mirror of https://github.com/vladmandic/human
fix face box and hand tracking when in front of face
parent
a071a1eee9
commit
8b336230e7
|
@ -9,7 +9,10 @@
|
|||
|
||||
## Changelog
|
||||
|
||||
### **HEAD -> main** 2022/01/05 mandic00@live.com
|
||||
### **2.5.8** 2022/01/14 mandic00@live.com
|
||||
|
||||
|
||||
### **origin/main** 2022/01/08 mandic00@live.com
|
||||
|
||||
- fix samples
|
||||
- fix(src): typo
|
||||
|
|
|
@ -101,7 +101,8 @@ export async function predict(input: Tensor, config: Config): Promise<FaceResult
|
|||
newCache.push(calculatedBox);
|
||||
}
|
||||
}
|
||||
faces.push(face);
|
||||
if (face.score > (config.face.detector?.minConfidence || 1)) faces.push(face);
|
||||
else tf.dispose(face.tensor);
|
||||
}
|
||||
cache.boxes = newCache; // reset cache
|
||||
return faces;
|
||||
|
|
|
@ -38,7 +38,6 @@ type HandDetectResult = {
|
|||
score: number,
|
||||
box: Box,
|
||||
boxRaw: Box,
|
||||
boxCrop: Box,
|
||||
label: HandType,
|
||||
}
|
||||
|
||||
|
@ -121,10 +120,11 @@ async function detectHands(input: Tensor, config: Config): Promise<HandDetectRes
|
|||
classScores.splice(faceIndex, 1); // remove faces
|
||||
t.filtered = tf.stack(classScores, 1); // restack
|
||||
tf.dispose(classScores);
|
||||
// t.filtered = t.scores;
|
||||
t.max = tf.max(t.filtered, 1); // max overall score
|
||||
t.argmax = tf.argMax(t.filtered, 1); // class index of max overall score
|
||||
let id = 0;
|
||||
t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.max, config.hand.maxDetected, config.hand.iouThreshold, config.hand.minConfidence);
|
||||
t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.max, (config.hand.maxDetected || 0) + 1, config.hand.iouThreshold || 0, config.hand.minConfidence || 1);
|
||||
const nms = await t.nms.data();
|
||||
const scores = await t.max.data();
|
||||
const classNum = await t.argmax.data();
|
||||
|
@ -132,14 +132,12 @@ async function detectHands(input: Tensor, config: Config): Promise<HandDetectRes
|
|||
const boxSlice = tf.slice(t.boxes, nmsIndex, 1);
|
||||
const boxYX = await boxSlice.data();
|
||||
tf.dispose(boxSlice);
|
||||
// const boxSquareSize = Math.max(boxData[3] - boxData[1], boxData[2] - boxData[0]);
|
||||
const boxData: Box = [boxYX[1], boxYX[0], boxYX[3] - boxYX[1], boxYX[2] - boxYX[0]]; // yx box reshaped to standard box
|
||||
const boxRaw: Box = box.scale(boxData, detectorExpandFact);
|
||||
const boxCrop: Box = box.crop(boxRaw); // crop box is based on raw box
|
||||
const boxFull: Box = [Math.trunc(boxData[0] * outputSize[0]), Math.trunc(boxData[1] * outputSize[1]), Math.trunc(boxData[2] * outputSize[0]), Math.trunc(boxData[3] * outputSize[1])];
|
||||
const score = scores[nmsIndex];
|
||||
const label = classes[classNum[nmsIndex]] as HandType;
|
||||
const hand: HandDetectResult = { id: id++, score, box: boxFull, boxRaw, boxCrop, label };
|
||||
const hand: HandDetectResult = { id: id++, score, box: boxFull, boxRaw, label };
|
||||
hands.push(hand);
|
||||
}
|
||||
Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));
|
||||
|
@ -163,7 +161,8 @@ async function detectFingers(input: Tensor, h: HandDetectResult, config: Config)
|
|||
};
|
||||
if (input && models[1] && config.hand.landmarks && h.score > (config.hand.minConfidence || 0)) {
|
||||
const t: Record<string, Tensor> = {};
|
||||
t.crop = tf.image.cropAndResize(input, [h.boxCrop], [0], [inputSize[1][0], inputSize[1][1]], 'bilinear');
|
||||
const boxCrop = [h.boxRaw[1], h.boxRaw[0], h.boxRaw[3] + h.boxRaw[1], h.boxRaw[2] + h.boxRaw[0]] as Box;
|
||||
t.crop = tf.image.cropAndResize(input, [boxCrop], [0], [inputSize[1][0], inputSize[1][1]], 'bilinear');
|
||||
t.div = tf.div(t.crop, constants.tf255);
|
||||
[t.score, t.keypoints] = models[1].execute(t.div, ['Identity_1', 'Identity']) as Tensor[];
|
||||
const rawScore = (await t.score.data())[0];
|
||||
|
@ -174,11 +173,7 @@ async function detectFingers(input: Tensor, h: HandDetectResult, config: Config)
|
|||
const coordsData: Point[] = await t.reshaped.array() as Point[];
|
||||
const coordsRaw: Point[] = coordsData.map((kpt) => [kpt[0] / inputSize[1][1], kpt[1] / inputSize[1][0], (kpt[2] || 0)]);
|
||||
const coordsNorm: Point[] = coordsRaw.map((kpt) => [kpt[0] * h.boxRaw[2], kpt[1] * h.boxRaw[3], (kpt[2] || 0)]);
|
||||
hand.keypoints = (coordsNorm).map((kpt) => [
|
||||
outputSize[0] * (kpt[0] + h.boxRaw[0]),
|
||||
outputSize[1] * (kpt[1] + h.boxRaw[1]),
|
||||
(kpt[2] || 0),
|
||||
]);
|
||||
hand.keypoints = (coordsNorm).map((kpt) => [outputSize[0] * (kpt[0] + h.boxRaw[0]), outputSize[1] * (kpt[1] + h.boxRaw[1]), (kpt[2] || 0)]);
|
||||
hand.landmarks = fingerPose.analyze(hand.keypoints) as HandResult['landmarks']; // calculate finger gestures
|
||||
for (const key of Object.keys(fingerMap)) { // map keypoints to per-finger annotations
|
||||
hand.annotations[key] = fingerMap[key].map((index: number) => (hand.landmarks && hand.keypoints[index] ? hand.keypoints[index] : null));
|
||||
|
@ -220,8 +215,8 @@ export async function predict(input: Tensor, config: Config): Promise<HandResult
|
|||
if (boxKpt.box[2] / (input.shape[2] || 1) > 0.05 && boxKpt.box[3] / (input.shape[1] || 1) > 0.05 && cache.hands[i].fingerScore && cache.hands[i].fingerScore > (config.hand.minConfidence || 0)) {
|
||||
const boxScale = box.scale(boxKpt.box, boxExpandFact);
|
||||
const boxScaleRaw = box.scale(boxKpt.boxRaw, boxExpandFact);
|
||||
const boxCrop = box.crop(boxScaleRaw);
|
||||
cache.boxes.push({ ...oldCache[i], box: boxScale, boxRaw: boxScaleRaw, boxCrop });
|
||||
// const boxCrop = box.crop(boxScaleRaw);
|
||||
cache.boxes.push({ ...oldCache[i], box: boxScale, boxRaw: boxScaleRaw });
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue