j`;\n } else if (isString(val)) {\n valStr = `'${val}'`;\n } else if (dtype === 'bool') {\n valStr = boolNumToString(val);\n } else {\n valStr = parseFloat(val.toFixed(FORMAT_NUM_SIG_DIGITS)).toString();\n }\n\n return rightPad(valStr, pad);\n}\n\nfunction boolNumToString(v: number): string {\n return v === 0 ? 'false' : 'true';\n}\n\nfunction subTensorToString(\n vals: TypedArray|string[], shape: number[], dtype: DataType,\n strides: number[], padPerCol: number[], isLast = true): string[] {\n const storagePerElement = dtype === 'complex64' ? 2 : 1;\n\n const size = shape[0];\n const rank = shape.length;\n if (rank === 0) {\n if (dtype === 'complex64') {\n const complexTuple = createComplexTuples(vals);\n return [valToString(complexTuple[0], 0, dtype)];\n }\n if (dtype === 'bool') {\n return [boolNumToString(vals[0] as number)];\n }\n return [vals[0].toString()];\n }\n\n if (rank === 1) {\n if (size > FORMAT_LIMIT_NUM_VALS) {\n const firstValsSize = FORMAT_NUM_FIRST_LAST_VALS * storagePerElement;\n\n let firstVals = Array.from(\n vals.slice(0, firstValsSize));\n let lastVals = Array.from(vals.slice(\n (size - FORMAT_NUM_FIRST_LAST_VALS) * storagePerElement,\n size * storagePerElement));\n if (dtype === 'complex64') {\n firstVals = createComplexTuples(firstVals);\n lastVals = createComplexTuples(lastVals);\n }\n return [\n '[' +\n firstVals.map((x, i) => valToString(x, padPerCol[i], dtype))\n .join(', ') +\n ', ..., ' +\n lastVals\n .map(\n (x, i) => valToString(\n x, padPerCol[size - FORMAT_NUM_FIRST_LAST_VALS + i], dtype))\n .join(', ') +\n ']'\n ];\n }\n const displayVals: Array =\n dtype === 'complex64' ? createComplexTuples(vals) :\n Array.from(vals);\n\n return [\n '[' +\n displayVals.map((x, i) => valToString(x, padPerCol[i], dtype))\n .join(', ') +\n ']'\n ];\n }\n\n // The array is rank 2 or more.\n const subshape = shape.slice(1);\n const substrides = strides.slice(1);\n const stride = strides[0] * storagePerElement;\n const lines: string[] = [];\n if (size > FORMAT_LIMIT_NUM_VALS) {\n for (let i = 0; i < FORMAT_NUM_FIRST_LAST_VALS; i++) {\n const start = i * stride;\n const end = start + stride;\n lines.push(...subTensorToString(\n vals.slice(start, end), subshape, dtype, substrides, padPerCol,\n false /* isLast */));\n }\n lines.push('...');\n for (let i = size - FORMAT_NUM_FIRST_LAST_VALS; i < size; i++) {\n const start = i * stride;\n const end = start + stride;\n lines.push(...subTensorToString(\n vals.slice(start, end), subshape, dtype, substrides, padPerCol,\n i === size - 1 /* isLast */));\n }\n } else {\n for (let i = 0; i < size; i++) {\n const start = i * stride;\n const end = start + stride;\n lines.push(...subTensorToString(\n vals.slice(start, end), subshape, dtype, substrides, padPerCol,\n i === size - 1 /* isLast */));\n }\n }\n const sep = rank === 2 ? ',' : '';\n lines[0] = '[' + lines[0] + sep;\n for (let i = 1; i < lines.length - 1; i++) {\n lines[i] = ' ' + lines[i] + sep;\n }\n let newLineSep = ',\\n';\n for (let i = 2; i < rank; i++) {\n newLineSep += '\\n';\n }\n lines[lines.length - 1] =\n ' ' + lines[lines.length - 1] + ']' + (isLast ? '' : newLineSep);\n return lines;\n}\n\nfunction createComplexTuples(vals: Array<{}>|\n TypedArray): Array<[number, number]> {\n const complexTuples: Array<[number, number]> = [];\n for (let i = 0; i < vals.length; i += 2) {\n complexTuples.push([vals[i], vals[i + 1]] as [number, number]);\n }\n return complexTuples;\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {getGlobal} from './global_util';\nimport {tensorToString} from './tensor_format';\nimport {ArrayMap, BackendValues, DataType, DataTypeMap, DataValues, NumericDataType, Rank, ShapeMap, SingleValueMap, TypedArray} from './types';\nimport * as util from './util';\nimport {computeStrides, toNestedArray} from './util';\n\nexport interface TensorData {\n dataId?: DataId;\n values?: DataTypeMap[D];\n}\n\n// This interface mimics KernelBackend (in backend.ts), which would create a\n// circular dependency if imported.\nexport interface Backend {}\n\n/**\n * A mutable object, similar to `tf.Tensor`, that allows users to set values\n * at locations before converting to an immutable `tf.Tensor`.\n *\n * See `tf.buffer` for creating a tensor buffer.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\nexport class TensorBuffer {\n size: number;\n shape: ShapeMap[R];\n strides: number[];\n values: DataTypeMap[D];\n\n constructor(shape: ShapeMap[R], public dtype: D, values?: DataTypeMap[D]) {\n this.shape = shape.slice() as ShapeMap[R];\n this.size = util.sizeFromShape(shape);\n\n if (values != null) {\n const n = values.length;\n util.assert(\n n === this.size,\n () => `Length of values '${n}' does not match the size ` +\n `inferred by the shape '${this.size}'.`);\n }\n if (dtype === 'complex64') {\n throw new Error(\n `complex64 dtype TensorBuffers are not supported. Please create ` +\n `a TensorBuffer for the real and imaginary parts separately and ` +\n `call tf.complex(real, imag).`);\n }\n this.values = values || util.getArrayFromDType(dtype, this.size);\n this.strides = computeStrides(shape);\n }\n\n /**\n * Sets a value in the buffer at a given location.\n *\n * @param value The value to set.\n * @param locs The location indices.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\n set(value: SingleValueMap[D], ...locs: number[]): void {\n if (locs.length === 0) {\n locs = [0];\n }\n util.assert(\n locs.length === this.rank,\n () => `The number of provided coordinates (${locs.length}) must ` +\n `match the rank (${this.rank})`);\n\n const index = this.locToIndex(locs);\n this.values[index] = value as number;\n }\n\n /**\n * Returns the value in the buffer at the provided location.\n *\n * @param locs The location indices.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\n get(...locs: number[]): SingleValueMap[D] {\n if (locs.length === 0) {\n locs = [0];\n }\n let i = 0;\n for (const loc of locs) {\n if (loc < 0 || loc >= this.shape[i]) {\n const msg = `Requested out of range element at ${locs}. ` +\n ` Buffer shape=${this.shape}`;\n throw new Error(msg);\n }\n i++;\n }\n let index = locs[locs.length - 1];\n for (let i = 0; i < locs.length - 1; ++i) {\n index += this.strides[i] * locs[i];\n }\n return this.values[index] as SingleValueMap[D];\n }\n\n locToIndex(locs: number[]): number {\n if (this.rank === 0) {\n return 0;\n } else if (this.rank === 1) {\n return locs[0];\n }\n let index = locs[locs.length - 1];\n for (let i = 0; i < locs.length - 1; ++i) {\n index += this.strides[i] * locs[i];\n }\n return index;\n }\n\n indexToLoc(index: number): number[] {\n if (this.rank === 0) {\n return [];\n } else if (this.rank === 1) {\n return [index];\n }\n const locs: number[] = new Array(this.shape.length);\n for (let i = 0; i < locs.length - 1; ++i) {\n locs[i] = Math.floor(index / this.strides[i]);\n index -= locs[i] * this.strides[i];\n }\n locs[locs.length - 1] = index;\n return locs;\n }\n\n get rank() {\n return this.shape.length;\n }\n\n /**\n * Creates an immutable `tf.Tensor` object from the buffer.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\n toTensor(): Tensor {\n return trackerFn().makeTensor(this.values, this.shape, this.dtype) as\n Tensor;\n }\n}\n\nexport interface TensorTracker {\n makeTensor(\n values: DataValues, shape: number[], dtype: DataType,\n backend?: Backend): Tensor;\n makeVariable(\n initialValue: Tensor, trainable?: boolean, name?: string,\n dtype?: DataType): Variable;\n incRef(a: Tensor, backend: Backend): void;\n disposeTensor(t: Tensor): void;\n disposeVariable(v: Variable): void;\n read(dataId: DataId): Promise;\n readSync(dataId: DataId): BackendValues;\n}\n\n/**\n * The Tensor class calls into this handler to delegate chaining operations.\n */\nexport interface OpHandler {\n cast(x: T, dtype: DataType): T;\n buffer(\n shape: ShapeMap[R], dtype: D,\n values?: DataTypeMap[D]): TensorBuffer;\n print(x: T, verbose: boolean): void;\n clone(x: T): T;\n // TODO(yassogba) bring reshape back?\n}\n\n// For tracking tensor creation and disposal.\nlet trackerFn: () => TensorTracker = null;\n// Used by chaining methods to call into ops.\nlet opHandler: OpHandler = null;\n// Used to warn about deprecated methods.\nlet deprecationWarningFn: (msg: string) => void = null;\n// This here so that we can use this method on dev branches and keep the\n// functionality at master.\n// tslint:disable-next-line:no-unused-expression\n[deprecationWarningFn];\n\n/**\n * An external consumer can register itself as the tensor tracker. This way\n * the Tensor class can notify the tracker for every tensor created and\n * disposed.\n */\nexport function setTensorTracker(fn: () => TensorTracker) {\n trackerFn = fn;\n}\n\n/**\n * An external consumer can register itself as the op handler. This way the\n * Tensor class can have chaining methods that call into ops via the op\n * handler.\n */\nexport function setOpHandler(handler: OpHandler) {\n opHandler = handler;\n}\n\n/**\n * Sets the deprecation warning function to be used by this file. This way the\n * Tensor class can be a leaf but still use the environment.\n */\nexport function setDeprecationWarningFn(fn: (msg: string) => void) {\n deprecationWarningFn = fn;\n}\n\n/**\n * We wrap data id since we use weak map to avoid memory leaks.\n * Since we have our own memory management, we have a reference counter\n * mapping a tensor to its data, so there is always a pointer (even if that\n * data is otherwise garbage collectable).\n * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/\n * Global_Objects/WeakMap\n */\nexport type DataId = object; // object instead of {} to force non-primitive.\n\n// Declare this namespace to make Tensor class augmentation work in google3.\nexport declare namespace Tensor {}\n/**\n * A `tf.Tensor` object represents an immutable, multidimensional array of\n * numbers that has a shape and a data type.\n *\n * For performance reasons, functions that create tensors do not necessarily\n * perform a copy of the data passed to them (e.g. if the data is passed as a\n * `Float32Array`), and changes to the data will change the tensor. This is not\n * a feature and is not supported. To avoid this behavior, use the tensor before\n * changing the input data or create a copy with `copy = tf.add(yourTensor, 0)`.\n *\n * See `tf.tensor` for details on how to create a `tf.Tensor`.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\nexport class Tensor {\n /** Unique id of this tensor. */\n readonly id: number;\n /**\n * Id of the bucket holding the data for this tensor. Multiple arrays can\n * point to the same bucket (e.g. when calling array.reshape()).\n */\n dataId: DataId;\n /** The shape of the tensor. */\n readonly shape: ShapeMap[R];\n /** Number of elements in the tensor. */\n readonly size: number;\n /** The data type for the array. */\n readonly dtype: DataType;\n /** The rank type for the array (see `Rank` enum). */\n readonly rankType: R;\n\n /** Whether this tensor has been globally kept. */\n kept = false;\n /** The id of the scope this tensor is being tracked in. */\n scopeId: number;\n\n /**\n * Number of elements to skip in each dimension when indexing. See\n * https://docs.scipy.org/doc/numpy/reference/generated/\\\n * numpy.ndarray.strides.html\n */\n readonly strides: number[];\n\n constructor(shape: ShapeMap[R], dtype: DataType, dataId: DataId, id: number) {\n this.shape = shape.slice() as ShapeMap[R];\n this.dtype = dtype || 'float32';\n this.size = util.sizeFromShape(shape);\n this.strides = computeStrides(shape);\n this.dataId = dataId;\n this.id = id;\n this.rankType = (this.rank < 5 ? this.rank.toString() : 'higher') as R;\n }\n\n get rank(): number {\n return this.shape.length;\n }\n\n /**\n * Returns a promise of `tf.TensorBuffer` that holds the underlying data.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n async buffer(): Promise> {\n const vals = await this.data();\n return opHandler.buffer(this.shape, this.dtype as D, vals);\n }\n\n /**\n * Returns a `tf.TensorBuffer` that holds the underlying data.\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n bufferSync(): TensorBuffer {\n return opHandler.buffer(this.shape, this.dtype as D, this.dataSync());\n }\n\n /**\n * Returns the tensor data as a nested array. The transfer of data is done\n * asynchronously.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n async array(): Promise {\n const vals = await this.data();\n return toNestedArray(this.shape, vals, this.dtype === 'complex64') as\n ArrayMap[R];\n }\n\n /**\n * Returns the tensor data as a nested array. The transfer of data is done\n * synchronously.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n arraySync(): ArrayMap[R] {\n return toNestedArray(\n this.shape, this.dataSync(), this.dtype === 'complex64') as\n ArrayMap[R];\n }\n\n /**\n * Asynchronously downloads the values from the `tf.Tensor`. Returns a\n * promise of `TypedArray` that resolves when the computation has finished.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n async data(): Promise {\n this.throwIfDisposed();\n const data = trackerFn().read(this.dataId);\n if (this.dtype === 'string') {\n const bytes = await data as Uint8Array[];\n try {\n return bytes.map(b => util.decodeString(b)) as DataTypeMap[D];\n } catch {\n throw new Error(\n 'Failed to decode the string bytes into utf-8. ' +\n 'To get the original bytes, call tensor.bytes().');\n }\n }\n return data as Promise;\n }\n\n /**\n * Synchronously downloads the values from the `tf.Tensor`. This blocks the\n * UI thread until the values are ready, which can cause performance issues.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n dataSync(): DataTypeMap[D] {\n this.throwIfDisposed();\n const data = trackerFn().readSync(this.dataId);\n if (this.dtype === 'string') {\n try {\n return (data as Uint8Array[]).map(b => util.decodeString(b)) as\n DataTypeMap[D];\n } catch {\n throw new Error(\n 'Failed to decode the string bytes into utf-8. ' +\n 'To get the original bytes, call tensor.bytes().');\n }\n }\n return data as DataTypeMap[D];\n }\n\n /** Returns the underlying bytes of the tensor's data. */\n async bytes(): Promise {\n this.throwIfDisposed();\n const data = await trackerFn().read(this.dataId);\n if (this.dtype === 'string') {\n return data as Uint8Array[];\n } else {\n return new Uint8Array((data as TypedArray).buffer);\n }\n }\n\n /**\n * Disposes `tf.Tensor` from memory.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n dispose(): void {\n if (this.isDisposed) {\n return;\n }\n trackerFn().disposeTensor(this);\n this.isDisposedInternal = true;\n }\n\n protected isDisposedInternal = false;\n get isDisposed(): boolean {\n return this.isDisposedInternal;\n }\n\n throwIfDisposed() {\n if (this.isDisposed) {\n throw new Error(`Tensor is disposed.`);\n }\n }\n\n /**\n * Prints the `tf.Tensor`. See `tf.print` for details.\n *\n * @param verbose Whether to print verbose information about the tensor,\n * including dtype and size.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n print(verbose = false): void {\n return opHandler.print(this, verbose);\n }\n\n /**\n * Returns a copy of the tensor. See `tf.clone` for details.\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n clone(this: T): T {\n this.throwIfDisposed();\n return opHandler.clone(this);\n }\n\n /**\n * Returns a human-readable description of the tensor. Useful for logging.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n toString(verbose = false): string {\n const vals = this.dataSync();\n return tensorToString(vals, this.shape, this.dtype, verbose);\n }\n\n cast(dtype: DataType): T {\n this.throwIfDisposed();\n return opHandler.cast(this as T, dtype);\n }\n variable(trainable = true, name?: string, dtype?: DataType): Variable {\n this.throwIfDisposed();\n return trackerFn().makeVariable(this, trainable, name, dtype) as\n Variable;\n }\n}\nObject.defineProperty(Tensor, Symbol.hasInstance, {\n value: (instance: Tensor) => {\n // Implementation note: we should use properties of the object that will be\n // defined before the constructor body has finished executing (methods).\n // This is because when this code is transpiled by babel, babel will call\n // classCallCheck before the constructor body is run.\n // See https://github.com/tensorflow/tfjs/issues/3384 for backstory.\n return !!instance && instance.data != null && instance.dataSync != null &&\n instance.throwIfDisposed != null;\n }\n});\n\nexport function getGlobalTensorClass() {\n // Use getGlobal so that we can augment the Tensor class across package\n // boundaries becase the node resolution alg may result in different modules\n // being returned for this file depending on the path they are loaded from.\n return getGlobal('Tensor', () => {\n return Tensor;\n });\n}\n\n// Global side effect. Cache global reference to Tensor class\ngetGlobalTensorClass();\n\nexport interface NumericTensor extends Tensor {\n dtype: NumericDataType;\n dataSync(): DataTypeMap[D];\n data(): Promise;\n}\n\nexport interface StringTensor extends Tensor {\n dtype: 'string';\n dataSync(): DataTypeMap[D];\n data(): Promise;\n}\n\n/** @doclink Tensor */\nexport type Scalar = Tensor;\n/** @doclink Tensor */\nexport type Tensor1D = Tensor;\n/** @doclink Tensor */\nexport type Tensor2D = Tensor;\n/** @doclink Tensor */\nexport type Tensor3D = Tensor;\n/** @doclink Tensor */\nexport type Tensor4D = Tensor;\n/** @doclink Tensor */\nexport type Tensor5D = Tensor;\n/** @doclink Tensor */\nexport type Tensor6D = Tensor;\n\n/**\n * A mutable `tf.Tensor`, useful for persisting state, e.g. for training.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\nexport class Variable extends Tensor {\n name: string;\n\n constructor(\n initialValue: Tensor, public trainable: boolean, name: string,\n tensorId: number) {\n super(\n initialValue.shape, initialValue.dtype, initialValue.dataId, tensorId);\n this.name = name;\n }\n\n /**\n * Assign a new `tf.Tensor` to this variable. The new `tf.Tensor` must have\n * the same shape and dtype as the old `tf.Tensor`.\n *\n * @param newValue New tensor to be assigned to this variable.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n assign(newValue: Tensor): void {\n if (newValue.dtype !== this.dtype) {\n throw new Error(\n `dtype of the new value (${newValue.dtype}) and ` +\n `previous value (${this.dtype}) must match`);\n }\n if (!util.arraysEqual(newValue.shape, this.shape)) {\n throw new Error(\n `shape of the new value (${newValue.shape}) and ` +\n `previous value (${this.shape}) must match`);\n }\n trackerFn().disposeTensor(this);\n this.dataId = newValue.dataId;\n trackerFn().incRef(this, null /* backend */);\n }\n\n dispose(): void {\n trackerFn().disposeVariable(this);\n this.isDisposedInternal = true;\n }\n}\n\nObject.defineProperty(Variable, Symbol.hasInstance, {\n value: (instance: Variable) => {\n return instance instanceof Tensor && instance.assign != null &&\n instance.assign instanceof Function;\n }\n});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from './tensor';\nimport {TensorContainer, TensorContainerArray} from './tensor_types';\nimport {upcastType} from './types';\nimport {assert} from './util';\n\nexport function makeTypesMatch(a: T, b: T): [T, T] {\n if (a.dtype === b.dtype) {\n return [a, b];\n }\n const dtype = upcastType(a.dtype, b.dtype);\n return [a.cast(dtype), b.cast(dtype)];\n}\n\nexport function assertTypesMatch(a: Tensor, b: Tensor): void {\n assert(\n a.dtype === b.dtype,\n () => `The dtypes of the first(${a.dtype}) and` +\n ` second(${b.dtype}) input must match`);\n}\n\nexport function isTensorInList(tensor: Tensor, tensorList: Tensor[]): boolean {\n return tensorList.some(x => x.id === tensor.id);\n}\n\n/**\n * Extracts any `Tensor`s found within the provided object.\n *\n * @param container an object that may be a `Tensor` or may directly contain\n * `Tensor`s, such as a `Tensor[]` or `{key: Tensor, ...}`. In general it\n * is safe to pass any object here, except that `Promise`s are not\n * supported.\n * @returns An array of `Tensors` found within the passed object. If the\n * argument is simply a `Tensor', a list containing that `Tensor` is\n * returned. If the object is not a `Tensor` or does not\n * contain `Tensors`, an empty list is returned.\n */\nexport function getTensorsInContainer(result: TensorContainer): Tensor[] {\n const list: Tensor[] = [];\n const seen = new Set<{}|void>();\n walkTensorContainer(result, list, seen);\n return list;\n}\n\nfunction walkTensorContainer(\n container: TensorContainer, list: Tensor[], seen: Set<{}|void>): void {\n if (container == null) {\n return;\n }\n if (container instanceof Tensor) {\n list.push(container);\n return;\n }\n if (!isIterable(container)) {\n return;\n }\n // Iteration over keys works also for arrays.\n const iterable = container as TensorContainerArray;\n for (const k in iterable) {\n const val = iterable[k];\n if (!seen.has(val)) {\n seen.add(val);\n walkTensorContainer(val, list, seen);\n }\n }\n}\n\n// tslint:disable-next-line:no-any\nfunction isIterable(obj: any): boolean {\n return Array.isArray(obj) || typeof obj === 'object';\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/** @docalias number[] */\nexport interface ShapeMap {\n R0: number[];\n R1: [number];\n R2: [number, number];\n R3: [number, number, number];\n R4: [number, number, number, number];\n R5: [number, number, number, number, number];\n R6: [number, number, number, number, number, number];\n}\n\n/** @docalias number[] */\nexport interface ArrayMap {\n R0: number;\n R1: number[];\n R2: number[][];\n R3: number[][][];\n R4: number[][][][];\n R5: number[][][][][];\n R6: number[][][][][][];\n}\n\nexport interface DataTypeMap {\n float32: Float32Array;\n int32: Int32Array;\n bool: Uint8Array;\n complex64: Float32Array;\n string: string[];\n}\n\nexport interface SingleValueMap {\n bool: boolean;\n int32: number;\n float32: number;\n complex64: number;\n string: string;\n}\n\n/** @docalias 'float32'|'int32'|'bool'|'complex64'|'string' */\nexport type DataType = keyof DataTypeMap;\nexport type NumericDataType = 'float32'|'int32'|'bool'|'complex64';\nexport type TypedArray = Float32Array|Int32Array|Uint8Array;\n/** Tensor data used in tensor creation and user-facing API. */\nexport type DataValues = DataTypeMap[DataType];\n/** The underlying tensor data that gets stored in a backend. */\nexport type BackendValues = Float32Array|Int32Array|Uint8Array|Uint8Array[];\n\nexport enum Rank {\n R0 = 'R0',\n R1 = 'R1',\n R2 = 'R2',\n R3 = 'R3',\n R4 = 'R4',\n R5 = 'R5',\n R6 = 'R6'\n}\n\nexport type FlatVector = boolean[]|number[]|TypedArray;\nexport type RegularArray =\n T[]|T[][]|T[][][]|T[][][][]|T[][][][][]|T[][][][][][];\n\n// tslint:disable-next-line:no-any\nexport interface RecursiveArray {\n [index: number]: T|RecursiveArray;\n}\n\n// Looks for upcasting types. Used, for example, in operations with mixed dtype\n// inputs.\nenum UpcastInt32AndMap {\n 'float32' = 'float32',\n 'int32' = 'int32',\n 'bool' = 'int32',\n 'complex64' = 'complex64'\n}\n\nenum UpcastBoolAndMap {\n 'float32' = 'float32',\n 'int32' = 'int32',\n 'bool' = 'bool',\n 'complex64' = 'complex64'\n}\n\nenum UpcastFloat32AndMap {\n 'float32' = 'float32',\n 'int32' = 'float32',\n 'bool' = 'float32',\n 'complex64' = 'complex64'\n}\n\nenum UpcastComplex64AndMap {\n 'float32' = 'complex64',\n 'int32' = 'complex64',\n 'bool' = 'complex64',\n 'complex64' = 'complex64'\n}\n\nconst upcastTypeMap = {\n 'float32': UpcastFloat32AndMap,\n 'int32': UpcastInt32AndMap,\n 'bool': UpcastBoolAndMap,\n 'complex64': UpcastComplex64AndMap\n};\n\nexport function upcastType(typeA: DataType, typeB: DataType): DataType {\n if (typeA === 'string' || typeB === 'string') {\n if (typeA === 'string' && typeB === 'string') {\n return 'string';\n }\n throw new Error(`Can not upcast ${typeA} with ${typeB}`);\n }\n return upcastTypeMap[typeA][typeB];\n}\n\n/** Returns the output type after summation. */\nexport function sumOutType(type: DataType): DataType {\n return upcastType(type, 'int32');\n}\n\n/** @docalias TypedArray|Array */\nexport type TensorLike =\n TypedArray|number|boolean|string|RecursiveArray|\n RecursiveArray|RecursiveArray|Uint8Array[];\nexport type ScalarLike = number|boolean|string|Uint8Array;\n/** @docalias TypedArray|Array */\nexport type TensorLike1D = TypedArray|number[]|boolean[]|string[]|Uint8Array[];\n/** @docalias TypedArray|Array */\nexport type TensorLike2D = TypedArray|number[]|number[][]|boolean[]|boolean[][]|\n string[]|string[][]|Uint8Array[]|Uint8Array[][];\n/** @docalias TypedArray|Array */\nexport type TensorLike3D = TypedArray|number[]|number[][][]|boolean[]|\n boolean[][][]|string[]|string[][][]|Uint8Array[]|Uint8Array[][][];\n/** @docalias TypedArray|Array */\nexport type TensorLike4D = TypedArray|number[]|number[][][][]|boolean[]|\n boolean[][][][]|string[]|string[][][][]|Uint8Array[]|Uint8Array[][][][];\n/** @docalias TypedArray|Array */\nexport type TensorLike5D =\n TypedArray|number[]|number[][][][][]|boolean[]|boolean[][][][][]|string[]|\n string[][][][][]|Uint8Array[]|Uint8Array[][][][][];\n/** @docalias TypedArray|Array */\nexport type TensorLike6D =\n TypedArray|number[]|number[][][][][][]|boolean[]|boolean[][][][][][]|\n string[]|string[][][][][][]|Uint8Array[]|Uint8Array[][][][][];\n\n/** Type for representing image data in Uint8Array type. */\nexport interface PixelData {\n width: number;\n height: number;\n data: Uint8Array;\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {BackendTimingInfo, DataMover, KernelBackend} from './backends/backend';\nimport {Environment, setEnvironmentGlobal} from './environment';\nimport {getGlobalNamespace} from './global_util';\nimport {Add, Cast, Identity} from './kernel_names';\nimport {getGradient, getKernel, getKernelsForBackend, GradFunc, NamedAttrMap, TensorInfo} from './kernel_registry';\nimport {KernelProfile, Profiler} from './profiler';\nimport {backpropagateGradients, getFilteredNodesXToY, TapeNode} from './tape';\nimport {DataId, setTensorTracker, Tensor, TensorTracker, Variable} from './tensor';\nimport {GradSaveFunc, NamedTensorMap, NamedVariableMap, TensorContainer} from './tensor_types';\nimport {getTensorsInContainer} from './tensor_util';\nimport {BackendValues, DataType, DataValues} from './types';\nimport * as util from './util';\nimport {bytesFromStringArray, makeOnesTypedArray, now, sizeFromShape} from './util';\n\n/**\n * A function that computes an output. The save function is for saving tensors\n * computed in the forward pass, that we need in the backward pass.\n */\nexport type ForwardFunc = (backend: KernelBackend, save?: GradSaveFunc) => T;\n\n/**\n * @docalias (a: Tensor, b: Tensor,..., save?: Function) => {\n * value: Tensor,\n * gradFunc: (dy: Tensor, saved?: NamedTensorMap) => Tensor | Tensor[]\n * }\n */\nexport type CustomGradientFunc =\n (...inputs: Array) => {\n value: T;\n gradFunc: (dy: T, saved: Tensor[]) => Tensor | Tensor[];\n };\n\nexport type MemoryInfo = {\n numTensors: number; numDataBuffers: number; numBytes: number;\n unreliable?: boolean; reasons: string[];\n};\n\ntype KernelInfo = {\n name: string; bytesAdded: number; totalBytesSnapshot: number;\n tensorsAdded: number;\n totalTensorsSnapshot: number;\n inputShapes: number[][];\n outputShapes: number[][];\n kernelTimeMs: number | {error: string} | Promise;\n extraInfo: string | Promise;\n};\n\nexport type ProfileInfo = {\n newBytes: number; newTensors: number; peakBytes: number;\n kernels: KernelInfo[];\n result: TensorContainer;\n kernelNames: string[];\n};\n\nexport interface TimingInfo extends BackendTimingInfo {\n wallMs: number;\n}\n\n/** @docalias Function */\nexport type ScopeFn = () => T;\n\ninterface ScopeState {\n track: Tensor[];\n name: string;\n id: number;\n}\n\ninterface RegisteredKernelInvocation {\n kernelName: string;\n inputs: I;\n attrs?: NamedAttrMap;\n}\n\ninterface CustomGradKernelInvocation {\n forwardFunc: ForwardFunc;\n backwardsFunc: (dy: T, saved: Tensor[]) => {\n [P in keyof I]: () => I[P]\n };\n inputs: I;\n attrs?: NamedAttrMap;\n}\n\nfunction isRegisteredKernelInvocation(\n kernelInvocation: RegisteredKernelInvocation|\n CustomGradKernelInvocation):\n kernelInvocation is RegisteredKernelInvocation {\n return (kernelInvocation as RegisteredKernelInvocation).kernelName != null;\n}\n\nclass EngineState {\n // Public since optimizers will use it.\n registeredVariables: NamedVariableMap = {};\n\n nextTapeNodeId = 0;\n numBytes = 0;\n numTensors = 0;\n numStringTensors = 0;\n numDataBuffers = 0;\n\n activeTape: TapeNode[];\n // Number of nested tf.grad() statements when computing higher-order\n // gradients. E.g. `1` for first-order gradients and `2` for second-order\n // gradients. Used to track if the tape should be removed after a backprop.\n gradientDepth = 0;\n // Number of nested kernel calls. When kernel depth is greater than 1, we turn\n // off the tape.\n kernelDepth = 0;\n\n // Keep Tensors that parallel the tapes.\n activeScope: ScopeState;\n scopeStack: ScopeState[] = [];\n /**\n * Keeps track of the number of data moves during a kernel execution. We\n * maintain a stack since kernels can call other kernels, recursively.\n */\n numDataMovesStack: number[] = [];\n nextScopeId = 0;\n\n tensorInfo = new WeakMap();\n\n profiling = false;\n activeProfile: ProfileInfo = {\n newBytes: 0,\n newTensors: 0,\n peakBytes: 0,\n kernels: [],\n result: null,\n get kernelNames():\n string[] {\n return Array.from(new Set(this.kernels.map(k => k.name)));\n }\n };\n\n dispose() {\n for (const variableName in this.registeredVariables) {\n this.registeredVariables[variableName].dispose();\n }\n }\n}\n\nexport class Engine implements TensorTracker, DataMover {\n state: EngineState;\n backendName: string;\n registry: {[id: string]: KernelBackend} = {};\n registryFactory: {\n [id: string]: {\n factory: () => KernelBackend | Promise,\n priority: number\n }\n } = {};\n\n private profiler: Profiler;\n private backendInstance: KernelBackend;\n private pendingBackendInit: Promise;\n private pendingBackendInitId = 0;\n\n constructor(public ENV: Environment) {\n this.state = new EngineState();\n }\n\n async ready(): Promise {\n if (this.pendingBackendInit != null) {\n return this.pendingBackendInit.then(() => {});\n }\n if (this.backendInstance != null) {\n return;\n }\n const sortedBackends = this.getSortedBackends();\n\n for (let i = 0; i < sortedBackends.length; i++) {\n const backendName = sortedBackends[i];\n const success = await this.initializeBackend(backendName).success;\n if (success) {\n await this.setBackend(backendName);\n return;\n }\n }\n\n throw new Error(\n `Could not initialize any backends, all backend initializations ` +\n `failed.`);\n }\n\n get backend(): KernelBackend {\n if (this.pendingBackendInit != null) {\n throw new Error(\n `Backend '${this.backendName}' has not yet been initialized. Make ` +\n `sure to await tf.ready() or await tf.setBackend() before calling ` +\n `other methods`);\n }\n if (this.backendInstance == null) {\n const {name, asyncInit} = this.initializeBackendsAndReturnBest();\n if (asyncInit) {\n throw new Error(\n `The highest priority backend '${name}' has not yet been ` +\n `initialized. Make sure to await tf.ready() or ` +\n `await tf.setBackend() before calling other methods`);\n }\n this.setBackend(name);\n }\n return this.backendInstance;\n }\n\n backendNames(): string[] {\n return Object.keys(this.registryFactory);\n }\n\n findBackend(backendName: string): KernelBackend {\n if (!(backendName in this.registry)) {\n // If the backend hasn't been initialized but we have a registry entry for\n // it, initialize it and return it.\n if (backendName in this.registryFactory) {\n const {asyncInit} = this.initializeBackend(backendName);\n if (asyncInit) {\n // Backend is not ready yet.\n return null;\n }\n } else {\n return null;\n }\n }\n return this.registry[backendName];\n }\n\n findBackendFactory(backendName: string):\n () => KernelBackend | Promise {\n if (!(backendName in this.registryFactory)) {\n return null;\n }\n return this.registryFactory[backendName].factory;\n }\n\n registerBackend(\n backendName: string,\n factory: () => KernelBackend | Promise,\n priority = 1): boolean {\n if (backendName in this.registryFactory) {\n console.warn(\n `${backendName} backend was already registered. ` +\n `Reusing existing backend factory.`);\n return false;\n }\n this.registryFactory[backendName] = {factory, priority};\n return true;\n }\n\n async setBackend(backendName: string): Promise {\n if (this.registryFactory[backendName] == null) {\n throw new Error(`Backend name '${backendName}' not found in registry`);\n }\n this.backendName = backendName;\n if (this.registry[backendName] == null) {\n this.backendInstance = null;\n const {success, asyncInit} = this.initializeBackend(backendName);\n const result = asyncInit ? await success : success;\n if (!result) {\n return false;\n }\n }\n this.backendInstance = this.registry[backendName];\n this.setupRegisteredKernels();\n // Reset the profiler.\n this.profiler = new Profiler(this.backendInstance);\n\n return true;\n }\n\n private setupRegisteredKernels(): void {\n const kernels = getKernelsForBackend(this.backendName);\n kernels.forEach(kernel => {\n if (kernel.setupFunc != null) {\n kernel.setupFunc(this.backendInstance);\n }\n });\n }\n\n private disposeRegisteredKernels(backendName: string): void {\n const kernels = getKernelsForBackend(backendName);\n kernels.forEach(kernel => {\n if (kernel.disposeFunc != null) {\n kernel.disposeFunc(this.registry[backendName]);\n }\n });\n }\n\n /**\n * Initializes a backend by looking up the backend name in the factory\n * registry and calling the factory method. Returns a boolean representing\n * whether the initialization of the backend suceeded. Throws an error if\n * there is no backend in the factory registry.\n */\n private initializeBackend(backendName: string):\n {success: boolean|Promise, asyncInit: boolean} {\n const registryFactoryEntry = this.registryFactory[backendName];\n if (registryFactoryEntry == null) {\n throw new Error(\n `Cannot initialize backend ${backendName}, no registration found.`);\n }\n\n try {\n const backend = registryFactoryEntry.factory();\n /* Test if the factory returns a promise.\n Done in a more liberal way than\n previous 'Promise.resolve(backend)===backend'\n as we needed to account for custom Promise\n implementations (e.g. Angular) */\n if (backend && !(backend instanceof KernelBackend) &&\n typeof backend.then === 'function') {\n const promiseId = ++this.pendingBackendInitId;\n const success =\n backend\n .then(backendInstance => {\n // Outdated promise. Another backend was set in the meantime.\n if (promiseId < this.pendingBackendInitId) {\n return false;\n }\n this.registry[backendName] = backendInstance;\n this.pendingBackendInit = null;\n return true;\n })\n .catch(err => {\n // Outdated promise. Another backend was set in the meantime.\n if (promiseId < this.pendingBackendInitId) {\n return false;\n }\n this.pendingBackendInit = null;\n console.warn(\n `Initialization of backend ${backendName} failed`);\n console.warn(err.stack || err.message);\n return false;\n });\n this.pendingBackendInit = success;\n return {success, asyncInit: true};\n } else {\n this.registry[backendName] = backend as KernelBackend;\n return {success: true, asyncInit: false};\n }\n } catch (err) {\n console.warn(`Initialization of backend ${backendName} failed`);\n console.warn(err.stack || err.message);\n return {success: false, asyncInit: false};\n }\n }\n\n removeBackend(backendName: string): void {\n if (!(backendName in this.registryFactory)) {\n throw new Error(`${backendName} backend not found in registry`);\n }\n if (this.backendName === backendName && this.pendingBackendInit != null) {\n // There is a pending promise of the backend we want to remove. Make it\n // obsolete.\n this.pendingBackendInitId++;\n }\n\n if (backendName in this.registry) {\n this.disposeRegisteredKernels(backendName);\n this.registry[backendName].dispose();\n delete this.registry[backendName];\n }\n\n delete this.registryFactory[backendName];\n\n // Unset the backend if it is active.\n if (this.backendName === backendName) {\n this.pendingBackendInit = null;\n this.backendName = null;\n this.backendInstance = null;\n }\n }\n\n private getSortedBackends(): string[] {\n if (Object.keys(this.registryFactory).length === 0) {\n throw new Error('No backend found in registry.');\n }\n return Object.keys(this.registryFactory).sort((a: string, b: string) => {\n // Highest priority comes first.\n return this.registryFactory[b].priority -\n this.registryFactory[a].priority;\n });\n }\n\n private initializeBackendsAndReturnBest():\n {name: string, asyncInit: boolean} {\n const sortedBackends = this.getSortedBackends();\n\n for (let i = 0; i < sortedBackends.length; i++) {\n const backendName = sortedBackends[i];\n const {success, asyncInit} = this.initializeBackend(backendName);\n if (asyncInit || success) {\n return {name: backendName, asyncInit};\n }\n }\n throw new Error(\n `Could not initialize any backends, all backend initializations ` +\n `failed.`);\n }\n\n moveData(backend: KernelBackend, dataId: DataId) {\n const info = this.state.tensorInfo.get(dataId);\n const srcBackend = info.backend;\n const values = this.readSync(dataId);\n const refCount = srcBackend.refCount(dataId);\n // Delete the tensor from the old backend and move it to the new\n // backend.\n srcBackend.disposeData(dataId, true);\n info.backend = backend;\n backend.move(dataId, values, info.shape, info.dtype, refCount);\n if (this.shouldCheckForMemLeaks()) {\n // Track the number of moves during a kernel execution to correctly\n // detect memory leaks.\n this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1]++;\n }\n }\n\n tidy(nameOrFn: string|ScopeFn, fn?: ScopeFn):\n T {\n let name: string = null;\n if (fn == null) {\n // Called with only 1 argument.\n if (typeof nameOrFn !== 'function') {\n throw new Error('Please provide a function to tidy()');\n }\n fn = nameOrFn;\n } else {\n // Called with 2 arguments.\n if (typeof nameOrFn !== 'string' && !(nameOrFn instanceof String)) {\n throw new Error(\n 'When calling with two arguments, the first argument ' +\n 'to tidy() must be a string');\n }\n if (typeof fn !== 'function') {\n throw new Error(\n 'When calling with two arguments, the 2nd argument ' +\n 'to tidy() must be a function');\n }\n name = nameOrFn as string;\n // TODO(nsthorat,smilkov): Do operation logging and performance\n // profiling.\n }\n let result: T;\n return this.scopedRun(\n () => this.startScope(name), () => this.endScope(result), () => {\n result = fn();\n if (result instanceof Promise) {\n console.error('Cannot return a Promise inside of tidy.');\n }\n return result;\n });\n }\n\n private scopedRun(start: () => void, end: () => void, f: () => T): T {\n start();\n try {\n const res = f();\n end();\n return res;\n } catch (ex) {\n end();\n throw ex;\n }\n }\n\n private static nextTensorId = 0;\n private nextTensorId(): number {\n return Engine.nextTensorId++;\n }\n\n private static nextVariableId = 0;\n private nextVariableId(): number {\n return Engine.nextVariableId++;\n }\n\n /**\n * This method is called instead of the public-facing tensor.clone() when\n * saving a tensor for backwards pass. It makes sure to add the clone\n * operation to the tape regardless of being called inside a kernel\n * execution.\n */\n private clone(x: Tensor): Tensor {\n const y: Tensor = ENGINE.runKernel(Identity, {x} as {} as NamedTensorMap);\n const inputs = {x};\n const grad = (dy: Tensor) => ({\n x: () => {\n const dtype = 'float32';\n const gradInputs = {x: dy};\n const attrs = {dtype};\n\n return ENGINE.runKernel(\n Cast, gradInputs as {} as NamedTensorMap,\n // tslint:disable-next-line: no-unnecessary-type-assertion\n attrs as {} as NamedAttrMap) as Tensor;\n }\n });\n const saved: Tensor[] = [];\n this.addTapeNode(this.state.activeScope.name, inputs, [y], grad, saved, {});\n return y;\n }\n\n /**\n * Execute a kernel with the given name and return the output tensor.\n *\n * @param kernelName The name of the kernel to execute.\n * @param inputs A map of input names to tensors.\n * @param attrs A map of attribute names to their values. An attribute is a\n * primitive (non-tensor) input to the kernel.\n * @param inputsToSave A list of tensors, inputs to save for the backprop\n * computation.\n * @param outputsToSave A list of booleans, specifying which output to save\n * for the backprop computation. These are booleans since the output\n * tensors are not visible to the user.\n */\n runKernel(\n kernelName: string, inputs: NamedTensorMap, attrs?: NamedAttrMap): T {\n if (this.backendName == null) {\n // backend has not been initialized yet (backend initialization is lazy\n // can be deferred until an op/ kernel is run).\n // The below getter has side effects that will try to initialize the\n // backend and set properties like this.backendName\n // tslint:disable-next-line: no-unused-expression\n this.backend;\n }\n const hasKernel = getKernel(kernelName, this.backendName) != null;\n if (!hasKernel) {\n throw new Error(`Kernel '${kernelName}' not registered for backend '${\n this.backendName}'`);\n }\n return this.runKernelFunc({kernelName, inputs, attrs});\n }\n\n private shouldCheckForMemLeaks(): boolean {\n return this.ENV.getBool('IS_TEST');\n }\n\n private checkKernelForMemLeak(\n kernelName: string, numDataIdsBefore: number,\n outInfos: TensorInfo[]): void {\n const numDataIdsAfter = this.backend.numDataIds();\n\n // Count the number of data ids associated with the result of the kernel.\n let numOutputDataIds = 0;\n outInfos.forEach(info => {\n // Complex numbers allocate 3 data ids, one for 'real', one for\n // 'imaginary', and one for the container that holds the former two.\n numOutputDataIds += (info.dtype === 'complex64' ? 3 : 1);\n });\n\n // Account for the number of moves during kernel execution. A \"data move\"\n // can happen in the middle of a kernel execution, placing a new (key,value)\n // pair in the data storage. Since data moves have net zero effect (we\n // always remove the data from the old backend), we have to cancel them out\n // when detecting memory leaks.\n const numMoves =\n this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1];\n const dataIdsLeaked =\n numDataIdsAfter - numDataIdsBefore - numOutputDataIds - numMoves;\n if (dataIdsLeaked > 0) {\n throw new Error(\n `Backend '${this.backendName}' has an internal memory leak ` +\n `(${dataIdsLeaked} data ids) after running '${kernelName}'`);\n }\n }\n\n /**\n * Internal helper method to execute a kernel Func\n *\n * Use `runKernel` to execute kernels from outside of engine.\n */\n private runKernelFunc(\n kernelParams: RegisteredKernelInvocation|\n CustomGradKernelInvocation): T {\n let outputs: Tensor[];\n let saved: Tensor[] = [];\n const isTapeOn = this.isTapeOn();\n\n const startingBytecount = this.state.numBytes;\n const startingNumTensors = this.state.numTensors;\n\n if (this.shouldCheckForMemLeaks()) {\n this.state.numDataMovesStack.push(0);\n }\n\n let kernelFunc: () => Tensor[];\n if (this.backendName == null) {\n // backend has not been initialized yet (backend initialization is lazy\n // can be deferred until an op/ kernel is run).\n // The below getter has side effects that will try to initialize the\n // backend and set properties like this.backendName\n // tslint:disable-next-line: no-unused-expression\n this.backend;\n }\n\n let out: TensorInfo|TensorInfo[];\n\n const kernelOrScopeName = isRegisteredKernelInvocation(kernelParams) ?\n kernelParams.kernelName :\n this.state.activeScope != null ? this.state.activeScope.name : '';\n\n // Create the kernelFunc from either a registered kernel OR passed in\n // forward/backward functions (used by custom grad). In this context a\n // kernelFunc wraps a kernel implementation with some bookkeeping.\n\n if (isRegisteredKernelInvocation(kernelParams)) {\n const {kernelName, inputs, attrs} = kernelParams;\n if (this.backendName == null) {\n // backend has not been initialized yet (backend initialization is lazy\n // can be deferred until an op/ kernel is run).\n // The below getter has side effects that will try to initialize the\n // backend and set properties like this.backendName\n // tslint:disable-next-line: no-unused-expression\n this.backend;\n }\n const kernel = getKernel(kernelName, this.backendName);\n util.assert(\n kernel != null,\n () => `Cannot find registered kernel '${kernelName}' for backend '${\n this.backendName}'`);\n\n kernelFunc = () => {\n const numDataIdsBefore = this.backend.numDataIds();\n out = kernel.kernelFunc({inputs, attrs, backend: this.backend});\n const outInfos = Array.isArray(out) ? out : [out];\n if (this.shouldCheckForMemLeaks()) {\n this.checkKernelForMemLeak(kernelName, numDataIdsBefore, outInfos);\n }\n\n const outTensors = outInfos.map((outInfo: TensorInfo|Tensor) => {\n // todo (yassogba) remove this option (Tensor) when node backend\n // methods have been modularized and they all return tensorInfo.\n // TensorInfos do not have a rank attribute.\n if ((outInfo as Tensor).rank != null) {\n return outInfo as Tensor;\n }\n const {dataId, shape, dtype} = outInfo as TensorInfo;\n return this.makeTensorFromDataId(dataId, shape, dtype);\n });\n\n // Save any required inputs and outputs.\n\n // Do not save unless we are recording to the tape. Otherwise it would\n // cause a mem leak since there would be no backprop for these tensors\n // (which would otherwise dispose them).\n if (isTapeOn) {\n const tensorsToSave =\n this.getTensorsForGradient(kernelName, inputs, outTensors);\n saved = this.saveTensorsForBackwardMode(tensorsToSave);\n }\n return outTensors;\n };\n } else {\n const {forwardFunc} = kernelParams;\n // Running a customGrad op.\n const saveFunc: GradSaveFunc = (tensors) => {\n // Do not save unless we are recording to the tape. Otherwise it would\n // cause a mem leak since we would never run backprop, which disposes\n // the kept tensors.\n if (!isTapeOn) {\n return;\n }\n saved = tensors.map(tensor => this.keep(this.clone(tensor)));\n };\n\n kernelFunc = () => {\n const numDataIdsBefore = this.backend.numDataIds();\n out = this.tidy(() => forwardFunc(this.backend, saveFunc));\n const outs = (Array.isArray(out) ? out : [out]) as Tensor[];\n if (this.shouldCheckForMemLeaks()) {\n // Scope name is used to print a more helpful error message if needed.\n this.checkKernelForMemLeak(kernelOrScopeName, numDataIdsBefore, outs);\n }\n return outs;\n };\n }\n\n //\n // Run the kernelFunc. Optionally profiling it.\n //\n const {inputs, attrs} = kernelParams;\n const backwardsFunc = isRegisteredKernelInvocation(kernelParams) ?\n null :\n kernelParams.backwardsFunc;\n\n let kernelProfile: KernelProfile;\n this.scopedRun(\n // Stop recording to a tape when running a kernel.\n () => this.state.kernelDepth++, () => this.state.kernelDepth--, () => {\n if (!this.ENV.getBool('DEBUG') && !this.state.profiling) {\n outputs = kernelFunc();\n } else {\n kernelProfile = this.profiler.profileKernel(\n kernelOrScopeName, inputs, () => kernelFunc());\n if (this.ENV.getBool('DEBUG')) {\n this.profiler.logKernelProfile(kernelProfile);\n }\n outputs = kernelProfile.outputs;\n }\n });\n\n if (isTapeOn) {\n this.addTapeNode(\n kernelOrScopeName, inputs, outputs, backwardsFunc, saved, attrs);\n }\n\n if (this.state.profiling) {\n this.state.activeProfile.kernels.push({\n name: kernelOrScopeName,\n bytesAdded: this.state.numBytes - startingBytecount,\n totalBytesSnapshot: this.state.numBytes,\n tensorsAdded: this.state.numTensors - startingNumTensors,\n totalTensorsSnapshot: this.state.numTensors,\n inputShapes: Object.keys(inputs).map(\n key => inputs[key] != null ? inputs[key].shape : null),\n outputShapes: outputs.map(item => item.shape),\n kernelTimeMs: kernelProfile.timeMs,\n extraInfo: kernelProfile.extraInfo\n });\n }\n return (Array.isArray(out) ? outputs : outputs[0]) as T;\n }\n\n /**\n * Saves tensors used in forward mode for use in backward mode.\n *\n * @param tensors the list of tensors to save.\n */\n private saveTensorsForBackwardMode(tensors: Tensor[]): Tensor[] {\n const saved = tensors.map(tensor => this.keep(this.clone(tensor)));\n return saved;\n }\n\n /**\n * Returns a list of tensors to save for a given gradient calculation.\n *\n * @param kernelName name of kernel to look up gradient for.\n * @param inputs a map of input tensors.\n * @param outputs an array of output tensors from forward mode of kernel.\n */\n private getTensorsForGradient(\n kernelName: string, inputs: NamedTensorMap,\n outputs: Tensor[]): Tensor[]|null {\n const gradConfig = getGradient(kernelName);\n if (gradConfig != null) {\n const inputsToSave: string[] = gradConfig.inputsToSave || [];\n const outputsToSave: boolean[] = gradConfig.outputsToSave || [];\n\n // If saveAllInputs is true, all inputs will be saved. Otherwise, inputs\n // specified in inputsToSave will be saved.\n let inputTensorsToSave: Tensor[];\n if (gradConfig.saveAllInputs) {\n util.assert(\n Array.isArray(inputs),\n () => 'saveAllInputs is true, expected inputs to be an array.');\n\n inputTensorsToSave = Object.keys(inputs).map((key) => inputs[key]);\n } else {\n inputTensorsToSave = inputsToSave.map((inputName) => inputs[inputName]);\n }\n\n const outputTensorsToSave: Tensor[] =\n outputs.filter((_, i) => outputsToSave[i]);\n\n return inputTensorsToSave.concat(outputTensorsToSave);\n }\n // We return an empty list rather than throw an error because the kernel we\n // are looking up may not actually be relevant to backproping through the\n // overall function\n //\n // See 'does not error if irrelevant (pruned) ops are missing grads' test\n // in gradients_test.ts for an example.\n return [];\n }\n\n /**\n * Internal method used by public APIs for tensor creation. Makes a new\n * tensor with the provided shape, dtype and values. It always\n * creates a new data id and writes the values to the underlying backend.\n */\n makeTensor(\n values: DataValues, shape: number[], dtype: DataType,\n backend?: KernelBackend): Tensor {\n if (values == null) {\n throw new Error('Values passed to engine.makeTensor() are null');\n }\n dtype = dtype || 'float32';\n backend = backend || this.backend;\n let backendVals = values as BackendValues;\n if (dtype === 'string' && util.isString(values[0])) {\n backendVals = (values as string[]).map(d => util.encodeString(d));\n }\n const dataId = backend.write(backendVals, shape, dtype);\n const t = new Tensor(shape, dtype, dataId, this.nextTensorId());\n this.trackTensor(t, backend);\n\n // Count bytes for string tensors.\n if (dtype === 'string') {\n const info = this.state.tensorInfo.get(dataId);\n const newBytes = bytesFromStringArray(backendVals as Uint8Array[]);\n this.state.numBytes += newBytes - info.bytes;\n info.bytes = newBytes;\n }\n return t;\n }\n\n /**\n * Internal method used by backends. Makes a new tensor\n * that is a wrapper around an existing data id. It doesn't create\n * a new data id, only increments the ref count used in memory tracking.\n */\n makeTensorFromDataId(\n dataId: DataId, shape: number[], dtype: DataType,\n backend?: KernelBackend): Tensor {\n dtype = dtype || 'float32';\n const t = new Tensor(shape, dtype, dataId, this.nextTensorId());\n this.trackTensor(t, backend);\n return t;\n }\n\n makeVariable(\n initialValue: Tensor, trainable = true, name?: string,\n dtype?: DataType): Variable {\n name = name || this.nextVariableId().toString();\n if (dtype != null && dtype !== initialValue.dtype) {\n initialValue = initialValue.cast(dtype);\n }\n const v = new Variable(initialValue, trainable, name, this.nextTensorId());\n if (this.state.registeredVariables[v.name] != null) {\n throw new Error(`Variable with name ${v.name} was already registered`);\n }\n this.state.registeredVariables[v.name] = v;\n this.incRef(v, this.backend);\n return v;\n }\n\n trackTensor(a: Tensor, backend: KernelBackend): void {\n this.state.numTensors++;\n if (a.dtype === 'string') {\n this.state.numStringTensors++;\n }\n // Bytes for complex numbers are counted by their components. Bytes for\n // string tensors are counted when writing values.\n let bytes = 0;\n if (a.dtype !== 'complex64' && a.dtype !== 'string') {\n bytes = a.size * util.bytesPerElement(a.dtype);\n }\n this.state.numBytes += bytes;\n\n if (!this.state.tensorInfo.has(a.dataId)) {\n this.state.numDataBuffers++;\n this.state.tensorInfo.set(a.dataId, {\n backend: backend || this.backend,\n dtype: a.dtype,\n shape: a.shape,\n bytes\n });\n }\n\n if (!(a instanceof Variable)) {\n this.track(a);\n }\n }\n\n // Track the tensor by dataId and increase the refCount for the dataId in the\n // backend.\n // TODO(pyu10055): This is currently used by makeVariable method, to increase\n // refCount on the backend for the dataId. It can potentially be replaced with\n // Identity op indead of calling backend directly.\n incRef(a: Tensor, backend: KernelBackend): void {\n this.trackTensor(a, backend);\n this.backend.incRef(a.dataId);\n }\n\n removeDataId(dataId: DataId, backend: KernelBackend) {\n if (this.state.tensorInfo.has(dataId) &&\n this.state.tensorInfo.get(dataId).backend === backend) {\n this.state.tensorInfo.delete(dataId);\n this.state.numDataBuffers--;\n }\n }\n disposeTensor(a: Tensor): void {\n if (!this.state.tensorInfo.has(a.dataId)) {\n return;\n }\n const info = this.state.tensorInfo.get(a.dataId);\n\n this.state.numTensors--;\n if (a.dtype === 'string') {\n this.state.numStringTensors--;\n this.state.numBytes -= info.bytes;\n }\n // Don't count bytes for complex numbers as they are counted by their\n // components.\n if (a.dtype !== 'complex64' && a.dtype !== 'string') {\n const bytes = a.size * util.bytesPerElement(a.dtype);\n this.state.numBytes -= bytes;\n }\n\n // Remove the reference to dataId if backend dispose the data successfully\n if (info.backend.disposeData(a.dataId)) {\n this.removeDataId(a.dataId, info.backend);\n }\n\n // TODO(nsthorat): Construct an error and save the stack trace for\n // debugging when in debug mode. Creating a stack trace is too expensive\n // to do unconditionally.\n }\n\n disposeVariables(): void {\n for (const varName in this.state.registeredVariables) {\n const v = this.state.registeredVariables[varName];\n this.disposeVariable(v);\n }\n }\n\n disposeVariable(v: Variable): void {\n this.disposeTensor(v);\n if (this.state.registeredVariables[v.name] != null) {\n delete this.state.registeredVariables[v.name];\n }\n }\n\n memory(): MemoryInfo {\n const info = this.backend.memory() as MemoryInfo;\n info.numTensors = this.state.numTensors;\n info.numDataBuffers = this.state.numDataBuffers;\n info.numBytes = this.state.numBytes;\n if (this.state.numStringTensors > 0) {\n info.unreliable = true;\n if (info.reasons == null) {\n info.reasons = [];\n }\n info.reasons.push(\n 'Memory usage by string tensors is approximate ' +\n '(2 bytes per character)');\n }\n return info;\n }\n\n async profile(query: () => (TensorContainer | Promise)):\n Promise {\n this.state.profiling = true;\n\n const startBytes = this.state.numBytes;\n const startNumTensors = this.state.numTensors;\n\n this.state.activeProfile.kernels = [];\n this.state.activeProfile.result = await query();\n\n this.state.profiling = false;\n\n this.state.activeProfile.peakBytes = Math.max(\n ...this.state.activeProfile.kernels.map(d => d.totalBytesSnapshot));\n this.state.activeProfile.newBytes = this.state.numBytes - startBytes;\n this.state.activeProfile.newTensors =\n this.state.numTensors - startNumTensors;\n for (const kernel of this.state.activeProfile.kernels) {\n kernel.kernelTimeMs = await kernel.kernelTimeMs;\n kernel.extraInfo = await kernel.extraInfo;\n }\n return this.state.activeProfile;\n }\n\n isTapeOn(): boolean {\n return this.state.gradientDepth > 0 && this.state.kernelDepth === 0;\n }\n\n private addTapeNode(\n kernelName: string, inputs: NamedTensorMap, outputs: Tensor[],\n gradientsFunc: GradFunc, saved: Tensor[], attrs: NamedAttrMap): void {\n const tapeNode: TapeNode =\n {id: this.state.nextTapeNodeId++, kernelName, inputs, outputs, saved};\n\n const gradConfig = getGradient(kernelName);\n if (gradConfig != null) {\n gradientsFunc = gradConfig.gradFunc;\n }\n if (gradientsFunc != null) {\n tapeNode.gradient = (dys: Tensor[]) => {\n // TODO(smilkov): To optimize back-prop, pass dys that are not used in\n // the backprop graph to the user as null instead of zeros\n dys = dys.map((dy, i) => {\n if (dy == null) {\n const output = outputs[i];\n const vals = util.makeZerosTypedArray(output.size, output.dtype);\n return this.makeTensor(vals, output.shape, output.dtype);\n }\n return dy;\n });\n // Grad functions of ops with single outputs expect a dy, while ops\n // with multiple outputs expect dys (array of dy).\n return gradientsFunc(dys.length > 1 ? dys : dys[0], saved, attrs);\n };\n }\n this.state.activeTape.push(tapeNode);\n }\n\n keep(result: T): T {\n result.kept = true;\n return result;\n }\n\n private startTape() {\n if (this.state.gradientDepth === 0) {\n this.state.activeTape = [];\n }\n this.state.gradientDepth++;\n }\n\n private endTape() {\n this.state.gradientDepth--;\n }\n\n /**\n * Start a scope. Use this with endScope() to achieve the same functionality\n * as scope() without the need for a function closure.\n */\n startScope(name?: string) {\n const scopeInfo: ScopeState = {\n track: [],\n name: 'unnamed scope',\n id: this.state.nextScopeId++\n };\n if (name) {\n scopeInfo.name = name;\n }\n this.state.scopeStack.push(scopeInfo);\n this.state.activeScope = scopeInfo;\n }\n\n /**\n * End a scope. Use this with startScope() to achieve the same functionality\n * as scope() without the need for a function closure.\n */\n endScope(result?: TensorContainer) {\n const tensorsToTrackInParent = getTensorsInContainer(result);\n const tensorsToTrackInParentSet =\n new Set(tensorsToTrackInParent.map(t => t.id));\n\n // Dispose the arrays tracked in this scope.\n for (let i = 0; i < this.state.activeScope.track.length; i++) {\n const tensor = this.state.activeScope.track[i];\n if (!tensor.kept && !tensorsToTrackInParentSet.has(tensor.id)) {\n tensor.dispose();\n }\n }\n\n const oldScope = this.state.scopeStack.pop();\n this.state.activeScope = this.state.scopeStack.length === 0 ?\n null :\n this.state.scopeStack[this.state.scopeStack.length - 1];\n\n // Track the current result in the parent scope.\n tensorsToTrackInParent.forEach(tensor => {\n // Only track the tensor if was allocated in the inner scope and is not\n // globally kept.\n if (!tensor.kept && tensor.scopeId === oldScope.id) {\n this.track(tensor);\n }\n });\n }\n\n /**\n * Returns gradients of `f` with respect to each of the `xs`. The gradients\n * returned are of the same length as `xs`, but some might be null if `f`\n * was not a function of that `x`. It also takes optional dy to multiply the\n * gradient, which defaults to `1`.\n */\n gradients(\n f: () => T, xs: Tensor[], dy?: T,\n allowNoGradients = false): {value: T, grads: Tensor[]} {\n util.assert(\n xs.length > 0, () => 'gradients() received an empty list of xs.');\n if (dy != null && dy.dtype !== 'float32') {\n throw new Error(`dy must have 'float32' dtype, but has '${dy.dtype}'`);\n }\n\n const y = this.scopedRun(\n () => this.startTape(), () => this.endTape(),\n () => this.tidy('forward', f));\n\n util.assert(\n y instanceof Tensor,\n () => 'The result y returned by f() must be a tensor.');\n // Filter out the nodes that don't connect x => y.\n const filteredTape = getFilteredNodesXToY(this.state.activeTape, xs, y);\n if (!allowNoGradients && filteredTape.length === 0 && xs.length > 0) {\n throw new Error(\n 'Cannot compute gradient of y=f(x) with respect to x. Make sure ' +\n 'that the f you passed encloses all operations that lead from x ' +\n 'to y.');\n }\n\n return this.tidy('backward', () => {\n const accumulatedGradientMap: {[tensorId: number]: Tensor} = {};\n accumulatedGradientMap[y.id] = (dy == null) ? ones(y.shape) : dy;\n\n // Backprop gradients through the filtered nodes.\n backpropagateGradients(\n accumulatedGradientMap, filteredTape,\n // Pass the tidy function to avoid circular dep with `tape.ts`.\n f => this.tidy(f as ScopeFn),\n // Pass an add function to avoide a circular dep with `tape.ts`.\n add);\n const grads = xs.map(x => accumulatedGradientMap[x.id]);\n\n if (this.state.gradientDepth === 0) {\n // This means that we are not computing higher-order gradients\n // and can clean up the tape.\n this.state.activeTape.forEach(node => {\n for (const tensor of node.saved) {\n tensor.dispose();\n }\n });\n this.state.activeTape = null;\n }\n return {value: y, grads};\n });\n }\n\n customGrad(f: CustomGradientFunc):\n (...args: Array) => T {\n util.assert(\n util.isFunction(f),\n () => 'The f passed in customGrad(f) must be a function.');\n return (...inputs: Tensor[]): T => {\n util.assert(\n inputs.every(t => t instanceof Tensor),\n () => 'The args passed in customGrad(f)(x1, x2,...) must all be ' +\n 'tensors');\n\n let res: {\n value: T,\n gradFunc: (dy: T, saved: Tensor[]) => Tensor | Tensor[],\n };\n const inputMap: NamedTensorMap = {};\n inputs.forEach((input, i) => {\n inputMap[i] = input;\n });\n\n const forwardFunc: ForwardFunc = (_, save) => {\n res = f(...[...inputs, save]);\n util.assert(\n res.value instanceof Tensor,\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.value` is a tensor');\n util.assert(\n util.isFunction(res.gradFunc),\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.gradFunc` is a function.');\n return res.value;\n };\n\n const backwardsFunc = (dy: T, saved: Tensor[]) => {\n const gradRes = res.gradFunc(dy, saved);\n const grads: Tensor[] = Array.isArray(gradRes) ? gradRes : [gradRes];\n util.assert(\n grads.length === inputs.length,\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.gradFunc` is a function that returns ' +\n 'the same number of tensors as inputs passed to f(...).');\n util.assert(\n grads.every(t => t instanceof Tensor),\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.gradFunc` is a function that returns ' +\n 'a list of only tensors.');\n const gradMap: {[key: string]: () => Tensor} = {};\n grads.forEach((grad, i) => {\n gradMap[i] = () => grad;\n });\n return gradMap;\n };\n\n return this.runKernelFunc({\n forwardFunc,\n backwardsFunc,\n inputs: inputMap,\n });\n };\n }\n\n readSync(dataId: DataId): BackendValues {\n // Route the read to the correct backend.\n const info = this.state.tensorInfo.get(dataId);\n return info.backend.readSync(dataId);\n }\n read(dataId: DataId): Promise {\n // Route the read to the correct backend.\n const info = this.state.tensorInfo.get(dataId);\n return info.backend.read(dataId);\n }\n\n async time(query: () => void): Promise {\n const start = now();\n const timingInfo = await this.backend.time(query) as TimingInfo;\n timingInfo.wallMs = now() - start;\n return timingInfo;\n }\n\n /**\n * Tracks a Tensor in the current scope to be automatically cleaned up\n * when the current scope ends, and returns the value.\n *\n * @param result The Tensor to track in the current scope.\n */\n private track(result: T): T {\n if (this.state.activeScope != null) {\n result.scopeId = this.state.activeScope.id;\n this.state.activeScope.track.push(result);\n }\n\n return result;\n }\n\n get registeredVariables(): NamedVariableMap {\n return this.state.registeredVariables;\n }\n\n /**\n * Resets the engine state. Removes all backends but does not remove\n * registered backend factories.\n */\n reset(): void {\n // Make any pending promise obsolete.\n this.pendingBackendInitId++;\n\n this.state.dispose();\n this.ENV.reset();\n this.state = new EngineState();\n\n for (const backendName in this.registry) {\n this.disposeRegisteredKernels(backendName);\n this.registry[backendName].dispose();\n delete this.registry[backendName];\n }\n this.backendName = null;\n this.backendInstance = null;\n this.pendingBackendInit = null;\n }\n}\n\nfunction ones(shape: number[]): Tensor {\n const values = makeOnesTypedArray(sizeFromShape(shape), 'float32');\n return ENGINE.makeTensor(values, shape, 'float32');\n}\n\nexport function getOrMakeEngine(): Engine {\n const ns = getGlobalNamespace() as {} as {_tfengine: Engine};\n if (ns._tfengine == null) {\n const environment = new Environment(ns);\n ns._tfengine = new Engine(environment);\n }\n setEnvironmentGlobal(ns._tfengine.ENV);\n\n // Tell the current tensor interface that the global engine is responsible\n // for tracking.\n setTensorTracker(() => ns._tfengine);\n return ns._tfengine;\n}\n\nexport const ENGINE = getOrMakeEngine();\n\n/**\n * A implementation of the add op for use within engine and tape.\n *\n * This allows us to avoid a circular dependency between add.ts and engine.\n * It is exported to be available in tape tests.\n */\nexport function add(a: Tensor, b: Tensor): Tensor {\n // We duplicate Add here to avoid a circular dependency with add.ts.\n const inputs = {a, b};\n return ENGINE.runKernel(Add, inputs as {} as NamedTensorMap);\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// tslint:disable-next-line:no-any\nfunction _isNavigatorDefined(): boolean {\n return typeof navigator !== 'undefined' && navigator != null;\n}\n\nexport function isMobile(nav?: Navigator): boolean {\n if (nav || _isNavigatorDefined()) {\n if (!nav) {\n nav = navigator;\n }\n if (nav.product === 'ReactNative') {\n return true;\n }\n\n // tslint:disable-next-line:no-any\n const a = nav.userAgent || nav.vendor || (window as any).opera;\n // tslint:disable-next-line:max-line-length\n return /(android|bb\\d+|meego).+mobile|avantgo|bada\\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i\n .test(a) ||\n // tslint:disable-next-line:max-line-length\n /1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\\-(n|u)|c55\\/|capi|ccwa|cdm\\-|cell|chtm|cldc|cmd\\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\\-s|devi|dica|dmob|do(c|p)o|ds(12|\\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\\-|_)|g1 u|g560|gene|gf\\-5|g\\-mo|go(\\.w|od)|gr(ad|un)|haie|hcit|hd\\-(m|p|t)|hei\\-|hi(pt|ta)|hp( i|ip)|hs\\-c|ht(c(\\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\\-(20|go|ma)|i230|iac( |\\-|\\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\\/)|klon|kpt |kwc\\-|kyo(c|k)|le(no|xi)|lg( g|\\/(k|l|u)|50|54|\\-[a-w])|libw|lynx|m1\\-w|m3ga|m50\\/|ma(te|ui|xo)|mc(01|21|ca)|m\\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\\-2|po(ck|rt|se)|prox|psio|pt\\-g|qa\\-a|qc(07|12|21|32|60|\\-[2-7]|i\\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\\-|oo|p\\-)|sdk\\/|se(c(\\-|0|1)|47|mc|nd|ri)|sgh\\-|shar|sie(\\-|m)|sk\\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\\-|v\\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\\-|tdg\\-|tel(i|m)|tim\\-|t\\-mo|to(pl|sh)|ts(70|m\\-|m3|m5)|tx\\-9|up(\\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\\-|your|zeto|zte\\-/i\n .test(a.substr(0, 4));\n }\n return false;\n}\n\nexport function isBrowser(): boolean {\n return (typeof window !== 'undefined' && window.document != null) ||\n //@ts-ignore\n (typeof WorkerGlobalScope !== 'undefined');\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport './engine';\n\nimport * as device_util from './device_util';\nimport {env} from './environment';\n\nconst ENV = env();\n\n/**\n * This file contains environment-related flag registrations.\n */\n\n/** Whether to enable debug mode. */\nENV.registerFlag('DEBUG', () => false, debugValue => {\n if (debugValue) {\n console.warn(\n 'Debugging mode is ON. The output of every math call will ' +\n 'be downloaded to CPU and checked for NaNs. ' +\n 'This significantly impacts performance.');\n }\n});\n\n/** Whether we are in a browser (as versus, say, node.js) environment. */\nENV.registerFlag('IS_BROWSER', () => device_util.isBrowser());\n\n/** Whether we are in a browser (as versus, say, node.js) environment. */\nENV.registerFlag(\n 'IS_NODE',\n () => (typeof process !== 'undefined') &&\n (typeof process.versions !== 'undefined') &&\n (typeof process.versions.node !== 'undefined'));\n\n/** Whether this browser is Chrome. */\nENV.registerFlag(\n 'IS_CHROME',\n () => typeof navigator !== 'undefined' && navigator != null &&\n navigator.userAgent != null && /Chrome/.test(navigator.userAgent) &&\n /Google Inc/.test(navigator.vendor));\n\n/**\n * True when the environment is \"production\" where we disable safety checks\n * to gain performance.\n */\nENV.registerFlag('PROD', () => false);\n\n/**\n * Whether to do sanity checks when inferring a shape from user-provided\n * values, used when creating a new tensor.\n */\nENV.registerFlag(\n 'TENSORLIKE_CHECK_SHAPE_CONSISTENCY', () => ENV.getBool('DEBUG'));\n\n/** Whether deprecation warnings are enabled. */\nENV.registerFlag('DEPRECATION_WARNINGS_ENABLED', () => true);\n\n/** True if running unit tests. */\nENV.registerFlag('IS_TEST', () => false);\n\n/** Whether to check computation result for errors. */\nENV.registerFlag('CHECK_COMPUTATION_FOR_ERRORS', () => true);\n\n/** Whether the backend needs to wrap input to imageBitmap. */\nENV.registerFlag('WRAP_TO_IMAGEBITMAP', () => false);\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from './engine';\nimport {env} from './environment';\nimport {Tensor} from './tensor';\nimport {DataType, TensorLike} from './types';\nimport {assert, flatten, inferDtype, isTypedArray, toTypedArray} from './util';\n\nexport function inferShape(val: TensorLike, dtype?: DataType): number[] {\n let firstElem: typeof val = val;\n\n if (isTypedArray(val)) {\n return dtype === 'string' ? [] : [val.length];\n }\n if (!Array.isArray(val)) {\n return []; // Scalar.\n }\n const shape: number[] = [];\n\n while (Array.isArray(firstElem) ||\n isTypedArray(firstElem) && dtype !== 'string') {\n shape.push(firstElem.length);\n firstElem = firstElem[0];\n }\n if (Array.isArray(val) &&\n env().getBool('TENSORLIKE_CHECK_SHAPE_CONSISTENCY')) {\n deepAssertShapeConsistency(val, shape, []);\n }\n\n return shape;\n}\n\nfunction deepAssertShapeConsistency(\n val: TensorLike, shape: number[], indices: number[]) {\n indices = indices || [];\n if (!(Array.isArray(val)) && !isTypedArray(val)) {\n assert(\n shape.length === 0,\n () => `Element arr[${indices.join('][')}] is a primitive, ` +\n `but should be an array/TypedArray of ${shape[0]} elements`);\n return;\n }\n assert(\n shape.length > 0,\n () => `Element arr[${indices.join('][')}] should be a primitive, ` +\n `but is an array of ${val.length} elements`);\n assert(\n val.length === shape[0],\n () => `Element arr[${indices.join('][')}] should have ${shape[0]} ` +\n `elements, but has ${val.length} elements`);\n const subShape = shape.slice(1);\n for (let i = 0; i < val.length; ++i) {\n deepAssertShapeConsistency(val[i], subShape, indices.concat(i));\n }\n}\n\nfunction assertDtype(\n expectedDtype: DataType|'numeric'|'string_or_numeric',\n actualDType: DataType, argName: string, functionName: string) {\n if (expectedDtype === 'string_or_numeric') {\n return;\n }\n if (expectedDtype == null) {\n throw new Error(`Expected dtype cannot be null.`);\n }\n if (expectedDtype !== 'numeric' && expectedDtype !== actualDType ||\n expectedDtype === 'numeric' && actualDType === 'string') {\n throw new Error(\n `Argument '${argName}' passed to '${functionName}' must ` +\n `be ${expectedDtype} tensor, but got ${actualDType} tensor`);\n }\n}\n\nexport function convertToTensor(\n x: T|TensorLike, argName: string, functionName: string,\n parseAsDtype: DataType|'numeric'|'string_or_numeric' = 'numeric'): T {\n if (x instanceof Tensor) {\n assertDtype(parseAsDtype, x.dtype, argName, functionName);\n return x;\n }\n let inferredDtype = inferDtype(x);\n // If the user expects a bool/int/float, use that info to update the\n // inferredDtype when it is not a string.\n if (inferredDtype !== 'string' &&\n ['bool', 'int32', 'float32'].indexOf(parseAsDtype) >= 0) {\n inferredDtype = parseAsDtype as DataType;\n }\n assertDtype(parseAsDtype, inferredDtype, argName, functionName);\n\n if ((x == null) ||\n (!isTypedArray(x) && !Array.isArray(x) && typeof x !== 'number' &&\n typeof x !== 'boolean' && typeof x !== 'string')) {\n const type = x == null ? 'null' : (x as {}).constructor.name;\n throw new Error(\n `Argument '${argName}' passed to '${functionName}' must be a ` +\n `Tensor or TensorLike, but got '${type}'`);\n }\n const inferredShape = inferShape(x, inferredDtype);\n if (!isTypedArray(x) && !Array.isArray(x)) {\n x = [x] as number[];\n }\n const skipTypedArray = true;\n const values = inferredDtype !== 'string' ?\n toTypedArray(x, inferredDtype as DataType) :\n flatten(x as string[], [], skipTypedArray) as string[];\n return ENGINE.makeTensor(values, inferredShape, inferredDtype) as T;\n}\n\nexport function convertToTensorArray(\n arg: Array, argName: string, functionName: string,\n parseAsDtype: DataType|'numeric'|'string_or_numeric' = 'numeric'): T[] {\n if (!Array.isArray(arg)) {\n throw new Error(\n `Argument ${argName} passed to ${functionName} must be a ` +\n '`Tensor[]` or `TensorLike[]`');\n }\n const tensors = arg as T[];\n return tensors.map(\n (t, i) =>\n convertToTensor(t, `${argName}[${i}]`, functionName, parseAsDtype));\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {isPromise} from '../util';\n\nexport const OP_SCOPE_SUFFIX = '__op';\n\n/**\n * Used for wrapping functions that perform math operations on\n * Tensors. The function will be wrapped in a named scope that cleans all\n * memory usage after the function is done.\n */\nexport function op(f: {[name: string]: T}): T {\n const keys = Object.keys(f);\n if (keys.length !== 1) {\n throw new Error(\n `Please provide an object with a single key ` +\n `(operation name) mapping to a function. Got an object with ` +\n `${keys.length} keys.`);\n }\n\n let opName = keys[0];\n const fn = f[opName];\n\n // Strip the underscore from the end of the function name.\n if (opName.endsWith('_')) {\n opName = opName.substring(0, opName.length - 1);\n }\n\n // add an __op suffix to distinguish ops from kernels in tf.profile\n opName = opName + OP_SCOPE_SUFFIX;\n\n // tslint:disable-next-line:no-any\n const f2 = (...args: any[]) => {\n ENGINE.startScope(opName);\n try {\n const result = fn(...args);\n if (isPromise(result)) {\n console.error('Cannot return a Promise inside of tidy.');\n }\n ENGINE.endScope(result);\n return result;\n } catch (ex) {\n ENGINE.endScope(null);\n throw ex;\n }\n };\n Object.defineProperty(f2, 'name', {value: opName, configurable: true});\n\n // tslint:disable-next-line:no-any\n return f2 as any as T;\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {Complex, ComplexInputs} from '../kernel_names';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {op} from './operation';\n\n/**\n * Converts two real numbers to a complex number.\n *\n * Given a tensor `real` representing the real part of a complex number, and a\n * tensor `imag` representing the imaginary part of a complex number, this\n * operation returns complex numbers elementwise of the form [r0, i0, r1, i1],\n * where r represents the real part and i represents the imag part.\n *\n * The input tensors real and imag must have the same shape.\n *\n * ```js\n * const real = tf.tensor1d([2.25, 3.25]);\n * const imag = tf.tensor1d([4.75, 5.75]);\n * const complex = tf.complex(real, imag);\n *\n * complex.print();\n * ```\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nfunction complex_(real: T|TensorLike, imag: T|TensorLike): T {\n const $real = convertToTensor(real, 'real', 'complex');\n const $imag = convertToTensor(imag, 'imag', 'complex');\n util.assertShapesMatch(\n $real.shape, $imag.shape,\n `real and imag shapes, ${$real.shape} and ${$imag.shape}, ` +\n `must match in call to tf.complex().`);\n\n const inputs: ComplexInputs = {real: $real, imag: $imag};\n return ENGINE.runKernel(Complex, inputs as {} as NamedTensorMap);\n}\n\nexport const complex = op({complex_});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {Tensor} from '../tensor';\nimport {TensorLike, TypedArray} from '../types';\nimport {DataType} from '../types';\nimport {assert, assertNonNegativeIntegerDimensions, flatten, inferDtype, isTypedArray, sizeFromShape, toTypedArray} from '../util';\n\n/** This is shared code across all tensor creation methods. */\nexport function makeTensor(\n values: TensorLike, shape: number[], inferredShape: number[],\n dtype?: DataType): Tensor {\n if (dtype == null) {\n dtype = inferDtype(values);\n }\n if (dtype === 'complex64') {\n throw new Error(\n `Cannot construct a complex64 tensor directly. ` +\n `Please use tf.complex(real, imag).`);\n }\n if (!isTypedArray(values) && !Array.isArray(values) &&\n typeof values !== 'number' && typeof values !== 'boolean' &&\n typeof values !== 'string') {\n throw new Error(\n 'values passed to tensor(values) must be a number/boolean/string or ' +\n 'an array of numbers/booleans/strings, or a TypedArray');\n }\n if (shape != null) {\n assertNonNegativeIntegerDimensions(shape);\n\n const providedSize = sizeFromShape(shape);\n const inferredSize = sizeFromShape(inferredShape);\n assert(\n providedSize === inferredSize,\n () =>\n `Based on the provided shape, [${shape}], the tensor should have ` +\n `${providedSize} values but has ${inferredSize}`);\n\n for (let i = 0; i < inferredShape.length; ++i) {\n const inferred = inferredShape[i];\n const flatDimsDontMatch = i === inferredShape.length - 1 ?\n inferred !== sizeFromShape(shape.slice(i)) :\n true;\n assert(\n inferredShape[i] === shape[i] || !flatDimsDontMatch,\n () => `Error creating a new Tensor. Inferred shape ` +\n `(${inferredShape}) does not match the provided ` +\n `shape (${shape}). `);\n }\n }\n\n if (!isTypedArray(values) && !Array.isArray(values)) {\n values = [values] as number[];\n }\n\n shape = shape || inferredShape;\n values = dtype !== 'string' ?\n toTypedArray(values, dtype) :\n flatten(values as string[], [], true) as string[];\n return ENGINE.makeTensor(values as TypedArray, shape, dtype);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from '../tensor';\nimport {inferShape} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport {DataType, Rank, ShapeMap} from '../types';\n\nimport {makeTensor} from './tensor_ops_util';\n\n/**\n * Creates a `tf.Tensor` with the provided values, shape and dtype.\n *\n * ```js\n * // Pass an array of values to create a vector.\n * tf.tensor([1, 2, 3, 4]).print();\n * ```\n *\n * ```js\n * // Pass a nested array of values to make a matrix or a higher\n * // dimensional tensor.\n * tf.tensor([[1, 2], [3, 4]]).print();\n * ```\n *\n * ```js\n * // Pass a flat array and specify a shape yourself.\n * tf.tensor([1, 2, 3, 4], [2, 2]).print();\n * ```\n *\n * @param values The values of the tensor. Can be nested array of numbers,\n * or a flat array, or a `TypedArray`. If the values are strings,\n * they will be encoded as utf-8 and kept as `Uint8Array[]`.\n * @param shape The shape of the tensor. Optional. If not provided,\n * it is inferred from `values`.\n * @param dtype The data type.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nexport function tensor(\n values: TensorLike, shape?: ShapeMap[R], dtype?: DataType): Tensor {\n const inferredShape = inferShape(values, dtype);\n return makeTensor(values, shape, inferredShape, dtype) as Tensor;\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/* Type definitions for exporting and importing of models. */\n\n/**\n * A map from Tensor dtype to number of bytes per element of the Tensor.\n */\nexport const DTYPE_VALUE_SIZE_MAP: {[dtype: string]: number} = {\n 'float32': 4,\n 'float16': 2,\n 'int32': 4,\n 'uint16': 2,\n 'uint8': 1,\n 'bool': 1,\n 'complex64': 8\n};\n\n/**\n * A weight manifest.\n *\n * The weight manifest consists of an ordered list of weight-manifest groups.\n * Each weight-manifest group (\"group\" for short hereafter) consists of a\n * number of weight values stored in a number of paths.\n * See the documentation of `WeightManifestGroupConfig` below for more details.\n */\nexport declare type WeightsManifestConfig = WeightsManifestGroupConfig[];\n\n/**\n * A weight-manifest group.\n *\n * Consists of an ordered list of weight values encoded in binary format,\n * stored in an ordered list of paths.\n */\nexport declare interface WeightsManifestGroupConfig {\n /**\n * An ordered list of paths.\n *\n * Paths are intentionally abstract in order to be general. For example, they\n * can be relative URL paths or relative paths on the file system.\n */\n paths: string[];\n\n /**\n * Specifications of the weights stored in the paths.\n */\n weights: WeightsManifestEntry[];\n}\n\n/**\n * Group to which the weight belongs.\n *\n * - 'optimizer': Weight from a stateful optimizer.\n */\nexport type WeightGroup = 'model'|'optimizer';\n\n/**\n * An entry in the weight manifest.\n *\n * The entry contains specification of a weight.\n */\nexport declare interface WeightsManifestEntry {\n /**\n * Name of the weight, e.g., 'Dense_1/bias'\n */\n name: string;\n\n /**\n * Shape of the weight.\n */\n shape: number[];\n\n /**\n * Data type of the weight.\n */\n dtype: 'float32'|'int32'|'bool'|'string'|'complex64';\n\n /**\n * Type of the weight.\n *\n * Optional.\n *\n * The value 'optimizer' indicates the weight belongs to an optimizer\n * (i.e., used only during model training and not during inference).\n */\n group?: WeightGroup;\n\n /**\n * Information for dequantization of the weight.\n */\n quantization?: {\n scale?: number, // The scaling constant to multiply by.\n min?: number, // The (possibly nudged) minimum weight to add.\n dtype: 'uint16'|'uint8'|'float16' // The dtype of the quantized weights.\n };\n}\n\n/**\n * Options for saving a model.\n * @innamespace io\n */\nexport interface SaveConfig {\n /**\n * Whether to save only the trainable weights of the model, ignoring the\n * non-trainable ones.\n */\n trainableOnly?: boolean;\n\n /**\n * Whether the optimizer will be saved (if exists).\n *\n * Default: `false`.\n */\n includeOptimizer?: boolean;\n}\n\n/**\n * Result of a saving operation.\n */\nexport interface SaveResult {\n /**\n * Information about the model artifacts saved.\n */\n modelArtifactsInfo: ModelArtifactsInfo;\n\n /**\n * HTTP responses from the server that handled the model-saving request (if\n * any). This is applicable only to server-based saving routes.\n */\n responses?: Response[];\n\n /**\n * Error messages and related data (if any).\n */\n errors?: Array<{}|string>;\n}\n\nexport declare interface ModelArtifactsInfo {\n /**\n * Timestamp for when the model is saved.\n */\n dateSaved: Date;\n\n /**\n * TODO (cais,yassogba) consider removing GraphDef as GraphDefs now\n * come in a JSON format and none of our IOHandlers support a non json\n * format. We could conder replacing this with 'Binary' if we want to\n * allow future handlers to save to non json formats (though they will\n * probably want more information than 'Binary').\n * Type of the model topology\n *\n * Type of the model topology\n *\n * Possible values:\n * - JSON: JSON config (human-readable, e.g., Keras JSON).\n * - GraphDef: TensorFlow\n * [GraphDef](https://www.tensorflow.org/extend/tool_developers/#graphdef)\n * protocol buffer (binary).\n */\n modelTopologyType: 'JSON'|'GraphDef';\n\n /**\n * Size of model topology (Keras JSON or GraphDef), in bytes.\n */\n modelTopologyBytes?: number;\n\n /**\n * Size of weight specification or manifest, in bytes.\n */\n weightSpecsBytes?: number;\n\n /**\n * Size of weight value data, in bytes.\n */\n weightDataBytes?: number;\n}\n\n/** Model training configuration. */\nexport declare interface TrainingConfig {\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n // See\n // tslint:disable-next-line:max-line-length\n // https://github.com/tensorflow/tfjs-layers/blob/master/src/keras_format/training_config.ts\n /** Optimizer used for the model training. */\n optimizer_config: {};\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n /** Loss function(s) for the model's output(s). */\n loss: string|string[]|{[key: string]: string};\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n /** Metric function(s) for the model's output(s). */\n metrics?: string[]|{[key: string]: string};\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n weighted_metrics?: string[];\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n sample_weight_mode?: string;\n\n loss_weights?: number[]|{[key: string]: number};\n}\n\n/**\n * The serialized artifacts of a model, including topology and weights.\n *\n * The `modelTopology`, `trainingConfig`, `weightSpecs` and `weightData` fields\n * of this interface are optional, in order to support topology- or weights-only\n * saving and loading.\n *\n * Note this interface is used internally in IOHandlers. For the file format\n * written to disk as `model.json`, see `ModelJSON`.\n */\nexport declare interface ModelArtifacts {\n /**\n * Model topology.\n *\n * For Keras-style `tf.Model`s, this is a JSON object.\n * For TensorFlow-style models (e.g., `SavedModel`), this is the JSON\n * encoding of the `GraphDef` protocol buffer.\n */\n modelTopology?: {}|ArrayBuffer;\n\n /**\n * Serialized configuration for the model's training.\n */\n trainingConfig?: TrainingConfig;\n\n /**\n * Weight specifications.\n *\n * This corresponds to the weightsData below.\n */\n weightSpecs?: WeightsManifestEntry[];\n\n /**\n * Binary buffer for all weight values concatenated in the order specified\n * by `weightSpecs`.\n */\n weightData?: ArrayBuffer;\n\n /**\n * Hard-coded format name for models saved from TensorFlow.js or converted\n * by TensorFlow.js Converter.\n */\n format?: string;\n\n /**\n * What library is responsible for originally generating this artifact.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js v1.0.0'.\n */\n generatedBy?: string;\n\n /**\n * What library or tool is responsible for converting the original model\n * to this format, applicable only if the model is output by a converter.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js Converter v1.0.0'.\n *\n * A value of `null` means the model artifacts are generated without any\n * conversion process (e.g., saved directly from a TensorFlow.js\n * `tf.LayersModel` instance.)\n */\n convertedBy?: string|null;\n\n /**\n * Inputs and outputs signature for saved model.\n */\n signature?: {};\n\n /**\n * User-defined metadata about the model.\n */\n userDefinedMetadata?: {[key: string]: {}};\n\n /**\n * Initializer for the model.\n */\n modelInitializer?: {};\n}\n\n/**\n * The on-disk format of the `model.json` file.\n *\n * TF.js 1.0 always populates the optional fields when writing model.json.\n * Prior versions did not provide those fields.\n */\nexport declare interface ModelJSON {\n /**\n * Model topology.\n *\n * For Keras-style `tf.Model`s, this is a JSON object.\n * For TensorFlow-style models (e.g., `SavedModel`), this is the JSON\n * encoding of the `GraphDef` protocol buffer.\n */\n modelTopology: {};\n\n /** Model training configuration. */\n trainingConfig?: TrainingConfig;\n\n /**\n * Weights manifest.\n *\n * The weights manifest consists of an ordered list of weight-manifest\n * groups. Each weight-manifest group consists of a number of weight values\n * stored in a number of paths. See the documentation of\n * `WeightsManifestConfig` for more details.\n */\n weightsManifest: WeightsManifestConfig;\n\n /**\n * Hard-coded format name for models saved from TensorFlow.js or converted\n * by TensorFlow.js Converter.\n */\n format?: string;\n\n /**\n * What library is responsible for originally generating this artifact.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js v1.0.0'.\n */\n generatedBy?: string;\n\n /**\n * What library or tool is responsible for converting the original model\n * to this format, applicable only if the model is output by a converter.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js Converter v1.0.0'.\n *\n * A value of `null` means the model artifacts are generated without any\n * conversion process (e.g., saved directly from a TensorFlow.js\n * `tf.LayersModel` instance.)\n */\n convertedBy?: string|null;\n\n /**\n * Inputs and outputs signature for saved model.\n */\n signature?: {};\n\n /**\n * User-defined metadata about the model.\n */\n userDefinedMetadata?: {[key: string]: {}};\n\n /**\n * Initializer for the model.\n */\n modelInitializer?: {};\n}\n\n/**\n * Type definition for handlers of loading operations.\n */\nexport type LoadHandler = () => Promise;\n\n/**\n * Type definition for handlers of saving operations.\n */\nexport type SaveHandler = (modelArtifact: ModelArtifacts) =>\n Promise;\n\n/**\n * Interface for a model import/export handler.\n *\n * The `save` and `load` handlers are both optional, in order to allow handlers\n * that support only saving or loading.\n */\n// tslint:disable-next-line:interface-name\nexport interface IOHandler {\n save?: SaveHandler;\n load?: LoadHandler;\n}\n\n/**\n * An interface for the manager of a model store.\n *\n * A model store is defined as a storage medium on which multiple models can\n * be stored. Each stored model has a unique `path` as its identifier.\n * A `ModelStoreManager` for the store allows actions including\n *\n * - Listing the models stored in the store.\n * - Deleting a model from the store.\n */\nexport interface ModelStoreManager {\n /**\n * List all models in the model store.\n *\n * @returns A dictionary mapping paths of existing models to their\n * model artifacts info. Model artifacts info include type of the model's\n * topology, byte sizes of the topology, weights, etc.\n */\n listModels(): Promise<{[path: string]: ModelArtifactsInfo}>;\n\n /**\n * Remove a model specified by `path`.\n *\n * @param path\n * @returns ModelArtifactsInfo of the deleted model (if and only if deletion\n * is successful).\n * @throws Error if deletion fails, e.g., if no model exists at `path`.\n */\n removeModel(path: string): Promise;\n}\n\n/**\n * Callback for the progress of a long-running action such as an HTTP\n * request for a large binary object.\n *\n * `fraction` should be a number in the [0, 1] interval, indicating how\n * much of the action has completed.\n */\nexport type OnProgressCallback = (fraction: number) => void;\n\n/** @innamespace io */\nexport interface LoadOptions {\n /**\n * RequestInit (options) for HTTP requests.\n *\n * For detailed information on the supported fields, see\n * [https://developer.mozilla.org/en-US/docs/Web/API/Request/Request](\n * https://developer.mozilla.org/en-US/docs/Web/API/Request/Request)\n */\n requestInit?: RequestInit;\n\n /**\n * Progress callback.\n */\n onProgress?: OnProgressCallback;\n\n /**\n * A function used to override the `window.fetch` function.\n */\n fetchFunc?: Function;\n\n /**\n * Strict loading model: whether extraneous weights or missing\n * weights should trigger an `Error`.\n *\n * If `true`, require that the provided weights exactly match those\n * required by the layers. `false` means that both extra weights\n * and missing weights will be silently ignored.\n *\n * Default: `true`.\n */\n strict?: boolean;\n\n /**\n * Path prefix for weight files, by default this is calculated from the\n * path of the model JSON file.\n *\n * For instance, if the path to the model JSON file is\n * `http://localhost/foo/model.json`, then the default path prefix will be\n * `http://localhost/foo/`. If a weight file has the path value\n * `group1-shard1of2` in the weight manifest, then the weight file will be\n * loaded from `http://localhost/foo/group1-shard1of2` by default. However,\n * if you provide a `weightPathPrefix` value of\n * `http://localhost/foo/alt-weights`, then the weight file will be loaded\n * from the path `http://localhost/foo/alt-weights/group1-shard1of2` instead.\n */\n weightPathPrefix?: string;\n\n /**\n * Whether the module or model is to be loaded from TF Hub.\n *\n * Setting this to `true` allows passing a TF-Hub module URL, omitting the\n * standard model file name and the query parameters.\n *\n * Default: `false`.\n */\n fromTFHub?: boolean;\n\n /**\n * An async function to convert weight file name to URL. The weight file\n * names are stored in model.json's weightsManifest.paths field. By default we\n * consider weight files are colocated with the model.json file. For example:\n * model.json URL: https://www.google.com/models/1/model.json\n * group1-shard1of1.bin url:\n * https://www.google.com/models/1/group1-shard1of1.bin\n *\n * With this func you can convert the weight file name to any URL.\n */\n weightUrlConverter?: (weightFileName: string) => Promise;\n}\n\n/**\n * Additional options for Platform.fetch\n */\nexport interface RequestDetails {\n /**\n * Is this request for a binary file (as opposed to a json file)\n */\n isBinary?: boolean;\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {complex} from '../ops/complex';\nimport {tensor} from '../ops/tensor';\nimport {NamedTensor, NamedTensorMap} from '../tensor_types';\nimport {TypedArray} from '../types';\nimport {sizeFromShape} from '../util';\n\nimport {DTYPE_VALUE_SIZE_MAP, ModelArtifacts, ModelArtifactsInfo, ModelJSON, WeightGroup, WeightsManifestConfig, WeightsManifestEntry} from './types';\n\n/** Number of bytes reserved for the length of the string. (32bit integer). */\nconst NUM_BYTES_STRING_LENGTH = 4;\n\n/**\n * Encode a map from names to weight values as an ArrayBuffer, along with an\n * `Array` of `WeightsManifestEntry` as specification of the encoded weights.\n *\n * This function does not perform sharding.\n *\n * This function is the reverse of `decodeWeights`.\n *\n * @param tensors A map (\"dict\") from names to tensors.\n * @param group Group to which the weights belong (optional).\n * @returns A `Promise` of\n * - A flat `ArrayBuffer` with all the binary values of the `Tensor`s\n * concatenated.\n * - An `Array` of `WeightManifestEntry`s, carrying information including\n * tensor names, `dtype`s and shapes.\n * @throws Error: on unsupported tensor `dtype`.\n */\nexport async function encodeWeights(\n tensors: NamedTensorMap|NamedTensor[], group?: WeightGroup):\n Promise<{data: ArrayBuffer, specs: WeightsManifestEntry[]}> {\n // TODO(adarob, cais): Support quantization.\n const specs: WeightsManifestEntry[] = [];\n const dataPromises: Array> = [];\n\n const names: string[] = Array.isArray(tensors) ?\n tensors.map(tensor => tensor.name) :\n Object.keys(tensors);\n\n for (let i = 0; i < names.length; ++i) {\n const name = names[i];\n const t = Array.isArray(tensors) ? tensors[i].tensor : tensors[name];\n if (t.dtype !== 'float32' && t.dtype !== 'int32' && t.dtype !== 'bool' &&\n t.dtype !== 'string' && t.dtype !== 'complex64') {\n throw new Error(`Unsupported dtype in weight '${name}': ${t.dtype}`);\n }\n const spec: WeightsManifestEntry = {name, shape: t.shape, dtype: t.dtype};\n if (t.dtype === 'string') {\n const utf8bytes = new Promise(async resolve => {\n const vals = await t.bytes() as Uint8Array[];\n const totalNumBytes = vals.reduce((p, c) => p + c.length, 0) +\n NUM_BYTES_STRING_LENGTH * vals.length;\n const bytes = new Uint8Array(totalNumBytes);\n let offset = 0;\n for (let i = 0; i < vals.length; i++) {\n const val = vals[i];\n const bytesOfLength =\n new Uint8Array(new Uint32Array([val.length]).buffer);\n bytes.set(bytesOfLength, offset);\n offset += NUM_BYTES_STRING_LENGTH;\n bytes.set(val, offset);\n offset += val.length;\n }\n resolve(bytes);\n });\n dataPromises.push(utf8bytes);\n } else {\n dataPromises.push(t.data());\n }\n if (group != null) {\n spec.group = group;\n }\n specs.push(spec);\n }\n\n const tensorValues = await Promise.all(dataPromises);\n return {data: concatenateTypedArrays(tensorValues), specs};\n}\n\n/**\n * Decode flat ArrayBuffer as weights.\n *\n * This function does not handle sharding.\n *\n * This function is the reverse of `encodeWeights`.\n *\n * @param buffer A flat ArrayBuffer carrying the binary values of the tensors\n * concatenated in the order specified in `specs`.\n * @param specs Specifications of the names, dtypes and shapes of the tensors\n * whose value are encoded by `buffer`.\n * @return A map from tensor name to tensor value, with the names corresponding\n * to names in `specs`.\n * @throws Error, if any of the tensors has unsupported dtype.\n */\nexport function decodeWeights(\n buffer: ArrayBuffer, specs: WeightsManifestEntry[]): NamedTensorMap {\n // TODO(adarob, cais): Support quantization.\n const out: NamedTensorMap = {};\n let float16Decode: (buffer: Uint16Array) => Float32Array | undefined;\n let offset = 0;\n for (const spec of specs) {\n const name = spec.name;\n const dtype = spec.dtype;\n const shape = spec.shape;\n const size = sizeFromShape(shape);\n let values: TypedArray|string[]|Uint8Array[];\n\n if ('quantization' in spec) {\n const quantization = spec.quantization;\n if (quantization.dtype === 'uint8' || quantization.dtype === 'uint16') {\n if (!('min' in quantization && 'scale' in quantization)) {\n throw new Error(\n `Weight ${spec.name} with quantization ${quantization.dtype} ` +\n `doesn't have corresponding metadata min and scale.`);\n }\n } else if (quantization.dtype === 'float16') {\n if (dtype !== 'float32') {\n throw new Error(\n `Weight ${spec.name} is quantized with ${quantization.dtype} ` +\n `which only supports weights of type float32 not ${dtype}.`);\n }\n } else {\n throw new Error(\n `Weight ${spec.name} has unknown ` +\n `quantization dtype ${quantization.dtype}. ` +\n `Supported quantization dtypes are: ` +\n `'uint8', 'uint16', and 'float16'.`);\n }\n const quantizationSizeFactor = DTYPE_VALUE_SIZE_MAP[quantization.dtype];\n const byteBuffer =\n buffer.slice(offset, offset + size * quantizationSizeFactor);\n const quantizedArray = (quantization.dtype === 'uint8') ?\n new Uint8Array(byteBuffer) :\n new Uint16Array(byteBuffer);\n if (dtype === 'float32') {\n if (quantization.dtype === 'uint8' || quantization.dtype === 'uint16') {\n values = new Float32Array(quantizedArray.length);\n for (let i = 0; i < quantizedArray.length; i++) {\n const v = quantizedArray[i];\n values[i] = v * quantization.scale + quantization.min;\n }\n } else if (quantization.dtype === 'float16') {\n if (float16Decode === undefined) {\n float16Decode = getFloat16Decoder();\n }\n values = float16Decode(quantizedArray as Uint16Array);\n } else {\n throw new Error(\n `Unsupported quantization type ${quantization.dtype} ` +\n `for weight type float32.`);\n }\n } else if (dtype === 'int32') {\n if (quantization.dtype !== 'uint8' && quantization.dtype !== 'uint16') {\n throw new Error(\n `Unsupported quantization type ${quantization.dtype} ` +\n `for weight type int32.`);\n }\n values = new Int32Array(quantizedArray.length);\n for (let i = 0; i < quantizedArray.length; i++) {\n const v = quantizedArray[i];\n values[i] = Math.round(v * quantization.scale + quantization.min);\n }\n } else {\n throw new Error(`Unsupported dtype in weight '${name}': ${dtype}`);\n }\n offset += size * quantizationSizeFactor;\n } else if (dtype === 'string') {\n const size = sizeFromShape(spec.shape);\n values = [];\n for (let i = 0; i < size; i++) {\n const byteLength = new Uint32Array(\n buffer.slice(offset, offset + NUM_BYTES_STRING_LENGTH))[0];\n offset += NUM_BYTES_STRING_LENGTH;\n const bytes = new Uint8Array(buffer.slice(offset, offset + byteLength));\n (values as Uint8Array[]).push(bytes);\n offset += byteLength;\n }\n } else {\n const dtypeFactor = DTYPE_VALUE_SIZE_MAP[dtype];\n const byteBuffer = buffer.slice(offset, offset + size * dtypeFactor);\n\n if (dtype === 'float32') {\n values = new Float32Array(byteBuffer);\n } else if (dtype === 'int32') {\n values = new Int32Array(byteBuffer);\n } else if (dtype === 'bool') {\n values = new Uint8Array(byteBuffer);\n } else if (dtype === 'complex64') {\n values = new Float32Array(byteBuffer);\n const real = new Float32Array(values.length / 2);\n const image = new Float32Array(values.length / 2);\n for (let i = 0; i < real.length; i++) {\n real[i] = values[i * 2];\n image[i] = values[i * 2 + 1];\n }\n const realTensor = tensor(real, shape, 'float32');\n const imageTensor = tensor(image, shape, 'float32');\n out[name] = complex(realTensor, imageTensor);\n realTensor.dispose();\n imageTensor.dispose();\n } else {\n throw new Error(`Unsupported dtype in weight '${name}': ${dtype}`);\n }\n offset += size * dtypeFactor;\n }\n if (dtype !== 'complex64') {\n out[name] = tensor(values, shape, dtype);\n }\n }\n return out;\n}\n\n/**\n * Concatenate TypedArrays into an ArrayBuffer.\n */\nexport function concatenateTypedArrays(xs: TypedArray[]): ArrayBuffer {\n // TODO(adarob, cais): Support quantization.\n if (xs === null) {\n throw new Error(`Invalid input value: ${JSON.stringify(xs)}`);\n }\n\n let totalByteLength = 0;\n\n // `normalizedXs` is here for this reason: a `TypedArray`'s `buffer'\n // can have a different byte length from that of the `TypedArray` itself,\n // for example, when the `TypedArray` is created from an offset in an\n // `ArrayBuffer`. `normliazedXs` holds `TypedArray`s whose `buffer`s match\n // the `TypedArray` in byte length. If an element of `xs` does not show\n // this property, a new `TypedArray` that satisfy this property will be\n // constructed and pushed into `normalizedXs`.\n const normalizedXs: TypedArray[] = [];\n xs.forEach((x: TypedArray) => {\n totalByteLength += x.byteLength;\n // tslint:disable:no-any\n normalizedXs.push(\n x.byteLength === x.buffer.byteLength ? x :\n new (x.constructor as any)(x));\n if (!(x as any instanceof Float32Array || x as any instanceof Int32Array ||\n x as any instanceof Uint8Array)) {\n throw new Error(`Unsupported TypedArray subtype: ${x.constructor.name}`);\n }\n // tslint:enable:no-any\n });\n\n const y = new Uint8Array(totalByteLength);\n let offset = 0;\n normalizedXs.forEach((x: TypedArray) => {\n y.set(new Uint8Array(x.buffer), offset);\n offset += x.byteLength;\n });\n\n return y.buffer;\n}\n\n// Use Buffer on Node.js instead of Blob/atob/btoa\nconst useNodeBuffer = typeof Buffer !== 'undefined' &&\n (typeof Blob === 'undefined' || typeof atob === 'undefined' ||\n typeof btoa === 'undefined');\n\n/**\n * Calculate the byte length of a JavaScript string.\n *\n * Note that a JavaScript string can contain wide characters, therefore the\n * length of the string is not necessarily equal to the byte length.\n *\n * @param str Input string.\n * @returns Byte length.\n */\nexport function stringByteLength(str: string): number {\n if (useNodeBuffer) {\n return Buffer.byteLength(str);\n }\n return new Blob([str]).size;\n}\n\n/**\n * Encode an ArrayBuffer as a base64 encoded string.\n *\n * @param buffer `ArrayBuffer` to be converted.\n * @returns A string that base64-encodes `buffer`.\n */\nexport function arrayBufferToBase64String(buffer: ArrayBuffer): string {\n if (useNodeBuffer) {\n return Buffer.from(buffer).toString('base64');\n }\n const buf = new Uint8Array(buffer);\n let s = '';\n for (let i = 0, l = buf.length; i < l; i++) {\n s += String.fromCharCode(buf[i]);\n }\n return btoa(s);\n}\n\n/**\n * Decode a base64 string as an ArrayBuffer.\n *\n * @param str Base64 string.\n * @returns Decoded `ArrayBuffer`.\n */\nexport function base64StringToArrayBuffer(str: string): ArrayBuffer {\n if (useNodeBuffer) {\n const buf = Buffer.from(str, 'base64');\n return buf.buffer.slice(buf.byteOffset, buf.byteOffset + buf.byteLength);\n }\n const s = atob(str);\n const buffer = new Uint8Array(s.length);\n for (let i = 0; i < s.length; ++i) {\n buffer.set([s.charCodeAt(i)], i);\n }\n return buffer.buffer;\n}\n\n/**\n * Concatenate a number of ArrayBuffers into one.\n *\n * @param buffers A number of array buffers to concatenate.\n * @returns Result of concatenating `buffers` in order.\n */\nexport function concatenateArrayBuffers(buffers: ArrayBuffer[]): ArrayBuffer {\n if (buffers.length === 1) {\n return buffers[0];\n }\n\n let totalByteLength = 0;\n buffers.forEach((buffer: ArrayBuffer) => {\n totalByteLength += buffer.byteLength;\n });\n\n const temp = new Uint8Array(totalByteLength);\n let offset = 0;\n buffers.forEach((buffer: ArrayBuffer) => {\n temp.set(new Uint8Array(buffer), offset);\n offset += buffer.byteLength;\n });\n return temp.buffer;\n}\n\n/**\n * Get the basename of a path.\n *\n * Behaves in a way analogous to Linux's basename command.\n *\n * @param path\n */\nexport function basename(path: string): string {\n const SEPARATOR = '/';\n path = path.trim();\n while (path.endsWith(SEPARATOR)) {\n path = path.slice(0, path.length - 1);\n }\n const items = path.split(SEPARATOR);\n return items[items.length - 1];\n}\n\n/**\n * Create `ModelJSON` from `ModelArtifacts`.\n *\n * @param artifacts Model artifacts, describing the model and its weights.\n * @param manifest Weight manifest, describing where the weights of the\n * `ModelArtifacts` are stored, and some metadata about them.\n * @returns Object representing the `model.json` file describing the model\n * artifacts and weights\n */\nexport function getModelJSONForModelArtifacts(\n artifacts: ModelArtifacts, manifest: WeightsManifestConfig): ModelJSON {\n const result: ModelJSON = {\n modelTopology: artifacts.modelTopology,\n format: artifacts.format,\n generatedBy: artifacts.generatedBy,\n convertedBy: artifacts.convertedBy,\n weightsManifest: manifest\n };\n if (artifacts.signature != null) {\n result.signature = artifacts.signature;\n }\n if (artifacts.userDefinedMetadata != null) {\n result.userDefinedMetadata = artifacts.userDefinedMetadata;\n }\n if (artifacts.modelInitializer != null) {\n result.modelInitializer = artifacts.modelInitializer;\n }\n if (artifacts.trainingConfig != null) {\n result.trainingConfig = artifacts.trainingConfig;\n }\n return result;\n}\n\n/**\n * Create `ModelArtifacts` from a JSON file.\n *\n * @param modelJSON Object containing the parsed JSON of `model.json`\n * @param loadWeights Function that takes the JSON file's weights manifest,\n * reads weights from the listed path(s), and returns a Promise of the\n * weight manifest entries along with the weights data.\n * @returns A Promise of the `ModelArtifacts`, as described by the JSON file.\n */\nexport async function getModelArtifactsForJSON(\n modelJSON: ModelJSON,\n loadWeights: (weightsManifest: WeightsManifestConfig) => Promise<[\n /* weightSpecs */ WeightsManifestEntry[], /* weightData */ ArrayBuffer\n ]>): Promise {\n const modelArtifacts: ModelArtifacts = {\n modelTopology: modelJSON.modelTopology,\n format: modelJSON.format,\n generatedBy: modelJSON.generatedBy,\n convertedBy: modelJSON.convertedBy\n };\n\n if (modelJSON.trainingConfig != null) {\n modelArtifacts.trainingConfig = modelJSON.trainingConfig;\n }\n if (modelJSON.weightsManifest != null) {\n const [weightSpecs, weightData] =\n await loadWeights(modelJSON.weightsManifest);\n modelArtifacts.weightSpecs = weightSpecs;\n modelArtifacts.weightData = weightData;\n }\n if (modelJSON.signature != null) {\n modelArtifacts.signature = modelJSON.signature;\n }\n if (modelJSON.userDefinedMetadata != null) {\n modelArtifacts.userDefinedMetadata = modelJSON.userDefinedMetadata;\n }\n if (modelJSON.modelInitializer != null) {\n modelArtifacts.modelInitializer = modelJSON.modelInitializer;\n }\n\n return modelArtifacts;\n}\n\n/**\n * Populate ModelArtifactsInfo fields for a model with JSON topology.\n * @param modelArtifacts\n * @returns A ModelArtifactsInfo object.\n */\nexport function getModelArtifactsInfoForJSON(modelArtifacts: ModelArtifacts):\n ModelArtifactsInfo {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error('Expected JSON model topology, received ArrayBuffer.');\n }\n\n return {\n dateSaved: new Date(),\n modelTopologyType: 'JSON',\n modelTopologyBytes: modelArtifacts.modelTopology == null ?\n 0 :\n stringByteLength(JSON.stringify(modelArtifacts.modelTopology)),\n weightSpecsBytes: modelArtifacts.weightSpecs == null ?\n 0 :\n stringByteLength(JSON.stringify(modelArtifacts.weightSpecs)),\n weightDataBytes: modelArtifacts.weightData == null ?\n 0 :\n modelArtifacts.weightData.byteLength,\n };\n}\n\n/**\n * Computes mantisa table for casting Float16 to Float32\n * See http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n *\n * @returns Uint32Array, 2048 mantissa lookup values.\n */\nfunction computeFloat16MantisaTable(): Uint32Array {\n const convertMantissa = (i: number): number => {\n let m = i << 13;\n let e = 0;\n\n while ((m & 0x00800000) === 0) {\n e -= 0x00800000;\n m <<= 1;\n }\n m &= ~0x00800000;\n e += 0x38800000;\n\n return m | e;\n };\n\n const mantisaTable = new Uint32Array(2048);\n\n mantisaTable[0] = 0;\n for (let i = 1; i < 1024; i++) {\n mantisaTable[i] = convertMantissa(i);\n }\n for (let i = 1024; i < 2048; i++) {\n mantisaTable[i] = 0x38000000 + ((i - 1024) << 13);\n }\n\n return mantisaTable;\n}\n\n/**\n * Computes exponent table for casting Float16 to Float32\n * See http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n *\n * @returns Uint32Array, 64 exponent lookup values.\n */\nfunction computeFloat16ExponentTable(): Uint32Array {\n const exponentTable = new Uint32Array(64);\n\n exponentTable[0] = 0;\n exponentTable[31] = 0x47800000;\n exponentTable[32] = 0x80000000;\n exponentTable[63] = 0xc7800000;\n for (let i = 1; i < 31; i++) {\n exponentTable[i] = i << 23;\n }\n for (let i = 33; i < 63; i++) {\n exponentTable[i] = 0x80000000 + ((i - 32) << 23);\n }\n\n return exponentTable;\n}\n\n/**\n * Computes offset table for casting Float16 to Float32\n * See http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n *\n * @returns Uint32Array, 6d offset values.\n */\nfunction computeFloat16OffsetTable(): Uint32Array {\n const offsetTable = new Uint32Array(64);\n\n for (let i = 0; i < 64; i++) {\n offsetTable[i] = 1024;\n }\n offsetTable[0] = offsetTable[32] = 0;\n\n return offsetTable;\n}\n\n/**\n * Retrieve a Float16 decoder which will decode a ByteArray of Float16 values\n * to a Float32Array.\n *\n * @returns Function (buffer: Uint16Array) => Float32Array which decodes\n * the Uint16Array of Float16 bytes to a Float32Array.\n */\nexport function getFloat16Decoder(): (buffer: Uint16Array) => Float32Array {\n // Algorithm is based off of\n // http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n\n // Cache lookup tables\n const mantisaTable = computeFloat16MantisaTable();\n const exponentTable = computeFloat16ExponentTable();\n const offsetTable = computeFloat16OffsetTable();\n\n return (quantizedArray: Uint16Array) => {\n const buffer = new ArrayBuffer(4 * quantizedArray.length);\n const bufferUint32View = new Uint32Array(buffer);\n for (let index = 0; index < quantizedArray.length; index++) {\n const float16Bits = quantizedArray[index];\n const float32Bits =\n mantisaTable[offsetTable[float16Bits >> 10] + (float16Bits & 0x3ff)] +\n exponentTable[float16Bits >> 10];\n bufferUint32View[index] = float32Bits;\n }\n return new Float32Array(buffer);\n };\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {IOHandler, LoadOptions} from './types';\n\nexport type IORouter = (url: string|string[], loadOptions?: LoadOptions) =>\n IOHandler;\n\nexport class IORouterRegistry {\n // Singleton instance.\n private static instance: IORouterRegistry;\n\n private saveRouters: IORouter[];\n private loadRouters: IORouter[];\n\n private constructor() {\n this.saveRouters = [];\n this.loadRouters = [];\n }\n\n private static getInstance(): IORouterRegistry {\n if (IORouterRegistry.instance == null) {\n IORouterRegistry.instance = new IORouterRegistry();\n }\n return IORouterRegistry.instance;\n }\n\n /**\n * Register a save-handler router.\n *\n * @param saveRouter A function that maps a URL-like string onto an instance\n * of `IOHandler` with the `save` method defined or `null`.\n */\n static registerSaveRouter(saveRouter: IORouter) {\n IORouterRegistry.getInstance().saveRouters.push(saveRouter);\n }\n\n /**\n * Register a load-handler router.\n *\n * @param loadRouter A function that maps a URL-like string onto an instance\n * of `IOHandler` with the `load` method defined or `null`.\n */\n static registerLoadRouter(loadRouter: IORouter) {\n IORouterRegistry.getInstance().loadRouters.push(loadRouter);\n }\n\n /**\n * Look up IOHandler for saving, given a URL-like string.\n *\n * @param url\n * @returns If only one match is found, an instance of IOHandler with the\n * `save` method defined. If no match is found, `null`.\n * @throws Error, if more than one match is found.\n */\n static getSaveHandlers(url: string|string[]): IOHandler[] {\n return IORouterRegistry.getHandlers(url, 'save');\n }\n\n /**\n * Look up IOHandler for loading, given a URL-like string.\n *\n * @param url\n * @param loadOptions Optional, custom load options.\n * @returns All valid handlers for `url`, given the currently registered\n * handler routers.\n */\n static getLoadHandlers(url: string|string[], loadOptions?: LoadOptions):\n IOHandler[] {\n return IORouterRegistry.getHandlers(url, 'load', loadOptions);\n }\n\n private static getHandlers(\n url: string|string[], handlerType: 'save'|'load',\n loadOptions?: LoadOptions): IOHandler[] {\n const validHandlers: IOHandler[] = [];\n const routers = handlerType === 'load' ?\n IORouterRegistry.getInstance().loadRouters :\n IORouterRegistry.getInstance().saveRouters;\n routers.forEach(router => {\n const handler = router(url, loadOptions);\n if (handler !== null) {\n validHandlers.push(handler);\n }\n });\n return validHandlers;\n }\n}\n\nexport const registerSaveRouter = (loudRouter: IORouter) =>\n IORouterRegistry.registerSaveRouter(loudRouter);\nexport const registerLoadRouter = (loudRouter: IORouter) =>\n IORouterRegistry.registerLoadRouter(loudRouter);\nexport const getSaveHandlers = (url: string|string[]) =>\n IORouterRegistry.getSaveHandlers(url);\nexport const getLoadHandlers =\n (url: string|string[], loadOptions?: LoadOptions) =>\n IORouterRegistry.getLoadHandlers(url, loadOptions);\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport '../flags';\n\nimport {env} from '../environment';\n\nimport {getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, ModelArtifacts, ModelArtifactsInfo, ModelStoreManager, SaveResult} from './types';\n\nconst DATABASE_NAME = 'tensorflowjs';\nconst DATABASE_VERSION = 1;\n\n// Model data and ModelArtifactsInfo (metadata) are stored in two separate\n// stores for efficient access of the list of stored models and their metadata.\n// 1. The object store for model data: topology, weights and weight manifests.\nconst MODEL_STORE_NAME = 'models_store';\n// 2. The object store for ModelArtifactsInfo, including meta-information such\n// as the type of topology (JSON vs binary), byte size of the topology, byte\n// size of the weights, etc.\nconst INFO_STORE_NAME = 'model_info_store';\n\n/**\n * Delete the entire database for tensorflow.js, including the models store.\n */\nexport async function deleteDatabase(): Promise {\n const idbFactory = getIndexedDBFactory();\n\n return new Promise((resolve, reject) => {\n const deleteRequest = idbFactory.deleteDatabase(DATABASE_NAME);\n deleteRequest.onsuccess = () => resolve();\n deleteRequest.onerror = error => reject(error);\n });\n}\n\nfunction getIndexedDBFactory(): IDBFactory {\n if (!env().getBool('IS_BROWSER')) {\n // TODO(cais): Add more info about what IOHandler subtypes are available.\n // Maybe point to a doc page on the web and/or automatically determine\n // the available IOHandlers and print them in the error message.\n throw new Error(\n 'Failed to obtain IndexedDB factory because the current environment' +\n 'is not a web browser.');\n }\n // tslint:disable-next-line:no-any\n const theWindow: any = typeof window === 'undefined' ? self : window;\n const factory = theWindow.indexedDB || theWindow.mozIndexedDB ||\n theWindow.webkitIndexedDB || theWindow.msIndexedDB ||\n theWindow.shimIndexedDB;\n if (factory == null) {\n throw new Error(\n 'The current browser does not appear to support IndexedDB.');\n }\n return factory;\n}\n\nfunction setUpDatabase(openRequest: IDBRequest) {\n const db = openRequest.result as IDBDatabase;\n db.createObjectStore(MODEL_STORE_NAME, {keyPath: 'modelPath'});\n db.createObjectStore(INFO_STORE_NAME, {keyPath: 'modelPath'});\n}\n\n/**\n * IOHandler subclass: Browser IndexedDB.\n *\n * See the doc string of `browserIndexedDB` for more details.\n */\nexport class BrowserIndexedDB implements IOHandler {\n protected readonly indexedDB: IDBFactory;\n protected readonly modelPath: string;\n\n static readonly URL_SCHEME = 'indexeddb://';\n\n constructor(modelPath: string) {\n this.indexedDB = getIndexedDBFactory();\n\n if (modelPath == null || !modelPath) {\n throw new Error(\n 'For IndexedDB, modelPath must not be null, undefined or empty.');\n }\n this.modelPath = modelPath;\n }\n\n async save(modelArtifacts: ModelArtifacts): Promise {\n // TODO(cais): Support saving GraphDef models.\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserLocalStorage.save() does not support saving model topology ' +\n 'in binary formats yet.');\n }\n\n return this.databaseAction(this.modelPath, modelArtifacts) as\n Promise;\n }\n\n async load(): Promise {\n return this.databaseAction(this.modelPath) as Promise;\n }\n\n /**\n * Perform database action to put model artifacts into or read model artifacts\n * from IndexedDB object store.\n *\n * Whether the action is put or get depends on whether `modelArtifacts` is\n * specified. If it is specified, the action will be put; otherwise the action\n * will be get.\n *\n * @param modelPath A unique string path for the model.\n * @param modelArtifacts If specified, it will be the model artifacts to be\n * stored in IndexedDB.\n * @returns A `Promise` of `SaveResult`, if the action is put, or a `Promise`\n * of `ModelArtifacts`, if the action is get.\n */\n private databaseAction(modelPath: string, modelArtifacts?: ModelArtifacts):\n Promise {\n return new Promise((resolve, reject) => {\n const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n\n if (modelArtifacts == null) {\n // Read model out from object store.\n const modelTx = db.transaction(MODEL_STORE_NAME, 'readonly');\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const getRequest = modelStore.get(this.modelPath);\n getRequest.onsuccess = () => {\n if (getRequest.result == null) {\n db.close();\n return reject(new Error(\n `Cannot find model with path '${this.modelPath}' ` +\n `in IndexedDB.`));\n } else {\n resolve(getRequest.result.modelArtifacts);\n }\n };\n getRequest.onerror = error => {\n db.close();\n return reject(getRequest.error);\n };\n modelTx.oncomplete = () => db.close();\n } else {\n // Put model into object store.\n const modelArtifactsInfo: ModelArtifactsInfo =\n getModelArtifactsInfoForJSON(modelArtifacts);\n // First, put ModelArtifactsInfo into info store.\n const infoTx = db.transaction(INFO_STORE_NAME, 'readwrite');\n let infoStore = infoTx.objectStore(INFO_STORE_NAME);\n const putInfoRequest =\n infoStore.put({modelPath: this.modelPath, modelArtifactsInfo});\n let modelTx: IDBTransaction;\n putInfoRequest.onsuccess = () => {\n // Second, put model data into model store.\n modelTx = db.transaction(MODEL_STORE_NAME, 'readwrite');\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const putModelRequest = modelStore.put({\n modelPath: this.modelPath,\n modelArtifacts,\n modelArtifactsInfo\n });\n putModelRequest.onsuccess = () => resolve({modelArtifactsInfo});\n putModelRequest.onerror = error => {\n // If the put-model request fails, roll back the info entry as\n // well.\n infoStore = infoTx.objectStore(INFO_STORE_NAME);\n const deleteInfoRequest = infoStore.delete(this.modelPath);\n deleteInfoRequest.onsuccess = () => {\n db.close();\n return reject(putModelRequest.error);\n };\n deleteInfoRequest.onerror = error => {\n db.close();\n return reject(putModelRequest.error);\n };\n };\n };\n putInfoRequest.onerror = error => {\n db.close();\n return reject(putInfoRequest.error);\n };\n infoTx.oncomplete = () => {\n if (modelTx == null) {\n db.close();\n } else {\n modelTx.oncomplete = () => db.close();\n }\n };\n }\n };\n openRequest.onerror = error => reject(openRequest.error);\n });\n }\n}\n\nexport const indexedDBRouter: IORouter = (url: string|string[]) => {\n if (!env().getBool('IS_BROWSER')) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserIndexedDB.URL_SCHEME)) {\n return browserIndexedDB(url.slice(BrowserIndexedDB.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(indexedDBRouter);\nIORouterRegistry.registerLoadRouter(indexedDBRouter);\n\n/**\n * Creates a browser IndexedDB IOHandler for saving and loading models.\n *\n * ```js\n * const model = tf.sequential();\n * model.add(\n * tf.layers.dense({units: 1, inputShape: [100], activation: 'sigmoid'}));\n *\n * const saveResult = await model.save('indexeddb://MyModel'));\n * console.log(saveResult);\n * ```\n *\n * @param modelPath A unique identifier for the model to be saved. Must be a\n * non-empty string.\n * @returns An instance of `BrowserIndexedDB` (sublcass of `IOHandler`),\n * which can be used with, e.g., `tf.Model.save`.\n */\nexport function browserIndexedDB(modelPath: string): IOHandler {\n return new BrowserIndexedDB(modelPath);\n}\n\nfunction maybeStripScheme(key: string) {\n return key.startsWith(BrowserIndexedDB.URL_SCHEME) ?\n key.slice(BrowserIndexedDB.URL_SCHEME.length) :\n key;\n}\n\nexport class BrowserIndexedDBManager implements ModelStoreManager {\n private indexedDB: IDBFactory;\n\n constructor() {\n this.indexedDB = getIndexedDBFactory();\n }\n\n async listModels(): Promise<{[path: string]: ModelArtifactsInfo}> {\n return new Promise<{[path: string]: ModelArtifactsInfo}>(\n (resolve, reject) => {\n const openRequest =\n this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n const tx = db.transaction(INFO_STORE_NAME, 'readonly');\n const store = tx.objectStore(INFO_STORE_NAME);\n // tslint:disable:max-line-length\n // Need to cast `store` as `any` here because TypeScript's DOM\n // library does not have the `getAll()` method even though the\n // method is supported in the latest version of most mainstream\n // browsers:\n // https://developer.mozilla.org/en-US/docs/Web/API/IDBObjectStore/getAll\n // tslint:enable:max-line-length\n // tslint:disable-next-line:no-any\n const getAllInfoRequest = (store as any).getAll() as IDBRequest;\n getAllInfoRequest.onsuccess = () => {\n const out: {[path: string]: ModelArtifactsInfo} = {};\n for (const item of getAllInfoRequest.result) {\n out[item.modelPath] = item.modelArtifactsInfo;\n }\n resolve(out);\n };\n getAllInfoRequest.onerror = error => {\n db.close();\n return reject(getAllInfoRequest.error);\n };\n tx.oncomplete = () => db.close();\n };\n openRequest.onerror = error => reject(openRequest.error);\n });\n }\n\n async removeModel(path: string): Promise {\n path = maybeStripScheme(path);\n return new Promise((resolve, reject) => {\n const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n const infoTx = db.transaction(INFO_STORE_NAME, 'readwrite');\n const infoStore = infoTx.objectStore(INFO_STORE_NAME);\n\n const getInfoRequest = infoStore.get(path);\n let modelTx: IDBTransaction;\n getInfoRequest.onsuccess = () => {\n if (getInfoRequest.result == null) {\n db.close();\n return reject(new Error(\n `Cannot find model with path '${path}' ` +\n `in IndexedDB.`));\n } else {\n // First, delete the entry in the info store.\n const deleteInfoRequest = infoStore.delete(path);\n const deleteModelData = () => {\n // Second, delete the entry in the model store.\n modelTx = db.transaction(MODEL_STORE_NAME, 'readwrite');\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const deleteModelRequest = modelStore.delete(path);\n deleteModelRequest.onsuccess = () =>\n resolve(getInfoRequest.result.modelArtifactsInfo);\n deleteModelRequest.onerror = error =>\n reject(getInfoRequest.error);\n };\n // Proceed with deleting model data regardless of whether deletion\n // of info data succeeds or not.\n deleteInfoRequest.onsuccess = deleteModelData;\n deleteInfoRequest.onerror = error => {\n deleteModelData();\n db.close();\n return reject(getInfoRequest.error);\n };\n }\n };\n getInfoRequest.onerror = error => {\n db.close();\n return reject(getInfoRequest.error);\n };\n\n infoTx.oncomplete = () => {\n if (modelTx == null) {\n db.close();\n } else {\n modelTx.oncomplete = () => db.close();\n }\n };\n };\n openRequest.onerror = error => reject(openRequest.error);\n });\n }\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport '../flags';\nimport {env} from '../environment';\n\nimport {assert} from '../util';\nimport {arrayBufferToBase64String, base64StringToArrayBuffer, getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, ModelArtifacts, ModelArtifactsInfo, ModelJSON, ModelStoreManager, SaveResult} from './types';\n\nconst PATH_SEPARATOR = '/';\nconst PATH_PREFIX = 'tensorflowjs_models';\nconst INFO_SUFFIX = 'info';\nconst MODEL_TOPOLOGY_SUFFIX = 'model_topology';\nconst WEIGHT_SPECS_SUFFIX = 'weight_specs';\nconst WEIGHT_DATA_SUFFIX = 'weight_data';\nconst MODEL_METADATA_SUFFIX = 'model_metadata';\n\n/**\n * Purge all tensorflow.js-saved model artifacts from local storage.\n *\n * @returns Paths of the models purged.\n */\nexport function purgeLocalStorageArtifacts(): string[] {\n if (!env().getBool('IS_BROWSER') || typeof window === 'undefined' ||\n typeof window.localStorage === 'undefined') {\n throw new Error(\n 'purgeLocalStorageModels() cannot proceed because local storage is ' +\n 'unavailable in the current environment.');\n }\n const LS = window.localStorage;\n const purgedModelPaths: string[] = [];\n for (let i = 0; i < LS.length; ++i) {\n const key = LS.key(i);\n const prefix = PATH_PREFIX + PATH_SEPARATOR;\n if (key.startsWith(prefix) && key.length > prefix.length) {\n LS.removeItem(key);\n const modelName = getModelPathFromKey(key);\n if (purgedModelPaths.indexOf(modelName) === -1) {\n purgedModelPaths.push(modelName);\n }\n }\n }\n return purgedModelPaths;\n}\n\ntype LocalStorageKeys = {\n /** Key of the localStorage entry storing `ModelArtifactsInfo`. */\n info: string,\n /**\n * Key of the localStorage entry storing the 'modelTopology' key of\n * `model.json`\n */\n topology: string,\n /**\n * Key of the localStorage entry storing the `weightsManifest.weights` entries\n * of `model.json`\n */\n weightSpecs: string,\n /** Key of the localStorage entry storing the weight data in Base64 */\n weightData: string,\n /**\n * Key of the localStorage entry storing the remaining fields of `model.json`\n * @see {@link ModelMetadata}\n */\n modelMetadata: string,\n};\n\ntype ModelMetadata = Omit;\n\nfunction getModelKeys(path: string): LocalStorageKeys {\n return {\n info: [PATH_PREFIX, path, INFO_SUFFIX].join(PATH_SEPARATOR),\n topology: [PATH_PREFIX, path, MODEL_TOPOLOGY_SUFFIX].join(PATH_SEPARATOR),\n weightSpecs: [PATH_PREFIX, path, WEIGHT_SPECS_SUFFIX].join(PATH_SEPARATOR),\n weightData: [PATH_PREFIX, path, WEIGHT_DATA_SUFFIX].join(PATH_SEPARATOR),\n modelMetadata:\n [PATH_PREFIX, path, MODEL_METADATA_SUFFIX].join(PATH_SEPARATOR)\n };\n}\n\nfunction removeItems(keys: LocalStorageKeys): void {\n for (const key of Object.values(keys)) {\n window.localStorage.removeItem(key);\n }\n}\n\n/**\n * Get model path from a local-storage key.\n *\n * E.g., 'tensorflowjs_models/my/model/1/info' --> 'my/model/1'\n *\n * @param key\n */\nfunction getModelPathFromKey(key: string) {\n const items = key.split(PATH_SEPARATOR);\n if (items.length < 3) {\n throw new Error(`Invalid key format: ${key}`);\n }\n return items.slice(1, items.length - 1).join(PATH_SEPARATOR);\n}\n\nfunction maybeStripScheme(key: string) {\n return key.startsWith(BrowserLocalStorage.URL_SCHEME) ?\n key.slice(BrowserLocalStorage.URL_SCHEME.length) :\n key;\n}\n\n/**\n * IOHandler subclass: Browser Local Storage.\n *\n * See the doc string to `browserLocalStorage` for more details.\n */\nexport class BrowserLocalStorage implements IOHandler {\n protected readonly LS: Storage;\n protected readonly modelPath: string;\n protected readonly keys: LocalStorageKeys;\n\n static readonly URL_SCHEME = 'localstorage://';\n\n constructor(modelPath: string) {\n if (!env().getBool('IS_BROWSER') || typeof window === 'undefined' ||\n typeof window.localStorage === 'undefined') {\n // TODO(cais): Add more info about what IOHandler subtypes are\n // available.\n // Maybe point to a doc page on the web and/or automatically determine\n // the available IOHandlers and print them in the error message.\n throw new Error(\n 'The current environment does not support local storage.');\n }\n this.LS = window.localStorage;\n\n if (modelPath == null || !modelPath) {\n throw new Error(\n 'For local storage, modelPath must not be null, undefined or empty.');\n }\n this.modelPath = modelPath;\n this.keys = getModelKeys(this.modelPath);\n }\n\n /**\n * Save model artifacts to browser local storage.\n *\n * See the documentation to `browserLocalStorage` for details on the saved\n * artifacts.\n *\n * @param modelArtifacts The model artifacts to be stored.\n * @returns An instance of SaveResult.\n */\n async save(modelArtifacts: ModelArtifacts): Promise {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserLocalStorage.save() does not support saving model topology ' +\n 'in binary formats yet.');\n } else {\n const topology = JSON.stringify(modelArtifacts.modelTopology);\n const weightSpecs = JSON.stringify(modelArtifacts.weightSpecs);\n\n const modelArtifactsInfo: ModelArtifactsInfo =\n getModelArtifactsInfoForJSON(modelArtifacts);\n\n try {\n this.LS.setItem(this.keys.info, JSON.stringify(modelArtifactsInfo));\n this.LS.setItem(this.keys.topology, topology);\n this.LS.setItem(this.keys.weightSpecs, weightSpecs);\n this.LS.setItem(\n this.keys.weightData,\n arrayBufferToBase64String(modelArtifacts.weightData));\n\n // Note that JSON.stringify doesn't write out keys that have undefined\n // values, so for some keys, we set undefined instead of a null-ish\n // value.\n const metadata: Required = {\n format: modelArtifacts.format,\n generatedBy: modelArtifacts.generatedBy,\n convertedBy: modelArtifacts.convertedBy,\n signature: modelArtifacts.signature != null ?\n modelArtifacts.signature :\n undefined,\n userDefinedMetadata: modelArtifacts.userDefinedMetadata != null ?\n modelArtifacts.userDefinedMetadata :\n undefined,\n modelInitializer: modelArtifacts.modelInitializer != null ?\n modelArtifacts.modelInitializer :\n undefined,\n trainingConfig: modelArtifacts.trainingConfig != null ?\n modelArtifacts.trainingConfig :\n undefined\n };\n this.LS.setItem(this.keys.modelMetadata, JSON.stringify(metadata));\n\n return {modelArtifactsInfo};\n } catch (err) {\n // If saving failed, clean up all items saved so far.\n removeItems(this.keys);\n\n throw new Error(\n `Failed to save model '${this.modelPath}' to local storage: ` +\n `size quota being exceeded is a possible cause of this failure: ` +\n `modelTopologyBytes=${modelArtifactsInfo.modelTopologyBytes}, ` +\n `weightSpecsBytes=${modelArtifactsInfo.weightSpecsBytes}, ` +\n `weightDataBytes=${modelArtifactsInfo.weightDataBytes}.`);\n }\n }\n }\n\n /**\n * Load a model from local storage.\n *\n * See the documentation to `browserLocalStorage` for details on the saved\n * artifacts.\n *\n * @returns The loaded model (if loading succeeds).\n */\n async load(): Promise {\n const info =\n JSON.parse(this.LS.getItem(this.keys.info)) as ModelArtifactsInfo;\n if (info == null) {\n throw new Error(\n `In local storage, there is no model with name '${this.modelPath}'`);\n }\n\n if (info.modelTopologyType !== 'JSON') {\n throw new Error(\n 'BrowserLocalStorage does not support loading non-JSON model ' +\n 'topology yet.');\n }\n\n const out: ModelArtifacts = {};\n\n // Load topology.\n const topology = JSON.parse(this.LS.getItem(this.keys.topology));\n if (topology == null) {\n throw new Error(\n `In local storage, the topology of model '${this.modelPath}' ` +\n `is missing.`);\n }\n out.modelTopology = topology;\n\n // Load weight specs.\n const weightSpecs = JSON.parse(this.LS.getItem(this.keys.weightSpecs));\n if (weightSpecs == null) {\n throw new Error(\n `In local storage, the weight specs of model '${this.modelPath}' ` +\n `are missing.`);\n }\n out.weightSpecs = weightSpecs;\n\n // Load meta-data fields.\n const metadataString = this.LS.getItem(this.keys.modelMetadata);\n if (metadataString != null) {\n const metadata = JSON.parse(metadataString) as ModelMetadata;\n out.format = metadata.format;\n out.generatedBy = metadata.generatedBy;\n out.convertedBy = metadata.convertedBy;\n if (metadata.signature != null) {\n out.signature = metadata.signature;\n }\n if (metadata.userDefinedMetadata != null) {\n out.userDefinedMetadata = metadata.userDefinedMetadata;\n }\n if (metadata.modelInitializer != null) {\n out.modelInitializer = metadata.modelInitializer;\n }\n if (metadata.trainingConfig != null) {\n out.trainingConfig = metadata.trainingConfig;\n }\n }\n\n // Load weight data.\n const weightDataBase64 = this.LS.getItem(this.keys.weightData);\n if (weightDataBase64 == null) {\n throw new Error(\n `In local storage, the binary weight values of model ` +\n `'${this.modelPath}' are missing.`);\n }\n out.weightData = base64StringToArrayBuffer(weightDataBase64);\n\n return out;\n }\n}\n\nexport const localStorageRouter: IORouter = (url: string|string[]) => {\n if (!env().getBool('IS_BROWSER')) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserLocalStorage.URL_SCHEME)) {\n return browserLocalStorage(\n url.slice(BrowserLocalStorage.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(localStorageRouter);\nIORouterRegistry.registerLoadRouter(localStorageRouter);\n\n/**\n * Factory function for local storage IOHandler.\n *\n * This `IOHandler` supports both `save` and `load`.\n *\n * For each model's saved artifacts, four items are saved to local storage.\n * - `${PATH_SEPARATOR}/${modelPath}/info`: Contains meta-info about the\n * model, such as date saved, type of the topology, size in bytes, etc.\n * - `${PATH_SEPARATOR}/${modelPath}/topology`: Model topology. For Keras-\n * style models, this is a stringized JSON.\n * - `${PATH_SEPARATOR}/${modelPath}/weight_specs`: Weight specs of the\n * model, can be used to decode the saved binary weight values (see\n * item below).\n * - `${PATH_SEPARATOR}/${modelPath}/weight_data`: Concatenated binary\n * weight values, stored as a base64-encoded string.\n *\n * Saving may throw an `Error` if the total size of the artifacts exceed the\n * browser-specific quota.\n *\n * @param modelPath A unique identifier for the model to be saved. Must be a\n * non-empty string.\n * @returns An instance of `IOHandler`, which can be used with, e.g.,\n * `tf.Model.save`.\n */\nexport function browserLocalStorage(modelPath: string): IOHandler {\n return new BrowserLocalStorage(modelPath);\n}\n\nexport class BrowserLocalStorageManager implements ModelStoreManager {\n private readonly LS: Storage;\n\n constructor() {\n assert(\n env().getBool('IS_BROWSER'),\n () => 'Current environment is not a web browser');\n assert(\n typeof window === 'undefined' ||\n typeof window.localStorage !== 'undefined',\n () => 'Current browser does not appear to support localStorage');\n this.LS = window.localStorage;\n }\n\n async listModels(): Promise<{[path: string]: ModelArtifactsInfo}> {\n const out: {[path: string]: ModelArtifactsInfo} = {};\n const prefix = PATH_PREFIX + PATH_SEPARATOR;\n const suffix = PATH_SEPARATOR + INFO_SUFFIX;\n for (let i = 0; i < this.LS.length; ++i) {\n const key = this.LS.key(i);\n if (key.startsWith(prefix) && key.endsWith(suffix)) {\n const modelPath = getModelPathFromKey(key);\n out[modelPath] = JSON.parse(this.LS.getItem(key)) as ModelArtifactsInfo;\n }\n }\n return out;\n }\n\n async removeModel(path: string): Promise {\n path = maybeStripScheme(path);\n const keys = getModelKeys(path);\n if (this.LS.getItem(keys.info) == null) {\n throw new Error(`Cannot find model at path '${path}'`);\n }\n const info = JSON.parse(this.LS.getItem(keys.info)) as ModelArtifactsInfo;\n removeItems(keys);\n return info;\n }\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * Classes and functions for model management across multiple storage mediums.\n *\n * Supported client actions:\n * - Listing models on all registered storage mediums.\n * - Remove model by URL from any registered storage mediums, by using URL\n * string.\n * - Moving or copying model from one path to another in the same medium or from\n * one medium to another, by using URL strings.\n */\n\nimport {assert} from '../util';\n\nimport {IORouterRegistry} from './router_registry';\nimport {ModelArtifactsInfo, ModelStoreManager} from './types';\n\nconst URL_SCHEME_SUFFIX = '://';\n\nexport class ModelStoreManagerRegistry {\n // Singleton instance.\n private static instance: ModelStoreManagerRegistry;\n\n private managers: {[scheme: string]: ModelStoreManager};\n\n private constructor() {\n this.managers = {};\n }\n\n private static getInstance(): ModelStoreManagerRegistry {\n if (ModelStoreManagerRegistry.instance == null) {\n ModelStoreManagerRegistry.instance = new ModelStoreManagerRegistry();\n }\n return ModelStoreManagerRegistry.instance;\n }\n\n /**\n * Register a save-handler router.\n *\n * @param saveRouter A function that maps a URL-like string onto an instance\n * of `IOHandler` with the `save` method defined or `null`.\n */\n static registerManager(scheme: string, manager: ModelStoreManager) {\n assert(scheme != null, () => 'scheme must not be undefined or null.');\n if (scheme.endsWith(URL_SCHEME_SUFFIX)) {\n scheme = scheme.slice(0, scheme.indexOf(URL_SCHEME_SUFFIX));\n }\n assert(scheme.length > 0, () => 'scheme must not be an empty string.');\n const registry = ModelStoreManagerRegistry.getInstance();\n assert(\n registry.managers[scheme] == null,\n () => `A model store manager is already registered for scheme '${\n scheme}'.`);\n registry.managers[scheme] = manager;\n }\n\n static getManager(scheme: string): ModelStoreManager {\n const manager = this.getInstance().managers[scheme];\n if (manager == null) {\n throw new Error(`Cannot find model manager for scheme '${scheme}'`);\n }\n return manager;\n }\n\n static getSchemes(): string[] {\n return Object.keys(this.getInstance().managers);\n }\n}\n\n/**\n * Helper method for parsing a URL string into a scheme and a path.\n *\n * @param url E.g., 'localstorage://my-model'\n * @returns A dictionary with two fields: scheme and path.\n * Scheme: e.g., 'localstorage' in the example above.\n * Path: e.g., 'my-model' in the example above.\n */\nfunction parseURL(url: string): {scheme: string, path: string} {\n if (url.indexOf(URL_SCHEME_SUFFIX) === -1) {\n throw new Error(\n `The url string provided does not contain a scheme. ` +\n `Supported schemes are: ` +\n `${ModelStoreManagerRegistry.getSchemes().join(',')}`);\n }\n return {\n scheme: url.split(URL_SCHEME_SUFFIX)[0],\n path: url.split(URL_SCHEME_SUFFIX)[1],\n };\n}\n\nasync function cloneModelInternal(\n sourceURL: string, destURL: string,\n deleteSource = false): Promise {\n assert(\n sourceURL !== destURL,\n () => `Old path and new path are the same: '${sourceURL}'`);\n\n const loadHandlers = IORouterRegistry.getLoadHandlers(sourceURL);\n assert(\n loadHandlers.length > 0,\n () => `Copying failed because no load handler is found for source URL ${\n sourceURL}.`);\n assert(\n loadHandlers.length < 2,\n () => `Copying failed because more than one (${loadHandlers.length}) ` +\n `load handlers for source URL ${sourceURL}.`);\n const loadHandler = loadHandlers[0];\n\n const saveHandlers = IORouterRegistry.getSaveHandlers(destURL);\n assert(\n saveHandlers.length > 0,\n () => `Copying failed because no save handler is found for destination ` +\n `URL ${destURL}.`);\n assert(\n saveHandlers.length < 2,\n () => `Copying failed because more than one (${loadHandlers.length}) ` +\n `save handlers for destination URL ${destURL}.`);\n const saveHandler = saveHandlers[0];\n\n const sourceScheme = parseURL(sourceURL).scheme;\n const sourcePath = parseURL(sourceURL).path;\n const sameMedium = sourceScheme === parseURL(sourceURL).scheme;\n\n const modelArtifacts = await loadHandler.load();\n\n // If moving within the same storage medium, remove the old model as soon as\n // the loading is done. Without doing this, it is possible that the combined\n // size of the two models will cause the cloning to fail.\n if (deleteSource && sameMedium) {\n await ModelStoreManagerRegistry.getManager(sourceScheme)\n .removeModel(sourcePath);\n }\n\n const saveResult = await saveHandler.save(modelArtifacts);\n\n // If moving between mediums, the deletion is done after the save succeeds.\n // This guards against the case in which saving to the destination medium\n // fails.\n if (deleteSource && !sameMedium) {\n await ModelStoreManagerRegistry.getManager(sourceScheme)\n .removeModel(sourcePath);\n }\n\n return saveResult.modelArtifactsInfo;\n}\n\n/**\n * List all models stored in registered storage mediums.\n *\n * For a web browser environment, the registered mediums are Local Storage and\n * IndexedDB.\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Delete the model.\n * await tf.io.removeModel('localstorage://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n * ```\n *\n * @returns A `Promise` of a dictionary mapping URLs of existing models to\n * their model artifacts info. URLs include medium-specific schemes, e.g.,\n * 'indexeddb://my/model/1'. Model artifacts info include type of the\n * model's topology, byte sizes of the topology, weights, etc.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function listModels(): Promise<{[url: string]: ModelArtifactsInfo}> {\n const schemes = ModelStoreManagerRegistry.getSchemes();\n const out: {[url: string]: ModelArtifactsInfo} = {};\n for (const scheme of schemes) {\n const schemeOut =\n await ModelStoreManagerRegistry.getManager(scheme).listModels();\n for (const path in schemeOut) {\n const url = scheme + URL_SCHEME_SUFFIX + path;\n out[url] = schemeOut[path];\n }\n }\n return out;\n}\n\n/**\n * Remove a model specified by URL from a reigstered storage medium.\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Delete the model.\n * await tf.io.removeModel('localstorage://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n * ```\n *\n * @param url A URL to a stored model, with a scheme prefix, e.g.,\n * 'localstorage://my-model-1', 'indexeddb://my/model/2'.\n * @returns ModelArtifactsInfo of the deleted model (if and only if deletion\n * is successful).\n * @throws Error if deletion fails, e.g., if no model exists at `path`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function removeModel(url: string): Promise {\n const schemeAndPath = parseURL(url);\n const manager = ModelStoreManagerRegistry.getManager(schemeAndPath.scheme);\n return manager.removeModel(schemeAndPath.path);\n}\n\n/**\n * Copy a model from one URL to another.\n *\n * This function supports:\n *\n * 1. Copying within a storage medium, e.g.,\n * `tf.io.copyModel('localstorage://model-1', 'localstorage://model-2')`\n * 2. Copying between two storage mediums, e.g.,\n * `tf.io.copyModel('localstorage://model-1', 'indexeddb://model-1')`\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Copy the model, from Local Storage to IndexedDB.\n * await tf.io.copyModel(\n * 'localstorage://demo/management/model1',\n * 'indexeddb://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Remove both models.\n * await tf.io.removeModel('localstorage://demo/management/model1');\n * await tf.io.removeModel('indexeddb://demo/management/model1');\n * ```\n *\n * @param sourceURL Source URL of copying.\n * @param destURL Destination URL of copying.\n * @returns ModelArtifactsInfo of the copied model (if and only if copying\n * is successful).\n * @throws Error if copying fails, e.g., if no model exists at `sourceURL`, or\n * if `oldPath` and `newPath` are identical.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function copyModel(\n sourceURL: string, destURL: string): Promise {\n const deleteSource = false;\n return cloneModelInternal(sourceURL, destURL, deleteSource);\n}\n\n/**\n * Move a model from one URL to another.\n *\n * This function supports:\n *\n * 1. Moving within a storage medium, e.g.,\n * `tf.io.moveModel('localstorage://model-1', 'localstorage://model-2')`\n * 2. Moving between two storage mediums, e.g.,\n * `tf.io.moveModel('localstorage://model-1', 'indexeddb://model-1')`\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Move the model, from Local Storage to IndexedDB.\n * await tf.io.moveModel(\n * 'localstorage://demo/management/model1',\n * 'indexeddb://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Remove the moved model.\n * await tf.io.removeModel('indexeddb://demo/management/model1');\n * ```\n *\n * @param sourceURL Source URL of moving.\n * @param destURL Destination URL of moving.\n * @returns ModelArtifactsInfo of the copied model (if and only if copying\n * is successful).\n * @throws Error if moving fails, e.g., if no model exists at `sourceURL`, or\n * if `oldPath` and `newPath` are identical.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function moveModel(\n sourceURL: string, destURL: string): Promise {\n const deleteSource = true;\n return cloneModelInternal(sourceURL, destURL, deleteSource);\n}\n\nexport {moveModel, copyModel, removeModel, listModels};\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport '../flags';\n\nimport {env} from '../environment';\nimport {BrowserIndexedDB, BrowserIndexedDBManager} from '../io/indexed_db';\nimport {BrowserLocalStorage, BrowserLocalStorageManager} from '../io/local_storage';\nimport {ModelStoreManagerRegistry} from '../io/model_management';\n\nimport {Platform} from './platform';\n\nexport class PlatformBrowser implements Platform {\n // According to the spec, the built-in encoder can do only UTF-8 encoding.\n // https://developer.mozilla.org/en-US/docs/Web/API/TextEncoder/TextEncoder\n private textEncoder: TextEncoder;\n\n fetch(path: string, init?: RequestInit): Promise {\n return fetch(path, init);\n }\n\n now(): number {\n return performance.now();\n }\n\n encode(text: string, encoding: string): Uint8Array {\n if (encoding !== 'utf-8' && encoding !== 'utf8') {\n throw new Error(\n `Browser's encoder only supports utf-8, but got ${encoding}`);\n }\n if (this.textEncoder == null) {\n this.textEncoder = new TextEncoder();\n }\n return this.textEncoder.encode(text);\n }\n decode(bytes: Uint8Array, encoding: string): string {\n return new TextDecoder(encoding).decode(bytes);\n }\n}\n\nif (env().get('IS_BROWSER')) {\n env().setPlatform('browser', new PlatformBrowser());\n\n // Register LocalStorage IOHandler\n try {\n ModelStoreManagerRegistry.registerManager(\n BrowserLocalStorage.URL_SCHEME, new BrowserLocalStorageManager());\n } catch (err) {\n }\n\n // Register IndexedDB IOHandler\n try {\n ModelStoreManagerRegistry.registerManager(\n BrowserIndexedDB.URL_SCHEME, new BrowserIndexedDBManager());\n } catch (err) {\n }\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {env} from '../environment';\n\nimport {Platform} from './platform';\n\n// We are wrapping this within an object so it can be stubbed by Jasmine.\nexport const getNodeFetch = {\n // tslint:disable-next-line:no-require-imports\n importFetch: () => require('node-fetch')\n};\n\ntype FetchFn = (url: string, init?: RequestInit) => Promise;\nlet systemFetch: FetchFn;\n// These getters and setters are for testing so we don't export a mutable\n// variable.\nexport function resetSystemFetch() {\n systemFetch = null;\n}\nexport function setSystemFetch(fetchFn: FetchFn) {\n systemFetch = fetchFn;\n}\nexport function getSystemFetch(): FetchFn {\n return systemFetch;\n}\n\nexport class PlatformNode implements Platform {\n private textEncoder: TextEncoder;\n // tslint:disable-next-line:no-any\n util: any;\n\n constructor() {\n // tslint:disable-next-line:no-require-imports\n this.util = require('util');\n // According to the spec, the built-in encoder can do only UTF-8 encoding.\n // https://developer.mozilla.org/en-US/docs/Web/API/TextEncoder/TextEncoder\n this.textEncoder = new this.util.TextEncoder();\n }\n\n fetch(path: string, requestInits?: RequestInit): Promise {\n if (env().global.fetch != null) {\n return env().global.fetch(path, requestInits);\n }\n\n if (systemFetch == null) {\n systemFetch = getNodeFetch.importFetch();\n }\n return systemFetch(path, requestInits);\n }\n\n now(): number {\n const time = process.hrtime();\n return time[0] * 1000 + time[1] / 1000000;\n }\n\n encode(text: string, encoding: string): Uint8Array {\n if (encoding !== 'utf-8' && encoding !== 'utf8') {\n throw new Error(\n `Node built-in encoder only supports utf-8, but got ${encoding}`);\n }\n return this.textEncoder.encode(text);\n }\n decode(bytes: Uint8Array, encoding: string): string {\n if (bytes.length === 0) {\n return '';\n }\n return new this.util.TextDecoder(encoding).decode(bytes);\n }\n}\n\nif (env().get('IS_NODE')) {\n env().setPlatform('node', new PlatformNode());\n}\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {TensorBuffer} from '../tensor';\nimport {DataType, DataTypeMap, Rank, ShapeMap} from '../types';\nimport * as util from '../util';\n\n/**\n * Creates an empty `tf.TensorBuffer` with the specified `shape` and `dtype`.\n *\n * The values are stored in CPU as `TypedArray`. Fill the buffer using\n * `buffer.set()`, or by modifying directly `buffer.values`.\n *\n * When done, call `buffer.toTensor()` to get an immutable `tf.Tensor` with\n * those values.\n *\n * ```js\n * // Create a buffer and set values at particular indices.\n * const buffer = tf.buffer([2, 2]);\n * buffer.set(3, 0, 0);\n * buffer.set(5, 1, 0);\n *\n * // Convert the buffer back to a tensor.\n * buffer.toTensor().print();\n * ```\n *\n * @param shape An array of integers defining the output tensor shape.\n * @param dtype The dtype of the buffer. Defaults to 'float32'.\n * @param values The values of the buffer as `TypedArray`. Defaults to\n * zeros.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nexport function buffer(\n shape: ShapeMap[R], dtype: D = 'float32' as D,\n values?: DataTypeMap[D]): TensorBuffer {\n dtype = dtype || 'float32' as D;\n util.assertNonNegativeIntegerDimensions(shape);\n return new TensorBuffer(shape, dtype, values);\n}\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {Cast, CastAttrs, CastInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {DataType, TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {op} from './operation';\n\n/**\n * Casts a `tf.Tensor` to a new dtype.\n *\n * ```js\n * const x = tf.tensor1d([1.5, 2.5, 3]);\n * tf.cast(x, 'int32').print();\n * ```\n * @param x The input tensor to be casted.\n * @param dtype The dtype to cast the input tensor to.\n *\n * @doc {heading: 'Tensors', subheading: 'Transformations'}\n */\nfunction cast_(x: T|TensorLike, dtype: DataType): T {\n const $x = convertToTensor(x, 'x', 'cast');\n\n // Sanity checks.\n if (!util.isValidDtype(dtype)) {\n throw new Error(`Failed to cast to unknown dtype ${dtype}`);\n }\n if (dtype === 'string' && $x.dtype !== 'string' ||\n dtype !== 'string' && $x.dtype === 'string') {\n throw new Error('Only strings can be casted to strings');\n }\n\n const inputs: CastInputs = {x: $x};\n const attrs: CastAttrs = {dtype};\n\n return ENGINE.runKernel(\n Cast, inputs as {} as NamedTensorMap, attrs as {} as NamedAttrMap);\n}\n\nexport const cast = op({cast_});\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {Identity, IdentityInputs} from '../kernel_names';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\n\nimport {op} from './operation';\n\n/**\n * Creates a new tensor with the same values and shape as the specified\n * tensor.\n *\n * ```js\n * const x = tf.tensor([1, 2]);\n *\n * x.clone().print();\n * ```\n *\n * @param x The tensor to clone.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nfunction clone_(x: T|TensorLike): T {\n const $x = convertToTensor(x, 'x', 'clone', 'string_or_numeric');\n const inputs: IdentityInputs = {x: $x};\n\n // Note this op is called tf.identity in python. Hence the kernel name used\n // here.\n return ENGINE.runKernel(Identity, inputs as {} as NamedTensorMap);\n}\n\nexport const clone = op({clone_});\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from '../tensor';\n\n/**\n * Prints information about the `tf.Tensor` including its data.\n *\n * ```js\n * const verbose = true;\n * tf.tensor2d([1, 2, 3, 4], [2, 2]).print(verbose);\n * ```\n * @param x The tensor to be printed.\n * @param verbose Whether to print verbose information about the ` Tensor`,\n * including dtype and size.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nexport function print(x: T, verbose = false): void {\n console.log(x.toString(verbose));\n}\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// Required side effectful code for tfjs-core\n\n// Set up Engine and ENV\nimport {getOrMakeEngine} from './engine';\ngetOrMakeEngine();\n\n// Register backend-agnostic flags.\nimport './flags';\n// Register platforms\nimport './platforms/platform_browser';\nimport './platforms/platform_node';\n\n// Set up OpHandler\nimport {buffer} from './ops/buffer';\nimport {cast} from './ops/cast';\nimport {clone} from './ops/clone';\nimport {print} from './ops/print';\nimport {OpHandler, setOpHandler} from './tensor';\nconst opHandler: OpHandler = {\n buffer,\n cast,\n clone,\n print\n};\nsetOpHandler(opHandler);\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// Importing local_storage and indexed_db is necessary for the routers to be\n// registered.\nimport './indexed_db';\nimport './local_storage';\n\nimport {browserFiles} from './browser_files';\nimport {browserHTTPRequest, http, isHTTPScheme} from './http';\nimport {concatenateArrayBuffers, decodeWeights, encodeWeights, getModelArtifactsForJSON, getModelArtifactsInfoForJSON} from './io_utils';\nimport {fromMemory, withSaveHandler} from './passthrough';\nimport {getLoadHandlers, getSaveHandlers, registerLoadRouter, registerSaveRouter} from './router_registry';\nimport {IOHandler, LoadHandler, LoadOptions, ModelArtifacts, ModelArtifactsInfo, ModelJSON, ModelStoreManager, OnProgressCallback, RequestDetails, SaveConfig, SaveHandler, SaveResult, TrainingConfig, WeightGroup, WeightsManifestConfig, WeightsManifestEntry} from './types';\nimport {loadWeights, weightsLoaderFactory} from './weights_loader';\n\nexport {copyModel, listModels, moveModel, removeModel} from './model_management';\nexport {\n browserFiles,\n browserHTTPRequest,\n concatenateArrayBuffers,\n decodeWeights,\n encodeWeights,\n fromMemory,\n getLoadHandlers,\n getModelArtifactsForJSON,\n getModelArtifactsInfoForJSON,\n getSaveHandlers,\n http,\n IOHandler,\n isHTTPScheme,\n LoadHandler,\n LoadOptions,\n loadWeights,\n ModelArtifacts,\n ModelArtifactsInfo,\n ModelJSON,\n ModelStoreManager,\n OnProgressCallback,\n registerLoadRouter,\n registerSaveRouter,\n RequestDetails,\n SaveConfig,\n SaveHandler,\n SaveResult,\n TrainingConfig,\n WeightGroup,\n weightsLoaderFactory,\n WeightsManifestConfig,\n WeightsManifestEntry,\n withSaveHandler\n};\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * IOHandlers related to files, such as browser-triggered file downloads,\n * user-selected files in browser.\n */\n\nimport '../flags';\nimport {env} from '../environment';\n\nimport {basename, concatenateArrayBuffers, getModelArtifactsForJSON, getModelArtifactsInfoForJSON, getModelJSONForModelArtifacts} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, ModelArtifacts, ModelJSON, SaveResult, WeightsManifestConfig, WeightsManifestEntry} from './types';\n\nconst DEFAULT_FILE_NAME_PREFIX = 'model';\nconst DEFAULT_JSON_EXTENSION_NAME = '.json';\nconst DEFAULT_WEIGHT_DATA_EXTENSION_NAME = '.weights.bin';\n\nfunction defer(f: () => T): Promise {\n return new Promise(resolve => setTimeout(resolve)).then(f);\n}\n\nexport class BrowserDownloads implements IOHandler {\n private readonly modelJsonFileName: string;\n private readonly weightDataFileName: string;\n private readonly modelJsonAnchor: HTMLAnchorElement;\n private readonly weightDataAnchor: HTMLAnchorElement;\n\n static readonly URL_SCHEME = 'downloads://';\n\n constructor(fileNamePrefix?: string) {\n if (!env().getBool('IS_BROWSER')) {\n // TODO(cais): Provide info on what IOHandlers are available under the\n // current environment.\n throw new Error(\n 'browserDownloads() cannot proceed because the current environment ' +\n 'is not a browser.');\n }\n\n if (fileNamePrefix.startsWith(BrowserDownloads.URL_SCHEME)) {\n fileNamePrefix = fileNamePrefix.slice(BrowserDownloads.URL_SCHEME.length);\n }\n if (fileNamePrefix == null || fileNamePrefix.length === 0) {\n fileNamePrefix = DEFAULT_FILE_NAME_PREFIX;\n }\n\n this.modelJsonFileName = fileNamePrefix + DEFAULT_JSON_EXTENSION_NAME;\n this.weightDataFileName =\n fileNamePrefix + DEFAULT_WEIGHT_DATA_EXTENSION_NAME;\n }\n\n async save(modelArtifacts: ModelArtifacts): Promise {\n if (typeof (document) === 'undefined') {\n throw new Error(\n 'Browser downloads are not supported in ' +\n 'this environment since `document` is not present');\n }\n const weightsURL = window.URL.createObjectURL(new Blob(\n [modelArtifacts.weightData], {type: 'application/octet-stream'}));\n\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserDownloads.save() does not support saving model topology ' +\n 'in binary formats yet.');\n } else {\n const weightsManifest: WeightsManifestConfig = [{\n paths: ['./' + this.weightDataFileName],\n weights: modelArtifacts.weightSpecs\n }];\n const modelJSON: ModelJSON =\n getModelJSONForModelArtifacts(modelArtifacts, weightsManifest);\n\n const modelJsonURL = window.URL.createObjectURL(\n new Blob([JSON.stringify(modelJSON)], {type: 'application/json'}));\n\n // If anchor elements are not provided, create them without attaching them\n // to parents, so that the downloaded file names can be controlled.\n const jsonAnchor = this.modelJsonAnchor == null ?\n document.createElement('a') :\n this.modelJsonAnchor;\n jsonAnchor.download = this.modelJsonFileName;\n jsonAnchor.href = modelJsonURL;\n // Trigger downloads by evoking a click event on the download anchors.\n // When multiple downloads are started synchronously, Firefox will only\n // save the last one.\n await defer(() => jsonAnchor.dispatchEvent(new MouseEvent('click')));\n\n if (modelArtifacts.weightData != null) {\n const weightDataAnchor = this.weightDataAnchor == null ?\n document.createElement('a') :\n this.weightDataAnchor;\n weightDataAnchor.download = this.weightDataFileName;\n weightDataAnchor.href = weightsURL;\n await defer(\n () => weightDataAnchor.dispatchEvent(new MouseEvent('click')));\n }\n\n return {modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts)};\n }\n }\n}\n\nclass BrowserFiles implements IOHandler {\n private readonly jsonFile: File;\n private readonly weightsFiles: File[];\n\n constructor(files: File[]) {\n if (files == null || files.length < 1) {\n throw new Error(\n `When calling browserFiles, at least 1 file is required, ` +\n `but received ${files}`);\n }\n this.jsonFile = files[0];\n this.weightsFiles = files.slice(1);\n }\n\n async load(): Promise {\n return new Promise((resolve, reject) => {\n const jsonReader = new FileReader();\n jsonReader.onload = (event: Event) => {\n // tslint:disable-next-line:no-any\n const modelJSON = JSON.parse((event.target as any).result) as ModelJSON;\n\n const modelTopology = modelJSON.modelTopology;\n if (modelTopology == null) {\n reject(new Error(`modelTopology field is missing from file ${\n this.jsonFile.name}`));\n return;\n }\n\n const weightsManifest = modelJSON.weightsManifest;\n if (weightsManifest == null) {\n reject(new Error(`weightManifest field is missing from file ${\n this.jsonFile.name}`));\n return;\n }\n\n if (this.weightsFiles.length === 0) {\n resolve({modelTopology});\n return;\n }\n\n const modelArtifactsPromise = getModelArtifactsForJSON(\n modelJSON, (weightsManifest) => this.loadWeights(weightsManifest));\n resolve(modelArtifactsPromise);\n };\n\n jsonReader.onerror = error => reject(\n `Failed to read model topology and weights manifest JSON ` +\n `from file '${this.jsonFile.name}'. BrowserFiles supports loading ` +\n `Keras-style tf.Model artifacts only.`);\n jsonReader.readAsText(this.jsonFile);\n });\n }\n\n private loadWeights(weightsManifest: WeightsManifestConfig): Promise<[\n /* weightSpecs */ WeightsManifestEntry[], /* weightData */ ArrayBuffer\n ]> {\n const weightSpecs: WeightsManifestEntry[] = [];\n const paths: string[] = [];\n for (const entry of weightsManifest) {\n weightSpecs.push(...entry.weights);\n paths.push(...entry.paths);\n }\n\n const pathToFile: {[path: string]: File} =\n this.checkManifestAndWeightFiles(weightsManifest);\n\n const promises: Array> =\n paths.map(path => this.loadWeightsFile(path, pathToFile[path]));\n\n return Promise.all(promises).then(\n buffers => [weightSpecs, concatenateArrayBuffers(buffers)]);\n }\n\n private loadWeightsFile(path: string, file: File): Promise {\n return new Promise((resolve, reject) => {\n const weightFileReader = new FileReader();\n weightFileReader.onload = (event: Event) => {\n // tslint:disable-next-line:no-any\n const weightData = (event.target as any).result as ArrayBuffer;\n resolve(weightData);\n };\n weightFileReader.onerror = error =>\n reject(`Failed to weights data from file of path '${path}'.`);\n weightFileReader.readAsArrayBuffer(file);\n });\n }\n\n /**\n * Check the compatibility between weights manifest and weight files.\n */\n private checkManifestAndWeightFiles(manifest: WeightsManifestConfig):\n {[path: string]: File} {\n const basenames: string[] = [];\n const fileNames = this.weightsFiles.map(file => basename(file.name));\n const pathToFile: {[path: string]: File} = {};\n for (const group of manifest) {\n group.paths.forEach(path => {\n const pathBasename = basename(path);\n if (basenames.indexOf(pathBasename) !== -1) {\n throw new Error(\n `Duplicate file basename found in weights manifest: ` +\n `'${pathBasename}'`);\n }\n basenames.push(pathBasename);\n if (fileNames.indexOf(pathBasename) === -1) {\n throw new Error(\n `Weight file with basename '${pathBasename}' is not provided.`);\n } else {\n pathToFile[path] = this.weightsFiles[fileNames.indexOf(pathBasename)];\n }\n });\n }\n\n if (basenames.length !== this.weightsFiles.length) {\n throw new Error(\n `Mismatch in the number of files in weights manifest ` +\n `(${basenames.length}) and the number of weight files provided ` +\n `(${this.weightsFiles.length}).`);\n }\n return pathToFile;\n }\n}\n\nexport const browserDownloadsRouter: IORouter = (url: string|string[]) => {\n if (!env().getBool('IS_BROWSER')) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserDownloads.URL_SCHEME)) {\n return browserDownloads(url.slice(BrowserDownloads.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(browserDownloadsRouter);\n\n/**\n * Creates an IOHandler that triggers file downloads from the browser.\n *\n * The returned `IOHandler` instance can be used as model exporting methods such\n * as `tf.Model.save` and supports only saving.\n *\n * ```js\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * const saveResult = await model.save('downloads://mymodel');\n * // This will trigger downloading of two files:\n * // 'mymodel.json' and 'mymodel.weights.bin'.\n * console.log(saveResult);\n * ```\n *\n * @param fileNamePrefix Prefix name of the files to be downloaded. For use with\n * `tf.Model`, `fileNamePrefix` should follow either of the following two\n * formats:\n * 1. `null` or `undefined`, in which case the default file\n * names will be used:\n * - 'model.json' for the JSON file containing the model topology and\n * weights manifest.\n * - 'model.weights.bin' for the binary file containing the binary weight\n * values.\n * 2. A single string or an Array of a single string, as the file name prefix.\n * For example, if `'foo'` is provided, the downloaded JSON\n * file and binary weights file will be named 'foo.json' and\n * 'foo.weights.bin', respectively.\n * @param config Additional configuration for triggering downloads.\n * @returns An instance of `BrowserDownloads` `IOHandler`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Loading',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nexport function browserDownloads(fileNamePrefix = 'model'): IOHandler {\n return new BrowserDownloads(fileNamePrefix);\n}\n\n/**\n * Creates an IOHandler that loads model artifacts from user-selected files.\n *\n * This method can be used for loading from files such as user-selected files\n * in the browser.\n * When used in conjunction with `tf.loadLayersModel`, an instance of\n * `tf.LayersModel` (Keras-style) can be constructed from the loaded artifacts.\n *\n * ```js\n * // Note: This code snippet won't run properly without the actual file input\n * // elements in the HTML DOM.\n *\n * // Suppose there are two HTML file input (``)\n * // elements.\n * const uploadJSONInput = document.getElementById('upload-json');\n * const uploadWeightsInput = document.getElementById('upload-weights');\n * const model = await tf.loadLayersModel(tf.io.browserFiles(\n * [uploadJSONInput.files[0], uploadWeightsInput.files[0]]));\n * ```\n *\n * @param files `File`s to load from. Currently, this function supports only\n * loading from files that contain Keras-style models (i.e., `tf.Model`s), for\n * which an `Array` of `File`s is expected (in that order):\n * - A JSON file containing the model topology and weight manifest.\n * - Optionally, One or more binary files containing the binary weights.\n * These files must have names that match the paths in the `weightsManifest`\n * contained by the aforementioned JSON file, or errors will be thrown\n * during loading. These weights files have the same format as the ones\n * generated by `tensorflowjs_converter` that comes with the `tensorflowjs`\n * Python PIP package. If no weights files are provided, only the model\n * topology will be loaded from the JSON file above.\n * @returns An instance of `Files` `IOHandler`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Loading',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nexport function browserFiles(files: File[]): IOHandler {\n return new BrowserFiles(files);\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {assert} from '../util';\n\nimport {OnProgressCallback} from './types';\n\n/**\n * Monitor Promise.all progress, fire onProgress callback function.\n *\n * @param promises Promise list going to be monitored\n * @param onProgress Callback function. Fired when a promise resolved.\n * @param startFraction Optional fraction start. Default to 0.\n * @param endFraction Optional fraction end. Default to 1.\n */\nexport function monitorPromisesProgress(\n promises: Array>, onProgress: OnProgressCallback,\n startFraction?: number, endFraction?: number) {\n checkPromises(promises);\n startFraction = startFraction == null ? 0 : startFraction;\n endFraction = endFraction == null ? 1 : endFraction;\n checkFraction(startFraction, endFraction);\n let resolvedPromise = 0;\n\n const registerMonitor = (promise: Promise<{}>) => {\n promise.then(value => {\n const fraction = startFraction +\n ++resolvedPromise / promises.length * (endFraction - startFraction);\n // pass fraction as parameter to callback function.\n onProgress(fraction);\n return value;\n });\n return promise;\n };\n\n function checkPromises(promises: Array>): void {\n assert(\n promises != null && Array.isArray(promises) && promises.length > 0,\n () => 'promises must be a none empty array');\n }\n\n function checkFraction(startFraction: number, endFraction: number): void {\n assert(\n startFraction >= 0 && startFraction <= 1,\n () => `Progress fraction must be in range [0, 1], but ` +\n `got startFraction ${startFraction}`);\n assert(\n endFraction >= 0 && endFraction <= 1,\n () => `Progress fraction must be in range [0, 1], but ` +\n `got endFraction ${endFraction}`);\n assert(\n endFraction >= startFraction,\n () => `startFraction must be no more than endFraction, but ` +\n `got startFraction ${startFraction} and endFraction ` +\n `${endFraction}`);\n }\n\n return Promise.all(promises.map(registerMonitor));\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {env} from '../environment';\n\nimport {NamedTensorMap} from '../tensor_types';\nimport * as util from '../util';\nimport {decodeWeights} from './io_utils';\nimport {monitorPromisesProgress} from './progress';\nimport {DTYPE_VALUE_SIZE_MAP, LoadOptions, WeightsManifestConfig, WeightsManifestEntry} from './types';\n\n/**\n * Reads binary weights data from a number of URLs.\n *\n * @param fetchURLs URLs to send the HTTP requests at, using `fetch` calls.\n * @param requestOptions RequestInit (options) for the HTTP requests.\n * @param fetchFunc Optional overriding value for the `window.fetch` function.\n * @param onProgress Optional, progress callback function, fired periodically\n * before the load is completed.\n * @returns A `Promise` of an Array of `ArrayBuffer`. The Array has the same\n * length as `fetchURLs`.\n */\nexport async function loadWeightsAsArrayBuffer(\n fetchURLs: string[], loadOptions?: LoadOptions): Promise {\n if (loadOptions == null) {\n loadOptions = {};\n }\n\n const fetchFunc = loadOptions.fetchFunc == null ? env().platform.fetch :\n loadOptions.fetchFunc;\n\n // Create the requests for all of the weights in parallel.\n const requests = fetchURLs.map(\n fetchURL =>\n fetchFunc(fetchURL, loadOptions.requestInit, {isBinary: true}));\n\n const fetchStartFraction = 0;\n const fetchEndFraction = 0.5;\n\n const responses = loadOptions.onProgress == null ?\n await Promise.all(requests) :\n await monitorPromisesProgress(\n requests, loadOptions.onProgress, fetchStartFraction,\n fetchEndFraction);\n\n const bufferPromises = responses.map(response => response.arrayBuffer());\n\n const bufferStartFraction = 0.5;\n const bufferEndFraction = 1;\n\n const buffers = loadOptions.onProgress == null ?\n await Promise.all(bufferPromises) :\n await monitorPromisesProgress(\n bufferPromises, loadOptions.onProgress, bufferStartFraction,\n bufferEndFraction);\n return buffers;\n}\n\n/**\n * Reads a weights manifest JSON configuration, fetches the weights and\n * returns them as `Tensor`s.\n *\n * @param manifest The weights manifest JSON.\n * @param filePathPrefix The path prefix for filenames given in the manifest.\n * Defaults to the empty string.\n * @param weightNames The names of the weights to be fetched.\n */\nexport async function loadWeights(\n manifest: WeightsManifestConfig, filePathPrefix = '',\n weightNames?: string[],\n requestInit?: RequestInit): Promise {\n // TODO(nsthorat): Groups are currently fetched atomically. If you need a\n // single weight from a group, the whole group will be fetched. At a future\n // date, we should support fetching only the individual shards within a\n // group that are needed to reconstruct the requested weight.\n // TODO(cais): Use `decodeWeights` for implementation.\n\n const fetchWeights = (fetchUrls: string[]) =>\n loadWeightsAsArrayBuffer(fetchUrls, {requestInit});\n const loadWeights = weightsLoaderFactory(fetchWeights);\n\n return loadWeights(manifest, filePathPrefix, weightNames);\n}\n\n/**\n * Creates a function, which reads a weights manifest JSON configuration,\n * fetches the weight files using the specified function and returns them as\n * `Tensor`s.\n *\n * ```js\n * // example for creating a nodejs weight loader, which reads the weight files\n * // from disk using fs.readFileSync\n *\n * import * as fs from 'fs'\n *\n * const fetchWeightsFromDisk = (filePaths: string[]) =>\n * filePaths.map(filePath => fs.readFileSync(filePath).buffer)\n *\n * const loadWeights = tf.io.weightsLoaderFactory(fetchWeightsFromDisk)\n *\n * const manifest = JSON.parse(\n * fs.readFileSync('./my_model-weights_manifest').toString()\n * )\n * const weightMap = await loadWeights(manifest, './')\n * ```\n * @param fetchWeightsFunction The function used for fetching the weight files.\n * @returns Weight loading function.\n */\nexport function weightsLoaderFactory(\n fetchWeightsFunction: (fetchUrls: string[]) => Promise):\n (manifest: WeightsManifestConfig, filePathPrefix?: string,\n weightNames?: string[]) => Promise {\n return async(\n manifest: WeightsManifestConfig, filePathPrefix = '',\n weightNames?: string[]): Promise => {\n // Collect all the groups, weights, and their relative offsets to be\n // fetched.\n const groupIndicesToFetchMap = manifest.map(() => false);\n const groupWeightsToFetch: {\n [group: number]: Array<{\n manifestEntry: WeightsManifestEntry; groupOffset: number;\n sizeBytes: number;\n }>\n } = {};\n const weightsFound =\n weightNames != null ? weightNames.map(() => false) : [];\n const allManifestWeightNames: string[] = [];\n manifest.forEach((manifestGroupConfig, groupIndex) => {\n let groupOffset = 0;\n manifestGroupConfig.weights.forEach(weightsEntry => {\n const rawDtype = ('quantization' in weightsEntry) ?\n weightsEntry.quantization.dtype :\n weightsEntry.dtype;\n\n const weightsBytes = DTYPE_VALUE_SIZE_MAP[rawDtype] *\n util.sizeFromShape(weightsEntry.shape);\n\n const enqueueWeightsForFetchingFn = () => {\n groupIndicesToFetchMap[groupIndex] = true;\n if (groupWeightsToFetch[groupIndex] == null) {\n groupWeightsToFetch[groupIndex] = [];\n }\n\n groupWeightsToFetch[groupIndex].push({\n manifestEntry: weightsEntry,\n groupOffset,\n sizeBytes: weightsBytes\n });\n };\n\n if (weightNames != null) {\n weightNames.forEach((weightName, weightIndex) => {\n if (weightName === weightsEntry.name) {\n enqueueWeightsForFetchingFn();\n weightsFound[weightIndex] = true;\n }\n });\n } else {\n enqueueWeightsForFetchingFn();\n }\n\n allManifestWeightNames.push(weightsEntry.name);\n groupOffset += weightsBytes;\n });\n });\n\n if (!weightsFound.every(found => found)) {\n const weightsNotFound = weightNames.filter((_, i) => !weightsFound[i]);\n throw new Error(\n `Could not find weights in manifest with names: ` +\n `${weightsNotFound.join(', ')}. \\n` +\n `Manifest JSON has weights with names: ` +\n `${allManifestWeightNames.join(', ')}.`);\n }\n\n // Convert the one-hot boolean groupId => shouldFetch map to a list of group\n // IDs.\n const groupIndicesToFetch =\n groupIndicesToFetchMap.reduce((accumulator, shouldFetch, i) => {\n if (shouldFetch) {\n accumulator.push(i);\n }\n return accumulator;\n }, []);\n\n const fetchUrls: string[] = [];\n groupIndicesToFetch.forEach(i => {\n manifest[i].paths.forEach(filepath => {\n const fetchUrl = filePathPrefix +\n (!filePathPrefix.endsWith('/') ? '/' : '') + filepath;\n fetchUrls.push(fetchUrl);\n });\n });\n const buffers = await fetchWeightsFunction(fetchUrls);\n\n const weightsTensorMap: NamedTensorMap = {};\n let bufferIndexOffset = 0;\n groupIndicesToFetch.forEach(i => {\n const numBuffers = manifest[i].paths.length;\n\n let groupBytes = 0;\n for (let i = 0; i < numBuffers; i++) {\n groupBytes += buffers[bufferIndexOffset + i].byteLength;\n }\n\n // Create a buffer for the whole group.\n const groupBuffer = new ArrayBuffer(groupBytes);\n const groupByteBuffer = new Uint8Array(groupBuffer);\n let groupBufferOffset = 0;\n for (let i = 0; i < numBuffers; i++) {\n const buffer = new Uint8Array(buffers[bufferIndexOffset + i]);\n groupByteBuffer.set(buffer, groupBufferOffset);\n groupBufferOffset += buffer.byteLength;\n }\n\n const weightsEntries = groupWeightsToFetch[i];\n weightsEntries.forEach(weightsEntry => {\n const byteBuffer = groupBuffer.slice(\n weightsEntry.groupOffset,\n weightsEntry.groupOffset + weightsEntry.sizeBytes);\n const nameToTensorMap =\n decodeWeights(byteBuffer, [weightsEntry.manifestEntry]);\n for (const name in nameToTensorMap) {\n weightsTensorMap[name] = nameToTensorMap[name];\n }\n });\n\n bufferIndexOffset += numBuffers;\n });\n\n return weightsTensorMap;\n };\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * IOHandler implementations based on HTTP requests in the web browser.\n *\n * Uses [`fetch`](https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API).\n */\n\nimport {env} from '../environment';\n\nimport {assert} from '../util';\nimport {concatenateArrayBuffers, getModelArtifactsForJSON, getModelArtifactsInfoForJSON, getModelJSONForModelArtifacts} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, LoadOptions, ModelArtifacts, ModelJSON, OnProgressCallback, SaveResult, WeightsManifestConfig, WeightsManifestEntry} from './types';\nimport {loadWeightsAsArrayBuffer} from './weights_loader';\n\nconst OCTET_STREAM_MIME_TYPE = 'application/octet-stream';\nconst JSON_TYPE = 'application/json';\nexport class HTTPRequest implements IOHandler {\n protected readonly path: string;\n protected readonly requestInit: RequestInit;\n\n private readonly fetch: Function;\n private readonly weightUrlConverter: (weightName: string) => Promise;\n\n readonly DEFAULT_METHOD = 'POST';\n\n static readonly URL_SCHEME_REGEX = /^https?:\\/\\//;\n\n private readonly weightPathPrefix: string;\n private readonly onProgress: OnProgressCallback;\n\n constructor(path: string, loadOptions?: LoadOptions) {\n if (loadOptions == null) {\n loadOptions = {};\n }\n this.weightPathPrefix = loadOptions.weightPathPrefix;\n this.onProgress = loadOptions.onProgress;\n this.weightUrlConverter = loadOptions.weightUrlConverter;\n\n if (loadOptions.fetchFunc != null) {\n assert(\n typeof loadOptions.fetchFunc === 'function',\n () => 'Must pass a function that matches the signature of ' +\n '`fetch` (see ' +\n 'https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)');\n this.fetch = loadOptions.fetchFunc;\n } else {\n this.fetch = env().platform.fetch;\n }\n\n assert(\n path != null && path.length > 0,\n () => 'URL path for http must not be null, undefined or ' +\n 'empty.');\n\n if (Array.isArray(path)) {\n assert(\n path.length === 2,\n () => 'URL paths for http must have a length of 2, ' +\n `(actual length is ${path.length}).`);\n }\n this.path = path;\n\n if (loadOptions.requestInit != null &&\n loadOptions.requestInit.body != null) {\n throw new Error(\n 'requestInit is expected to have no pre-existing body, but has one.');\n }\n this.requestInit = loadOptions.requestInit || {};\n }\n\n async save(modelArtifacts: ModelArtifacts): Promise {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserHTTPRequest.save() does not support saving model topology ' +\n 'in binary formats yet.');\n }\n\n const init = Object.assign({method: this.DEFAULT_METHOD}, this.requestInit);\n init.body = new FormData();\n\n const weightsManifest: WeightsManifestConfig = [{\n paths: ['./model.weights.bin'],\n weights: modelArtifacts.weightSpecs,\n }];\n const modelTopologyAndWeightManifest: ModelJSON =\n getModelJSONForModelArtifacts(modelArtifacts, weightsManifest);\n\n init.body.append(\n 'model.json',\n new Blob(\n [JSON.stringify(modelTopologyAndWeightManifest)],\n {type: JSON_TYPE}),\n 'model.json');\n\n if (modelArtifacts.weightData != null) {\n init.body.append(\n 'model.weights.bin',\n new Blob([modelArtifacts.weightData], {type: OCTET_STREAM_MIME_TYPE}),\n 'model.weights.bin');\n }\n\n const response = await this.fetch(this.path, init);\n\n if (response.ok) {\n return {\n modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts),\n responses: [response],\n };\n } else {\n throw new Error(\n `BrowserHTTPRequest.save() failed due to HTTP response status ` +\n `${response.status}.`);\n }\n }\n\n /**\n * Load model artifacts via HTTP request(s).\n *\n * See the documentation to `tf.io.http` for details on the saved\n * artifacts.\n *\n * @returns The loaded model artifacts (if loading succeeds).\n */\n async load(): Promise {\n const modelConfigRequest = await this.fetch(this.path, this.requestInit);\n\n if (!modelConfigRequest.ok) {\n throw new Error(\n `Request to ${this.path} failed with status code ` +\n `${modelConfigRequest.status}. Please verify this URL points to ` +\n `the model JSON of the model to load.`);\n }\n let modelJSON: ModelJSON;\n try {\n modelJSON = await modelConfigRequest.json();\n } catch (e) {\n let message = `Failed to parse model JSON of response from ${this.path}.`;\n // TODO(nsthorat): Remove this after some time when we're comfortable that\n // .pb files are mostly gone.\n if (this.path.endsWith('.pb')) {\n message += ' Your path contains a .pb file extension. ' +\n 'Support for .pb models have been removed in TensorFlow.js 1.0 ' +\n 'in favor of .json models. You can re-convert your Python ' +\n 'TensorFlow model using the TensorFlow.js 1.0 conversion scripts ' +\n 'or you can convert your.pb models with the \\'pb2json\\'' +\n 'NPM script in the tensorflow/tfjs-converter repository.';\n } else {\n message += ' Please make sure the server is serving valid ' +\n 'JSON for this request.';\n }\n throw new Error(message);\n }\n\n // We do not allow both modelTopology and weightsManifest to be missing.\n const modelTopology = modelJSON.modelTopology;\n const weightsManifest = modelJSON.weightsManifest;\n if (modelTopology == null && weightsManifest == null) {\n throw new Error(\n `The JSON from HTTP path ${this.path} contains neither model ` +\n `topology or manifest for weights.`);\n }\n\n return getModelArtifactsForJSON(\n modelJSON, (weightsManifest) => this.loadWeights(weightsManifest));\n }\n\n private async loadWeights(weightsManifest: WeightsManifestConfig):\n Promise<[WeightsManifestEntry[], ArrayBuffer]> {\n const weightPath = Array.isArray(this.path) ? this.path[1] : this.path;\n const [prefix, suffix] = parseUrl(weightPath);\n const pathPrefix = this.weightPathPrefix || prefix;\n\n const weightSpecs = [];\n for (const entry of weightsManifest) {\n weightSpecs.push(...entry.weights);\n }\n\n const fetchURLs: string[] = [];\n const urlPromises: Array> = [];\n for (const weightsGroup of weightsManifest) {\n for (const path of weightsGroup.paths) {\n if (this.weightUrlConverter != null) {\n urlPromises.push(this.weightUrlConverter(path));\n } else {\n fetchURLs.push(pathPrefix + path + suffix);\n }\n }\n }\n\n if (this.weightUrlConverter) {\n fetchURLs.push(...await Promise.all(urlPromises));\n }\n\n const buffers = await loadWeightsAsArrayBuffer(fetchURLs, {\n requestInit: this.requestInit,\n fetchFunc: this.fetch,\n onProgress: this.onProgress\n });\n return [weightSpecs, concatenateArrayBuffers(buffers)];\n }\n}\n\n/**\n * Extract the prefix and suffix of the url, where the prefix is the path before\n * the last file, and suffix is the search params after the last file.\n * ```\n * const url = 'http://tfhub.dev/model/1/tensorflowjs_model.pb?tfjs-format=file'\n * [prefix, suffix] = parseUrl(url)\n * // prefix = 'http://tfhub.dev/model/1/'\n * // suffix = '?tfjs-format=file'\n * ```\n * @param url the model url to be parsed.\n */\nexport function parseUrl(url: string): [string, string] {\n const lastSlash = url.lastIndexOf('/');\n const lastSearchParam = url.lastIndexOf('?');\n const prefix = url.substring(0, lastSlash);\n const suffix =\n lastSearchParam > lastSlash ? url.substring(lastSearchParam) : '';\n return [prefix + '/', suffix];\n}\n\nexport function isHTTPScheme(url: string): boolean {\n return url.match(HTTPRequest.URL_SCHEME_REGEX) != null;\n}\n\nexport const httpRouter: IORouter =\n (url: string, loadOptions?: LoadOptions) => {\n if (typeof fetch === 'undefined' &&\n (loadOptions == null || loadOptions.fetchFunc == null)) {\n // `http` uses `fetch` or `node-fetch`, if one wants to use it in\n // an environment that is not the browser or node they have to setup a\n // global fetch polyfill.\n return null;\n } else {\n let isHTTP = true;\n if (Array.isArray(url)) {\n isHTTP = url.every(urlItem => isHTTPScheme(urlItem));\n } else {\n isHTTP = isHTTPScheme(url);\n }\n if (isHTTP) {\n return http(url, loadOptions);\n }\n }\n return null;\n };\nIORouterRegistry.registerSaveRouter(httpRouter);\nIORouterRegistry.registerLoadRouter(httpRouter);\n\n/**\n * Creates an IOHandler subtype that sends model artifacts to HTTP server.\n *\n * An HTTP request of the `multipart/form-data` mime type will be sent to the\n * `path` URL. The form data includes artifacts that represent the topology\n * and/or weights of the model. In the case of Keras-style `tf.Model`, two\n * blobs (files) exist in form-data:\n * - A JSON file consisting of `modelTopology` and `weightsManifest`.\n * - A binary weights file consisting of the concatenated weight values.\n * These files are in the same format as the one generated by\n * [tfjs_converter](https://js.tensorflow.org/tutorials/import-keras.html).\n *\n * The following code snippet exemplifies the client-side code that uses this\n * function:\n *\n * ```js\n * const model = tf.sequential();\n * model.add(\n * tf.layers.dense({units: 1, inputShape: [100], activation: 'sigmoid'}));\n *\n * const saveResult = await model.save(tf.io.http(\n * 'http://model-server:5000/upload', {requestInit: {method: 'PUT'}}));\n * console.log(saveResult);\n * ```\n *\n * If the default `POST` method is to be used, without any custom parameters\n * such as headers, you can simply pass an HTTP or HTTPS URL to `model.save`:\n *\n * ```js\n * const saveResult = await model.save('http://model-server:5000/upload');\n * ```\n *\n * The following GitHub Gist\n * https://gist.github.com/dsmilkov/1b6046fd6132d7408d5257b0976f7864\n * implements a server based on [flask](https://github.com/pallets/flask) that\n * can receive the request. Upon receiving the model artifacts via the requst,\n * this particular server reconsistutes instances of [Keras\n * Models](https://keras.io/models/model/) in memory.\n *\n *\n * @param path A URL path to the model.\n * Can be an absolute HTTP path (e.g.,\n * 'http://localhost:8000/model-upload)') or a relative path (e.g.,\n * './model-upload').\n * @param requestInit Request configurations to be used when sending\n * HTTP request to server using `fetch`. It can contain fields such as\n * `method`, `credentials`, `headers`, `mode`, etc. See\n * https://developer.mozilla.org/en-US/docs/Web/API/Request/Request\n * for more information. `requestInit` must not have a body, because the\n * body will be set by TensorFlow.js. File blobs representing the model\n * topology (filename: 'model.json') and the weights of the model (filename:\n * 'model.weights.bin') will be appended to the body. If `requestInit` has a\n * `body`, an Error will be thrown.\n * @param loadOptions Optional configuration for the loading. It includes the\n * following fields:\n * - weightPathPrefix Optional, this specifies the path prefix for weight\n * files, by default this is calculated from the path param.\n * - fetchFunc Optional, custom `fetch` function. E.g., in Node.js,\n * the `fetch` from node-fetch can be used here.\n * - onProgress Optional, progress callback function, fired periodically\n * before the load is completed.\n * @returns An instance of `IOHandler`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Loading',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nexport function http(path: string, loadOptions?: LoadOptions): IOHandler {\n return new HTTPRequest(path, loadOptions);\n}\n\n/**\n * Deprecated. Use `tf.io.http`.\n * @param path\n * @param loadOptions\n */\nexport function browserHTTPRequest(\n path: string, loadOptions?: LoadOptions): IOHandler {\n return http(path, loadOptions);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * IOHandlers that pass through the in-memory ModelArtifacts format.\n */\n\nimport {IOHandler, ModelArtifacts, SaveResult, TrainingConfig, WeightsManifestEntry} from './types';\n\nclass PassthroughLoader implements IOHandler {\n constructor(private readonly modelArtifacts?: ModelArtifacts) {}\n\n async load(): Promise {\n return this.modelArtifacts;\n }\n}\n\nclass PassthroughSaver implements IOHandler {\n constructor(\n private readonly saveHandler:\n (artifacts: ModelArtifacts) => Promise) {}\n\n async save(modelArtifacts: ModelArtifacts) {\n return this.saveHandler(modelArtifacts);\n }\n}\n\n/**\n * Creates an IOHandler that loads model artifacts from memory.\n *\n * When used in conjunction with `tf.loadLayersModel`, an instance of\n * `tf.LayersModel` (Keras-style) can be constructed from the loaded artifacts.\n *\n * ```js\n * const model = await tf.loadLayersModel(tf.io.fromMemory(\n * modelTopology, weightSpecs, weightData));\n * ```\n *\n * @param modelArtifacts a object containing model topology (i.e., parsed from\n * the JSON format).\n * @param weightSpecs An array of `WeightsManifestEntry` objects describing the\n * names, shapes, types, and quantization of the weight data.\n * @param weightData A single `ArrayBuffer` containing the weight data,\n * concatenated in the order described by the weightSpecs.\n * @param trainingConfig Model training configuration. Optional.\n *\n * @returns A passthrough `IOHandler` that simply loads the provided data.\n */\nexport function fromMemory(\n modelArtifacts: {}|ModelArtifacts, weightSpecs?: WeightsManifestEntry[],\n weightData?: ArrayBuffer, trainingConfig?: TrainingConfig): IOHandler {\n if (arguments.length === 1) {\n const isModelArtifacts =\n (modelArtifacts as ModelArtifacts).modelTopology != null ||\n (modelArtifacts as ModelArtifacts).weightSpecs != null;\n if (isModelArtifacts) {\n return new PassthroughLoader(modelArtifacts as ModelArtifacts);\n } else {\n // Legacy support: with only modelTopology.\n // TODO(cais): Remove this deprecated API.\n console.warn(\n 'Please call tf.io.fromMemory() with only one argument. ' +\n 'The argument should be of type ModelArtifacts. ' +\n 'The multi-argument signature of tf.io.fromMemory() has been ' +\n 'deprecated and will be removed in a future release.');\n return new PassthroughLoader({modelTopology: modelArtifacts as {}});\n }\n } else {\n // Legacy support.\n // TODO(cais): Remove this deprecated API.\n console.warn(\n 'Please call tf.io.fromMemory() with only one argument. ' +\n 'The argument should be of type ModelArtifacts. ' +\n 'The multi-argument signature of tf.io.fromMemory() has been ' +\n 'deprecated and will be removed in a future release.');\n return new PassthroughLoader({\n modelTopology: modelArtifacts as {},\n weightSpecs,\n weightData,\n trainingConfig\n });\n }\n}\n\n/**\n * Creates an IOHandler that passes saved model artifacts to a callback.\n *\n * ```js\n * function handleSave(artifacts) {\n * // ... do something with the artifacts ...\n * return {modelArtifactsInfo: {...}, ...};\n * }\n *\n * const saveResult = model.save(tf.io.withSaveHandler(handleSave));\n * ```\n *\n * @param saveHandler A function that accepts a `ModelArtifacts` and returns a\n * `SaveResult`.\n */\nexport function withSaveHandler(\n saveHandler: (artifacts: ModelArtifacts) =>\n Promise): IOHandler {\n return new PassthroughSaver(saveHandler);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * Exports under the tf.math.* namespace.\n */\n\nimport {confusionMatrix} from './ops/confusion_matrix';\n\nexport {confusionMatrix};\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {BatchMatMul, BatchMatMulAttrs, BatchMatMulInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {makeTypesMatch} from '../tensor_util';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\n\nimport {op} from './operation';\n\n/**\n * Computes the dot product of two matrices, A * B. These must be matrices.\n *\n * ```js\n * const a = tf.tensor2d([1, 2], [1, 2]);\n * const b = tf.tensor2d([1, 2, 3, 4], [2, 2]);\n *\n * a.matMul(b).print(); // or tf.matMul(a, b)\n * ```\n * @param a First matrix in dot product operation.\n * @param b Second matrix in dot product operation.\n * @param transposeA If true, `a` is transposed before multiplication.\n * @param transposeB If true, `b` is transposed before multiplication.\n *\n * @doc {heading: 'Operations', subheading: 'Matrices'}\n */\nfunction matMul_(\n a: Tensor|TensorLike, b: Tensor|TensorLike, transposeA = false,\n transposeB = false): T {\n let $a = convertToTensor(a, 'a', 'matMul');\n let $b = convertToTensor(b, 'b', 'matMul');\n [$a, $b] = makeTypesMatch($a, $b);\n\n const inputs: BatchMatMulInputs = {a: $a, b: $b};\n const attrs: BatchMatMulAttrs = {transposeA, transposeB};\n\n return ENGINE.runKernel(\n BatchMatMul, inputs as {} as NamedTensorMap, attrs as {} as NamedAttrMap);\n}\n\nexport const matMul = op({matMul_});\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {OneHot, OneHotAttrs, OneHotInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\n\nimport {op} from './operation';\n\n/**\n * Creates a one-hot `tf.Tensor`. The locations represented by `indices` take\n * value `onValue` (defaults to 1), while all other locations take value\n * `offValue` (defaults to 0). If `indices` is rank `R`, the output has rank\n * `R+1` with the last axis of size `depth`.\n *\n * ```js\n * tf.oneHot(tf.tensor1d([0, 1], 'int32'), 3).print();\n * ```\n *\n * @param indices `tf.Tensor` of indices with dtype `int32`.\n * @param depth The depth of the one hot dimension.\n * @param onValue A number used to fill in the output when the index matches\n * the location.\n * @param offValue A number used to fill in the output when the index does\n * not match the location.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nfunction oneHot_(\n indices: Tensor|TensorLike, depth: number, onValue = 1,\n offValue = 0): Tensor {\n if (depth < 2) {\n throw new Error(`Error in oneHot: depth must be >=2, but it is ${depth}`);\n }\n const $indices = convertToTensor(indices, 'indices', 'oneHot', 'int32');\n\n const inputs: OneHotInputs = {indices: $indices};\n const attrs: OneHotAttrs = {depth, onValue, offValue};\n\n return ENGINE.runKernel(\n OneHot, inputs as unknown as NamedTensorMap,\n attrs as unknown as NamedAttrMap);\n}\n\nexport const oneHot = op({oneHot_});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {Transpose, TransposeAttrs, TransposeInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {op} from './operation';\n\n/**\n * Transposes the `tf.Tensor`. Permutes the dimensions according to `perm`.\n *\n * The returned `tf.Tensor`'s dimension `i` will correspond to the input\n * dimension `perm[i]`. If `perm` is not given, it is set to `[n-1...0]`,\n * where `n` is the rank of the input `tf.Tensor`. Hence by default, this\n * operation performs a regular matrix transpose on 2-D input `tf.Tensor`s.\n *\n * ```js\n * const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]);\n *\n * a.transpose().print(); // or tf.transpose(a)\n * ```\n *\n * @param x The tensor to transpose.\n * @param perm The permutation of the dimensions of a.\n *\n * @doc {heading: 'Operations', subheading: 'Matrices'}\n */\nfunction transpose_(x: T|TensorLike, perm?: number[]): T {\n const $x = convertToTensor(x, 'x', 'transpose');\n\n if (perm == null) {\n perm = $x.shape.map((s, i) => i).reverse();\n }\n util.assert(\n $x.rank === perm.length,\n () => `Error in transpose: rank of input ${$x.rank} ` +\n `must match length of perm ${perm}.`);\n perm.forEach(axis => {\n util.assert(\n axis >= 0 && axis < $x.rank,\n () => `All entries in 'perm' must be between 0 and ${$x.rank - 1}` +\n ` but got ${perm}`);\n });\n\n if ($x.rank <= 1) {\n return $x.clone();\n }\n\n const inputs: TransposeInputs = {x: $x};\n const attrs: TransposeAttrs = {perm};\n\n return ENGINE.runKernel(\n Transpose, inputs as {} as NamedTensorMap, attrs as {} as NamedAttrMap);\n}\n\nexport const transpose = op({transpose_});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor1D, Tensor2D} from '../tensor';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {cast} from './cast';\nimport {matMul} from './mat_mul';\nimport {oneHot} from './one_hot';\nimport {op} from './operation';\nimport {transpose} from './transpose';\n\n/**\n * Computes the confusion matrix from true labels and predicted labels.\n *\n * ```js\n * const labels = tf.tensor1d([0, 1, 2, 1, 0], 'int32');\n * const predictions = tf.tensor1d([0, 2, 2, 1, 0], 'int32');\n * const numClasses = 3;\n * const out = tf.math.confusionMatrix(labels, predictions, numClasses);\n * out.print();\n * // Expected output matrix:\n * // [[2, 0, 0],\n * // [0, 1, 1],\n * // [0, 0, 1]]\n * ```\n *\n * @param labels The target labels, assumed to be 0-based integers\n * for the classes. The shape is `[numExamples]`, where\n * `numExamples` is the number of examples included.\n * @param predictions The predicted classes, assumed to be\n * 0-based integers for the classes. Must have the same shape as `labels`.\n * @param numClasses Number of all classes, as an integer.\n * Its value must be larger than the largest element in `labels` and\n * `predictions`.\n * @returns The confusion matrix as a int32-type 2D tensor. The value at\n * row `r` and column `c` is the number of times examples of actual class\n * `r` were predicted as class `c`.\n *\n * @doc {heading: 'Operations', subheading: 'Evaluation'}\n */\nexport function confusionMatrix_(\n labels: Tensor1D|TensorLike, predictions: Tensor1D|TensorLike,\n numClasses: number): Tensor2D {\n const $labels = convertToTensor(labels, 'labels', 'confusionMatrix');\n const $predictions =\n convertToTensor(predictions, 'predictions', 'confusionMatrix');\n\n util.assert(\n numClasses == null || numClasses > 0 && Number.isInteger(numClasses),\n () => `If provided, numClasses must be a positive integer, ` +\n `but got ${numClasses}`);\n util.assert(\n $labels.rank === 1,\n () => `Expected the rank of labels to be 1, but got ${$labels.rank}`);\n util.assert(\n $predictions.rank === 1,\n () => `Expected the rank of predictions to be 1, ` +\n `but got ${$predictions.rank}`);\n util.assert(\n $labels.shape[0] === $predictions.shape[0],\n () => `Mismatch in the number of examples: ` +\n `${$labels.shape[0]} vs. ${$predictions.shape[0]}. ` +\n `Labels and predictions should have the same number of elements.`);\n util.assert(\n numClasses > 0 && Number.isInteger(numClasses),\n () => `numClasses is required to be a positive integer, but got ` +\n `${numClasses}`);\n // TODO(cais): In the future, if oneHot supports tensors inputs for\n // `numClasses`, `confusionMatrix` can make `numClasses` optional.\n\n const oneHotLabels = oneHot(cast($labels, 'int32'), numClasses) as Tensor2D;\n const oneHotPredictions =\n oneHot(cast($predictions, 'int32'), numClasses) as Tensor2D;\n const oneHotLabelsT: Tensor2D = transpose(oneHotLabels);\n const product: Tensor2D = matMul(oneHotLabelsT, oneHotPredictions);\n return cast(product, 'int32');\n}\n\nexport const confusionMatrix = op({confusionMatrix_});\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {env} from '../environment';\nimport {FromPixels, FromPixelsAttrs, FromPixelsInputs} from '../kernel_names';\nimport {getKernel, NamedAttrMap} from '../kernel_registry';\nimport {Tensor, Tensor2D, Tensor3D} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {PixelData, TensorLike} from '../types';\n\nimport {cast} from './cast';\nimport {op} from './operation';\nimport {tensor3d} from './tensor3d';\n\nlet fromPixels2DContext: CanvasRenderingContext2D;\n\n/**\n * Creates a `tf.Tensor` from an image.\n *\n * ```js\n * const image = new ImageData(1, 1);\n * image.data[0] = 100;\n * image.data[1] = 150;\n * image.data[2] = 200;\n * image.data[3] = 255;\n *\n * tf.browser.fromPixels(image).print();\n * ```\n *\n * @param pixels The input image to construct the tensor from. The\n * supported image types are all 4-channel. You can also pass in an image\n * object with following attributes:\n * `{data: Uint8Array; width: number; height: number}`\n * @param numChannels The number of channels of the output tensor. A\n * numChannels value less than 4 allows you to ignore channels. Defaults to\n * 3 (ignores alpha channel of input image).\n *\n * @returns A Tensor3D with the shape `[height, width, numChannels]`.\n *\n * @doc {heading: 'Browser', namespace: 'browser', ignoreCI: true}\n */\nfunction fromPixels_(\n pixels: PixelData|ImageData|HTMLImageElement|HTMLCanvasElement|\n HTMLVideoElement|ImageBitmap,\n numChannels = 3): Tensor3D {\n // Sanity checks.\n if (numChannels > 4) {\n throw new Error(\n 'Cannot construct Tensor with more than 4 channels from pixels.');\n }\n if (pixels == null) {\n throw new Error('pixels passed to tf.browser.fromPixels() can not be null');\n }\n let isPixelData = false;\n let isImageData = false;\n let isVideo = false;\n let isImage = false;\n let isCanvasLike = false;\n let isImageBitmap = false;\n if ((pixels as PixelData).data instanceof Uint8Array) {\n isPixelData = true;\n } else if (\n typeof (ImageData) !== 'undefined' && pixels instanceof ImageData) {\n isImageData = true;\n } else if (\n typeof (HTMLVideoElement) !== 'undefined' &&\n pixels instanceof HTMLVideoElement) {\n isVideo = true;\n } else if (\n typeof (HTMLImageElement) !== 'undefined' &&\n pixels instanceof HTMLImageElement) {\n isImage = true;\n // tslint:disable-next-line: no-any\n } else if ((pixels as any).getContext != null) {\n isCanvasLike = true;\n } else if (\n typeof (ImageBitmap) !== 'undefined' && pixels instanceof ImageBitmap) {\n isImageBitmap = true;\n } else {\n throw new Error(\n 'pixels passed to tf.browser.fromPixels() must be either an ' +\n `HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData ` +\n `in browser, or OffscreenCanvas, ImageData in webworker` +\n ` or {data: Uint32Array, width: number, height: number}, ` +\n `but was ${(pixels as {}).constructor.name}`);\n }\n if (isVideo) {\n const HAVE_CURRENT_DATA_READY_STATE = 2;\n if (isVideo &&\n (pixels as HTMLVideoElement).readyState <\n HAVE_CURRENT_DATA_READY_STATE) {\n throw new Error(\n 'The video element has not loaded data yet. Please wait for ' +\n '`loadeddata` event on the