add extra face rotation prior to mesh

pull/293/head
Vladimir Mandic 2021-11-16 13:07:44 -05:00
parent 0420a5d144
commit 8cc5c938f4
10 changed files with 36 additions and 30 deletions

View File

@ -9,8 +9,9 @@
## Changelog ## Changelog
### **HEAD -> main** 2021/11/14 mandic00@live.com ### **release 2.5.2** 2021/11/15 mandic00@live.com
- improve error handling
### **2.5.2** 2021/11/14 mandic00@live.com ### **2.5.2** 2021/11/14 mandic00@live.com

View File

@ -6,9 +6,9 @@
### Exploring ### Exploring
- Optical Flow: <https://docs.opencv.org/3.3.1/db/d7f/tutorial_js_lucas_kanade.html> - Optical flow: <https://docs.opencv.org/3.3.1/db/d7f/tutorial_js_lucas_kanade.html>
- Histogram Equalization: Regular, Adaptive, Contrast Limited, CLAHE - Advanced histogram equalization: Adaptive, Contrast Limited, CLAHE
- TFLite Models: <https://js.tensorflow.org/api_tflite/0.0.1-alpha.4/> - TFLite models: <https://js.tensorflow.org/api_tflite/0.0.1-alpha.4/>
- Body segmentation: `robust-video-matting` - Body segmentation: `robust-video-matting`
- TFJS incompatibility with latest `long.js` 5.0.0 due to CJS to ESM switch - TFJS incompatibility with latest `long.js` 5.0.0 due to CJS to ESM switch
@ -19,6 +19,7 @@
#### WebGPU #### WebGPU
Experimental support only until support is officially added in Chromium Experimental support only until support is officially added in Chromium
- Performance issues: - Performance issues:
<https://github.com/tensorflow/tfjs/issues/5689> <https://github.com/tensorflow/tfjs/issues/5689>
@ -39,7 +40,7 @@ MoveNet MultiPose model does not work with WASM backend due to missing F32 broad
<br><hr><br> <br><hr><br>
## Pending release notes: ## Pending Release Notes
New: New:
- new demo `demos/faceid` that utilizes multiple algorithm to validate input before triggering face recognition - new demo `demos/faceid` that utilizes multiple algorithm to validate input before triggering face recognition

View File

@ -32,3 +32,10 @@ designed to serve as a quick check when used together with other indicators:
- Checks if input has obvious artifacts due to recording (e.g. playing back phone recording of a face) - Checks if input has obvious artifacts due to recording (e.g. playing back phone recording of a face)
- Configuration: `human.config.face.liveness`.enabled - Configuration: `human.config.face.liveness`.enabled
- Result: `human.result.face[0].live` as score - Result: `human.result.face[0].live` as score
### Models
**FaceID** is compatible with
- `faceres.json` (default) perfoms combined age/gender/descriptor analysis
- `faceres-deep.json` higher resolution variation of `faceres`
- `mobilefacenet` alternative model for face descriptor analysis

View File

@ -19,10 +19,12 @@ const userConfig = {
filter: { filter: {
enabled: true, enabled: true,
equalization: true, equalization: true,
width: 0,
}, },
face: { face: {
enabled: true, enabled: true,
detector: { rotation: true, return: true, maxDetected: 50 }, // detector: { rotation: false, return: true, maxDetected: 50, iouThreshold: 0.206, minConfidence: 0.122 },
detector: { return: true, rotation: true, maxDetected: 50, iouThreshold: 0.01, minConfidence: 0.2 },
mesh: { enabled: true }, mesh: { enabled: true },
iris: { enabled: false }, iris: { enabled: false },
emotion: { enabled: true }, emotion: { enabled: true },
@ -138,7 +140,8 @@ async function SelectFaceCanvas(face) {
async function AddFaceCanvas(index, res, fileName) { async function AddFaceCanvas(index, res, fileName) {
all[index] = res.face; all[index] = res.face;
for (const i in res.face) { for (const i in res.face) {
if (res.face[i].mesh.length === 0 || !res.face[i].tensor) continue; // did not get valid results if (!res.face[i].tensor) continue; // did not get valid results
if ((res.face[i].faceScore || 0) < human.config.face.detector.minConfidence) continue; // face analysis score too low
all[index][i].fileName = fileName; all[index][i].fileName = fileName;
const canvas = document.createElement('canvas'); const canvas = document.createElement('canvas');
canvas.tag = { sample: index, face: i, source: fileName }; canvas.tag = { sample: index, face: i, source: fileName };
@ -177,9 +180,9 @@ async function AddImageElement(index, image, length) {
return new Promise((resolve) => { return new Promise((resolve) => {
const img = new Image(128, 128); const img = new Image(128, 128);
img.onload = () => { // must wait until image is loaded img.onload = () => { // must wait until image is loaded
document.getElementById('images').appendChild(img); // and finally we can add it
human.detect(img, userConfig).then((res) => { human.detect(img, userConfig).then((res) => {
AddFaceCanvas(index, res, image); // then wait until image is analyzed AddFaceCanvas(index, res, image); // then wait until image is analyzed
document.getElementById('images').appendChild(img); // and finally we can add it
resolve(true); resolve(true);
}); });
}; };
@ -236,12 +239,8 @@ async function main() {
log('Discovered images:', images); log('Discovered images:', images);
} }
// images = ['/samples/in/solvay1927.jpg']; // images = ['/samples/in/person-lexi.jpg', '/samples/in/person-carolina.jpg', '/samples/in/solvay1927.jpg'];
// download and analyze all images
// const promises = [];
// for (let i = 0; i < images.length; i++) promises.push(AddImageElement(i, images[i], images.length));
// await Promise.all(promises);
const t0 = human.now(); const t0 = human.now();
for (let i = 0; i < images.length; i++) await AddImageElement(i, images[i], images.length); for (let i = 0; i < images.length; i++) await AddImageElement(i, images[i], images.length);
const t1 = human.now(); const t1 = human.now();

View File

@ -8,7 +8,7 @@
import { Human } from "../../dist/human.esm.js"; import { Human } from "../../dist/human.esm.js";
var humanConfig = { var humanConfig = {
modelBasePath: "../../models", modelBasePath: "../../models",
filter: { equalization: false } filter: { equalization: true }
}; };
var human = new Human(humanConfig); var human = new Human(humanConfig);
human.env["perfadd"] = false; human.env["perfadd"] = false;

View File

@ -11,8 +11,8 @@ import { Human } from '../../dist/human.esm.js'; // equivalent of @vladmandic/Hu
const humanConfig = { // user configuration for human, used to fine-tune behavior const humanConfig = { // user configuration for human, used to fine-tune behavior
modelBasePath: '../../models', modelBasePath: '../../models',
filter: { equalization: false }, filter: { equalization: true },
// backend: 'webgpu', // backend: 'webgpu' as 'webgpu,
// async: true, // async: true,
// face: { enabled: false, detector: { rotation: true }, iris: { enabled: false }, description: { enabled: false }, emotion: { enabled: false } }, // face: { enabled: false, detector: { rotation: true }, iris: { enabled: false }, description: { enabled: false }, emotion: { enabled: false } },
// body: { enabled: false }, // body: { enabled: false },

View File

@ -13,7 +13,6 @@ import type { Point } from '../result';
const keypointsCount = 6; const keypointsCount = 6;
let model: GraphModel | null; let model: GraphModel | null;
let anchorsData: [number, number][] = [];
let anchors: Tensor | null = null; let anchors: Tensor | null = null;
let inputSize = 0; let inputSize = 0;
@ -27,9 +26,7 @@ export async function load(config: Config): Promise<GraphModel> {
else if (config.debug) log('load model:', model['modelUrl']); else if (config.debug) log('load model:', model['modelUrl']);
} else if (config.debug) log('cached model:', model['modelUrl']); } else if (config.debug) log('cached model:', model['modelUrl']);
inputSize = model.inputs[0].shape ? model.inputs[0].shape[2] : 0; inputSize = model.inputs[0].shape ? model.inputs[0].shape[2] : 0;
if (inputSize === -1) inputSize = 64; anchors = tf.tensor2d(util.generateAnchors(inputSize));
anchorsData = util.generateAnchors(inputSize);
anchors = tf.tensor2d(anchorsData);
return model; return model;
} }
@ -73,7 +70,6 @@ export async function getBoxes(inputImage: Tensor, config: Config) {
t.logits = tf.slice(t.batch, [0, 0], [-1, 1]); t.logits = tf.slice(t.batch, [0, 0], [-1, 1]);
t.sigmoid = tf.sigmoid(t.logits); t.sigmoid = tf.sigmoid(t.logits);
t.scores = tf.squeeze(t.sigmoid); t.scores = tf.squeeze(t.sigmoid);
t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, (config.face.detector?.maxDetected || 0), (config.face.detector?.iouThreshold || 0), (config.face.detector?.minConfidence || 0)); t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, (config.face.detector?.maxDetected || 0), (config.face.detector?.iouThreshold || 0), (config.face.detector?.minConfidence || 0));
const nms = await t.nms.array() as number[]; const nms = await t.nms.array() as number[];
const boxes: Array<{ box: { startPoint: Point, endPoint: Point }, landmarks: Point[], confidence: number }> = []; const boxes: Array<{ box: { startPoint: Point, endPoint: Point }, landmarks: Point[], confidence: number }> = [];
@ -86,12 +82,11 @@ export async function getBoxes(inputImage: Tensor, config: Config) {
b.slice = tf.slice(t.batch, [nms[i], keypointsCount - 1], [1, -1]); b.slice = tf.slice(t.batch, [nms[i], keypointsCount - 1], [1, -1]);
b.squeeze = tf.squeeze(b.slice); b.squeeze = tf.squeeze(b.slice);
b.landmarks = tf.reshape(b.squeeze, [keypointsCount, -1]); b.landmarks = tf.reshape(b.squeeze, [keypointsCount, -1]);
b.startPoint = tf.slice(b.bbox, [0, 0], [-1, 2]); const points = await b.bbox.data();
b.endPoint = tf.slice(b.bbox, [0, 2], [-1, 2]);
boxes.push({ boxes.push({
box: { box: {
startPoint: (await b.startPoint.data()) as unknown as Point, startPoint: [points[0], points[1]] as Point,
endPoint: (await b.endPoint.data()) as unknown as Point, endPoint: [points[2], points[3]] as Point,
}, },
landmarks: (await b.landmarks.array()) as Point[], landmarks: (await b.landmarks.array()) as Point[],
confidence, confidence,

View File

@ -41,7 +41,10 @@ export async function predict(input: Tensor, config: Config): Promise<FaceResult
landmarks: possible.landmarks, landmarks: possible.landmarks,
confidence: possible.confidence, confidence: possible.confidence,
}; };
boxCache.push(util.squarifyBox(util.enlargeBox(util.scaleBoxCoordinates(box, possibleBoxes.scaleFactor), Math.sqrt(config.face.detector?.cropFactor || 1.6)))); const boxScaled = util.scaleBoxCoordinates(box, possibleBoxes.scaleFactor);
const boxEnlarged = util.enlargeBox(boxScaled, Math.sqrt(config.face.detector?.cropFactor || 1.6));
const boxSquared = util.squarifyBox(boxEnlarged);
boxCache.push(boxSquared);
} }
skipped = 0; skipped = 0;
} else { } else {
@ -67,7 +70,7 @@ export async function predict(input: Tensor, config: Config): Promise<FaceResult
}; };
// optional rotation correction based on detector data only if mesh is disabled otherwise perform it later when we have more accurate mesh data. if no rotation correction this function performs crop // optional rotation correction based on detector data only if mesh is disabled otherwise perform it later when we have more accurate mesh data. if no rotation correction this function performs crop
[angle, rotationMatrix, face.tensor] = util.correctFaceRotation(!config.face.mesh?.enabled && config.face.detector?.rotation, box, input, config.face.mesh?.enabled ? inputSize : blazeface.size()); [angle, rotationMatrix, face.tensor] = util.correctFaceRotation(config.face.detector?.rotation, box, input, config.face.mesh?.enabled ? inputSize : blazeface.size());
if (config?.filter?.equalization) { if (config?.filter?.equalization) {
const equilized = await histogramEqualization(face.tensor as Tensor); const equilized = await histogramEqualization(face.tensor as Tensor);
tf.dispose(face.tensor); tf.dispose(face.tensor);

View File

@ -31,8 +31,8 @@ export const getRawBox = (box, input): Box => (box ? [
] : [0, 0, 0, 0]); ] : [0, 0, 0, 0]);
export const scaleBoxCoordinates = (box, factor) => { export const scaleBoxCoordinates = (box, factor) => {
const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]]; const startPoint: Point = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];
const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]]; const endPoint: Point = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];
return { startPoint, endPoint, landmarks: box.landmarks, confidence: box.confidence }; return { startPoint, endPoint, landmarks: box.landmarks, confidence: box.confidence };
}; };

View File

@ -262,7 +262,7 @@ const checksum = async (input: Tensor): Promise<number> => { // use tf sum or js
export async function skip(config, input: Tensor) { export async function skip(config, input: Tensor) {
let skipFrame = false; let skipFrame = false;
if (config.cacheSensitivity === 0) return skipFrame; if (config.cacheSensitivity === 0 || !input.shape || input.shape.length !== 4 || input.shape[1] > 2048 || input.shape[2] > 2048) return skipFrame; // cache disabled or input is invalid or too large for cache analysis
/* /*
const checkSum = await checksum(input); const checkSum = await checksum(input);