mirror of https://github.com/vladmandic/human
add extra face rotation prior to mesh
parent
0420a5d144
commit
8cc5c938f4
|
@ -9,8 +9,9 @@
|
||||||
|
|
||||||
## Changelog
|
## Changelog
|
||||||
|
|
||||||
### **HEAD -> main** 2021/11/14 mandic00@live.com
|
### **release 2.5.2** 2021/11/15 mandic00@live.com
|
||||||
|
|
||||||
|
- improve error handling
|
||||||
|
|
||||||
### **2.5.2** 2021/11/14 mandic00@live.com
|
### **2.5.2** 2021/11/14 mandic00@live.com
|
||||||
|
|
||||||
|
|
9
TODO.md
9
TODO.md
|
@ -6,9 +6,9 @@
|
||||||
|
|
||||||
### Exploring
|
### Exploring
|
||||||
|
|
||||||
- Optical Flow: <https://docs.opencv.org/3.3.1/db/d7f/tutorial_js_lucas_kanade.html>
|
- Optical flow: <https://docs.opencv.org/3.3.1/db/d7f/tutorial_js_lucas_kanade.html>
|
||||||
- Histogram Equalization: Regular, Adaptive, Contrast Limited, CLAHE
|
- Advanced histogram equalization: Adaptive, Contrast Limited, CLAHE
|
||||||
- TFLite Models: <https://js.tensorflow.org/api_tflite/0.0.1-alpha.4/>
|
- TFLite models: <https://js.tensorflow.org/api_tflite/0.0.1-alpha.4/>
|
||||||
- Body segmentation: `robust-video-matting`
|
- Body segmentation: `robust-video-matting`
|
||||||
- TFJS incompatibility with latest `long.js` 5.0.0 due to CJS to ESM switch
|
- TFJS incompatibility with latest `long.js` 5.0.0 due to CJS to ESM switch
|
||||||
|
|
||||||
|
@ -19,6 +19,7 @@
|
||||||
#### WebGPU
|
#### WebGPU
|
||||||
|
|
||||||
Experimental support only until support is officially added in Chromium
|
Experimental support only until support is officially added in Chromium
|
||||||
|
|
||||||
- Performance issues:
|
- Performance issues:
|
||||||
<https://github.com/tensorflow/tfjs/issues/5689>
|
<https://github.com/tensorflow/tfjs/issues/5689>
|
||||||
|
|
||||||
|
@ -39,7 +40,7 @@ MoveNet MultiPose model does not work with WASM backend due to missing F32 broad
|
||||||
|
|
||||||
<br><hr><br>
|
<br><hr><br>
|
||||||
|
|
||||||
## Pending release notes:
|
## Pending Release Notes
|
||||||
|
|
||||||
New:
|
New:
|
||||||
- new demo `demos/faceid` that utilizes multiple algorithm to validate input before triggering face recognition
|
- new demo `demos/faceid` that utilizes multiple algorithm to validate input before triggering face recognition
|
||||||
|
|
|
@ -32,3 +32,10 @@ designed to serve as a quick check when used together with other indicators:
|
||||||
- Checks if input has obvious artifacts due to recording (e.g. playing back phone recording of a face)
|
- Checks if input has obvious artifacts due to recording (e.g. playing back phone recording of a face)
|
||||||
- Configuration: `human.config.face.liveness`.enabled
|
- Configuration: `human.config.face.liveness`.enabled
|
||||||
- Result: `human.result.face[0].live` as score
|
- Result: `human.result.face[0].live` as score
|
||||||
|
|
||||||
|
### Models
|
||||||
|
|
||||||
|
**FaceID** is compatible with
|
||||||
|
- `faceres.json` (default) perfoms combined age/gender/descriptor analysis
|
||||||
|
- `faceres-deep.json` higher resolution variation of `faceres`
|
||||||
|
- `mobilefacenet` alternative model for face descriptor analysis
|
||||||
|
|
|
@ -19,10 +19,12 @@ const userConfig = {
|
||||||
filter: {
|
filter: {
|
||||||
enabled: true,
|
enabled: true,
|
||||||
equalization: true,
|
equalization: true,
|
||||||
|
width: 0,
|
||||||
},
|
},
|
||||||
face: {
|
face: {
|
||||||
enabled: true,
|
enabled: true,
|
||||||
detector: { rotation: true, return: true, maxDetected: 50 },
|
// detector: { rotation: false, return: true, maxDetected: 50, iouThreshold: 0.206, minConfidence: 0.122 },
|
||||||
|
detector: { return: true, rotation: true, maxDetected: 50, iouThreshold: 0.01, minConfidence: 0.2 },
|
||||||
mesh: { enabled: true },
|
mesh: { enabled: true },
|
||||||
iris: { enabled: false },
|
iris: { enabled: false },
|
||||||
emotion: { enabled: true },
|
emotion: { enabled: true },
|
||||||
|
@ -138,7 +140,8 @@ async function SelectFaceCanvas(face) {
|
||||||
async function AddFaceCanvas(index, res, fileName) {
|
async function AddFaceCanvas(index, res, fileName) {
|
||||||
all[index] = res.face;
|
all[index] = res.face;
|
||||||
for (const i in res.face) {
|
for (const i in res.face) {
|
||||||
if (res.face[i].mesh.length === 0 || !res.face[i].tensor) continue; // did not get valid results
|
if (!res.face[i].tensor) continue; // did not get valid results
|
||||||
|
if ((res.face[i].faceScore || 0) < human.config.face.detector.minConfidence) continue; // face analysis score too low
|
||||||
all[index][i].fileName = fileName;
|
all[index][i].fileName = fileName;
|
||||||
const canvas = document.createElement('canvas');
|
const canvas = document.createElement('canvas');
|
||||||
canvas.tag = { sample: index, face: i, source: fileName };
|
canvas.tag = { sample: index, face: i, source: fileName };
|
||||||
|
@ -177,9 +180,9 @@ async function AddImageElement(index, image, length) {
|
||||||
return new Promise((resolve) => {
|
return new Promise((resolve) => {
|
||||||
const img = new Image(128, 128);
|
const img = new Image(128, 128);
|
||||||
img.onload = () => { // must wait until image is loaded
|
img.onload = () => { // must wait until image is loaded
|
||||||
|
document.getElementById('images').appendChild(img); // and finally we can add it
|
||||||
human.detect(img, userConfig).then((res) => {
|
human.detect(img, userConfig).then((res) => {
|
||||||
AddFaceCanvas(index, res, image); // then wait until image is analyzed
|
AddFaceCanvas(index, res, image); // then wait until image is analyzed
|
||||||
document.getElementById('images').appendChild(img); // and finally we can add it
|
|
||||||
resolve(true);
|
resolve(true);
|
||||||
});
|
});
|
||||||
};
|
};
|
||||||
|
@ -236,12 +239,8 @@ async function main() {
|
||||||
log('Discovered images:', images);
|
log('Discovered images:', images);
|
||||||
}
|
}
|
||||||
|
|
||||||
// images = ['/samples/in/solvay1927.jpg'];
|
// images = ['/samples/in/person-lexi.jpg', '/samples/in/person-carolina.jpg', '/samples/in/solvay1927.jpg'];
|
||||||
|
|
||||||
// download and analyze all images
|
|
||||||
// const promises = [];
|
|
||||||
// for (let i = 0; i < images.length; i++) promises.push(AddImageElement(i, images[i], images.length));
|
|
||||||
// await Promise.all(promises);
|
|
||||||
const t0 = human.now();
|
const t0 = human.now();
|
||||||
for (let i = 0; i < images.length; i++) await AddImageElement(i, images[i], images.length);
|
for (let i = 0; i < images.length; i++) await AddImageElement(i, images[i], images.length);
|
||||||
const t1 = human.now();
|
const t1 = human.now();
|
||||||
|
|
|
@ -8,7 +8,7 @@
|
||||||
import { Human } from "../../dist/human.esm.js";
|
import { Human } from "../../dist/human.esm.js";
|
||||||
var humanConfig = {
|
var humanConfig = {
|
||||||
modelBasePath: "../../models",
|
modelBasePath: "../../models",
|
||||||
filter: { equalization: false }
|
filter: { equalization: true }
|
||||||
};
|
};
|
||||||
var human = new Human(humanConfig);
|
var human = new Human(humanConfig);
|
||||||
human.env["perfadd"] = false;
|
human.env["perfadd"] = false;
|
||||||
|
|
|
@ -11,8 +11,8 @@ import { Human } from '../../dist/human.esm.js'; // equivalent of @vladmandic/Hu
|
||||||
|
|
||||||
const humanConfig = { // user configuration for human, used to fine-tune behavior
|
const humanConfig = { // user configuration for human, used to fine-tune behavior
|
||||||
modelBasePath: '../../models',
|
modelBasePath: '../../models',
|
||||||
filter: { equalization: false },
|
filter: { equalization: true },
|
||||||
// backend: 'webgpu',
|
// backend: 'webgpu' as 'webgpu,
|
||||||
// async: true,
|
// async: true,
|
||||||
// face: { enabled: false, detector: { rotation: true }, iris: { enabled: false }, description: { enabled: false }, emotion: { enabled: false } },
|
// face: { enabled: false, detector: { rotation: true }, iris: { enabled: false }, description: { enabled: false }, emotion: { enabled: false } },
|
||||||
// body: { enabled: false },
|
// body: { enabled: false },
|
||||||
|
|
|
@ -13,7 +13,6 @@ import type { Point } from '../result';
|
||||||
|
|
||||||
const keypointsCount = 6;
|
const keypointsCount = 6;
|
||||||
let model: GraphModel | null;
|
let model: GraphModel | null;
|
||||||
let anchorsData: [number, number][] = [];
|
|
||||||
let anchors: Tensor | null = null;
|
let anchors: Tensor | null = null;
|
||||||
let inputSize = 0;
|
let inputSize = 0;
|
||||||
|
|
||||||
|
@ -27,9 +26,7 @@ export async function load(config: Config): Promise<GraphModel> {
|
||||||
else if (config.debug) log('load model:', model['modelUrl']);
|
else if (config.debug) log('load model:', model['modelUrl']);
|
||||||
} else if (config.debug) log('cached model:', model['modelUrl']);
|
} else if (config.debug) log('cached model:', model['modelUrl']);
|
||||||
inputSize = model.inputs[0].shape ? model.inputs[0].shape[2] : 0;
|
inputSize = model.inputs[0].shape ? model.inputs[0].shape[2] : 0;
|
||||||
if (inputSize === -1) inputSize = 64;
|
anchors = tf.tensor2d(util.generateAnchors(inputSize));
|
||||||
anchorsData = util.generateAnchors(inputSize);
|
|
||||||
anchors = tf.tensor2d(anchorsData);
|
|
||||||
return model;
|
return model;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -73,7 +70,6 @@ export async function getBoxes(inputImage: Tensor, config: Config) {
|
||||||
t.logits = tf.slice(t.batch, [0, 0], [-1, 1]);
|
t.logits = tf.slice(t.batch, [0, 0], [-1, 1]);
|
||||||
t.sigmoid = tf.sigmoid(t.logits);
|
t.sigmoid = tf.sigmoid(t.logits);
|
||||||
t.scores = tf.squeeze(t.sigmoid);
|
t.scores = tf.squeeze(t.sigmoid);
|
||||||
|
|
||||||
t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, (config.face.detector?.maxDetected || 0), (config.face.detector?.iouThreshold || 0), (config.face.detector?.minConfidence || 0));
|
t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.scores, (config.face.detector?.maxDetected || 0), (config.face.detector?.iouThreshold || 0), (config.face.detector?.minConfidence || 0));
|
||||||
const nms = await t.nms.array() as number[];
|
const nms = await t.nms.array() as number[];
|
||||||
const boxes: Array<{ box: { startPoint: Point, endPoint: Point }, landmarks: Point[], confidence: number }> = [];
|
const boxes: Array<{ box: { startPoint: Point, endPoint: Point }, landmarks: Point[], confidence: number }> = [];
|
||||||
|
@ -86,12 +82,11 @@ export async function getBoxes(inputImage: Tensor, config: Config) {
|
||||||
b.slice = tf.slice(t.batch, [nms[i], keypointsCount - 1], [1, -1]);
|
b.slice = tf.slice(t.batch, [nms[i], keypointsCount - 1], [1, -1]);
|
||||||
b.squeeze = tf.squeeze(b.slice);
|
b.squeeze = tf.squeeze(b.slice);
|
||||||
b.landmarks = tf.reshape(b.squeeze, [keypointsCount, -1]);
|
b.landmarks = tf.reshape(b.squeeze, [keypointsCount, -1]);
|
||||||
b.startPoint = tf.slice(b.bbox, [0, 0], [-1, 2]);
|
const points = await b.bbox.data();
|
||||||
b.endPoint = tf.slice(b.bbox, [0, 2], [-1, 2]);
|
|
||||||
boxes.push({
|
boxes.push({
|
||||||
box: {
|
box: {
|
||||||
startPoint: (await b.startPoint.data()) as unknown as Point,
|
startPoint: [points[0], points[1]] as Point,
|
||||||
endPoint: (await b.endPoint.data()) as unknown as Point,
|
endPoint: [points[2], points[3]] as Point,
|
||||||
},
|
},
|
||||||
landmarks: (await b.landmarks.array()) as Point[],
|
landmarks: (await b.landmarks.array()) as Point[],
|
||||||
confidence,
|
confidence,
|
||||||
|
|
|
@ -41,7 +41,10 @@ export async function predict(input: Tensor, config: Config): Promise<FaceResult
|
||||||
landmarks: possible.landmarks,
|
landmarks: possible.landmarks,
|
||||||
confidence: possible.confidence,
|
confidence: possible.confidence,
|
||||||
};
|
};
|
||||||
boxCache.push(util.squarifyBox(util.enlargeBox(util.scaleBoxCoordinates(box, possibleBoxes.scaleFactor), Math.sqrt(config.face.detector?.cropFactor || 1.6))));
|
const boxScaled = util.scaleBoxCoordinates(box, possibleBoxes.scaleFactor);
|
||||||
|
const boxEnlarged = util.enlargeBox(boxScaled, Math.sqrt(config.face.detector?.cropFactor || 1.6));
|
||||||
|
const boxSquared = util.squarifyBox(boxEnlarged);
|
||||||
|
boxCache.push(boxSquared);
|
||||||
}
|
}
|
||||||
skipped = 0;
|
skipped = 0;
|
||||||
} else {
|
} else {
|
||||||
|
@ -67,7 +70,7 @@ export async function predict(input: Tensor, config: Config): Promise<FaceResult
|
||||||
};
|
};
|
||||||
|
|
||||||
// optional rotation correction based on detector data only if mesh is disabled otherwise perform it later when we have more accurate mesh data. if no rotation correction this function performs crop
|
// optional rotation correction based on detector data only if mesh is disabled otherwise perform it later when we have more accurate mesh data. if no rotation correction this function performs crop
|
||||||
[angle, rotationMatrix, face.tensor] = util.correctFaceRotation(!config.face.mesh?.enabled && config.face.detector?.rotation, box, input, config.face.mesh?.enabled ? inputSize : blazeface.size());
|
[angle, rotationMatrix, face.tensor] = util.correctFaceRotation(config.face.detector?.rotation, box, input, config.face.mesh?.enabled ? inputSize : blazeface.size());
|
||||||
if (config?.filter?.equalization) {
|
if (config?.filter?.equalization) {
|
||||||
const equilized = await histogramEqualization(face.tensor as Tensor);
|
const equilized = await histogramEqualization(face.tensor as Tensor);
|
||||||
tf.dispose(face.tensor);
|
tf.dispose(face.tensor);
|
||||||
|
|
|
@ -31,8 +31,8 @@ export const getRawBox = (box, input): Box => (box ? [
|
||||||
] : [0, 0, 0, 0]);
|
] : [0, 0, 0, 0]);
|
||||||
|
|
||||||
export const scaleBoxCoordinates = (box, factor) => {
|
export const scaleBoxCoordinates = (box, factor) => {
|
||||||
const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];
|
const startPoint: Point = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];
|
||||||
const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];
|
const endPoint: Point = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];
|
||||||
return { startPoint, endPoint, landmarks: box.landmarks, confidence: box.confidence };
|
return { startPoint, endPoint, landmarks: box.landmarks, confidence: box.confidence };
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
|
@ -262,7 +262,7 @@ const checksum = async (input: Tensor): Promise<number> => { // use tf sum or js
|
||||||
|
|
||||||
export async function skip(config, input: Tensor) {
|
export async function skip(config, input: Tensor) {
|
||||||
let skipFrame = false;
|
let skipFrame = false;
|
||||||
if (config.cacheSensitivity === 0) return skipFrame;
|
if (config.cacheSensitivity === 0 || !input.shape || input.shape.length !== 4 || input.shape[1] > 2048 || input.shape[2] > 2048) return skipFrame; // cache disabled or input is invalid or too large for cache analysis
|
||||||
|
|
||||||
/*
|
/*
|
||||||
const checkSum = await checksum(input);
|
const checkSum = await checksum(input);
|
||||||
|
|
Loading…
Reference in New Issue