From 8667da95c2467e76d592c4f46b13b686432aa9e3 Mon Sep 17 00:00:00 2001 From: Vladimir Mandic Date: Wed, 3 Mar 2021 09:59:04 -0500 Subject: [PATCH] fine tuning age and face models --- .markdownlint.json | 6 + config.js | 10 +- demo/browser.js | 12 +- dist/demo-browser-index.js | 99271 ++++++++++++++++++++++++++++++- dist/demo-browser-index.js.map | 4 +- dist/demo-browser-index.json | 18 +- dist/human.esm-nobundle.js | 24505 +++++++- dist/human.esm-nobundle.js.map | 4 +- dist/human.esm.js | 98093 +++++++++++++++++++++++++++++- dist/human.esm.js.map | 4 +- dist/human.esm.json | 88 +- dist/human.iife.json | 88 +- dist/human.node-gpu.js | 24484 +++++++- dist/human.node-gpu.js.map | 4 +- dist/human.node.js | 24484 +++++++- dist/human.node.js.map | 4 +- dist/human.node.json | 88 +- dist/human.ts | 98115 +++++++++++++++++++++++++++++- dist/human.ts.map | 4 +- dist/tfjs.esm.js | 76287 +++++++++++++++++++++++- dist/tfjs.esm.js.map | 2 +- dist/tfjs.esm.json | 7196 +-- server/changelog.js | 15 +- server/serve.js | 2 +- src/blazeface/facemesh.ts | 16 +- src/blazeface/facepipeline.ts | 2 +- src/human.ts | 4 +- types/human.d.ts | 2 + 28 files changed, 442533 insertions(+), 10279 deletions(-) create mode 100644 .markdownlint.json diff --git a/.markdownlint.json b/.markdownlint.json new file mode 100644 index 00000000..fac5739d --- /dev/null +++ b/.markdownlint.json @@ -0,0 +1,6 @@ +{ + "MD012": false, + "MD013": false, + "MD033": false, + "MD036": false +} \ No newline at end of file diff --git a/config.js b/config.js index f2c13afe..8d8be31e 100644 --- a/config.js +++ b/config.js @@ -82,10 +82,10 @@ export default { // in short time (10 * 1/25 = 0.25 sec) skipInitial: false, // if previous detection resulted in no faces detected, // should skipFrames be reset immediately - minConfidence: 0.2, // threshold for discarding a prediction - iouThreshold: 0.2, // threshold for deciding whether boxes overlap too much in + minConfidence: 0.1, // threshold for discarding a prediction + iouThreshold: 0.1, // threshold for deciding whether boxes overlap too much in // non-maximum suppression (0.1 means drop if overlap 10%) - scoreThreshold: 0.2, // threshold for deciding when to remove boxes based on score + scoreThreshold: 0.1, // threshold for deciding when to remove boxes based on score // in non-maximum suppression, // this is applied on detection objects only and before minConfidence }, @@ -114,7 +114,7 @@ export default { gender: { enabled: true, - minConfidence: 0.4, // threshold for discarding a prediction + minConfidence: 0.1, // threshold for discarding a prediction modelPath: '../models/gender.json', // can be 'gender', 'gender-ssrnet-imdb' or 'gender-ssrnet-wiki' inputSize: 64, // fixed value skipFrames: 41, // how many frames to go without re-running the detector @@ -124,7 +124,7 @@ export default { emotion: { enabled: true, inputSize: 64, // fixed value - minConfidence: 0.2, // threshold for discarding a prediction + minConfidence: 0.1, // threshold for discarding a prediction skipFrames: 21, // how many frames to go without re-running the detector modelPath: '../models/emotion-large.json', // can be 'mini', 'large' }, diff --git a/demo/browser.js b/demo/browser.js index 98519a54..350e6848 100644 --- a/demo/browser.js +++ b/demo/browser.js @@ -31,7 +31,7 @@ const ui = { baseFontProto: 'small-caps {size} "Segoe UI"', baseLineWidth: 12, crop: true, - columns: 2, + columns: 4, busy: false, facing: true, useWorker: false, @@ -339,7 +339,7 @@ async function processImage(input) { return new Promise((resolve) => { const image = new Image(); image.onload = async () => { - log('Processing image:', image.src); + log('Processing image:', encodeURI(image.src)); const canvas = document.getElementById('canvas'); image.width = image.naturalWidth; image.height = image.naturalHeight; @@ -351,7 +351,12 @@ async function processImage(input) { const thumb = document.createElement('canvas'); thumb.className = 'thumbnail'; thumb.width = window.innerWidth / (ui.columns + 0.1); - thumb.height = canvas.height / (window.innerWidth / thumb.width); + thumb.height = thumb.width * canvas.height / canvas.width; + if (result.face && result.face.length > 0) { + thumb.title = result.face.map((a, i) => `#${i} face: ${Math.trunc(100 * a.faceConfidence)}% box: ${Math.trunc(100 * a.boxConfidence)}% age: ${Math.trunc(a.age)} gender: ${Math.trunc(100 * a.genderConfidence)}% ${a.gender}`).join(' | '); + } else { + thumb.title = 'no face detected'; + } const ctx = thumb.getContext('2d'); ctx.drawImage(canvas, 0, 0, canvas.width, canvas.height, 0, 0, thumb.width, thumb.height); document.getElementById('samples-container').appendChild(thumb); @@ -403,6 +408,7 @@ async function detectSampleImages() { log('Running detection of sample images'); status('processing images'); document.getElementById('samples-container').innerHTML = ''; + for (const m of Object.values(menu)) m.hide(); for (const image of ui.samples) await processImage(image); status(''); } diff --git a/dist/demo-browser-index.js b/dist/demo-browser-index.js index 56f55d71..b2ece2b7 100644 --- a/dist/demo-browser-index.js +++ b/dist/demo-browser-index.js @@ -5,31 +5,28892 @@ author: ' */ -var h4=Object.create,nh=Object.defineProperty,d4=Object.getPrototypeOf,p4=Object.prototype.hasOwnProperty,f4=Object.getOwnPropertyNames,m4=Object.getOwnPropertyDescriptor,bf=e=>nh(e,"__esModule",{value:!0}),$2=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),kr=(e,t)=>{for(var n in t)nh(e,n,{get:t[n],enumerable:!0})},A4=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of f4(t))!p4.call(e,r)&&r!=="default"&&nh(e,r,{get:()=>t[r],enumerable:!(n=m4(t,r))||n.enumerable});return e},rh=e=>e&&e.__esModule?e:A4(bf(nh(e!=null?h4(d4(e)):{},"default",{value:e,enumerable:!0})),e),w4=$2(e=>{bf(e),kr(e,{MediaPipeFaceMesh:()=>t,load:()=>r});var t=class{constructor(a,s,i,o){this.facePipeline=new x4(a,s,i,o),this.config=o}async estimateFaces(a,s){let i=await this.facePipeline.predict(a,s),o=[];for(let l of i||[]){if(l.isDisposedInternal)continue;let u=l.coords?l.coords.arraySync():null,c=l.rawCoords,h={};if(u&&u.length>0)for(let f of Object.keys(ma))h[f]=ma[f].map(m=>u[m]);let d=s.face.mesh.returnRawData&&l.box?{topLeft:l.box.startPoint,bottomRight:l.box.endPoint}:null,p=l.box?[Math.max(0,l.box.startPoint[0]),Math.max(0,l.box.startPoint[1]),Math.min(a.shape[2],l.box.endPoint[0])-l.box.startPoint[0],Math.min(a.shape[1],l.box.endPoint[1])-l.box.startPoint[1]]:0;o.push({confidence:l.confidence||0,box:p,mesh:u,boxRaw:d,meshRaw:c,annotations:h,image:l.image?Ir(l.image):null}),l.coords&&l.coords.dispose(),l.image&&l.image.dispose()}return o}},n=[null,null,null];async function r(a){n=await Promise.all([!n[0]&&a.face.enabled?y4(a):null,!n[1]&&a.face.mesh.enabled?Yn(a.face.mesh.modelPath,{fromTFHub:a.face.mesh.modelPath.includes("tfhub.dev")}):null,!n[2]&&a.face.iris.enabled?Yn(a.face.iris.modelPath,{fromTFHub:a.face.iris.modelPath.includes("tfhub.dev")}):null]);let s=new t(n[0],n[1],n[2],a);return a.face.mesh.enabled&&a.debug&&Ve(`load model: ${a.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),a.face.iris.enabled&&a.debug&&Ve(`load model: ${a.face.iris.modelPath.match(/\/(.*)\./)[1]}`),s}e.triangulation=g4}),_f=$2(e=>{bf(e),kr(e,{NUM_KEYPOINTS:()=>n,connectedPartIndices:()=>s,partChannels:()=>o,partIds:()=>r,partNames:()=>t,poseChain:()=>i});var t=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],n=e.partNames.length,r=e.partNames.reduce((l,u,c)=>(l[u]=c,l),{}),a=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],s=a.map(([l,u])=>[r[l],r[u]]),i=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]],o=["left_face","right_face","right_upper_leg_front","right_lower_leg_back","right_upper_leg_back","left_lower_leg_front","left_upper_leg_front","left_upper_leg_back","left_lower_leg_back","right_feet","right_lower_leg_front","left_feet","torso_front","torso_back","right_upper_arm_front","right_upper_arm_back","right_lower_arm_back","left_lower_arm_front","left_upper_arm_front","left_upper_arm_back","left_lower_arm_back","right_hand","right_lower_arm_front","left_hand"]});function Ve(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var M2={};kr(M2,{Abs:()=>Oi,Acos:()=>zi,Acosh:()=>Li,AdadeltaOptimizer:()=>fd,AdagradOptimizer:()=>md,AdamOptimizer:()=>Ad,AdamaxOptimizer:()=>yd,Add:()=>Aa,AddN:()=>qa,All:()=>sh,Any:()=>ih,ArgMax:()=>Xa,ArgMin:()=>Hl,Asin:()=>Pi,Asinh:()=>Wi,Atan:()=>Bi,Atan2:()=>Ui,Atanh:()=>Vi,AvgPool:()=>Ka,AvgPool3D:()=>Gl,AvgPool3DGrad:()=>lh,AvgPoolGrad:()=>oh,BackendWasm:()=>v0,BatchMatMul:()=>Za,BatchToSpaceND:()=>ql,Bincount:()=>uh,BroadcastTo:()=>O2,Callback:()=>O0,CallbackList:()=>E0,Cast:()=>Ya,Ceil:()=>Ja,ClipByValue:()=>ya,Complex:()=>ch,ComplexAbs:()=>Xl,Concat:()=>ji,Conv2D:()=>Qa,Conv2DBackpropFilter:()=>hh,Conv2DBackpropInput:()=>es,Conv3D:()=>Kl,Conv3DBackpropFilterV2:()=>dh,Conv3DBackpropInputV2:()=>ph,Cos:()=>ts,Cosh:()=>Hi,CropAndResize:()=>Gi,Cumsum:()=>ns,CustomCallback:()=>R0,DataStorage:()=>ah,DenseBincount:()=>fh,DepthToSpace:()=>qi,DepthwiseConv2dNative:()=>rs,DepthwiseConv2dNativeBackpropFilter:()=>mh,DepthwiseConv2dNativeBackpropInput:()=>Ah,Diag:()=>yh,Dilation2D:()=>Zl,Dilation2DBackpropFilter:()=>xh,Dilation2DBackpropInput:()=>gh,ENV:()=>jl,EarlyStopping:()=>z0,Elu:()=>Xi,EluGrad:()=>wh,Environment:()=>D2,Equal:()=>Zi,Erf:()=>Ki,Exp:()=>ss,ExpandDims:()=>Yi,Expm1:()=>Ji,FFT:()=>bh,Fill:()=>Yl,FlipLeftRight:()=>Qi,Floor:()=>is,FloorDiv:()=>os,FromPixels:()=>Dh,FusedBatchNorm:()=>ls,FusedConv2D:()=>Ws,FusedDepthwiseConv2D:()=>Bs,GPGPUContext:()=>hm,GatherNd:()=>to,GatherV2:()=>eo,GraphModel:()=>L0,Greater:()=>no,GreaterEqual:()=>us,History:()=>C0,IFFT:()=>_h,Identity:()=>cs,Imag:()=>vh,InputSpec:()=>Ut,IsFinite:()=>ro,IsInf:()=>ao,IsNan:()=>so,KernelBackend:()=>Ul,LRN:()=>eu,LRNGrad:()=>Ih,LayerVariable:()=>T0,LayersModel:()=>Qr,LeakyRelu:()=>hs,Less:()=>io,LessEqual:()=>oo,LinSpace:()=>kh,Log:()=>ds,Log1p:()=>lo,LogSoftmax:()=>z2,LogicalAnd:()=>uo,LogicalNot:()=>Jl,LogicalOr:()=>Ql,MathBackendCPU:()=>bd,MathBackendWebGL:()=>Cu,Max:()=>ps,MaxPool:()=>ms,MaxPool3D:()=>tu,MaxPool3DGrad:()=>Sh,MaxPoolGrad:()=>Nh,MaxPoolWithArgmax:()=>Th,Maximum:()=>fs,Mean:()=>As,Min:()=>ys,Minimum:()=>gs,MirrorPad:()=>nu,Mod:()=>co,MomentumOptimizer:()=>gd,Multinomial:()=>Eh,Multiply:()=>xs,Neg:()=>ho,NonMaxSuppressionV3:()=>fo,NonMaxSuppressionV4:()=>mo,NonMaxSuppressionV5:()=>Ao,NotEqual:()=>po,OP_SCOPE_SUFFIX:()=>P2,OneHot:()=>ws,OnesLike:()=>yo,Optimizer:()=>Jr,Pack:()=>go,PadV2:()=>bs,Pool:()=>b4,Pow:()=>_s,Prelu:()=>vs,Prod:()=>xo,RMSPropOptimizer:()=>xd,RNN:()=>Fr,Range:()=>ru,Rank:()=>kf,Real:()=>Ch,RealDiv:()=>as,Reciprocal:()=>wo,Reduction:()=>ln,Relu:()=>ks,Relu6:()=>Ns,Reshape:()=>bo,ResizeBilinear:()=>Is,ResizeBilinearGrad:()=>Fh,ResizeNearestNeighbor:()=>au,ResizeNearestNeighborGrad:()=>Rh,Reverse:()=>Ss,RotateWithOffset:()=>Do,Round:()=>Ts,Rsqrt:()=>Es,SGDOptimizer:()=>Eu,ScatterNd:()=>_o,Select:()=>vo,Selu:()=>ko,Sequential:()=>Ko,Sigmoid:()=>Rs,Sign:()=>So,Sin:()=>Cs,Sinh:()=>No,Slice:()=>Io,Softmax:()=>Ms,Softplus:()=>To,SpaceToBatchND:()=>su,SparseToDense:()=>$h,SplitV:()=>Eo,Sqrt:()=>Fs,Square:()=>iu,SquaredDifference:()=>Ds,Step:()=>xa,StridedSlice:()=>Co,Sub:()=>Os,Sum:()=>$s,SymbolicTensor:()=>fr,Tan:()=>Ro,Tanh:()=>zs,Tensor:()=>Ye,TensorBuffer:()=>Mt,Tile:()=>ga,TopK:()=>Fo,Transpose:()=>Ls,Unique:()=>Mh,Unpack:()=>$o,UnsortedSegmentSum:()=>ou,Variable:()=>uu,ZerosLike:()=>Mo,_FusedMatMul:()=>Ps,abs:()=>Dt,acos:()=>Ef,acosh:()=>Cf,add:()=>oe,addN:()=>Bh,all:()=>Vh,any:()=>du,argMax:()=>pu,argMin:()=>Rf,asin:()=>Ff,asinh:()=>$f,atan:()=>Mf,atan2:()=>Df,atanh:()=>Of,avgPool:()=>fu,avgPool3d:()=>zf,backend:()=>j2,backend_util:()=>C,basicLSTMCell:()=>z4,batchNorm:()=>Vs,batchNorm2d:()=>H2,batchNorm3d:()=>G2,batchNorm4d:()=>q2,batchToSpaceND:()=>mu,bincount:()=>X2,booleanMaskAsync:()=>s8,broadcastTo:()=>Au,browser:()=>cu,buffer:()=>We,callbacks:()=>g8,cast:()=>Ae,ceil:()=>Lf,clipByValue:()=>gn,clone:()=>Ir,complex:()=>wa,concat:()=>ot,concat1d:()=>K2,concat2d:()=>Uh,concat3d:()=>Z2,concat4d:()=>Y2,constraints:()=>I0,conv1d:()=>jh,conv2d:()=>Kr,conv2dTranspose:()=>Hh,conv3d:()=>Pf,conv3dTranspose:()=>L4,copyRegisteredKernels:()=>k4,cos:()=>yu,cosh:()=>Gh,cosineWindow:()=>lm,cumsum:()=>qh,customGrad:()=>Sr,data:()=>P0,denseBincount:()=>J2,deprecationWarn:()=>Tf,depthToSpace:()=>Wf,depthwiseConv2d:()=>Wo,deregisterOp:()=>w8,device_util:()=>Lh,diag:()=>P4,dilation2d:()=>Bf,disableDeprecationWarnings:()=>T4,dispose:()=>Re,disposeVariables:()=>E4,div:()=>ve,divNoNan:()=>Vf,dot:()=>Q2,dropout:()=>m0,elu:()=>Bo,enableDebugMode:()=>S4,enableProdMode:()=>N4,enclosingPowerOfTwo:()=>A0,engine:()=>Nr,env:()=>Y,equal:()=>ba,erf:()=>Uf,exp:()=>Vn,expandDims:()=>Sn,expm1:()=>jf,eye:()=>Hf,fft:()=>Su,fill:()=>gu,findBackend:()=>U2,findBackendFactory:()=>D4,floor:()=>Vo,floorDiv:()=>Wh,forceHalfFloat:()=>_0,fused:()=>Ia,gather:()=>Us,gatherND:()=>f0,gather_util:()=>Nf,getBackend:()=>$4,getGradient:()=>vf,getKernel:()=>Oh,getKernelsForBackend:()=>lu,gpgpu_util:()=>w0,grad:()=>W4,grads:()=>B4,greater:()=>er,greaterEqual:()=>va,ifft:()=>qo,imag:()=>Xh,image:()=>St,inTopKAsync:()=>o8,initializers:()=>N0,input:()=>F0,io:()=>yn,irfft:()=>ud,isFinite:()=>e0,isInf:()=>t0,isNaN:()=>n0,keep:()=>Vt,kernel_impls:()=>Rr,layers:()=>S0,leakyRelu:()=>xu,less:()=>Kh,lessEqual:()=>js,linalg:()=>y0,linspace:()=>r0,loadGraphModel:()=>Yn,loadLayersModel:()=>A8,localResponseNormalization:()=>Gf,log:()=>Tn,log1p:()=>Zh,logSigmoid:()=>s0,logSoftmax:()=>Yh,logSumExp:()=>qf,logicalAnd:()=>tr,logicalNot:()=>wu,logicalOr:()=>Jh,logicalXor:()=>i0,losses:()=>c8,matMul:()=>Ge,math:()=>B2,max:()=>Un,maxPool:()=>bu,maxPool3d:()=>Xf,maxPoolWithArgmax:()=>o0,maximum:()=>Tr,mean:()=>_t,memory:()=>Ph,metrics:()=>$0,min:()=>jo,minimum:()=>Ho,mirrorPad:()=>Kf,mod:()=>Zf,model:()=>f8,models:()=>M0,moments:()=>Qh,movingAverage:()=>i8,mul:()=>W,multiRNNCell:()=>j4,multinomial:()=>l0,neg:()=>bt,nextFrame:()=>wd,norm:()=>pd,notEqual:()=>Hs,oneHot:()=>zo,ones:()=>Er,onesLike:()=>En,op:()=>O,outerProduct:()=>H4,pad:()=>Zr,pad1d:()=>G4,pad2d:()=>q4,pad3d:()=>X4,pad4d:()=>K4,pool:()=>u0,pow:()=>Yr,prelu:()=>vu,print:()=>W2,prod:()=>ed,profile:()=>Lo,rand:()=>Z4,randomGamma:()=>Y4,randomNormal:()=>c0,randomUniform:()=>Go,range:()=>td,ready:()=>F4,real:()=>ku,reciprocal:()=>Yf,registerBackend:()=>hu,registerCallbackConstructor:()=>y8,registerGradient:()=>L2,registerKernel:()=>Oo,registerOp:()=>x8,regularizers:()=>D0,relu:()=>Cr,relu6:()=>nd,removeBackend:()=>M4,reshape:()=>H,reverse:()=>Cn,reverse1d:()=>J4,reverse2d:()=>Q4,reverse3d:()=>e8,reverse4d:()=>t8,rfft:()=>Tu,round:()=>Jf,rsqrt:()=>rd,scalar:()=>ke,scatterND:()=>p0,scatter_util:()=>Sf,selu:()=>ad,separableConv2d:()=>Qf,sequential:()=>m8,serialization:()=>re,setBackend:()=>R4,setPlatform:()=>O4,setWasmPath:()=>d8,setWasmPaths:()=>p8,setWebGLContext:()=>cm,setdiff1dAsync:()=>h0,shared:()=>um,sigmoid:()=>Qn,sign:()=>em,signal:()=>u8,sin:()=>sd,sinh:()=>id,slice:()=>Fe,slice1d:()=>od,slice2d:()=>tm,slice3d:()=>ld,slice4d:()=>Iu,slice_util:()=>sn,softmax:()=>Nu,softplus:()=>Uo,spaceToBatchND:()=>_u,sparseToDense:()=>om,spectral:()=>l8,split:()=>on,sqrt:()=>Yt,square:()=>it,squaredDifference:()=>cd,squeeze:()=>ka,stack:()=>Rn,step:()=>Xo,stridedSlice:()=>nm,sub:()=>xe,sum:()=>Ee,sumOutType:()=>zh,tan:()=>rm,tanh:()=>Po,tensor:()=>dr,tensor1d:()=>tn,tensor2d:()=>pr,tensor3d:()=>If,tensor4d:()=>n8,tensor5d:()=>r8,tensor6d:()=>a8,tensor_util:()=>hr,test_util:()=>V2,tidy:()=>V,tile:()=>_a,time:()=>C4,topk:()=>am,train:()=>Gs,transpose:()=>rt,truncatedNormal:()=>hd,unique:()=>dd,unregisterGradient:()=>v4,unregisterKernel:()=>_4,unsortedSegmentSum:()=>sm,unstack:()=>nr,upcastType:()=>Jn,util:()=>v,valueAndGrad:()=>V4,valueAndGrads:()=>U4,variable:()=>d0,variableGrads:()=>a0,version:()=>_8,version_converter:()=>b8,version_core:()=>I4,version_cpu:()=>g0,version_layers:()=>dm,version_wasm:()=>k0,version_webgl:()=>b0,webgl:()=>h8,webgl_util:()=>x0,where:()=>xn,whereAsync:()=>im,zeros:()=>Ct,zerosLike:()=>je});var v8=Object.create,_d=Object.defineProperty,k8=Object.getPrototypeOf,I8=Object.prototype.hasOwnProperty,N8=Object.getOwnPropertyNames,S8=Object.getOwnPropertyDescriptor,T8=e=>_d(e,"__esModule",{value:!0}),Qe=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),ze=(e,t)=>{for(var n in t)_d(e,n,{get:t[n],enumerable:!0})},E8=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of N8(t))!I8.call(e,r)&&r!=="default"&&_d(e,r,{get:()=>t[r],enumerable:!(n=S8(t,r))||n.enumerable});return e},Zo=e=>e&&e.__esModule?e:E8(T8(_d(e!=null?v8(k8(e)):{},"default",{value:e,enumerable:!0})),e),C8=Qe(()=>{}),R8=Qe((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=h.toString();for(var d=0;d>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),F8=Qe((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),$8=Qe((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),M8=Qe((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,u.i=d+1&7,f};function c(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),D8=Qe((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,f,m;return u.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,u.i=p,m+(h^h>>>16)|0};function c(h,d){var p,f,m,A,y,g=[],w=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,w=Math.max(w,d.length)),m=0,A=-32;A>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),O8=Qe((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),pm=Qe(()=>{}),z8=Qe((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",u=r.pow(s,i),c=r.pow(2,o),h=c*2,d=s-1,p;function f(_,x,N){var T=[];x=x==!0?{entropy:!0}:x||{};var E=g(y(x.entropy?[_,b(n)]:_==null?w():_,3),T),$=new m(T),D=function(){for(var L=$.g(i),P=u,U=0;L=h;)L/=2,P/=2,U>>>=1;return(L+U)/P};return D.int32=function(){return $.g(4)|0},D.quick=function(){return $.g(4)/4294967296},D.double=D,g(b($.S),n),(x.pass||N||function(L,P,U,j){return j&&(j.S&&A(j,$),L.state=function(){return A($,{})}),U?(r[l]=L,P):L})(D,E,"global"in x?x.global:this==r,x.state)}r["seed"+l]=f;function m(_){var x,N=_.length,T=this,E=0,$=T.i=T.j=0,D=T.S=[];for(N||(_=[N++]);E{var n=R8(),r=F8(),a=$8(),s=M8(),i=D8(),o=O8(),l=z8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),P8=Qe((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=h.toString();for(var d=0;d>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),W8=Qe((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),B8=Qe((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),V8=Qe((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,u.i=d+1&7,f};function c(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),U8=Qe((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,f,m;return u.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,u.i=p,m+(h^h>>>16)|0};function c(h,d){var p,f,m,A,y,g=[],w=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,w=Math.max(w,d.length)),m=0,A=-32;A>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),j8=Qe((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),H8=Qe((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",u=r.pow(s,i),c=r.pow(2,o),h=c*2,d=s-1,p;function f(_,x,N){var T=[];x=x==!0?{entropy:!0}:x||{};var E=g(y(x.entropy?[_,b(n)]:_==null?w():_,3),T),$=new m(T),D=function(){for(var L=$.g(i),P=u,U=0;L=h;)L/=2,P/=2,U>>>=1;return(L+U)/P};return D.int32=function(){return $.g(4)|0},D.quick=function(){return $.g(4)/4294967296},D.double=D,g(b($.S),n),(x.pass||N||function(L,P,U,j){return j&&(j.S&&A(j,$),L.state=function(){return A($,{})}),U?(r[l]=L,P):L})(D,E,"global"in x?x.global:this==r,x.state)}r["seed"+l]=f;function m(_){var x,N=_.length,T=this,E=0,$=T.i=T.j=0,D=T.S=[];for(N||(_=[N++]);E{var n=P8(),r=W8(),a=B8(),s=V8(),i=U8(),o=j8(),l=H8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),Ru=Qe(()=>{}),q8=Qe(()=>{}),X8=Qe(()=>{}),K8=Qe((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};function s(){return Q.buffer!=Be&&Kt(Q.buffer),dn}function i(){return Q.buffer!=Be&&Kt(Q.buffer),wt}function o(){return Q.buffer!=Be&&Kt(Q.buffer),pn}function l(){return Q.buffer!=Be&&Kt(Q.buffer),Wn}function u(){return Q.buffer!=Be&&Kt(Q.buffer),an}var c=typeof a!="undefined"?a:{},h,d;c.ready=new Promise(function(I,S){h=I,d=S});var p={},f;for(f in c)c.hasOwnProperty(f)&&(p[f]=c[f]);var m=[],A="./this.program",y=function(I,S){throw S},g=!1,w=!1,b=!1,_=!1;g=typeof window=="object",w=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",_=!g&&!b&&!w;var x=c.ENVIRONMENT_IS_PTHREAD||!1;x&&(Be=c.buffer);var N="";function T(I){return c.locateFile?c.locateFile(I,N):N+I}var E,$,D,L,P,U;if(b){w?N=Ru().dirname(N)+"/":N=__dirname+"/",E=function(I,S){return P||(P=require("fs")),U||(U=Ru()),I=U.normalize(I),P.readFileSync(I,S?null:"utf8")},D=function(I){var S=E(I,!0);return S.buffer||(S=new Uint8Array(S)),fe(S.buffer),S},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(I){if(!(I instanceof Vl))throw I}),process.on("unhandledRejection",Gr),y=function(I){process.exit(I)},c.inspect=function(){return"[Emscripten Module object]"};var j;try{j=q8()}catch(I){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),I}global.Worker=j.Worker}else _?(typeof read!="undefined"&&(E=function(I){return read(I)}),D=function(I){var S;return typeof readbuffer=="function"?new Uint8Array(readbuffer(I)):(S=read(I,"binary"),fe(typeof S=="object"),S)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(y=function(I){quit(I)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(g||w)&&(w?N=self.location.href:typeof document!="undefined"&&document.currentScript&&(N=document.currentScript.src),typeof r!="undefined"&&r&&(N=r),N.indexOf("blob:")!==0?N=N.substr(0,N.lastIndexOf("/")+1):N="",b?(E=function(I,S){return P||(P=require("fs")),U||(U=Ru()),I=U.normalize(I),P.readFileSync(I,S?null:"utf8")},D=function(I){var S=E(I,!0);return S.buffer||(S=new Uint8Array(S)),fe(S.buffer),S}):(E=function(I){var S=new XMLHttpRequest;return S.open("GET",I,!1),S.send(null),S.responseText},w&&(D=function(I){var S=new XMLHttpRequest;return S.open("GET",I,!1),S.responseType="arraybuffer",S.send(null),new Uint8Array(S.response)}),$=function(I,S,z){var q=new XMLHttpRequest;q.open("GET",I,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){S(q.response);return}z()},q.onerror=z,q.send(null)}),L=function(I){document.title=I});b&&typeof performance=="undefined"&&(global.performance=X8().performance);var X=c.print||console.log.bind(console),G=c.printErr||console.warn.bind(console);for(f in p)p.hasOwnProperty(f)&&(c[f]=p[f]);p=null,c.arguments&&(m=c.arguments),c.thisProgram&&(A=c.thisProgram),c.quit&&(y=c.quit);var ee=Atomics.load,J=Atomics.store,se=Atomics.compareExchange,te;c.wasmBinary&&(te=c.wasmBinary);var le=c.noExitRuntime||!0;typeof WebAssembly!="object"&&Gr("no native wasm support detected");var Q,de,ue=!1,me;function fe(I,S){I||Gr("Assertion failed: "+S)}function Ie(I){var S=c["_"+I];return fe(S,"Cannot call unknown function "+I+", make sure it is exported"),S}function Se(I,S,z,q,pe){var ce={string:function(An){var Di=0;if(An!=null&&An!==0){var F2=(An.length<<2)+1;Di=Fi(F2),tt(An,Di,F2)}return Di},array:function(An){var Di=Fi(An.length);return Ke(An,Di),Di}};function he(An){return S==="string"?Me(An):S==="boolean"?Boolean(An):An}var be=Ie(I),nt=[],Bt=0;if(q)for(var $t=0;$t=q);){var ce=I[S++];if(!ce)return pe;if(!(ce&128)){pe+=String.fromCharCode(ce);continue}var he=I[S++]&63;if((ce&224)==192){pe+=String.fromCharCode((ce&31)<<6|he);continue}var be=I[S++]&63;if((ce&240)==224?ce=(ce&15)<<12|he<<6|be:ce=(ce&7)<<18|he<<12|be<<6|I[S++]&63,ce<65536)pe+=String.fromCharCode(ce);else{var nt=ce-65536;pe+=String.fromCharCode(55296|nt>>10,56320|nt&1023)}}return pe}function Me(I,S){return I?Oe(i(),I,S):""}function et(I,S,z,q){if(!(q>0))return 0;for(var pe=z,ce=z+q-1,he=0;he=55296&&be<=57343){var nt=I.charCodeAt(++he);be=65536+((be&1023)<<10)|nt&1023}if(be<=127){if(z>=ce)break;S[z++]=be}else if(be<=2047){if(z+1>=ce)break;S[z++]=192|be>>6,S[z++]=128|be&63}else if(be<=65535){if(z+2>=ce)break;S[z++]=224|be>>12,S[z++]=128|be>>6&63,S[z++]=128|be&63}else{if(z+3>=ce)break;S[z++]=240|be>>18,S[z++]=128|be>>12&63,S[z++]=128|be>>6&63,S[z++]=128|be&63}}return S[z]=0,z-pe}function tt(I,S,z){return et(I,i(),S,z)}function st(I){for(var S=0,z=0;z=55296&&q<=57343&&(q=65536+((q&1023)<<10)|I.charCodeAt(++z)&1023),q<=127?++S:q<=2047?S+=2:q<=65535?S+=3:S+=4}return S}function Ke(I,S){s().set(I,S)}function dt(I,S){return I%S>0&&(I+=S-I%S),I}var Be,dn,wt,Pn,Xt,pn,Wn,Nn,an;function Kt(I){Be=I,c.HEAP8=dn=new Int8Array(I),c.HEAP16=Pn=new Int16Array(I),c.HEAP32=pn=new Int32Array(I),c.HEAPU8=wt=new Uint8Array(I),c.HEAPU16=Xt=new Uint16Array(I),c.HEAPU32=Wn=new Uint32Array(I),c.HEAPF32=Nn=new Float32Array(I),c.HEAPF64=an=new Float64Array(I)}var vr=c.INITIAL_MEMORY||16777216;if(x)Q=c.wasmMemory,Be=c.buffer;else if(c.wasmMemory)Q=c.wasmMemory;else if(Q=new WebAssembly.Memory({initial:vr/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw G("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(Be=Q.buffer),vr=Be.byteLength,Kt(Be);var Kn,Zn=[],la=[],jr=[],ua=[],ki=[],cr=!1,$c=!1;x||la.push({func:function(){Kc()}}),x&&(cr=!0);function s1(){if(!x){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)Oc(c.preRun.shift());Ni(Zn)}}function Mc(){cr=!0,Ni(la)}function i1(){x||Ni(jr)}function Dc(){x||($c=!0)}function fn(){if(!x){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)o1(c.postRun.shift());Ni(ki)}}function Oc(I){Zn.unshift(I)}function o1(I){ki.unshift(I)}var Hr=0,ca=null,ja=null;function l1(I){fe(!x,"addRunDependency cannot be used in a pthread worker"),Hr++,c.monitorRunDependencies&&c.monitorRunDependencies(Hr)}function u1(I){if(Hr--,c.monitorRunDependencies&&c.monitorRunDependencies(Hr),Hr==0&&(ca!==null&&(clearInterval(ca),ca=null),ja)){var S=ja;ja=null,S()}}c.preloadedImages={},c.preloadedAudios={};function Gr(I){c.onAbort&&c.onAbort(I),x&&console.error("Pthread aborting at "+new Error().stack),I+="",G(I),ue=!0,me=1,I="abort("+I+"). Build with -s ASSERTIONS=1 for more info.";var S=new WebAssembly.RuntimeError(I);throw d(S),S}function zc(I,S){return String.prototype.startsWith?I.startsWith(S):I.indexOf(S)===0}var Ii="data:application/octet-stream;base64,";function Lc(I){return zc(I,Ii)}var c1="file://";function Pc(I){return zc(I,c1)}var mn="tfjs-backend-wasm-threaded-simd.wasm";Lc(mn)||(mn=T(mn));function h1(I){try{if(I==mn&&te)return new Uint8Array(te);if(D)return D(I);throw"both async and sync fetching of the wasm failed"}catch(S){Gr(S)}}function Wc(){if(!te&&(g||w)){if(typeof fetch=="function"&&!Pc(mn))return fetch(mn,{credentials:"same-origin"}).then(function(I){if(!I.ok)throw"failed to load wasm binary file at '"+mn+"'";return I.arrayBuffer()}).catch(function(){return h1(mn)});if($)return new Promise(function(I,S){$(mn,function(z){I(new Uint8Array(z))},S)})}return Promise.resolve().then(function(){return h1(mn)})}function d1(){var I={a:nf};function S(he,be){var nt=he.exports;if(c.asm=nt,Kn=c.asm.F,de=be,!x){var Bt=Ne.unusedWorkers.length;Ne.unusedWorkers.forEach(function($t){Ne.loadWasmModuleToWorker($t,function(){--Bt||u1("wasm-instantiate")})})}}x||l1("wasm-instantiate");function z(he){S(he.instance,he.module)}function q(he){return Wc().then(function(be){return WebAssembly.instantiate(be,I)}).then(he,function(be){G("failed to asynchronously prepare wasm: "+be),Gr(be)})}function pe(){return!te&&typeof WebAssembly.instantiateStreaming=="function"&&!Lc(mn)&&!Pc(mn)&&typeof fetch=="function"?fetch(mn,{credentials:"same-origin"}).then(function(he){var be=WebAssembly.instantiateStreaming(he,I);return be.then(z,function(nt){return G("wasm streaming compile failed: "+nt),G("falling back to ArrayBuffer instantiation"),q(z)})}):q(z)}if(c.instantiateWasm)try{var ce=c.instantiateWasm(I,S);return ce}catch(he){return G("Module.instantiateWasm callback failed with error: "+he),!1}return pe().catch(d),{}}var Bc={8991:function(I,S){setTimeout(function(){N2(I,S)},0)}};function p1(){Ne.initRuntime()}function Ni(I){for(;I.length>0;){var S=I.shift();if(typeof S=="function"){S(c);continue}var z=S.func;typeof z=="number"?S.arg===void 0?Kn.get(z)():Kn.get(z)(S.arg):z(S.arg===void 0?null:S.arg)}}function Si(I,S){if(I<=0||I>s().length||I&!0||S<0)return-28;if(S==0)return 0;S>=2147483647&&(S=Infinity);var z=Atomics.load(o(),$i>>2),q=0;if(z==I){var pe=Atomics.compareExchange(o(),$i>>2,z,0);if(pe==z&&(--S,q=1,S<=0))return 1}var ce=Atomics.notify(o(),I>>2,S);if(ce>=0)return ce+q;throw"Atomics.notify returned an unexpected value "+ce}c._emscripten_futex_wake=Si;function f1(I){if(x)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in killThread!";o()[I+12>>2]=0;var S=Ne.pthreads[I];S.worker.terminate(),Ne.freeThreadData(S),Ne.runningWorkers.splice(Ne.runningWorkers.indexOf(S.worker),1),S.worker.pthread=void 0}function m1(I){if(x)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cancelThread!";var S=Ne.pthreads[I];S.worker.postMessage({cmd:"cancel"})}function A1(I){if(x)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cleanupThread!";o()[I+12>>2]=0;var S=Ne.pthreads[I];if(S){var z=S.worker;Ne.returnWorkerToPool(z)}}var Ne={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var I=8,S=0;S>2]=I;var z=I+152;o()[z>>2]=z;for(var q=Ga(512),S=0;S<128;++S)l()[q/4+S]=0;Atomics.store(l(),I+100>>2,q),Atomics.store(l(),I+40>>2,I),eh(I,!w,1),I2(I)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Ne.threadExitHandlers.length>0;)Ne.threadExitHandlers.pop()();x&&Ci()&&k2()},threadExit:function(I){var S=Ci();S&&(Atomics.store(l(),S+4>>2,I),Atomics.store(l(),S+0>>2,1),Atomics.store(l(),S+56>>2,1),Atomics.store(l(),S+60>>2,0),Ne.runExitHandlers(),Si(S+0,2147483647),eh(0,0,0),x&&postMessage({cmd:"exit"}))},threadCancel:function(){Ne.runExitHandlers();var I=Ci();Atomics.store(l(),I+4>>2,-1),Atomics.store(l(),I+0>>2,1),Si(I+0,2147483647),eh(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var I in Ne.pthreads){var S=Ne.pthreads[I];S&&S.worker&&Ne.returnWorkerToPool(S.worker)}Ne.pthreads={};for(var z=0;z>2];o()[I.threadInfoStruct+100>>2]=0,Wl(S),Wl(I.threadInfoStruct)}I.threadInfoStruct=0,I.allocatedOwnStack&&I.stackBase&&Wl(I.stackBase),I.stackBase=0,I.worker&&(I.worker.pthread=null)}},returnWorkerToPool:function(I){Ne.runWithoutMainThreadQueuedCalls(function(){delete Ne.pthreads[I.pthread.threadInfoStruct],Ne.unusedWorkers.push(I),Ne.runningWorkers.splice(Ne.runningWorkers.indexOf(I),1),Ne.freeThreadData(I.pthread),I.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(I){o()[R2>>2]=0;try{I()}finally{o()[R2>>2]=1}},receiveObjectTransfer:function(I){},loadWasmModuleToWorker:function(I,S){I.onmessage=function(z){var q=z.data,pe=q.cmd;if(I.pthread&&(Ne.currentProxiedOperationCallerThread=I.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=Ci()){var ce=Ne.pthreads[q.targetThread];ce?ce.worker.postMessage(z.data,q.transferList):console.error('Internal error! Worker sent a message "'+pe+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),Ne.currentProxiedOperationCallerThread=void 0;return}if(pe==="processQueuedMainThreadWork")gf();else if(pe==="spawnThread")qc(z.data);else if(pe==="cleanupThread")A1(q.thread);else if(pe==="killThread")f1(q.thread);else if(pe==="cancelThread")m1(q.thread);else if(pe==="loaded")I.loaded=!0,S&&S(I),I.runPthread&&(I.runPthread(),delete I.runPthread);else if(pe==="print")X("Thread "+q.threadId+": "+q.text);else if(pe==="printErr")G("Thread "+q.threadId+": "+q.text);else if(pe==="alert")alert("Thread "+q.threadId+": "+q.text);else if(pe==="exit"){var he=I.pthread&&Atomics.load(l(),I.pthread.threadInfoStruct+64>>2);he&&Ne.returnWorkerToPool(I)}else if(pe==="exitProcess")try{c4(q.returnCode)}catch(be){if(be instanceof Vl)return;throw be}else pe==="cancelDone"?Ne.returnWorkerToPool(I):pe==="objectTransfer"?Ne.receiveObjectTransfer(z.data):z.data.target==="setimmediate"?I.postMessage(z.data):G("worker sent an unknown command "+pe);Ne.currentProxiedOperationCallerThread=void 0},I.onerror=function(z){G("pthread sent an error! "+z.filename+":"+z.lineno+": "+z.message)},b&&(I.on("message",function(z){I.onmessage({data:z})}),I.on("error",function(z){I.onerror(z)}),I.on("exit",function(z){})),I.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||r,wasmMemory:Q,wasmModule:de})},allocateUnusedWorker:function(){var I=T("tfjs-backend-wasm-threaded-simd.worker.js");Ne.unusedWorkers.push(new Worker(I))},getNewWorker:function(){return Ne.unusedWorkers.length==0&&(Ne.allocateUnusedWorker(),Ne.loadWasmModuleToWorker(Ne.unusedWorkers[0])),Ne.unusedWorkers.length>0?Ne.unusedWorkers.pop():null},busySpinWait:function(I){for(var S=performance.now()+I;performance.now()>2]=I,I}function v1(I,S){if(x)return ha(1,1,I,S)}function k1(I,S){if(I==S)postMessage({cmd:"processQueuedMainThreadWork"});else if(x)postMessage({targetThread:I,cmd:"processThreadQueue"});else{var z=Ne.pthreads[I],q=z&&z.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function I1(){Gr()}function N1(I,S,z){var q=R1(S,z);return Bc[I].apply(null,q)}function S1(I,S){}function T1(I,S,z){if(I<=0||I>s().length||I&!0)return-28;if(g){if(Atomics.load(o(),I>>2)!=S)return-6;for(var q=performance.now(),pe=q+z,ce=Atomics.exchange(o(),$i>>2,I);;){if(q=performance.now(),q>pe)return ce=Atomics.exchange(o(),$i>>2,0),-73;if(ce=Atomics.exchange(o(),$i>>2,0),ce==0)break;if(gf(),Atomics.load(o(),I>>2)!=S)return-6;ce=Atomics.exchange(o(),$i>>2,I)}return 0}else{var he=Atomics.wait(o(),I>>2,S,z);if(he==="timed-out")return-73;if(he==="not-equal")return-6;if(he==="ok")return 0;throw"Atomics.wait returned an unexpected value "+he}}function E1(I,S,z){i().copyWithin(I,S,S+z)}function C1(){return b?require("os").cpus().length:navigator.hardwareConcurrency}function ha(I,S){for(var z=arguments.length-2,q=Bl(),pe=z,ce=Fi(pe*8),he=ce>>3,be=0;be>=2;z=i()[I++];){var q=z<105;q&&S&1&&S++,Dl.push(q?u()[S++>>1]:o()[S]),++S}return Dl}function F1(I,S,z){Ml.length=S;for(var q=z>>3,pe=0;pe>>16),Kt(Q.buffer),1}catch(S){}}function D1(I){var S=$1();if(I<=S)return!1;var z=2147483648;if(I>z)return!1;for(var q=1;q<=4;q*=2){var pe=S*(1+.2/q);pe=Math.min(pe,I+100663296);var ce=Math.min(z,dt(Math.max(I,pe),65536)),he=M1(ce);if(he)return!0}return!1}var Pe={inEventHandler:0,removeAllEventListeners:function(){for(var I=Pe.eventHandlers.length-1;I>=0;--I)Pe._removeHandler(I);Pe.eventHandlers=[],Pe.deferredCalls=[]},registerRemoveEventListeners:function(){Pe.removeEventListenersRegistered||(ua.push(Pe.removeAllEventListeners),Pe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(I,S,z){function q(he,be){if(he.length!=be.length)return!1;for(var nt in he)if(he[nt]!=be[nt])return!1;return!0}for(var pe in Pe.deferredCalls){var ce=Pe.deferredCalls[pe];if(ce.targetFunction==I&&q(ce.argsList,z))return}Pe.deferredCalls.push({targetFunction:I,precedence:S,argsList:z}),Pe.deferredCalls.sort(function(he,be){return he.precedence>2]=z,o()[he+4>>2]=q,o()[he+8>>2]=pe,xf(0,I,637534208,S,q,he),Ri(ce)},getTargetThreadForEventCallback:function(I){switch(I){case 1:return 0;case 2:return Ne.currentProxiedOperationCallerThread;default:return I}},getNodeNameForTarget:function(I){return I?I==window?"#window":I==screen?"#screen":I&&I.nodeName?I.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function O1(I){var S=st(I)+1,z=Ga(S);return tt(I,z,S),z}function z1(I,S,z,q){var pe=Bl(),ce=Fi(12),he=0;S&&(he=O1(S)),o()[ce>>2]=he,o()[ce+4>>2]=z,o()[ce+8>>2]=q,xf(0,I,657457152,0,he,ce),Ri(pe)}function L1(I,S,z,q){S=S?Me(S):"",z1(I,S,z,q)}function P1(I){return I>2?Me(I):I}var W1=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function B1(I){I=P1(I);var S=W1[I]||(typeof document!="undefined"?document.querySelector(I):void 0);return S}function Ol(I){return B1(I)}function Vc(I,S,z){var q=Ol(I);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=S,o()[q.canvasSharedPtr+4>>2]=z),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var pe=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var ce=q.GLctxObject.GLctx.getParameter(2978);pe=ce[0]===0&&ce[1]===0&&ce[2]===q.width&&ce[3]===q.height}q.width=S,q.height=z,pe&&q.GLctxObject.GLctx.viewport(0,0,S,z)}else if(q.canvasSharedPtr){var he=o()[q.canvasSharedPtr+8>>2];return L1(he,I,S,z),1}else return-4;return 0}function Uc(I,S,z){return x?ha(2,1,I,S,z):Vc(I,S,z)}function V1(I,S,z){var q=Ol(I);return q?Vc(I,S,z):Uc(I,S,z)}function U1(I){}function j1(I,S){}function H1(I){var S=I.getExtension("ANGLE_instanced_arrays");if(S)return I.vertexAttribDivisor=function(z,q){S.vertexAttribDivisorANGLE(z,q)},I.drawArraysInstanced=function(z,q,pe,ce){S.drawArraysInstancedANGLE(z,q,pe,ce)},I.drawElementsInstanced=function(z,q,pe,ce,he){S.drawElementsInstancedANGLE(z,q,pe,ce,he)},1}function G1(I){var S=I.getExtension("OES_vertex_array_object");if(S)return I.createVertexArray=function(){return S.createVertexArrayOES()},I.deleteVertexArray=function(z){S.deleteVertexArrayOES(z)},I.bindVertexArray=function(z){S.bindVertexArrayOES(z)},I.isVertexArray=function(z){return S.isVertexArrayOES(z)},1}function q1(I){var S=I.getExtension("WEBGL_draw_buffers");if(S)return I.drawBuffers=function(z,q){S.drawBuffersWEBGL(z,q)},1}function X1(I){return!!(I.multiDrawWebgl=I.getExtension("WEBGL_multi_draw"))}var Je={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(I){Je.lastError||(Je.lastError=I)},getNewId:function(I){for(var S=Je.counter++,z=I.length;z>2]:-1;pe+=Me(o()[z+ce*4>>2],he<0?void 0:he)}return pe},createContext:function(I,S){var z=I.getContext("webgl",S);if(!z)return 0;var q=Je.registerContext(z,S);return q},registerContext:function(I,S){var z=Ga(8);o()[z+4>>2]=Ci();var q={handle:z,attributes:S,version:S.majorVersion,GLctx:I};return I.canvas&&(I.canvas.GLctxObject=q),Je.contexts[z]=q,(typeof S.enableExtensionsByDefault=="undefined"||S.enableExtensionsByDefault)&&Je.initExtensions(q),z},makeContextCurrent:function(I){return Je.currentContext=Je.contexts[I],c.ctx=da=Je.currentContext&&Je.currentContext.GLctx,!(I&&!da)},getContext:function(I){return Je.contexts[I]},deleteContext:function(I){Je.currentContext===Je.contexts[I]&&(Je.currentContext=null),typeof Pe=="object"&&Pe.removeAllHandlersOnTarget(Je.contexts[I].GLctx.canvas),Je.contexts[I]&&Je.contexts[I].GLctx.canvas&&(Je.contexts[I].GLctx.canvas.GLctxObject=void 0),Wl(Je.contexts[I].handle),Je.contexts[I]=null},initExtensions:function(I){if(I||(I=Je.currentContext),!I.initExtensionsDone){I.initExtensionsDone=!0;var S=I.GLctx;H1(S),G1(S),q1(S),S.disjointTimerQueryExt=S.getExtension("EXT_disjoint_timer_query"),X1(S);var z=S.getSupportedExtensions()||[];z.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&S.getExtension(q)})}},populateUniformTable:function(I){for(var S=Je.programs[I],z=Je.programInfos[I]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=z.uniforms,pe=da.getProgramParameter(S,35718),ce=0;ce>2,q=o()[z+(24>>2)],pe={alpha:!!o()[z+(0>>2)],depth:!!o()[z+(4>>2)],stencil:!!o()[z+(8>>2)],antialias:!!o()[z+(12>>2)],premultipliedAlpha:!!o()[z+(16>>2)],preserveDrawingBuffer:!!o()[z+(20>>2)],powerPreference:K1[q],failIfMajorPerformanceCaveat:!!o()[z+(28>>2)],majorVersion:o()[z+(32>>2)],minorVersion:o()[z+(36>>2)],enableExtensionsByDefault:o()[z+(40>>2)],explicitSwapControl:o()[z+(44>>2)],proxyContextToMainThread:o()[z+(48>>2)],renderViaOffscreenBackBuffer:o()[z+(52>>2)]},ce=Ol(I);if(!ce||pe.explicitSwapControl)return 0;var he=Je.createContext(ce,pe);return he}function Y1(I,S){return Z1(I,S)}var Ti={mappings:{},buffers:[null,[],[]],printChar:function(I,S){var z=Ti.buffers[I];S===0||S===10?((I===1?X:G)(Oe(z,0)),z.length=0):z.push(S)},varargs:void 0,get:function(){Ti.varargs+=4;var I=o()[Ti.varargs-4>>2];return I},getStr:function(I){var S=Me(I);return S},get64:function(I,S){return I}};function jc(I){return x?ha(3,1,I):0}function Hc(I,S,z,q,pe){if(x)return ha(4,1,I,S,z,q,pe)}function Gc(I,S,z,q){if(x)return ha(5,1,I,S,z,q);for(var pe=0,ce=0;ce>2],be=o()[S+(ce*8+4)>>2],nt=0;nt>2]=pe,0}function J1(I){var S=Ne.threadExitHandlers.pop();I&&S()}function Q1(I,S){Ne.threadExitHandlers.push(function(){Kn.get(I)(S)})}function qc(I){if(x)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var S=Ne.getNewWorker();if(S.pthread!==void 0)throw"Internal error!";if(!I.pthread_ptr)throw"Internal error, no pthread ptr!";Ne.runningWorkers.push(S);for(var z=Ga(128*4),q=0;q<128;++q)o()[z+q*4>>2]=0;var pe=I.stackBase+I.stackSize,ce=Ne.pthreads[I.pthread_ptr]={worker:S,stackBase:I.stackBase,stackSize:I.stackSize,allocatedOwnStack:I.allocatedOwnStack,threadInfoStruct:I.pthread_ptr},he=ce.threadInfoStruct>>2;Atomics.store(l(),he+(64>>2),I.detached),Atomics.store(l(),he+(100>>2),z),Atomics.store(l(),he+(40>>2),ce.threadInfoStruct),Atomics.store(l(),he+(80>>2),I.stackSize),Atomics.store(l(),he+(76>>2),pe),Atomics.store(l(),he+(104>>2),I.stackSize),Atomics.store(l(),he+(104+8>>2),pe),Atomics.store(l(),he+(104+12>>2),I.detached);var be=v2(),nt=be+40;Atomics.store(l(),he+(172>>2),nt),S.pthread=ce;var Bt={cmd:"run",start_routine:I.startRoutine,arg:I.arg,threadInfoStruct:I.pthread_ptr,stackBase:I.stackBase,stackSize:I.stackSize};S.runPthread=function(){Bt.time=performance.now(),S.postMessage(Bt,I.transferList)},S.loaded&&(S.runPthread(),delete S.runPthread)}function ef(I,S,z,q){if(typeof SharedArrayBuffer=="undefined")return G("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!I)return G("pthread_create called with a null thread pointer!"),28;var pe=[],ce=0;if(x&&(pe.length===0||ce))return S2(687865856,I,S,z,q);if(ce)return ce;var he=0,be=0,nt=0;S&&S!=-1?(he=o()[S>>2],he+=81920,be=o()[S+8>>2],nt=o()[S+12>>2]!==0):he=2097152;var Bt=be==0;Bt?be=C2(16,he):(be-=he,fe(be>0));for(var $t=Ga(228),fa=0;fa<228>>2;++fa)l()[($t>>2)+fa]=0;o()[I>>2]=$t,o()[$t+12>>2]=$t;var Mi=$t+152;o()[Mi>>2]=Mi;var An={stackBase:be,stackSize:he,allocatedOwnStack:Bt,detached:nt,startRoutine:z,pthread_ptr:$t,arg:q,transferList:pe};return x?(An.cmd="spawnThread",postMessage(An,pe)):qc(An),0}function Xc(I){if(x)return ha(6,1,I);switch(I){case 30:return 16384;case 85:var S=2147483648;return S/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return _1(28),-1}x||Ne.initMainThreadBlock();var da,tf=[null,v1,Uc,jc,Hc,Gc,Xc],nf={e:w1,r:b1,x:k1,b:I1,y:N1,j:S1,c:T1,d:Si,f:Ha,p:E1,z:C1,u:F1,q:D1,v:V1,i:U1,t:j1,w:Y1,m:jc,n:Hc,g:Gc,o:p1,a:Q||c.wasmMemory,k:J1,l:Q1,h:ef,s:Xc},b2=d1(),Kc=c.___wasm_call_ctors=function(){return(Kc=c.___wasm_call_ctors=c.asm.A).apply(null,arguments)},rf=c._init=function(){return(rf=c._init=c.asm.B).apply(null,arguments)},af=c._register_tensor=function(){return(af=c._register_tensor=c.asm.C).apply(null,arguments)},sf=c._dispose_data=function(){return(sf=c._dispose_data=c.asm.D).apply(null,arguments)},of=c._dispose=function(){return(of=c._dispose=c.asm.E).apply(null,arguments)},lf=c._Abs=function(){return(lf=c._Abs=c.asm.G).apply(null,arguments)},uf=c._Add=function(){return(uf=c._Add=c.asm.H).apply(null,arguments)},cf=c._AddN=function(){return(cf=c._AddN=c.asm.I).apply(null,arguments)},hf=c._ArgMax=function(){return(hf=c._ArgMax=c.asm.J).apply(null,arguments)},df=c._AvgPool=function(){return(df=c._AvgPool=c.asm.K).apply(null,arguments)},pf=c._BatchMatMul=function(){return(pf=c._BatchMatMul=c.asm.L).apply(null,arguments)},ff=c._Ceil=function(){return(ff=c._Ceil=c.asm.M).apply(null,arguments)},mf=c._ClipByValue=function(){return(mf=c._ClipByValue=c.asm.N).apply(null,arguments)},Af=c._Conv2D=function(){return(Af=c._Conv2D=c.asm.O).apply(null,arguments)},Zc=c._Conv2DBackpropInput=function(){return(Zc=c._Conv2DBackpropInput=c.asm.P).apply(null,arguments)},Yc=c._Cos=function(){return(Yc=c._Cos=c.asm.Q).apply(null,arguments)},zl=c._CropAndResize=function(){return(zl=c._CropAndResize=c.asm.R).apply(null,arguments)},Ei=c._Cumsum=function(){return(Ei=c._Cumsum=c.asm.S).apply(null,arguments)},yf=c._DepthToSpace=function(){return(yf=c._DepthToSpace=c.asm.T).apply(null,arguments)},Ll=c._DepthwiseConv2dNative=function(){return(Ll=c._DepthwiseConv2dNative=c.asm.U).apply(null,arguments)},K=c._Equal=function(){return(K=c._Equal=c.asm.V).apply(null,arguments)},ne=c._Exp=function(){return(ne=c._Exp=c.asm.W).apply(null,arguments)},Te=c._FlipLeftRight=function(){return(Te=c._FlipLeftRight=c.asm.X).apply(null,arguments)},Ze=c._Floor=function(){return(Ze=c._Floor=c.asm.Y).apply(null,arguments)},It=c._FloorDiv=function(){return(It=c._FloorDiv=c.asm.Z).apply(null,arguments)},ft=c._FusedBatchNorm=function(){return(ft=c._FusedBatchNorm=c.asm._).apply(null,arguments)},Ue=c._FusedConv2D=function(){return(Ue=c._FusedConv2D=c.asm.$).apply(null,arguments)},He=c._FusedDepthwiseConv2D=function(){return(He=c._FusedDepthwiseConv2D=c.asm.aa).apply(null,arguments)},Zt=c._Gather=function(){return(Zt=c._Gather=c.asm.ba).apply(null,arguments)},qr=c._GatherNd=function(){return(qr=c._GatherNd=c.asm.ca).apply(null,arguments)},Xr=c._Greater=function(){return(Xr=c._Greater=c.asm.da).apply(null,arguments)},Jc=c._GreaterEqual=function(){return(Jc=c._GreaterEqual=c.asm.ea).apply(null,arguments)},Pl=c._LeakyRelu=function(){return(Pl=c._LeakyRelu=c.asm.fa).apply(null,arguments)},Bn=c._Less=function(){return(Bn=c._Less=c.asm.ga).apply(null,arguments)},pa=c._LessEqual=function(){return(pa=c._LessEqual=c.asm.ha).apply(null,arguments)},Qc=c._Log=function(){return(Qc=c._Log=c.asm.ia).apply(null,arguments)},x6=c._LogicalAnd=function(){return(x6=c._LogicalAnd=c.asm.ja).apply(null,arguments)},w6=c._Max=function(){return(w6=c._Max=c.asm.ka).apply(null,arguments)},b6=c._MaxPool=function(){return(b6=c._MaxPool=c.asm.la).apply(null,arguments)},_6=c._Maximum=function(){return(_6=c._Maximum=c.asm.ma).apply(null,arguments)},v6=c._Mean=function(){return(v6=c._Mean=c.asm.na).apply(null,arguments)},k6=c._Min=function(){return(k6=c._Min=c.asm.oa).apply(null,arguments)},I6=c._Minimum=function(){return(I6=c._Minimum=c.asm.pa).apply(null,arguments)},N6=c._Multiply=function(){return(N6=c._Multiply=c.asm.qa).apply(null,arguments)},S6=c._Neg=function(){return(S6=c._Neg=c.asm.ra).apply(null,arguments)},T6=c._NonMaxSuppressionV3=function(){return(T6=c._NonMaxSuppressionV3=c.asm.sa).apply(null,arguments)},E6=c._NonMaxSuppressionV4=function(){return(E6=c._NonMaxSuppressionV4=c.asm.ta).apply(null,arguments)},C6=c._NonMaxSuppressionV5=function(){return(C6=c._NonMaxSuppressionV5=c.asm.ua).apply(null,arguments)},R6=c._NotEqual=function(){return(R6=c._NotEqual=c.asm.va).apply(null,arguments)},F6=c._OneHot=function(){return(F6=c._OneHot=c.asm.wa).apply(null,arguments)},$6=c._PadV2=function(){return($6=c._PadV2=c.asm.xa).apply(null,arguments)},M6=c._Pow=function(){return(M6=c._Pow=c.asm.ya).apply(null,arguments)},D6=c._Prelu=function(){return(D6=c._Prelu=c.asm.za).apply(null,arguments)},O6=c._Prod=function(){return(O6=c._Prod=c.asm.Aa).apply(null,arguments)},z6=c._RealDiv=function(){return(z6=c._RealDiv=c.asm.Ba).apply(null,arguments)},L6=c._Relu=function(){return(L6=c._Relu=c.asm.Ca).apply(null,arguments)},P6=c._Relu6=function(){return(P6=c._Relu6=c.asm.Da).apply(null,arguments)},W6=c._ResizeBilinear=function(){return(W6=c._ResizeBilinear=c.asm.Ea).apply(null,arguments)},B6=c._Reverse=function(){return(B6=c._Reverse=c.asm.Fa).apply(null,arguments)},V6=c._RotateWithOffset=function(){return(V6=c._RotateWithOffset=c.asm.Ga).apply(null,arguments)},U6=c._Round=function(){return(U6=c._Round=c.asm.Ha).apply(null,arguments)},j6=c._Rsqrt=function(){return(j6=c._Rsqrt=c.asm.Ia).apply(null,arguments)},H6=c._ScatterNd=function(){return(H6=c._ScatterNd=c.asm.Ja).apply(null,arguments)},G6=c._SelectV2=function(){return(G6=c._SelectV2=c.asm.Ka).apply(null,arguments)},q6=c._Sigmoid=function(){return(q6=c._Sigmoid=c.asm.La).apply(null,arguments)},X6=c._Sin=function(){return(X6=c._Sin=c.asm.Ma).apply(null,arguments)},K6=c._Softmax=function(){return(K6=c._Softmax=c.asm.Na).apply(null,arguments)},Z6=c._Sqrt=function(){return(Z6=c._Sqrt=c.asm.Oa).apply(null,arguments)},Y6=c._Square=function(){return(Y6=c._Square=c.asm.Pa).apply(null,arguments)},J6=c._SquaredDifference=function(){return(J6=c._SquaredDifference=c.asm.Qa).apply(null,arguments)},Q6=c._Step=function(){return(Q6=c._Step=c.asm.Ra).apply(null,arguments)},e4=c._StridedSlice=function(){return(e4=c._StridedSlice=c.asm.Sa).apply(null,arguments)},t4=c._Sub=function(){return(t4=c._Sub=c.asm.Ta).apply(null,arguments)},n4=c._Sum=function(){return(n4=c._Sum=c.asm.Ua).apply(null,arguments)},r4=c._Tanh=function(){return(r4=c._Tanh=c.asm.Va).apply(null,arguments)},a4=c._Tile=function(){return(a4=c._Tile=c.asm.Wa).apply(null,arguments)},s4=c._TopK=function(){return(s4=c._TopK=c.asm.Xa).apply(null,arguments)},i4=c._Transpose=function(){return(i4=c._Transpose=c.asm.Ya).apply(null,arguments)},o4=c.__FusedMatMul=function(){return(o4=c.__FusedMatMul=c.asm.Za).apply(null,arguments)},Ga=c._malloc=function(){return(Ga=c._malloc=c.asm._a).apply(null,arguments)},Wl=c._free=function(){return(Wl=c._free=c.asm.$a).apply(null,arguments)},_2=c.___errno_location=function(){return(_2=c.___errno_location=c.asm.ab).apply(null,arguments)},v2=c._emscripten_get_global_libc=function(){return(v2=c._emscripten_get_global_libc=c.asm.bb).apply(null,arguments)},Ci=c._pthread_self=function(){return(Ci=c._pthread_self=c.asm.cb).apply(null,arguments)},k2=c.___pthread_tsd_run_dtors=function(){return(k2=c.___pthread_tsd_run_dtors=c.asm.db).apply(null,arguments)},gf=c._emscripten_main_thread_process_queued_calls=function(){return(gf=c._emscripten_main_thread_process_queued_calls=c.asm.eb).apply(null,arguments)},l4=c._emscripten_current_thread_process_queued_calls=function(){return(l4=c._emscripten_current_thread_process_queued_calls=c.asm.fb).apply(null,arguments)},I2=c._emscripten_register_main_browser_thread_id=function(){return(I2=c._emscripten_register_main_browser_thread_id=c.asm.gb).apply(null,arguments)},N2=c.__emscripten_do_dispatch_to_thread=function(){return(N2=c.__emscripten_do_dispatch_to_thread=c.asm.hb).apply(null,arguments)},S2=c._emscripten_sync_run_in_main_thread_4=function(){return(S2=c._emscripten_sync_run_in_main_thread_4=c.asm.ib).apply(null,arguments)},T2=c._emscripten_run_in_main_runtime_thread_js=function(){return(T2=c._emscripten_run_in_main_runtime_thread_js=c.asm.jb).apply(null,arguments)},xf=c.__emscripten_call_on_thread=function(){return(xf=c.__emscripten_call_on_thread=c.asm.kb).apply(null,arguments)},u4=c._emscripten_tls_init=function(){return(u4=c._emscripten_tls_init=c.asm.lb).apply(null,arguments)},eh=c.__emscripten_thread_init=function(){return(eh=c.__emscripten_thread_init=c.asm.mb).apply(null,arguments)},Bl=c.stackSave=function(){return(Bl=c.stackSave=c.asm.nb).apply(null,arguments)},Ri=c.stackRestore=function(){return(Ri=c.stackRestore=c.asm.ob).apply(null,arguments)},Fi=c.stackAlloc=function(){return(Fi=c.stackAlloc=c.asm.pb).apply(null,arguments)},E2=c._emscripten_stack_set_limits=function(){return(E2=c._emscripten_stack_set_limits=c.asm.qb).apply(null,arguments)},C2=c._memalign=function(){return(C2=c._memalign=c.asm.rb).apply(null,arguments)},R2=c.__emscripten_allow_main_runtime_queued_calls=9880,$i=c.__emscripten_main_thread_futex=11368;c.cwrap=$e,c.PThread=Ne,c.PThread=Ne,c.wasmMemory=Q,c.ExitStatus=Vl;var th;function Vl(I){this.name="ExitStatus",this.message="Program terminated with exit("+I+")",this.status=I}ja=function I(){th||wf(),th||(ja=I)};function wf(I){if(I=I||m,Hr>0)return;if(x){h(c),postMessage({cmd:"loaded"});return}if(s1(),Hr>0)return;function S(){th||(th=!0,c.calledRun=!0,!ue&&(Mc(),i1(),h(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),fn()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),S()},1)):S()}c.run=wf;function c4(I,S){if(!(S&&le&&I===0)){if(!S&&x)throw postMessage({cmd:"exitProcess",returnCode:I}),new Vl(I);le||(Ne.terminateAllThreads(),me=I,Dc(),c.onExit&&c.onExit(I),ue=!0),y(I,new Vl(I))}}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();return x&&(le=!1,Ne.initWorker()),wf(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),Z8=Qe((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i,o;s.ready=new Promise(function(K,ne){i=K,o=ne});var l={},u;for(u in s)s.hasOwnProperty(u)&&(l[u]=s[u]);var c=[],h="./this.program",d=function(K,ne){throw ne},p=!1,f=!1,m=!1,A=!1;p=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",A=!p&&!m&&!f;var y="";function g(K){return s.locateFile?s.locateFile(K,y):y+K}var w,b,_,x,N,T;m?(f?y=Ru().dirname(y)+"/":y=__dirname+"/",w=function(K,ne){return N||(N=require("fs")),T||(T=Ru()),K=T.normalize(K),N.readFileSync(K,ne?null:"utf8")},_=function(K){var ne=w(K,!0);return ne.buffer||(ne=new Uint8Array(ne)),X(ne.buffer),ne},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof yf))throw K}),process.on("unhandledRejection",cr),d=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):A?(typeof read!="undefined"&&(w=function(K){return read(K)}),_=function(K){var ne;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(ne=read(K,"binary"),X(typeof ne=="object"),ne)},typeof scriptArgs!="undefined"?c=scriptArgs:typeof arguments!="undefined"&&(c=arguments),typeof quit=="function"&&(d=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(p||f)&&(f?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),r&&(y=r),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",w=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.send(null),ne.responseText},f&&(_=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.responseType="arraybuffer",ne.send(null),new Uint8Array(ne.response)}),b=function(K,ne,Te){var Ze=new XMLHttpRequest;Ze.open("GET",K,!0),Ze.responseType="arraybuffer",Ze.onload=function(){if(Ze.status==200||Ze.status==0&&Ze.response){ne(Ze.response);return}Te()},Ze.onerror=Te,Ze.send(null)},x=function(K){document.title=K});var E=s.print||console.log.bind(console),$=s.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(s[u]=l[u]);l=null,s.arguments&&(c=s.arguments),s.thisProgram&&(h=s.thisProgram),s.quit&&(d=s.quit);var D;s.wasmBinary&&(D=s.wasmBinary);var L=s.noExitRuntime||!0;typeof WebAssembly!="object"&&cr("no native wasm support detected");var P,U=!1,j;function X(K,ne){K||cr("Assertion failed: "+ne)}function G(K){var ne=s["_"+K];return X(ne,"Cannot call unknown function "+K+", make sure it is exported"),ne}function ee(K,ne,Te,Ze,It){var ft={string:function(Bn){var pa=0;if(Bn!=null&&Bn!==0){var Qc=(Bn.length<<2)+1;pa=zl(Qc),de(Bn,pa,Qc)}return pa},array:function(Bn){var pa=zl(Bn.length);return ue(Bn,pa),pa}};function Ue(Bn){return ne==="string"?le(Bn):ne==="boolean"?Boolean(Bn):Bn}var He=G(K),Zt=[],qr=0;if(Ze)for(var Xr=0;Xr=Ze);)++It;if(It-ne>16&&K.subarray&&se)return se.decode(K.subarray(ne,It));for(var ft="";ne>10,56320|qr&1023)}}return ft}function le(K,ne){return K?te(Se,K,ne):""}function Q(K,ne,Te,Ze){if(!(Ze>0))return 0;for(var It=Te,ft=Te+Ze-1,Ue=0;Ue=55296&&He<=57343){var Zt=K.charCodeAt(++Ue);He=65536+((He&1023)<<10)|Zt&1023}if(He<=127){if(Te>=ft)break;ne[Te++]=He}else if(He<=2047){if(Te+1>=ft)break;ne[Te++]=192|He>>6,ne[Te++]=128|He&63}else if(He<=65535){if(Te+2>=ft)break;ne[Te++]=224|He>>12,ne[Te++]=128|He>>6&63,ne[Te++]=128|He&63}else{if(Te+3>=ft)break;ne[Te++]=240|He>>18,ne[Te++]=128|He>>12&63,ne[Te++]=128|He>>6&63,ne[Te++]=128|He&63}}return ne[Te]=0,Te-It}function de(K,ne,Te){return Q(K,Se,ne,Te)}function ue(K,ne){Ie.set(K,ne)}function me(K,ne){return K%ne>0&&(K+=ne-K%ne),K}var fe,Ie,Se,$e,Oe,Me,et,tt,st;function Ke(K){fe=K,s.HEAP8=Ie=new Int8Array(K),s.HEAP16=$e=new Int16Array(K),s.HEAP32=Me=new Int32Array(K),s.HEAPU8=Se=new Uint8Array(K),s.HEAPU16=Oe=new Uint16Array(K),s.HEAPU32=et=new Uint32Array(K),s.HEAPF32=tt=new Float32Array(K),s.HEAPF64=st=new Float64Array(K)}var dt=s.INITIAL_MEMORY||16777216,Be,dn=[],wt=[],Pn=[],Xt=[],pn=!1;wt.push({func:function(){Wc()}});function Wn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)vr(s.preRun.shift());ca(dn)}function Nn(){pn=!0,ca(wt)}function an(){ca(Pn)}function Kt(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)Kn(s.postRun.shift());ca(Xt)}function vr(K){dn.unshift(K)}function Kn(K){Xt.unshift(K)}var Zn=0,la=null,jr=null;function ua(K){Zn++,s.monitorRunDependencies&&s.monitorRunDependencies(Zn)}function ki(K){if(Zn--,s.monitorRunDependencies&&s.monitorRunDependencies(Zn),Zn==0&&(la!==null&&(clearInterval(la),la=null),jr)){var ne=jr;jr=null,ne()}}s.preloadedImages={},s.preloadedAudios={};function cr(K){s.onAbort&&s.onAbort(K),K+="",$(K),U=!0,j=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var ne=new WebAssembly.RuntimeError(K);throw o(ne),ne}function $c(K,ne){return String.prototype.startsWith?K.startsWith(ne):K.indexOf(ne)===0}var s1="data:application/octet-stream;base64,";function Mc(K){return $c(K,s1)}var i1="file://";function Dc(K){return $c(K,i1)}var fn="tfjs-backend-wasm.wasm";Mc(fn)||(fn=g(fn));function Oc(K){try{if(K==fn&&D)return new Uint8Array(D);if(_)return _(K);throw"both async and sync fetching of the wasm failed"}catch(ne){cr(ne)}}function o1(){if(!D&&(p||f)){if(typeof fetch=="function"&&!Dc(fn))return fetch(fn,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+fn+"'";return K.arrayBuffer()}).catch(function(){return Oc(fn)});if(b)return new Promise(function(K,ne){b(fn,function(Te){K(new Uint8Array(Te))},ne)})}return Promise.resolve().then(function(){return Oc(fn)})}function Hr(){var K={a:mn};function ne(Ue,He){var Zt=Ue.exports;s.asm=Zt,P=s.asm.g,Ke(P.buffer),Be=s.asm.m,ki("wasm-instantiate")}ua("wasm-instantiate");function Te(Ue){ne(Ue.instance)}function Ze(Ue){return o1().then(function(He){return WebAssembly.instantiate(He,K)}).then(Ue,function(He){$("failed to asynchronously prepare wasm: "+He),cr(He)})}function It(){return!D&&typeof WebAssembly.instantiateStreaming=="function"&&!Mc(fn)&&!Dc(fn)&&typeof fetch=="function"?fetch(fn,{credentials:"same-origin"}).then(function(Ue){var He=WebAssembly.instantiateStreaming(Ue,K);return He.then(Te,function(Zt){return $("wasm streaming compile failed: "+Zt),$("falling back to ArrayBuffer instantiation"),Ze(Te)})}):Ze(Te)}if(s.instantiateWasm)try{var ft=s.instantiateWasm(K,ne);return ft}catch(Ue){return $("Module.instantiateWasm callback failed with error: "+Ue),!1}return It().catch(o),{}}function ca(K){for(;K.length>0;){var ne=K.shift();if(typeof ne=="function"){ne(s);continue}var Te=ne.func;typeof Te=="number"?ne.arg===void 0?Be.get(Te)():Be.get(Te)(ne.arg):Te(ne.arg===void 0?null:ne.arg)}}function ja(){cr()}function l1(K,ne,Te){Se.copyWithin(K,ne,ne+Te)}function u1(){return Se.length}function Gr(K){try{return P.grow(K-fe.byteLength+65535>>>16),Ke(P.buffer),1}catch(ne){}}function zc(K){var ne=u1(),Te=2147483648;if(K>Te)return!1;for(var Ze=1;Ze<=4;Ze*=2){var It=ne*(1+.2/Ze);It=Math.min(It,K+100663296);var ft=Math.min(Te,me(Math.max(K,It),65536)),Ue=Gr(ft);if(Ue)return!0}return!1}var Ii={mappings:{},buffers:[null,[],[]],printChar:function(K,ne){var Te=Ii.buffers[K];ne===0||ne===10?((K===1?E:$)(te(Te,0)),Te.length=0):Te.push(ne)},varargs:void 0,get:function(){Ii.varargs+=4;var K=Me[Ii.varargs-4>>2];return K},getStr:function(K){var ne=le(K);return ne},get64:function(K,ne){return K}};function Lc(K){return 0}function c1(K,ne,Te,Ze,It){}function Pc(K,ne,Te,Ze){for(var It=0,ft=0;ft>2],He=Me[ne+(ft*8+4)>>2],Zt=0;Zt>2]=It,0}var mn={a:ja,d:l1,e:zc,f:Lc,c:c1,b:Pc},h1=Hr(),Wc=s.___wasm_call_ctors=function(){return(Wc=s.___wasm_call_ctors=s.asm.h).apply(null,arguments)},d1=s._init=function(){return(d1=s._init=s.asm.i).apply(null,arguments)},Bc=s._register_tensor=function(){return(Bc=s._register_tensor=s.asm.j).apply(null,arguments)},p1=s._dispose_data=function(){return(p1=s._dispose_data=s.asm.k).apply(null,arguments)},Ni=s._dispose=function(){return(Ni=s._dispose=s.asm.l).apply(null,arguments)},Si=s._Abs=function(){return(Si=s._Abs=s.asm.n).apply(null,arguments)},f1=s._Add=function(){return(f1=s._Add=s.asm.o).apply(null,arguments)},m1=s._AddN=function(){return(m1=s._AddN=s.asm.p).apply(null,arguments)},A1=s._ArgMax=function(){return(A1=s._ArgMax=s.asm.q).apply(null,arguments)},Ne=s._AvgPool=function(){return(Ne=s._AvgPool=s.asm.r).apply(null,arguments)},y1=s._BatchMatMul=function(){return(y1=s._BatchMatMul=s.asm.s).apply(null,arguments)},g1=s._Ceil=function(){return(g1=s._Ceil=s.asm.t).apply(null,arguments)},x1=s._ClipByValue=function(){return(x1=s._ClipByValue=s.asm.u).apply(null,arguments)},w1=s._Conv2D=function(){return(w1=s._Conv2D=s.asm.v).apply(null,arguments)},b1=s._Conv2DBackpropInput=function(){return(b1=s._Conv2DBackpropInput=s.asm.w).apply(null,arguments)},Ha=s._Cos=function(){return(Ha=s._Cos=s.asm.x).apply(null,arguments)},_1=s._CropAndResize=function(){return(_1=s._CropAndResize=s.asm.y).apply(null,arguments)},v1=s._Cumsum=function(){return(v1=s._Cumsum=s.asm.z).apply(null,arguments)},k1=s._DepthToSpace=function(){return(k1=s._DepthToSpace=s.asm.A).apply(null,arguments)},I1=s._DepthwiseConv2dNative=function(){return(I1=s._DepthwiseConv2dNative=s.asm.B).apply(null,arguments)},N1=s._Equal=function(){return(N1=s._Equal=s.asm.C).apply(null,arguments)},S1=s._Exp=function(){return(S1=s._Exp=s.asm.D).apply(null,arguments)},T1=s._FlipLeftRight=function(){return(T1=s._FlipLeftRight=s.asm.E).apply(null,arguments)},E1=s._Floor=function(){return(E1=s._Floor=s.asm.F).apply(null,arguments)},C1=s._FloorDiv=function(){return(C1=s._FloorDiv=s.asm.G).apply(null,arguments)},ha=s._FusedBatchNorm=function(){return(ha=s._FusedBatchNorm=s.asm.H).apply(null,arguments)},Ml=s._FusedConv2D=function(){return(Ml=s._FusedConv2D=s.asm.I).apply(null,arguments)},Dl=s._FusedDepthwiseConv2D=function(){return(Dl=s._FusedDepthwiseConv2D=s.asm.J).apply(null,arguments)},R1=s._Gather=function(){return(R1=s._Gather=s.asm.K).apply(null,arguments)},F1=s._GatherNd=function(){return(F1=s._GatherNd=s.asm.L).apply(null,arguments)},$1=s._Greater=function(){return($1=s._Greater=s.asm.M).apply(null,arguments)},M1=s._GreaterEqual=function(){return(M1=s._GreaterEqual=s.asm.N).apply(null,arguments)},D1=s._LeakyRelu=function(){return(D1=s._LeakyRelu=s.asm.O).apply(null,arguments)},Pe=s._Less=function(){return(Pe=s._Less=s.asm.P).apply(null,arguments)},O1=s._LessEqual=function(){return(O1=s._LessEqual=s.asm.Q).apply(null,arguments)},z1=s._Log=function(){return(z1=s._Log=s.asm.R).apply(null,arguments)},L1=s._LogicalAnd=function(){return(L1=s._LogicalAnd=s.asm.S).apply(null,arguments)},P1=s._Max=function(){return(P1=s._Max=s.asm.T).apply(null,arguments)},W1=s._MaxPool=function(){return(W1=s._MaxPool=s.asm.U).apply(null,arguments)},B1=s._Maximum=function(){return(B1=s._Maximum=s.asm.V).apply(null,arguments)},Ol=s._Mean=function(){return(Ol=s._Mean=s.asm.W).apply(null,arguments)},Vc=s._Min=function(){return(Vc=s._Min=s.asm.X).apply(null,arguments)},Uc=s._Minimum=function(){return(Uc=s._Minimum=s.asm.Y).apply(null,arguments)},V1=s._Multiply=function(){return(V1=s._Multiply=s.asm.Z).apply(null,arguments)},U1=s._Neg=function(){return(U1=s._Neg=s.asm._).apply(null,arguments)},j1=s._NonMaxSuppressionV3=function(){return(j1=s._NonMaxSuppressionV3=s.asm.$).apply(null,arguments)},H1=s._NonMaxSuppressionV4=function(){return(H1=s._NonMaxSuppressionV4=s.asm.aa).apply(null,arguments)},G1=s._NonMaxSuppressionV5=function(){return(G1=s._NonMaxSuppressionV5=s.asm.ba).apply(null,arguments)},q1=s._NotEqual=function(){return(q1=s._NotEqual=s.asm.ca).apply(null,arguments)},X1=s._OneHot=function(){return(X1=s._OneHot=s.asm.da).apply(null,arguments)},Je=s._PadV2=function(){return(Je=s._PadV2=s.asm.ea).apply(null,arguments)},K1=s._Pow=function(){return(K1=s._Pow=s.asm.fa).apply(null,arguments)},Z1=s._Prelu=function(){return(Z1=s._Prelu=s.asm.ga).apply(null,arguments)},Y1=s._Prod=function(){return(Y1=s._Prod=s.asm.ha).apply(null,arguments)},Ti=s._RealDiv=function(){return(Ti=s._RealDiv=s.asm.ia).apply(null,arguments)},jc=s._Relu=function(){return(jc=s._Relu=s.asm.ja).apply(null,arguments)},Hc=s._Relu6=function(){return(Hc=s._Relu6=s.asm.ka).apply(null,arguments)},Gc=s._ResizeBilinear=function(){return(Gc=s._ResizeBilinear=s.asm.la).apply(null,arguments)},J1=s._Reverse=function(){return(J1=s._Reverse=s.asm.ma).apply(null,arguments)},Q1=s._RotateWithOffset=function(){return(Q1=s._RotateWithOffset=s.asm.na).apply(null,arguments)},qc=s._Round=function(){return(qc=s._Round=s.asm.oa).apply(null,arguments)},ef=s._Rsqrt=function(){return(ef=s._Rsqrt=s.asm.pa).apply(null,arguments)},Xc=s._ScatterNd=function(){return(Xc=s._ScatterNd=s.asm.qa).apply(null,arguments)},da=s._SelectV2=function(){return(da=s._SelectV2=s.asm.ra).apply(null,arguments)},tf=s._Sigmoid=function(){return(tf=s._Sigmoid=s.asm.sa).apply(null,arguments)},nf=s._Sin=function(){return(nf=s._Sin=s.asm.ta).apply(null,arguments)},b2=s._Softmax=function(){return(b2=s._Softmax=s.asm.ua).apply(null,arguments)},Kc=s._Sqrt=function(){return(Kc=s._Sqrt=s.asm.va).apply(null,arguments)},rf=s._Square=function(){return(rf=s._Square=s.asm.wa).apply(null,arguments)},af=s._SquaredDifference=function(){return(af=s._SquaredDifference=s.asm.xa).apply(null,arguments)},sf=s._Step=function(){return(sf=s._Step=s.asm.ya).apply(null,arguments)},of=s._StridedSlice=function(){return(of=s._StridedSlice=s.asm.za).apply(null,arguments)},lf=s._Sub=function(){return(lf=s._Sub=s.asm.Aa).apply(null,arguments)},uf=s._Sum=function(){return(uf=s._Sum=s.asm.Ba).apply(null,arguments)},cf=s._Tanh=function(){return(cf=s._Tanh=s.asm.Ca).apply(null,arguments)},hf=s._Tile=function(){return(hf=s._Tile=s.asm.Da).apply(null,arguments)},df=s._TopK=function(){return(df=s._TopK=s.asm.Ea).apply(null,arguments)},pf=s._Transpose=function(){return(pf=s._Transpose=s.asm.Fa).apply(null,arguments)},ff=s.__FusedMatMul=function(){return(ff=s.__FusedMatMul=s.asm.Ga).apply(null,arguments)},mf=s._malloc=function(){return(mf=s._malloc=s.asm.Ha).apply(null,arguments)},Af=s._free=function(){return(Af=s._free=s.asm.Ia).apply(null,arguments)},Zc=s.stackSave=function(){return(Zc=s.stackSave=s.asm.Ja).apply(null,arguments)},Yc=s.stackRestore=function(){return(Yc=s.stackRestore=s.asm.Ka).apply(null,arguments)},zl=s.stackAlloc=function(){return(zl=s.stackAlloc=s.asm.La).apply(null,arguments)};s.cwrap=J;var Ei;function yf(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}jr=function K(){Ei||Ll(),Ei||(jr=K)};function Ll(K){if(K=K||c,Zn>0||(Wn(),Zn>0))return;function ne(){Ei||(Ei=!0,s.calledRun=!0,!U&&(Nn(),an(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Kt()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ne()},1)):ne()}if(s.run=Ll,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return Ll(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),Y8=Qe((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=String(h);for(var d=0;d>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),J8=Qe((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Q8=Qe((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),ek=Qe((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,u.i=d+1&7,f};function c(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),tk=Qe((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,f,m;return u.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,u.i=p,m+(h^h>>>16)|0};function c(h,d){var p,f,m,A,y,g=[],w=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,w=Math.max(w,d.length)),m=0,A=-32;A>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),nk=Qe((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),rk=Qe((e,t)=>{(function(n,r,a){var s=256,i=6,o=52,l="random",u=a.pow(s,i),c=a.pow(2,o),h=c*2,d=s-1,p;function f(_,x,N){var T=[];x=x==!0?{entropy:!0}:x||{};var E=g(y(x.entropy?[_,b(r)]:_==null?w():_,3),T),$=new m(T),D=function(){for(var L=$.g(i),P=u,U=0;L=h;)L/=2,P/=2,U>>>=1;return(L+U)/P};return D.int32=function(){return $.g(4)|0},D.quick=function(){return $.g(4)/4294967296},D.double=D,g(b($.S),r),(x.pass||N||function(L,P,U,j){return j&&(j.S&&A(j,$),L.state=function(){return A($,{})}),U?(a[l]=L,P):L})(D,E,"global"in x?x.global:this==a,x.state)}function m(_){var x,N=_.length,T=this,E=0,$=T.i=T.j=0,D=T.S=[];for(N||(_=[N++]);E{var n=Y8(),r=J8(),a=Q8(),s=ek(),i=tk(),o=nk(),l=rk();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),ak=Qe(()=>{}),sk="3.2.0",ik="3.2.0",ok="3.2.0",lk="3.2.0",uk="3.2.0",ck=1e-7,hk=1e-4,ah=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Ul=class{refCount(e){return rr("refCount")}incRef(e){return rr("incRef")}timerAvailable(){return!0}time(e){return rr("time")}read(e){return rr("read")}readSync(e){return rr("readSync")}numDataIds(){return rr("numDataIds")}disposeData(e,t){return rr("disposeData")}write(e,t,n){return rr("write")}move(e,t,n,r,a){return rr("move")}memory(){return rr("memory")}floatPrecision(){return rr("floatPrecision")}epsilon(){return this.floatPrecision()===32?ck:hk}dispose(){return rr("dispose")}};function rr(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function B0(e){let t=e.length,n=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,n=e[t],e[t]=e[r],e[r]=n}function dk(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r,a,s=0;for(;n>0;)s=Math.random()*n|0,n--,r=e[n],a=t[n],e[n]=e[s],t[n]=t[s],e[s]=r,t[s]=a}function Fu(e,t,n){return Math.max(e,Math.min(t,n))}function pk(e){return e%2==0?e:e+1}function fk(e){let t=0;for(let n=0;nn+` Shapes ${e} and ${t} must match`)}function qs(e){F(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Xs(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||rn(e)&&!n)for(let r=0;r0,n){return new Promise((r,a)=>{let s=0,i=()=>{if(e()){r();return}s++;let o=t(s);if(n!=null&&s>=n){a();return}setTimeout(i,o)};i()})}function _k(e,t){let n=1,r=-1;for(let s=0;s=0)n*=e[s];else if(e[s]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${s}`);r=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let a=e.slice();return a[r]=t/n,a}function ar(e,t){let n=t.length;return e=e==null?t.map((r,a)=>a):[].concat(e),F(e.every(r=>r>=-n&&r`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),F(e.every(r=>jt(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function V0(e,t){let n=[],r=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:ar(t,e).sort(),i=0;for(let o=0;oo)&&e[o]===1&&(n.push(e[o]),r.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),r.push(o))}return{newShape:n,keptDims:r}}function U0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function j0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function H0(e,t){for(let n=0;nt+=n.length),t}function Na(e){return typeof e=="string"||e instanceof String}function X0(e){return typeof e=="boolean"}function K0(e){return typeof e=="number"}function vd(e){return Array.isArray(e)?vd(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":K0(e)?"float32":Na(e)?"string":X0(e)?"bool":"float32"}function Sa(e){return!!(e&&e.constructor&&e.call&&e.apply)}function kd(e,t){for(let n=t;n=0;--r)n[r]=n[r+1]*e[r+1];return n}function Z0(e,t,n){let r=new Array;if(t.length===1){let a=t[0];for(let s=0;so*l);for(let o=0;or*a);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return Z0(0,e,t)}function mm(e,t){let n=Id(e,t);for(let r=0;rr*a,1);if(t==null||t==="float32")return Jo(e,new Float32Array(n));if(t==="int32")return Jo(e,new Int32Array(n));if(t==="bool")return Jo(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Am(e){e.forEach(t=>{F(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function Ik(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let a=0;a{let[n,r]=t.split(":");this.urlFlags[n]=Tk(n,r)})}};function Sk(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(Ek(t,r[0],r[1]),r.join("="))),t}function Ek(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function Tk(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Y(){return jl}var jl=null;function Ck(e){jl=e}var gm;function J0(){if(gm==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");gm=e}return gm}function Rk(){let e=J0();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function xm(e,t){let n=Rk();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var Oi="Abs",zi="Acos",Li="Acosh",Aa="Add",qa="AddN",sh="All",ih="Any",Xa="ArgMax",Hl="ArgMin",Pi="Asin",Wi="Asinh",Bi="Atan",Vi="Atanh",Ui="Atan2",Ka="AvgPool",oh="AvgPoolGrad",Gl="AvgPool3D",lh="AvgPool3DGrad",Za="BatchMatMul",ql="BatchToSpaceND",uh="Bincount",O2="BroadcastTo",Ya="Cast",Ja="Ceil",ya="ClipByValue",ch="Complex",Xl="ComplexAbs",ji="Concat",Qa="Conv2D",hh="Conv2DBackpropFilter",es="Conv2DBackpropInput",Kl="Conv3D",dh="Conv3DBackpropFilterV2",ph="Conv3DBackpropInputV2",ts="Cos",Hi="Cosh",ns="Cumsum",Gi="CropAndResize",fh="DenseBincount",qi="DepthToSpace",rs="DepthwiseConv2dNative",mh="DepthwiseConv2dNativeBackpropFilter",Ah="DepthwiseConv2dNativeBackpropInput",yh="Diag",Zl="Dilation2D",gh="Dilation2DBackpropInput",xh="Dilation2DBackpropFilter",as="RealDiv",Xi="Elu",wh="EluGrad",Ki="Erf",Zi="Equal",ss="Exp",Yi="ExpandDims",Ji="Expm1",bh="FFT",Yl="Fill",Qi="FlipLeftRight",is="Floor",os="FloorDiv",ls="FusedBatchNorm",eo="GatherV2",to="GatherNd",no="Greater",us="GreaterEqual",cs="Identity",_h="IFFT",vh="Imag",ro="IsFinite",ao="IsInf",so="IsNan",hs="LeakyRelu",io="Less",oo="LessEqual",kh="LinSpace",ds="Log",lo="Log1p",uo="LogicalAnd",Jl="LogicalNot",Ql="LogicalOr",z2="LogSoftmax",eu="LRN",Ih="LRNGrad",ps="Max",fs="Maximum",ms="MaxPool",Nh="MaxPoolGrad",tu="MaxPool3D",Sh="MaxPool3DGrad",Th="MaxPoolWithArgmax",As="Mean",ys="Min",gs="Minimum",nu="MirrorPad",co="Mod",Eh="Multinomial",xs="Multiply",ho="Neg",po="NotEqual",fo="NonMaxSuppressionV3",mo="NonMaxSuppressionV4",Ao="NonMaxSuppressionV5",yo="OnesLike",ws="OneHot",go="Pack",bs="PadV2",b4="Pool",_s="Pow",vs="Prelu",xo="Prod",ru="Range",Ch="Real",wo="Reciprocal",ks="Relu",bo="Reshape",au="ResizeNearestNeighbor",Rh="ResizeNearestNeighborGrad",Is="ResizeBilinear",Fh="ResizeBilinearGrad",Ns="Relu6",Ss="Reverse",Ts="Round",Es="Rsqrt",_o="ScatterNd",vo="Select",ko="Selu",Io="Slice",Cs="Sin",No="Sinh",So="Sign",Rs="Sigmoid",To="Softplus",Fs="Sqrt",$s="Sum",su="SpaceToBatchND",Eo="SplitV",Ms="Softmax",Ds="SquaredDifference",iu="Square",Os="Sub",$h="SparseToDense",Co="StridedSlice",Ro="Tan",zs="Tanh",ga="Tile",Fo="TopK",Ls="Transpose",Mh="Unique",$o="Unpack",ou="UnsortedSegmentSum",Mo="ZerosLike",xa="Step",Dh="FromPixels",Do="RotateWithOffset",Ps="_FusedMatMul",Ws="FusedConv2D",Bs="FusedDepthwiseConv2D",Qo=xm("kernelRegistry",()=>new Map),Mu=xm("gradRegistry",()=>new Map);function Oh(e,t){let n=wm(e,t);return Qo.get(n)}function vf(e){return Mu.get(e)}function lu(e){let t=Qo.entries(),n=[];for(;;){let{done:r,value:a}=t.next();if(r)break;let[s,i]=a,[o]=s.split("_");o===e&&n.push(i)}return n}function Oo(e){let{kernelName:t,backendName:n}=e,r=wm(t,n);Qo.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),Qo.set(r,e)}function L2(e){let{kernelName:t}=e;Mu.has(t)&&Y().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Mu.set(t,e)}function _4(e,t){let n=wm(e,t);if(!Qo.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Qo.delete(n)}function v4(e){if(!Mu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Mu.delete(e)}function k4(e,t){lu(e).forEach(n=>{let r=Object.assign({},n,{backendName:t});Oo(r)})}function wm(e,t){return`${t}_${e}`}var v={};ze(v,{arraysEqual:()=>ea,assert:()=>F,assertNonNegativeIntegerDimensions:()=>Am,assertNonNull:()=>qs,assertShapesMatch:()=>nn,bytesFromStringArray:()=>q0,bytesPerElement:()=>fm,checkConversionForErrors:()=>H0,clamp:()=>Fu,computeStrides:()=>Yo,createScalarValue:()=>Fk,createShuffledIndices:()=>wk,decodeString:()=>Sd,distSquared:()=>Ak,encodeString:()=>Ou,fetch:()=>$k,flatten:()=>Xs,getArrayFromDType:()=>j0,getTypedArrayFromDType:()=>U0,hasEncodingLoss:()=>vk,indexToLoc:()=>Nk,inferDtype:()=>vd,inferFromImplicitShape:()=>_k,isBoolean:()=>X0,isFunction:()=>Sa,isInt:()=>jt,isNumber:()=>K0,isPromise:()=>ym,isScalarShape:()=>yk,isString:()=>Na,isTypedArray:()=>rn,isValidDtype:()=>G0,locToIndex:()=>Ik,makeOnesTypedArray:()=>mm,makeZerosNestedTypedArray:()=>kk,makeZerosTypedArray:()=>Id,nearestDivisor:()=>kd,nearestLargerEven:()=>pk,now:()=>Du,parseAxisParam:()=>ar,randUniform:()=>mk,repeatedTry:()=>bk,rightPad:()=>$u,shuffle:()=>B0,shuffleCombo:()=>dk,sizeFromShape:()=>Ot,sizeToSquarishShape:()=>xk,squeezeShape:()=>V0,sum:()=>fk,tanh:()=>gk,toNestedArray:()=>Jo,toTypedArray:()=>Nd});function Fk(e,t){return t==="string"?Ou(e):Nd([e],t)}function Mk(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Nd(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Xs(e)),Y().getBool("DEBUG")&&H0(e,t),Mk(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r{r=n()},s,i=Du();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(a);else{a();for(let o of r)o.dataSync();s=Promise.resolve({kernelMs:Du()-i})}if(Y().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o{Dk(u,l.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:a,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),r,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function Dk(e,t,n){if(t!=="float32")return!1;for(let r=0;r0?f:""} `}}console.log(`%c${o} %c${i} %c${l}D ${c} %c${u} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function Lk(e,t,n){let r={},a={};for(let l=0;lr[m.id]=!0),p=!0,a[u.id]=!0;break}if(p)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let h=0;h=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=s.inputs[l];if(!ea(u.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let h=e[c.id];e[c.id]=r(h,u),h.dispose()}}}}var Q0=20,zu=3,bm=7;function Bk(e,t,n,r){let a=Yo(t),s=Wk(e,t,n,a),i=t.length,o=Td(e,t,n,a,s),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(` -`)),l.join(` -`)}function Wk(e,t,n,r){let a=Ot(t),s=r[r.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Pu(e):e;if(o>1)for(let u=0;uQ0){let A=zu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-zu)*i,o*i));return n==="complex64"&&(y=Pu(y),g=Pu(g)),["["+y.map((w,b)=>Lu(w,a[b],n)).join(", ")+", ..., "+g.map((w,b)=>Lu(w,a[o-zu+b],n)).join(", ")+"]"]}let m=n==="complex64"?Pu(e):Array.from(e);return["["+m.map((A,y)=>Lu(A,a[y],n)).join(", ")+"]"]}let u=t.slice(1),c=r.slice(1),h=r[0]*i,d=[];if(o>Q0){for(let m=0;m`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||j0(t,this.size),this.strides=Yo(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;rSd(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=$r().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Sd(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await $r().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||($r().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return el.print(this,e)}clone(){return this.throwIfDisposed(),el.clone(this)}toString(e=!1){let t=this.dataSync();return Bk(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),el.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),$r().makeVariable(this,e,t,n)}};Object.defineProperty(Ye,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return xm("Tensor",()=>Ye)}Z();var uu=class extends Ye{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!ea(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);$r().disposeTensor(this),this.dataId=e.dataId,$r().incRef(this,null)}dispose(){$r().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(uu,Symbol.hasInstance,{value:e=>e instanceof Ye&&e.assign!=null&&e.assign instanceof Function});var hr={};ze(hr,{assertTypesMatch:()=>t5,getTensorsInContainer:()=>_m,isTensorInList:()=>Gk,makeTypesMatch:()=>vt});var kf;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(kf||(kf={}));var vm;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(vm||(vm={}));var km;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(km||(km={}));var Im;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Im||(Im={}));var Nm;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Nm||(Nm={}));var qk={float32:Im,int32:vm,bool:km,complex64:Nm};function Jn(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return qk[e][t]}function zh(e){return Jn(e,"int32")}function vt(e,t){if(e.dtype===t.dtype)return[e,t];let n=Jn(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function t5(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function Gk(e,t){return t.some(n=>n.id===e.id)}function _m(e){let t=[],n=new Set;return n5(e,t,n),t}function n5(e,t,n){if(e==null)return;if(e instanceof Ye){t.push(e);return}if(!Xk(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),n5(s,t,n))}}function Xk(e){return Array.isArray(e)||typeof e=="object"}function Sm(e){return e.kernelName!=null}var r5=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Wu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new r5}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){lu(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Ul)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r(rthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Wu.nextTensorId++}nextVariableId(){return Wu.nextVariableId++}clone(e){let t=M.runKernel(cs,{x:e}),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return M.runKernel(Ya,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if(Oh(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Sm(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Sm(e)){let{kernelName:p,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let A=Oh(p,this.backendName);F(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:f,attrs:m,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,g);let w=g.map(b=>{if(b.rank!=null)return b;let{dataId:_,shape:x,dtype:N}=b;return this.makeTensorFromDataId(_,x,N)});if(r){let b=this.getTensorsForGradient(p,f,w);n=this.saveTensorsForBackwardMode(b)}return w}}else{let{forwardFunc:p}=e,f=m=>{!r||(n=m.map(A=>this.keep(this.clone(A))))};i=()=>{let m=this.backend.numDataIds();o=this.tidy(()=>p(this.backend,f));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,A),A}}let{inputs:u,attrs:c}=e,h=Sm(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),r&&this.addTapeNode(l,u,t,h,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(p=>u[p]!=null?u[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=vf(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&Na(e[0])&&(a=e.map(o=>Ou(o)));let s=r.write(a,t,n),i=new Ye(t,n,s,this.nextTensorId());if(this.trackTensor(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=q0(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new Ye(t,n,e,this.nextTensorId());return this.trackTensor(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new uu(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*fm(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof uu||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*fm(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=vf(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((u,c)=>{if(u==null){let h=n[c],d=Id(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return u}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=_m(e),n=new Set(t.map(a=>a.id));for(let a=0;a{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(a instanceof Ye,()=>"The result y returned by f() must be a tensor.");let s=Lk(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?Kk(a.shape):n,Pk(i,s,l=>this.tidy(l),Zk);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return F(Sa(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(i=>i instanceof Ye),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),F(n.value instanceof Ye,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(Sa(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];F(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(u.every(h=>h instanceof Ye),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((h,d)=>{c[d]=()=>h}),c};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Du(),n=await this.backend.time(e);return n.wallMs=Du()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new r5;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Wu.nextTensorId=0;Wu.nextVariableId=0;function Kk(e){let t=mm(Ot(e),"float32");return M.makeTensor(t,e,"float32")}function a5(){let e=J0();if(e._tfengine==null){let t=new D2(e);e._tfengine=new Wu(t)}return Ck(e._tfengine.ENV),Uk(()=>e._tfengine),e._tfengine}var M=a5();function Zk(e,t){let n={a:e,b:t};return M.runKernel(Aa,n)}var Lh={};ze(Lh,{isBrowser:()=>s5,isMobile:()=>Yk});function Jk(){return typeof navigator!="undefined"&&navigator!=null}function Yk(){if(Jk()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function s5(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Mr=Y();Mr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Mr.registerFlag("IS_BROWSER",()=>s5());Mr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Mr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Mr.registerFlag("PROD",()=>!1);Mr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Mr.getBool("DEBUG"));Mr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Mr.registerFlag("IS_TEST",()=>!1);Mr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);function Dr(e,t){let n=e;if(rn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||rn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&Y().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&i5(e,r,[]),r}function i5(e,t,n){if(n=n||[],!Array.isArray(e)&&!rn(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a=0&&(a=r),o5(r,a,t,n),e==null||!rn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Dr(e,a);!rn(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?Nd(e,a):Xs(e,[],!0);return M.makeTensor(i,s,a)}function Bu(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>R(a,`${t}[${s}]`,n,r))}var P2="__op";function O(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+P2;let a=(...s)=>{M.startScope(n);try{let i=r(...s);return ym(i)&&console.error("Cannot return a Promise inside of tidy."),M.endScope(i),i}catch(i){throw M.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function Qk(e,t){let n=R(e,"real","complex"),r=R(t,"imag","complex");nn(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return M.runKernel(ch,a)}var wa=O({complex_:Qk});function Ta(e,t,n,r){if(r==null&&(r=vd(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!rn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Am(t);let a=Ot(t),s=Ot(n);F(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!rn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?Nd(e,r):Xs(e,[],!0),M.makeTensor(e,t,r)}function dr(e,t,n){let r=Dr(e,n);return Ta(e,t,r,n)}var Tm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Ed=4;async function t9(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+Ed*d.length,f=new Uint8Array(p),m=0;for(let A=0;A{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var Em=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function u5(e){return Em?Buffer.byteLength(e):new Blob([e]).size}function r9(e){if(Em)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function c5(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Vu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:u5(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:u5(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function s9(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function i9(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function o9(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function n9(){let e=s9(),t=i9(),n=o9();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var Nt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Nt.instance==null&&(Nt.instance=new Nt),Nt.instance}static registerSaveRouter(e){Nt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Nt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Nt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Nt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?Nt.getInstance().loadRouters:Nt.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},l9=e=>Nt.registerSaveRouter(e),u9=e=>Nt.registerLoadRouter(e),c9=e=>Nt.getSaveHandlers(e),h9=(e,t)=>Nt.getLoadHandlers(e,t),Rm="tensorflowjs",Fm=1,Ks="models_store",Ea="model_info_store";function h5(){if(!Y().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function $m(e){let t=e.result;t.createObjectStore(Ks,{keyPath:"modelPath"}),t.createObjectStore(Ea,{keyPath:"modelPath"})}var Zs=class{constructor(e){if(this.indexedDB=h5(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(Rm,Fm);a.onupgradeneeded=()=>$m(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(Ks,"readonly"),o=i.objectStore(Ks).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=Vu(t),o=s.transaction(Ea,"readwrite"),l=o.objectStore(Ea),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),c;u.onsuccess=()=>{c=s.transaction(Ks,"readwrite");let h=c.objectStore(Ks).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(Ea);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=f=>(s.close(),r(h.error))}},u.onerror=h=>(s.close(),r(u.error)),o.oncomplete=()=>{c==null?s.close():c.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};Zs.URL_SCHEME="indexeddb://";var d5=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Zs.URL_SCHEME)?d9(e.slice(Zs.URL_SCHEME.length)):null;Nt.registerSaveRouter(d5);Nt.registerLoadRouter(d5);function d9(e){return new Zs(e)}function p9(e){return e.startsWith(Zs.URL_SCHEME)?e.slice(Zs.URL_SCHEME.length):e}var f9=class{constructor(){this.indexedDB=h5()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Rm,Fm);n.onupgradeneeded=()=>$m(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(Ea,"readonly"),s=a.objectStore(Ea).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=p9(e),new Promise((t,n)=>{let r=this.indexedDB.open(Rm,Fm);r.onupgradeneeded=()=>$m(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(Ea,"readwrite"),i=s.objectStore(Ea),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),c=()=>{l=a.transaction(Ks,"readwrite");let h=l.objectStore(Ks).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};u.onsuccess=c,u.onerror=h=>(c(),a.close(),n(o.error))}},o.onerror=u=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},ta="/",tl="tensorflowjs_models",p5="info",m9="model_topology",A9="weight_specs",y9="weight_data",g9="model_metadata";function f5(e){return{info:[tl,e,p5].join(ta),topology:[tl,e,m9].join(ta),weightSpecs:[tl,e,A9].join(ta),weightData:[tl,e,y9].join(ta),modelMetadata:[tl,e,g9].join(ta)}}function x9(e){let t=e.split(ta);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(ta)}function w9(e){return e.startsWith(Ys.URL_SCHEME)?e.slice(Ys.URL_SCHEME.length):e}var Ys=class{constructor(e){if(!Y().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=f5(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=Vu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,r9(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=a9(s),t}};Ys.URL_SCHEME="localstorage://";var m5=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Ys.URL_SCHEME)?b9(e.slice(Ys.URL_SCHEME.length)):null;Nt.registerSaveRouter(m5);Nt.registerLoadRouter(m5);function b9(e){return new Ys(e)}var _9=class{constructor(){F(Y().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=tl+ta,n=ta+p5;for(let r=0;r"scheme must not be undefined or null."),e.endsWith(nl)&&(e=e.slice(0,e.indexOf(nl))),F(e.length>0,()=>"scheme must not be an empty string.");let n=jn.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Cd(e){if(e.indexOf(nl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${jn.getSchemes().join(",")}`);return{scheme:e.split(nl)[0],path:e.split(nl)[1]}}async function A5(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=Nt.getLoadHandlers(e);F(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=Nt.getSaveHandlers(t);F(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=Cd(e).scheme,l=Cd(e).path,u=o===Cd(e).scheme,c=await a.load();n&&u&&await jn.getManager(o).removeModel(l);let h=await i.save(c);return n&&!u&&await jn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function v9(){let e=jn.getSchemes(),t={};for(let n of e){let r=await jn.getManager(n).listModels();for(let a in r){let s=n+nl+a;t[s]=r[a]}}return t}async function k9(e){let t=Cd(e);return jn.getManager(t.scheme).removeModel(t.path)}async function I9(e,t){return A5(e,t,!1)}async function N9(e,t){return A5(e,t,!0)}var S9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Y().get("IS_BROWSER")){Y().setPlatform("browser",new S9);try{jn.registerManager(Ys.URL_SCHEME,new _9)}catch(e){}try{jn.registerManager(Zs.URL_SCHEME,new f9)}catch(e){}}var T9={importFetch:()=>C8()},Mm,E9=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Y().global.fetch!=null?Y().global.fetch(e,t):(Mm==null&&(Mm=T9.importFetch()),Mm(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Y().get("IS_NODE")&&Y().setPlatform("node",new E9);function We(e,t="float32",n){return t=t||"float32",Am(e),new Mt(e,t,n)}function C9(e,t){let n=R(e,"x","cast");if(!G0(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return M.runKernel(Ya,r,a)}var Ae=O({cast_:C9});function R9(e){let t={x:R(e,"x","clone","string_or_numeric")};return M.runKernel(cs,t)}var Ir=O({clone_:R9});function W2(e,t=!1){console.log(e.toString(t))}a5();var F9={buffer:We,cast:Ae,clone:Ir,print:W2};jk(F9);var yn={};ze(yn,{browserFiles:()=>$9,browserHTTPRequest:()=>D9,concatenateArrayBuffers:()=>Cm,copyModel:()=>I9,decodeWeights:()=>l5,encodeWeights:()=>t9,fromMemory:()=>O9,getLoadHandlers:()=>h9,getModelArtifactsInfoForJSON:()=>Vu,getSaveHandlers:()=>c9,http:()=>Om,isHTTPScheme:()=>Dm,listModels:()=>v9,loadWeights:()=>M9,moveModel:()=>N9,registerLoadRouter:()=>u9,registerSaveRouter:()=>l9,removeModel:()=>k9,weightsLoaderFactory:()=>y5,withSaveHandler:()=>z9});var L9="model",P9=".json",W9=".weights.bin";function g5(e){return new Promise(t=>setTimeout(t)).then(e)}var rl=class{constructor(e){if(!Y().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(rl.URL_SCHEME)&&(e=e.slice(rl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=L9),this.modelTopologyFileName=e+P9,this.weightDataFileName=e+W9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await g5(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await g5(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Vu(e)}}}};rl.URL_SCHEME="downloads://";var B9=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let u;try{u=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let c=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(f=>{h.push(f),d.push(null)}),c.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(f=>{let m=new FileReader;m.onload=A=>{let y=A.target.result,g=h.indexOf(f);if(d[g]=y,d.indexOf(null)===-1){let w={modelTopology:o,weightSpecs:c,weightData:Cm(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(w.signature=i.signature),i.userDefinedMetadata!=null&&(w.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(w.modelInitializer=i.modelInitializer),n(w)}},m.onerror=A=>r(`Failed to weights data from file of path '${f}'.`),m.readAsArrayBuffer(u[f])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>c5(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=c5(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},U9=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(rl.URL_SCHEME)?V9(e.slice(rl.URL_SCHEME.length)):null;Nt.registerSaveRouter(U9);function V9(e="model"){return new rl(e)}function $9(e){return new B9(e)}function x5(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(u=>{let c=n+ ++a/e.length*(r-n);return t(c),u}),l);function i(l){F(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),F(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),F(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function w5(e,t){t==null&&(t={});let n=t.fetchFunc==null?Y().platform.fetch:t.fetchFunc,r=e.map(u=>n(u,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await x5(r,t.onProgress,a,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await x5(i,t.onProgress,o,l)}async function M9(e,t="",n,r){return y5(a=>w5(a,{requestInit:r}))(e,t,n)}function y5(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,f)=>{let m=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=Tm[y]*Ot(A.shape),w=()=>{a[f]=!0,s[f]==null&&(s[f]=[]),s[f].push({manifestEntry:A,groupOffset:m,sizeBytes:g})};r!=null?r.forEach((b,_)=>{b===A.name&&(w(),i[_]=!0)}):w(),o.push(A.name),m+=g})}),!i.every(p=>p)){let p=r.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}. -Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,f,m)=>(f&&p.push(m),p),[]),u=[];l.forEach(p=>{t[p].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),h={},d=0;return l.forEach(p=>{let f=t[p].paths.length,m=0;for(let w=0;w{let b=A.slice(w.groupOffset,w.groupOffset+w.sizeBytes),_=l5(b,[w.manifestEntry]);for(let x in _)h[x]=_[x]}),d+=f}),h}}var j9="application/octet-stream",H9="application/json",zm=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Y().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:H9}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:j9}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:Vu(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let f=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?f+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":f+=" Please make sure the server is serving valid JSON for this request.",new Error(f)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let u,c;r!=null&&([u,c]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:u,weightData:c,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=G9(t),a=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(c)):i.push(a+c+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await w5(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Cm(l)]}};zm.URL_SCHEME_REGEX=/^https?:\/\//;function G9(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function Dm(e){return e.match(zm.URL_SCHEME_REGEX)!=null}var b5=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>Dm(r)):n=Dm(e),n)return Om(e,t)}return null};Nt.registerSaveRouter(b5);Nt.registerLoadRouter(b5);function Om(e,t){return new zm(e,t)}function D9(e,t){return Om(e,t)}var Lm=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},q9=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function O9(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Lm(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Lm({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Lm({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function z9(e){return new q9(e)}var B2={};ze(B2,{confusionMatrix:()=>X9});function K9(e,t,n=!1,r=!1){let a=R(e,"a","matMul"),s=R(t,"b","matMul");[a,s]=vt(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return M.runKernel(Za,i,o)}var Ge=O({matMul_:K9});function Z9(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:R(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return M.runKernel(ws,a,s)}var zo=O({oneHot_:Z9});function Y9(e,t){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{F(s>=0&&s`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return M.runKernel(Ls,r,a)}var rt=O({transpose_:Y9});function J9(e,t,n){let r=R(e,"labels","confusionMatrix"),a=R(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),F(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),F(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=zo(Ae(r,"int32"),n),i=zo(Ae(a,"int32"),n),o=rt(s),l=Ge(o,i);return Ae(l,"int32")}var X9=O({confusionMatrix_:J9}),cu={};ze(cu,{fromPixels:()=>eI,toPixels:()=>Q9});function If(e,t,n){if(qs(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=Dr(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Ta(e,t,r,n)}var al;function tI(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState element.")}if(Oh(Dh,M.backendName)!=null){let d={pixels:e},p={numChannels:t};return M.runKernel(Dh,d,p)}let[l,u]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],c;i?c=e.getContext("2d").getImageData(0,0,l,u).data:r||n?c=e.data:(s||a||o)&&(al==null&&(al=document.createElement("canvas").getContext("2d")),al.canvas.width=l,al.canvas.height=u,al.drawImage(e,0,0,l,u),c=al.getImageData(0,0,l,u).data);let h;if(t===4)h=new Int32Array(c);else{let d=l*u;h=new Int32Array(d*t);for(let p=0;p4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let u=0;u1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(c[0]=p*o,c[1]=p*o,c[2]=p*o):c[d]=p*o}let h=u*4;l[h+0]=Math.round(c[0]),l[h+1]=Math.round(c[1]),l[h+2]=Math.round(c[2]),l[h+3]=Math.round(c[3])}if(t!=null){t.width=a,t.height=r;let u=t.getContext("2d"),c=new ImageData(l,a,r);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var eI=O({fromPixels_:tI}),Nf={};ze(Nf,{prepareAndValidate:()=>_5});function _5(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Ot(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;hh/u),1].slice(0,s);return[l,i,u,c]}var Sf={};ze(Sf,{calculateShapes:()=>v5,validateInput:()=>Wm,validateUpdateShape:()=>Pm});function Pm(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;hnI,computeFlatOffset:()=>aI,computeOutShape:()=>k5,getNormalizedAxes:()=>N5,isSliceContinous:()=>rI,maskToAxes:()=>Rd,parseSliceParams:()=>F5,sliceInfo:()=>sI,startForAxis:()=>C5,startIndicesWithElidedDims:()=>S5,stopForAxis:()=>R5,stopIndicesWithElidedDims:()=>T5,stridesForAxis:()=>E5,stridesWithElidedDims:()=>I5});function nI(e,t,n){let r=e.shape.length;F(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),F(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function Rd(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function k5(e,t,n){let r=[];for(let a=0;a0){let p=t[0],f=n+1;c=S5(i,p,f,r,e),h=T5(o,p,f,a,e),d=I5(s,p,f,e)}else for(let p=0;p-1)s[o]=0;else{let l=$5(t,n,o),u=r[l];e&1<-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=$5(t,n,o),u=r[l];e&1<0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=Fu(0,i,l-1),i}function R5(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=Fu(0,i,l):i=Fu(-1,i,l-1),i}function rI(e,t,n){let r=n.length;for(let a=0;a1){r=a;break}for(let a=r+1;a0||n[a]!==e[a])return!1;return!0}function aI(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.lengthi>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function sI(e,t,n,r,a,s,i,o,l){let u=t.slice(),c=n.slice(),h=r;r==null&&(h=new Array(u.length));let d=Rd(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-u.length,f=Rd(o),m=e.slice();f.forEach(x=>{u[x]=0,c[x]=1,m.splice(x,0,1)});let{begin:A,end:y,strides:g}=N5(m,d,p,u,c,h,a,s,i);u=A,c=y,h=g;let w=Rd(l);w.forEach(x=>{c[x]=u[x]+1,h[x]=1});let b=k5(u,c,h),_=b.filter((x,N)=>w.indexOf(N)===-1);return{nonStrided:h.every(x=>x===1),$begin:u,$end:c,$strides:h,size:b,newShape:m,outShape:_}}var re={};ze(re,{Serializable:()=>D5,SerializationMap:()=>Js,registerClass:()=>Ca});var D5=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Js=class{constructor(){this.classNameMap={}}static getMap(){return Js.instance==null&&(Js.instance=new Js),Js.instance}static register(e){Js.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Ca(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Js.register(e)}var V2={};ze(V2,{TEST_EPSILON_FLOAT16:()=>O5,encodeStrings:()=>z5,expectArrayBuffersEqual:()=>hI,expectArraysClose:()=>iI,expectArraysEqual:()=>lI,expectNumbersClose:()=>uI,expectPromiseToFail:()=>oI,expectValuesInRange:()=>cI,testEpsilon:()=>Bm});var dI=.001,O5=.1;function iI(e,t,n){return n==null&&(n=Bm()),Vm(e,t,(r,a)=>Um(r,a,n))}function Bm(){return M.backend.floatPrecision()===32?dI:O5}function Vm(e,t,n){let r=!0;if((rn(e)||rn(t))&&(r=!1),rn(e)&&rn(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Dr(e),o=Dr(t);if(!ea(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=rn(e)?e:Xs(e),s=rn(t)?t:Xs(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}. -Actual: ${a}. -Expected: ${s}.`);for(let i=0;it.fail(),()=>t())}function lI(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Na(e)||Na(e[0])||Na(t)||Na(t[0])?Vm(e,n,(r,a)=>r==a):Vm(e,t,(r,a)=>Um(r,a,0))}function uI(e,t,n){if(n==null&&(n=Bm()),!Um(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Um(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function cI(e,t,n){for(let r=0;rn)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function hI(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function z5(e){for(let t=0;tt.dispose())}function Vt(e){return M.keep(e)}function C4(e){return M.time(e)}function R4(e){return M.setBackend(e)}function F4(){return M.ready()}function $4(){return M.backendName}function M4(e){M.removeBackend(e)}function U2(e){return M.findBackend(e)}function D4(e){return M.findBackendFactory(e)}function hu(e,t,n=1){return M.registerBackend(e,t,n)}function j2(){return M.backend}function O4(e,t){Y().setPlatform(e,t)}function pI(e,t){let n=R(e,"a","add"),r=R(t,"b","add");[n,r]=vt(n,r);let a={a:n,b:r};return M.runKernel(Aa,a)}var oe=O({add_:pI});function fI(e,t){let n=R(e,"a","floorDiv"),r=R(t,"b","floorDiv");[n,r]=vt(n,r);let a={a:n,b:r};return M.runKernel(os,a)}var Wh=O({floorDiv_:fI});function mI(e,t){let n=R(e,"a","div"),r=R(t,"b","div");if([n,r]=vt(n,r),n.dtype==="int32"&&r.dtype==="int32")return Wh(n,r);let a={a:n,b:r},s={};return M.runKernel(as,a,s)}var ve=O({div_:mI});function AI(e,t){let n=R(e,"a","mul"),r=R(t,"b","mul");[n,r]=vt(n,r);let a={a:n,b:r};return M.runKernel(xs,a)}var W=O({mul_:AI});function yI(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return M.runKernel(Xl,n)}else{let n={x:t};return M.runKernel(Oi,n)}}var Dt=O({abs_:yI});function gI(e){let t={x:R(e,"x","acos")};return M.runKernel(zi,t)}var Ef=O({acos_:gI});function xI(e){let t={x:R(e,"x","acosh")};return M.runKernel(Li,t)}var Cf=O({acosh_:xI});function wI(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>R(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!ea(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return M.runKernel(qa,r)}var Bh=O({addN_:wI});function bI(e,t=null,n=!1){let r={x:R(e,"x","all","bool")},a={axis:t,keepDims:n};return M.runKernel(sh,r,a)}var Vh=O({all_:bI});function _I(e,t=null,n=!1){let r={x:R(e,"x","any","bool")},a={axis:t,keepDims:n};return M.runKernel(ih,r,a)}var du=O({any_:_I});function vI(e,t=0){let n={x:R(e,"x","argMax")},r={axis:t};return M.runKernel(Xa,n,r)}var pu=O({argMax_:vI});function kI(e,t=0){let n={x:R(e,"x","argMin")},r={axis:t};return M.runKernel(Hl,n,r)}var Rf=O({argMin_:kI});function II(e){let t={x:R(e,"x","asin")};return M.runKernel(Pi,t)}var Ff=O({asin_:II});function NI(e){let t={x:R(e,"x","asinh")};return M.runKernel(Wi,t)}var $f=O({asinh_:NI});function SI(e){let t={x:R(e,"x","atan")};return M.runKernel(Bi,t)}var Mf=O({atan_:SI});function TI(e,t){let n=R(e,"a","atan2"),r=R(t,"b","atan2");[n,r]=vt(n,r);let a={a:n,b:r};return M.runKernel(Ui,a)}var Df=O({atan2_:TI});function EI(e){let t={x:R(e,"x","atanh")};return M.runKernel(Vi,t)}var Of=O({atanh_:EI});function CI(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=L5(a);return Uu(e,o,n,s,r,null,null,l)}function P5(e,t,n,r,a,s,i="channelsLast"){let[o,l]=Fd(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Uu(e,u,n,r,a,s,!1,i)}function RI(e,t,n,r,a,s,i="NDHWC"){let[o,l,u]=jm(t),c,h;if(i==="NDHWC")h="channelsLast",c=[o,l,u,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",c=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return W5(e,c,n,r,a,!1,h,s)}function Uu(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,u,c,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,h]=e;else if(o==="channelsFirst")[l,h,u,c]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,f]=t,[m,A]=Fd(n),[y,g]=Fd(r),w=sl(d,y),b=sl(p,g),{padInfo:_,outHeight:x,outWidth:N}=FI(a,u,c,m,A,w,b,s,o),T=i?f*h:f,E;return o==="channelsFirst"?E=[l,T,x,N]:o==="channelsLast"&&(E=[l,x,N,T]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:c,inChannels:h,outHeight:x,outWidth:N,outChannels:T,padInfo:_,strideHeight:m,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:w,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:g,inShape:e,outShape:E,filterShape:t}}function W5(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,u,c,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,h,d]=e;else if(i==="channelsFirst")[l,d,u,c,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,f,m,,A]=t,[y,g,w]=jm(n),[b,_,x]=jm(r),N=sl(p,b),T=sl(f,_),E=sl(m,x),{padInfo:$,outDepth:D,outHeight:L,outWidth:P}=$I(a,u,c,h,y,g,w,N,T,E,o),U=s?A*d:A,j;return i==="channelsFirst"?j=[l,U,D,L,P]:i==="channelsLast"&&(j=[l,D,L,P,U]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:c,inWidth:h,inChannels:d,outDepth:D,outHeight:L,outWidth:P,outChannels:U,padInfo:$,strideDepth:y,strideHeight:g,strideWidth:w,filterDepth:p,filterHeight:f,filterWidth:m,effectiveFilterDepth:N,effectiveFilterHeight:T,effectiveFilterWidth:E,dilationDepth:b,dilationHeight:_,dilationWidth:x,inShape:e,outShape:j,filterShape:t}}function MI(e,t,n,r,a){r==null&&(r=Hm(e,t,n));let s=e[0],i=e[1],o=Qs((s-t+2*r)/n+1,a),l=Qs((i-t+2*r)/n+1,a);return[o,l]}function DI(e,t,n,r,a,s){a==null&&(a=Hm(e,t,r));let i=e[0],o=e[1],l=e[2],u=Qs((i-t+2*a)/r+1,s),c=Qs((o-t+2*a)/r+1,s),h=Qs((l-t+2*a)/r+1,s);return[u,c,h,n]}function Hm(e,t,n,r=1){let a=sl(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function Fd(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function jm(e){return typeof e=="number"?[e,e,e]:e}function sl(e,t){return t<=1?e:e+(e-1)*(t-1)}function FI(e,t,n,r,a,s,i,o,l){let u,c,h;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=MI([t,n],s,r,e,o);c=d[0],h=d[1]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(c-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),f=Math.floor(d/2),m=d-f,A=Math.floor(p/2),y=p-A;u={top:f,bottom:m,left:A,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:p,left:f,right:m,type:d===0&&p===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=Qs((t-s+d+p)/r+1,o),h=Qs((n-i+f+m)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:h}}function $I(e,t,n,r,a,s,i,o,l,u,c){let h,d,p,f;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let m=DI([t,n,r,1],o,1,a,e,c);d=m[0],p=m[1],f=m[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),f=Math.ceil(r/i);let m=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(f-1)*i+u-r,g=Math.floor(m/2),w=m-g,b=Math.floor(A/2),_=A-b,x=Math.floor(y/2),N=y-x;h={top:b,bottom:_,left:x,right:N,front:g,back:w,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),f=Math.ceil((r-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:f}}function Qs(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Ra(e){let[t,n,r]=Fd(e);return t===1&&n===1&&r===1}function Or(e,t){return Ra(e)||Ra(t)}function L5(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function OI(e,t){let n={x:R(e,"x","reshape","string_or_numeric")},r={shape:t};return M.runKernel(bo,n,r)}var H=O({reshape_:OI});function zI(e,t,n,r,a){let s=R(e,"x","avgPool","float32"),i=1;F(Or(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&F(jt(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=M.runKernel(Ka,u,c);return h=Ae(h,s.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var fu=O({avgPool_:zI});function LI(e,t,n,r,a,s="NDHWC"){let i=R(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(jt(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=M.runKernel(Gl,u,c);return h=Ae(h,o.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var zf=O({avgPool3d_:LI});function PI(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=Bu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor - with dtype ${s.dtype}. `)}),n.length===1)return Ir(n[0]);let r=n,a={axis:t};return M.runKernel(ji,r,a)}var ot=O({concat_:PI});function WI(e){let t={x:R(e,"x","sigmoid")};return M.runKernel(Rs,t)}var Qn=O({sigmoid_:WI});function BI(e,t,n){let r=R(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return M.runKernel(Io,a,s)}var Fe=O({slice_:BI});function VI(e){let t={x:R(e,"x","tanh")};return M.runKernel(zs,t)}var Po=O({tanh_:VI});function UI(e,t,n,r,a,s){let i=R(e,"forgetBias","basicLSTMCell"),o=R(t,"lstmKernel","basicLSTMCell"),l=R(n,"lstmBias","basicLSTMCell"),u=R(r,"data","basicLSTMCell"),c=R(a,"c","basicLSTMCell"),h=R(s,"h","basicLSTMCell"),d=ot([u,h],1),p=Ge(d,o),f=oe(p,l),m=f.shape[0],A=f.shape[1]/4,y=[m,A],g=Fe(f,[0,0],y),w=Fe(f,[0,A],y),b=Fe(f,[0,A*2],y),_=Fe(f,[0,A*3],y),x=oe(W(Qn(g),Po(w)),W(c,Qn(oe(i,b)))),N=W(Po(x),Qn(_));return[x,N]}var z4=O({basicLSTMCell_:UI});function jI(e,t,n){let r=R(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);F(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return M.runKernel(ql,s,i)}var mu=O({batchToSpaceND_:jI});function HI(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function GI(e,t,n,r,a,s){s==null&&(s=.001);let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;r!=null&&(c=R(r,"offset","batchNorm")),F(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:HI(i),scale:u,offset:c,mean:o,variance:l},d={varianceEpsilon:s},p=M.runKernel(ls,h,d);return H(p,i.shape)}var Vs=O({batchNorm_:GI});function qI(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;return r!=null&&(c=R(r,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Vs(i,o,l,c,u,s)}var H2=O({batchNorm2d_:qI});function XI(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;return r!=null&&(c=R(r,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Vs(i,o,l,c,u,s)}var G2=O({batchNorm3d_:XI});function KI(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;return r!=null&&(c=R(r,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Vs(i,o,l,c,u,s)}var q2=O({batchNorm4d_:KI});function ZI(e,t,n){let r=R(e,"x","bincount"),a=R(t,"weights","bincount");F(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return M.runKernel(uh,s,i)}var X2=O({bincount_:ZI});function YI(e,t){let n=R(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let l=n.shape.slice();for(;l.length=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Ir(n);let i={x:n},o={reps:s};return M.runKernel(ga,i,o)}var Au=O({broadcastTo_:YI});function JI(e){let t={x:R(e,"x","ceil")};return M.runKernel(Ja,t)}var Lf=O({ceil_:JI});function QI(e,t,n){let r=R(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return M.runKernel(ya,a,s)}var gn=O({clipByValue_:QI});function eN(e){return ot(e,0)}var K2=O({concat1d_:eN});function tN(e,t){return ot(e,t)}var Uh=O({concat2d_:tN});function nN(e,t){return ot(e,t)}var Z2=O({concat3d_:nN});function rN(e,t){return ot(e,t)}var Y2=O({concat4d_:rN});function aN(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","conv2d"),l=R(t,"filter","conv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&F(jt(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?u.shape[3]:u.shape[1];F(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),F(Or(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:u,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},f=M.runKernel(Qa,d,p);return c?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Kr=O({conv2d_:aN});function sN(e,t,n,r,a="NWC",s=1,i){let o=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),u=o,c=!1;o.rank===2&&(c=!0,u=H(o,[1,o.shape[0],o.shape[1]])),F(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),F(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&F(jt(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),F(Or(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),F(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=H(u,[u.shape[0],1,u.shape[1],u.shape[2]]),p=Kr(d,h,[1,n],r,"NHWC",[1,s],i);return c?H(p,[p.shape[2],p.shape[3]]):H(p,[p.shape[0],p.shape[2],p.shape[3]])}var jh=O({conv1d_:sN});function iN(e,t,n,r,a,s="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];F(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),F(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&F(jt(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},f=M.runKernel(es,d,p);return u?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Gm=O({conv2DBackpropInput_:iN});function oN(e,t,n,r,a,s){let i=R(e,"x","conv2dTranspose"),o=R(t,"filter","conv2dTranspose");return Gm(n,i,o,r,a,"NHWC",s)}var Hh=O({conv2dTranspose_:oN});function lN(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=R(e,"x","conv3d"),o=R(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(Or(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let c={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=M.runKernel(Kl,c,h);return u?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Pf=O({conv3d_:lN});function uN(e,t,n,r,a){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];F(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),F(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=M.runKernel(ph,c,h);return o?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var B5=O({conv3DBackpropInput_:uN});function cN(e,t,n,r,a){let s=R(e,"x","conv3dTranspose"),i=R(t,"filter","conv3dTranspose");return B5(n,s,i,r,a)}var L4=O({conv3dTranspose_:cN});function hN(e){let t={x:R(e,"x","cos")};return M.runKernel(ts,t)}var yu=O({cos_:hN});function dN(e){let t={x:R(e,"x","cosh")};return M.runKernel(Hi,t)}var Gh=O({cosh_:dN});function pN(e,t=0,n=!1,r=!1){let a={x:R(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return M.runKernel(ns,a,s)}var qh=O({cumsum_:pN});function fN(e,t,n,r=!1){let a=R(e,"x","denseBincount"),s=R(t,"weights","denseBincount");F(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),F(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return M.runKernel(fh,i,o)}var J2=O({denseBincount_:fN});function mN(e,t,n="NHWC"){let r=R(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];F(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying - ${a} and ${t} for depthToSpace with input shape - ${r.shape}`),F(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying - ${s} and ${t} for depthToSpace with input shape - ${r.shape}`),F(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return M.runKernel(qi,o,l)}var Wf=O({depthToSpace_:mN});function AN(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","depthwiseConv2d"),l=R(t,"filter","depthwiseConv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&F(jt(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:u,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=M.runKernel(rs,h,d);return c?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Wo=O({depthwiseConv2d_:AN});function yN(e){let t={x:R(e,"x","diag")};return M.runKernel(yh,t)}var P4=O({diag_:yN});function gN(e,t,n,r,a=[1,1],s="NHWC"){let i=R(e,"x","dilation2d"),o=R(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let c={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=M.runKernel(Zl,c,h);return u?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Bf=O({dilation2d_:gN});function xN(e,t){let n=e.length,r=[];for(let a=0;a1&&i===1&&r.unshift(s)}return r}function zt(e,t){let n=[];for(let r=0;r1)&&n.unshift(s)}return n}function mt(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&nn(s.shape,l.shape,"Error in where: ");let u={condition:s,t:o,e:l};return M.runKernel(vo,u)}var xn=O({where_:bN});function _N(e){let t={x:R(e,"x","zerosLike")};return M.runKernel(Mo,t)}var je=O({zerosLike_:_N});function vN(e,t){let n=R(e,"a","div"),r=R(t,"b","div");[n,r]=vt(n,r);let a=ve(n,r),s=je(a),i=ba(r,s);return xn(i,s,a)}var Vf=O({divNoNan_:vN});function kN(e,t){let n=R(e,"t1","dot"),r=R(t,"t2","dot");F((n.rank===1||n.rank===2)&&(r.rank===1||r.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(F(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=H(n,[1,-1]),o=H(r,[-1,1]),l=Ge(i,o);return H(l,[])}else if(n.rank===1&&r.rank===2){let i=H(n,[1,-1]),o=H(r,[r.shape[0],r.shape[1]]),l=Ge(i,o);return H(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=H(r,[-1,1]),o=Ge(n,i);return H(o,[o.size])}else{let i=H(r,[r.shape[0],r.shape[1]]);return Ge(n,i)}}var Q2=O({dot_:kN});function IN(e){let t={x:R(e,"x","elu")};return M.runKernel(Xi,t)}var Bo=O({elu_:IN});function NN(e){let t=R(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=Ae(t,"float32"));let n={x:t};return M.runKernel(Ki,n)}var Uf=O({erf_:NN});function SN(e){let t={x:R(e,"x","exp")};return M.runKernel(ss,t)}var Vn=O({exp_:SN});function TN(e,t=0){let n=R(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return M.runKernel(Yi,r,a)}var Sn=O({expandDims_:TN});function EN(e){let t={x:R(e,"x","expm1")};return M.runKernel(Ji,t)}var jf=O({expm1_:EN});function CN(e,t){let n=R(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return M.runKernel(ga,r,a)}var _a=O({tile_:CN});function RN(e,t,n,r="float32"){t==null&&(t=e);let a=We([e,t],r),s=e<=t?e:t;for(let o=0;o`Error in localResponseNormalization: x must be rank 3 or 4 but got - rank ${s.rank}.`),F(jt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:r,beta:a},c=M.runKernel(eu,l,u);return o?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Gf=O({localResponseNormalization_:UN});function jN(e){let t={x:R(e,"x","log")};return M.runKernel(ds,t)}var Tn=O({log_:jN});function HN(e){let t={x:R(e,"x","log1p")};return M.runKernel(lo,t)}var Zh=O({log1p_:HN});function W4(e){return F(Sa(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=R(t,"x","tf.grad","string_or_numeric"),a=n!=null?R(n,"dy","tf.grad"):null;return M.tidy(()=>{let{value:s,grads:i}=M.gradients(()=>e(r),[r],a);return a!=null&&nn(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),$d(i),i[0]})}}function B4(e){return F(Sa(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=Bu(t,"args","tf.grads","string_or_numeric"),a=n!=null?R(n,"dy","tf.grads"):null;return M.tidy(()=>{let{value:s,grads:i}=M.gradients(()=>e(...r),r,a);return a!=null&&nn(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),$d(i),i})}}function V4(e){return F(Sa(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof Ye,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof Ye,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=M.gradients(()=>e(t),[t],n);return $d(r),{grad:r[0],value:a}}}function U4(e){return F(Sa(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(a=>a instanceof Ye),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof Ye,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=M.gradients(()=>e(...t),t,n);return n!=null&&nn(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),$d(r.grads),r}}function a0(e,t){F(Sa(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(u=>u instanceof uu),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in M.registeredVariables)t.push(M.registeredVariables[u])}let r=n?t.filter(u=>!u.trainable):null,a=t.length;t=t.filter(u=>u.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=M.gradients(e,t,null,s);F(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,c)=>{o[c]!=null&&(l[u.name]=o[c])}),r!=null&&r.forEach(u=>l[u.name]=null),{value:i,grads:l}}function Sr(e){return M.customGrad(e)}function $d(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that - the f you passed encloses all operations that lead from x to y.`)}function GN(e){let t={x:R(e,"x","neg")};return M.runKernel(ho,t)}var bt=O({neg_:GN});function qN(e){let t={x:R(e,"x","softplus")};return M.runKernel(To,t)}var Uo=O({softplus_:qN});function XN(e){let t=R(e,"x","logSigmoid");return Sr(n=>({value:bt(Uo(bt(n))),gradFunc:r=>W(r,Qn(bt(n)))}))(t)}var s0=O({logSigmoid_:XN});function KN(e,t=null,n=!1){let r={x:R(e,"x","max")},a={reductionIndices:t,keepDims:n};return M.runKernel(ps,r,a)}var Un=O({max_:KN});function ZN(e,t){let n=R(e,"a","sub"),r=R(t,"b","sub");[n,r]=vt(n,r);let a={a:n,b:r};return M.runKernel(Os,a)}var xe=O({sub_:ZN});function YN(e,t=null,n=!1){let r=R(e,"x","sum");r.dtype==="bool"&&(r=Ae(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return M.runKernel($s,a,s)}var Ee=O({sum_:YN});function JN(e,t=-1){let n=R(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Sr((r,a)=>{let s=!0,i=Un(r,t,!0),o=xe(r,i),l=xe(Ae(o,"float32"),Tn(Ee(Vn(o),t,s)));return a([l]),{value:l,gradFunc:(u,c)=>{let[h]=c,d=!0,p=Vn(h);return xe(u,W(Ee(u,t,d),p))}}})(n)}var Yh=O({logSoftmax_:JN});function qm(e,t){for(let n=0;ne[s]);return[n,a]}function ei(e,t){let n=t.map(r=>1);return V5(e,n,t)}function QN(e,t,n){F(qm(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function j5(e,t){if(qm(e,t))return null;let n=[];for(let r=0;rn.push(r)),n}function Xm(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function eS(e,t){let n=[];for(let r=t-e;r`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(Or(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&F(jt(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=M.runKernel(ms,u,c);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var bu=O({maxPool_:iS});function oS(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=R(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(jt(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=M.runKernel(tu,u,c);return l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Xf=O({maxPool3d_:oS});function lS(e,t,n,r,a=!1){let s={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=M.runKernel(Th,s,i);return{result:o[0],indexes:o[1]}}var o0=O({maxPoolWithArgmax_:lS});function uS(e,t){let n=R(e,"a","maximum"),r=R(t,"b","maximum");[n,r]=vt(n,r),n.dtype==="bool"&&(n=Ae(n,"int32"),r=Ae(r,"int32")),mt(n.shape,r.shape);let a={a:n,b:r};return M.runKernel(fs,a)}var Tr=O({maximum_:uS});function cS(e,t=null,n=!1){let r={x:R(e,"x","mean")},a={axis:t,keepDims:n};return M.runKernel(As,r,a)}var _t=O({mean_:cS});function hS(e,t=null,n=!1){let r={x:R(e,"x","min")},a={axis:t,keepDims:n};return M.runKernel(ys,r,a)}var jo=O({min_:hS});function dS(e,t){let n=R(e,"a","minimum"),r=R(t,"b","minimum");[n,r]=vt(n,r),n.dtype==="bool"&&(n=Ae(n,"int32"),r=Ae(r,"int32")),mt(n.shape,r.shape);let a={a:n,b:r};return M.runKernel(gs,a)}var Ho=O({minimum_:dS});function pS(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=R(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return M.runKernel(nu,i,s)}var Kf=O({mirrorPad_:pS});function fS(e,t){let n=R(e,"a","mod"),r=R(t,"b","mod");[n,r]=vt(n,r);let a={a:n,b:r};return M.runKernel(co,a)}var Zf=O({mod_:fS});function mS(e){let t=R(e,"x","square"),n={};return M.runKernel("Square",{x:t},n)}var it=O({square_:mS});function AS(e,t=null,n=!1){e=R(e,"x","moments");let r=ar(t,e.shape),a=_t(e,r,n),s=a.shape;n||(s=ei(a.shape,r));let i=it(xe(Ae(e,"float32"),H(a,s))),o=_t(i,r,n);return{mean:a,variance:o}}var Qh=O({moments_:AS});function yS(e,t,n,r){let a=R(t,"data","multiRNNCell"),s=Bu(n,"c","multiRNNCell"),i=Bu(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},u=M.runKernel(Eh,o,l);return i===1?H(u,[u.size]):u}var l0=O({multinomial_:gS});function xS(e,t){let n=R(e,"a","notEqual"),r=R(t,"b","notEqual");[n,r]=vt(n,r),mt(n.shape,r.shape);let a={a:n,b:r};return M.runKernel(po,a)}var Hs=O({notEqual_:xS});function Ct(e,t="float32"){if(t==="complex64"){let r=Ct(e,"float32"),a=Ct(e,"float32");return wa(r,a)}let n=Id(Ot(e),t);return M.makeTensor(n,e,t)}function Er(e,t="float32"){if(t==="complex64"){let r=Er(e,"float32"),a=Ct(e,"float32");return wa(r,a)}let n=mm(Ot(e),t);return M.makeTensor(n,e,t)}function wS(e){let t={x:R(e,"x","onesLike")};return M.runKernel(yo,t)}var En=O({onesLike_:wS});function bS(e,t){let n=R(e,"v1","outerProduct"),r=R(t,"v2","outerProduct");F(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=H(n,[-1,1]),s=H(r,[1,-1]);return Ge(a,s)}var H4=O({outerProduct_:bS});function _S(e,t,n=0){let r=R(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return M.runKernel(bs,s,a)}var Zr=O({pad_:_S});function vS(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Zr(e,[t],n)}var G4=O({pad1d_:vS});function kS(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Zr(e,t,n)}var q4=O({pad2d_:kS});function IS(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Zr(e,t,n)}var X4=O({pad3d_:IS});function NS(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Zr(e,t,n)}var K4=O({pad4d_:NS});function SS(e,t,n){let r=R(e,"x","spaceToBatchND");F(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return M.runKernel(su,a,s)}var _u=O({spaceToBatchND_:SS});function CS(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=R(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),F(Or(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let u=P5(o.shape,t,s,a,r),c=[u.dilationHeight,u.dilationWidth],h;r==="same"?h=ES([u.filterHeight,u.filterWidth],c):h=[[0,0],[0,0]];let d=c[0]===1&&c[1]===1,[p,f]=TS([u.inHeight,u.inWidth],c,h),m=d?r:"valid",A=d?o:_u(o,c,p),y=(n==="avg"?()=>fu(A,t,s,m):()=>bu(A,t,s,m))(),g=d?y:mu(y,c,f);return l?H(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function TS(e,t,n){let r=n.map(c=>c[0]),a=n.map(c=>c[1]),s=e.concat(r,a),i=t.map((c,h)=>(c-s[h]%c)%c),o=a.map((c,h)=>c+i[h]),l=t.map((c,h)=>[r[h],o[h]]),u=t.map((c,h)=>[0,i[h]]);return[l,u]}function ES(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var u0=O({pool_:CS});function RS(e,t){let n=R(e,"base","pow"),r=R(t,"exp","pow");[n,r]=vt(n,r);let a={a:n,b:r};return M.runKernel(_s,a)}var Yr=O({pow_:RS});function FS(e,t){let n=R(e,"x","prelu"),r=R(t,"alpha","prelu"),a={x:n,alpha:r};return M.runKernel(vs,a)}var vu=O({prelu_:FS});function $S(e,t=null,n=!1){let r=R(e,"x","prod");r.dtype==="bool"&&(r=Ae(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return M.runKernel(xo,a,s)}var ed=O({prod_:$S});function MS(e,t,n){let r=Ot(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},DS=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Km.alea(a.toString()),this.randn=new Zm(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),athis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Km.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function zS(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new DS(t,n,r,a),i=We(e,r);for(let o=0;o`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Cn(t,0)}var J4=O({reverse1d_:HS});function GS(e,t){let n=R(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Cn(n,t)}var Q4=O({reverse2d_:GS});function qS(e,t){let n=R(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Cn(n,t)}var e8=O({reverse3d_:qS});function XS(e,t){let n=R(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Cn(n,t)}var t8=O({reverse4d_:XS});function KS(e){let t={x:R(e,"x","round")};return M.runKernel(Ts,t)}var Jf=O({round_:KS});function ZS(e){let t={x:R(e,"x","rsqrt")};return M.runKernel(Es,t)}var rd=O({rsqrt_:ZS});function ke(e,t){if((rn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&rn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Ta(e,[],[],t)}function YS(e){let t={x:R(e,"x","selu")};return M.runKernel(ko,t)}var ad=O({selu_:YS});function JS(e,t,n,r,a,s=[1,1],i="NHWC"){let o=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),u=R(n,"pointwiseFilter","separableConv2d"),c=o,h=!1;if(o.rank===3&&(h=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),F(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],p=l.shape[3];F(u.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${u.shape[2]}.`);let f=Wo(c,l,r,a,i,s),m=Kr(f,u,1,"valid",i);return h?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Qf=O({separableConv2d_:JS});async function QS(e,t){let n=R(e,"x","setdiff1d"),r=R(t,"y","setdiff1d");F(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let c=0;c`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Fe(r,[t],[n])}var od=O({slice1d_:rT});function aT(e,t,n){let r=R(e,"x","slice2d");return F(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Fe(r,t,n)}var tm=O({slice2d_:aT});function sT(e,t,n){let r=R(e,"x","slice3d");return F(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Fe(r,t,n)}var ld=O({slice3d_:sT});function iT(e,t,n){let r=R(e,"x","slice4d");return F(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Fe(r,t,n)}var Iu=O({slice4d_:iT});function oT(e,t=-1){let n=R(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return M.runKernel(Ms,r,a)}var Nu=O({softmax_:oT});function lT(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return M.runKernel(bh,t)}var Su=O({fft_:lT});function uT(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return M.runKernel(_h,t)}var qo=O({ifft_:uT});function cT(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=H(e,[n,t]);r=qo(a)}else{let a=[n,2*(t-1)],s=H(ku(e),[n,t]),i=H(Xh(e),[n,t]),o=Cn(Fe(s,[0,1],[n,t-2]),1),l=W(Cn(Fe(i,[0,1],[n,t-2]),1),ke(-1)),u=ot([s,o],1),c=ot([i,l],1),h=H(wa(u,c),[a[0],a[1]]);r=qo(h)}if(r=ku(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=H(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var ud=O({irfft_:cT});function hT(e,t,n=0){let r={x:R(e,"x","split")},a={numOrSizeSplits:t,axis:n};return M.runKernel(Eo,r,a)}var on=O({split_:hT});function dT(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t0),m=e.shape.map(A=>A);m[e.shape.length-1]=t,a=Fe(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,a=ot([e,Ct(f)],e.shape.length-1),n=t}else a=e;let s=je(a),i=H(wa(a,s),[r,n]),o=Su(i),l=Math.floor(n/2)+1,u=ku(o),c=Xh(o),h=on(u,[l,n-l],u.shape.length-1),d=on(c,[l,n-l],c.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,H(wa(h[0],d[0]),p)}var Tu=O({rfft_:dT});function pT(e){let t={x:R(e,"x","sqrt")};return M.runKernel(Fs,t)}var Yt=O({sqrt_:pT});function fT(e,t){let n=R(e,"a","squaredDifference"),r=R(t,"b","squaredDifference");[n,r]=vt(n,r),mt(n.shape,r.shape);let a={a:n,b:r},s={};return M.runKernel(Ds,a,s)}var cd=O({squaredDifference_:fT});function mT(e,t){let n=R(e,"x","squeeze");return H(n,V0(n.shape,t).newShape)}var ka=O({squeeze_:mT});function AT(e,t=0){let n=Bu(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return M.runKernel(go,r,a)}var Rn=O({stack_:AT});function yT(e,t=0){let n={x:R(e,"x","step")},r={alpha:t};return M.runKernel(xa,n,r)}var Xo=O({step_:yT});function gT(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let u={x:R(e,"x","stridedSlice")},c={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return M.runKernel(Co,u,c)}var nm=O({stridedSlice_:gT});function xT(e){let t={x:R(e,"x","tan")};return M.runKernel(Ro,t)}var rm=O({tan_:xT});function tn(e,t){qs(e);let n=Dr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Ta(e,null,n,t)}function pr(e,t,n){if(qs(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=Dr(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Ta(e,t,r,n)}function n8(e,t,n){if(qs(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=Dr(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Ta(e,t,r,n)}function r8(e,t,n){if(qs(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=Dr(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Ta(e,t,r,n)}function a8(e,t,n){if(qs(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=Dr(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,Ta(e,t,r,n)}function wT(e,t=1,n=!0){let r=R(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=M.runKernel(Fo,s,i);return{values:o,indices:l}}var am=O({topk_:wT});function bT(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Zm(t,n,r,!0,a),i=We(e,r);for(let o=0;o0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=M.runKernel(Mh,r,a);return{values:s,indices:i}}var dd=O({unique_:_T});function vT(e,t,n){let r=R(e,"x","unsortedSegmentSum"),a=R(t,"segmentIds","unsortedSegmentSum","int32");F(jt(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return M.runKernel(ou,s,i)}var sm=O({unsortedSegmentSum_:vT});function kT(e,t=0){let n=R(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return M.runKernel($o,r,a)}var nr=O({unstack_:kT});function d0(e,t=!0,n,r){return M.makeVariable(e,t,n,r)}function H5(e,t){let n=[];for(let s=0;s0,()=>"mask cannot be scalar"),nn(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=s;m"Shape mismatch in v and x");let l=ke(1),u=xe(l,o),c=W(xe(i,s),u);if(a){F(r!=null,()=>"When using zeroDebias: true, step is required.");let h=R(r,"step","movingAverage");c=ve(c,xe(l,Yr(o,h)))}return oe(s,c)}var i8=O({movingAverage_:TT});function ET(e,t,n){let r=R(e,"indices","scatterND","int32"),a=R(t,"updates","scatterND");Wm(a,r,n);let s={indices:r,updates:a},i={shape:n};return M.runKernel(_o,s,i)}var p0=O({scatterND_:ET});function CT(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function RT(e,t,n,r=0){let a=R(e,"sparseIndices","sparseToDense","int32"),s=R(t,"sparseValues","sparseToDense"),i=R(r,"defaultValue","sparseToDense",s.dtype);CT(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return M.runKernel($h,o,l)}var om=O({sparseToDense_:RT});function FT(e,t){let n=R(t,"indices","gatherND","int32"),r={params:R(e,"x","gatherND"),indices:n};return M.runKernel(to,r)}var f0=O({gatherND_:FT});function $T(e,t){if(t==null)return e.shape.slice();if(ea(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ye?a.clone():a;let s=$T(a,n),i=1-t,o=ve(Vo(oe(Go(s,0,1,"float32",r),i)),i);return W(a,o)}var m0=O({dropout_:MT});function A0(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function lm(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),F(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),nn(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];F(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,u]=[i.length/s,s],c=U0("bool",l);for(let h=0;hA.value-m.value),c[h]=0;for(let m=0;mOT,depthwiseConv2d:()=>zT,matMul:()=>LT});function PT(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];F(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),F(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),i!=null&&F(jt(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return M.runKernel(hh,h,d)}var Ym=O({conv2DBackpropFilter_:PT});function Md(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return W(e,Xo(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Dd(e,t){let n=t,r=zt(e.shape,t.shape);return r.length>0&&(n=Ee(n,r)),H(n,e.shape)}function Od(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Cr(e);if(t==="elu")return Bo(e);if(t==="relu6")return nd(e);if(t==="prelu")return vu(e,n);if(t==="leakyrelu")return xu(e,r);throw new Error(`Unknown fused activation ${t}.`)}var zd=(e,t)=>!(e>0)||t==="linear";function WT({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",zd(M.state.gradientDepth,l)===!1){let _=Kr(e,t,n,r,a,s,i);return o!=null&&(_=oe(_,o)),Od(_,l,u,c)}let h=R(e,"x","conv2d"),d=R(t,"filter","conv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&F(jt(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),F(Or(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let m=Uu(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=vt(A,h),mt(m.outShape,A.shape));let y;u!=null&&(y=R(u,"prelu weights","fused conv2d"));let g=(_,x)=>{let[N,T,E,$]=x,D=Md(_,E,l);F(Ra(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let L=Gm(T.shape,D,N,n,r),P=Ym(T,D,N.shape,n,r),U=[L,P];if($!=null){let j=Dd($,D);U.push(j)}return U},w={x:p,filter:d,bias:A,preluActivationWeights:y},b={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Sr((_,x,N)=>{let T=M.runKernel(Ws,w,b);return N([x,_,T]),f&&(T=H(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Sr((_,x,N,T)=>{let E=M.runKernel(Ws,w,b);return T([x,_,E,N]),f&&(E=H(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(p,d,A)}var OT=O({fusedConv2d_:WT});function BT(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return M.runKernel(mh,u,c)}var q5=O({depthwiseConv2dNativeBackpropFilter_:BT});function VT(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=M.runKernel(Ah,u,c);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var X5=O({depthwiseConv2dNativeBackpropInput_:VT});function UT({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(zd(M.state.gradientDepth,l)===!1){let _=Wo(e,t,n,r,a,s,i);return o!=null&&(_=oe(_,o)),Od(_,l,u,c)}let h=R(e,"x","depthwiseConv2d"),d=R(t,"filter","depthwiseConv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),F(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),F(Or(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&F(jt(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let m=Uu(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=vt(A,h),mt(m.outShape,A.shape));let y;u!=null&&(y=R(u,"prelu weights","fused depthwiseConv2d"));let g=(_,x)=>{F(Ra(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[N,T,E,$]=x,D=Md(_,E,l),L=X5(T.shape,D,N,n,r,s,i),P=q5(T,D,N.shape,n,r,s,i);if($!=null){let U=Dd(A,D);return[L,P,U]}return[L,P]},w={x:p,filter:d,bias:A,preluActivationWeights:y},b={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Sr((_,x,N)=>{let T=M.runKernel(Bs,w,b);return N([x,_,T]),f&&(T=H(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Sr((_,x,N,T)=>{let E=M.runKernel(Bs,w,b);return T([x,_,E,N]),f&&(E=H(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(p,d,A)}var zT=O({fusedDepthwiseConv2d_:UT});function jT({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(zd(M.state.gradientDepth,s)===!1){let $=Ge(e,t,n,r);return a!=null&&($=oe($,a)),Od($,s,i,o)}let l=R(e,"a","fused matMul"),u=R(t,"b","fused matMul");[l,u]=vt(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?u.shape[u.rank-1]:u.shape[u.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),A=Ot(f),y=Ot(m);F(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),F(ea(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),F(c===h,()=>`Error in fused matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),w=n?H(l,[A,c,d]):H(l,[A,d,c]),b=r?H(u,[y,p,h]):H(u,[y,h,p]),_;a!=null&&(_=R(a,"bias","fused matMul"),[_]=vt(_,l),mt(g,_.shape));let x;i!=null&&(x=R(i,"prelu weights","fused matMul"));let N=($,D)=>{let[L,P,U,j]=D,X=Md(H($,U.shape),U,s),G,ee;if(!n&&!r?(G=Ge(X,P,!1,!0),ee=Ge(L,X,!0,!1)):!n&&r?(G=Ge(X,P,!1,!1),ee=Ge(X,L,!0,!1)):n&&!r?(G=Ge(P,X,!1,!0),ee=Ge(L,X,!1,!1)):(G=Ge(P,X,!0,!0),ee=Ge(X,L,!0,!0)),a!=null){let J=Dd(j,X);return[G,ee,J]}else return[G,ee]},T={a:w,b,bias:_,preluActivationWeights:x},E={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?Sr(($,D,L)=>{let P=M.runKernel(Ps,T,E);return L([$,D,P]),{value:H(P,g),gradFunc:N}})(w,b):Sr(($,D,L,P)=>{let U=M.runKernel(Ps,T,E);return P([$,D,U,L]),{value:H(U,g),gradFunc:N}})(w,b,_)}var LT=O({fusedMatMul_:jT});function HT(e){return lm(e,.54,.46)}var GT=O({hammingWindow_:HT});function qT(e){return lm(e,.5,.5)}var K5=O({hannWindow_:qT});function XT(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Fe(e,s,t)),s+=n;if(r)for(;s`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),F(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),F(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),F(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),F(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let c={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return M.runKernel(Gi,c,h)}var JT=O({cropAndResize_:YT});function QT(e){let t=R(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return M.runKernel(Qi,n,{})}var eE=O({flipLeftRight_:QT});function tE(e,t,n=0,r=.5){let a=R(e,"image","rotateWithOffset","float32");F(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return M.runKernel(Do,s,i)}var nE=O({rotateWithOffset_:tE});function il(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function rE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppression"),i=R(t,"scores","nonMaxSuppression"),o=il(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return M.runKernel(fo,{boxes:s,scores:i},l)}var aE=O({nonMaxSuppression_:rE});function iE(e,t,n){let r=sE(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function sE(e,t,n){return lE(e,t,n||oE)}function oE(e,t){return e>t?1:e>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function Y5(e,t,n,r,a){return Jm(e,t,n,r,a,0)}function J5(e,t,n,r,a,s){return Jm(e,t,n,r,a,0,!1,s,!0)}function Q5(e,t,n,r,a,s){return Jm(e,t,n,r,a,s,!0)}function Jm(e,t,n,r,a,s,i=!1,o=!1,l=!1){let u=[];for(let A=0;Aa&&u.push({score:t[A],boxIndex:A,suppressBeginIndex:0});u.sort(ex);let c=s>0?-.5/s:0,h=[],d=[];for(;h.length0;){let A=u.pop(),{score:y,boxIndex:g,suppressBeginIndex:w}=A;if(y=w;--_){let x=uE(e,g,h[_]);if(x>=r){b=!0;break}if(A.score=A.score*cE(r,c,x),A.score<=a)break}A.suppressBeginIndex=h.length,b||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&iE(u,A,ex))}let p=h.length,f=n-p;o&&f>0&&(h.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:h};return i&&(m.selectedScores=d),l&&(m.validOutputs=p),m}function uE(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),u=Math.min(a[0],a[2]),c=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),f=(h-u)*(d-c);if(p<=0||f<=0)return 0;let m=Math.max(s,u),A=Math.max(i,c),y=Math.min(o,h),g=Math.min(l,d),w=Math.max(y-m,0)*Math.max(g-A,0);return w/(p+f-w)}function cE(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function ex(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function hE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),o=il(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],c=l[1],{selectedIndices:h}=Y5(u,c,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),tn(h,"int32")}var dE=hE;function pE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=il(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},c={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=M.runKernel(Ao,u,c);return{selectedIndices:h[0],selectedScores:h[1]}}var fE=O({nonMaxSuppressionWithScore_:pE});async function mE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=il(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),c=u[0],h=u[1],{selectedIndices:d,selectedScores:p}=Q5(c,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:tn(d,"int32"),selectedScores:tn(p)}}var AE=mE;function yE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=il(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:u,iouThreshold:c,scoreThreshold:h,padToMaxOutputSize:s},f=M.runKernel(mo,d,p);return{selectedIndices:f[0],validOutputs:f[1]}}var gE=O({nonMaxSuppressionPadded_:yE});async function xE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=il(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=J5(d,p,u,c,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:tn(f,"int32"),validOutputs:ke(m,"int32")}}var wE=xE;function bE(e,t,n=!1,r=!1){let a=R(e,"images","resizeBilinear");F(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=M.runKernel(Is,o,l);return i?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var tx=O({resizeBilinear_:bE});function _E(e,t,n=!1,r=!1){let a=R(e,"images","resizeNearestNeighbor");F(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=M.runKernel(au,o,l);return i?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var nx=O({resizeNearestNeighbor_:_E});function vE(e,t,n){F(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=R(e,"a","bandPart");F(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(td(0,s,1,"int32"),[-1,1]),l=td(0,i,1,"int32"),u=xe(o,l),c=tr(js(u,ke(+t,"int32")),va(u,ke(-n,"int32"))),h=Ct([s,i],r.dtype);return H(Rn(nr(H(r,[-1,s,i])).map(d=>xn(c,d,h))),a)}var kE=O({bandPart_:vE});function IE(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=on(e,e.shape[0],0).map(a=>ka(a,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a{let s=r[a];if(a>0)for(let i=0;i=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return rx(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),r=nr(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[u,c]=rx(l,t);a.push(u),s.push(c)});let i=H(Rn(a,0),e.shape),o=H(Rn(s,0),e.shape);return[i,o]}}function rx(e,t=!1){return M.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=Hf(n),s=Ir(e),i=pr([[1]],[1,1]),o=Ir(i),l=n>=r?r:n;for(let u=0;u{let p=Fe(s,[u,u],[n-u,1]),f=pd(p),m=Fe(s,[u,u],[1,1]),A=xn(er(m,0),pr([[-1]]),pr([[1]])),y=xe(m,W(A,f)),g=ve(p,y);g.shape[0]===1?o=Ir(i):o=ot([i,Fe(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let w=bt(ve(Ge(A,y),f)),b=Fe(s,[u,0],[n-u,r]),_=W(w,o),x=rt(o);if(u===0)s=xe(b,Ge(_,Ge(x,b)));else{let E=xe(b,Ge(_,Ge(x,b)));s=ot([Fe(s,[0,0],[u,r]),E],0)}let N=rt(_),T=Fe(a,[0,u],[n,a.shape[1]-u]);if(u===0)a=xe(T,Ge(Ge(T,o),N));else{let E=xe(T,Ge(Ge(T,o),N));a=ot([Fe(a,[0,0],[n,u]),E],1)}return[o,s,a]}),Re([c,h,d])}return!t&&n>r&&(a=Fe(a,[0,0],[n,r]),s=Fe(s,[0,0],[r,r])),[a,s]})}var TE=O({qr_:SE}),ln;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(ln||(ln={}));function EE(e,t,n=ln.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=R(t,"weights","computeWeightedLoss"));let s=a==null?r:W(r,a);if(n===ln.NONE)return s;if(n===ln.SUM)return Ee(s);if(n===ln.MEAN){if(a==null)return _t(s);{let i=r.size/a.size,o=ve(Ee(s),Ee(a));return i>1?ve(o,ke(i)):o}}if(n===ln.SUM_BY_NONZERO_WEIGHTS){if(a==null)return ve(Ee(s),ke(r.size));{let i=W(a,Er(r.shape)),o=Ae(Ee(Hs(i,ke(0))),"float32");return ve(Ee(s),o)}}throw Error(`Unknown reduction: ${n}`)}var na=O({computeWeightedLoss_:EE});function CE(e,t,n,r=ln.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","absoluteDifference"),s=R(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=R(n,"weights","absoluteDifference")),nn(a.shape,s.shape,"Error in absoluteDifference: ");let o=Dt(xe(a,s));return na(o,i,r)}var RE=O({absoluteDifference_:CE});function FE(e,t,n,r,a=ln.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","cosineDistance"),i=R(t,"predictions","cosineDistance"),o=null;r!=null&&(o=R(r,"weights","cosineDistance")),nn(s.shape,i.shape,"Error in cosineDistance: ");let l=ke(1),u=xe(l,Ee(W(s,i),n,!0));return na(u,o,a)}var $E=O({cosineDistance_:FE});function ME(e,t,n,r=ln.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","hingeLoss"),s=R(t,"predictions","hingeLoss"),i=null;n!=null&&(i=R(n,"weights","hingeLoss")),nn(a.shape,s.shape,"Error in hingeLoss: ");let o=ke(1);a=xe(W(ke(2),a),o);let l=Cr(xe(o,W(a,s)));return na(l,i,r)}var DE=O({hingeLoss_:ME});function OE(e,t,n,r=1,a=ln.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","huberLoss"),i=R(t,"predictions","huberLoss"),o=null;n!=null&&(o=R(n,"weights","huberLoss")),nn(s.shape,i.shape,"Error in huberLoss: ");let l=ke(r),u=Dt(xe(i,s)),c=Ho(u,l),h=xe(u,c),d=oe(W(ke(.5),it(c)),W(l,h));return na(d,o,a)}var zE=O({huberLoss_:OE});function LE(e,t,n,r=1e-7,a=ln.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","logLoss"),i=R(t,"predictions","logLoss"),o=null;n!=null&&(o=R(n,"weights","logLoss")),nn(s.shape,i.shape,"Error in logLoss: ");let l=ke(1),u=ke(r),c=bt(W(s,Tn(oe(i,u)))),h=W(xe(l,s),Tn(oe(xe(l,i),u))),d=xe(c,h);return na(d,o,a)}var PE=O({logLoss_:LE});function WE(e,t,n,r=ln.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","meanSquaredError"),s=R(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=R(n,"weights","meanSquaredError")),nn(a.shape,s.shape,"Error in meanSquaredError: ");let o=cd(a,s);return na(o,i,r)}var BE=O({meanSquaredError_:WE});function VE(e,t){let n=R(e,"labels","sigmoidCrossEntropyWithLogits"),r=R(t,"logits","sigmoidCrossEntropyWithLogits");nn(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Cr(r),s=W(r,n),i=Zh(Vn(bt(Dt(r))));return oe(xe(a,s),i)}function UE(e,t,n,r=0,a=ln.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"multiClassLabels","sigmoidCrossEntropy"),i=R(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","sigmoidCrossEntropy")),nn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let u=ke(r),c=ke(1),h=ke(.5);s=oe(W(s,xe(c,u)),W(h,u))}let l=VE(s,i);return na(l,o,a)}var jE=O({sigmoidCrossEntropy_:UE});function HE(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Sr((r,a,s)=>{let i=qf(a,[n],!0),o=xe(Ae(a,"float32"),i);s([r,o]);let l=bt(W(o,r));return{value:Ee(l,[n]),gradFunc:(u,c)=>{let[h,d]=c,p=ei(u.shape,[n]);return[W(H(u,p),xe(Ae(h,"float32"),Vn(d))),W(H(u,p),xe(Vn(d),Ae(h,"float32")))]}}})(e,t)}function GE(e,t,n,r=0,a=ln.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"onehotLabels","softmaxCrossEntropy"),i=R(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","softmaxCrossEntropy")),nn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let u=ke(r),c=ke(1),h=ke(s.shape[1]);s=oe(W(s,xe(c,u)),ve(u,h))}let l=HE(s,i);return na(l,o,a)}var qE=O({softmaxCrossEntropy_:GE}),l8={fft:Su,ifft:qo,rfft:Tu,irfft:ud},u8={hammingWindow:GT,hannWindow:K5,frame:Z5,stft:ZT},St={flipLeftRight:eE,resizeNearestNeighbor:nx,resizeBilinear:tx,rotateWithOffset:nE,cropAndResize:JT,nonMaxSuppression:aE,nonMaxSuppressionAsync:dE,nonMaxSuppressionWithScore:fE,nonMaxSuppressionWithScoreAsync:AE,nonMaxSuppressionPadded:gE,nonMaxSuppressionPaddedAsync:wE},y0={bandPart:kE,gramSchmidt:NE,qr:TE},c8={absoluteDifference:RE,computeWeightedLoss:na,cosineDistance:$E,hingeLoss:DE,huberLoss:zE,logLoss:PE,meanSquaredError:BE,sigmoidCrossEntropy:jE,softmaxCrossEntropy:qE},Jr=class extends D5{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return Re(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return a0(e,t)}dispose(){this.iterations_!=null&&Re(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ke(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Jr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var fd=class extends Jr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=M.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:V(()=>je(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:V(()=>je(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;V(()=>{let l=oe(W(i,this.rho),W(it(s),1-this.rho)),u=W(ve(Yt(oe(o,this.epsilon)),Yt(oe(i,this.epsilon))),s),c=oe(W(o,this.rho),W(it(u),1-this.rho));i.assign(l),o.assign(c);let h=oe(W(u,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Re(this.accumulatedGrads.map(e=>e.variable)),Re(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};fd.className="Adadelta";Ca(fd);var md=class extends Jr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=M.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:V(()=>gu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;V(()=>{let i=oe(s,it(a));s.assign(i);let o=oe(W(ve(a,Yt(oe(i,M.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Re(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};md.className="Adagrad";Ca(md);var Ad=class extends Jr{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],V(()=>{this.accBeta1=ke(t).variable(),this.accBeta2=ke(n).variable()}),r==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);V(()=>{let n=xe(1,this.accBeta1),r=xe(1,this.accBeta2);t.forEach((a,s)=>{let i=M.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:V(()=>je(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:V(()=>je(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedSecondMoment[s].variable,h=oe(W(u,this.beta1),W(l,1-this.beta1)),d=oe(W(c,this.beta2),W(it(l),1-this.beta2)),p=ve(h,n),f=ve(d,r);u.assign(h),c.assign(d);let m=oe(W(ve(p,oe(Yt(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(W(this.accBeta1,this.beta1)),this.accBeta2.assign(W(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Re(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),V(()=>{this.accBeta1.assign(Yr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Yr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Ad.className="Adam";Ca(Ad);var yd=class extends Jr{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],V(()=>{this.iteration=ke(0).variable(),this.accBeta1=ke(t).variable()}),r==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);V(()=>{let n=xe(1,this.accBeta1),r=ve(-this.learningRate,oe(W(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=M.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:je(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:je(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedWeightedInfNorm[s].variable,h=oe(W(u,this.beta1),W(l,1-this.beta1)),d=W(c,this.beta2),p=Dt(l),f=Tr(d,p);u.assign(h),c.assign(f);let m=oe(W(ve(r,n),ve(h,oe(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(oe(this.iteration,1)),this.accBeta1.assign(W(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Re(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};yd.className="Adamax";Ca(yd);var Eu=class extends Jr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=M.registeredVariables[t];V(()=>{let s=oe(W(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Vt(ke(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Eu.className="SGD";Ca(Eu);var gd=class extends Eu{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ke(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=M.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:V(()=>je(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&V(()=>{let i,o=oe(W(this.m,a),s);this.useNesterov?i=oe(W(this.c,oe(s,W(o,this.m))),r):i=oe(W(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Re(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};gd.className="Momentum";Ca(gd);var xd=class extends Jr{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=M.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=M.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:V(()=>je(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:V(()=>je(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:V(()=>je(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;V(()=>{let l=oe(W(i,this.decay),W(it(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,c=oe(W(u,this.decay),W(s,1-this.decay)),h=ve(W(s,this.learningRate),Yt(xe(l,oe(it(c),this.epsilon)))),d=oe(W(o,this.momentum),h);i.assign(l),u.assign(c),o.assign(d);let p=xe(r,d);r.assign(p)}else{let u=oe(W(i,this.decay),W(it(s),1-this.decay)),c=oe(W(o,this.momentum),ve(W(s,this.learningRate),Yt(oe(u,this.epsilon))));i.assign(u),o.assign(c);let h=xe(r,c);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Re(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Re(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Re(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};xd.className="RMSProp";Ca(xd);var ti=class{static sgd(e){return new Eu(e)}static momentum(e,t,n=!1){return new gd(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new xd(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new Ad(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new fd(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new yd(e,t,n,r,a)}static adagrad(e,t=.1){return new md(e,t)}},Gs={sgd:ti.sgd,momentum:ti.momentum,adadelta:ti.adadelta,adagrad:ti.adagrad,rmsprop:ti.rmsprop,adamax:ti.adamax,adam:ti.adam},XE=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function wd(){return new Promise(e=>XE(()=>e()))}var C={};ze(C,{ERF_A1:()=>sC,ERF_A2:()=>iC,ERF_A3:()=>oC,ERF_A4:()=>lC,ERF_A5:()=>uC,ERF_P:()=>aC,PARALLELIZE_THRESHOLD:()=>Qm,SELU_SCALE:()=>sx,SELU_SCALEALPHA:()=>ax,applyActivation:()=>Od,assertAndGetBroadcastShape:()=>mt,assertAxesAreInnerMostDims:()=>QN,assertParamsConsistent:()=>KE,assignToTypedArray:()=>yC,axesAreInnerMostDims:()=>qm,calculateShapes:()=>v5,combineLocations:()=>V5,complexWithEvenIndex:()=>fC,complexWithOddIndex:()=>mC,computeConv2DInfo:()=>Uu,computeConv3DInfo:()=>W5,computeDefaultPad:()=>Hm,computeDilation2DInfo:()=>CI,computeOptimalWindowSize:()=>YE,computeOutAndReduceShapes:()=>U5,computeOutShape:()=>ZE,computePool2DInfo:()=>P5,computePool3DInfo:()=>RI,convertConv2DDataFormat:()=>L5,eitherStridesOrDilationsAreOne:()=>Or,expandShapeToKeepDim:()=>ei,exponent:()=>xC,exponents:()=>gC,fromStringArrayToUint8:()=>_C,fromUint8ToStringArray:()=>bC,getAxesPermutation:()=>j5,getBroadcastDims:()=>xN,getComplexWithIndex:()=>AC,getFusedBiasGradient:()=>Dd,getFusedDyActivation:()=>Md,getImageCenter:()=>JE,getInnerMostAxes:()=>eS,getPermuted:()=>eC,getReductionAxes:()=>zt,getReshaped:()=>QE,getReshapedPermuted:()=>tC,getSliceBeginCoords:()=>nC,getSliceSize:()=>rC,getUndoAxesPermutation:()=>Xm,log:()=>hC,mergeRealAndImagArrays:()=>dC,prepareAndValidate:()=>_5,prepareSplitSize:()=>wC,segment_util:()=>ix,shouldFuse:()=>zd,slice_util:()=>sn,splitRealAndImagArrays:()=>pC,tupleValuesAreOne:()=>Ra,upcastType:()=>Jn,validateInput:()=>Wm,validateUpdateShape:()=>Pm,warn:()=>cC});function KE(e,t){let n=e[0].length;e.forEach((a,s)=>{F(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function ZE(e,t){let n=e[0].slice();for(let r=1;r=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function tC(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var ix={};ze(ix,{collectGatherOpShapeInfo:()=>IC,computeOutShape:()=>kC,segOpComputeOptimalWindowSize:()=>vC});function vC(e,t){let n=!1,r;for(e<=Qm?(r=e,n=!0):r=kd(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=kd(e,r+1);return r}function kC(e,t,n){let r=[],a=e.length;for(let s=0;sa))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) ( - ${s}).`);if(nSd(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function _C(e){return e.map(t=>Ou(t))}var Rr={};ze(Rr,{nonMaxSuppressionV3Impl:()=>Y5,nonMaxSuppressionV4Impl:()=>J5,nonMaxSuppressionV5Impl:()=>Q5,whereImpl:()=>H5});function _e(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var NC=Rr.whereImpl,bd=class extends Ul{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new ah(this,Nr())}nextDataId(){return bd.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,Y().get("IS_NODE")&&C.warn(` -============================ -Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details. -============================`));let r={id:this.nextDataId()};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let a=n.map(s=>v.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,a){this.data.set(e,{values:t,dtype:r,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>v.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return Nr().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){_e([e],"where");let t=this.readSync(e.dataId);return NC(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};bd.nextDataId=0;var um={};ze(um,{addImpl:()=>lx,bincountImpl:()=>eA,bincountReduceImpl:()=>ux,ceilImpl:()=>cx,concatImpl:()=>tA,expImpl:()=>hx,expm1Impl:()=>dx,floorImpl:()=>px,gatherV2Impl:()=>fx,greaterImpl:()=>mx,lessImpl:()=>Ax,linSpaceImpl:()=>yx,logImpl:()=>gx,maxImpl:()=>xx,maximumImpl:()=>wx,minimumImpl:()=>bx,multiplyImpl:()=>nA,negImpl:()=>_x,notEqualImpl:()=>vx,prodImpl:()=>kx,rangeImpl:()=>aA,rsqrtImpl:()=>Ix,simpleAbsImpl:()=>ox,sliceImpl:()=>Ld,squaredDifferenceImpl:()=>Nx,stridedSliceImpl:()=>Sx,subImpl:()=>Tx,tileImpl:()=>Ex,topKImpl:()=>Cx,transposeImpl:()=>rA,uniqueImpl:()=>Rx});function ox(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;_e(t,"abs");let r=new Float32Array(v.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=ox(a),n.makeOutput(r,t.shape,"float32")},TC={kernelName:Oi,backendName:"cpu",kernelFunc:SC};function Rt(e){return(t,n,r,a,s)=>{let i=C.assertAndGetBroadcastShape(t,n),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),c=v.getTypedArrayFromDType(s,u),h=t.length,d=n.length,p=v.computeStrides(t),f=v.computeStrides(n),m=C.getBroadcastDims(t,i),A=C.getBroadcastDims(n,i);if(m.length+A.length===0)for(let y=0;yw[N]=0);let b=v.locToIndex(w,h,p),_=g.slice(-d);A.forEach(N=>_[N]=0);let x=v.locToIndex(_,d,f);c[y]=e(r[b],a[x])}return[c,i]}}function Fn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var EC={kernelName:ch,backendName:"cpu",kernelFunc:Fn};function Pd(e,t,n="float32"){if(n==="complex64"){let a=Pd(e,t,"float32"),s=Pd(e,t,"float32");return Fn({inputs:{real:a,imag:s},backend:e})}let r=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function zr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var CC={kernelName:cs,backendName:"cpu",kernelFunc:zr};function ni(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var RC={kernelName:Ch,backendName:"cpu",kernelFunc:ni};function Fa(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return zr({inputs:{x:a},backend:n});let i=Pd(n,a.shape,a.dtype),o=Fa({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Fn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=ni({inputs:{input:a},backend:n}),o=Fa({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=zr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=v.toTypedArray([0],a.dtype),[l,u]=Rt((c,h)=>c!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var FC={kernelName:Ya,backendName:"cpu",kernelFunc:Fa};function Ht(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;_e([i,o],e);let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=Fa({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),h=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,p=l.data.get(h.dataId).values,f=l.data.get(d.dataId).values,m=Fa({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(m.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,w=l.data.get(y.dataId).values,b=l.data.get(g.dataId).values,[_,x,N]=n(i.shape,o.shape,p,f,w,b),T=l.makeTensorInfo(N,"float32",_),E=l.makeTensorInfo(N,"float32",x),$=Fn({inputs:{real:T,imag:E},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(T),l.disposeIntermediateTensorInfo(E),$}else{let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}}}function sA(e){return(t,n,r,a,s,i)=>{let o=C.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(o),u=o.length,c=v.computeStrides(o),h=v.getTypedArrayFromDType("float32",l),d=v.getTypedArrayFromDType("float32",l),p=C.getBroadcastDims(t,o),f=C.getBroadcastDims(n,o),m=C.mergeRealAndImagArrays(r,a),A=C.mergeRealAndImagArrays(s,i),y=t.length,g=v.computeStrides(t),w=n.length,b=v.computeStrides(n);if(p.length+f.length===0)for(let _=0;_N[L]=0);let T=v.locToIndex(N,y,g),E=x.slice(-w);f.forEach(L=>E[L]=0);let $=v.locToIndex(E,w,b),D=e(m[T*2],m[T*2+1],A[$*2],A[$*2+1]);h[_]=D.real,d[_]=D.imag}return[h,d,o]}}var lx=Rt((e,t)=>e+t),$C=sA((e,t,n,r)=>({real:e+n,imag:t+r})),ju=Ht(Aa,lx,$C),MC={kernelName:Aa,backendName:"cpu",kernelFunc:ju};function eA(e,t,n,r,a){let s=v.sizeFromShape(r),i=v.makeZerosTypedArray(a,n);for(let o=0;o=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function ux(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=We([a,n],t.dtype);for(let o=0;o=n||(r?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function ol(e){return(t,n,r)=>{let a=v.getTypedArrayFromDType(n,t.length);for(let s=0;s{let{x:i}=r;if(_e(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=v.sizeFromShape(i.shape),c=n||i.dtype,h=v.getArrayFromDType(c,u);for(let d=0;d{let{x:i}=r;if(_e(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,c=t(l,u,a);return o.makeTensorInfo(i.shape,u,c)}}var cx=ol(e=>Math.ceil(e)),DC=ll(Ja,cx),OC={kernelName:Ja,backendName:"cpu",kernelFunc:DC};function tA(e,t,n,r){let a=v.getArrayFromDType(n,v.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?C.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;uMath.exp(e)),Fx=ll(ss,hx),zC={kernelName:ss,backendName:"cpu",kernelFunc:Fx},dx=ol(e=>Math.expm1(e)),LC=ll(Ji,dx),PC={kernelName:Ji,backendName:"cpu",kernelFunc:LC},px=ol(e=>Math.floor(e)),WC=ll(is,px),BC={kernelName:is,backendName:"cpu",kernelFunc:WC};function fx(e,t,n){let r=We(n,e.dtype);for(let a=0;ae>t?1:0),VC=Ht(no,mx,null,"bool"),UC={kernelName:no,backendName:"cpu",kernelFunc:VC},Ax=Rt((e,t)=>eMath.log(e)),GC=ll(ds,gx),qC={kernelName:ds,backendName:"cpu",kernelFunc:GC};function xx(e,t,n,r){let a=v.getTypedArrayFromDType(r,v.sizeFromShape(n));for(let s=0;so&&(o=u)}a[s]=o}return a}var wx=Rt((e,t)=>Math.max(e,t)),XC=Ht(fs,wx),KC={kernelName:fs,backendName:"cpu",kernelFunc:XC},bx=Rt((e,t)=>Math.min(e,t)),ZC=Ht(gs,bx),YC={kernelName:gs,backendName:"cpu",kernelFunc:ZC},nA=Rt((e,t)=>e*t),JC=sA((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),iA=Ht(xs,nA,JC),QC={kernelName:xs,backendName:"cpu",kernelFunc:iA};function _x(e,t,n){let r=v.createScalarValue(-1,n);return nA([],t,r,e,n)}function eR(e){let{inputs:t,backend:n}=e,{x:r}=t;_e(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=_x(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var tR={kernelName:ho,backendName:"cpu",kernelFunc:eR},vx=Rt((e,t)=>e!==t?1:0),nR=Ht(po,vx,null,"bool"),rR={kernelName:po,backendName:"cpu",kernelFunc:nR};function rA(e,t,n,r,a){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(a),u=v.getTypedArrayFromDType(n,v.sizeFromShape(a));for(let c=0;cn.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,f)}var iR={kernelName:xo,backendName:"cpu",kernelFunc:sR};function aA(e,t,n,r){let a=e===t,s=e1;if(a||s||i)return v.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(o,r);t1/Math.sqrt(e)),oR=ll(Es,Ix),lR={kernelName:Es,backendName:"cpu",kernelFunc:oR};function Ld(e,t,n,r,a){let s=sn.isSliceContinous(r,t,n),i=v.sizeFromShape(n),o=v.computeStrides(r);if(s){let h=sn.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?C.fromUint8ToStringArray(e):e,u=We(r,a,l),c=We(n,a);for(let h=0;hf+t[m]);c.set(u.get(...p),...d)}return a==="string"?C.fromStringArrayToUint8(c.values):c.values}function ri(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;_e(a,"slice");let[o,l]=sn.parseSliceParams(a,s,i);sn.assertParamsValid(a,o,l);let u=n.data.get(a.dataId).values,c=Ld(u,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,c)}var uR={kernelName:Io,backendName:"cpu",kernelFunc:ri},Nx=Rt((e,t)=>{let n=e-t;return n*n}),cR=Ht(Ds,Nx),hR={kernelName:Ds,backendName:"cpu",kernelFunc:cR};function Sx(e,t,n,r){let a=We(e,t.dtype);for(let s=0;se-t),dR=sA((e,t,n,r)=>({real:e-n,imag:t-r})),oA=Ht(Os,Tx,dR),pR={kernelName:Os,backendName:"cpu",kernelFunc:oA};function Ex(e,t){let n=new Array(e.rank);for(let a=0;aw.value-g.value);let m=h*r,A=l.subarray(m,m+r),y=u.subarray(m,m+r);for(let g=0;g{for(let A=0;Anew bd,1);var $x=at(Xi,e=>e>=0?e:Math.exp(e)-1),fR={kernelName:Xi,backendName:"cpu",kernelFunc:$x};function Mx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;_e([a],"leakyRelu");let i=v.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;ue<0?t*e:e);function Dx(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;_e([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=AR(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var yR={kernelName:vs,backendName:"cpu",kernelFunc:Dx},Ox=at(ks,e=>Math.max(0,e)),gR={kernelName:ks,backendName:"cpu",kernelFunc:Ox},zx=at(Ns,e=>Math.min(Math.max(0,e),6)),xR={kernelName:Ns,backendName:"cpu",kernelFunc:zx};function lA(e,t,n,r,a){if(n==="linear")return zr({inputs:{x:t},backend:e});if(n==="relu")return Ox({inputs:{x:t},backend:e});if(n==="elu")return $x({inputs:{x:t},backend:e});if(n==="relu6")return zx({inputs:{x:t},backend:e});if(n==="prelu")return Dx({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return Mx({inputs:{x:t},backend:e,attrs:{alpha:a}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function At(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=v.sizeFromShape(a.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let u=n.data.get(a.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,h=u.complexTensorInfos.imag;c.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var wR={kernelName:bo,backendName:"cpu",kernelFunc:At};function Lx(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;_e([a,s],"matMul");let l=a.shape.length,u=s.shape.length,c=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[u-2]:s.shape[u-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=v.sizeFromShape(f),y=v.sizeFromShape(m),g=A===y||A===1||y===1;v.assert(l>=2&&u>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let w=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);v.assert(c===h,()=>`Error in matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let b=i?[A,c,d]:[A,d,c],_=o?[y,p,h]:[y,h,p],x=At({inputs:{x:a},backend:n,attrs:{shape:b}}),N=At({inputs:{x:s},backend:n,attrs:{shape:_}}),T=i?x.shape[1]:x.shape[2],E=i?x.shape[2]:x.shape[1],$=o?N.shape[1]:N.shape[2],D=Math.max(A,y),L=n.data.get(x.dataId).values,P=n.data.get(N.dataId).values,U=v.computeStrides(x.shape),j=v.computeStrides(N.shape),[X,G,ee]=i?[U[0],1,U[1]]:[U[0],U[1],1],[J,se,te]=o?[1,j[1],j[0]]:[j[1],1,j[0]],le=E*$,Q=We([D,E,$],x.dtype),de=Q.values,ue=n.blockSize;for(let me=0;meMath.acos(e)),IR={kernelName:zi,backendName:"cpu",kernelFunc:kR},NR=at(Li,e=>Math.acosh(e)),SR={kernelName:Li,backendName:"cpu",kernelFunc:NR};function TR(e){let{inputs:t,backend:n}=e,r=t;_e(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=We(r[0].shape,r[0].dtype),i=s.values;for(let o=0;og&&(g=_,w=b)}p[A]=w}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var DR={kernelName:Xa,backendName:"cpu",kernelFunc:MR};function OR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;_e(a,"argMin");let i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=sr({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[c,h]=C.computeOutAndReduceShapes(l.shape,i),d=v.sizeFromShape(c),p=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;An.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var zR={kernelName:Hl,backendName:"cpu",kernelFunc:OR},LR=at(Pi,e=>Math.asin(e)),PR={kernelName:Pi,backendName:"cpu",kernelFunc:LR},WR=at(Wi,e=>Math.asinh(e)),BR={kernelName:Wi,backendName:"cpu",kernelFunc:WR},VR=at(Bi,e=>Math.atan(e)),UR={kernelName:Bi,backendName:"cpu",kernelFunc:VR},jR=Rt((e,t)=>Math.atan2(e,t)),HR=Ht(Ui,jR),GR={kernelName:Ui,backendName:"cpu",kernelFunc:HR},qR=at(Vi,e=>Math.atanh(e)),XR={kernelName:Vi,backendName:"cpu",kernelFunc:qR};function uA(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,u=a.dilationWidth,c=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,f=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=We(a.outShape,n),A=m.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],w=a.outShape[3];for(let b=0;bG?G=ue:s==="avg"&&(ee+=ue,J++)}if(isNaN(G))break}let se=L+P*w+N;A[se]=s==="avg"?ee/J:G}}}return m}function Px(e,t,n,r,a=!1,s=!1){let i=We(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,u=r.dilationHeight,c=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,f=r.padInfo.left,m=We(t,n,e);for(let A=0;A$&&($=X,a?D=s?((A*r.inHeight+L)*r.inWidth+U)*r.inChannels+y:(L*r.inWidth+U)*r.inChannels+y:D=P*d+j)}}i.set(D,A,g,x,y)}}return i}function Wx(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,u=a.dilationDepth,c=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,f=a.effectiveFilterWidth,m=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,w=We(a.outShape,n),b=w.values,_=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],x=a.outShape[2]*a.outShape[3]*a.outShape[4],N=a.outShape[3]*a.outShape[4],T=a.outShape[4];for(let E=0;EIe?Ie=Be:s==="avg"&&(Se+=Be,$e++),isNaN(Ie))break}if(isNaN(Ie))break}if(isNaN(Ie))break}let Oe=fe+L;b[Oe]=s==="avg"?Se/$e:Ie}}}}return w}function KR(e,t){let n=We(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,f=t.padInfo.left;for(let m=0;m=P&&(P=te,U=X*c*h+ee*c+se)}}}n.set(U,m,y,_,E,A)}}}return n}function ZR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;_e(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))h=zr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=v.computeStrides(a.shape),f=uA(d,a.shape,a.dtype,p,c,"avg");h=n.makeTensorInfo(c.outShape,a.dtype,f.values)}return h}var YR={kernelName:Ka,backendName:"cpu",kernelFunc:ZR};function JR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r;_e(a,"avgPool3d");let c=C.computePool3DInfo(a.shape,s,i,1,o,l,u),h=n.data.get(a.dataId).values,d=Wx(h,a.shape,a.dtype,v.computeStrides(a.shape),c,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var QR={kernelName:Gl,backendName:"cpu",kernelFunc:JR};function eF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r;_e([a,s],"avgPool3DGrad");let c=C.computePool3DInfo(s.shape,i,o,1,l,u),h=c.strideDepth,d=c.strideHeight,p=c.strideWidth,f=c.filterDepth,m=c.filterHeight,A=c.filterWidth,y=c.dilationDepth,g=c.dilationHeight,w=c.dilationWidth,b=c.effectiveFilterDepth,_=c.effectiveFilterHeight,x=c.effectiveFilterWidth,N=b-1-c.padInfo.front,T=x-1-c.padInfo.left,E=_-1-c.padInfo.top,$=We(s.shape,"float32"),D=1/(f*m*A),L=n.bufferSync(a);for(let P=0;P=c.outDepth||Math.floor(Q)!==Q))for(let de=0;de<_;de+=g){let ue=(J+de)/d;if(!(ue<0||ue>=c.outHeight||Math.floor(ue)!==ue))for(let me=0;me=c.outWidth||Math.floor(fe)!==fe||(te+=L.get(P,Q,ue,fe,U))}}}$.set(te*D,P,j,X,G,U)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var tF={kernelName:lh,backendName:"cpu",kernelFunc:eF};function nF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;_e([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=r,c=C.computePool2DInfo(i.shape,o,l,1,u),h=c.strideHeight,d=c.strideWidth,p=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,A=c.dilationWidth,y=c.effectiveFilterHeight,g=c.effectiveFilterWidth,w=g-1-c.padInfo.left,b=y-1-c.padInfo.top,_=We(i.shape,"float32"),x=1/(p*f),N=n.data.get(a.dataId).values,T=We(a.shape,"float32",N);for(let E=0;E=c.outHeight||Math.floor(G)!==G))for(let ee=0;ee=c.outWidth||Math.floor(J)!==J||(j+=T.get(E,G,J,$))}}_.set(j*x,E,D,L,$)}return n.makeTensorInfo(_.shape,_.dtype,_.values)}var rF={kernelName:oh,backendName:"cpu",kernelFunc:nF};function aF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),_e([a,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=r;u==null&&(u=.001);let c=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),f=i?n.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),A=f.length,y=p.length,g=d.length,w=h.length,b=0,_=0,x=0,N=0;for(let T=0;T=A&&(b=0),_>=w&&(_=0),x>=y&&(x=0),N>=g&&(N=0);return n.makeTensorInfo(a.shape,a.dtype,m)}var sF={kernelName:ls,backendName:"cpu",kernelFunc:aF};function iF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;_e([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=C.getReshaped(a.shape,s,o),u=C.getPermuted(l.length,s.length),c=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),d=C.getSliceSize(c,i,s.length),p=At({inputs:{x:a},backend:n,attrs:{shape:l}}),f=sr({inputs:{x:p},backend:n,attrs:{perm:u}}),m=At({inputs:{x:f},backend:n,attrs:{shape:c}}),A=ri({inputs:{x:m},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var oF={kernelName:ql,backendName:"cpu",kernelFunc:iF};function lF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,u=eA(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var uF={kernelName:uh,backendName:"cpu",kernelFunc:lF},cF=at(ya,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(v.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;um.shape),s);if(v.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(m=>v.sizeFromShape(m.shape)>0);if(o.length===1)return zr({inputs:{x:o[0]},backend:n});let l=o.map(m=>m.shape);if(C.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let m=o.map(b=>ni({inputs:{input:b},backend:n})),A=o.map(b=>ul({inputs:{input:b},backend:n})),y=cl({inputs:m,backend:n,attrs:{axis:s}}),g=cl({inputs:A,backend:n,attrs:{axis:s}}),w=Fn({inputs:{real:y,imag:g},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),A.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),w}let u=o.map(m=>{let A=v.sizeFromShape(m.shape.slice(s));return At({inputs:{x:m},backend:n,attrs:{shape:[-1,A]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));i=C.computeOutShape(u.map(m=>m.shape),1);let h=u[0].shape[0]===1,d=tA(c,i,t[0].dtype,h),p=C.computeOutShape(o.map(m=>m.shape),s),f=n.makeTensorInfo(p,t[0].dtype,d);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var mF={kernelName:ji,backendName:"cpu",kernelFunc:cl};function Bx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:c}=r;_e([a,s],"conv2d");let h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!1,h),p=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,w=d.dataFormat==="channelsLast",b=new Mt(d.outShape,a.dtype),_=v.computeStrides(a.shape),x=v.computeStrides(s.shape),N=_[0],T=w?_[1]:_[2],E=w?_[2]:1,$=w?1:_[1],D=b.strides[0],L=w?b.strides[1]:b.strides[2],P=w?b.strides[2]:1,U=w?1:b.strides[1],j=n.data.get(a.dataId).values,X=n.data.get(s.dataId).values,G=b.values;for(let ee=0;ee=d.inHeight)continue;let me=de*x[0],fe=J+ue*T;for(let Ie=0;Ie=d.inWidth)continue;let et=me+Oe*x[1],tt=fe+Me*E,st=et;for(let Ke=0;Ke=u.inDepth)continue;let ee=X*E[0],J=D+G*T[1];for(let se=0;se=u.inHeight)continue;let ue=ee+Q*E[1],me=J+de*T[2];for(let fe=0;fe=u.inWidth)continue;let Me=ue+$e*E[2],et=me+Oe*u.inChannels,tt=Me;for(let st=0;stMath.cos(e)),TF={kernelName:ts,backendName:"cpu",kernelFunc:SF},EF=at(Hi,e=>Math.cosh(e)),CF={kernelName:Hi,backendName:"cpu",kernelFunc:EF};function RF(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=r,[c,h,d,p]=a.shape,f=s.shape[0],[m,A]=o,y=We([f,m,A,p],"float32"),g=n.data.get(s.dataId).values,w=n.data.get(i.dataId).values,b=n.data.get(a.dataId).values,_=v.computeStrides(a.shape),x=v.computeStrides(y.shape);for(let N=0;N=c)continue;let U=m>1?(D-E)*(h-1)/(m-1):0,j=A>1?(L-$)*(d-1)/(A-1):0;for(let X=0;X1?E*(h-1)+X*U:.5*(E+D)*(h-1);if(G<0||G>h-1){for(let ee=0;ee1?$*(d-1)+te*j:.5*($+L)*(d-1);if(le<0||le>d-1){for(let me=0;me1?$*(d-1)+ee*j:.5*($+L)*(d-1);if(J<0||J>d-1){for(let le=0;ley+f-g-1:(y,g)=>y+g;for(let y=0;y`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),v.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],u=a.shape[2],c=a.shape[3],h=l*s,d=u*s,p=c/(s*s),f=n.data.get(a.dataId).values,m=new Float32Array(o*h*d*p),A=0;for(let y=0;y`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=C.computeConv2DInfo(a.shape,s.shape,i,d,o,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:A,dilationWidth:y,padInfo:g}=p,w=g.left,b=g.top,_=p.outChannels/p.inChannels,x=new Mt(p.outShape,a.dtype),N=n.data.get(a.dataId).values,T=n.data.get(s.dataId).values,E=x.values;for(let $=0;$=p.inHeight)continue;let ee=X*h[0],J=D+G*c[1];for(let se=0;se=p.inWidth)continue;let ue=ee+Q*h[1],me=J+de*p.inChannels,fe=te,Ie=ue;for(let Se=0;Se{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(r.dataId).values,c=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:f,inWidth:m,inChannels:A,outHeight:y,outWidth:g,padInfo:w,strideHeight:b,strideWidth:_,filterHeight:x,filterWidth:N,dilationHeight:T,dilationWidth:E,outShape:$}=C.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),D=v.sizeFromShape($),L=$.length,P=v.getArrayFromDType(r.dtype,D);for(let U=0;U=0&&Q=0&&uese&&(se=Ie)}}}let te=v.locToIndex([U,j,G,J],L,v.computeStrides($));P[te]=se}}}return{dataId:l.write(v.toTypedArray(P,r.dtype),$,r.dtype),shape:$,dtype:r.dtype}}},qF={kernelName:xh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:w,strideWidth:b,filterHeight:_,filterWidth:x,dilationHeight:N,dilationWidth:T,outShape:E}=C.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===E.length,()=>`Error in ${xh}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let $=v.toNestedArray(E,u.data.get(s.dataId).values),D=v.makeZerosNestedTypedArray(a.shape,a.dtype);for(let L=0;L=0&&le=0&&deee&&(ee=ue,J=te,se=Q)}}}D[J][se][G]+=$[L][P][j][G]}}}return{dataId:u.write(v.toTypedArray(D,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},XF={kernelName:gh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:w,strideWidth:b,filterHeight:_,filterWidth:x,dilationHeight:N,dilationWidth:T,outShape:E}=C.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===E.length,()=>`Error in ${gh}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let $=v.toNestedArray(E,u.data.get(s.dataId).values),D=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let L=0;L=0&&le=0&&deee&&(ee=ue,J=le,se=de)}}}D[L][J][se][G]+=$[L][P][j][G]}}}return{dataId:u.write(v.toTypedArray(D,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function KF(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;_e([r,a],"eluGrad");let s=new Float32Array(v.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(a.shape,"float32",s)}var ZF={kernelName:wh,backendName:"cpu",kernelFunc:KF},YF=Rt((e,t)=>e===t?1:0),Ux=Ht(Zi,YF,null,"bool"),JF={kernelName:Zi,backendName:"cpu",kernelFunc:Ux},QF=C.ERF_P,e$=C.ERF_A1,t$=C.ERF_A2,n$=C.ERF_A3,r$=C.ERF_A4,a$=C.ERF_A5,s$=at(Ki,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+QF*n);return t*(1-((((a$*r+r$)*r+n$)*r+t$)*r+e$)*r*Math.exp(-n*n))}),i$={kernelName:Ki,backendName:"cpu",kernelFunc:s$};function Wd(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),At({inputs:{x:a},backend:n,attrs:{shape:o}})}var o$={kernelName:Yi,backendName:"cpu",kernelFunc:Wd},l$=Rt((e,t)=>e/t),cA=Ht(as,l$),hA={kernelName:as,backendName:"cpu",kernelFunc:cA};function jx(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[a,s],c=v.sizeFromShape(u),h=v.getTypedArrayFromDType("float32",c),d=v.getTypedArrayFromDType("float32",c);for(let A=0;A{let{image:r}=e,a=n,s=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(r.shape)),[i,o,l,u]=r.shape,c=a.data.get(r.dataId).values;for(let h=0;h=0&&wMath.floor(e/t)),g$=Ht(os,y$,null,"int32"),x$={kernelName:os,backendName:"cpu",kernelFunc:g$};function w$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=Bx({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=ju({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=lA(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var b$={kernelName:Ws,backendName:"cpu",kernelFunc:w$};function _$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=Vx({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=ju({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=lA(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var v$={kernelName:Bs,backendName:"cpu",kernelFunc:_$};function k$(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=v.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,u,c,h]=C.prepareAndValidate(r,a);if(u===0)return n.makeTensorInfo(l,r.dtype,[]);let d=We([u,c],r.dtype),p=n.data.get(a.dataId).values,f=n.data.get(r.dataId).values;for(let m=0;m=s/c)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;ge>=t?1:0),E$=Ht(us,T$,null,"bool"),C$={kernelName:us,backendName:"cpu",kernelFunc:E$};function R$(e){let{inputs:t,backend:n}=e,{input:r}=t,a=v.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=At({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=jx(o,!0,n),u=At({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var F$={kernelName:_h,backendName:"cpu",kernelFunc:R$},$$=at(ro,e=>Number.isFinite(e)?1:0,"bool"),M$={kernelName:ro,backendName:"cpu",kernelFunc:$$},D$=at(ao,e=>Math.abs(e)===Infinity?1:0,"bool"),O$={kernelName:ao,backendName:"cpu",kernelFunc:D$},z$=at(so,e=>Number.isNaN(e)?1:0,"bool"),L$={kernelName:so,backendName:"cpu",kernelFunc:z$},P$=Rt((e,t)=>e<=t?1:0),W$=Ht(oo,P$,null,"bool"),B$={kernelName:oo,backendName:"cpu",kernelFunc:W$};function V$(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=yx(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var U$={kernelName:kh,backendName:"cpu",kernelFunc:V$},j$=at(lo,e=>Math.log1p(e)),H$={kernelName:lo,backendName:"cpu",kernelFunc:j$},G$=Rt((e,t)=>e&&t),q$=Ht(uo,G$,null,"bool"),X$={kernelName:uo,backendName:"cpu",kernelFunc:q$},K$=at(Jl,e=>e?0:1,"bool"),Z$={kernelName:Jl,backendName:"cpu",kernelFunc:K$},Y$=Rt((e,t)=>e||t),J$=Ht(Ql,Y$,null,"bool"),Q$={kernelName:Ql,backendName:"cpu",kernelFunc:J$};function eM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;_e(a,"LRN");let u=a.shape[3],c=u-1,h=n.data.get(a.dataId).values,d=v.sizeFromShape(a.shape),p=new Float32Array(d);function f(m){let A=m%u,y=m-A+Math.max(0,A-s),g=m-A+Math.min(A+s,c),w=0;for(;y<=g;y++){let b=h[y];w+=b*b}return w}for(let m=0;m`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))h=zr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=v.computeStrides(a.shape),f=uA(d,a.shape,a.dtype,p,c,"max");h=n.makeTensorInfo(c.outShape,a.dtype,f.values)}return h}var iM={kernelName:ms,backendName:"cpu",kernelFunc:sM};function oM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r;_e(a,"maxPool3d");let c=C.computePool3DInfo(a.shape,s,i,1,o,l,u),h=n.data.get(a.dataId).values,d=Wx(h,a.shape,a.dtype,v.computeStrides(a.shape),c,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var lM={kernelName:tu,backendName:"cpu",kernelFunc:oM};function uM(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r;_e([a,s],"maxPool3DGrad");let c=C.computePool3DInfo(s.shape,i,o,1,l,u),h=n.bufferSync(s),d=KR(h,c),p=c.strideDepth,f=c.strideHeight,m=c.strideWidth,A=c.dilationDepth,y=c.dilationHeight,g=c.dilationWidth,w=c.effectiveFilterDepth,b=c.effectiveFilterHeight,_=c.effectiveFilterWidth,x=w-1-c.padInfo.front,N=_-1-c.padInfo.left,T=b-1-c.padInfo.top,E=We(s.shape,"float32"),$=n.bufferSync(a);for(let D=0;D=c.outDepth||Math.floor(te)!==te))for(let le=0;le=c.outHeight||Math.floor(Q)!==Q))for(let de=0;de<_;de+=g){let ue=(ee+de)/m;if(ue<0||ue>=c.outWidth||Math.floor(ue)!==ue)continue;let me=w*b*_-1-d.get(D,te,Q,ue,L),fe=se*b*_+le*_+de,Ie=me===fe?1:0;Ie!==0&&(J+=$.get(D,te,Q,ue,L)*Ie)}}}E.set(J,D,P,U,j,L)}return n.makeTensorInfo(E.shape,E.dtype,E.values)}var cM={kernelName:Sh,backendName:"cpu",kernelFunc:uM};function hM(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;_e([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:h}=r,d=C.computePool2DInfo(o.shape,l,u,1,c,h),p=n.data.get(o.dataId).values,f=We(d.outShape,o.dtype,Px(p,o.shape,o.dtype,d).values),m=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,w=d.effectiveFilterHeight,b=d.effectiveFilterWidth,_=b-1-d.padInfo.left,x=w-1-d.padInfo.top,N=We(o.shape,"float32"),T=n.data.get(a.dataId).values,E=We(a.shape,"float32",T);for(let $=0;$=d.outHeight||Math.floor(ee)!==ee))for(let J=0;J=d.outWidth||Math.floor(se)!==se)continue;let te=w*b-1-f.get($,ee,se,D),le=G*b+J,Q=te===le?1:0;Q!==0&&(X+=E.get($,ee,se,D)*Q)}}N.set(X,$,L,P,D)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var dM={kernelName:Nh,backendName:"cpu",kernelFunc:hM};function pM(e,t,n,r,a){let s=v.computeStrides(t),i=uA(e,t,n,s,a,"max"),o=Px(e,t,n,a,!0,r);return[i.values,o.values]}var fM={kernelName:Th,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;_e(r,"MaxPoolWithArgmax");let u=l.data.get(r.dataId).values,c=C.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=pM(u,r.shape,r.dtype,o,c),p=l.write(h,c.outShape,r.dtype),f=l.write(d,c.outShape,r.dtype);return[{dataId:p,shape:c.outShape,dtype:r.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function Bd(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;_e(a,"sum");let o;a.dtype==="bool"?o=Fa({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=zr({inputs:{x:a},backend:n});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),c=C.getAxesPermutation(u,l),h=u,d=o;c!=null&&(d=sr({inputs:{x:o},backend:n,attrs:{perm:c}}),h=C.getInnerMostAxes(h.length,l)),C.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,f]=C.computeOutAndReduceShapes(d.shape,h),m=C.upcastType(d.dtype,"int32"),A=Pd(n,p,m),y=v.sizeFromShape(f),g=n.data.get(A.dataId).values,w=n.data.get(d.dataId).values;for(let b=0;bn.disposeIntermediateTensorInfo(m)),f}var yM={kernelName:As,backendName:"cpu",kernelFunc:AM};function gM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;_e(a,"min");let o=v.parseAxisParam(s,a.shape),l=o,u=C.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=sr({inputs:{x:a},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("min",l,c.shape.length);let[h,d]=C.computeOutAndReduceShapes(c.shape,l),p=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(h),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;yg[0]+a.shape[w]+g[1]),l=s.map(g=>g[0]),u=s.map((g,w)=>g[0]+a.shape[w]),c=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=v.computeStrides(a.shape),f=v.sizeFromShape(o),m=o.length,A=v.computeStrides(o),y=v.getTypedArrayFromDType(a.dtype,f);for(let g=0;g=u[_]&&(w[_]=(u[_]-1)*2-w[_]+c);w=w.map((_,x)=>_-l[x]);let b=v.locToIndex(w,d,p);y[g]=h[b]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var bM={kernelName:nu,backendName:"cpu",kernelFunc:wM},_M=Rt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),vM=Ht(co,_M),kM={kernelName:co,backendName:"cpu",kernelFunc:vM},IM=Zo(G8());function Gx(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],a.shape),u=Hx({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=C.expandShapeToKeepDim(u.shape,l),h=At({inputs:{x:u},backend:n,attrs:{shape:c}}),d=oA({inputs:{a,b:h},backend:n}),p=Fx({inputs:{x:d},backend:n}),f=Bd({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),m=At({inputs:{x:f},backend:n,attrs:{shape:c}}),A=cA({inputs:{a:p,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var NM={kernelName:Ms,backendName:"cpu",kernelFunc:Gx};function SM(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;_e(a,"multinomial");let l=o?a:Gx({inputs:{logits:a},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],h=n.data.get(l.dataId).values,d=[u,s],p=v.makeZerosTypedArray(v.sizeFromShape(d),"int32");for(let f=0;f=0&&c[h]{v.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=Wd({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=cl({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var VM={kernelName:go,backendName:"cpu",kernelFunc:Xx};function UM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;_e(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),u=n.data.get(a.dataId).values,c=v.sizeFromShape(a.shape),h=a.shape.length,d=v.computeStrides(a.shape),p=v.sizeFromShape(o),f=o.length,m=v.computeStrides(o),A=v.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;yb+l[_]),w=v.locToIndex(g,f,m);A[w]=u[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var Kx={kernelName:bs,backendName:"cpu",kernelFunc:UM},jM=Rt((e,t)=>Math.pow(e,t)),HM=Ht(_s,jM),GM={kernelName:_s,backendName:"cpu",kernelFunc:HM};function qM(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=aA(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var XM={kernelName:ru,backendName:"cpu",kernelFunc:qM},KM=at(wo,e=>1/e),ZM={kernelName:wo,backendName:"cpu",kernelFunc:KM};function YM(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;_e(a,"resizeBilinear");let l=v.computeStrides(a.shape),[u,c]=o,[h,d,p,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(v.sizeFromShape([h,u,c,f])),y=[s&&u>1?d-1:d,s&&c>1?p-1:p],g=[s&&u>1?u-1:u,s&&c>1?c-1:c],w=0,b=y[0]/g[0],_=y[1]/g[1];for(let x=0;x1?u-1:u,i&&p>1?c-1:c],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=m[0]/A[0],g=m[1]/A[1],w=n.data.get(s.dataId).values,b=0;for(let _=0;_1?d-1:d,s&&c>1?p-1:p],g=[s&&u>1?u-1:u,s&&c>1?c-1:c],w=y[0]/g[0],b=y[1]/g[1],_=0;for(let x=0;x1?c-1:c,i&&f>1?h-1:h],g=[i&&p>1?p-1:p,i&&f>1?f-1:f],w=y[0]/g[0],b=y[1]/g[1],_=1/w,x=1/b,N=Math.ceil(_)*2+2,T=Math.ceil(x)*2+2;for(let E=0;E=p)continue;let Q=$+le*l[1],de=le*w,ue=Math.min(c-1,i?Math.round(de):Math.floor(de));if(D===ue)for(let me=0;me=f)continue;let Ie=Q+fe*l[2],Se=fe*b,$e=Math.min(h-1,i?Math.round(Se):Math.floor(Se));j===$e&&(se+=A[Ie+J])}}m[X+J]=se}}}}return n.makeTensorInfo(a.shape,a.dtype,m)}var aD={kernelName:Rh,backendName:"cpu",kernelFunc:rD};function sD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;_e(a,"reverse");let i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return zr({inputs:{x:a},backend:n});let l=new Mt(a.shape,a.dtype),u=n.bufferSync(a);for(let c=0;cd[p]=a.shape[p]-1-d[p]),l.set(u.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var iD={kernelName:Ss,backendName:"cpu",kernelFunc:sD},oD={kernelName:Do,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(r.shape)),[u,c,h,d]=r.shape,[p,f]=C.getImageCenter(i,c,h),m=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let w=0;w=0&&P=0&&U{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),uD={kernelName:Ts,backendName:"cpu",kernelFunc:lD};function Zx(e,t,n,r,a,s,i,o,l,u){let c=[r/a,a],h=e.values,d=t.values;if(r===0)return We(n,t.dtype);let p=We(c,t.dtype);p.values.fill(l);for(let f=0;f=r/a)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y1||a.shape.length===1?1:v.sizeFromShape(a.shape.slice(1));for(let f=0;fe>=0?mD*e:fD*(Math.exp(e)-1)),yD={kernelName:ko,backendName:"cpu",kernelFunc:AD},gD=at(Rs,e=>1/(1+Math.exp(-e))),xD={kernelName:Rs,backendName:"cpu",kernelFunc:gD},wD=at(So,e=>e<0?-1:e>0?1:0),bD={kernelName:So,backendName:"cpu",kernelFunc:wD},_D=at(Cs,e=>Math.sin(e)),vD={kernelName:Cs,backendName:"cpu",kernelFunc:_D},kD=at(No,e=>Math.sinh(e)),ID={kernelName:No,backendName:"cpu",kernelFunc:kD},ND=11920928955078125e-23,Yx=Math.log(ND)+2,SD=at(To,e=>{let t=e>-Yx,n=e{let d=[...c];d[o]=h;let p=ri({inputs:{x:a},backend:n,attrs:{begin:u,size:d}});return u[o]+=h,p})}var MD={kernelName:Eo,backendName:"cpu",kernelFunc:$D},DD=at(Fs,e=>Math.sqrt(e)),OD={kernelName:Fs,backendName:"cpu",kernelFunc:DD},zD={kernelName:iu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;_e(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),PD={kernelName:xa,backendName:"cpu",kernelFunc:LD};function WD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r;_e(a,"stridedSlice");let{nonStrided:p,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=sn.sliceInfo(a.shape,s,i,o,l,u,c,h,d),w=At({inputs:{x:a},backend:n,attrs:{shape:y}}),b;if(p){let x=ri({inputs:{x:w},backend:n,attrs:{begin:f,size:A}});b=At({inputs:{x},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(x)}else if(g.some(x=>x===0))b=n.makeTensorInfo(g,a.dtype,[]);else{let x=n.bufferSync(w),N=Sx(g,x,m,f);b=n.makeTensorInfo(N.shape,N.dtype,N.values)}let _=At({inputs:{x:b},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(b),_}var BD={kernelName:Co,backendName:"cpu",kernelFunc:WD},VD=at(Ro,e=>Math.tan(e)),UD={kernelName:Ro,backendName:"cpu",kernelFunc:VD},jD=at(zs,e=>Math.tanh(e)),HD={kernelName:zs,backendName:"cpu",kernelFunc:jD};function GD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;_e(a,"tile");let i=Ex(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var qD={kernelName:ga,backendName:"cpu",kernelFunc:GD};function XD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;_e(a,"topk");let o=n.data.get(a.dataId).values,[l,u]=Cx(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var KD={kernelName:Fo,backendName:"cpu",kernelFunc:XD};function ZD(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;_e(s,"unique");let i=r.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=Rx(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([u.length],"int32",u)]}var YD={kernelName:Mh,backendName:"cpu",kernelFunc:ZD};function JD(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape.length,o=a.shape[s],l=new Array(i-1),u=0;for(let p=0;pn.disposeIntermediateTensorInfo(f)),p}var tO={kernelName:ou,backendName:"cpu",kernelFunc:eO},nO=[vR,TC,IR,SR,MC,ER,RR,$R,DR,zR,PR,BR,UR,GR,XR,YR,QR,tF,rF,bR,sF,oF,uF,FC,OC,hF,EC,pF,mF,gF,wF,AF,kF,NF,_F,TF,CF,FF,MF,OF,LF,PF,BF,UF,HF,GF,XF,qF,hA,fR,ZF,JF,i$,zC,o$,PC,p$,m$,A$,BC,x$,b$,v$,I$,S$,UC,C$,CC,F$,fF,M$,O$,L$,mR,HC,B$,U$,qC,H$,X$,Z$,Q$,tM,rM,KC,iM,lM,cM,dM,fM,aM,yM,xM,YC,bM,kM,TM,QC,tR,RM,MM,zM,rR,PM,BM,VM,Kx,GM,yR,iR,XM,RC,ZM,gR,xR,wR,JM,eD,nD,aD,iD,oD,uD,lR,hD,pD,yD,xD,bD,vD,ID,uR,NM,TD,CD,FD,MD,OD,zD,hR,PD,BD,pR,mM,UD,HD,qD,KD,aR,YD,QD,tO,WM];for(let e of nO)Oo(e);var x0={};ze(x0,{assertNotComplex:()=>hl,bindCanvasToFramebuffer:()=>sO,bindColorTextureToFramebuffer:()=>jd,bindTextureToProgramUniformSampler:()=>dw,bindTextureUnit:()=>uw,bindVertexBufferToProgramAttribute:()=>fA,callAndCheck:()=>we,canBeRepresented:()=>Jx,createFragmentShader:()=>tw,createFramebuffer:()=>lw,createProgram:()=>nw,createStaticIndexBuffer:()=>sw,createStaticVertexBuffer:()=>aw,createTexture:()=>iw,createVertexShader:()=>ew,getBatchDim:()=>ai,getExtensionOrThrow:()=>Hu,getFramebufferErrorMessage:()=>pw,getMaxTexturesInShader:()=>Aw,getNumChannels:()=>rO,getProgramUniformLocation:()=>hw,getProgramUniformLocationOrThrow:()=>cw,getRowsCols:()=>si,getShapeAs3D:()=>Hd,getTextureShapeFromLogicalShape:()=>fw,getWebGLDisjointQueryTimerVersion:()=>yw,getWebGLErrorMessage:()=>Qx,getWebGLMaxTextureSize:()=>mw,hasExtension:()=>Hn,isCapableOfRenderingToFloatTexture:()=>gw,isDownloadFloatTextureEnabled:()=>xw,isReshapeFree:()=>qu,isWebGLFenceEnabled:()=>ww,isWebGLVersionEnabled:()=>AA,linkProgram:()=>rw,resetMaxTextureSize:()=>iO,resetMaxTexturesInShader:()=>oO,unbindColorTextureFromFramebuffer:()=>mA,unbindTextureUnit:()=>aO,validateFramebuffer:()=>Gu,validateProgram:()=>Ud,validateTextureSize:()=>ow});var ii={},yA={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function cm(e,t){ii[e]=t}function Lr(e){if(!(e in ii)){let n=lO(e);if(n!==null)ii[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=ii[e];return t.isContextLost()?(delete ii[e],Lr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),ii[e])}function uO(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function lO(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=uO(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete ii[e]},!1),e===1?t.getContext("webgl",yA)||t.getContext("experimental-webgl",yA):t.getContext("webgl2",yA)}var Xu;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Xu||(Xu={}));var Gn;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Gn||(Gn={}));var Jt;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Jt||(Jt={}));function Ku(e,t){return[t,e]}function cO(e,t){return e*t}function Zu(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function dl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function hO(e,t){let[n,r]=dl(e,t);return n*r*4}function gA(e,t){let n=e,r,a,s,i,o,l,u,c,h,d;return Y().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,c=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,c=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:h,textureTypeFloat:d}}function we(e,t){let n=t();return Y().getBool("DEBUG")&&dO(e),n}function dO(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+Qx(e,t))}var pO=596e-10,fO=65504;function Jx(e){return!!(Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||pOe.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function ew(e,t){let n=ra(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(we(e,()=>e.shaderSource(n,t)),we(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function tw(e,t){let n=ra(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(we(e,()=>e.shaderSource(n,t)),we(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw mO(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var AO=/ERROR: [0-9]+:([0-9]+):/g;function mO(e,t){let n=AO.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(` -`),s=a.length.toString().length+2,i=a.map((h,d)=>v.rightPad((d+1).toString(),s)+h),o=0;for(let h=0;he.createProgram(),"Unable to create WebGLProgram.")}function rw(e,t){if(we(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Ud(e,t){if(we(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function aw(e,t){let n=ra(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),we(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function sw(e,t){let n=ra(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),we(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function rO(){return Y().getNumber("WEBGL_VERSION")===2?1:4}function iw(e){return ra(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function ow(e,t){let n=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function lw(e){return ra(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function fA(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),we(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),we(e,()=>e.enableVertexAttribArray(o)),!0)}function uw(e,t,n){bw(e,n),we(e,()=>e.activeTexture(e.TEXTURE0+n)),we(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function aO(e,t){bw(e,t),we(e,()=>e.activeTexture(e.TEXTURE0+t)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function cw(e,t,n){return ra(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function hw(e,t,n){return e.getUniformLocation(t,n)}function dw(e,t,n,r){we(e,()=>uw(e,t,r)),we(e,()=>e.uniform1i(n,r))}function sO(e){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),we(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),we(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function jd(e,t,n){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function mA(e,t){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Gu(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+pw(e,t))}function pw(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function ra(e,t,n){let r=we(e,()=>t());if(r==null)throw new Error(n);return r}function bw(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(rn){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function ai(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function si(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Hd(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[ai(e),...si(e)]),t}function fw(e,t=!1){let n=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?v.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let r=v.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=ai(e),s=2,i=2;return e.length&&([s,i]=si(e)),r=a*(s/2)*(i/2),v.sizeToSquarishShape(r).map(o=>o*2)}return v.sizeToSquarishShape(r)}function Gd(e){return e%2==0}function qu(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||Gd(n)&&Gd(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Gd(e[0])&&Gd(t[0])}var qd,Xd;function mw(e){if(qd==null){let t=Lr(e);qd=t.getParameter(t.MAX_TEXTURE_SIZE)}return qd}function iO(){qd=null}function oO(){Xd=null}function Aw(e){if(Xd==null){let t=Lr(e);Xd=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Xd)}function yw(e){if(e===0)return 0;let t,n=Lr(e);return Hn(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Hn(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Hn(e,t){return e.getExtension(t)!=null}function AA(e){try{if(Lr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function gw(e){if(e===0)return!1;let t=Lr(e);if(e===1){if(!Hn(t,"OES_texture_float"))return!1}else if(!Hn(t,"EXT_color_buffer_float"))return!1;return xA(t)}function xw(e){if(e===0)return!1;let t=Lr(e);if(e===1){if(!Hn(t,"OES_texture_float")||!Hn(t,"WEBGL_color_buffer_float"))return!1}else{if(Hn(t,"EXT_color_buffer_float"))return xA(t);let n="EXT_color_buffer_half_float";if(Hn(t,n)){let r=t.getExtension(n);return yO(t,r)}return!1}return xA(t)}function xA(e){let t=gA(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function yO(e,t){let n=gA(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function ww(e){return e!==2?!1:Lr(e).fenceSync!=null}function hl(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ce=Y();Ce.registerFlag("HAS_WEBGL",()=>Ce.getNumber("WEBGL_VERSION")>0);Ce.registerFlag("WEBGL_VERSION",()=>AA(2)?2:AA(1)?1:0);Ce.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ce.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ce.get("WEBGL_VERSION")===2);Ce.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ce.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ce.registerFlag("WEBGL_PACK",()=>Ce.getBool("HAS_WEBGL"));Ce.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_CLIP",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Ce.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_REDUCE",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_CONV_IM2COL",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>mw(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>Aw(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ce.getNumber("WEBGL_VERSION");return e===0?0:yw(e)});Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ce.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Lh.isMobile());Ce.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>gw(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ce.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ce.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ce.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>xw(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_FENCE_API_ENABLED",()=>ww(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ce.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ce.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ce.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function un(){let e,t,n,r,a,s,i,o,l,u;return Y().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=` +// dist/human.esm.js +var __create = Object.create; +var __defProp = Object.defineProperty; +var __getProtoOf = Object.getPrototypeOf; +var __hasOwnProp = Object.prototype.hasOwnProperty; +var __getOwnPropNames = Object.getOwnPropertyNames; +var __getOwnPropDesc = Object.getOwnPropertyDescriptor; +var __markAsModule = (target) => __defProp(target, "__esModule", {value: true}); +var __commonJS = (callback, module2) => () => { + if (!module2) { + module2 = {exports: {}}; + callback(module2.exports, module2); + } + return module2.exports; +}; +var __export = (target, all4) => { + for (var name2 in all4) + __defProp(target, name2, {get: all4[name2], enumerable: true}); +}; +var __exportStar = (target, module2, desc) => { + if (module2 && typeof module2 === "object" || typeof module2 === "function") { + for (let key of __getOwnPropNames(module2)) + if (!__hasOwnProp.call(target, key) && key !== "default") + __defProp(target, key, {get: () => module2[key], enumerable: !(desc = __getOwnPropDesc(module2, key)) || desc.enumerable}); + } + return target; +}; +var __toModule = (module2) => { + if (module2 && module2.__esModule) + return module2; + return __exportStar(__markAsModule(__defProp(module2 != null ? __create(__getProtoOf(module2)) : {}, "default", {value: module2, enumerable: true})), module2); +}; +var require_facemesh = __commonJS((exports) => { + __markAsModule(exports); + __export(exports, { + MediaPipeFaceMesh: () => MediaPipeFaceMesh, + load: () => load9 + }); + var MediaPipeFaceMesh = class { + constructor(blazeFace, blazeMeshModel, irisModel, config3) { + this.facePipeline = new Pipeline(blazeFace, blazeMeshModel, irisModel, config3); + this.config = config3; + } + async estimateFaces(input2, config3) { + const predictions = await this.facePipeline.predict(input2, config3); + const results = []; + for (const prediction of predictions || []) { + if (prediction.isDisposedInternal) + continue; + const mesh = prediction.coords ? prediction.coords.arraySync() : null; + const meshRaw = prediction.rawCoords; + const annotations2 = {}; + if (mesh && mesh.length > 0) { + for (const key of Object.keys(MESH_ANNOTATIONS)) + annotations2[key] = MESH_ANNOTATIONS[key].map((index) => mesh[index]); + } + const boxRaw = config3.face.mesh.returnRawData && prediction.box ? {topLeft: prediction.box.startPoint, bottomRight: prediction.box.endPoint} : null; + const box3 = prediction.box ? [ + Math.max(0, prediction.box.startPoint[0]), + Math.max(0, prediction.box.startPoint[1]), + Math.min(input2.shape[2], prediction.box.endPoint[0]) - prediction.box.startPoint[0], + Math.min(input2.shape[1], prediction.box.endPoint[1]) - prediction.box.startPoint[1] + ] : 0; + results.push({ + confidence: prediction.faceConfidence || prediction.boxConfidence || 0, + boxConfidence: prediction.boxConfidence, + faceConfidence: prediction.faceConfidence, + box: box3, + mesh, + boxRaw, + meshRaw, + annotations: annotations2, + image: prediction.image ? clone(prediction.image) : null + }); + if (prediction.coords) + prediction.coords.dispose(); + if (prediction.image) + prediction.image.dispose(); + } + return results; + } + }; + var faceModels = [null, null, null]; + async function load9(config3) { + faceModels = await Promise.all([ + !faceModels[0] && config3.face.enabled ? load(config3) : null, + !faceModels[1] && config3.face.mesh.enabled ? loadGraphModel(config3.face.mesh.modelPath, {fromTFHub: config3.face.mesh.modelPath.includes("tfhub.dev")}) : null, + !faceModels[2] && config3.face.iris.enabled ? loadGraphModel(config3.face.iris.modelPath, {fromTFHub: config3.face.iris.modelPath.includes("tfhub.dev")}) : null + ]); + const faceMesh = new MediaPipeFaceMesh(faceModels[0], faceModels[1], faceModels[2], config3); + if (config3.face.mesh.enabled && config3.debug) + log(`load model: ${config3.face.mesh.modelPath.match(/\/(.*)\./)[1]}`); + if (config3.face.iris.enabled && config3.debug) + log(`load model: ${config3.face.iris.modelPath.match(/\/(.*)\./)[1]}`); + return faceMesh; + } + exports.triangulation = TRI468; +}); +var require_keypoints = __commonJS((exports) => { + __markAsModule(exports); + __export(exports, { + NUM_KEYPOINTS: () => NUM_KEYPOINTS3, + connectedPartIndices: () => connectedPartIndices, + partChannels: () => partChannels, + partIds: () => partIds2, + partNames: () => partNames2, + poseChain: () => poseChain2 + }); + var partNames2 = [ + "nose", + "leftEye", + "rightEye", + "leftEar", + "rightEar", + "leftShoulder", + "rightShoulder", + "leftElbow", + "rightElbow", + "leftWrist", + "rightWrist", + "leftHip", + "rightHip", + "leftKnee", + "rightKnee", + "leftAnkle", + "rightAnkle" + ]; + var NUM_KEYPOINTS3 = exports.partNames.length; + var partIds2 = exports.partNames.reduce((result, jointName, i) => { + result[jointName] = i; + return result; + }, {}); + var connectedPartNames = [ + ["leftHip", "leftShoulder"], + ["leftElbow", "leftShoulder"], + ["leftElbow", "leftWrist"], + ["leftHip", "leftKnee"], + ["leftKnee", "leftAnkle"], + ["rightHip", "rightShoulder"], + ["rightElbow", "rightShoulder"], + ["rightElbow", "rightWrist"], + ["rightHip", "rightKnee"], + ["rightKnee", "rightAnkle"], + ["leftShoulder", "rightShoulder"], + ["leftHip", "rightHip"] + ]; + var connectedPartIndices = connectedPartNames.map(([jointNameA, jointNameB]) => [partIds2[jointNameA], partIds2[jointNameB]]); + var poseChain2 = [ + ["nose", "leftEye"], + ["leftEye", "leftEar"], + ["nose", "rightEye"], + ["rightEye", "rightEar"], + ["nose", "leftShoulder"], + ["leftShoulder", "leftElbow"], + ["leftElbow", "leftWrist"], + ["leftShoulder", "leftHip"], + ["leftHip", "leftKnee"], + ["leftKnee", "leftAnkle"], + ["nose", "rightShoulder"], + ["rightShoulder", "rightElbow"], + ["rightElbow", "rightWrist"], + ["rightShoulder", "rightHip"], + ["rightHip", "rightKnee"], + ["rightKnee", "rightAnkle"] + ]; + var partChannels = [ + "left_face", + "right_face", + "right_upper_leg_front", + "right_lower_leg_back", + "right_upper_leg_back", + "left_lower_leg_front", + "left_upper_leg_front", + "left_upper_leg_back", + "left_lower_leg_back", + "right_feet", + "right_lower_leg_front", + "left_feet", + "torso_front", + "torso_back", + "right_upper_arm_front", + "right_upper_arm_back", + "right_lower_arm_back", + "left_lower_arm_front", + "left_upper_arm_front", + "left_upper_arm_back", + "left_lower_arm_back", + "right_hand", + "right_lower_arm_front", + "left_hand" + ]; +}); +function log(...msg) { + const dt = new Date(); + const ts = `${dt.getHours().toString().padStart(2, "0")}:${dt.getMinutes().toString().padStart(2, "0")}:${dt.getSeconds().toString().padStart(2, "0")}.${dt.getMilliseconds().toString().padStart(3, "0")}`; + if (msg) + console.log(ts, "Human:", ...msg); +} +var tfjs_esm_exports = {}; +__export(tfjs_esm_exports, { + Abs: () => Abs, + Acos: () => Acos, + Acosh: () => Acosh, + AdadeltaOptimizer: () => AdadeltaOptimizer, + AdagradOptimizer: () => AdagradOptimizer, + AdamOptimizer: () => AdamOptimizer, + AdamaxOptimizer: () => AdamaxOptimizer, + Add: () => Add, + AddN: () => AddN, + All: () => All, + Any: () => Any, + ArgMax: () => ArgMax, + ArgMin: () => ArgMin, + Asin: () => Asin, + Asinh: () => Asinh, + Atan: () => Atan, + Atan2: () => Atan2, + Atanh: () => Atanh, + AvgPool: () => AvgPool, + AvgPool3D: () => AvgPool3D, + AvgPool3DGrad: () => AvgPool3DGrad, + AvgPoolGrad: () => AvgPoolGrad, + BackendWasm: () => BackendWasm, + BatchMatMul: () => BatchMatMul, + BatchToSpaceND: () => BatchToSpaceND, + Bincount: () => Bincount, + BroadcastTo: () => BroadcastTo, + Callback: () => Callback, + CallbackList: () => CallbackList, + Cast: () => Cast, + Ceil: () => Ceil, + ClipByValue: () => ClipByValue, + Complex: () => Complex, + ComplexAbs: () => ComplexAbs, + Concat: () => Concat, + Conv2D: () => Conv2D, + Conv2DBackpropFilter: () => Conv2DBackpropFilter, + Conv2DBackpropInput: () => Conv2DBackpropInput, + Conv3D: () => Conv3D, + Conv3DBackpropFilterV2: () => Conv3DBackpropFilterV2, + Conv3DBackpropInputV2: () => Conv3DBackpropInputV2, + Cos: () => Cos, + Cosh: () => Cosh, + CropAndResize: () => CropAndResize, + Cumsum: () => Cumsum, + CustomCallback: () => CustomCallback, + DataStorage: () => DataStorage, + DenseBincount: () => DenseBincount, + DepthToSpace: () => DepthToSpace, + DepthwiseConv2dNative: () => DepthwiseConv2dNative, + DepthwiseConv2dNativeBackpropFilter: () => DepthwiseConv2dNativeBackpropFilter, + DepthwiseConv2dNativeBackpropInput: () => DepthwiseConv2dNativeBackpropInput, + Diag: () => Diag, + Dilation2D: () => Dilation2D, + Dilation2DBackpropFilter: () => Dilation2DBackpropFilter, + Dilation2DBackpropInput: () => Dilation2DBackpropInput, + ENV: () => ENV, + EarlyStopping: () => EarlyStopping, + Elu: () => Elu, + EluGrad: () => EluGrad, + Environment: () => Environment, + Equal: () => Equal, + Erf: () => Erf, + Exp: () => Exp, + ExpandDims: () => ExpandDims, + Expm1: () => Expm1, + FFT: () => FFT, + Fill: () => Fill, + FlipLeftRight: () => FlipLeftRight, + Floor: () => Floor, + FloorDiv: () => FloorDiv, + FromPixels: () => FromPixels, + FusedBatchNorm: () => FusedBatchNorm, + FusedConv2D: () => FusedConv2D, + FusedDepthwiseConv2D: () => FusedDepthwiseConv2D, + GPGPUContext: () => GPGPUContext, + GatherNd: () => GatherNd, + GatherV2: () => GatherV2, + GraphModel: () => GraphModel, + Greater: () => Greater, + GreaterEqual: () => GreaterEqual, + History: () => History, + IFFT: () => IFFT, + Identity: () => Identity, + Imag: () => Imag, + InputSpec: () => InputSpec, + IsFinite: () => IsFinite, + IsInf: () => IsInf, + IsNan: () => IsNan, + KernelBackend: () => KernelBackend, + LRN: () => LRN, + LRNGrad: () => LRNGrad, + LayerVariable: () => LayerVariable, + LayersModel: () => LayersModel, + LeakyRelu: () => LeakyRelu, + Less: () => Less, + LessEqual: () => LessEqual, + LinSpace: () => LinSpace, + Log: () => Log, + Log1p: () => Log1p, + LogSoftmax: () => LogSoftmax, + LogicalAnd: () => LogicalAnd, + LogicalNot: () => LogicalNot, + LogicalOr: () => LogicalOr, + MathBackendCPU: () => MathBackendCPU, + MathBackendWebGL: () => MathBackendWebGL, + Max: () => Max, + MaxPool: () => MaxPool, + MaxPool3D: () => MaxPool3D, + MaxPool3DGrad: () => MaxPool3DGrad, + MaxPoolGrad: () => MaxPoolGrad, + MaxPoolWithArgmax: () => MaxPoolWithArgmax, + Maximum: () => Maximum, + Mean: () => Mean, + Min: () => Min, + Minimum: () => Minimum, + MirrorPad: () => MirrorPad, + Mod: () => Mod, + MomentumOptimizer: () => MomentumOptimizer, + Multinomial: () => Multinomial, + Multiply: () => Multiply, + Neg: () => Neg, + NonMaxSuppressionV3: () => NonMaxSuppressionV3, + NonMaxSuppressionV4: () => NonMaxSuppressionV4, + NonMaxSuppressionV5: () => NonMaxSuppressionV5, + NotEqual: () => NotEqual, + OP_SCOPE_SUFFIX: () => OP_SCOPE_SUFFIX, + OneHot: () => OneHot, + OnesLike: () => OnesLike, + Optimizer: () => Optimizer, + Pack: () => Pack, + PadV2: () => PadV2, + Pool: () => Pool, + Pow: () => Pow, + Prelu: () => Prelu, + Prod: () => Prod, + RMSPropOptimizer: () => RMSPropOptimizer, + RNN: () => RNN, + Range: () => Range, + Rank: () => Rank, + Real: () => Real, + RealDiv: () => RealDiv, + Reciprocal: () => Reciprocal, + Reduction: () => Reduction, + Relu: () => Relu, + Relu6: () => Relu6, + Reshape: () => Reshape, + ResizeBilinear: () => ResizeBilinear, + ResizeBilinearGrad: () => ResizeBilinearGrad, + ResizeNearestNeighbor: () => ResizeNearestNeighbor, + ResizeNearestNeighborGrad: () => ResizeNearestNeighborGrad, + Reverse: () => Reverse, + RotateWithOffset: () => RotateWithOffset, + Round: () => Round, + Rsqrt: () => Rsqrt, + SGDOptimizer: () => SGDOptimizer, + ScatterNd: () => ScatterNd, + Select: () => Select, + Selu: () => Selu, + Sequential: () => Sequential, + Sigmoid: () => Sigmoid, + Sign: () => Sign, + Sin: () => Sin, + Sinh: () => Sinh, + Slice: () => Slice, + Softmax: () => Softmax, + Softplus: () => Softplus, + SpaceToBatchND: () => SpaceToBatchND, + SparseToDense: () => SparseToDense, + SplitV: () => SplitV, + Sqrt: () => Sqrt, + Square: () => Square, + SquaredDifference: () => SquaredDifference, + Step: () => Step, + StridedSlice: () => StridedSlice, + Sub: () => Sub, + Sum: () => Sum, + SymbolicTensor: () => SymbolicTensor, + Tan: () => Tan, + Tanh: () => Tanh, + Tensor: () => Tensor, + TensorBuffer: () => TensorBuffer, + Tile: () => Tile, + TopK: () => TopK, + Transpose: () => Transpose, + Unique: () => Unique, + Unpack: () => Unpack, + UnsortedSegmentSum: () => UnsortedSegmentSum, + Variable: () => Variable, + ZerosLike: () => ZerosLike, + _FusedMatMul: () => _FusedMatMul, + abs: () => abs, + acos: () => acos, + acosh: () => acosh, + add: () => add2, + addN: () => addN, + all: () => all, + any: () => any, + argMax: () => argMax, + argMin: () => argMin, + asin: () => asin, + asinh: () => asinh, + atan: () => atan, + atan2: () => atan2, + atanh: () => atanh, + avgPool: () => avgPool, + avgPool3d: () => avgPool3d, + backend: () => backend, + backend_util: () => backend_util_exports, + basicLSTMCell: () => basicLSTMCell, + batchNorm: () => batchNorm, + batchNorm2d: () => batchNorm2d, + batchNorm3d: () => batchNorm3d, + batchNorm4d: () => batchNorm4d, + batchToSpaceND: () => batchToSpaceND, + bincount: () => bincount, + booleanMaskAsync: () => booleanMaskAsync, + broadcastTo: () => broadcastTo, + browser: () => browser_exports, + buffer: () => buffer, + callbacks: () => callbacks, + cast: () => cast, + ceil: () => ceil, + clipByValue: () => clipByValue, + clone: () => clone, + complex: () => complex, + concat: () => concat, + concat1d: () => concat1d, + concat2d: () => concat2d, + concat3d: () => concat3d, + concat4d: () => concat4d, + constraints: () => exports_constraints_exports, + conv1d: () => conv1d, + conv2d: () => conv2d, + conv2dTranspose: () => conv2dTranspose, + conv3d: () => conv3d, + conv3dTranspose: () => conv3dTranspose, + copyRegisteredKernels: () => copyRegisteredKernels, + cos: () => cos, + cosh: () => cosh, + cosineWindow: () => cosineWindow, + cumsum: () => cumsum, + customGrad: () => customGrad, + data: () => dist_exports, + denseBincount: () => denseBincount, + deprecationWarn: () => deprecationWarn, + depthToSpace: () => depthToSpace, + depthwiseConv2d: () => depthwiseConv2d, + deregisterOp: () => deregisterOp, + device_util: () => device_util_exports, + diag: () => diag, + dilation2d: () => dilation2d, + disableDeprecationWarnings: () => disableDeprecationWarnings, + dispose: () => dispose, + disposeVariables: () => disposeVariables, + div: () => div, + divNoNan: () => divNoNan, + dot: () => dot, + dropout: () => dropout, + elu: () => elu, + enableDebugMode: () => enableDebugMode, + enableProdMode: () => enableProdMode, + enclosingPowerOfTwo: () => enclosingPowerOfTwo, + engine: () => engine, + env: () => env, + equal: () => equal, + erf: () => erf, + exp: () => exp, + expandDims: () => expandDims, + expm1: () => expm1, + eye: () => eye, + fft: () => fft, + fill: () => fill, + findBackend: () => findBackend, + findBackendFactory: () => findBackendFactory, + floor: () => floor, + floorDiv: () => floorDiv, + forceHalfFloat: () => forceHalfFloat, + fused: () => fused_ops_exports, + gather: () => gather, + gatherND: () => gatherND, + gather_util: () => gather_nd_util_exports, + getBackend: () => getBackend, + getGradient: () => getGradient, + getKernel: () => getKernel, + getKernelsForBackend: () => getKernelsForBackend, + gpgpu_util: () => gpgpu_util_exports, + grad: () => grad, + grads: () => grads, + greater: () => greater, + greaterEqual: () => greaterEqual, + ifft: () => ifft, + imag: () => imag, + image: () => image, + inTopKAsync: () => inTopKAsync, + initializers: () => exports_initializers_exports, + input: () => input, + io: () => io_exports, + irfft: () => irfft, + isFinite: () => isFinite2, + isInf: () => isInf, + isNaN: () => isNaN2, + keep: () => keep, + kernel_impls: () => kernel_impls_exports, + layers: () => exports_layers_exports, + leakyRelu: () => leakyRelu, + less: () => less, + lessEqual: () => lessEqual, + linalg: () => linalg, + linspace: () => linspace, + loadGraphModel: () => loadGraphModel, + loadLayersModel: () => loadLayersModel, + localResponseNormalization: () => localResponseNormalization, + log: () => log2, + log1p: () => log1p, + logSigmoid: () => logSigmoid, + logSoftmax: () => logSoftmax, + logSumExp: () => logSumExp, + logicalAnd: () => logicalAnd, + logicalNot: () => logicalNot, + logicalOr: () => logicalOr, + logicalXor: () => logicalXor, + losses: () => losses, + matMul: () => matMul, + math: () => math_exports, + max: () => max, + maxPool: () => maxPool, + maxPool3d: () => maxPool3d, + maxPoolWithArgmax: () => maxPoolWithArgmax, + maximum: () => maximum, + mean: () => mean, + memory: () => memory, + metrics: () => exports_metrics_exports, + min: () => min, + minimum: () => minimum, + mirrorPad: () => mirrorPad, + mod: () => mod, + model: () => model, + models: () => exports_models_exports, + moments: () => moments, + movingAverage: () => movingAverage, + mul: () => mul, + multiRNNCell: () => multiRNNCell, + multinomial: () => multinomial, + neg: () => neg, + nextFrame: () => nextFrame, + norm: () => norm, + notEqual: () => notEqual, + oneHot: () => oneHot, + ones: () => ones2, + onesLike: () => onesLike, + op: () => op, + outerProduct: () => outerProduct, + pad: () => pad, + pad1d: () => pad1d, + pad2d: () => pad2d, + pad3d: () => pad3d, + pad4d: () => pad4d, + pool: () => pool, + pow: () => pow, + prelu: () => prelu, + print: () => print2, + prod: () => prod, + profile: () => profile, + rand: () => rand, + randomGamma: () => randomGamma, + randomNormal: () => randomNormal, + randomUniform: () => randomUniform, + range: () => range, + ready: () => ready, + real: () => real, + reciprocal: () => reciprocal, + registerBackend: () => registerBackend, + registerCallbackConstructor: () => registerCallbackConstructor, + registerGradient: () => registerGradient, + registerKernel: () => registerKernel, + registerOp: () => registerOp, + regularizers: () => exports_regularizers_exports, + relu: () => relu, + relu6: () => relu6, + removeBackend: () => removeBackend, + reshape: () => reshape, + reverse: () => reverse, + reverse1d: () => reverse1d, + reverse2d: () => reverse2d, + reverse3d: () => reverse3d, + reverse4d: () => reverse4d, + rfft: () => rfft, + round: () => round2, + rsqrt: () => rsqrt, + scalar: () => scalar, + scatterND: () => scatterND, + scatter_util: () => scatter_nd_util_exports, + selu: () => selu, + separableConv2d: () => separableConv2d, + sequential: () => sequential, + serialization: () => serialization_exports, + setBackend: () => setBackend, + setPlatform: () => setPlatform, + setWasmPath: () => setWasmPath, + setWasmPaths: () => setWasmPaths, + setWebGLContext: () => setWebGLContext, + setdiff1dAsync: () => setdiff1dAsync, + shared: () => shared_exports, + sigmoid: () => sigmoid, + sign: () => sign, + signal: () => signal, + sin: () => sin, + sinh: () => sinh, + slice: () => slice, + slice1d: () => slice1d, + slice2d: () => slice2d, + slice3d: () => slice3d, + slice4d: () => slice4d, + slice_util: () => slice_util_exports, + softmax: () => softmax, + softplus: () => softplus, + spaceToBatchND: () => spaceToBatchND, + sparseToDense: () => sparseToDense, + spectral: () => spectral, + split: () => split, + sqrt: () => sqrt, + square: () => square, + squaredDifference: () => squaredDifference, + squeeze: () => squeeze, + stack: () => stack, + step: () => step, + stridedSlice: () => stridedSlice, + sub: () => sub, + sum: () => sum2, + sumOutType: () => sumOutType, + tan: () => tan, + tanh: () => tanh2, + tensor: () => tensor, + tensor1d: () => tensor1d, + tensor2d: () => tensor2d, + tensor3d: () => tensor3d, + tensor4d: () => tensor4d, + tensor5d: () => tensor5d, + tensor6d: () => tensor6d, + tensor_util: () => tensor_util_exports, + test_util: () => test_util_exports, + tidy: () => tidy, + tile: () => tile, + time: () => time, + topk: () => topk, + train: () => train, + transpose: () => transpose, + truncatedNormal: () => truncatedNormal, + unique: () => unique, + unregisterGradient: () => unregisterGradient, + unregisterKernel: () => unregisterKernel, + unsortedSegmentSum: () => unsortedSegmentSum, + unstack: () => unstack, + upcastType: () => upcastType, + util: () => util_exports, + valueAndGrad: () => valueAndGrad, + valueAndGrads: () => valueAndGrads, + variable: () => variable, + variableGrads: () => variableGrads, + version: () => version13, + version_converter: () => version11, + version_core: () => version6, + version_cpu: () => version7, + version_layers: () => version10, + version_wasm: () => version9, + version_webgl: () => version8, + webgl: () => webgl, + webgl_util: () => webgl_util_exports, + where: () => where, + whereAsync: () => whereAsync, + zeros: () => zeros, + zerosLike: () => zerosLike +}); +var __create2 = Object.create; +var __defProp2 = Object.defineProperty; +var __getProtoOf2 = Object.getPrototypeOf; +var __hasOwnProp2 = Object.prototype.hasOwnProperty; +var __getOwnPropNames2 = Object.getOwnPropertyNames; +var __getOwnPropDesc2 = Object.getOwnPropertyDescriptor; +var __markAsModule2 = (target) => __defProp2(target, "__esModule", {value: true}); +var __commonJS2 = (callback, module2) => () => { + if (!module2) { + module2 = {exports: {}}; + callback(module2.exports, module2); + } + return module2.exports; +}; +var __export2 = (target, all4) => { + for (var name2 in all4) + __defProp2(target, name2, {get: all4[name2], enumerable: true}); +}; +var __exportStar2 = (target, module2, desc) => { + if (module2 && typeof module2 === "object" || typeof module2 === "function") { + for (let key of __getOwnPropNames2(module2)) + if (!__hasOwnProp2.call(target, key) && key !== "default") + __defProp2(target, key, {get: () => module2[key], enumerable: !(desc = __getOwnPropDesc2(module2, key)) || desc.enumerable}); + } + return target; +}; +var __toModule2 = (module2) => { + if (module2 && module2.__esModule) + return module2; + return __exportStar2(__markAsModule2(__defProp2(module2 != null ? __create2(__getProtoOf2(module2)) : {}, "default", {value: module2, enumerable: true})), module2); +}; +var require_browser = __commonJS2(() => { +}); +var require_alea = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function Alea(seed) { + var me = this, mash = Mash(); + me.next = function() { + var t = 2091639 * me.s0 + me.c * 23283064365386963e-26; + me.s0 = me.s1; + me.s1 = me.s2; + return me.s2 = t - (me.c = t | 0); + }; + me.c = 1; + me.s0 = mash(" "); + me.s1 = mash(" "); + me.s2 = mash(" "); + me.s0 -= mash(seed); + if (me.s0 < 0) { + me.s0 += 1; + } + me.s1 -= mash(seed); + if (me.s1 < 0) { + me.s1 += 1; + } + me.s2 -= mash(seed); + if (me.s2 < 0) { + me.s2 += 1; + } + mash = null; + } + function copy(f, t) { + t.c = f.c; + t.s0 = f.s0; + t.s1 = f.s1; + t.s2 = f.s2; + return t; + } + function impl(seed, opts) { + var xg = new Alea(seed), state = opts && opts.state, prng = xg.next; + prng.int32 = function() { + return xg.next() * 4294967296 | 0; + }; + prng.double = function() { + return prng() + (prng() * 2097152 | 0) * 11102230246251565e-32; + }; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + function Mash() { + var n = 4022871197; + var mash = function(data2) { + data2 = data2.toString(); + for (var i = 0; i < data2.length; i++) { + n += data2.charCodeAt(i); + var h = 0.02519603282416938 * n; + n = h >>> 0; + h -= n; + h *= n; + n = h >>> 0; + h -= n; + n += h * 4294967296; + } + return (n >>> 0) * 23283064365386963e-26; + }; + return mash; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.alea = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xor128 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.x = 0; + me.y = 0; + me.z = 0; + me.w = 0; + me.next = function() { + var t = me.x ^ me.x << 11; + me.x = me.y; + me.y = me.z; + me.z = me.w; + return me.w ^= me.w >>> 19 ^ t ^ t >>> 8; + }; + if (seed === (seed | 0)) { + me.x = seed; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 64; k++) { + me.x ^= strseed.charCodeAt(k) | 0; + me.next(); + } + } + function copy(f, t) { + t.x = f.x; + t.y = f.y; + t.z = f.z; + t.w = f.w; + return t; + } + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xor128 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xorwow = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.next = function() { + var t = me.x ^ me.x >>> 2; + me.x = me.y; + me.y = me.z; + me.z = me.w; + me.w = me.v; + return (me.d = me.d + 362437 | 0) + (me.v = me.v ^ me.v << 4 ^ (t ^ t << 1)) | 0; + }; + me.x = 0; + me.y = 0; + me.z = 0; + me.w = 0; + me.v = 0; + if (seed === (seed | 0)) { + me.x = seed; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 64; k++) { + me.x ^= strseed.charCodeAt(k) | 0; + if (k == strseed.length) { + me.d = me.x << 10 ^ me.x >>> 4; + } + me.next(); + } + } + function copy(f, t) { + t.x = f.x; + t.y = f.y; + t.z = f.z; + t.w = f.w; + t.v = f.v; + t.d = f.d; + return t; + } + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xorwow = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xorshift7 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this; + me.next = function() { + var X = me.x, i = me.i, t, v, w; + t = X[i]; + t ^= t >>> 7; + v = t ^ t << 24; + t = X[i + 1 & 7]; + v ^= t ^ t >>> 10; + t = X[i + 3 & 7]; + v ^= t ^ t >>> 3; + t = X[i + 4 & 7]; + v ^= t ^ t << 7; + t = X[i + 7 & 7]; + t = t ^ t << 13; + v ^= t ^ t << 9; + X[i] = v; + me.i = i + 1 & 7; + return v; + }; + function init2(me2, seed2) { + var j, w, X = []; + if (seed2 === (seed2 | 0)) { + w = X[0] = seed2; + } else { + seed2 = "" + seed2; + for (j = 0; j < seed2.length; ++j) { + X[j & 7] = X[j & 7] << 15 ^ seed2.charCodeAt(j) + X[j + 1 & 7] << 13; + } + } + while (X.length < 8) + X.push(0); + for (j = 0; j < 8 && X[j] === 0; ++j) + ; + if (j == 8) + w = X[7] = -1; + else + w = X[j]; + me2.x = X; + me2.i = 0; + for (j = 256; j > 0; --j) { + me2.next(); + } + } + init2(me, seed); + } + function copy(f, t) { + t.x = f.x.slice(); + t.i = f.i; + return t; + } + function impl(seed, opts) { + if (seed == null) + seed = +new Date(); + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (state.x) + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xorshift7 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xor4096 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this; + me.next = function() { + var w = me.w, X = me.X, i = me.i, t, v; + me.w = w = w + 1640531527 | 0; + v = X[i + 34 & 127]; + t = X[i = i + 1 & 127]; + v ^= v << 13; + t ^= t << 17; + v ^= v >>> 15; + t ^= t >>> 12; + v = X[i] = v ^ t; + me.i = i; + return v + (w ^ w >>> 16) | 0; + }; + function init2(me2, seed2) { + var t, v, i, j, w, X = [], limit = 128; + if (seed2 === (seed2 | 0)) { + v = seed2; + seed2 = null; + } else { + seed2 = seed2 + "\0"; + v = 0; + limit = Math.max(limit, seed2.length); + } + for (i = 0, j = -32; j < limit; ++j) { + if (seed2) + v ^= seed2.charCodeAt((j + 32) % seed2.length); + if (j === 0) + w = v; + v ^= v << 10; + v ^= v >>> 15; + v ^= v << 4; + v ^= v >>> 13; + if (j >= 0) { + w = w + 1640531527 | 0; + t = X[j & 127] ^= v + w; + i = t == 0 ? i + 1 : 0; + } + } + if (i >= 128) { + X[(seed2 && seed2.length || 0) & 127] = -1; + } + i = 127; + for (j = 4 * 128; j > 0; --j) { + v = X[i + 34 & 127]; + t = X[i = i + 1 & 127]; + v ^= v << 13; + t ^= t << 17; + v ^= v >>> 15; + t ^= t >>> 12; + X[i] = v ^ t; + } + me2.w = w; + me2.X = X; + me2.i = i; + } + init2(me, seed); + } + function copy(f, t) { + t.i = f.i; + t.w = f.w; + t.X = f.X.slice(); + return t; + } + ; + function impl(seed, opts) { + if (seed == null) + seed = +new Date(); + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (state.X) + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xor4096 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_tychei = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.next = function() { + var b = me.b, c = me.c, d = me.d, a = me.a; + b = b << 25 ^ b >>> 7 ^ c; + c = c - d | 0; + d = d << 24 ^ d >>> 8 ^ a; + a = a - b | 0; + me.b = b = b << 20 ^ b >>> 12 ^ c; + me.c = c = c - d | 0; + me.d = d << 16 ^ c >>> 16 ^ a; + return me.a = a - b | 0; + }; + me.a = 0; + me.b = 0; + me.c = 2654435769 | 0; + me.d = 1367130551; + if (seed === Math.floor(seed)) { + me.a = seed / 4294967296 | 0; + me.b = seed | 0; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 20; k++) { + me.b ^= strseed.charCodeAt(k) | 0; + me.next(); + } + } + function copy(f, t) { + t.a = f.a; + t.b = f.b; + t.c = f.c; + t.d = f.d; + return t; + } + ; + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.tychei = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_crypto = __commonJS2(() => { +}); +var require_seedrandom = __commonJS2((exports, module2) => { + (function(pool3, math) { + var global2 = this, width = 256, chunks = 6, digits = 52, rngname = "random", startdenom = math.pow(width, chunks), significance = math.pow(2, digits), overflow = significance * 2, mask = width - 1, nodecrypto; + function seedrandom5(seed, options, callback) { + var key = []; + options = options == true ? {entropy: true} : options || {}; + var shortseed = mixkey(flatten4(options.entropy ? [seed, tostring(pool3)] : seed == null ? autoseed() : seed, 3), key); + var arc4 = new ARC4(key); + var prng = function() { + var n = arc4.g(chunks), d = startdenom, x = 0; + while (n < significance) { + n = (n + x) * width; + d *= width; + x = arc4.g(1); + } + while (n >= overflow) { + n /= 2; + d /= 2; + x >>>= 1; + } + return (n + x) / d; + }; + prng.int32 = function() { + return arc4.g(4) | 0; + }; + prng.quick = function() { + return arc4.g(4) / 4294967296; + }; + prng.double = prng; + mixkey(tostring(arc4.S), pool3); + return (options.pass || callback || function(prng2, seed2, is_math_call, state) { + if (state) { + if (state.S) { + copy(state, arc4); + } + prng2.state = function() { + return copy(arc4, {}); + }; + } + if (is_math_call) { + math[rngname] = prng2; + return seed2; + } else + return prng2; + })(prng, shortseed, "global" in options ? options.global : this == math, options.state); + } + math["seed" + rngname] = seedrandom5; + function ARC4(key) { + var t, keylen = key.length, me = this, i = 0, j = me.i = me.j = 0, s = me.S = []; + if (!keylen) { + key = [keylen++]; + } + while (i < width) { + s[i] = i++; + } + for (i = 0; i < width; i++) { + s[i] = s[j = mask & j + key[i % keylen] + (t = s[i])]; + s[j] = t; + } + (me.g = function(count2) { + var t2, r = 0, i2 = me.i, j2 = me.j, s2 = me.S; + while (count2--) { + t2 = s2[i2 = mask & i2 + 1]; + r = r * width + s2[mask & (s2[i2] = s2[j2 = mask & j2 + t2]) + (s2[j2] = t2)]; + } + me.i = i2; + me.j = j2; + return r; + })(width); + } + function copy(f, t) { + t.i = f.i; + t.j = f.j; + t.S = f.S.slice(); + return t; + } + ; + function flatten4(obj, depth) { + var result = [], typ = typeof obj, prop; + if (depth && typ == "object") { + for (prop in obj) { + try { + result.push(flatten4(obj[prop], depth - 1)); + } catch (e) { + } + } + } + return result.length ? result : typ == "string" ? obj : obj + "\0"; + } + function mixkey(seed, key) { + var stringseed = seed + "", smear, j = 0; + while (j < stringseed.length) { + key[mask & j] = mask & (smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++); + } + return tostring(key); + } + function autoseed() { + try { + var out; + if (nodecrypto && (out = nodecrypto.randomBytes)) { + out = out(width); + } else { + out = new Uint8Array(width); + (global2.crypto || global2.msCrypto).getRandomValues(out); + } + return tostring(out); + } catch (e) { + var browser2 = global2.navigator, plugins = browser2 && browser2.plugins; + return [+new Date(), global2, plugins, global2.screen, tostring(pool3)]; + } + } + function tostring(a) { + return String.fromCharCode.apply(0, a); + } + mixkey(math.random(), pool3); + if (typeof module2 == "object" && module2.exports) { + module2.exports = seedrandom5; + try { + nodecrypto = require_crypto(); + } catch (ex) { + } + } else if (typeof define == "function" && define.amd) { + define(function() { + return seedrandom5; + }); + } + })([], Math); +}); +var require_seedrandom2 = __commonJS2((exports, module2) => { + var alea5 = require_alea(); + var xor128 = require_xor128(); + var xorwow = require_xorwow(); + var xorshift7 = require_xorshift7(); + var xor4096 = require_xor4096(); + var tychei = require_tychei(); + var sr = require_seedrandom(); + sr.alea = alea5; + sr.xor128 = xor128; + sr.xorwow = xorwow; + sr.xorshift7 = xorshift7; + sr.xor4096 = xor4096; + sr.tychei = tychei; + module2.exports = sr; +}); +var require_alea2 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function Alea(seed) { + var me = this, mash = Mash(); + me.next = function() { + var t = 2091639 * me.s0 + me.c * 23283064365386963e-26; + me.s0 = me.s1; + me.s1 = me.s2; + return me.s2 = t - (me.c = t | 0); + }; + me.c = 1; + me.s0 = mash(" "); + me.s1 = mash(" "); + me.s2 = mash(" "); + me.s0 -= mash(seed); + if (me.s0 < 0) { + me.s0 += 1; + } + me.s1 -= mash(seed); + if (me.s1 < 0) { + me.s1 += 1; + } + me.s2 -= mash(seed); + if (me.s2 < 0) { + me.s2 += 1; + } + mash = null; + } + function copy(f, t) { + t.c = f.c; + t.s0 = f.s0; + t.s1 = f.s1; + t.s2 = f.s2; + return t; + } + function impl(seed, opts) { + var xg = new Alea(seed), state = opts && opts.state, prng = xg.next; + prng.int32 = function() { + return xg.next() * 4294967296 | 0; + }; + prng.double = function() { + return prng() + (prng() * 2097152 | 0) * 11102230246251565e-32; + }; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + function Mash() { + var n = 4022871197; + var mash = function(data2) { + data2 = data2.toString(); + for (var i = 0; i < data2.length; i++) { + n += data2.charCodeAt(i); + var h = 0.02519603282416938 * n; + n = h >>> 0; + h -= n; + h *= n; + n = h >>> 0; + h -= n; + n += h * 4294967296; + } + return (n >>> 0) * 23283064365386963e-26; + }; + return mash; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.alea = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xor1282 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.x = 0; + me.y = 0; + me.z = 0; + me.w = 0; + me.next = function() { + var t = me.x ^ me.x << 11; + me.x = me.y; + me.y = me.z; + me.z = me.w; + return me.w ^= me.w >>> 19 ^ t ^ t >>> 8; + }; + if (seed === (seed | 0)) { + me.x = seed; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 64; k++) { + me.x ^= strseed.charCodeAt(k) | 0; + me.next(); + } + } + function copy(f, t) { + t.x = f.x; + t.y = f.y; + t.z = f.z; + t.w = f.w; + return t; + } + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xor128 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xorwow2 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.next = function() { + var t = me.x ^ me.x >>> 2; + me.x = me.y; + me.y = me.z; + me.z = me.w; + me.w = me.v; + return (me.d = me.d + 362437 | 0) + (me.v = me.v ^ me.v << 4 ^ (t ^ t << 1)) | 0; + }; + me.x = 0; + me.y = 0; + me.z = 0; + me.w = 0; + me.v = 0; + if (seed === (seed | 0)) { + me.x = seed; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 64; k++) { + me.x ^= strseed.charCodeAt(k) | 0; + if (k == strseed.length) { + me.d = me.x << 10 ^ me.x >>> 4; + } + me.next(); + } + } + function copy(f, t) { + t.x = f.x; + t.y = f.y; + t.z = f.z; + t.w = f.w; + t.v = f.v; + t.d = f.d; + return t; + } + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xorwow = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xorshift72 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this; + me.next = function() { + var X = me.x, i = me.i, t, v, w; + t = X[i]; + t ^= t >>> 7; + v = t ^ t << 24; + t = X[i + 1 & 7]; + v ^= t ^ t >>> 10; + t = X[i + 3 & 7]; + v ^= t ^ t >>> 3; + t = X[i + 4 & 7]; + v ^= t ^ t << 7; + t = X[i + 7 & 7]; + t = t ^ t << 13; + v ^= t ^ t << 9; + X[i] = v; + me.i = i + 1 & 7; + return v; + }; + function init2(me2, seed2) { + var j, w, X = []; + if (seed2 === (seed2 | 0)) { + w = X[0] = seed2; + } else { + seed2 = "" + seed2; + for (j = 0; j < seed2.length; ++j) { + X[j & 7] = X[j & 7] << 15 ^ seed2.charCodeAt(j) + X[j + 1 & 7] << 13; + } + } + while (X.length < 8) + X.push(0); + for (j = 0; j < 8 && X[j] === 0; ++j) + ; + if (j == 8) + w = X[7] = -1; + else + w = X[j]; + me2.x = X; + me2.i = 0; + for (j = 256; j > 0; --j) { + me2.next(); + } + } + init2(me, seed); + } + function copy(f, t) { + t.x = f.x.slice(); + t.i = f.i; + return t; + } + function impl(seed, opts) { + if (seed == null) + seed = +new Date(); + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (state.x) + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xorshift7 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xor40962 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this; + me.next = function() { + var w = me.w, X = me.X, i = me.i, t, v; + me.w = w = w + 1640531527 | 0; + v = X[i + 34 & 127]; + t = X[i = i + 1 & 127]; + v ^= v << 13; + t ^= t << 17; + v ^= v >>> 15; + t ^= t >>> 12; + v = X[i] = v ^ t; + me.i = i; + return v + (w ^ w >>> 16) | 0; + }; + function init2(me2, seed2) { + var t, v, i, j, w, X = [], limit = 128; + if (seed2 === (seed2 | 0)) { + v = seed2; + seed2 = null; + } else { + seed2 = seed2 + "\0"; + v = 0; + limit = Math.max(limit, seed2.length); + } + for (i = 0, j = -32; j < limit; ++j) { + if (seed2) + v ^= seed2.charCodeAt((j + 32) % seed2.length); + if (j === 0) + w = v; + v ^= v << 10; + v ^= v >>> 15; + v ^= v << 4; + v ^= v >>> 13; + if (j >= 0) { + w = w + 1640531527 | 0; + t = X[j & 127] ^= v + w; + i = t == 0 ? i + 1 : 0; + } + } + if (i >= 128) { + X[(seed2 && seed2.length || 0) & 127] = -1; + } + i = 127; + for (j = 4 * 128; j > 0; --j) { + v = X[i + 34 & 127]; + t = X[i = i + 1 & 127]; + v ^= v << 13; + t ^= t << 17; + v ^= v >>> 15; + t ^= t >>> 12; + X[i] = v ^ t; + } + me2.w = w; + me2.X = X; + me2.i = i; + } + init2(me, seed); + } + function copy(f, t) { + t.i = f.i; + t.w = f.w; + t.X = f.X.slice(); + return t; + } + ; + function impl(seed, opts) { + if (seed == null) + seed = +new Date(); + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (state.X) + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xor4096 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_tychei2 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.next = function() { + var b = me.b, c = me.c, d = me.d, a = me.a; + b = b << 25 ^ b >>> 7 ^ c; + c = c - d | 0; + d = d << 24 ^ d >>> 8 ^ a; + a = a - b | 0; + me.b = b = b << 20 ^ b >>> 12 ^ c; + me.c = c = c - d | 0; + me.d = d << 16 ^ c >>> 16 ^ a; + return me.a = a - b | 0; + }; + me.a = 0; + me.b = 0; + me.c = 2654435769 | 0; + me.d = 1367130551; + if (seed === Math.floor(seed)) { + me.a = seed / 4294967296 | 0; + me.b = seed | 0; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 20; k++) { + me.b ^= strseed.charCodeAt(k) | 0; + me.next(); + } + } + function copy(f, t) { + t.a = f.a; + t.b = f.b; + t.c = f.c; + t.d = f.d; + return t; + } + ; + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.tychei = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_seedrandom3 = __commonJS2((exports, module2) => { + (function(pool3, math) { + var global2 = this, width = 256, chunks = 6, digits = 52, rngname = "random", startdenom = math.pow(width, chunks), significance = math.pow(2, digits), overflow = significance * 2, mask = width - 1, nodecrypto; + function seedrandom5(seed, options, callback) { + var key = []; + options = options == true ? {entropy: true} : options || {}; + var shortseed = mixkey(flatten4(options.entropy ? [seed, tostring(pool3)] : seed == null ? autoseed() : seed, 3), key); + var arc4 = new ARC4(key); + var prng = function() { + var n = arc4.g(chunks), d = startdenom, x = 0; + while (n < significance) { + n = (n + x) * width; + d *= width; + x = arc4.g(1); + } + while (n >= overflow) { + n /= 2; + d /= 2; + x >>>= 1; + } + return (n + x) / d; + }; + prng.int32 = function() { + return arc4.g(4) | 0; + }; + prng.quick = function() { + return arc4.g(4) / 4294967296; + }; + prng.double = prng; + mixkey(tostring(arc4.S), pool3); + return (options.pass || callback || function(prng2, seed2, is_math_call, state) { + if (state) { + if (state.S) { + copy(state, arc4); + } + prng2.state = function() { + return copy(arc4, {}); + }; + } + if (is_math_call) { + math[rngname] = prng2; + return seed2; + } else + return prng2; + })(prng, shortseed, "global" in options ? options.global : this == math, options.state); + } + math["seed" + rngname] = seedrandom5; + function ARC4(key) { + var t, keylen = key.length, me = this, i = 0, j = me.i = me.j = 0, s = me.S = []; + if (!keylen) { + key = [keylen++]; + } + while (i < width) { + s[i] = i++; + } + for (i = 0; i < width; i++) { + s[i] = s[j = mask & j + key[i % keylen] + (t = s[i])]; + s[j] = t; + } + (me.g = function(count2) { + var t2, r = 0, i2 = me.i, j2 = me.j, s2 = me.S; + while (count2--) { + t2 = s2[i2 = mask & i2 + 1]; + r = r * width + s2[mask & (s2[i2] = s2[j2 = mask & j2 + t2]) + (s2[j2] = t2)]; + } + me.i = i2; + me.j = j2; + return r; + })(width); + } + function copy(f, t) { + t.i = f.i; + t.j = f.j; + t.S = f.S.slice(); + return t; + } + ; + function flatten4(obj, depth) { + var result = [], typ = typeof obj, prop; + if (depth && typ == "object") { + for (prop in obj) { + try { + result.push(flatten4(obj[prop], depth - 1)); + } catch (e) { + } + } + } + return result.length ? result : typ == "string" ? obj : obj + "\0"; + } + function mixkey(seed, key) { + var stringseed = seed + "", smear, j = 0; + while (j < stringseed.length) { + key[mask & j] = mask & (smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++); + } + return tostring(key); + } + function autoseed() { + try { + var out; + if (nodecrypto && (out = nodecrypto.randomBytes)) { + out = out(width); + } else { + out = new Uint8Array(width); + (global2.crypto || global2.msCrypto).getRandomValues(out); + } + return tostring(out); + } catch (e) { + var browser2 = global2.navigator, plugins = browser2 && browser2.plugins; + return [+new Date(), global2, plugins, global2.screen, tostring(pool3)]; + } + } + function tostring(a) { + return String.fromCharCode.apply(0, a); + } + mixkey(math.random(), pool3); + if (typeof module2 == "object" && module2.exports) { + module2.exports = seedrandom5; + try { + nodecrypto = require_crypto(); + } catch (ex) { + } + } else if (typeof define == "function" && define.amd) { + define(function() { + return seedrandom5; + }); + } + })([], Math); +}); +var require_seedrandom4 = __commonJS2((exports, module2) => { + var alea5 = require_alea2(); + var xor128 = require_xor1282(); + var xorwow = require_xorwow2(); + var xorshift7 = require_xorshift72(); + var xor4096 = require_xor40962(); + var tychei = require_tychei2(); + var sr = require_seedrandom3(); + sr.alea = alea5; + sr.xor128 = xor128; + sr.xorwow = xorwow; + sr.xorshift7 = xorshift7; + sr.xor4096 = xor4096; + sr.tychei = tychei; + module2.exports = sr; +}); +var require_path = __commonJS2(() => { +}); +var require_worker_threads = __commonJS2(() => { +}); +var require_perf_hooks = __commonJS2(() => { +}); +var require_tfjs_backend_wasm_threaded_simd = __commonJS2((exports, module2) => { + var WasmBackendModuleThreadedSimd = function() { + var _scriptDir = typeof document !== "undefined" && document.currentScript ? document.currentScript.src : void 0; + if (typeof __filename !== "undefined") + _scriptDir = _scriptDir || __filename; + return function(WasmBackendModuleThreadedSimd2) { + WasmBackendModuleThreadedSimd2 = WasmBackendModuleThreadedSimd2 || {}; + function GROWABLE_HEAP_I8() { + if (wasmMemory.buffer != buffer2) { + updateGlobalBufferAndViews(wasmMemory.buffer); + } + return HEAP8; + } + function GROWABLE_HEAP_U8() { + if (wasmMemory.buffer != buffer2) { + updateGlobalBufferAndViews(wasmMemory.buffer); + } + return HEAPU8; + } + function GROWABLE_HEAP_I32() { + if (wasmMemory.buffer != buffer2) { + updateGlobalBufferAndViews(wasmMemory.buffer); + } + return HEAP32; + } + function GROWABLE_HEAP_U32() { + if (wasmMemory.buffer != buffer2) { + updateGlobalBufferAndViews(wasmMemory.buffer); + } + return HEAPU32; + } + function GROWABLE_HEAP_F64() { + if (wasmMemory.buffer != buffer2) { + updateGlobalBufferAndViews(wasmMemory.buffer); + } + return HEAPF64; + } + var Module = typeof WasmBackendModuleThreadedSimd2 !== "undefined" ? WasmBackendModuleThreadedSimd2 : {}; + var readyPromiseResolve, readyPromiseReject; + Module["ready"] = new Promise(function(resolve, reject) { + readyPromiseResolve = resolve; + readyPromiseReject = reject; + }); + var moduleOverrides = {}; + var key; + for (key in Module) { + if (Module.hasOwnProperty(key)) { + moduleOverrides[key] = Module[key]; + } + } + var arguments_ = []; + var thisProgram = "./this.program"; + var quit_ = function(status2, toThrow) { + throw toThrow; + }; + var ENVIRONMENT_IS_WEB = false; + var ENVIRONMENT_IS_WORKER = false; + var ENVIRONMENT_IS_NODE = false; + var ENVIRONMENT_IS_SHELL = false; + ENVIRONMENT_IS_WEB = typeof window === "object"; + ENVIRONMENT_IS_WORKER = typeof importScripts === "function"; + ENVIRONMENT_IS_NODE = typeof process === "object" && typeof process.versions === "object" && typeof process.versions.node === "string"; + ENVIRONMENT_IS_SHELL = !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER; + var ENVIRONMENT_IS_PTHREAD = Module["ENVIRONMENT_IS_PTHREAD"] || false; + if (ENVIRONMENT_IS_PTHREAD) { + buffer2 = Module["buffer"]; + } + var scriptDirectory = ""; + function locateFile(path) { + if (Module["locateFile"]) { + return Module["locateFile"](path, scriptDirectory); + } + return scriptDirectory + path; + } + var read_, readAsync, readBinary, setWindowTitle; + var nodeFS; + var nodePath; + if (ENVIRONMENT_IS_NODE) { + if (ENVIRONMENT_IS_WORKER) { + scriptDirectory = require_path().dirname(scriptDirectory) + "/"; + } else { + scriptDirectory = __dirname + "/"; + } + read_ = function shell_read(filename, binary) { + if (!nodeFS) + nodeFS = require("fs"); + if (!nodePath) + nodePath = require_path(); + filename = nodePath["normalize"](filename); + return nodeFS["readFileSync"](filename, binary ? null : "utf8"); + }; + readBinary = function readBinary2(filename) { + var ret = read_(filename, true); + if (!ret.buffer) { + ret = new Uint8Array(ret); + } + assert3(ret.buffer); + return ret; + }; + if (process["argv"].length > 1) { + thisProgram = process["argv"][1].replace(/\\/g, "/"); + } + arguments_ = process["argv"].slice(2); + process["on"]("uncaughtException", function(ex) { + if (!(ex instanceof ExitStatus)) { + throw ex; + } + }); + process["on"]("unhandledRejection", abort); + quit_ = function(status2) { + process["exit"](status2); + }; + Module["inspect"] = function() { + return "[Emscripten Module object]"; + }; + var nodeWorkerThreads; + try { + nodeWorkerThreads = require_worker_threads(); + } catch (e) { + console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'); + throw e; + } + global.Worker = nodeWorkerThreads.Worker; + } else if (ENVIRONMENT_IS_SHELL) { + if (typeof read != "undefined") { + read_ = function shell_read(f) { + return read(f); + }; + } + readBinary = function readBinary2(f) { + var data2; + if (typeof readbuffer === "function") { + return new Uint8Array(readbuffer(f)); + } + data2 = read(f, "binary"); + assert3(typeof data2 === "object"); + return data2; + }; + if (typeof scriptArgs != "undefined") { + arguments_ = scriptArgs; + } else if (typeof arguments != "undefined") { + arguments_ = arguments; + } + if (typeof quit === "function") { + quit_ = function(status2) { + quit(status2); + }; + } + if (typeof print !== "undefined") { + if (typeof console === "undefined") + console = {}; + console.log = print; + console.warn = console.error = typeof printErr !== "undefined" ? printErr : print; + } + } else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) { + if (ENVIRONMENT_IS_WORKER) { + scriptDirectory = self.location.href; + } else if (typeof document !== "undefined" && document.currentScript) { + scriptDirectory = document.currentScript.src; + } + if (typeof _scriptDir !== "undefined" && _scriptDir) { + scriptDirectory = _scriptDir; + } + if (scriptDirectory.indexOf("blob:") !== 0) { + scriptDirectory = scriptDirectory.substr(0, scriptDirectory.lastIndexOf("/") + 1); + } else { + scriptDirectory = ""; + } + if (ENVIRONMENT_IS_NODE) { + read_ = function shell_read(filename, binary) { + if (!nodeFS) + nodeFS = require("fs"); + if (!nodePath) + nodePath = require_path(); + filename = nodePath["normalize"](filename); + return nodeFS["readFileSync"](filename, binary ? null : "utf8"); + }; + readBinary = function readBinary2(filename) { + var ret = read_(filename, true); + if (!ret.buffer) { + ret = new Uint8Array(ret); + } + assert3(ret.buffer); + return ret; + }; + } else { + read_ = function(url) { + var xhr = new XMLHttpRequest(); + xhr.open("GET", url, false); + xhr.send(null); + return xhr.responseText; + }; + if (ENVIRONMENT_IS_WORKER) { + readBinary = function(url) { + var xhr = new XMLHttpRequest(); + xhr.open("GET", url, false); + xhr.responseType = "arraybuffer"; + xhr.send(null); + return new Uint8Array(xhr.response); + }; + } + readAsync = function(url, onload, onerror) { + var xhr = new XMLHttpRequest(); + xhr.open("GET", url, true); + xhr.responseType = "arraybuffer"; + xhr.onload = function() { + if (xhr.status == 200 || xhr.status == 0 && xhr.response) { + onload(xhr.response); + return; + } + onerror(); + }; + xhr.onerror = onerror; + xhr.send(null); + }; + } + setWindowTitle = function(title) { + document.title = title; + }; + } else { + } + if (ENVIRONMENT_IS_NODE) { + if (typeof performance === "undefined") { + global.performance = require_perf_hooks().performance; + } + } + var out = Module["print"] || console.log.bind(console); + var err = Module["printErr"] || console.warn.bind(console); + for (key in moduleOverrides) { + if (moduleOverrides.hasOwnProperty(key)) { + Module[key] = moduleOverrides[key]; + } + } + moduleOverrides = null; + if (Module["arguments"]) + arguments_ = Module["arguments"]; + if (Module["thisProgram"]) + thisProgram = Module["thisProgram"]; + if (Module["quit"]) + quit_ = Module["quit"]; + var Atomics_load = Atomics.load; + var Atomics_store = Atomics.store; + var Atomics_compareExchange = Atomics.compareExchange; + var wasmBinary; + if (Module["wasmBinary"]) + wasmBinary = Module["wasmBinary"]; + var noExitRuntime = Module["noExitRuntime"] || true; + if (typeof WebAssembly !== "object") { + abort("no native wasm support detected"); + } + var wasmMemory; + var wasmModule; + var ABORT = false; + var EXITSTATUS; + function assert3(condition, text) { + if (!condition) { + abort("Assertion failed: " + text); + } + } + function getCFunc(ident) { + var func2 = Module["_" + ident]; + assert3(func2, "Cannot call unknown function " + ident + ", make sure it is exported"); + return func2; + } + function ccall(ident, returnType, argTypes, args, opts) { + var toC = {string: function(str2) { + var ret2 = 0; + if (str2 !== null && str2 !== void 0 && str2 !== 0) { + var len = (str2.length << 2) + 1; + ret2 = stackAlloc(len); + stringToUTF8(str2, ret2, len); + } + return ret2; + }, array: function(arr) { + var ret2 = stackAlloc(arr.length); + writeArrayToMemory(arr, ret2); + return ret2; + }}; + function convertReturnValue(ret2) { + if (returnType === "string") + return UTF8ToString(ret2); + if (returnType === "boolean") + return Boolean(ret2); + return ret2; + } + var func2 = getCFunc(ident); + var cArgs = []; + var stack2 = 0; + if (args) { + for (var i = 0; i < args.length; i++) { + var converter = toC[argTypes[i]]; + if (converter) { + if (stack2 === 0) + stack2 = stackSave(); + cArgs[i] = converter(args[i]); + } else { + cArgs[i] = args[i]; + } + } + } + var ret = func2.apply(null, cArgs); + ret = convertReturnValue(ret); + if (stack2 !== 0) + stackRestore(stack2); + return ret; + } + function cwrap(ident, returnType, argTypes, opts) { + argTypes = argTypes || []; + var numericArgs = argTypes.every(function(type) { + return type === "number"; + }); + var numericRet = returnType !== "string"; + if (numericRet && numericArgs && !opts) { + return getCFunc(ident); + } + return function() { + return ccall(ident, returnType, argTypes, arguments, opts); + }; + } + function UTF8ArrayToString(heap, idx, maxBytesToRead) { + var endIdx = idx + maxBytesToRead; + var str2 = ""; + while (!(idx >= endIdx)) { + var u0 = heap[idx++]; + if (!u0) + return str2; + if (!(u0 & 128)) { + str2 += String.fromCharCode(u0); + continue; + } + var u1 = heap[idx++] & 63; + if ((u0 & 224) == 192) { + str2 += String.fromCharCode((u0 & 31) << 6 | u1); + continue; + } + var u2 = heap[idx++] & 63; + if ((u0 & 240) == 224) { + u0 = (u0 & 15) << 12 | u1 << 6 | u2; + } else { + u0 = (u0 & 7) << 18 | u1 << 12 | u2 << 6 | heap[idx++] & 63; + } + if (u0 < 65536) { + str2 += String.fromCharCode(u0); + } else { + var ch = u0 - 65536; + str2 += String.fromCharCode(55296 | ch >> 10, 56320 | ch & 1023); + } + } + return str2; + } + function UTF8ToString(ptr, maxBytesToRead) { + return ptr ? UTF8ArrayToString(GROWABLE_HEAP_U8(), ptr, maxBytesToRead) : ""; + } + function stringToUTF8Array(str2, heap, outIdx, maxBytesToWrite) { + if (!(maxBytesToWrite > 0)) + return 0; + var startIdx = outIdx; + var endIdx = outIdx + maxBytesToWrite - 1; + for (var i = 0; i < str2.length; ++i) { + var u = str2.charCodeAt(i); + if (u >= 55296 && u <= 57343) { + var u1 = str2.charCodeAt(++i); + u = 65536 + ((u & 1023) << 10) | u1 & 1023; + } + if (u <= 127) { + if (outIdx >= endIdx) + break; + heap[outIdx++] = u; + } else if (u <= 2047) { + if (outIdx + 1 >= endIdx) + break; + heap[outIdx++] = 192 | u >> 6; + heap[outIdx++] = 128 | u & 63; + } else if (u <= 65535) { + if (outIdx + 2 >= endIdx) + break; + heap[outIdx++] = 224 | u >> 12; + heap[outIdx++] = 128 | u >> 6 & 63; + heap[outIdx++] = 128 | u & 63; + } else { + if (outIdx + 3 >= endIdx) + break; + heap[outIdx++] = 240 | u >> 18; + heap[outIdx++] = 128 | u >> 12 & 63; + heap[outIdx++] = 128 | u >> 6 & 63; + heap[outIdx++] = 128 | u & 63; + } + } + heap[outIdx] = 0; + return outIdx - startIdx; + } + function stringToUTF8(str2, outPtr, maxBytesToWrite) { + return stringToUTF8Array(str2, GROWABLE_HEAP_U8(), outPtr, maxBytesToWrite); + } + function lengthBytesUTF8(str2) { + var len = 0; + for (var i = 0; i < str2.length; ++i) { + var u = str2.charCodeAt(i); + if (u >= 55296 && u <= 57343) + u = 65536 + ((u & 1023) << 10) | str2.charCodeAt(++i) & 1023; + if (u <= 127) + ++len; + else if (u <= 2047) + len += 2; + else if (u <= 65535) + len += 3; + else + len += 4; + } + return len; + } + function writeArrayToMemory(array2, buffer3) { + GROWABLE_HEAP_I8().set(array2, buffer3); + } + function alignUp(x, multiple) { + if (x % multiple > 0) { + x += multiple - x % multiple; + } + return x; + } + var buffer2, HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64; + function updateGlobalBufferAndViews(buf) { + buffer2 = buf; + Module["HEAP8"] = HEAP8 = new Int8Array(buf); + Module["HEAP16"] = HEAP16 = new Int16Array(buf); + Module["HEAP32"] = HEAP32 = new Int32Array(buf); + Module["HEAPU8"] = HEAPU8 = new Uint8Array(buf); + Module["HEAPU16"] = HEAPU16 = new Uint16Array(buf); + Module["HEAPU32"] = HEAPU32 = new Uint32Array(buf); + Module["HEAPF32"] = HEAPF32 = new Float32Array(buf); + Module["HEAPF64"] = HEAPF64 = new Float64Array(buf); + } + var INITIAL_MEMORY = Module["INITIAL_MEMORY"] || 16777216; + if (ENVIRONMENT_IS_PTHREAD) { + wasmMemory = Module["wasmMemory"]; + buffer2 = Module["buffer"]; + } else { + if (Module["wasmMemory"]) { + wasmMemory = Module["wasmMemory"]; + } else { + wasmMemory = new WebAssembly.Memory({initial: INITIAL_MEMORY / 65536, maximum: 2147483648 / 65536, shared: true}); + if (!(wasmMemory.buffer instanceof SharedArrayBuffer)) { + err("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"); + if (ENVIRONMENT_IS_NODE) { + console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"); + } + throw Error("bad memory"); + } + } + } + if (wasmMemory) { + buffer2 = wasmMemory.buffer; + } + INITIAL_MEMORY = buffer2.byteLength; + updateGlobalBufferAndViews(buffer2); + var wasmTable; + var __ATPRERUN__ = []; + var __ATINIT__ = []; + var __ATMAIN__ = []; + var __ATEXIT__ = []; + var __ATPOSTRUN__ = []; + var runtimeInitialized = false; + var runtimeExited = false; + if (!ENVIRONMENT_IS_PTHREAD) + __ATINIT__.push({func: function() { + ___wasm_call_ctors(); + }}); + if (ENVIRONMENT_IS_PTHREAD) + runtimeInitialized = true; + function preRun() { + if (ENVIRONMENT_IS_PTHREAD) + return; + if (Module["preRun"]) { + if (typeof Module["preRun"] == "function") + Module["preRun"] = [Module["preRun"]]; + while (Module["preRun"].length) { + addOnPreRun(Module["preRun"].shift()); + } + } + callRuntimeCallbacks(__ATPRERUN__); + } + function initRuntime() { + runtimeInitialized = true; + callRuntimeCallbacks(__ATINIT__); + } + function preMain() { + if (ENVIRONMENT_IS_PTHREAD) + return; + callRuntimeCallbacks(__ATMAIN__); + } + function exitRuntime() { + if (ENVIRONMENT_IS_PTHREAD) + return; + runtimeExited = true; + } + function postRun() { + if (ENVIRONMENT_IS_PTHREAD) + return; + if (Module["postRun"]) { + if (typeof Module["postRun"] == "function") + Module["postRun"] = [Module["postRun"]]; + while (Module["postRun"].length) { + addOnPostRun(Module["postRun"].shift()); + } + } + callRuntimeCallbacks(__ATPOSTRUN__); + } + function addOnPreRun(cb) { + __ATPRERUN__.unshift(cb); + } + function addOnPostRun(cb) { + __ATPOSTRUN__.unshift(cb); + } + var runDependencies = 0; + var runDependencyWatcher = null; + var dependenciesFulfilled = null; + function addRunDependency(id) { + assert3(!ENVIRONMENT_IS_PTHREAD, "addRunDependency cannot be used in a pthread worker"); + runDependencies++; + if (Module["monitorRunDependencies"]) { + Module["monitorRunDependencies"](runDependencies); + } + } + function removeRunDependency(id) { + runDependencies--; + if (Module["monitorRunDependencies"]) { + Module["monitorRunDependencies"](runDependencies); + } + if (runDependencies == 0) { + if (runDependencyWatcher !== null) { + clearInterval(runDependencyWatcher); + runDependencyWatcher = null; + } + if (dependenciesFulfilled) { + var callback = dependenciesFulfilled; + dependenciesFulfilled = null; + callback(); + } + } + } + Module["preloadedImages"] = {}; + Module["preloadedAudios"] = {}; + function abort(what) { + if (Module["onAbort"]) { + Module["onAbort"](what); + } + if (ENVIRONMENT_IS_PTHREAD) + console.error("Pthread aborting at " + new Error().stack); + what += ""; + err(what); + ABORT = true; + EXITSTATUS = 1; + what = "abort(" + what + "). Build with -s ASSERTIONS=1 for more info."; + var e = new WebAssembly.RuntimeError(what); + readyPromiseReject(e); + throw e; + } + function hasPrefix(str2, prefix) { + return String.prototype.startsWith ? str2.startsWith(prefix) : str2.indexOf(prefix) === 0; + } + var dataURIPrefix = "data:application/octet-stream;base64,"; + function isDataURI(filename) { + return hasPrefix(filename, dataURIPrefix); + } + var fileURIPrefix = "file://"; + function isFileURI(filename) { + return hasPrefix(filename, fileURIPrefix); + } + var wasmBinaryFile = "tfjs-backend-wasm-threaded-simd.wasm"; + if (!isDataURI(wasmBinaryFile)) { + wasmBinaryFile = locateFile(wasmBinaryFile); + } + function getBinary(file) { + try { + if (file == wasmBinaryFile && wasmBinary) { + return new Uint8Array(wasmBinary); + } + if (readBinary) { + return readBinary(file); + } else { + throw "both async and sync fetching of the wasm failed"; + } + } catch (err2) { + abort(err2); + } + } + function getBinaryPromise() { + if (!wasmBinary && (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER)) { + if (typeof fetch === "function" && !isFileURI(wasmBinaryFile)) { + return fetch(wasmBinaryFile, {credentials: "same-origin"}).then(function(response) { + if (!response["ok"]) { + throw "failed to load wasm binary file at '" + wasmBinaryFile + "'"; + } + return response["arrayBuffer"](); + }).catch(function() { + return getBinary(wasmBinaryFile); + }); + } else { + if (readAsync) { + return new Promise(function(resolve, reject) { + readAsync(wasmBinaryFile, function(response) { + resolve(new Uint8Array(response)); + }, reject); + }); + } + } + } + return Promise.resolve().then(function() { + return getBinary(wasmBinaryFile); + }); + } + function createWasm() { + var info = {a: asmLibraryArg}; + function receiveInstance(instance2, module22) { + var exports3 = instance2.exports; + Module["asm"] = exports3; + wasmTable = Module["asm"]["F"]; + wasmModule = module22; + if (!ENVIRONMENT_IS_PTHREAD) { + var numWorkersToLoad = PThread.unusedWorkers.length; + PThread.unusedWorkers.forEach(function(w) { + PThread.loadWasmModuleToWorker(w, function() { + if (!--numWorkersToLoad) + removeRunDependency("wasm-instantiate"); + }); + }); + } + } + if (!ENVIRONMENT_IS_PTHREAD) { + addRunDependency("wasm-instantiate"); + } + function receiveInstantiatedSource(output) { + receiveInstance(output["instance"], output["module"]); + } + function instantiateArrayBuffer(receiver) { + return getBinaryPromise().then(function(binary) { + return WebAssembly.instantiate(binary, info); + }).then(receiver, function(reason) { + err("failed to asynchronously prepare wasm: " + reason); + abort(reason); + }); + } + function instantiateAsync() { + if (!wasmBinary && typeof WebAssembly.instantiateStreaming === "function" && !isDataURI(wasmBinaryFile) && !isFileURI(wasmBinaryFile) && typeof fetch === "function") { + return fetch(wasmBinaryFile, {credentials: "same-origin"}).then(function(response) { + var result = WebAssembly.instantiateStreaming(response, info); + return result.then(receiveInstantiatedSource, function(reason) { + err("wasm streaming compile failed: " + reason); + err("falling back to ArrayBuffer instantiation"); + return instantiateArrayBuffer(receiveInstantiatedSource); + }); + }); + } else { + return instantiateArrayBuffer(receiveInstantiatedSource); + } + } + if (Module["instantiateWasm"]) { + try { + var exports2 = Module["instantiateWasm"](info, receiveInstance); + return exports2; + } catch (e) { + err("Module.instantiateWasm callback failed with error: " + e); + return false; + } + } + instantiateAsync().catch(readyPromiseReject); + return {}; + } + var ASM_CONSTS = {8991: function($0, $1) { + setTimeout(function() { + __emscripten_do_dispatch_to_thread($0, $1); + }, 0); + }}; + function initPthreadsJS() { + PThread.initRuntime(); + } + function callRuntimeCallbacks(callbacks2) { + while (callbacks2.length > 0) { + var callback = callbacks2.shift(); + if (typeof callback == "function") { + callback(Module); + continue; + } + var func2 = callback.func; + if (typeof func2 === "number") { + if (callback.arg === void 0) { + wasmTable.get(func2)(); + } else { + wasmTable.get(func2)(callback.arg); + } + } else { + func2(callback.arg === void 0 ? null : callback.arg); + } + } + } + function _emscripten_futex_wake(addr, count2) { + if (addr <= 0 || addr > GROWABLE_HEAP_I8().length || addr & true || count2 < 0) + return -28; + if (count2 == 0) + return 0; + if (count2 >= 2147483647) + count2 = Infinity; + var mainThreadWaitAddress = Atomics.load(GROWABLE_HEAP_I32(), __emscripten_main_thread_futex >> 2); + var mainThreadWoken = 0; + if (mainThreadWaitAddress == addr) { + var loadedAddr = Atomics.compareExchange(GROWABLE_HEAP_I32(), __emscripten_main_thread_futex >> 2, mainThreadWaitAddress, 0); + if (loadedAddr == mainThreadWaitAddress) { + --count2; + mainThreadWoken = 1; + if (count2 <= 0) + return 1; + } + } + var ret = Atomics.notify(GROWABLE_HEAP_I32(), addr >> 2, count2); + if (ret >= 0) + return ret + mainThreadWoken; + throw "Atomics.notify returned an unexpected value " + ret; + } + Module["_emscripten_futex_wake"] = _emscripten_futex_wake; + function killThread(pthread_ptr) { + if (ENVIRONMENT_IS_PTHREAD) + throw "Internal Error! killThread() can only ever be called from main application thread!"; + if (!pthread_ptr) + throw "Internal Error! Null pthread_ptr in killThread!"; + GROWABLE_HEAP_I32()[pthread_ptr + 12 >> 2] = 0; + var pthread = PThread.pthreads[pthread_ptr]; + pthread.worker.terminate(); + PThread.freeThreadData(pthread); + PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(pthread.worker), 1); + pthread.worker.pthread = void 0; + } + function cancelThread(pthread_ptr) { + if (ENVIRONMENT_IS_PTHREAD) + throw "Internal Error! cancelThread() can only ever be called from main application thread!"; + if (!pthread_ptr) + throw "Internal Error! Null pthread_ptr in cancelThread!"; + var pthread = PThread.pthreads[pthread_ptr]; + pthread.worker.postMessage({cmd: "cancel"}); + } + function cleanupThread(pthread_ptr) { + if (ENVIRONMENT_IS_PTHREAD) + throw "Internal Error! cleanupThread() can only ever be called from main application thread!"; + if (!pthread_ptr) + throw "Internal Error! Null pthread_ptr in cleanupThread!"; + GROWABLE_HEAP_I32()[pthread_ptr + 12 >> 2] = 0; + var pthread = PThread.pthreads[pthread_ptr]; + if (pthread) { + var worker2 = pthread.worker; + PThread.returnWorkerToPool(worker2); + } + } + var PThread = {unusedWorkers: [], runningWorkers: [], initMainThreadBlock: function() { + var pthreadPoolSize = 8; + for (var i = 0; i < pthreadPoolSize; ++i) { + PThread.allocateUnusedWorker(); + } + }, initRuntime: function() { + var tb = _malloc(228); + for (var i = 0; i < 228 / 4; ++i) + GROWABLE_HEAP_U32()[tb / 4 + i] = 0; + GROWABLE_HEAP_I32()[tb + 12 >> 2] = tb; + var headPtr = tb + 152; + GROWABLE_HEAP_I32()[headPtr >> 2] = headPtr; + var tlsMemory = _malloc(512); + for (var i = 0; i < 128; ++i) + GROWABLE_HEAP_U32()[tlsMemory / 4 + i] = 0; + Atomics.store(GROWABLE_HEAP_U32(), tb + 100 >> 2, tlsMemory); + Atomics.store(GROWABLE_HEAP_U32(), tb + 40 >> 2, tb); + __emscripten_thread_init(tb, !ENVIRONMENT_IS_WORKER, 1); + _emscripten_register_main_browser_thread_id(tb); + }, initWorker: function() { + }, pthreads: {}, threadExitHandlers: [], setThreadStatus: function() { + }, runExitHandlers: function() { + while (PThread.threadExitHandlers.length > 0) { + PThread.threadExitHandlers.pop()(); + } + if (ENVIRONMENT_IS_PTHREAD && _pthread_self()) + ___pthread_tsd_run_dtors(); + }, threadExit: function(exitCode) { + var tb = _pthread_self(); + if (tb) { + Atomics.store(GROWABLE_HEAP_U32(), tb + 4 >> 2, exitCode); + Atomics.store(GROWABLE_HEAP_U32(), tb + 0 >> 2, 1); + Atomics.store(GROWABLE_HEAP_U32(), tb + 56 >> 2, 1); + Atomics.store(GROWABLE_HEAP_U32(), tb + 60 >> 2, 0); + PThread.runExitHandlers(); + _emscripten_futex_wake(tb + 0, 2147483647); + __emscripten_thread_init(0, 0, 0); + if (ENVIRONMENT_IS_PTHREAD) { + postMessage({cmd: "exit"}); + } + } + }, threadCancel: function() { + PThread.runExitHandlers(); + var tb = _pthread_self(); + Atomics.store(GROWABLE_HEAP_U32(), tb + 4 >> 2, -1); + Atomics.store(GROWABLE_HEAP_U32(), tb + 0 >> 2, 1); + _emscripten_futex_wake(tb + 0, 2147483647); + __emscripten_thread_init(0, 0, 0); + postMessage({cmd: "cancelDone"}); + }, terminateAllThreads: function() { + for (var t in PThread.pthreads) { + var pthread = PThread.pthreads[t]; + if (pthread && pthread.worker) { + PThread.returnWorkerToPool(pthread.worker); + } + } + PThread.pthreads = {}; + for (var i = 0; i < PThread.unusedWorkers.length; ++i) { + var worker2 = PThread.unusedWorkers[i]; + worker2.terminate(); + } + PThread.unusedWorkers = []; + for (var i = 0; i < PThread.runningWorkers.length; ++i) { + var worker2 = PThread.runningWorkers[i]; + var pthread = worker2.pthread; + PThread.freeThreadData(pthread); + worker2.terminate(); + } + PThread.runningWorkers = []; + }, freeThreadData: function(pthread) { + if (!pthread) + return; + if (pthread.threadInfoStruct) { + var tlsMemory = GROWABLE_HEAP_I32()[pthread.threadInfoStruct + 100 >> 2]; + GROWABLE_HEAP_I32()[pthread.threadInfoStruct + 100 >> 2] = 0; + _free(tlsMemory); + _free(pthread.threadInfoStruct); + } + pthread.threadInfoStruct = 0; + if (pthread.allocatedOwnStack && pthread.stackBase) + _free(pthread.stackBase); + pthread.stackBase = 0; + if (pthread.worker) + pthread.worker.pthread = null; + }, returnWorkerToPool: function(worker2) { + PThread.runWithoutMainThreadQueuedCalls(function() { + delete PThread.pthreads[worker2.pthread.threadInfoStruct]; + PThread.unusedWorkers.push(worker2); + PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(worker2), 1); + PThread.freeThreadData(worker2.pthread); + worker2.pthread = void 0; + }); + }, runWithoutMainThreadQueuedCalls: function(func2) { + GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls >> 2] = 0; + try { + func2(); + } finally { + GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls >> 2] = 1; + } + }, receiveObjectTransfer: function(data2) { + }, loadWasmModuleToWorker: function(worker2, onFinishedLoading) { + worker2.onmessage = function(e) { + var d = e["data"]; + var cmd = d["cmd"]; + if (worker2.pthread) + PThread.currentProxiedOperationCallerThread = worker2.pthread.threadInfoStruct; + if (d["targetThread"] && d["targetThread"] != _pthread_self()) { + var thread = PThread.pthreads[d.targetThread]; + if (thread) { + thread.worker.postMessage(e.data, d["transferList"]); + } else { + console.error('Internal error! Worker sent a message "' + cmd + '" to target pthread ' + d["targetThread"] + ", but that thread no longer exists!"); + } + PThread.currentProxiedOperationCallerThread = void 0; + return; + } + if (cmd === "processQueuedMainThreadWork") { + _emscripten_main_thread_process_queued_calls(); + } else if (cmd === "spawnThread") { + spawnThread(e.data); + } else if (cmd === "cleanupThread") { + cleanupThread(d["thread"]); + } else if (cmd === "killThread") { + killThread(d["thread"]); + } else if (cmd === "cancelThread") { + cancelThread(d["thread"]); + } else if (cmd === "loaded") { + worker2.loaded = true; + if (onFinishedLoading) + onFinishedLoading(worker2); + if (worker2.runPthread) { + worker2.runPthread(); + delete worker2.runPthread; + } + } else if (cmd === "print") { + out("Thread " + d["threadId"] + ": " + d["text"]); + } else if (cmd === "printErr") { + err("Thread " + d["threadId"] + ": " + d["text"]); + } else if (cmd === "alert") { + alert("Thread " + d["threadId"] + ": " + d["text"]); + } else if (cmd === "exit") { + var detached = worker2.pthread && Atomics.load(GROWABLE_HEAP_U32(), worker2.pthread.threadInfoStruct + 64 >> 2); + if (detached) { + PThread.returnWorkerToPool(worker2); + } + } else if (cmd === "exitProcess") { + try { + exit(d["returnCode"]); + } catch (e2) { + if (e2 instanceof ExitStatus) + return; + throw e2; + } + } else if (cmd === "cancelDone") { + PThread.returnWorkerToPool(worker2); + } else if (cmd === "objectTransfer") { + PThread.receiveObjectTransfer(e.data); + } else if (e.data.target === "setimmediate") { + worker2.postMessage(e.data); + } else { + err("worker sent an unknown command " + cmd); + } + PThread.currentProxiedOperationCallerThread = void 0; + }; + worker2.onerror = function(e) { + err("pthread sent an error! " + e.filename + ":" + e.lineno + ": " + e.message); + }; + if (ENVIRONMENT_IS_NODE) { + worker2.on("message", function(data2) { + worker2.onmessage({data: data2}); + }); + worker2.on("error", function(data2) { + worker2.onerror(data2); + }); + worker2.on("exit", function(data2) { + }); + } + worker2.postMessage({cmd: "load", urlOrBlob: Module["mainScriptUrlOrBlob"] || _scriptDir, wasmMemory, wasmModule}); + }, allocateUnusedWorker: function() { + var pthreadMainJs = locateFile("tfjs-backend-wasm-threaded-simd.worker.js"); + PThread.unusedWorkers.push(new Worker(pthreadMainJs)); + }, getNewWorker: function() { + if (PThread.unusedWorkers.length == 0) { + PThread.allocateUnusedWorker(); + PThread.loadWasmModuleToWorker(PThread.unusedWorkers[0]); + } + if (PThread.unusedWorkers.length > 0) + return PThread.unusedWorkers.pop(); + else + return null; + }, busySpinWait: function(msecs) { + var t = performance.now() + msecs; + while (performance.now() < t) { + } + }}; + function establishStackSpace(stackTop, stackMax) { + _emscripten_stack_set_limits(stackTop, stackMax); + stackRestore(stackTop); + } + Module["establishStackSpace"] = establishStackSpace; + function getNoExitRuntime() { + return noExitRuntime; + } + Module["getNoExitRuntime"] = getNoExitRuntime; + function invokeEntryPoint(ptr, arg) { + return wasmTable.get(ptr)(arg); + } + Module["invokeEntryPoint"] = invokeEntryPoint; + function ___assert_fail(condition, filename, line, func2) { + abort("Assertion failed: " + UTF8ToString(condition) + ", at: " + [filename ? UTF8ToString(filename) : "unknown filename", line, func2 ? UTF8ToString(func2) : "unknown function"]); + } + function ___call_main(argc, argv) { + var returnCode = _main(argc, argv); + } + var _emscripten_get_now; + if (ENVIRONMENT_IS_NODE) { + _emscripten_get_now = function() { + var t = process["hrtime"](); + return t[0] * 1e3 + t[1] / 1e6; + }; + } else if (ENVIRONMENT_IS_PTHREAD) { + _emscripten_get_now = function() { + return performance.now() - Module["__performance_now_clock_drift"]; + }; + } else if (typeof dateNow !== "undefined") { + _emscripten_get_now = dateNow; + } else + _emscripten_get_now = function() { + return performance.now(); + }; + function setErrNo(value) { + GROWABLE_HEAP_I32()[___errno_location() >> 2] = value; + return value; + } + function _atexit(func2, arg) { + if (ENVIRONMENT_IS_PTHREAD) + return _emscripten_proxy_to_main_thread_js(1, 1, func2, arg); + } + function __emscripten_notify_thread_queue(targetThreadId, mainThreadId) { + if (targetThreadId == mainThreadId) { + postMessage({cmd: "processQueuedMainThreadWork"}); + } else if (ENVIRONMENT_IS_PTHREAD) { + postMessage({targetThread: targetThreadId, cmd: "processThreadQueue"}); + } else { + var pthread = PThread.pthreads[targetThreadId]; + var worker2 = pthread && pthread.worker; + if (!worker2) { + return; + } + worker2.postMessage({cmd: "processThreadQueue"}); + } + return 1; + } + function _abort() { + abort(); + } + function _emscripten_asm_const_int(code, sigPtr, argbuf) { + var args = readAsmConstArgs(sigPtr, argbuf); + return ASM_CONSTS[code].apply(null, args); + } + function _emscripten_conditional_set_current_thread_status(expectedStatus, newStatus) { + } + function _emscripten_futex_wait(addr, val, timeout) { + if (addr <= 0 || addr > GROWABLE_HEAP_I8().length || addr & true) + return -28; + if (!ENVIRONMENT_IS_WEB) { + var ret = Atomics.wait(GROWABLE_HEAP_I32(), addr >> 2, val, timeout); + if (ret === "timed-out") + return -73; + if (ret === "not-equal") + return -6; + if (ret === "ok") + return 0; + throw "Atomics.wait returned an unexpected value " + ret; + } else { + if (Atomics.load(GROWABLE_HEAP_I32(), addr >> 2) != val) { + return -6; + } + var tNow = performance.now(); + var tEnd = tNow + timeout; + var lastAddr = Atomics.exchange(GROWABLE_HEAP_I32(), __emscripten_main_thread_futex >> 2, addr); + while (1) { + tNow = performance.now(); + if (tNow > tEnd) { + lastAddr = Atomics.exchange(GROWABLE_HEAP_I32(), __emscripten_main_thread_futex >> 2, 0); + return -73; + } + lastAddr = Atomics.exchange(GROWABLE_HEAP_I32(), __emscripten_main_thread_futex >> 2, 0); + if (lastAddr == 0) { + break; + } + _emscripten_main_thread_process_queued_calls(); + if (Atomics.load(GROWABLE_HEAP_I32(), addr >> 2) != val) { + return -6; + } + lastAddr = Atomics.exchange(GROWABLE_HEAP_I32(), __emscripten_main_thread_futex >> 2, addr); + } + return 0; + } + } + function _emscripten_memcpy_big(dest, src, num) { + GROWABLE_HEAP_U8().copyWithin(dest, src, src + num); + } + function _emscripten_num_logical_cores() { + if (ENVIRONMENT_IS_NODE) + return require("os").cpus().length; + return navigator["hardwareConcurrency"]; + } + function _emscripten_proxy_to_main_thread_js(index, sync) { + var numCallArgs = arguments.length - 2; + var stack2 = stackSave(); + var serializedNumCallArgs = numCallArgs; + var args = stackAlloc(serializedNumCallArgs * 8); + var b = args >> 3; + for (var i = 0; i < numCallArgs; i++) { + var arg = arguments[2 + i]; + GROWABLE_HEAP_F64()[b + i] = arg; + } + var ret = _emscripten_run_in_main_runtime_thread_js(index, serializedNumCallArgs, args, sync); + stackRestore(stack2); + return ret; + } + var _emscripten_receive_on_main_thread_js_callArgs = []; + var readAsmConstArgsArray = []; + function readAsmConstArgs(sigPtr, buf) { + readAsmConstArgsArray.length = 0; + var ch; + buf >>= 2; + while (ch = GROWABLE_HEAP_U8()[sigPtr++]) { + var double = ch < 105; + if (double && buf & 1) + buf++; + readAsmConstArgsArray.push(double ? GROWABLE_HEAP_F64()[buf++ >> 1] : GROWABLE_HEAP_I32()[buf]); + ++buf; + } + return readAsmConstArgsArray; + } + function _emscripten_receive_on_main_thread_js(index, numCallArgs, args) { + _emscripten_receive_on_main_thread_js_callArgs.length = numCallArgs; + var b = args >> 3; + for (var i = 0; i < numCallArgs; i++) { + _emscripten_receive_on_main_thread_js_callArgs[i] = GROWABLE_HEAP_F64()[b + i]; + } + var isEmAsmConst = index < 0; + var func2 = !isEmAsmConst ? proxiedFunctionTable[index] : ASM_CONSTS[-index - 1]; + return func2.apply(null, _emscripten_receive_on_main_thread_js_callArgs); + } + function _emscripten_get_heap_size() { + return GROWABLE_HEAP_U8().length; + } + function emscripten_realloc_buffer(size) { + try { + wasmMemory.grow(size - buffer2.byteLength + 65535 >>> 16); + updateGlobalBufferAndViews(wasmMemory.buffer); + return 1; + } catch (e) { + } + } + function _emscripten_resize_heap(requestedSize) { + var oldSize = _emscripten_get_heap_size(); + if (requestedSize <= oldSize) { + return false; + } + var maxHeapSize = 2147483648; + if (requestedSize > maxHeapSize) { + return false; + } + for (var cutDown = 1; cutDown <= 4; cutDown *= 2) { + var overGrownHeapSize = oldSize * (1 + 0.2 / cutDown); + overGrownHeapSize = Math.min(overGrownHeapSize, requestedSize + 100663296); + var newSize = Math.min(maxHeapSize, alignUp(Math.max(requestedSize, overGrownHeapSize), 65536)); + var replacement = emscripten_realloc_buffer(newSize); + if (replacement) { + return true; + } + } + return false; + } + var JSEvents = {inEventHandler: 0, removeAllEventListeners: function() { + for (var i = JSEvents.eventHandlers.length - 1; i >= 0; --i) { + JSEvents._removeHandler(i); + } + JSEvents.eventHandlers = []; + JSEvents.deferredCalls = []; + }, registerRemoveEventListeners: function() { + if (!JSEvents.removeEventListenersRegistered) { + __ATEXIT__.push(JSEvents.removeAllEventListeners); + JSEvents.removeEventListenersRegistered = true; + } + }, deferredCalls: [], deferCall: function(targetFunction, precedence, argsList) { + function arraysHaveEqualContent(arrA, arrB) { + if (arrA.length != arrB.length) + return false; + for (var i2 in arrA) { + if (arrA[i2] != arrB[i2]) + return false; + } + return true; + } + for (var i in JSEvents.deferredCalls) { + var call = JSEvents.deferredCalls[i]; + if (call.targetFunction == targetFunction && arraysHaveEqualContent(call.argsList, argsList)) { + return; + } + } + JSEvents.deferredCalls.push({targetFunction, precedence, argsList}); + JSEvents.deferredCalls.sort(function(x, y) { + return x.precedence < y.precedence; + }); + }, removeDeferredCalls: function(targetFunction) { + for (var i = 0; i < JSEvents.deferredCalls.length; ++i) { + if (JSEvents.deferredCalls[i].targetFunction == targetFunction) { + JSEvents.deferredCalls.splice(i, 1); + --i; + } + } + }, canPerformEventHandlerRequests: function() { + return JSEvents.inEventHandler && JSEvents.currentEventHandler.allowsDeferredCalls; + }, runDeferredCalls: function() { + if (!JSEvents.canPerformEventHandlerRequests()) { + return; + } + for (var i = 0; i < JSEvents.deferredCalls.length; ++i) { + var call = JSEvents.deferredCalls[i]; + JSEvents.deferredCalls.splice(i, 1); + --i; + call.targetFunction.apply(null, call.argsList); + } + }, eventHandlers: [], removeAllHandlersOnTarget: function(target, eventTypeString) { + for (var i = 0; i < JSEvents.eventHandlers.length; ++i) { + if (JSEvents.eventHandlers[i].target == target && (!eventTypeString || eventTypeString == JSEvents.eventHandlers[i].eventTypeString)) { + JSEvents._removeHandler(i--); + } + } + }, _removeHandler: function(i) { + var h = JSEvents.eventHandlers[i]; + h.target.removeEventListener(h.eventTypeString, h.eventListenerFunc, h.useCapture); + JSEvents.eventHandlers.splice(i, 1); + }, registerOrRemoveHandler: function(eventHandler) { + var jsEventHandler = function jsEventHandler2(event) { + ++JSEvents.inEventHandler; + JSEvents.currentEventHandler = eventHandler; + JSEvents.runDeferredCalls(); + eventHandler.handlerFunc(event); + JSEvents.runDeferredCalls(); + --JSEvents.inEventHandler; + }; + if (eventHandler.callbackfunc) { + eventHandler.eventListenerFunc = jsEventHandler; + eventHandler.target.addEventListener(eventHandler.eventTypeString, jsEventHandler, eventHandler.useCapture); + JSEvents.eventHandlers.push(eventHandler); + JSEvents.registerRemoveEventListeners(); + } else { + for (var i = 0; i < JSEvents.eventHandlers.length; ++i) { + if (JSEvents.eventHandlers[i].target == eventHandler.target && JSEvents.eventHandlers[i].eventTypeString == eventHandler.eventTypeString) { + JSEvents._removeHandler(i--); + } + } + } + }, queueEventHandlerOnThread_iiii: function(targetThread, eventHandlerFunc, eventTypeId, eventData, userData) { + var stackTop = stackSave(); + var varargs = stackAlloc(12); + GROWABLE_HEAP_I32()[varargs >> 2] = eventTypeId; + GROWABLE_HEAP_I32()[varargs + 4 >> 2] = eventData; + GROWABLE_HEAP_I32()[varargs + 8 >> 2] = userData; + __emscripten_call_on_thread(0, targetThread, 637534208, eventHandlerFunc, eventData, varargs); + stackRestore(stackTop); + }, getTargetThreadForEventCallback: function(targetThread) { + switch (targetThread) { + case 1: + return 0; + case 2: + return PThread.currentProxiedOperationCallerThread; + default: + return targetThread; + } + }, getNodeNameForTarget: function(target) { + if (!target) + return ""; + if (target == window) + return "#window"; + if (target == screen) + return "#screen"; + return target && target.nodeName ? target.nodeName : ""; + }, fullscreenEnabled: function() { + return document.fullscreenEnabled || document.webkitFullscreenEnabled; + }}; + function stringToNewUTF8(jsString) { + var length = lengthBytesUTF8(jsString) + 1; + var cString = _malloc(length); + stringToUTF8(jsString, cString, length); + return cString; + } + function _emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread, targetCanvas, width, height) { + var stackTop = stackSave(); + var varargs = stackAlloc(12); + var targetCanvasPtr = 0; + if (targetCanvas) { + targetCanvasPtr = stringToNewUTF8(targetCanvas); + } + GROWABLE_HEAP_I32()[varargs >> 2] = targetCanvasPtr; + GROWABLE_HEAP_I32()[varargs + 4 >> 2] = width; + GROWABLE_HEAP_I32()[varargs + 8 >> 2] = height; + __emscripten_call_on_thread(0, targetThread, 657457152, 0, targetCanvasPtr, varargs); + stackRestore(stackTop); + } + function _emscripten_set_offscreencanvas_size_on_target_thread(targetThread, targetCanvas, width, height) { + targetCanvas = targetCanvas ? UTF8ToString(targetCanvas) : ""; + _emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread, targetCanvas, width, height); + } + function maybeCStringToJsString(cString) { + return cString > 2 ? UTF8ToString(cString) : cString; + } + var specialHTMLTargets = [0, typeof document !== "undefined" ? document : 0, typeof window !== "undefined" ? window : 0]; + function findEventTarget(target) { + target = maybeCStringToJsString(target); + var domElement = specialHTMLTargets[target] || (typeof document !== "undefined" ? document.querySelector(target) : void 0); + return domElement; + } + function findCanvasEventTarget(target) { + return findEventTarget(target); + } + function _emscripten_set_canvas_element_size_calling_thread(target, width, height) { + var canvas = findCanvasEventTarget(target); + if (!canvas) + return -4; + if (canvas.canvasSharedPtr) { + GROWABLE_HEAP_I32()[canvas.canvasSharedPtr >> 2] = width; + GROWABLE_HEAP_I32()[canvas.canvasSharedPtr + 4 >> 2] = height; + } + if (canvas.offscreenCanvas || !canvas.controlTransferredOffscreen) { + if (canvas.offscreenCanvas) + canvas = canvas.offscreenCanvas; + var autoResizeViewport = false; + if (canvas.GLctxObject && canvas.GLctxObject.GLctx) { + var prevViewport = canvas.GLctxObject.GLctx.getParameter(2978); + autoResizeViewport = prevViewport[0] === 0 && prevViewport[1] === 0 && prevViewport[2] === canvas.width && prevViewport[3] === canvas.height; + } + canvas.width = width; + canvas.height = height; + if (autoResizeViewport) { + canvas.GLctxObject.GLctx.viewport(0, 0, width, height); + } + } else if (canvas.canvasSharedPtr) { + var targetThread = GROWABLE_HEAP_I32()[canvas.canvasSharedPtr + 8 >> 2]; + _emscripten_set_offscreencanvas_size_on_target_thread(targetThread, target, width, height); + return 1; + } else { + return -4; + } + return 0; + } + function _emscripten_set_canvas_element_size_main_thread(target, width, height) { + if (ENVIRONMENT_IS_PTHREAD) + return _emscripten_proxy_to_main_thread_js(2, 1, target, width, height); + return _emscripten_set_canvas_element_size_calling_thread(target, width, height); + } + function _emscripten_set_canvas_element_size(target, width, height) { + var canvas = findCanvasEventTarget(target); + if (canvas) { + return _emscripten_set_canvas_element_size_calling_thread(target, width, height); + } else { + return _emscripten_set_canvas_element_size_main_thread(target, width, height); + } + } + function _emscripten_set_current_thread_status(newStatus) { + } + function _emscripten_set_thread_name(threadId, name2) { + } + function __webgl_enable_ANGLE_instanced_arrays(ctx) { + var ext = ctx.getExtension("ANGLE_instanced_arrays"); + if (ext) { + ctx["vertexAttribDivisor"] = function(index, divisor) { + ext["vertexAttribDivisorANGLE"](index, divisor); + }; + ctx["drawArraysInstanced"] = function(mode, first, count2, primcount) { + ext["drawArraysInstancedANGLE"](mode, first, count2, primcount); + }; + ctx["drawElementsInstanced"] = function(mode, count2, type, indices, primcount) { + ext["drawElementsInstancedANGLE"](mode, count2, type, indices, primcount); + }; + return 1; + } + } + function __webgl_enable_OES_vertex_array_object(ctx) { + var ext = ctx.getExtension("OES_vertex_array_object"); + if (ext) { + ctx["createVertexArray"] = function() { + return ext["createVertexArrayOES"](); + }; + ctx["deleteVertexArray"] = function(vao) { + ext["deleteVertexArrayOES"](vao); + }; + ctx["bindVertexArray"] = function(vao) { + ext["bindVertexArrayOES"](vao); + }; + ctx["isVertexArray"] = function(vao) { + return ext["isVertexArrayOES"](vao); + }; + return 1; + } + } + function __webgl_enable_WEBGL_draw_buffers(ctx) { + var ext = ctx.getExtension("WEBGL_draw_buffers"); + if (ext) { + ctx["drawBuffers"] = function(n, bufs) { + ext["drawBuffersWEBGL"](n, bufs); + }; + return 1; + } + } + function __webgl_enable_WEBGL_multi_draw(ctx) { + return !!(ctx.multiDrawWebgl = ctx.getExtension("WEBGL_multi_draw")); + } + var GL = {counter: 1, buffers: [], programs: [], framebuffers: [], renderbuffers: [], textures: [], uniforms: [], shaders: [], vaos: [], contexts: {}, offscreenCanvases: {}, timerQueriesEXT: [], programInfos: {}, stringCache: {}, unpackAlignment: 4, recordError: function recordError(errorCode) { + if (!GL.lastError) { + GL.lastError = errorCode; + } + }, getNewId: function(table) { + var ret = GL.counter++; + for (var i = table.length; i < ret; i++) { + table[i] = null; + } + return ret; + }, getSource: function(shader, count2, string, length) { + var source = ""; + for (var i = 0; i < count2; ++i) { + var len = length ? GROWABLE_HEAP_I32()[length + i * 4 >> 2] : -1; + source += UTF8ToString(GROWABLE_HEAP_I32()[string + i * 4 >> 2], len < 0 ? void 0 : len); + } + return source; + }, createContext: function(canvas, webGLContextAttributes) { + var ctx = canvas.getContext("webgl", webGLContextAttributes); + if (!ctx) + return 0; + var handle = GL.registerContext(ctx, webGLContextAttributes); + return handle; + }, registerContext: function(ctx, webGLContextAttributes) { + var handle = _malloc(8); + GROWABLE_HEAP_I32()[handle + 4 >> 2] = _pthread_self(); + var context = {handle, attributes: webGLContextAttributes, version: webGLContextAttributes.majorVersion, GLctx: ctx}; + if (ctx.canvas) + ctx.canvas.GLctxObject = context; + GL.contexts[handle] = context; + if (typeof webGLContextAttributes.enableExtensionsByDefault === "undefined" || webGLContextAttributes.enableExtensionsByDefault) { + GL.initExtensions(context); + } + return handle; + }, makeContextCurrent: function(contextHandle) { + GL.currentContext = GL.contexts[contextHandle]; + Module.ctx = GLctx = GL.currentContext && GL.currentContext.GLctx; + return !(contextHandle && !GLctx); + }, getContext: function(contextHandle) { + return GL.contexts[contextHandle]; + }, deleteContext: function(contextHandle) { + if (GL.currentContext === GL.contexts[contextHandle]) + GL.currentContext = null; + if (typeof JSEvents === "object") + JSEvents.removeAllHandlersOnTarget(GL.contexts[contextHandle].GLctx.canvas); + if (GL.contexts[contextHandle] && GL.contexts[contextHandle].GLctx.canvas) + GL.contexts[contextHandle].GLctx.canvas.GLctxObject = void 0; + _free(GL.contexts[contextHandle].handle); + GL.contexts[contextHandle] = null; + }, initExtensions: function(context) { + if (!context) + context = GL.currentContext; + if (context.initExtensionsDone) + return; + context.initExtensionsDone = true; + var GLctx2 = context.GLctx; + __webgl_enable_ANGLE_instanced_arrays(GLctx2); + __webgl_enable_OES_vertex_array_object(GLctx2); + __webgl_enable_WEBGL_draw_buffers(GLctx2); + GLctx2.disjointTimerQueryExt = GLctx2.getExtension("EXT_disjoint_timer_query"); + __webgl_enable_WEBGL_multi_draw(GLctx2); + var exts = GLctx2.getSupportedExtensions() || []; + exts.forEach(function(ext) { + if (ext.indexOf("lose_context") < 0 && ext.indexOf("debug") < 0) { + GLctx2.getExtension(ext); + } + }); + }, populateUniformTable: function(program) { + var p2 = GL.programs[program]; + var ptable = GL.programInfos[program] = {uniforms: {}, maxUniformLength: 0, maxAttributeLength: -1, maxUniformBlockNameLength: -1}; + var utable = ptable.uniforms; + var numUniforms = GLctx.getProgramParameter(p2, 35718); + for (var i = 0; i < numUniforms; ++i) { + var u = GLctx.getActiveUniform(p2, i); + var name2 = u.name; + ptable.maxUniformLength = Math.max(ptable.maxUniformLength, name2.length + 1); + if (name2.slice(-1) == "]") { + name2 = name2.slice(0, name2.lastIndexOf("[")); + } + var loc = GLctx.getUniformLocation(p2, name2); + if (loc) { + var id = GL.getNewId(GL.uniforms); + utable[name2] = [u.size, id]; + GL.uniforms[id] = loc; + for (var j = 1; j < u.size; ++j) { + var n = name2 + "[" + j + "]"; + loc = GLctx.getUniformLocation(p2, n); + id = GL.getNewId(GL.uniforms); + GL.uniforms[id] = loc; + } + } + } + }}; + var __emscripten_webgl_power_preferences = ["default", "low-power", "high-performance"]; + function _emscripten_webgl_do_create_context(target, attributes) { + var a = attributes >> 2; + var powerPreference = GROWABLE_HEAP_I32()[a + (24 >> 2)]; + var contextAttributes = {alpha: !!GROWABLE_HEAP_I32()[a + (0 >> 2)], depth: !!GROWABLE_HEAP_I32()[a + (4 >> 2)], stencil: !!GROWABLE_HEAP_I32()[a + (8 >> 2)], antialias: !!GROWABLE_HEAP_I32()[a + (12 >> 2)], premultipliedAlpha: !!GROWABLE_HEAP_I32()[a + (16 >> 2)], preserveDrawingBuffer: !!GROWABLE_HEAP_I32()[a + (20 >> 2)], powerPreference: __emscripten_webgl_power_preferences[powerPreference], failIfMajorPerformanceCaveat: !!GROWABLE_HEAP_I32()[a + (28 >> 2)], majorVersion: GROWABLE_HEAP_I32()[a + (32 >> 2)], minorVersion: GROWABLE_HEAP_I32()[a + (36 >> 2)], enableExtensionsByDefault: GROWABLE_HEAP_I32()[a + (40 >> 2)], explicitSwapControl: GROWABLE_HEAP_I32()[a + (44 >> 2)], proxyContextToMainThread: GROWABLE_HEAP_I32()[a + (48 >> 2)], renderViaOffscreenBackBuffer: GROWABLE_HEAP_I32()[a + (52 >> 2)]}; + var canvas = findCanvasEventTarget(target); + if (!canvas) { + return 0; + } + if (contextAttributes.explicitSwapControl) { + return 0; + } + var contextHandle = GL.createContext(canvas, contextAttributes); + return contextHandle; + } + function _emscripten_webgl_create_context(a0, a12) { + return _emscripten_webgl_do_create_context(a0, a12); + } + var SYSCALLS = {mappings: {}, buffers: [null, [], []], printChar: function(stream, curr) { + var buffer3 = SYSCALLS.buffers[stream]; + if (curr === 0 || curr === 10) { + (stream === 1 ? out : err)(UTF8ArrayToString(buffer3, 0)); + buffer3.length = 0; + } else { + buffer3.push(curr); + } + }, varargs: void 0, get: function() { + SYSCALLS.varargs += 4; + var ret = GROWABLE_HEAP_I32()[SYSCALLS.varargs - 4 >> 2]; + return ret; + }, getStr: function(ptr) { + var ret = UTF8ToString(ptr); + return ret; + }, get64: function(low, high) { + return low; + }}; + function _fd_close(fd) { + if (ENVIRONMENT_IS_PTHREAD) + return _emscripten_proxy_to_main_thread_js(3, 1, fd); + return 0; + } + function _fd_seek(fd, offset_low, offset_high, whence, newOffset) { + if (ENVIRONMENT_IS_PTHREAD) + return _emscripten_proxy_to_main_thread_js(4, 1, fd, offset_low, offset_high, whence, newOffset); + } + function _fd_write(fd, iov, iovcnt, pnum) { + if (ENVIRONMENT_IS_PTHREAD) + return _emscripten_proxy_to_main_thread_js(5, 1, fd, iov, iovcnt, pnum); + var num = 0; + for (var i = 0; i < iovcnt; i++) { + var ptr = GROWABLE_HEAP_I32()[iov + i * 8 >> 2]; + var len = GROWABLE_HEAP_I32()[iov + (i * 8 + 4) >> 2]; + for (var j = 0; j < len; j++) { + SYSCALLS.printChar(fd, GROWABLE_HEAP_U8()[ptr + j]); + } + num += len; + } + GROWABLE_HEAP_I32()[pnum >> 2] = num; + return 0; + } + function _pthread_cleanup_pop(execute2) { + var routine = PThread.threadExitHandlers.pop(); + if (execute2) + routine(); + } + function _pthread_cleanup_push(routine, arg) { + PThread.threadExitHandlers.push(function() { + wasmTable.get(routine)(arg); + }); + } + function spawnThread(threadParams) { + if (ENVIRONMENT_IS_PTHREAD) + throw "Internal Error! spawnThread() can only ever be called from main application thread!"; + var worker2 = PThread.getNewWorker(); + if (worker2.pthread !== void 0) + throw "Internal error!"; + if (!threadParams.pthread_ptr) + throw "Internal error, no pthread ptr!"; + PThread.runningWorkers.push(worker2); + var tlsMemory = _malloc(128 * 4); + for (var i = 0; i < 128; ++i) { + GROWABLE_HEAP_I32()[tlsMemory + i * 4 >> 2] = 0; + } + var stackHigh = threadParams.stackBase + threadParams.stackSize; + var pthread = PThread.pthreads[threadParams.pthread_ptr] = {worker: worker2, stackBase: threadParams.stackBase, stackSize: threadParams.stackSize, allocatedOwnStack: threadParams.allocatedOwnStack, threadInfoStruct: threadParams.pthread_ptr}; + var tis = pthread.threadInfoStruct >> 2; + Atomics.store(GROWABLE_HEAP_U32(), tis + (64 >> 2), threadParams.detached); + Atomics.store(GROWABLE_HEAP_U32(), tis + (100 >> 2), tlsMemory); + Atomics.store(GROWABLE_HEAP_U32(), tis + (40 >> 2), pthread.threadInfoStruct); + Atomics.store(GROWABLE_HEAP_U32(), tis + (80 >> 2), threadParams.stackSize); + Atomics.store(GROWABLE_HEAP_U32(), tis + (76 >> 2), stackHigh); + Atomics.store(GROWABLE_HEAP_U32(), tis + (104 >> 2), threadParams.stackSize); + Atomics.store(GROWABLE_HEAP_U32(), tis + (104 + 8 >> 2), stackHigh); + Atomics.store(GROWABLE_HEAP_U32(), tis + (104 + 12 >> 2), threadParams.detached); + var global_libc = _emscripten_get_global_libc(); + var global_locale = global_libc + 40; + Atomics.store(GROWABLE_HEAP_U32(), tis + (172 >> 2), global_locale); + worker2.pthread = pthread; + var msg = {cmd: "run", start_routine: threadParams.startRoutine, arg: threadParams.arg, threadInfoStruct: threadParams.pthread_ptr, stackBase: threadParams.stackBase, stackSize: threadParams.stackSize}; + worker2.runPthread = function() { + msg.time = performance.now(); + worker2.postMessage(msg, threadParams.transferList); + }; + if (worker2.loaded) { + worker2.runPthread(); + delete worker2.runPthread; + } + } + function _pthread_create(pthread_ptr, attr, start_routine, arg) { + if (typeof SharedArrayBuffer === "undefined") { + err("Current environment does not support SharedArrayBuffer, pthreads are not available!"); + return 6; + } + if (!pthread_ptr) { + err("pthread_create called with a null thread pointer!"); + return 28; + } + var transferList = []; + var error = 0; + if (ENVIRONMENT_IS_PTHREAD && (transferList.length === 0 || error)) { + return _emscripten_sync_run_in_main_thread_4(687865856, pthread_ptr, attr, start_routine, arg); + } + if (error) + return error; + var stackSize = 0; + var stackBase = 0; + var detached = 0; + if (attr && attr != -1) { + stackSize = GROWABLE_HEAP_I32()[attr >> 2]; + stackSize += 81920; + stackBase = GROWABLE_HEAP_I32()[attr + 8 >> 2]; + detached = GROWABLE_HEAP_I32()[attr + 12 >> 2] !== 0; + } else { + stackSize = 2097152; + } + var allocatedOwnStack = stackBase == 0; + if (allocatedOwnStack) { + stackBase = _memalign(16, stackSize); + } else { + stackBase -= stackSize; + assert3(stackBase > 0); + } + var threadInfoStruct = _malloc(228); + for (var i = 0; i < 228 >> 2; ++i) + GROWABLE_HEAP_U32()[(threadInfoStruct >> 2) + i] = 0; + GROWABLE_HEAP_I32()[pthread_ptr >> 2] = threadInfoStruct; + GROWABLE_HEAP_I32()[threadInfoStruct + 12 >> 2] = threadInfoStruct; + var headPtr = threadInfoStruct + 152; + GROWABLE_HEAP_I32()[headPtr >> 2] = headPtr; + var threadParams = {stackBase, stackSize, allocatedOwnStack, detached, startRoutine: start_routine, pthread_ptr: threadInfoStruct, arg, transferList}; + if (ENVIRONMENT_IS_PTHREAD) { + threadParams.cmd = "spawnThread"; + postMessage(threadParams, transferList); + } else { + spawnThread(threadParams); + } + return 0; + } + function _sysconf(name2) { + if (ENVIRONMENT_IS_PTHREAD) + return _emscripten_proxy_to_main_thread_js(6, 1, name2); + switch (name2) { + case 30: + return 16384; + case 85: + var maxHeapSize = 2147483648; + return maxHeapSize / 16384; + case 132: + case 133: + case 12: + case 137: + case 138: + case 15: + case 235: + case 16: + case 17: + case 18: + case 19: + case 20: + case 149: + case 13: + case 10: + case 236: + case 153: + case 9: + case 21: + case 22: + case 159: + case 154: + case 14: + case 77: + case 78: + case 139: + case 82: + case 68: + case 67: + case 164: + case 11: + case 29: + case 47: + case 48: + case 95: + case 52: + case 51: + case 46: + return 200809; + case 27: + case 246: + case 127: + case 128: + case 23: + case 24: + case 160: + case 161: + case 181: + case 182: + case 242: + case 183: + case 184: + case 243: + case 244: + case 245: + case 165: + case 178: + case 179: + case 49: + case 50: + case 168: + case 169: + case 175: + case 170: + case 171: + case 172: + case 97: + case 76: + case 32: + case 173: + case 35: + case 80: + case 81: + case 79: + return -1; + case 176: + case 177: + case 7: + case 155: + case 8: + case 157: + case 125: + case 126: + case 92: + case 93: + case 129: + case 130: + case 131: + case 94: + case 91: + return 1; + case 74: + case 60: + case 69: + case 70: + case 4: + return 1024; + case 31: + case 42: + case 72: + return 32; + case 87: + case 26: + case 33: + return 2147483647; + case 34: + case 1: + return 47839; + case 38: + case 36: + return 99; + case 43: + case 37: + return 2048; + case 0: + return 2097152; + case 3: + return 65536; + case 28: + return 32768; + case 44: + return 32767; + case 75: + return 16384; + case 39: + return 1e3; + case 89: + return 700; + case 71: + return 256; + case 40: + return 255; + case 2: + return 100; + case 180: + return 64; + case 25: + return 20; + case 5: + return 16; + case 6: + return 6; + case 73: + return 4; + case 84: { + if (typeof navigator === "object") + return navigator["hardwareConcurrency"] || 1; + return 1; + } + } + setErrNo(28); + return -1; + } + if (!ENVIRONMENT_IS_PTHREAD) + PThread.initMainThreadBlock(); + var GLctx; + var proxiedFunctionTable = [null, _atexit, _emscripten_set_canvas_element_size_main_thread, _fd_close, _fd_seek, _fd_write, _sysconf]; + var asmLibraryArg = {e: ___assert_fail, r: ___call_main, x: __emscripten_notify_thread_queue, b: _abort, y: _emscripten_asm_const_int, j: _emscripten_conditional_set_current_thread_status, c: _emscripten_futex_wait, d: _emscripten_futex_wake, f: _emscripten_get_now, p: _emscripten_memcpy_big, z: _emscripten_num_logical_cores, u: _emscripten_receive_on_main_thread_js, q: _emscripten_resize_heap, v: _emscripten_set_canvas_element_size, i: _emscripten_set_current_thread_status, t: _emscripten_set_thread_name, w: _emscripten_webgl_create_context, m: _fd_close, n: _fd_seek, g: _fd_write, o: initPthreadsJS, a: wasmMemory || Module["wasmMemory"], k: _pthread_cleanup_pop, l: _pthread_cleanup_push, h: _pthread_create, s: _sysconf}; + var asm = createWasm(); + var ___wasm_call_ctors = Module["___wasm_call_ctors"] = function() { + return (___wasm_call_ctors = Module["___wasm_call_ctors"] = Module["asm"]["A"]).apply(null, arguments); + }; + var _init = Module["_init"] = function() { + return (_init = Module["_init"] = Module["asm"]["B"]).apply(null, arguments); + }; + var _register_tensor = Module["_register_tensor"] = function() { + return (_register_tensor = Module["_register_tensor"] = Module["asm"]["C"]).apply(null, arguments); + }; + var _dispose_data = Module["_dispose_data"] = function() { + return (_dispose_data = Module["_dispose_data"] = Module["asm"]["D"]).apply(null, arguments); + }; + var _dispose = Module["_dispose"] = function() { + return (_dispose = Module["_dispose"] = Module["asm"]["E"]).apply(null, arguments); + }; + var _Abs = Module["_Abs"] = function() { + return (_Abs = Module["_Abs"] = Module["asm"]["G"]).apply(null, arguments); + }; + var _Add = Module["_Add"] = function() { + return (_Add = Module["_Add"] = Module["asm"]["H"]).apply(null, arguments); + }; + var _AddN = Module["_AddN"] = function() { + return (_AddN = Module["_AddN"] = Module["asm"]["I"]).apply(null, arguments); + }; + var _ArgMax = Module["_ArgMax"] = function() { + return (_ArgMax = Module["_ArgMax"] = Module["asm"]["J"]).apply(null, arguments); + }; + var _AvgPool = Module["_AvgPool"] = function() { + return (_AvgPool = Module["_AvgPool"] = Module["asm"]["K"]).apply(null, arguments); + }; + var _BatchMatMul = Module["_BatchMatMul"] = function() { + return (_BatchMatMul = Module["_BatchMatMul"] = Module["asm"]["L"]).apply(null, arguments); + }; + var _Ceil = Module["_Ceil"] = function() { + return (_Ceil = Module["_Ceil"] = Module["asm"]["M"]).apply(null, arguments); + }; + var _ClipByValue = Module["_ClipByValue"] = function() { + return (_ClipByValue = Module["_ClipByValue"] = Module["asm"]["N"]).apply(null, arguments); + }; + var _Conv2D = Module["_Conv2D"] = function() { + return (_Conv2D = Module["_Conv2D"] = Module["asm"]["O"]).apply(null, arguments); + }; + var _Conv2DBackpropInput = Module["_Conv2DBackpropInput"] = function() { + return (_Conv2DBackpropInput = Module["_Conv2DBackpropInput"] = Module["asm"]["P"]).apply(null, arguments); + }; + var _Cos = Module["_Cos"] = function() { + return (_Cos = Module["_Cos"] = Module["asm"]["Q"]).apply(null, arguments); + }; + var _CropAndResize = Module["_CropAndResize"] = function() { + return (_CropAndResize = Module["_CropAndResize"] = Module["asm"]["R"]).apply(null, arguments); + }; + var _Cumsum = Module["_Cumsum"] = function() { + return (_Cumsum = Module["_Cumsum"] = Module["asm"]["S"]).apply(null, arguments); + }; + var _DepthToSpace = Module["_DepthToSpace"] = function() { + return (_DepthToSpace = Module["_DepthToSpace"] = Module["asm"]["T"]).apply(null, arguments); + }; + var _DepthwiseConv2dNative = Module["_DepthwiseConv2dNative"] = function() { + return (_DepthwiseConv2dNative = Module["_DepthwiseConv2dNative"] = Module["asm"]["U"]).apply(null, arguments); + }; + var _Equal = Module["_Equal"] = function() { + return (_Equal = Module["_Equal"] = Module["asm"]["V"]).apply(null, arguments); + }; + var _Exp = Module["_Exp"] = function() { + return (_Exp = Module["_Exp"] = Module["asm"]["W"]).apply(null, arguments); + }; + var _FlipLeftRight = Module["_FlipLeftRight"] = function() { + return (_FlipLeftRight = Module["_FlipLeftRight"] = Module["asm"]["X"]).apply(null, arguments); + }; + var _Floor = Module["_Floor"] = function() { + return (_Floor = Module["_Floor"] = Module["asm"]["Y"]).apply(null, arguments); + }; + var _FloorDiv = Module["_FloorDiv"] = function() { + return (_FloorDiv = Module["_FloorDiv"] = Module["asm"]["Z"]).apply(null, arguments); + }; + var _FusedBatchNorm = Module["_FusedBatchNorm"] = function() { + return (_FusedBatchNorm = Module["_FusedBatchNorm"] = Module["asm"]["_"]).apply(null, arguments); + }; + var _FusedConv2D = Module["_FusedConv2D"] = function() { + return (_FusedConv2D = Module["_FusedConv2D"] = Module["asm"]["$"]).apply(null, arguments); + }; + var _FusedDepthwiseConv2D = Module["_FusedDepthwiseConv2D"] = function() { + return (_FusedDepthwiseConv2D = Module["_FusedDepthwiseConv2D"] = Module["asm"]["aa"]).apply(null, arguments); + }; + var _Gather = Module["_Gather"] = function() { + return (_Gather = Module["_Gather"] = Module["asm"]["ba"]).apply(null, arguments); + }; + var _GatherNd = Module["_GatherNd"] = function() { + return (_GatherNd = Module["_GatherNd"] = Module["asm"]["ca"]).apply(null, arguments); + }; + var _Greater = Module["_Greater"] = function() { + return (_Greater = Module["_Greater"] = Module["asm"]["da"]).apply(null, arguments); + }; + var _GreaterEqual = Module["_GreaterEqual"] = function() { + return (_GreaterEqual = Module["_GreaterEqual"] = Module["asm"]["ea"]).apply(null, arguments); + }; + var _LeakyRelu = Module["_LeakyRelu"] = function() { + return (_LeakyRelu = Module["_LeakyRelu"] = Module["asm"]["fa"]).apply(null, arguments); + }; + var _Less = Module["_Less"] = function() { + return (_Less = Module["_Less"] = Module["asm"]["ga"]).apply(null, arguments); + }; + var _LessEqual = Module["_LessEqual"] = function() { + return (_LessEqual = Module["_LessEqual"] = Module["asm"]["ha"]).apply(null, arguments); + }; + var _Log = Module["_Log"] = function() { + return (_Log = Module["_Log"] = Module["asm"]["ia"]).apply(null, arguments); + }; + var _LogicalAnd = Module["_LogicalAnd"] = function() { + return (_LogicalAnd = Module["_LogicalAnd"] = Module["asm"]["ja"]).apply(null, arguments); + }; + var _Max = Module["_Max"] = function() { + return (_Max = Module["_Max"] = Module["asm"]["ka"]).apply(null, arguments); + }; + var _MaxPool = Module["_MaxPool"] = function() { + return (_MaxPool = Module["_MaxPool"] = Module["asm"]["la"]).apply(null, arguments); + }; + var _Maximum = Module["_Maximum"] = function() { + return (_Maximum = Module["_Maximum"] = Module["asm"]["ma"]).apply(null, arguments); + }; + var _Mean = Module["_Mean"] = function() { + return (_Mean = Module["_Mean"] = Module["asm"]["na"]).apply(null, arguments); + }; + var _Min = Module["_Min"] = function() { + return (_Min = Module["_Min"] = Module["asm"]["oa"]).apply(null, arguments); + }; + var _Minimum = Module["_Minimum"] = function() { + return (_Minimum = Module["_Minimum"] = Module["asm"]["pa"]).apply(null, arguments); + }; + var _Multiply = Module["_Multiply"] = function() { + return (_Multiply = Module["_Multiply"] = Module["asm"]["qa"]).apply(null, arguments); + }; + var _Neg = Module["_Neg"] = function() { + return (_Neg = Module["_Neg"] = Module["asm"]["ra"]).apply(null, arguments); + }; + var _NonMaxSuppressionV3 = Module["_NonMaxSuppressionV3"] = function() { + return (_NonMaxSuppressionV3 = Module["_NonMaxSuppressionV3"] = Module["asm"]["sa"]).apply(null, arguments); + }; + var _NonMaxSuppressionV4 = Module["_NonMaxSuppressionV4"] = function() { + return (_NonMaxSuppressionV4 = Module["_NonMaxSuppressionV4"] = Module["asm"]["ta"]).apply(null, arguments); + }; + var _NonMaxSuppressionV5 = Module["_NonMaxSuppressionV5"] = function() { + return (_NonMaxSuppressionV5 = Module["_NonMaxSuppressionV5"] = Module["asm"]["ua"]).apply(null, arguments); + }; + var _NotEqual = Module["_NotEqual"] = function() { + return (_NotEqual = Module["_NotEqual"] = Module["asm"]["va"]).apply(null, arguments); + }; + var _OneHot = Module["_OneHot"] = function() { + return (_OneHot = Module["_OneHot"] = Module["asm"]["wa"]).apply(null, arguments); + }; + var _PadV2 = Module["_PadV2"] = function() { + return (_PadV2 = Module["_PadV2"] = Module["asm"]["xa"]).apply(null, arguments); + }; + var _Pow = Module["_Pow"] = function() { + return (_Pow = Module["_Pow"] = Module["asm"]["ya"]).apply(null, arguments); + }; + var _Prelu = Module["_Prelu"] = function() { + return (_Prelu = Module["_Prelu"] = Module["asm"]["za"]).apply(null, arguments); + }; + var _Prod = Module["_Prod"] = function() { + return (_Prod = Module["_Prod"] = Module["asm"]["Aa"]).apply(null, arguments); + }; + var _RealDiv = Module["_RealDiv"] = function() { + return (_RealDiv = Module["_RealDiv"] = Module["asm"]["Ba"]).apply(null, arguments); + }; + var _Relu = Module["_Relu"] = function() { + return (_Relu = Module["_Relu"] = Module["asm"]["Ca"]).apply(null, arguments); + }; + var _Relu6 = Module["_Relu6"] = function() { + return (_Relu6 = Module["_Relu6"] = Module["asm"]["Da"]).apply(null, arguments); + }; + var _ResizeBilinear = Module["_ResizeBilinear"] = function() { + return (_ResizeBilinear = Module["_ResizeBilinear"] = Module["asm"]["Ea"]).apply(null, arguments); + }; + var _Reverse = Module["_Reverse"] = function() { + return (_Reverse = Module["_Reverse"] = Module["asm"]["Fa"]).apply(null, arguments); + }; + var _RotateWithOffset = Module["_RotateWithOffset"] = function() { + return (_RotateWithOffset = Module["_RotateWithOffset"] = Module["asm"]["Ga"]).apply(null, arguments); + }; + var _Round = Module["_Round"] = function() { + return (_Round = Module["_Round"] = Module["asm"]["Ha"]).apply(null, arguments); + }; + var _Rsqrt = Module["_Rsqrt"] = function() { + return (_Rsqrt = Module["_Rsqrt"] = Module["asm"]["Ia"]).apply(null, arguments); + }; + var _ScatterNd = Module["_ScatterNd"] = function() { + return (_ScatterNd = Module["_ScatterNd"] = Module["asm"]["Ja"]).apply(null, arguments); + }; + var _SelectV2 = Module["_SelectV2"] = function() { + return (_SelectV2 = Module["_SelectV2"] = Module["asm"]["Ka"]).apply(null, arguments); + }; + var _Sigmoid = Module["_Sigmoid"] = function() { + return (_Sigmoid = Module["_Sigmoid"] = Module["asm"]["La"]).apply(null, arguments); + }; + var _Sin = Module["_Sin"] = function() { + return (_Sin = Module["_Sin"] = Module["asm"]["Ma"]).apply(null, arguments); + }; + var _Softmax = Module["_Softmax"] = function() { + return (_Softmax = Module["_Softmax"] = Module["asm"]["Na"]).apply(null, arguments); + }; + var _Sqrt = Module["_Sqrt"] = function() { + return (_Sqrt = Module["_Sqrt"] = Module["asm"]["Oa"]).apply(null, arguments); + }; + var _Square = Module["_Square"] = function() { + return (_Square = Module["_Square"] = Module["asm"]["Pa"]).apply(null, arguments); + }; + var _SquaredDifference = Module["_SquaredDifference"] = function() { + return (_SquaredDifference = Module["_SquaredDifference"] = Module["asm"]["Qa"]).apply(null, arguments); + }; + var _Step = Module["_Step"] = function() { + return (_Step = Module["_Step"] = Module["asm"]["Ra"]).apply(null, arguments); + }; + var _StridedSlice = Module["_StridedSlice"] = function() { + return (_StridedSlice = Module["_StridedSlice"] = Module["asm"]["Sa"]).apply(null, arguments); + }; + var _Sub = Module["_Sub"] = function() { + return (_Sub = Module["_Sub"] = Module["asm"]["Ta"]).apply(null, arguments); + }; + var _Sum = Module["_Sum"] = function() { + return (_Sum = Module["_Sum"] = Module["asm"]["Ua"]).apply(null, arguments); + }; + var _Tanh = Module["_Tanh"] = function() { + return (_Tanh = Module["_Tanh"] = Module["asm"]["Va"]).apply(null, arguments); + }; + var _Tile = Module["_Tile"] = function() { + return (_Tile = Module["_Tile"] = Module["asm"]["Wa"]).apply(null, arguments); + }; + var _TopK = Module["_TopK"] = function() { + return (_TopK = Module["_TopK"] = Module["asm"]["Xa"]).apply(null, arguments); + }; + var _Transpose = Module["_Transpose"] = function() { + return (_Transpose = Module["_Transpose"] = Module["asm"]["Ya"]).apply(null, arguments); + }; + var __FusedMatMul = Module["__FusedMatMul"] = function() { + return (__FusedMatMul = Module["__FusedMatMul"] = Module["asm"]["Za"]).apply(null, arguments); + }; + var _malloc = Module["_malloc"] = function() { + return (_malloc = Module["_malloc"] = Module["asm"]["_a"]).apply(null, arguments); + }; + var _free = Module["_free"] = function() { + return (_free = Module["_free"] = Module["asm"]["$a"]).apply(null, arguments); + }; + var ___errno_location = Module["___errno_location"] = function() { + return (___errno_location = Module["___errno_location"] = Module["asm"]["ab"]).apply(null, arguments); + }; + var _emscripten_get_global_libc = Module["_emscripten_get_global_libc"] = function() { + return (_emscripten_get_global_libc = Module["_emscripten_get_global_libc"] = Module["asm"]["bb"]).apply(null, arguments); + }; + var _pthread_self = Module["_pthread_self"] = function() { + return (_pthread_self = Module["_pthread_self"] = Module["asm"]["cb"]).apply(null, arguments); + }; + var ___pthread_tsd_run_dtors = Module["___pthread_tsd_run_dtors"] = function() { + return (___pthread_tsd_run_dtors = Module["___pthread_tsd_run_dtors"] = Module["asm"]["db"]).apply(null, arguments); + }; + var _emscripten_main_thread_process_queued_calls = Module["_emscripten_main_thread_process_queued_calls"] = function() { + return (_emscripten_main_thread_process_queued_calls = Module["_emscripten_main_thread_process_queued_calls"] = Module["asm"]["eb"]).apply(null, arguments); + }; + var _emscripten_current_thread_process_queued_calls = Module["_emscripten_current_thread_process_queued_calls"] = function() { + return (_emscripten_current_thread_process_queued_calls = Module["_emscripten_current_thread_process_queued_calls"] = Module["asm"]["fb"]).apply(null, arguments); + }; + var _emscripten_register_main_browser_thread_id = Module["_emscripten_register_main_browser_thread_id"] = function() { + return (_emscripten_register_main_browser_thread_id = Module["_emscripten_register_main_browser_thread_id"] = Module["asm"]["gb"]).apply(null, arguments); + }; + var __emscripten_do_dispatch_to_thread = Module["__emscripten_do_dispatch_to_thread"] = function() { + return (__emscripten_do_dispatch_to_thread = Module["__emscripten_do_dispatch_to_thread"] = Module["asm"]["hb"]).apply(null, arguments); + }; + var _emscripten_sync_run_in_main_thread_4 = Module["_emscripten_sync_run_in_main_thread_4"] = function() { + return (_emscripten_sync_run_in_main_thread_4 = Module["_emscripten_sync_run_in_main_thread_4"] = Module["asm"]["ib"]).apply(null, arguments); + }; + var _emscripten_run_in_main_runtime_thread_js = Module["_emscripten_run_in_main_runtime_thread_js"] = function() { + return (_emscripten_run_in_main_runtime_thread_js = Module["_emscripten_run_in_main_runtime_thread_js"] = Module["asm"]["jb"]).apply(null, arguments); + }; + var __emscripten_call_on_thread = Module["__emscripten_call_on_thread"] = function() { + return (__emscripten_call_on_thread = Module["__emscripten_call_on_thread"] = Module["asm"]["kb"]).apply(null, arguments); + }; + var _emscripten_tls_init = Module["_emscripten_tls_init"] = function() { + return (_emscripten_tls_init = Module["_emscripten_tls_init"] = Module["asm"]["lb"]).apply(null, arguments); + }; + var __emscripten_thread_init = Module["__emscripten_thread_init"] = function() { + return (__emscripten_thread_init = Module["__emscripten_thread_init"] = Module["asm"]["mb"]).apply(null, arguments); + }; + var stackSave = Module["stackSave"] = function() { + return (stackSave = Module["stackSave"] = Module["asm"]["nb"]).apply(null, arguments); + }; + var stackRestore = Module["stackRestore"] = function() { + return (stackRestore = Module["stackRestore"] = Module["asm"]["ob"]).apply(null, arguments); + }; + var stackAlloc = Module["stackAlloc"] = function() { + return (stackAlloc = Module["stackAlloc"] = Module["asm"]["pb"]).apply(null, arguments); + }; + var _emscripten_stack_set_limits = Module["_emscripten_stack_set_limits"] = function() { + return (_emscripten_stack_set_limits = Module["_emscripten_stack_set_limits"] = Module["asm"]["qb"]).apply(null, arguments); + }; + var _memalign = Module["_memalign"] = function() { + return (_memalign = Module["_memalign"] = Module["asm"]["rb"]).apply(null, arguments); + }; + var __emscripten_allow_main_runtime_queued_calls = Module["__emscripten_allow_main_runtime_queued_calls"] = 9880; + var __emscripten_main_thread_futex = Module["__emscripten_main_thread_futex"] = 11368; + Module["cwrap"] = cwrap; + Module["PThread"] = PThread; + Module["PThread"] = PThread; + Module["wasmMemory"] = wasmMemory; + Module["ExitStatus"] = ExitStatus; + var calledRun; + function ExitStatus(status2) { + this.name = "ExitStatus"; + this.message = "Program terminated with exit(" + status2 + ")"; + this.status = status2; + } + dependenciesFulfilled = function runCaller() { + if (!calledRun) + run2(); + if (!calledRun) + dependenciesFulfilled = runCaller; + }; + function run2(args) { + args = args || arguments_; + if (runDependencies > 0) { + return; + } + if (ENVIRONMENT_IS_PTHREAD) { + readyPromiseResolve(Module); + postMessage({cmd: "loaded"}); + return; + } + preRun(); + if (runDependencies > 0) { + return; + } + function doRun() { + if (calledRun) + return; + calledRun = true; + Module["calledRun"] = true; + if (ABORT) + return; + initRuntime(); + preMain(); + readyPromiseResolve(Module); + if (Module["onRuntimeInitialized"]) + Module["onRuntimeInitialized"](); + postRun(); + } + if (Module["setStatus"]) { + Module["setStatus"]("Running..."); + setTimeout(function() { + setTimeout(function() { + Module["setStatus"](""); + }, 1); + doRun(); + }, 1); + } else { + doRun(); + } + } + Module["run"] = run2; + function exit(status2, implicit) { + if (implicit && noExitRuntime && status2 === 0) { + return; + } + if (!implicit) { + if (ENVIRONMENT_IS_PTHREAD) { + postMessage({cmd: "exitProcess", returnCode: status2}); + throw new ExitStatus(status2); + } else { + } + } + if (noExitRuntime) { + } else { + PThread.terminateAllThreads(); + EXITSTATUS = status2; + exitRuntime(); + if (Module["onExit"]) + Module["onExit"](status2); + ABORT = true; + } + quit_(status2, new ExitStatus(status2)); + } + if (Module["preInit"]) { + if (typeof Module["preInit"] == "function") + Module["preInit"] = [Module["preInit"]]; + while (Module["preInit"].length > 0) { + Module["preInit"].pop()(); + } + } + if (ENVIRONMENT_IS_PTHREAD) { + noExitRuntime = false; + PThread.initWorker(); + } + run2(); + return WasmBackendModuleThreadedSimd2.ready; + }; + }(); + if (typeof exports === "object" && typeof module2 === "object") + module2.exports = WasmBackendModuleThreadedSimd; + else if (typeof define === "function" && define["amd"]) + define([], function() { + return WasmBackendModuleThreadedSimd; + }); + else if (typeof exports === "object") + exports["WasmBackendModuleThreadedSimd"] = WasmBackendModuleThreadedSimd; +}); +var require_tfjs_backend_wasm = __commonJS2((exports, module2) => { + var WasmBackendModule = function() { + var _scriptDir = typeof document !== "undefined" && document.currentScript ? document.currentScript.src : void 0; + if (typeof __filename !== "undefined") + _scriptDir = _scriptDir || __filename; + return function(WasmBackendModule2) { + WasmBackendModule2 = WasmBackendModule2 || {}; + var Module = typeof WasmBackendModule2 !== "undefined" ? WasmBackendModule2 : {}; + var readyPromiseResolve, readyPromiseReject; + Module["ready"] = new Promise(function(resolve, reject) { + readyPromiseResolve = resolve; + readyPromiseReject = reject; + }); + var moduleOverrides = {}; + var key; + for (key in Module) { + if (Module.hasOwnProperty(key)) { + moduleOverrides[key] = Module[key]; + } + } + var arguments_ = []; + var thisProgram = "./this.program"; + var quit_ = function(status2, toThrow) { + throw toThrow; + }; + var ENVIRONMENT_IS_WEB = false; + var ENVIRONMENT_IS_WORKER = false; + var ENVIRONMENT_IS_NODE = false; + var ENVIRONMENT_IS_SHELL = false; + ENVIRONMENT_IS_WEB = typeof window === "object"; + ENVIRONMENT_IS_WORKER = typeof importScripts === "function"; + ENVIRONMENT_IS_NODE = typeof process === "object" && typeof process.versions === "object" && typeof process.versions.node === "string"; + ENVIRONMENT_IS_SHELL = !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER; + var scriptDirectory = ""; + function locateFile(path) { + if (Module["locateFile"]) { + return Module["locateFile"](path, scriptDirectory); + } + return scriptDirectory + path; + } + var read_, readAsync, readBinary, setWindowTitle; + var nodeFS; + var nodePath; + if (ENVIRONMENT_IS_NODE) { + if (ENVIRONMENT_IS_WORKER) { + scriptDirectory = require_path().dirname(scriptDirectory) + "/"; + } else { + scriptDirectory = __dirname + "/"; + } + read_ = function shell_read(filename, binary) { + if (!nodeFS) + nodeFS = require("fs"); + if (!nodePath) + nodePath = require_path(); + filename = nodePath["normalize"](filename); + return nodeFS["readFileSync"](filename, binary ? null : "utf8"); + }; + readBinary = function readBinary2(filename) { + var ret = read_(filename, true); + if (!ret.buffer) { + ret = new Uint8Array(ret); + } + assert3(ret.buffer); + return ret; + }; + if (process["argv"].length > 1) { + thisProgram = process["argv"][1].replace(/\\/g, "/"); + } + arguments_ = process["argv"].slice(2); + process["on"]("uncaughtException", function(ex) { + if (!(ex instanceof ExitStatus)) { + throw ex; + } + }); + process["on"]("unhandledRejection", abort); + quit_ = function(status2) { + process["exit"](status2); + }; + Module["inspect"] = function() { + return "[Emscripten Module object]"; + }; + } else if (ENVIRONMENT_IS_SHELL) { + if (typeof read != "undefined") { + read_ = function shell_read(f) { + return read(f); + }; + } + readBinary = function readBinary2(f) { + var data2; + if (typeof readbuffer === "function") { + return new Uint8Array(readbuffer(f)); + } + data2 = read(f, "binary"); + assert3(typeof data2 === "object"); + return data2; + }; + if (typeof scriptArgs != "undefined") { + arguments_ = scriptArgs; + } else if (typeof arguments != "undefined") { + arguments_ = arguments; + } + if (typeof quit === "function") { + quit_ = function(status2) { + quit(status2); + }; + } + if (typeof print !== "undefined") { + if (typeof console === "undefined") + console = {}; + console.log = print; + console.warn = console.error = typeof printErr !== "undefined" ? printErr : print; + } + } else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) { + if (ENVIRONMENT_IS_WORKER) { + scriptDirectory = self.location.href; + } else if (typeof document !== "undefined" && document.currentScript) { + scriptDirectory = document.currentScript.src; + } + if (_scriptDir) { + scriptDirectory = _scriptDir; + } + if (scriptDirectory.indexOf("blob:") !== 0) { + scriptDirectory = scriptDirectory.substr(0, scriptDirectory.lastIndexOf("/") + 1); + } else { + scriptDirectory = ""; + } + { + read_ = function(url) { + var xhr = new XMLHttpRequest(); + xhr.open("GET", url, false); + xhr.send(null); + return xhr.responseText; + }; + if (ENVIRONMENT_IS_WORKER) { + readBinary = function(url) { + var xhr = new XMLHttpRequest(); + xhr.open("GET", url, false); + xhr.responseType = "arraybuffer"; + xhr.send(null); + return new Uint8Array(xhr.response); + }; + } + readAsync = function(url, onload, onerror) { + var xhr = new XMLHttpRequest(); + xhr.open("GET", url, true); + xhr.responseType = "arraybuffer"; + xhr.onload = function() { + if (xhr.status == 200 || xhr.status == 0 && xhr.response) { + onload(xhr.response); + return; + } + onerror(); + }; + xhr.onerror = onerror; + xhr.send(null); + }; + } + setWindowTitle = function(title) { + document.title = title; + }; + } else { + } + var out = Module["print"] || console.log.bind(console); + var err = Module["printErr"] || console.warn.bind(console); + for (key in moduleOverrides) { + if (moduleOverrides.hasOwnProperty(key)) { + Module[key] = moduleOverrides[key]; + } + } + moduleOverrides = null; + if (Module["arguments"]) + arguments_ = Module["arguments"]; + if (Module["thisProgram"]) + thisProgram = Module["thisProgram"]; + if (Module["quit"]) + quit_ = Module["quit"]; + var wasmBinary; + if (Module["wasmBinary"]) + wasmBinary = Module["wasmBinary"]; + var noExitRuntime = Module["noExitRuntime"] || true; + if (typeof WebAssembly !== "object") { + abort("no native wasm support detected"); + } + var wasmMemory; + var ABORT = false; + var EXITSTATUS; + function assert3(condition, text) { + if (!condition) { + abort("Assertion failed: " + text); + } + } + function getCFunc(ident) { + var func2 = Module["_" + ident]; + assert3(func2, "Cannot call unknown function " + ident + ", make sure it is exported"); + return func2; + } + function ccall(ident, returnType, argTypes, args, opts) { + var toC = {string: function(str2) { + var ret2 = 0; + if (str2 !== null && str2 !== void 0 && str2 !== 0) { + var len = (str2.length << 2) + 1; + ret2 = stackAlloc(len); + stringToUTF8(str2, ret2, len); + } + return ret2; + }, array: function(arr) { + var ret2 = stackAlloc(arr.length); + writeArrayToMemory(arr, ret2); + return ret2; + }}; + function convertReturnValue(ret2) { + if (returnType === "string") + return UTF8ToString(ret2); + if (returnType === "boolean") + return Boolean(ret2); + return ret2; + } + var func2 = getCFunc(ident); + var cArgs = []; + var stack2 = 0; + if (args) { + for (var i = 0; i < args.length; i++) { + var converter = toC[argTypes[i]]; + if (converter) { + if (stack2 === 0) + stack2 = stackSave(); + cArgs[i] = converter(args[i]); + } else { + cArgs[i] = args[i]; + } + } + } + var ret = func2.apply(null, cArgs); + ret = convertReturnValue(ret); + if (stack2 !== 0) + stackRestore(stack2); + return ret; + } + function cwrap(ident, returnType, argTypes, opts) { + argTypes = argTypes || []; + var numericArgs = argTypes.every(function(type) { + return type === "number"; + }); + var numericRet = returnType !== "string"; + if (numericRet && numericArgs && !opts) { + return getCFunc(ident); + } + return function() { + return ccall(ident, returnType, argTypes, arguments, opts); + }; + } + var UTF8Decoder = typeof TextDecoder !== "undefined" ? new TextDecoder("utf8") : void 0; + function UTF8ArrayToString(heap, idx, maxBytesToRead) { + var endIdx = idx + maxBytesToRead; + var endPtr = idx; + while (heap[endPtr] && !(endPtr >= endIdx)) + ++endPtr; + if (endPtr - idx > 16 && heap.subarray && UTF8Decoder) { + return UTF8Decoder.decode(heap.subarray(idx, endPtr)); + } else { + var str2 = ""; + while (idx < endPtr) { + var u0 = heap[idx++]; + if (!(u0 & 128)) { + str2 += String.fromCharCode(u0); + continue; + } + var u1 = heap[idx++] & 63; + if ((u0 & 224) == 192) { + str2 += String.fromCharCode((u0 & 31) << 6 | u1); + continue; + } + var u2 = heap[idx++] & 63; + if ((u0 & 240) == 224) { + u0 = (u0 & 15) << 12 | u1 << 6 | u2; + } else { + u0 = (u0 & 7) << 18 | u1 << 12 | u2 << 6 | heap[idx++] & 63; + } + if (u0 < 65536) { + str2 += String.fromCharCode(u0); + } else { + var ch = u0 - 65536; + str2 += String.fromCharCode(55296 | ch >> 10, 56320 | ch & 1023); + } + } + } + return str2; + } + function UTF8ToString(ptr, maxBytesToRead) { + return ptr ? UTF8ArrayToString(HEAPU8, ptr, maxBytesToRead) : ""; + } + function stringToUTF8Array(str2, heap, outIdx, maxBytesToWrite) { + if (!(maxBytesToWrite > 0)) + return 0; + var startIdx = outIdx; + var endIdx = outIdx + maxBytesToWrite - 1; + for (var i = 0; i < str2.length; ++i) { + var u = str2.charCodeAt(i); + if (u >= 55296 && u <= 57343) { + var u1 = str2.charCodeAt(++i); + u = 65536 + ((u & 1023) << 10) | u1 & 1023; + } + if (u <= 127) { + if (outIdx >= endIdx) + break; + heap[outIdx++] = u; + } else if (u <= 2047) { + if (outIdx + 1 >= endIdx) + break; + heap[outIdx++] = 192 | u >> 6; + heap[outIdx++] = 128 | u & 63; + } else if (u <= 65535) { + if (outIdx + 2 >= endIdx) + break; + heap[outIdx++] = 224 | u >> 12; + heap[outIdx++] = 128 | u >> 6 & 63; + heap[outIdx++] = 128 | u & 63; + } else { + if (outIdx + 3 >= endIdx) + break; + heap[outIdx++] = 240 | u >> 18; + heap[outIdx++] = 128 | u >> 12 & 63; + heap[outIdx++] = 128 | u >> 6 & 63; + heap[outIdx++] = 128 | u & 63; + } + } + heap[outIdx] = 0; + return outIdx - startIdx; + } + function stringToUTF8(str2, outPtr, maxBytesToWrite) { + return stringToUTF8Array(str2, HEAPU8, outPtr, maxBytesToWrite); + } + function writeArrayToMemory(array2, buffer3) { + HEAP8.set(array2, buffer3); + } + function alignUp(x, multiple) { + if (x % multiple > 0) { + x += multiple - x % multiple; + } + return x; + } + var buffer2, HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64; + function updateGlobalBufferAndViews(buf) { + buffer2 = buf; + Module["HEAP8"] = HEAP8 = new Int8Array(buf); + Module["HEAP16"] = HEAP16 = new Int16Array(buf); + Module["HEAP32"] = HEAP32 = new Int32Array(buf); + Module["HEAPU8"] = HEAPU8 = new Uint8Array(buf); + Module["HEAPU16"] = HEAPU16 = new Uint16Array(buf); + Module["HEAPU32"] = HEAPU32 = new Uint32Array(buf); + Module["HEAPF32"] = HEAPF32 = new Float32Array(buf); + Module["HEAPF64"] = HEAPF64 = new Float64Array(buf); + } + var INITIAL_MEMORY = Module["INITIAL_MEMORY"] || 16777216; + var wasmTable; + var __ATPRERUN__ = []; + var __ATINIT__ = []; + var __ATMAIN__ = []; + var __ATPOSTRUN__ = []; + var runtimeInitialized = false; + __ATINIT__.push({func: function() { + ___wasm_call_ctors(); + }}); + function preRun() { + if (Module["preRun"]) { + if (typeof Module["preRun"] == "function") + Module["preRun"] = [Module["preRun"]]; + while (Module["preRun"].length) { + addOnPreRun(Module["preRun"].shift()); + } + } + callRuntimeCallbacks(__ATPRERUN__); + } + function initRuntime() { + runtimeInitialized = true; + callRuntimeCallbacks(__ATINIT__); + } + function preMain() { + callRuntimeCallbacks(__ATMAIN__); + } + function postRun() { + if (Module["postRun"]) { + if (typeof Module["postRun"] == "function") + Module["postRun"] = [Module["postRun"]]; + while (Module["postRun"].length) { + addOnPostRun(Module["postRun"].shift()); + } + } + callRuntimeCallbacks(__ATPOSTRUN__); + } + function addOnPreRun(cb) { + __ATPRERUN__.unshift(cb); + } + function addOnPostRun(cb) { + __ATPOSTRUN__.unshift(cb); + } + var runDependencies = 0; + var runDependencyWatcher = null; + var dependenciesFulfilled = null; + function addRunDependency(id) { + runDependencies++; + if (Module["monitorRunDependencies"]) { + Module["monitorRunDependencies"](runDependencies); + } + } + function removeRunDependency(id) { + runDependencies--; + if (Module["monitorRunDependencies"]) { + Module["monitorRunDependencies"](runDependencies); + } + if (runDependencies == 0) { + if (runDependencyWatcher !== null) { + clearInterval(runDependencyWatcher); + runDependencyWatcher = null; + } + if (dependenciesFulfilled) { + var callback = dependenciesFulfilled; + dependenciesFulfilled = null; + callback(); + } + } + } + Module["preloadedImages"] = {}; + Module["preloadedAudios"] = {}; + function abort(what) { + if (Module["onAbort"]) { + Module["onAbort"](what); + } + what += ""; + err(what); + ABORT = true; + EXITSTATUS = 1; + what = "abort(" + what + "). Build with -s ASSERTIONS=1 for more info."; + var e = new WebAssembly.RuntimeError(what); + readyPromiseReject(e); + throw e; + } + function hasPrefix(str2, prefix) { + return String.prototype.startsWith ? str2.startsWith(prefix) : str2.indexOf(prefix) === 0; + } + var dataURIPrefix = "data:application/octet-stream;base64,"; + function isDataURI(filename) { + return hasPrefix(filename, dataURIPrefix); + } + var fileURIPrefix = "file://"; + function isFileURI(filename) { + return hasPrefix(filename, fileURIPrefix); + } + var wasmBinaryFile = "tfjs-backend-wasm.wasm"; + if (!isDataURI(wasmBinaryFile)) { + wasmBinaryFile = locateFile(wasmBinaryFile); + } + function getBinary(file) { + try { + if (file == wasmBinaryFile && wasmBinary) { + return new Uint8Array(wasmBinary); + } + if (readBinary) { + return readBinary(file); + } else { + throw "both async and sync fetching of the wasm failed"; + } + } catch (err2) { + abort(err2); + } + } + function getBinaryPromise() { + if (!wasmBinary && (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER)) { + if (typeof fetch === "function" && !isFileURI(wasmBinaryFile)) { + return fetch(wasmBinaryFile, {credentials: "same-origin"}).then(function(response) { + if (!response["ok"]) { + throw "failed to load wasm binary file at '" + wasmBinaryFile + "'"; + } + return response["arrayBuffer"](); + }).catch(function() { + return getBinary(wasmBinaryFile); + }); + } else { + if (readAsync) { + return new Promise(function(resolve, reject) { + readAsync(wasmBinaryFile, function(response) { + resolve(new Uint8Array(response)); + }, reject); + }); + } + } + } + return Promise.resolve().then(function() { + return getBinary(wasmBinaryFile); + }); + } + function createWasm() { + var info = {a: asmLibraryArg}; + function receiveInstance(instance2, module22) { + var exports3 = instance2.exports; + Module["asm"] = exports3; + wasmMemory = Module["asm"]["g"]; + updateGlobalBufferAndViews(wasmMemory.buffer); + wasmTable = Module["asm"]["m"]; + removeRunDependency("wasm-instantiate"); + } + addRunDependency("wasm-instantiate"); + function receiveInstantiatedSource(output) { + receiveInstance(output["instance"]); + } + function instantiateArrayBuffer(receiver) { + return getBinaryPromise().then(function(binary) { + return WebAssembly.instantiate(binary, info); + }).then(receiver, function(reason) { + err("failed to asynchronously prepare wasm: " + reason); + abort(reason); + }); + } + function instantiateAsync() { + if (!wasmBinary && typeof WebAssembly.instantiateStreaming === "function" && !isDataURI(wasmBinaryFile) && !isFileURI(wasmBinaryFile) && typeof fetch === "function") { + return fetch(wasmBinaryFile, {credentials: "same-origin"}).then(function(response) { + var result = WebAssembly.instantiateStreaming(response, info); + return result.then(receiveInstantiatedSource, function(reason) { + err("wasm streaming compile failed: " + reason); + err("falling back to ArrayBuffer instantiation"); + return instantiateArrayBuffer(receiveInstantiatedSource); + }); + }); + } else { + return instantiateArrayBuffer(receiveInstantiatedSource); + } + } + if (Module["instantiateWasm"]) { + try { + var exports2 = Module["instantiateWasm"](info, receiveInstance); + return exports2; + } catch (e) { + err("Module.instantiateWasm callback failed with error: " + e); + return false; + } + } + instantiateAsync().catch(readyPromiseReject); + return {}; + } + function callRuntimeCallbacks(callbacks2) { + while (callbacks2.length > 0) { + var callback = callbacks2.shift(); + if (typeof callback == "function") { + callback(Module); + continue; + } + var func2 = callback.func; + if (typeof func2 === "number") { + if (callback.arg === void 0) { + wasmTable.get(func2)(); + } else { + wasmTable.get(func2)(callback.arg); + } + } else { + func2(callback.arg === void 0 ? null : callback.arg); + } + } + } + function _abort() { + abort(); + } + function _emscripten_memcpy_big(dest, src, num) { + HEAPU8.copyWithin(dest, src, src + num); + } + function _emscripten_get_heap_size() { + return HEAPU8.length; + } + function emscripten_realloc_buffer(size) { + try { + wasmMemory.grow(size - buffer2.byteLength + 65535 >>> 16); + updateGlobalBufferAndViews(wasmMemory.buffer); + return 1; + } catch (e) { + } + } + function _emscripten_resize_heap(requestedSize) { + var oldSize = _emscripten_get_heap_size(); + var maxHeapSize = 2147483648; + if (requestedSize > maxHeapSize) { + return false; + } + for (var cutDown = 1; cutDown <= 4; cutDown *= 2) { + var overGrownHeapSize = oldSize * (1 + 0.2 / cutDown); + overGrownHeapSize = Math.min(overGrownHeapSize, requestedSize + 100663296); + var newSize = Math.min(maxHeapSize, alignUp(Math.max(requestedSize, overGrownHeapSize), 65536)); + var replacement = emscripten_realloc_buffer(newSize); + if (replacement) { + return true; + } + } + return false; + } + var SYSCALLS = {mappings: {}, buffers: [null, [], []], printChar: function(stream, curr) { + var buffer3 = SYSCALLS.buffers[stream]; + if (curr === 0 || curr === 10) { + (stream === 1 ? out : err)(UTF8ArrayToString(buffer3, 0)); + buffer3.length = 0; + } else { + buffer3.push(curr); + } + }, varargs: void 0, get: function() { + SYSCALLS.varargs += 4; + var ret = HEAP32[SYSCALLS.varargs - 4 >> 2]; + return ret; + }, getStr: function(ptr) { + var ret = UTF8ToString(ptr); + return ret; + }, get64: function(low, high) { + return low; + }}; + function _fd_close(fd) { + return 0; + } + function _fd_seek(fd, offset_low, offset_high, whence, newOffset) { + } + function _fd_write(fd, iov, iovcnt, pnum) { + var num = 0; + for (var i = 0; i < iovcnt; i++) { + var ptr = HEAP32[iov + i * 8 >> 2]; + var len = HEAP32[iov + (i * 8 + 4) >> 2]; + for (var j = 0; j < len; j++) { + SYSCALLS.printChar(fd, HEAPU8[ptr + j]); + } + num += len; + } + HEAP32[pnum >> 2] = num; + return 0; + } + var asmLibraryArg = {a: _abort, d: _emscripten_memcpy_big, e: _emscripten_resize_heap, f: _fd_close, c: _fd_seek, b: _fd_write}; + var asm = createWasm(); + var ___wasm_call_ctors = Module["___wasm_call_ctors"] = function() { + return (___wasm_call_ctors = Module["___wasm_call_ctors"] = Module["asm"]["h"]).apply(null, arguments); + }; + var _init = Module["_init"] = function() { + return (_init = Module["_init"] = Module["asm"]["i"]).apply(null, arguments); + }; + var _register_tensor = Module["_register_tensor"] = function() { + return (_register_tensor = Module["_register_tensor"] = Module["asm"]["j"]).apply(null, arguments); + }; + var _dispose_data = Module["_dispose_data"] = function() { + return (_dispose_data = Module["_dispose_data"] = Module["asm"]["k"]).apply(null, arguments); + }; + var _dispose = Module["_dispose"] = function() { + return (_dispose = Module["_dispose"] = Module["asm"]["l"]).apply(null, arguments); + }; + var _Abs = Module["_Abs"] = function() { + return (_Abs = Module["_Abs"] = Module["asm"]["n"]).apply(null, arguments); + }; + var _Add = Module["_Add"] = function() { + return (_Add = Module["_Add"] = Module["asm"]["o"]).apply(null, arguments); + }; + var _AddN = Module["_AddN"] = function() { + return (_AddN = Module["_AddN"] = Module["asm"]["p"]).apply(null, arguments); + }; + var _ArgMax = Module["_ArgMax"] = function() { + return (_ArgMax = Module["_ArgMax"] = Module["asm"]["q"]).apply(null, arguments); + }; + var _AvgPool = Module["_AvgPool"] = function() { + return (_AvgPool = Module["_AvgPool"] = Module["asm"]["r"]).apply(null, arguments); + }; + var _BatchMatMul = Module["_BatchMatMul"] = function() { + return (_BatchMatMul = Module["_BatchMatMul"] = Module["asm"]["s"]).apply(null, arguments); + }; + var _Ceil = Module["_Ceil"] = function() { + return (_Ceil = Module["_Ceil"] = Module["asm"]["t"]).apply(null, arguments); + }; + var _ClipByValue = Module["_ClipByValue"] = function() { + return (_ClipByValue = Module["_ClipByValue"] = Module["asm"]["u"]).apply(null, arguments); + }; + var _Conv2D = Module["_Conv2D"] = function() { + return (_Conv2D = Module["_Conv2D"] = Module["asm"]["v"]).apply(null, arguments); + }; + var _Conv2DBackpropInput = Module["_Conv2DBackpropInput"] = function() { + return (_Conv2DBackpropInput = Module["_Conv2DBackpropInput"] = Module["asm"]["w"]).apply(null, arguments); + }; + var _Cos = Module["_Cos"] = function() { + return (_Cos = Module["_Cos"] = Module["asm"]["x"]).apply(null, arguments); + }; + var _CropAndResize = Module["_CropAndResize"] = function() { + return (_CropAndResize = Module["_CropAndResize"] = Module["asm"]["y"]).apply(null, arguments); + }; + var _Cumsum = Module["_Cumsum"] = function() { + return (_Cumsum = Module["_Cumsum"] = Module["asm"]["z"]).apply(null, arguments); + }; + var _DepthToSpace = Module["_DepthToSpace"] = function() { + return (_DepthToSpace = Module["_DepthToSpace"] = Module["asm"]["A"]).apply(null, arguments); + }; + var _DepthwiseConv2dNative = Module["_DepthwiseConv2dNative"] = function() { + return (_DepthwiseConv2dNative = Module["_DepthwiseConv2dNative"] = Module["asm"]["B"]).apply(null, arguments); + }; + var _Equal = Module["_Equal"] = function() { + return (_Equal = Module["_Equal"] = Module["asm"]["C"]).apply(null, arguments); + }; + var _Exp = Module["_Exp"] = function() { + return (_Exp = Module["_Exp"] = Module["asm"]["D"]).apply(null, arguments); + }; + var _FlipLeftRight = Module["_FlipLeftRight"] = function() { + return (_FlipLeftRight = Module["_FlipLeftRight"] = Module["asm"]["E"]).apply(null, arguments); + }; + var _Floor = Module["_Floor"] = function() { + return (_Floor = Module["_Floor"] = Module["asm"]["F"]).apply(null, arguments); + }; + var _FloorDiv = Module["_FloorDiv"] = function() { + return (_FloorDiv = Module["_FloorDiv"] = Module["asm"]["G"]).apply(null, arguments); + }; + var _FusedBatchNorm = Module["_FusedBatchNorm"] = function() { + return (_FusedBatchNorm = Module["_FusedBatchNorm"] = Module["asm"]["H"]).apply(null, arguments); + }; + var _FusedConv2D = Module["_FusedConv2D"] = function() { + return (_FusedConv2D = Module["_FusedConv2D"] = Module["asm"]["I"]).apply(null, arguments); + }; + var _FusedDepthwiseConv2D = Module["_FusedDepthwiseConv2D"] = function() { + return (_FusedDepthwiseConv2D = Module["_FusedDepthwiseConv2D"] = Module["asm"]["J"]).apply(null, arguments); + }; + var _Gather = Module["_Gather"] = function() { + return (_Gather = Module["_Gather"] = Module["asm"]["K"]).apply(null, arguments); + }; + var _GatherNd = Module["_GatherNd"] = function() { + return (_GatherNd = Module["_GatherNd"] = Module["asm"]["L"]).apply(null, arguments); + }; + var _Greater = Module["_Greater"] = function() { + return (_Greater = Module["_Greater"] = Module["asm"]["M"]).apply(null, arguments); + }; + var _GreaterEqual = Module["_GreaterEqual"] = function() { + return (_GreaterEqual = Module["_GreaterEqual"] = Module["asm"]["N"]).apply(null, arguments); + }; + var _LeakyRelu = Module["_LeakyRelu"] = function() { + return (_LeakyRelu = Module["_LeakyRelu"] = Module["asm"]["O"]).apply(null, arguments); + }; + var _Less = Module["_Less"] = function() { + return (_Less = Module["_Less"] = Module["asm"]["P"]).apply(null, arguments); + }; + var _LessEqual = Module["_LessEqual"] = function() { + return (_LessEqual = Module["_LessEqual"] = Module["asm"]["Q"]).apply(null, arguments); + }; + var _Log = Module["_Log"] = function() { + return (_Log = Module["_Log"] = Module["asm"]["R"]).apply(null, arguments); + }; + var _LogicalAnd = Module["_LogicalAnd"] = function() { + return (_LogicalAnd = Module["_LogicalAnd"] = Module["asm"]["S"]).apply(null, arguments); + }; + var _Max = Module["_Max"] = function() { + return (_Max = Module["_Max"] = Module["asm"]["T"]).apply(null, arguments); + }; + var _MaxPool = Module["_MaxPool"] = function() { + return (_MaxPool = Module["_MaxPool"] = Module["asm"]["U"]).apply(null, arguments); + }; + var _Maximum = Module["_Maximum"] = function() { + return (_Maximum = Module["_Maximum"] = Module["asm"]["V"]).apply(null, arguments); + }; + var _Mean = Module["_Mean"] = function() { + return (_Mean = Module["_Mean"] = Module["asm"]["W"]).apply(null, arguments); + }; + var _Min = Module["_Min"] = function() { + return (_Min = Module["_Min"] = Module["asm"]["X"]).apply(null, arguments); + }; + var _Minimum = Module["_Minimum"] = function() { + return (_Minimum = Module["_Minimum"] = Module["asm"]["Y"]).apply(null, arguments); + }; + var _Multiply = Module["_Multiply"] = function() { + return (_Multiply = Module["_Multiply"] = Module["asm"]["Z"]).apply(null, arguments); + }; + var _Neg = Module["_Neg"] = function() { + return (_Neg = Module["_Neg"] = Module["asm"]["_"]).apply(null, arguments); + }; + var _NonMaxSuppressionV3 = Module["_NonMaxSuppressionV3"] = function() { + return (_NonMaxSuppressionV3 = Module["_NonMaxSuppressionV3"] = Module["asm"]["$"]).apply(null, arguments); + }; + var _NonMaxSuppressionV4 = Module["_NonMaxSuppressionV4"] = function() { + return (_NonMaxSuppressionV4 = Module["_NonMaxSuppressionV4"] = Module["asm"]["aa"]).apply(null, arguments); + }; + var _NonMaxSuppressionV5 = Module["_NonMaxSuppressionV5"] = function() { + return (_NonMaxSuppressionV5 = Module["_NonMaxSuppressionV5"] = Module["asm"]["ba"]).apply(null, arguments); + }; + var _NotEqual = Module["_NotEqual"] = function() { + return (_NotEqual = Module["_NotEqual"] = Module["asm"]["ca"]).apply(null, arguments); + }; + var _OneHot = Module["_OneHot"] = function() { + return (_OneHot = Module["_OneHot"] = Module["asm"]["da"]).apply(null, arguments); + }; + var _PadV2 = Module["_PadV2"] = function() { + return (_PadV2 = Module["_PadV2"] = Module["asm"]["ea"]).apply(null, arguments); + }; + var _Pow = Module["_Pow"] = function() { + return (_Pow = Module["_Pow"] = Module["asm"]["fa"]).apply(null, arguments); + }; + var _Prelu = Module["_Prelu"] = function() { + return (_Prelu = Module["_Prelu"] = Module["asm"]["ga"]).apply(null, arguments); + }; + var _Prod = Module["_Prod"] = function() { + return (_Prod = Module["_Prod"] = Module["asm"]["ha"]).apply(null, arguments); + }; + var _RealDiv = Module["_RealDiv"] = function() { + return (_RealDiv = Module["_RealDiv"] = Module["asm"]["ia"]).apply(null, arguments); + }; + var _Relu = Module["_Relu"] = function() { + return (_Relu = Module["_Relu"] = Module["asm"]["ja"]).apply(null, arguments); + }; + var _Relu6 = Module["_Relu6"] = function() { + return (_Relu6 = Module["_Relu6"] = Module["asm"]["ka"]).apply(null, arguments); + }; + var _ResizeBilinear = Module["_ResizeBilinear"] = function() { + return (_ResizeBilinear = Module["_ResizeBilinear"] = Module["asm"]["la"]).apply(null, arguments); + }; + var _Reverse = Module["_Reverse"] = function() { + return (_Reverse = Module["_Reverse"] = Module["asm"]["ma"]).apply(null, arguments); + }; + var _RotateWithOffset = Module["_RotateWithOffset"] = function() { + return (_RotateWithOffset = Module["_RotateWithOffset"] = Module["asm"]["na"]).apply(null, arguments); + }; + var _Round = Module["_Round"] = function() { + return (_Round = Module["_Round"] = Module["asm"]["oa"]).apply(null, arguments); + }; + var _Rsqrt = Module["_Rsqrt"] = function() { + return (_Rsqrt = Module["_Rsqrt"] = Module["asm"]["pa"]).apply(null, arguments); + }; + var _ScatterNd = Module["_ScatterNd"] = function() { + return (_ScatterNd = Module["_ScatterNd"] = Module["asm"]["qa"]).apply(null, arguments); + }; + var _SelectV2 = Module["_SelectV2"] = function() { + return (_SelectV2 = Module["_SelectV2"] = Module["asm"]["ra"]).apply(null, arguments); + }; + var _Sigmoid = Module["_Sigmoid"] = function() { + return (_Sigmoid = Module["_Sigmoid"] = Module["asm"]["sa"]).apply(null, arguments); + }; + var _Sin = Module["_Sin"] = function() { + return (_Sin = Module["_Sin"] = Module["asm"]["ta"]).apply(null, arguments); + }; + var _Softmax = Module["_Softmax"] = function() { + return (_Softmax = Module["_Softmax"] = Module["asm"]["ua"]).apply(null, arguments); + }; + var _Sqrt = Module["_Sqrt"] = function() { + return (_Sqrt = Module["_Sqrt"] = Module["asm"]["va"]).apply(null, arguments); + }; + var _Square = Module["_Square"] = function() { + return (_Square = Module["_Square"] = Module["asm"]["wa"]).apply(null, arguments); + }; + var _SquaredDifference = Module["_SquaredDifference"] = function() { + return (_SquaredDifference = Module["_SquaredDifference"] = Module["asm"]["xa"]).apply(null, arguments); + }; + var _Step = Module["_Step"] = function() { + return (_Step = Module["_Step"] = Module["asm"]["ya"]).apply(null, arguments); + }; + var _StridedSlice = Module["_StridedSlice"] = function() { + return (_StridedSlice = Module["_StridedSlice"] = Module["asm"]["za"]).apply(null, arguments); + }; + var _Sub = Module["_Sub"] = function() { + return (_Sub = Module["_Sub"] = Module["asm"]["Aa"]).apply(null, arguments); + }; + var _Sum = Module["_Sum"] = function() { + return (_Sum = Module["_Sum"] = Module["asm"]["Ba"]).apply(null, arguments); + }; + var _Tanh = Module["_Tanh"] = function() { + return (_Tanh = Module["_Tanh"] = Module["asm"]["Ca"]).apply(null, arguments); + }; + var _Tile = Module["_Tile"] = function() { + return (_Tile = Module["_Tile"] = Module["asm"]["Da"]).apply(null, arguments); + }; + var _TopK = Module["_TopK"] = function() { + return (_TopK = Module["_TopK"] = Module["asm"]["Ea"]).apply(null, arguments); + }; + var _Transpose = Module["_Transpose"] = function() { + return (_Transpose = Module["_Transpose"] = Module["asm"]["Fa"]).apply(null, arguments); + }; + var __FusedMatMul = Module["__FusedMatMul"] = function() { + return (__FusedMatMul = Module["__FusedMatMul"] = Module["asm"]["Ga"]).apply(null, arguments); + }; + var _malloc = Module["_malloc"] = function() { + return (_malloc = Module["_malloc"] = Module["asm"]["Ha"]).apply(null, arguments); + }; + var _free = Module["_free"] = function() { + return (_free = Module["_free"] = Module["asm"]["Ia"]).apply(null, arguments); + }; + var stackSave = Module["stackSave"] = function() { + return (stackSave = Module["stackSave"] = Module["asm"]["Ja"]).apply(null, arguments); + }; + var stackRestore = Module["stackRestore"] = function() { + return (stackRestore = Module["stackRestore"] = Module["asm"]["Ka"]).apply(null, arguments); + }; + var stackAlloc = Module["stackAlloc"] = function() { + return (stackAlloc = Module["stackAlloc"] = Module["asm"]["La"]).apply(null, arguments); + }; + Module["cwrap"] = cwrap; + var calledRun; + function ExitStatus(status2) { + this.name = "ExitStatus"; + this.message = "Program terminated with exit(" + status2 + ")"; + this.status = status2; + } + dependenciesFulfilled = function runCaller() { + if (!calledRun) + run2(); + if (!calledRun) + dependenciesFulfilled = runCaller; + }; + function run2(args) { + args = args || arguments_; + if (runDependencies > 0) { + return; + } + preRun(); + if (runDependencies > 0) { + return; + } + function doRun() { + if (calledRun) + return; + calledRun = true; + Module["calledRun"] = true; + if (ABORT) + return; + initRuntime(); + preMain(); + readyPromiseResolve(Module); + if (Module["onRuntimeInitialized"]) + Module["onRuntimeInitialized"](); + postRun(); + } + if (Module["setStatus"]) { + Module["setStatus"]("Running..."); + setTimeout(function() { + setTimeout(function() { + Module["setStatus"](""); + }, 1); + doRun(); + }, 1); + } else { + doRun(); + } + } + Module["run"] = run2; + if (Module["preInit"]) { + if (typeof Module["preInit"] == "function") + Module["preInit"] = [Module["preInit"]]; + while (Module["preInit"].length > 0) { + Module["preInit"].pop()(); + } + } + run2(); + return WasmBackendModule2.ready; + }; + }(); + if (typeof exports === "object" && typeof module2 === "object") + module2.exports = WasmBackendModule; + else if (typeof define === "function" && define["amd"]) + define([], function() { + return WasmBackendModule; + }); + else if (typeof exports === "object") + exports["WasmBackendModule"] = WasmBackendModule; +}); +var require_alea3 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function Alea(seed) { + var me = this, mash = Mash(); + me.next = function() { + var t = 2091639 * me.s0 + me.c * 23283064365386963e-26; + me.s0 = me.s1; + me.s1 = me.s2; + return me.s2 = t - (me.c = t | 0); + }; + me.c = 1; + me.s0 = mash(" "); + me.s1 = mash(" "); + me.s2 = mash(" "); + me.s0 -= mash(seed); + if (me.s0 < 0) { + me.s0 += 1; + } + me.s1 -= mash(seed); + if (me.s1 < 0) { + me.s1 += 1; + } + me.s2 -= mash(seed); + if (me.s2 < 0) { + me.s2 += 1; + } + mash = null; + } + function copy(f, t) { + t.c = f.c; + t.s0 = f.s0; + t.s1 = f.s1; + t.s2 = f.s2; + return t; + } + function impl(seed, opts) { + var xg = new Alea(seed), state = opts && opts.state, prng = xg.next; + prng.int32 = function() { + return xg.next() * 4294967296 | 0; + }; + prng.double = function() { + return prng() + (prng() * 2097152 | 0) * 11102230246251565e-32; + }; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + function Mash() { + var n = 4022871197; + var mash = function(data2) { + data2 = String(data2); + for (var i = 0; i < data2.length; i++) { + n += data2.charCodeAt(i); + var h = 0.02519603282416938 * n; + n = h >>> 0; + h -= n; + h *= n; + n = h >>> 0; + h -= n; + n += h * 4294967296; + } + return (n >>> 0) * 23283064365386963e-26; + }; + return mash; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.alea = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xor1283 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.x = 0; + me.y = 0; + me.z = 0; + me.w = 0; + me.next = function() { + var t = me.x ^ me.x << 11; + me.x = me.y; + me.y = me.z; + me.z = me.w; + return me.w ^= me.w >>> 19 ^ t ^ t >>> 8; + }; + if (seed === (seed | 0)) { + me.x = seed; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 64; k++) { + me.x ^= strseed.charCodeAt(k) | 0; + me.next(); + } + } + function copy(f, t) { + t.x = f.x; + t.y = f.y; + t.z = f.z; + t.w = f.w; + return t; + } + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xor128 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xorwow3 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.next = function() { + var t = me.x ^ me.x >>> 2; + me.x = me.y; + me.y = me.z; + me.z = me.w; + me.w = me.v; + return (me.d = me.d + 362437 | 0) + (me.v = me.v ^ me.v << 4 ^ (t ^ t << 1)) | 0; + }; + me.x = 0; + me.y = 0; + me.z = 0; + me.w = 0; + me.v = 0; + if (seed === (seed | 0)) { + me.x = seed; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 64; k++) { + me.x ^= strseed.charCodeAt(k) | 0; + if (k == strseed.length) { + me.d = me.x << 10 ^ me.x >>> 4; + } + me.next(); + } + } + function copy(f, t) { + t.x = f.x; + t.y = f.y; + t.z = f.z; + t.w = f.w; + t.v = f.v; + t.d = f.d; + return t; + } + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xorwow = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xorshift73 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this; + me.next = function() { + var X = me.x, i = me.i, t, v, w; + t = X[i]; + t ^= t >>> 7; + v = t ^ t << 24; + t = X[i + 1 & 7]; + v ^= t ^ t >>> 10; + t = X[i + 3 & 7]; + v ^= t ^ t >>> 3; + t = X[i + 4 & 7]; + v ^= t ^ t << 7; + t = X[i + 7 & 7]; + t = t ^ t << 13; + v ^= t ^ t << 9; + X[i] = v; + me.i = i + 1 & 7; + return v; + }; + function init2(me2, seed2) { + var j, w, X = []; + if (seed2 === (seed2 | 0)) { + w = X[0] = seed2; + } else { + seed2 = "" + seed2; + for (j = 0; j < seed2.length; ++j) { + X[j & 7] = X[j & 7] << 15 ^ seed2.charCodeAt(j) + X[j + 1 & 7] << 13; + } + } + while (X.length < 8) + X.push(0); + for (j = 0; j < 8 && X[j] === 0; ++j) + ; + if (j == 8) + w = X[7] = -1; + else + w = X[j]; + me2.x = X; + me2.i = 0; + for (j = 256; j > 0; --j) { + me2.next(); + } + } + init2(me, seed); + } + function copy(f, t) { + t.x = f.x.slice(); + t.i = f.i; + return t; + } + function impl(seed, opts) { + if (seed == null) + seed = +new Date(); + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (state.x) + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xorshift7 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xor40963 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this; + me.next = function() { + var w = me.w, X = me.X, i = me.i, t, v; + me.w = w = w + 1640531527 | 0; + v = X[i + 34 & 127]; + t = X[i = i + 1 & 127]; + v ^= v << 13; + t ^= t << 17; + v ^= v >>> 15; + t ^= t >>> 12; + v = X[i] = v ^ t; + me.i = i; + return v + (w ^ w >>> 16) | 0; + }; + function init2(me2, seed2) { + var t, v, i, j, w, X = [], limit = 128; + if (seed2 === (seed2 | 0)) { + v = seed2; + seed2 = null; + } else { + seed2 = seed2 + "\0"; + v = 0; + limit = Math.max(limit, seed2.length); + } + for (i = 0, j = -32; j < limit; ++j) { + if (seed2) + v ^= seed2.charCodeAt((j + 32) % seed2.length); + if (j === 0) + w = v; + v ^= v << 10; + v ^= v >>> 15; + v ^= v << 4; + v ^= v >>> 13; + if (j >= 0) { + w = w + 1640531527 | 0; + t = X[j & 127] ^= v + w; + i = t == 0 ? i + 1 : 0; + } + } + if (i >= 128) { + X[(seed2 && seed2.length || 0) & 127] = -1; + } + i = 127; + for (j = 4 * 128; j > 0; --j) { + v = X[i + 34 & 127]; + t = X[i = i + 1 & 127]; + v ^= v << 13; + t ^= t << 17; + v ^= v >>> 15; + t ^= t >>> 12; + X[i] = v ^ t; + } + me2.w = w; + me2.X = X; + me2.i = i; + } + init2(me, seed); + } + function copy(f, t) { + t.i = f.i; + t.w = f.w; + t.X = f.X.slice(); + return t; + } + ; + function impl(seed, opts) { + if (seed == null) + seed = +new Date(); + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (state.X) + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xor4096 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_tychei3 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.next = function() { + var b = me.b, c = me.c, d = me.d, a = me.a; + b = b << 25 ^ b >>> 7 ^ c; + c = c - d | 0; + d = d << 24 ^ d >>> 8 ^ a; + a = a - b | 0; + me.b = b = b << 20 ^ b >>> 12 ^ c; + me.c = c = c - d | 0; + me.d = d << 16 ^ c >>> 16 ^ a; + return me.a = a - b | 0; + }; + me.a = 0; + me.b = 0; + me.c = 2654435769 | 0; + me.d = 1367130551; + if (seed === Math.floor(seed)) { + me.a = seed / 4294967296 | 0; + me.b = seed | 0; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 20; k++) { + me.b ^= strseed.charCodeAt(k) | 0; + me.next(); + } + } + function copy(f, t) { + t.a = f.a; + t.b = f.b; + t.c = f.c; + t.d = f.d; + return t; + } + ; + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.tychei = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_seedrandom5 = __commonJS2((exports, module2) => { + (function(global2, pool3, math) { + var width = 256, chunks = 6, digits = 52, rngname = "random", startdenom = math.pow(width, chunks), significance = math.pow(2, digits), overflow = significance * 2, mask = width - 1, nodecrypto; + function seedrandom5(seed, options, callback) { + var key = []; + options = options == true ? {entropy: true} : options || {}; + var shortseed = mixkey(flatten4(options.entropy ? [seed, tostring(pool3)] : seed == null ? autoseed() : seed, 3), key); + var arc4 = new ARC4(key); + var prng = function() { + var n = arc4.g(chunks), d = startdenom, x = 0; + while (n < significance) { + n = (n + x) * width; + d *= width; + x = arc4.g(1); + } + while (n >= overflow) { + n /= 2; + d /= 2; + x >>>= 1; + } + return (n + x) / d; + }; + prng.int32 = function() { + return arc4.g(4) | 0; + }; + prng.quick = function() { + return arc4.g(4) / 4294967296; + }; + prng.double = prng; + mixkey(tostring(arc4.S), pool3); + return (options.pass || callback || function(prng2, seed2, is_math_call, state) { + if (state) { + if (state.S) { + copy(state, arc4); + } + prng2.state = function() { + return copy(arc4, {}); + }; + } + if (is_math_call) { + math[rngname] = prng2; + return seed2; + } else + return prng2; + })(prng, shortseed, "global" in options ? options.global : this == math, options.state); + } + function ARC4(key) { + var t, keylen = key.length, me = this, i = 0, j = me.i = me.j = 0, s = me.S = []; + if (!keylen) { + key = [keylen++]; + } + while (i < width) { + s[i] = i++; + } + for (i = 0; i < width; i++) { + s[i] = s[j = mask & j + key[i % keylen] + (t = s[i])]; + s[j] = t; + } + (me.g = function(count2) { + var t2, r = 0, i2 = me.i, j2 = me.j, s2 = me.S; + while (count2--) { + t2 = s2[i2 = mask & i2 + 1]; + r = r * width + s2[mask & (s2[i2] = s2[j2 = mask & j2 + t2]) + (s2[j2] = t2)]; + } + me.i = i2; + me.j = j2; + return r; + })(width); + } + function copy(f, t) { + t.i = f.i; + t.j = f.j; + t.S = f.S.slice(); + return t; + } + ; + function flatten4(obj, depth) { + var result = [], typ = typeof obj, prop; + if (depth && typ == "object") { + for (prop in obj) { + try { + result.push(flatten4(obj[prop], depth - 1)); + } catch (e) { + } + } + } + return result.length ? result : typ == "string" ? obj : obj + "\0"; + } + function mixkey(seed, key) { + var stringseed = seed + "", smear, j = 0; + while (j < stringseed.length) { + key[mask & j] = mask & (smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++); + } + return tostring(key); + } + function autoseed() { + try { + var out; + if (nodecrypto && (out = nodecrypto.randomBytes)) { + out = out(width); + } else { + out = new Uint8Array(width); + (global2.crypto || global2.msCrypto).getRandomValues(out); + } + return tostring(out); + } catch (e) { + var browser2 = global2.navigator, plugins = browser2 && browser2.plugins; + return [+new Date(), global2, plugins, global2.screen, tostring(pool3)]; + } + } + function tostring(a) { + return String.fromCharCode.apply(0, a); + } + mixkey(math.random(), pool3); + if (typeof module2 == "object" && module2.exports) { + module2.exports = seedrandom5; + try { + nodecrypto = require_crypto(); + } catch (ex) { + } + } else if (typeof define == "function" && define.amd) { + define(function() { + return seedrandom5; + }); + } else { + math["seed" + rngname] = seedrandom5; + } + })(typeof self !== "undefined" ? self : exports, [], Math); +}); +var require_seedrandom6 = __commonJS2((exports, module2) => { + var alea5 = require_alea3(); + var xor128 = require_xor1283(); + var xorwow = require_xorwow3(); + var xorshift7 = require_xorshift73(); + var xor4096 = require_xor40963(); + var tychei = require_tychei3(); + var sr = require_seedrandom5(); + sr.alea = alea5; + sr.xor128 = xor128; + sr.xorwow = xorwow; + sr.xorshift7 = xorshift7; + sr.xor4096 = xor4096; + sr.tychei = tychei; + module2.exports = sr; +}); +var require_string_decoder = __commonJS2(() => { +}); +var version = "3.2.0"; +var version2 = "3.2.0"; +var version3 = "3.2.0"; +var version4 = "3.2.0"; +var version5 = "3.2.0"; +/** + * @license + * Copyright 2020 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var EPSILON_FLOAT32 = 1e-7; +var EPSILON_FLOAT16 = 1e-4; +var DataStorage = class { + constructor(backend22, dataMover) { + this.backend = backend22; + this.dataMover = dataMover; + this.data = new WeakMap(); + this.dataIdsCount = 0; + } + get(dataId) { + if (!this.data.has(dataId)) { + this.dataMover.moveData(this.backend, dataId); + } + return this.data.get(dataId); + } + set(dataId, value) { + this.dataIdsCount++; + this.data.set(dataId, value); + } + has(dataId) { + return this.data.has(dataId); + } + delete(dataId) { + this.dataIdsCount--; + return this.data.delete(dataId); + } + numDataIds() { + return this.dataIdsCount; + } +}; +var KernelBackend = class { + refCount(dataId) { + return notYetImplemented("refCount"); + } + incRef(dataId) { + return notYetImplemented("incRef"); + } + timerAvailable() { + return true; + } + time(f) { + return notYetImplemented("time"); + } + read(dataId) { + return notYetImplemented("read"); + } + readSync(dataId) { + return notYetImplemented("readSync"); + } + numDataIds() { + return notYetImplemented("numDataIds"); + } + disposeData(dataId, force) { + return notYetImplemented("disposeData"); + } + write(values, shape, dtype) { + return notYetImplemented("write"); + } + move(dataId, values, shape, dtype, refCount) { + return notYetImplemented("move"); + } + memory() { + return notYetImplemented("memory"); + } + floatPrecision() { + return notYetImplemented("floatPrecision"); + } + epsilon() { + return this.floatPrecision() === 32 ? EPSILON_FLOAT32 : EPSILON_FLOAT16; + } + dispose() { + return notYetImplemented("dispose"); + } +}; +function notYetImplemented(kernelName) { + throw new Error(`'${kernelName}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`); +} +/** + * @license + * Copyright 2020 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function shuffle(array2) { + let counter = array2.length; + let temp = 0; + let index = 0; + while (counter > 0) { + index = Math.random() * counter | 0; + counter--; + temp = array2[counter]; + array2[counter] = array2[index]; + array2[index] = temp; + } +} +function shuffleCombo(array2, array22) { + if (array2.length !== array22.length) { + throw new Error(`Array sizes must match to be shuffled together First array length was ${array2.length}Second array length was ${array22.length}`); + } + let counter = array2.length; + let temp, temp2; + let index = 0; + while (counter > 0) { + index = Math.random() * counter | 0; + counter--; + temp = array2[counter]; + temp2 = array22[counter]; + array2[counter] = array2[index]; + array22[counter] = array22[index]; + array2[index] = temp; + array22[index] = temp2; + } +} +function clamp(min6, x, max6) { + return Math.max(min6, Math.min(x, max6)); +} +function nearestLargerEven(val) { + return val % 2 === 0 ? val : val + 1; +} +function sum(arr) { + let sum6 = 0; + for (let i = 0; i < arr.length; i++) { + sum6 += arr[i]; + } + return sum6; +} +function randUniform(a, b) { + const r = Math.random(); + return b * r + (1 - r) * a; +} +function distSquared(a, b) { + let result = 0; + for (let i = 0; i < a.length; i++) { + const diff = Number(a[i]) - Number(b[i]); + result += diff * diff; + } + return result; +} +function assert(expr, msg) { + if (!expr) { + throw new Error(typeof msg === "string" ? msg : msg()); + } +} +function assertShapesMatch(shapeA, shapeB, errorMessagePrefix = "") { + assert(arraysEqual(shapeA, shapeB), () => errorMessagePrefix + ` Shapes ${shapeA} and ${shapeB} must match`); +} +function assertNonNull(a) { + assert(a != null, () => `The input to the tensor constructor must be a non-null value.`); +} +function flatten(arr, result = [], skipTypedArray = false) { + if (result == null) { + result = []; + } + if (Array.isArray(arr) || isTypedArray(arr) && !skipTypedArray) { + for (let i = 0; i < arr.length; ++i) { + flatten(arr[i], result, skipTypedArray); + } + } else { + result.push(arr); + } + return result; +} +function sizeFromShape(shape) { + if (shape.length === 0) { + return 1; + } + let size = shape[0]; + for (let i = 1; i < shape.length; i++) { + size *= shape[i]; + } + return size; +} +function isScalarShape(shape) { + return shape.length === 0; +} +function arraysEqual(n1, n2) { + if (n1 === n2) { + return true; + } + if (n1 == null || n2 == null) { + return false; + } + if (n1.length !== n2.length) { + return false; + } + for (let i = 0; i < n1.length; i++) { + if (n1[i] !== n2[i]) { + return false; + } + } + return true; +} +function isInt(a) { + return a % 1 === 0; +} +function tanh(x) { + if (Math.tanh != null) { + return Math.tanh(x); + } + if (x === Infinity) { + return 1; + } else if (x === -Infinity) { + return -1; + } else { + const e2x = Math.exp(2 * x); + return (e2x - 1) / (e2x + 1); + } +} +function sizeToSquarishShape(size) { + const width = Math.ceil(Math.sqrt(size)); + return [width, Math.ceil(size / width)]; +} +function createShuffledIndices(n) { + const shuffledIndices = new Uint32Array(n); + for (let i = 0; i < n; ++i) { + shuffledIndices[i] = i; + } + shuffle(shuffledIndices); + return shuffledIndices; +} +function rightPad(a, size) { + if (size <= a.length) { + return a; + } + return a + " ".repeat(size - a.length); +} +function repeatedTry(checkFn, delayFn = (counter) => 0, maxCounter) { + return new Promise((resolve, reject) => { + let tryCount = 0; + const tryFn = () => { + if (checkFn()) { + resolve(); + return; + } + tryCount++; + const nextBackoff = delayFn(tryCount); + if (maxCounter != null && tryCount >= maxCounter) { + reject(); + return; + } + setTimeout(tryFn, nextBackoff); + }; + tryFn(); + }); +} +function inferFromImplicitShape(shape, size) { + let shapeProd = 1; + let implicitIdx = -1; + for (let i = 0; i < shape.length; ++i) { + if (shape[i] >= 0) { + shapeProd *= shape[i]; + } else if (shape[i] === -1) { + if (implicitIdx !== -1) { + throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${implicitIdx} and dim ${i}`); + } + implicitIdx = i; + } else if (shape[i] < 0) { + throw Error(`Shapes can not be < 0. Found ${shape[i]} at dim ${i}`); + } + } + if (implicitIdx === -1) { + if (size > 0 && size !== shapeProd) { + throw Error(`Size(${size}) must match the product of shape ${shape}`); + } + return shape; + } + if (shapeProd === 0) { + throw Error(`Cannot infer the missing size in [${shape}] when there are 0 elements`); + } + if (size % shapeProd !== 0) { + throw Error(`The implicit shape can't be a fractional number. Got ${size} / ${shapeProd}`); + } + const newShape = shape.slice(); + newShape[implicitIdx] = size / shapeProd; + return newShape; +} +function parseAxisParam(axis, shape) { + const rank = shape.length; + axis = axis == null ? shape.map((s, i) => i) : [].concat(axis); + assert(axis.every((ax) => ax >= -rank && ax < rank), () => `All values in axis param must be in range [-${rank}, ${rank}) but got axis ${axis}`); + assert(axis.every((ax) => isInt(ax)), () => `All values in axis param must be integers but got axis ${axis}`); + return axis.map((a) => a < 0 ? rank + a : a); +} +function squeezeShape(shape, axis) { + const newShape = []; + const keptDims = []; + const isEmptyArray = axis != null && Array.isArray(axis) && axis.length === 0; + const axes = axis == null || isEmptyArray ? null : parseAxisParam(axis, shape).sort(); + let j = 0; + for (let i = 0; i < shape.length; ++i) { + if (axes != null) { + if (axes[j] === i && shape[i] !== 1) { + throw new Error(`Can't squeeze axis ${i} since its dim '${shape[i]}' is not 1`); + } + if ((axes[j] == null || axes[j] > i) && shape[i] === 1) { + newShape.push(shape[i]); + keptDims.push(i); + } + if (axes[j] <= i) { + j++; + } + } + if (shape[i] !== 1) { + newShape.push(shape[i]); + keptDims.push(i); + } + } + return {newShape, keptDims}; +} +function getTypedArrayFromDType(dtype, size) { + let values = null; + if (dtype == null || dtype === "float32") { + values = new Float32Array(size); + } else if (dtype === "int32") { + values = new Int32Array(size); + } else if (dtype === "bool") { + values = new Uint8Array(size); + } else { + throw new Error(`Unknown data type ${dtype}`); + } + return values; +} +function getArrayFromDType(dtype, size) { + let values = null; + if (dtype == null || dtype === "float32") { + values = new Float32Array(size); + } else if (dtype === "int32") { + values = new Int32Array(size); + } else if (dtype === "bool") { + values = new Uint8Array(size); + } else if (dtype === "string") { + values = new Array(size); + } else { + throw new Error(`Unknown data type ${dtype}`); + } + return values; +} +function checkConversionForErrors(vals, dtype) { + for (let i = 0; i < vals.length; i++) { + const num = vals[i]; + if (isNaN(num) || !isFinite(num)) { + throw Error(`A tensor of type ${dtype} being uploaded contains ${num}.`); + } + } +} +function isValidDtype(dtype) { + return dtype === "bool" || dtype === "complex64" || dtype === "float32" || dtype === "int32" || dtype === "string"; +} +function hasEncodingLoss(oldType, newType) { + if (newType === "complex64") { + return false; + } + if (newType === "float32" && oldType !== "complex64") { + return false; + } + if (newType === "int32" && oldType !== "float32" && oldType !== "complex64") { + return false; + } + if (newType === "bool" && oldType === "bool") { + return false; + } + return true; +} +function isTypedArray(a) { + return a instanceof Float32Array || a instanceof Int32Array || a instanceof Uint8Array; +} +function bytesPerElement(dtype) { + if (dtype === "float32" || dtype === "int32") { + return 4; + } else if (dtype === "complex64") { + return 8; + } else if (dtype === "bool") { + return 1; + } else { + throw new Error(`Unknown dtype ${dtype}`); + } +} +function bytesFromStringArray(arr) { + if (arr == null) { + return 0; + } + let bytes = 0; + arr.forEach((x) => bytes += x.length); + return bytes; +} +function isString(value) { + return typeof value === "string" || value instanceof String; +} +function isBoolean(value) { + return typeof value === "boolean"; +} +function isNumber(value) { + return typeof value === "number"; +} +function inferDtype(values) { + if (Array.isArray(values)) { + return inferDtype(values[0]); + } + if (values instanceof Float32Array) { + return "float32"; + } else if (values instanceof Int32Array || values instanceof Uint8Array) { + return "int32"; + } else if (isNumber(values)) { + return "float32"; + } else if (isString(values)) { + return "string"; + } else if (isBoolean(values)) { + return "bool"; + } + return "float32"; +} +function isFunction(f) { + return !!(f && f.constructor && f.call && f.apply); +} +function nearestDivisor(size, start) { + for (let i = start; i < size; ++i) { + if (size % i === 0) { + return i; + } + } + return size; +} +function computeStrides(shape) { + const rank = shape.length; + if (rank < 2) { + return []; + } + const strides = new Array(rank - 1); + strides[rank - 2] = shape[rank - 1]; + for (let i = rank - 3; i >= 0; --i) { + strides[i] = strides[i + 1] * shape[i + 1]; + } + return strides; +} +function createNestedArray(offset, shape, a) { + const ret = new Array(); + if (shape.length === 1) { + const d = shape[0]; + for (let i = 0; i < d; i++) { + ret[i] = a[offset + i]; + } + } else { + const d = shape[0]; + const rest = shape.slice(1); + const len = rest.reduce((acc, c) => acc * c); + for (let i = 0; i < d; i++) { + ret[i] = createNestedArray(offset + i * len, rest, a); + } + } + return ret; +} +function toNestedArray(shape, a) { + if (shape.length === 0) { + return a[0]; + } + const size = shape.reduce((acc, c) => acc * c); + if (size === 0) { + return []; + } + if (size !== a.length) { + throw new Error(`[${shape}] does not match the input size ${a.length}.`); + } + return createNestedArray(0, shape, a); +} +function makeOnesTypedArray(size, dtype) { + const array2 = makeZerosTypedArray(size, dtype); + for (let i = 0; i < array2.length; i++) { + array2[i] = 1; + } + return array2; +} +function makeZerosTypedArray(size, dtype) { + if (dtype == null || dtype === "float32" || dtype === "complex64") { + return new Float32Array(size); + } else if (dtype === "int32") { + return new Int32Array(size); + } else if (dtype === "bool") { + return new Uint8Array(size); + } else { + throw new Error(`Unknown data type ${dtype}`); + } +} +function makeZerosNestedTypedArray(shape, dtype) { + const size = shape.reduce((prev, curr) => prev * curr, 1); + if (dtype == null || dtype === "float32") { + return toNestedArray(shape, new Float32Array(size)); + } else if (dtype === "int32") { + return toNestedArray(shape, new Int32Array(size)); + } else if (dtype === "bool") { + return toNestedArray(shape, new Uint8Array(size)); + } else { + throw new Error(`Unknown data type ${dtype}`); + } +} +function assertNonNegativeIntegerDimensions(shape) { + shape.forEach((dimSize) => { + assert(Number.isInteger(dimSize) && dimSize >= 0, () => `Tensor must have a shape comprised of positive integers but got shape [${shape}].`); + }); +} +function locToIndex(locs, rank, strides) { + if (rank === 0) { + return 0; + } else if (rank === 1) { + return locs[0]; + } + let index = locs[locs.length - 1]; + for (let i = 0; i < locs.length - 1; ++i) { + index += strides[i] * locs[i]; + } + return index; +} +function indexToLoc(index, rank, strides) { + if (rank === 0) { + return []; + } else if (rank === 1) { + return [index]; + } + const locs = new Array(rank); + for (let i = 0; i < locs.length - 1; ++i) { + locs[i] = Math.floor(index / strides[i]); + index -= locs[i] * strides[i]; + } + locs[locs.length - 1] = index; + return locs; +} +function isPromise(object) { + return object && object.then && typeof object.then === "function"; +} +/** + * @license + * Copyright 2017 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var TENSORFLOWJS_FLAGS_PREFIX = "tfjsflags"; +var Environment = class { + constructor(global2) { + this.global = global2; + this.flags = {}; + this.flagRegistry = {}; + this.urlFlags = {}; + this.populateURLFlags(); + } + setPlatform(platformName, platform) { + if (this.platform != null) { + console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${platform}.`); + } + this.platformName = platformName; + this.platform = platform; + } + registerFlag(flagName, evaluationFn, setHook) { + this.flagRegistry[flagName] = {evaluationFn, setHook}; + if (this.urlFlags[flagName] != null) { + const flagValue = this.urlFlags[flagName]; + console.warn(`Setting feature override from URL ${flagName}: ${flagValue}.`); + this.set(flagName, flagValue); + } + } + async getAsync(flagName) { + if (flagName in this.flags) { + return this.flags[flagName]; + } + this.flags[flagName] = await this.evaluateFlag(flagName); + return this.flags[flagName]; + } + get(flagName) { + if (flagName in this.flags) { + return this.flags[flagName]; + } + const flagValue = this.evaluateFlag(flagName); + if (isPromise(flagValue)) { + throw new Error(`Flag ${flagName} cannot be synchronously evaluated. Please use getAsync() instead.`); + } + this.flags[flagName] = flagValue; + return this.flags[flagName]; + } + getNumber(flagName) { + return this.get(flagName); + } + getBool(flagName) { + return this.get(flagName); + } + getFlags() { + return this.flags; + } + get features() { + return this.flags; + } + set(flagName, value) { + if (this.flagRegistry[flagName] == null) { + throw new Error(`Cannot set flag ${flagName} as it has not been registered.`); + } + this.flags[flagName] = value; + if (this.flagRegistry[flagName].setHook != null) { + this.flagRegistry[flagName].setHook(value); + } + } + evaluateFlag(flagName) { + if (this.flagRegistry[flagName] == null) { + throw new Error(`Cannot evaluate flag '${flagName}': no evaluation function found.`); + } + return this.flagRegistry[flagName].evaluationFn(); + } + setFlags(flags) { + this.flags = Object.assign({}, flags); + } + reset() { + this.flags = {}; + this.urlFlags = {}; + this.populateURLFlags(); + } + populateURLFlags() { + if (typeof this.global === "undefined" || typeof this.global.location === "undefined" || typeof this.global.location.search === "undefined") { + return; + } + const urlParams = getQueryParams(this.global.location.search); + if (TENSORFLOWJS_FLAGS_PREFIX in urlParams) { + const keyValues = urlParams[TENSORFLOWJS_FLAGS_PREFIX].split(","); + keyValues.forEach((keyValue) => { + const [key, value] = keyValue.split(":"); + this.urlFlags[key] = parseValue(key, value); + }); + } + } +}; +function getQueryParams(queryString) { + const params = {}; + queryString.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g, (s, ...t) => { + decodeParam(params, t[0], t[1]); + return t.join("="); + }); + return params; +} +function decodeParam(params, name2, value) { + params[decodeURIComponent(name2)] = decodeURIComponent(value || ""); +} +function parseValue(flagName, value) { + value = value.toLowerCase(); + if (value === "true" || value === "false") { + return value === "true"; + } else if (`${+value}` === value) { + return +value; + } + throw new Error(`Could not parse value flag value ${value} for flag ${flagName}.`); +} +function env() { + return ENV; +} +var ENV = null; +function setEnvironmentGlobal(environment) { + ENV = environment; +} +/** + * @license + * Copyright 2020 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var globalNameSpace; +function getGlobalNamespace() { + if (globalNameSpace == null) { + let ns; + if (typeof window !== "undefined") { + ns = window; + } else if (typeof global !== "undefined") { + ns = global; + } else if (typeof process !== "undefined") { + ns = process; + } else if (typeof self !== "undefined") { + ns = self; + } else { + throw new Error("Could not find a global object"); + } + globalNameSpace = ns; + } + return globalNameSpace; +} +function getGlobalMap() { + const ns = getGlobalNamespace(); + if (ns._tfGlobals == null) { + ns._tfGlobals = new Map(); + } + return ns._tfGlobals; +} +function getGlobal(key, init2) { + const globalMap = getGlobalMap(); + if (globalMap.has(key)) { + return globalMap.get(key); + } else { + const singleton = init2(); + globalMap.set(key, singleton); + return globalMap.get(key); + } +} +var Abs = "Abs"; +var Acos = "Acos"; +var Acosh = "Acosh"; +var Add = "Add"; +var AddN = "AddN"; +var All = "All"; +var Any = "Any"; +var ArgMax = "ArgMax"; +var ArgMin = "ArgMin"; +var Asin = "Asin"; +var Asinh = "Asinh"; +var Atan = "Atan"; +var Atanh = "Atanh"; +var Atan2 = "Atan2"; +var AvgPool = "AvgPool"; +var AvgPoolGrad = "AvgPoolGrad"; +var AvgPool3D = "AvgPool3D"; +var AvgPool3DGrad = "AvgPool3DGrad"; +var BatchMatMul = "BatchMatMul"; +var BatchToSpaceND = "BatchToSpaceND"; +var Bincount = "Bincount"; +var BroadcastTo = "BroadcastTo"; +var Cast = "Cast"; +var Ceil = "Ceil"; +var ClipByValue = "ClipByValue"; +var Complex = "Complex"; +var ComplexAbs = "ComplexAbs"; +var Concat = "Concat"; +var Conv2D = "Conv2D"; +var Conv2DBackpropFilter = "Conv2DBackpropFilter"; +var Conv2DBackpropInput = "Conv2DBackpropInput"; +var Conv3D = "Conv3D"; +var Conv3DBackpropFilterV2 = "Conv3DBackpropFilterV2"; +var Conv3DBackpropInputV2 = "Conv3DBackpropInputV2"; +var Cos = "Cos"; +var Cosh = "Cosh"; +var Cumsum = "Cumsum"; +var CropAndResize = "CropAndResize"; +var DenseBincount = "DenseBincount"; +var DepthToSpace = "DepthToSpace"; +var DepthwiseConv2dNative = "DepthwiseConv2dNative"; +var DepthwiseConv2dNativeBackpropFilter = "DepthwiseConv2dNativeBackpropFilter"; +var DepthwiseConv2dNativeBackpropInput = "DepthwiseConv2dNativeBackpropInput"; +var Diag = "Diag"; +var Dilation2D = "Dilation2D"; +var Dilation2DBackpropInput = "Dilation2DBackpropInput"; +var Dilation2DBackpropFilter = "Dilation2DBackpropFilter"; +var RealDiv = "RealDiv"; +var Elu = "Elu"; +var EluGrad = "EluGrad"; +var Erf = "Erf"; +var Equal = "Equal"; +var Exp = "Exp"; +var ExpandDims = "ExpandDims"; +var Expm1 = "Expm1"; +var FFT = "FFT"; +var Fill = "Fill"; +var FlipLeftRight = "FlipLeftRight"; +var Floor = "Floor"; +var FloorDiv = "FloorDiv"; +var FusedBatchNorm = "FusedBatchNorm"; +var GatherV2 = "GatherV2"; +var GatherNd = "GatherNd"; +var Greater = "Greater"; +var GreaterEqual = "GreaterEqual"; +var Identity = "Identity"; +var IFFT = "IFFT"; +var Imag = "Imag"; +var IsFinite = "IsFinite"; +var IsInf = "IsInf"; +var IsNan = "IsNan"; +var LeakyRelu = "LeakyRelu"; +var Less = "Less"; +var LessEqual = "LessEqual"; +var LinSpace = "LinSpace"; +var Log = "Log"; +var Log1p = "Log1p"; +var LogicalAnd = "LogicalAnd"; +var LogicalNot = "LogicalNot"; +var LogicalOr = "LogicalOr"; +var LogSoftmax = "LogSoftmax"; +var LRN = "LRN"; +var LRNGrad = "LRNGrad"; +var Max = "Max"; +var Maximum = "Maximum"; +var MaxPool = "MaxPool"; +var MaxPoolGrad = "MaxPoolGrad"; +var MaxPool3D = "MaxPool3D"; +var MaxPool3DGrad = "MaxPool3DGrad"; +var MaxPoolWithArgmax = "MaxPoolWithArgmax"; +var Mean = "Mean"; +var Min = "Min"; +var Minimum = "Minimum"; +var MirrorPad = "MirrorPad"; +var Mod = "Mod"; +var Multinomial = "Multinomial"; +var Multiply = "Multiply"; +var Neg = "Neg"; +var NotEqual = "NotEqual"; +var NonMaxSuppressionV3 = "NonMaxSuppressionV3"; +var NonMaxSuppressionV4 = "NonMaxSuppressionV4"; +var NonMaxSuppressionV5 = "NonMaxSuppressionV5"; +var OnesLike = "OnesLike"; +var OneHot = "OneHot"; +var Pack = "Pack"; +var PadV2 = "PadV2"; +var Pool = "Pool"; +var Pow = "Pow"; +var Prelu = "Prelu"; +var Prod = "Prod"; +var Range = "Range"; +var Real = "Real"; +var Reciprocal = "Reciprocal"; +var Relu = "Relu"; +var Reshape = "Reshape"; +var ResizeNearestNeighbor = "ResizeNearestNeighbor"; +var ResizeNearestNeighborGrad = "ResizeNearestNeighborGrad"; +var ResizeBilinear = "ResizeBilinear"; +var ResizeBilinearGrad = "ResizeBilinearGrad"; +var Relu6 = "Relu6"; +var Reverse = "Reverse"; +var Round = "Round"; +var Rsqrt = "Rsqrt"; +var ScatterNd = "ScatterNd"; +var Select = "Select"; +var Selu = "Selu"; +var Slice = "Slice"; +var Sin = "Sin"; +var Sinh = "Sinh"; +var Sign = "Sign"; +var Sigmoid = "Sigmoid"; +var Softplus = "Softplus"; +var Sqrt = "Sqrt"; +var Sum = "Sum"; +var SpaceToBatchND = "SpaceToBatchND"; +var SplitV = "SplitV"; +var Softmax = "Softmax"; +var SquaredDifference = "SquaredDifference"; +var Square = "Square"; +var Sub = "Sub"; +var SparseToDense = "SparseToDense"; +var StridedSlice = "StridedSlice"; +var Tan = "Tan"; +var Tanh = "Tanh"; +var Tile = "Tile"; +var TopK = "TopK"; +var Transpose = "Transpose"; +var Unique = "Unique"; +var Unpack = "Unpack"; +var UnsortedSegmentSum = "UnsortedSegmentSum"; +var ZerosLike = "ZerosLike"; +var Step = "Step"; +var FromPixels = "FromPixels"; +var RotateWithOffset = "RotateWithOffset"; +var _FusedMatMul = "_FusedMatMul"; +var FusedConv2D = "FusedConv2D"; +var FusedDepthwiseConv2D = "FusedDepthwiseConv2D"; +/** + * @license + * Copyright 2019 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var kernelRegistry = getGlobal("kernelRegistry", () => new Map()); +var gradRegistry = getGlobal("gradRegistry", () => new Map()); +function getKernel(kernelName, backendName) { + const key = makeKey(kernelName, backendName); + return kernelRegistry.get(key); +} +function getGradient(kernelName) { + return gradRegistry.get(kernelName); +} +function getKernelsForBackend(backendName) { + const it = kernelRegistry.entries(); + const result = []; + while (true) { + const {done, value} = it.next(); + if (done) { + break; + } + const [key, config3] = value; + const [backend22] = key.split("_"); + if (backend22 === backendName) { + result.push(config3); + } + } + return result; +} +function registerKernel(config3) { + const {kernelName, backendName} = config3; + const key = makeKey(kernelName, backendName); + if (kernelRegistry.has(key)) { + console.warn(`The kernel '${kernelName}' for backend '${backendName}' is already registered`); + } + kernelRegistry.set(key, config3); +} +function registerGradient(config3) { + const {kernelName} = config3; + if (gradRegistry.has(kernelName)) { + if (env().getBool("DEBUG")) { + console.warn(`Overriding the gradient for '${kernelName}'`); + } + } + gradRegistry.set(kernelName, config3); +} +function unregisterKernel(kernelName, backendName) { + const key = makeKey(kernelName, backendName); + if (!kernelRegistry.has(key)) { + throw new Error(`The kernel '${kernelName}' for backend '${backendName}' is not registered`); + } + kernelRegistry.delete(key); +} +function unregisterGradient(kernelName) { + if (!gradRegistry.has(kernelName)) { + throw new Error(`The gradient '${kernelName}' for backend is not registered`); + } + gradRegistry.delete(kernelName); +} +function copyRegisteredKernels(registeredBackendName, newBackendName) { + const kernels = getKernelsForBackend(registeredBackendName); + kernels.forEach((kernelConfig) => { + const newKernelConfig = Object.assign({}, kernelConfig, {backendName: newBackendName}); + registerKernel(newKernelConfig); + }); +} +function makeKey(kernelName, backendName) { + return `${backendName}_${kernelName}`; +} +var util_exports = {}; +__export2(util_exports, { + arraysEqual: () => arraysEqual, + assert: () => assert, + assertNonNegativeIntegerDimensions: () => assertNonNegativeIntegerDimensions, + assertNonNull: () => assertNonNull, + assertShapesMatch: () => assertShapesMatch, + bytesFromStringArray: () => bytesFromStringArray, + bytesPerElement: () => bytesPerElement, + checkConversionForErrors: () => checkConversionForErrors, + clamp: () => clamp, + computeStrides: () => computeStrides, + createScalarValue: () => createScalarValue, + createShuffledIndices: () => createShuffledIndices, + decodeString: () => decodeString, + distSquared: () => distSquared, + encodeString: () => encodeString, + fetch: () => fetch2, + flatten: () => flatten, + getArrayFromDType: () => getArrayFromDType, + getTypedArrayFromDType: () => getTypedArrayFromDType, + hasEncodingLoss: () => hasEncodingLoss, + indexToLoc: () => indexToLoc, + inferDtype: () => inferDtype, + inferFromImplicitShape: () => inferFromImplicitShape, + isBoolean: () => isBoolean, + isFunction: () => isFunction, + isInt: () => isInt, + isNumber: () => isNumber, + isPromise: () => isPromise, + isScalarShape: () => isScalarShape, + isString: () => isString, + isTypedArray: () => isTypedArray, + isValidDtype: () => isValidDtype, + locToIndex: () => locToIndex, + makeOnesTypedArray: () => makeOnesTypedArray, + makeZerosNestedTypedArray: () => makeZerosNestedTypedArray, + makeZerosTypedArray: () => makeZerosTypedArray, + nearestDivisor: () => nearestDivisor, + nearestLargerEven: () => nearestLargerEven, + now: () => now, + parseAxisParam: () => parseAxisParam, + randUniform: () => randUniform, + repeatedTry: () => repeatedTry, + rightPad: () => rightPad, + shuffle: () => shuffle, + shuffleCombo: () => shuffleCombo, + sizeFromShape: () => sizeFromShape, + sizeToSquarishShape: () => sizeToSquarishShape, + squeezeShape: () => squeezeShape, + sum: () => sum, + tanh: () => tanh, + toNestedArray: () => toNestedArray, + toTypedArray: () => toTypedArray +}); +/** + * @license + * Copyright 2017 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function createScalarValue(value, dtype) { + if (dtype === "string") { + return encodeString(value); + } + return toTypedArray([value], dtype); +} +function noConversionNeeded(a, dtype) { + return a instanceof Float32Array && dtype === "float32" || a instanceof Int32Array && dtype === "int32" || a instanceof Uint8Array && dtype === "bool"; +} +function toTypedArray(a, dtype) { + if (dtype === "string") { + throw new Error("Cannot convert a string[] to a TypedArray"); + } + if (Array.isArray(a)) { + a = flatten(a); + } + if (env().getBool("DEBUG")) { + checkConversionForErrors(a, dtype); + } + if (noConversionNeeded(a, dtype)) { + return a; + } + if (dtype == null || dtype === "float32" || dtype === "complex64") { + return new Float32Array(a); + } else if (dtype === "int32") { + return new Int32Array(a); + } else if (dtype === "bool") { + const bool = new Uint8Array(a.length); + for (let i = 0; i < bool.length; ++i) { + if (Math.round(a[i]) !== 0) { + bool[i] = 1; + } + } + return bool; + } else { + throw new Error(`Unknown data type ${dtype}`); + } +} +function now() { + return env().platform.now(); +} +function fetch2(path, requestInits) { + return env().platform.fetch(path, requestInits); +} +function encodeString(s, encoding = "utf-8") { + encoding = encoding || "utf-8"; + return env().platform.encode(s, encoding); +} +function decodeString(bytes, encoding = "utf-8") { + encoding = encoding || "utf-8"; + return env().platform.decode(bytes, encoding); +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var Profiler = class { + constructor(backendTimer, logger) { + this.backendTimer = backendTimer; + this.logger = logger; + if (logger == null) { + this.logger = new Logger(); + } + } + profileKernel(kernelName, inputs, f) { + let outputs; + const holdResultWrapperFn = () => { + outputs = f(); + }; + let timer; + const start = now(); + if (this.backendTimer.timerAvailable()) { + timer = this.backendTimer.time(holdResultWrapperFn); + } else { + holdResultWrapperFn(); + for (const output of outputs) { + output.dataSync(); + } + timer = Promise.resolve({kernelMs: now() - start}); + } + if (env().getBool("CHECK_COMPUTATION_FOR_ERRORS")) { + for (let i = 0; i < outputs.length; i++) { + const output = outputs[i]; + output.data().then((tensorVals) => { + checkComputationForErrors(tensorVals, output.dtype, kernelName); + }); + } + } + const kernelProfile = { + kernelName, + outputs, + inputs, + timeMs: timer.then((timing) => timing.kernelMs), + extraInfo: timer.then((timing) => timing.getExtraProfileInfo != null ? timing.getExtraProfileInfo() : "") + }; + return kernelProfile; + } + logKernelProfile(kernelProfile) { + const {kernelName, outputs, timeMs, inputs, extraInfo} = kernelProfile; + outputs.forEach((result) => { + Promise.all([result.data(), timeMs, extraInfo]).then((valueContainer) => { + this.logger.logKernelProfile(kernelName, result, valueContainer[0], valueContainer[1], inputs, valueContainer[2]); + }); + }); + } +}; +function checkComputationForErrors(vals, dtype, kernelName) { + if (dtype !== "float32") { + return false; + } + for (let i = 0; i < vals.length; i++) { + const num = vals[i]; + if (isNaN(num) || !isFinite(num)) { + console.warn(`Found ${num} in the result of '${kernelName}'`); + return true; + } + } + return false; +} +var Logger = class { + logKernelProfile(name2, result, vals, timeMs, inputs, extraInfo) { + const time2 = typeof timeMs === "number" ? rightPad(`${timeMs}ms`, 9) : timeMs["error"]; + const paddedName = rightPad(name2, 25); + const rank = result.rank; + const size = result.size; + const shape = rightPad(result.shape.toString(), 14); + let inputShapesDescription = ""; + for (const name22 in inputs) { + const input2 = inputs[name22]; + if (input2 != null) { + const inputShape = input2.shape || result.shape; + const inputRank = inputShape.length; + inputShapesDescription += `${name22}: ${inputRank}D ${inputRank > 0 ? inputShape : ""} `; + } + } + console.log(`%c${paddedName} %c${time2} %c${rank}D ${shape} %c${size} %c${inputShapesDescription} %c${extraInfo}`, "font-weight:bold", "color:red", "color:blue", "color: orange", "color: green", "color: steelblue"); + } +}; +/** + * @license + * Copyright 2017 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function getFilteredNodesXToY(tape, xs, y) { + const tensorsFromX = {}; + const nodesFromX = {}; + for (let i = 0; i < xs.length; i++) { + tensorsFromX[xs[i].id] = true; + } + for (let i = 0; i < tape.length; i++) { + const node = tape[i]; + const nodeInputs = node.inputs; + for (const inputName in nodeInputs) { + const input2 = nodeInputs[inputName]; + let anyInputFromX = false; + for (let j = 0; j < xs.length; j++) { + if (tensorsFromX[input2.id]) { + node.outputs.forEach((output) => tensorsFromX[output.id] = true); + anyInputFromX = true; + nodesFromX[node.id] = true; + break; + } + } + if (anyInputFromX) { + break; + } + } + } + const tensorsLeadToY = {}; + tensorsLeadToY[y.id] = true; + const nodesToY = {}; + for (let i = tape.length - 1; i >= 0; i--) { + const node = tape[i]; + const nodeInputs = node.inputs; + for (let j = 0; j < node.outputs.length; j++) { + if (tensorsLeadToY[node.outputs[j].id]) { + for (const inputName in nodeInputs) { + tensorsLeadToY[nodeInputs[inputName].id] = true; + nodesToY[node.id] = true; + } + break; + } + } + } + const filteredTape = []; + for (let i = 0; i < tape.length; i++) { + const node = tape[i]; + if (nodesFromX[node.id] && nodesToY[node.id]) { + const prunedInputs = {}; + for (const inputName in node.inputs) { + const nodeInput = node.inputs[inputName]; + if (tensorsFromX[nodeInput.id]) { + prunedInputs[inputName] = nodeInput; + } + } + const prunedNode = Object.assign({}, node); + prunedNode.inputs = prunedInputs; + prunedNode.outputs = node.outputs; + filteredTape.push(prunedNode); + } + } + return filteredTape; +} +function backpropagateGradients(tensorAccumulatedGradientMap, filteredTape, tidy2, add5) { + for (let i = filteredTape.length - 1; i >= 0; i--) { + const node = filteredTape[i]; + const dys = []; + node.outputs.forEach((o) => { + const gradTensor = tensorAccumulatedGradientMap[o.id]; + if (gradTensor != null) { + dys.push(gradTensor); + } else { + dys.push(null); + } + }); + if (node.gradient == null) { + throw new Error(`Cannot compute gradient: gradient function not found for ${node.kernelName}.`); + } + const inputGradients = node.gradient(dys); + for (const inputName in node.inputs) { + if (!(inputName in inputGradients)) { + throw new Error(`Cannot backprop through input ${inputName}. Available gradients found: ${Object.keys(inputGradients)}.`); + } + const dx = tidy2(() => inputGradients[inputName]()); + if (dx.dtype !== "float32") { + throw new Error(`Error in gradient for op ${node.kernelName}. The gradient of input ${inputName} must have 'float32' dtype, but has '${dx.dtype}'`); + } + const x = node.inputs[inputName]; + if (!arraysEqual(dx.shape, x.shape)) { + throw new Error(`Error in gradient for op ${node.kernelName}. The gradient of input '${inputName}' has shape '${dx.shape}', which does not match the shape of the input '${x.shape}'`); + } + if (tensorAccumulatedGradientMap[x.id] == null) { + tensorAccumulatedGradientMap[x.id] = dx; + } else { + const curGradient = tensorAccumulatedGradientMap[x.id]; + tensorAccumulatedGradientMap[x.id] = add5(curGradient, dx); + curGradient.dispose(); + } + } + } +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var FORMAT_LIMIT_NUM_VALS = 20; +var FORMAT_NUM_FIRST_LAST_VALS = 3; +var FORMAT_NUM_SIG_DIGITS = 7; +function tensorToString(vals, shape, dtype, verbose) { + const strides = computeStrides(shape); + const padPerCol = computeMaxSizePerColumn(vals, shape, dtype, strides); + const rank = shape.length; + const valsLines = subTensorToString(vals, shape, dtype, strides, padPerCol); + const lines = ["Tensor"]; + if (verbose) { + lines.push(` dtype: ${dtype}`); + lines.push(` rank: ${rank}`); + lines.push(` shape: [${shape}]`); + lines.push(` values:`); + } + lines.push(valsLines.map((l) => " " + l).join("\n")); + return lines.join("\n"); +} +function computeMaxSizePerColumn(vals, shape, dtype, strides) { + const n = sizeFromShape(shape); + const numCols = strides[strides.length - 1]; + const padPerCol = new Array(numCols).fill(0); + const rank = shape.length; + const valuesOrTuples = dtype === "complex64" ? createComplexTuples(vals) : vals; + if (rank > 1) { + for (let row = 0; row < n / numCols; row++) { + const offset = row * numCols; + for (let j = 0; j < numCols; j++) { + padPerCol[j] = Math.max(padPerCol[j], valToString(valuesOrTuples[offset + j], 0, dtype).length); + } + } + } + return padPerCol; +} +function valToString(val, pad3, dtype) { + let valStr; + if (Array.isArray(val)) { + valStr = `${parseFloat(val[0].toFixed(FORMAT_NUM_SIG_DIGITS))} + ${parseFloat(val[1].toFixed(FORMAT_NUM_SIG_DIGITS))}j`; + } else if (isString(val)) { + valStr = `'${val}'`; + } else if (dtype === "bool") { + valStr = boolNumToString(val); + } else { + valStr = parseFloat(val.toFixed(FORMAT_NUM_SIG_DIGITS)).toString(); + } + return rightPad(valStr, pad3); +} +function boolNumToString(v) { + return v === 0 ? "false" : "true"; +} +function subTensorToString(vals, shape, dtype, strides, padPerCol, isLast = true) { + const storagePerElement = dtype === "complex64" ? 2 : 1; + const size = shape[0]; + const rank = shape.length; + if (rank === 0) { + if (dtype === "complex64") { + const complexTuple = createComplexTuples(vals); + return [valToString(complexTuple[0], 0, dtype)]; + } + if (dtype === "bool") { + return [boolNumToString(vals[0])]; + } + return [vals[0].toString()]; + } + if (rank === 1) { + if (size > FORMAT_LIMIT_NUM_VALS) { + const firstValsSize = FORMAT_NUM_FIRST_LAST_VALS * storagePerElement; + let firstVals = Array.from(vals.slice(0, firstValsSize)); + let lastVals = Array.from(vals.slice((size - FORMAT_NUM_FIRST_LAST_VALS) * storagePerElement, size * storagePerElement)); + if (dtype === "complex64") { + firstVals = createComplexTuples(firstVals); + lastVals = createComplexTuples(lastVals); + } + return [ + "[" + firstVals.map((x, i) => valToString(x, padPerCol[i], dtype)).join(", ") + ", ..., " + lastVals.map((x, i) => valToString(x, padPerCol[size - FORMAT_NUM_FIRST_LAST_VALS + i], dtype)).join(", ") + "]" + ]; + } + const displayVals = dtype === "complex64" ? createComplexTuples(vals) : Array.from(vals); + return [ + "[" + displayVals.map((x, i) => valToString(x, padPerCol[i], dtype)).join(", ") + "]" + ]; + } + const subshape = shape.slice(1); + const substrides = strides.slice(1); + const stride = strides[0] * storagePerElement; + const lines = []; + if (size > FORMAT_LIMIT_NUM_VALS) { + for (let i = 0; i < FORMAT_NUM_FIRST_LAST_VALS; i++) { + const start = i * stride; + const end = start + stride; + lines.push(...subTensorToString(vals.slice(start, end), subshape, dtype, substrides, padPerCol, false)); + } + lines.push("..."); + for (let i = size - FORMAT_NUM_FIRST_LAST_VALS; i < size; i++) { + const start = i * stride; + const end = start + stride; + lines.push(...subTensorToString(vals.slice(start, end), subshape, dtype, substrides, padPerCol, i === size - 1)); + } + } else { + for (let i = 0; i < size; i++) { + const start = i * stride; + const end = start + stride; + lines.push(...subTensorToString(vals.slice(start, end), subshape, dtype, substrides, padPerCol, i === size - 1)); + } + } + const sep = rank === 2 ? "," : ""; + lines[0] = "[" + lines[0] + sep; + for (let i = 1; i < lines.length - 1; i++) { + lines[i] = " " + lines[i] + sep; + } + let newLineSep = ",\n"; + for (let i = 2; i < rank; i++) { + newLineSep += "\n"; + } + lines[lines.length - 1] = " " + lines[lines.length - 1] + "]" + (isLast ? "" : newLineSep); + return lines; +} +function createComplexTuples(vals) { + const complexTuples = []; + for (let i = 0; i < vals.length; i += 2) { + complexTuples.push([vals[i], vals[i + 1]]); + } + return complexTuples; +} +/** + * @license + * Copyright 2017 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var TensorBuffer = class { + constructor(shape, dtype, values) { + this.dtype = dtype; + this.shape = shape.slice(); + this.size = sizeFromShape(shape); + if (values != null) { + const n = values.length; + assert(n === this.size, () => `Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`); + } + if (dtype === "complex64") { + throw new Error(`complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).`); + } + this.values = values || getArrayFromDType(dtype, this.size); + this.strides = computeStrides(shape); + } + set(value, ...locs) { + if (locs.length === 0) { + locs = [0]; + } + assert(locs.length === this.rank, () => `The number of provided coordinates (${locs.length}) must match the rank (${this.rank})`); + const index = this.locToIndex(locs); + this.values[index] = value; + } + get(...locs) { + if (locs.length === 0) { + locs = [0]; + } + let i = 0; + for (const loc of locs) { + if (loc < 0 || loc >= this.shape[i]) { + const msg = `Requested out of range element at ${locs}. Buffer shape=${this.shape}`; + throw new Error(msg); + } + i++; + } + let index = locs[locs.length - 1]; + for (let i2 = 0; i2 < locs.length - 1; ++i2) { + index += this.strides[i2] * locs[i2]; + } + return this.values[index]; + } + locToIndex(locs) { + if (this.rank === 0) { + return 0; + } else if (this.rank === 1) { + return locs[0]; + } + let index = locs[locs.length - 1]; + for (let i = 0; i < locs.length - 1; ++i) { + index += this.strides[i] * locs[i]; + } + return index; + } + indexToLoc(index) { + if (this.rank === 0) { + return []; + } else if (this.rank === 1) { + return [index]; + } + const locs = new Array(this.shape.length); + for (let i = 0; i < locs.length - 1; ++i) { + locs[i] = Math.floor(index / this.strides[i]); + index -= locs[i] * this.strides[i]; + } + locs[locs.length - 1] = index; + return locs; + } + get rank() { + return this.shape.length; + } + toTensor() { + return trackerFn().makeTensor(this.values, this.shape, this.dtype); + } +}; +var trackerFn = null; +var opHandler = null; +var deprecationWarningFn = null; +function setTensorTracker(fn) { + trackerFn = fn; +} +function setOpHandler(handler) { + opHandler = handler; +} +function setDeprecationWarningFn(fn) { + deprecationWarningFn = fn; +} +var Tensor = class { + constructor(shape, dtype, dataId, id) { + this.kept = false; + this.isDisposedInternal = false; + this.shape = shape.slice(); + this.dtype = dtype || "float32"; + this.size = sizeFromShape(shape); + this.strides = computeStrides(shape); + this.dataId = dataId; + this.id = id; + this.rankType = this.rank < 5 ? this.rank.toString() : "higher"; + } + get rank() { + return this.shape.length; + } + async buffer() { + const vals = await this.data(); + return opHandler.buffer(this.shape, this.dtype, vals); + } + bufferSync() { + return opHandler.buffer(this.shape, this.dtype, this.dataSync()); + } + async array() { + const vals = await this.data(); + return toNestedArray(this.shape, vals); + } + arraySync() { + return toNestedArray(this.shape, this.dataSync()); + } + async data() { + this.throwIfDisposed(); + const data2 = trackerFn().read(this.dataId); + if (this.dtype === "string") { + const bytes = await data2; + try { + return bytes.map((b) => decodeString(b)); + } catch (_a) { + throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes()."); + } + } + return data2; + } + dataSync() { + this.throwIfDisposed(); + const data2 = trackerFn().readSync(this.dataId); + if (this.dtype === "string") { + try { + return data2.map((b) => decodeString(b)); + } catch (_a) { + throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes()."); + } + } + return data2; + } + async bytes() { + this.throwIfDisposed(); + const data2 = await trackerFn().read(this.dataId); + if (this.dtype === "string") { + return data2; + } else { + return new Uint8Array(data2.buffer); + } + } + dispose() { + if (this.isDisposed) { + return; + } + trackerFn().disposeTensor(this); + this.isDisposedInternal = true; + } + get isDisposed() { + return this.isDisposedInternal; + } + throwIfDisposed() { + if (this.isDisposed) { + throw new Error(`Tensor is disposed.`); + } + } + print(verbose = false) { + return opHandler.print(this, verbose); + } + clone() { + this.throwIfDisposed(); + return opHandler.clone(this); + } + toString(verbose = false) { + const vals = this.dataSync(); + return tensorToString(vals, this.shape, this.dtype, verbose); + } + cast(dtype) { + this.throwIfDisposed(); + return opHandler.cast(this, dtype); + } + variable(trainable = true, name2, dtype) { + this.throwIfDisposed(); + return trackerFn().makeVariable(this, trainable, name2, dtype); + } +}; +Object.defineProperty(Tensor, Symbol.hasInstance, { + value: (instance2) => { + return !!instance2 && instance2.data != null && instance2.dataSync != null && instance2.throwIfDisposed != null; + } +}); +function getGlobalTensorClass() { + return getGlobal("Tensor", () => { + return Tensor; + }); +} +getGlobalTensorClass(); +var Variable = class extends Tensor { + constructor(initialValue, trainable, name2, tensorId) { + super(initialValue.shape, initialValue.dtype, initialValue.dataId, tensorId); + this.trainable = trainable; + this.name = name2; + } + assign(newValue) { + if (newValue.dtype !== this.dtype) { + throw new Error(`dtype of the new value (${newValue.dtype}) and previous value (${this.dtype}) must match`); + } + if (!arraysEqual(newValue.shape, this.shape)) { + throw new Error(`shape of the new value (${newValue.shape}) and previous value (${this.shape}) must match`); + } + trackerFn().disposeTensor(this); + this.dataId = newValue.dataId; + trackerFn().incRef(this, null); + } + dispose() { + trackerFn().disposeVariable(this); + this.isDisposedInternal = true; + } +}; +Object.defineProperty(Variable, Symbol.hasInstance, { + value: (instance2) => { + return instance2 instanceof Tensor && instance2.assign != null && instance2.assign instanceof Function; + } +}); +var tensor_util_exports = {}; +__export2(tensor_util_exports, { + assertTypesMatch: () => assertTypesMatch, + getTensorsInContainer: () => getTensorsInContainer, + isTensorInList: () => isTensorInList, + makeTypesMatch: () => makeTypesMatch +}); +/** + * @license + * Copyright 2017 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var Rank; +(function(Rank2) { + Rank2["R0"] = "R0"; + Rank2["R1"] = "R1"; + Rank2["R2"] = "R2"; + Rank2["R3"] = "R3"; + Rank2["R4"] = "R4"; + Rank2["R5"] = "R5"; + Rank2["R6"] = "R6"; +})(Rank || (Rank = {})); +var UpcastInt32AndMap; +(function(UpcastInt32AndMap2) { + UpcastInt32AndMap2["float32"] = "float32"; + UpcastInt32AndMap2["int32"] = "int32"; + UpcastInt32AndMap2["bool"] = "int32"; + UpcastInt32AndMap2["complex64"] = "complex64"; +})(UpcastInt32AndMap || (UpcastInt32AndMap = {})); +var UpcastBoolAndMap; +(function(UpcastBoolAndMap2) { + UpcastBoolAndMap2["float32"] = "float32"; + UpcastBoolAndMap2["int32"] = "int32"; + UpcastBoolAndMap2["bool"] = "bool"; + UpcastBoolAndMap2["complex64"] = "complex64"; +})(UpcastBoolAndMap || (UpcastBoolAndMap = {})); +var UpcastFloat32AndMap; +(function(UpcastFloat32AndMap2) { + UpcastFloat32AndMap2["float32"] = "float32"; + UpcastFloat32AndMap2["int32"] = "float32"; + UpcastFloat32AndMap2["bool"] = "float32"; + UpcastFloat32AndMap2["complex64"] = "complex64"; +})(UpcastFloat32AndMap || (UpcastFloat32AndMap = {})); +var UpcastComplex64AndMap; +(function(UpcastComplex64AndMap2) { + UpcastComplex64AndMap2["float32"] = "complex64"; + UpcastComplex64AndMap2["int32"] = "complex64"; + UpcastComplex64AndMap2["bool"] = "complex64"; + UpcastComplex64AndMap2["complex64"] = "complex64"; +})(UpcastComplex64AndMap || (UpcastComplex64AndMap = {})); +var upcastTypeMap = { + float32: UpcastFloat32AndMap, + int32: UpcastInt32AndMap, + bool: UpcastBoolAndMap, + complex64: UpcastComplex64AndMap +}; +function upcastType(typeA, typeB) { + if (typeA === "string" || typeB === "string") { + if (typeA === "string" && typeB === "string") { + return "string"; + } + throw new Error(`Can not upcast ${typeA} with ${typeB}`); + } + return upcastTypeMap[typeA][typeB]; +} +function sumOutType(type) { + return upcastType(type, "int32"); +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function makeTypesMatch(a, b) { + if (a.dtype === b.dtype) { + return [a, b]; + } + const dtype = upcastType(a.dtype, b.dtype); + return [a.cast(dtype), b.cast(dtype)]; +} +function assertTypesMatch(a, b) { + assert(a.dtype === b.dtype, () => `The dtypes of the first(${a.dtype}) and second(${b.dtype}) input must match`); +} +function isTensorInList(tensor2, tensorList) { + return tensorList.some((x) => x.id === tensor2.id); +} +function getTensorsInContainer(result) { + const list = []; + const seen = new Set(); + walkTensorContainer(result, list, seen); + return list; +} +function walkTensorContainer(container, list, seen) { + if (container == null) { + return; + } + if (container instanceof Tensor) { + list.push(container); + return; + } + if (!isIterable(container)) { + return; + } + const iterable = container; + for (const k in iterable) { + const val = iterable[k]; + if (!seen.has(val)) { + seen.add(val); + walkTensorContainer(val, list, seen); + } + } +} +function isIterable(obj) { + return Array.isArray(obj) || typeof obj === "object"; +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function isRegisteredKernelInvocation(kernelInvocation) { + return kernelInvocation.kernelName != null; +} +var EngineState = class { + constructor() { + this.registeredVariables = {}; + this.nextTapeNodeId = 0; + this.numBytes = 0; + this.numTensors = 0; + this.numStringTensors = 0; + this.numDataBuffers = 0; + this.gradientDepth = 0; + this.kernelDepth = 0; + this.scopeStack = []; + this.numDataMovesStack = []; + this.nextScopeId = 0; + this.tensorInfo = new WeakMap(); + this.profiling = false; + this.activeProfile = { + newBytes: 0, + newTensors: 0, + peakBytes: 0, + kernels: [], + result: null, + get kernelNames() { + return Array.from(new Set(this.kernels.map((k) => k.name))); + } + }; + } + dispose() { + for (const variableName in this.registeredVariables) { + this.registeredVariables[variableName].dispose(); + } + } +}; +var Engine = class { + constructor(ENV5) { + this.ENV = ENV5; + this.registry = {}; + this.registryFactory = {}; + this.pendingBackendInitId = 0; + this.state = new EngineState(); + } + async ready() { + if (this.pendingBackendInit != null) { + return this.pendingBackendInit.then(() => { + }); + } + if (this.backendInstance != null) { + return; + } + const sortedBackends = this.getSortedBackends(); + for (let i = 0; i < sortedBackends.length; i++) { + const backendName = sortedBackends[i]; + const success = await this.initializeBackend(backendName).success; + if (success) { + await this.setBackend(backendName); + return; + } + } + throw new Error(`Could not initialize any backends, all backend initializations failed.`); + } + get backend() { + if (this.pendingBackendInit != null) { + throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`); + } + if (this.backendInstance == null) { + const {name: name2, asyncInit} = this.initializeBackendsAndReturnBest(); + if (asyncInit) { + throw new Error(`The highest priority backend '${name2}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`); + } + this.setBackend(name2); + } + return this.backendInstance; + } + backendNames() { + return Object.keys(this.registryFactory); + } + findBackend(backendName) { + if (!(backendName in this.registry)) { + if (backendName in this.registryFactory) { + const {asyncInit} = this.initializeBackend(backendName); + if (asyncInit) { + return null; + } + } else { + return null; + } + } + return this.registry[backendName]; + } + findBackendFactory(backendName) { + if (!(backendName in this.registryFactory)) { + return null; + } + return this.registryFactory[backendName].factory; + } + registerBackend(backendName, factory, priority = 1) { + if (backendName in this.registryFactory) { + console.warn(`${backendName} backend was already registered. Reusing existing backend factory.`); + return false; + } + this.registryFactory[backendName] = {factory, priority}; + return true; + } + async setBackend(backendName) { + if (this.registryFactory[backendName] == null) { + throw new Error(`Backend name '${backendName}' not found in registry`); + } + this.backendName = backendName; + if (this.registry[backendName] == null) { + this.backendInstance = null; + const {success, asyncInit} = this.initializeBackend(backendName); + const result = asyncInit ? await success : success; + if (!result) { + return false; + } + } + this.backendInstance = this.registry[backendName]; + this.setupRegisteredKernels(); + this.profiler = new Profiler(this.backendInstance); + return true; + } + setupRegisteredKernels() { + const kernels = getKernelsForBackend(this.backendName); + kernels.forEach((kernel) => { + if (kernel.setupFunc != null) { + kernel.setupFunc(this.backendInstance); + } + }); + } + disposeRegisteredKernels(backendName) { + const kernels = getKernelsForBackend(backendName); + kernels.forEach((kernel) => { + if (kernel.disposeFunc != null) { + kernel.disposeFunc(this.registry[backendName]); + } + }); + } + initializeBackend(backendName) { + const registryFactoryEntry = this.registryFactory[backendName]; + if (registryFactoryEntry == null) { + throw new Error(`Cannot initialize backend ${backendName}, no registration found.`); + } + try { + const backend22 = registryFactoryEntry.factory(); + if (backend22 && !(backend22 instanceof KernelBackend) && typeof backend22.then === "function") { + const promiseId = ++this.pendingBackendInitId; + const success = backend22.then((backendInstance) => { + if (promiseId < this.pendingBackendInitId) { + return false; + } + this.registry[backendName] = backendInstance; + this.pendingBackendInit = null; + return true; + }).catch((err) => { + if (promiseId < this.pendingBackendInitId) { + return false; + } + this.pendingBackendInit = null; + console.warn(`Initialization of backend ${backendName} failed`); + console.warn(err.stack || err.message); + return false; + }); + this.pendingBackendInit = success; + return {success, asyncInit: true}; + } else { + this.registry[backendName] = backend22; + return {success: true, asyncInit: false}; + } + } catch (err) { + console.warn(`Initialization of backend ${backendName} failed`); + console.warn(err.stack || err.message); + return {success: false, asyncInit: false}; + } + } + removeBackend(backendName) { + if (!(backendName in this.registryFactory)) { + throw new Error(`${backendName} backend not found in registry`); + } + if (this.backendName === backendName && this.pendingBackendInit != null) { + this.pendingBackendInitId++; + } + if (backendName in this.registry) { + this.disposeRegisteredKernels(backendName); + this.registry[backendName].dispose(); + delete this.registry[backendName]; + } + delete this.registryFactory[backendName]; + if (this.backendName === backendName) { + this.pendingBackendInit = null; + this.backendName = null; + this.backendInstance = null; + } + } + getSortedBackends() { + if (Object.keys(this.registryFactory).length === 0) { + throw new Error("No backend found in registry."); + } + return Object.keys(this.registryFactory).sort((a, b) => { + return this.registryFactory[b].priority - this.registryFactory[a].priority; + }); + } + initializeBackendsAndReturnBest() { + const sortedBackends = this.getSortedBackends(); + for (let i = 0; i < sortedBackends.length; i++) { + const backendName = sortedBackends[i]; + const {success, asyncInit} = this.initializeBackend(backendName); + if (asyncInit || success) { + return {name: backendName, asyncInit}; + } + } + throw new Error(`Could not initialize any backends, all backend initializations failed.`); + } + moveData(backend22, dataId) { + const info = this.state.tensorInfo.get(dataId); + const srcBackend = info.backend; + const values = this.readSync(dataId); + const refCount = srcBackend.refCount(dataId); + srcBackend.disposeData(dataId, true); + info.backend = backend22; + backend22.move(dataId, values, info.shape, info.dtype, refCount); + if (this.shouldCheckForMemLeaks()) { + this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1]++; + } + } + tidy(nameOrFn, fn) { + let name2 = null; + if (fn == null) { + if (typeof nameOrFn !== "function") { + throw new Error("Please provide a function to tidy()"); + } + fn = nameOrFn; + } else { + if (typeof nameOrFn !== "string" && !(nameOrFn instanceof String)) { + throw new Error("When calling with two arguments, the first argument to tidy() must be a string"); + } + if (typeof fn !== "function") { + throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function"); + } + name2 = nameOrFn; + } + let result; + return this.scopedRun(() => this.startScope(name2), () => this.endScope(result), () => { + result = fn(); + if (result instanceof Promise) { + console.error("Cannot return a Promise inside of tidy."); + } + return result; + }); + } + scopedRun(start, end, f) { + start(); + try { + const res = f(); + end(); + return res; + } catch (ex) { + end(); + throw ex; + } + } + nextTensorId() { + return Engine.nextTensorId++; + } + nextVariableId() { + return Engine.nextVariableId++; + } + clone(x) { + const y = ENGINE.runKernel(Identity, {x}); + const inputs = {x}; + const grad2 = (dy) => ({ + x: () => { + const dtype = "float32"; + const gradInputs = {x: dy}; + const attrs = {dtype}; + return ENGINE.runKernel(Cast, gradInputs, attrs); + } + }); + const saved = []; + this.addTapeNode(this.state.activeScope.name, inputs, [y], grad2, saved, {}); + return y; + } + runKernel(kernelName, inputs, attrs) { + const hasKernel = getKernel(kernelName, this.backendName) != null; + if (!hasKernel) { + throw new Error(`Kernel '${kernelName}' not registered for backend '${this.backendName}'`); + } + return this.runKernelFunc({kernelName, inputs, attrs}); + } + shouldCheckForMemLeaks() { + return this.ENV.getBool("IS_TEST"); + } + checkKernelForMemLeak(kernelName, numDataIdsBefore, outInfos) { + const numDataIdsAfter = this.backend.numDataIds(); + let numOutputDataIds = 0; + outInfos.forEach((info) => { + numOutputDataIds += info.dtype === "complex64" ? 3 : 1; + }); + const numMoves = this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1]; + const dataIdsLeaked = numDataIdsAfter - numDataIdsBefore - numOutputDataIds - numMoves; + if (dataIdsLeaked > 0) { + throw new Error(`Backend '${this.backendName}' has an internal memory leak (${dataIdsLeaked} data ids) after running '${kernelName}'`); + } + } + runKernelFunc(kernelParams) { + let outputs; + let saved = []; + const isTapeOn = this.isTapeOn(); + const startingBytecount = this.state.numBytes; + const startingNumTensors = this.state.numTensors; + if (this.shouldCheckForMemLeaks()) { + this.state.numDataMovesStack.push(0); + } + let kernelFunc3; + if (this.backendName == null) { + this.backend; + } + let out; + const kernelOrScopeName = isRegisteredKernelInvocation(kernelParams) ? kernelParams.kernelName : this.state.activeScope != null ? this.state.activeScope.name : ""; + if (isRegisteredKernelInvocation(kernelParams)) { + const {kernelName, inputs: inputs2, attrs: attrs2} = kernelParams; + if (this.backendName == null) { + this.backend; + } + const kernel = getKernel(kernelName, this.backendName); + assert(kernel != null, () => `Cannot find registered kernel '${kernelName}' for backend '${this.backendName}'`); + kernelFunc3 = () => { + const numDataIdsBefore = this.backend.numDataIds(); + out = kernel.kernelFunc({inputs: inputs2, attrs: attrs2, backend: this.backend}); + const outInfos = Array.isArray(out) ? out : [out]; + if (this.shouldCheckForMemLeaks()) { + this.checkKernelForMemLeak(kernelName, numDataIdsBefore, outInfos); + } + const outTensors = outInfos.map((outInfo) => { + if (outInfo.rank != null) { + return outInfo; + } + const {dataId, shape, dtype} = outInfo; + return this.makeTensorFromDataId(dataId, shape, dtype); + }); + if (isTapeOn) { + const tensorsToSave = this.getTensorsForGradient(kernelName, inputs2, outTensors); + saved = this.saveTensorsForBackwardMode(tensorsToSave); + } + return outTensors; + }; + } else { + const {forwardFunc} = kernelParams; + const saveFunc = (tensors) => { + if (!isTapeOn) { + return; + } + saved = tensors.map((tensor2) => this.keep(this.clone(tensor2))); + }; + kernelFunc3 = () => { + const numDataIdsBefore = this.backend.numDataIds(); + out = this.tidy(() => forwardFunc(this.backend, saveFunc)); + const outs = Array.isArray(out) ? out : [out]; + if (this.shouldCheckForMemLeaks()) { + this.checkKernelForMemLeak(kernelOrScopeName, numDataIdsBefore, outs); + } + return outs; + }; + } + const {inputs, attrs} = kernelParams; + const backwardsFunc = isRegisteredKernelInvocation(kernelParams) ? null : kernelParams.backwardsFunc; + let kernelProfile; + this.scopedRun(() => this.state.kernelDepth++, () => this.state.kernelDepth--, () => { + if (!this.ENV.getBool("DEBUG") && !this.state.profiling) { + outputs = kernelFunc3(); + } else { + kernelProfile = this.profiler.profileKernel(kernelOrScopeName, inputs, () => kernelFunc3()); + if (this.ENV.getBool("DEBUG")) { + this.profiler.logKernelProfile(kernelProfile); + } + outputs = kernelProfile.outputs; + } + }); + if (isTapeOn) { + this.addTapeNode(kernelOrScopeName, inputs, outputs, backwardsFunc, saved, attrs); + } + if (this.state.profiling) { + this.state.activeProfile.kernels.push({ + name: kernelOrScopeName, + bytesAdded: this.state.numBytes - startingBytecount, + totalBytesSnapshot: this.state.numBytes, + tensorsAdded: this.state.numTensors - startingNumTensors, + totalTensorsSnapshot: this.state.numTensors, + inputShapes: Object.keys(inputs).map((key) => inputs[key] != null ? inputs[key].shape : null), + outputShapes: outputs.map((item) => item.shape), + kernelTimeMs: kernelProfile.timeMs, + extraInfo: kernelProfile.extraInfo + }); + } + return Array.isArray(out) ? outputs : outputs[0]; + } + saveTensorsForBackwardMode(tensors) { + const saved = tensors.map((tensor2) => this.keep(this.clone(tensor2))); + return saved; + } + getTensorsForGradient(kernelName, inputs, outputs) { + const gradConfig = getGradient(kernelName); + if (gradConfig != null) { + const inputsToSave = gradConfig.inputsToSave || []; + const outputsToSave = gradConfig.outputsToSave || []; + let inputTensorsToSave; + if (gradConfig.saveAllInputs) { + assert(Array.isArray(inputs), () => "saveAllInputs is true, expected inputs to be an array."); + inputTensorsToSave = Object.keys(inputs).map((key) => inputs[key]); + } else { + inputTensorsToSave = inputsToSave.map((inputName) => inputs[inputName]); + } + const outputTensorsToSave = outputs.filter((_, i) => outputsToSave[i]); + return inputTensorsToSave.concat(outputTensorsToSave); + } + return []; + } + makeTensor(values, shape, dtype, backend22) { + if (values == null) { + throw new Error("Values passed to engine.makeTensor() are null"); + } + dtype = dtype || "float32"; + backend22 = backend22 || this.backend; + let backendVals = values; + if (dtype === "string" && isString(values[0])) { + backendVals = values.map((d) => encodeString(d)); + } + const dataId = backend22.write(backendVals, shape, dtype); + const t = new Tensor(shape, dtype, dataId, this.nextTensorId()); + this.trackTensor(t, backend22); + if (dtype === "string") { + const info = this.state.tensorInfo.get(dataId); + const newBytes = bytesFromStringArray(backendVals); + this.state.numBytes += newBytes - info.bytes; + info.bytes = newBytes; + } + return t; + } + makeTensorFromDataId(dataId, shape, dtype, backend22) { + dtype = dtype || "float32"; + const t = new Tensor(shape, dtype, dataId, this.nextTensorId()); + this.trackTensor(t, backend22); + return t; + } + makeVariable(initialValue, trainable = true, name2, dtype) { + name2 = name2 || this.nextVariableId().toString(); + if (dtype != null && dtype !== initialValue.dtype) { + initialValue = initialValue.cast(dtype); + } + const v = new Variable(initialValue, trainable, name2, this.nextTensorId()); + if (this.state.registeredVariables[v.name] != null) { + throw new Error(`Variable with name ${v.name} was already registered`); + } + this.state.registeredVariables[v.name] = v; + this.incRef(v, this.backend); + return v; + } + trackTensor(a, backend22) { + this.state.numTensors++; + if (a.dtype === "string") { + this.state.numStringTensors++; + } + let bytes = 0; + if (a.dtype !== "complex64" && a.dtype !== "string") { + bytes = a.size * bytesPerElement(a.dtype); + } + this.state.numBytes += bytes; + if (!this.state.tensorInfo.has(a.dataId)) { + this.state.numDataBuffers++; + this.state.tensorInfo.set(a.dataId, { + backend: backend22 || this.backend, + dtype: a.dtype, + shape: a.shape, + bytes + }); + } + if (!(a instanceof Variable)) { + this.track(a); + } + } + incRef(a, backend22) { + this.trackTensor(a, backend22); + this.backend.incRef(a.dataId); + } + removeDataId(dataId, backend22) { + if (this.state.tensorInfo.has(dataId) && this.state.tensorInfo.get(dataId).backend === backend22) { + this.state.tensorInfo.delete(dataId); + this.state.numDataBuffers--; + } + } + disposeTensor(a) { + if (!this.state.tensorInfo.has(a.dataId)) { + return; + } + const info = this.state.tensorInfo.get(a.dataId); + this.state.numTensors--; + if (a.dtype === "string") { + this.state.numStringTensors--; + this.state.numBytes -= info.bytes; + } + if (a.dtype !== "complex64" && a.dtype !== "string") { + const bytes = a.size * bytesPerElement(a.dtype); + this.state.numBytes -= bytes; + } + if (info.backend.disposeData(a.dataId)) { + this.removeDataId(a.dataId, info.backend); + } + } + disposeVariables() { + for (const varName in this.state.registeredVariables) { + const v = this.state.registeredVariables[varName]; + this.disposeVariable(v); + } + } + disposeVariable(v) { + this.disposeTensor(v); + if (this.state.registeredVariables[v.name] != null) { + delete this.state.registeredVariables[v.name]; + } + } + memory() { + const info = this.backend.memory(); + info.numTensors = this.state.numTensors; + info.numDataBuffers = this.state.numDataBuffers; + info.numBytes = this.state.numBytes; + if (this.state.numStringTensors > 0) { + info.unreliable = true; + if (info.reasons == null) { + info.reasons = []; + } + info.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)"); + } + return info; + } + async profile(query) { + this.state.profiling = true; + const startBytes = this.state.numBytes; + const startNumTensors = this.state.numTensors; + this.state.activeProfile.kernels = []; + this.state.activeProfile.result = await query(); + this.state.profiling = false; + this.state.activeProfile.peakBytes = Math.max(...this.state.activeProfile.kernels.map((d) => d.totalBytesSnapshot)); + this.state.activeProfile.newBytes = this.state.numBytes - startBytes; + this.state.activeProfile.newTensors = this.state.numTensors - startNumTensors; + for (const kernel of this.state.activeProfile.kernels) { + kernel.kernelTimeMs = await kernel.kernelTimeMs; + kernel.extraInfo = await kernel.extraInfo; + } + return this.state.activeProfile; + } + isTapeOn() { + return this.state.gradientDepth > 0 && this.state.kernelDepth === 0; + } + addTapeNode(kernelName, inputs, outputs, gradientsFunc, saved, attrs) { + const tapeNode = {id: this.state.nextTapeNodeId++, kernelName, inputs, outputs, saved}; + const gradConfig = getGradient(kernelName); + if (gradConfig != null) { + gradientsFunc = gradConfig.gradFunc; + } + if (gradientsFunc != null) { + tapeNode.gradient = (dys) => { + dys = dys.map((dy, i) => { + if (dy == null) { + const output = outputs[i]; + const vals = makeZerosTypedArray(output.size, output.dtype); + return this.makeTensor(vals, output.shape, output.dtype); + } + return dy; + }); + return gradientsFunc(dys.length > 1 ? dys : dys[0], saved, attrs); + }; + } + this.state.activeTape.push(tapeNode); + } + keep(result) { + result.kept = true; + return result; + } + startTape() { + if (this.state.gradientDepth === 0) { + this.state.activeTape = []; + } + this.state.gradientDepth++; + } + endTape() { + this.state.gradientDepth--; + } + startScope(name2) { + const scopeInfo = { + track: [], + name: "unnamed scope", + id: this.state.nextScopeId++ + }; + if (name2) { + scopeInfo.name = name2; + } + this.state.scopeStack.push(scopeInfo); + this.state.activeScope = scopeInfo; + } + endScope(result) { + const tensorsToTrackInParent = getTensorsInContainer(result); + const tensorsToTrackInParentSet = new Set(tensorsToTrackInParent.map((t) => t.id)); + for (let i = 0; i < this.state.activeScope.track.length; i++) { + const tensor2 = this.state.activeScope.track[i]; + if (!tensor2.kept && !tensorsToTrackInParentSet.has(tensor2.id)) { + tensor2.dispose(); + } + } + const oldScope = this.state.scopeStack.pop(); + this.state.activeScope = this.state.scopeStack.length === 0 ? null : this.state.scopeStack[this.state.scopeStack.length - 1]; + tensorsToTrackInParent.forEach((tensor2) => { + if (!tensor2.kept && tensor2.scopeId === oldScope.id) { + this.track(tensor2); + } + }); + } + gradients(f, xs, dy, allowNoGradients = false) { + assert(xs.length > 0, () => "gradients() received an empty list of xs."); + if (dy != null && dy.dtype !== "float32") { + throw new Error(`dy must have 'float32' dtype, but has '${dy.dtype}'`); + } + const y = this.scopedRun(() => this.startTape(), () => this.endTape(), () => this.tidy("forward", f)); + assert(y instanceof Tensor, () => "The result y returned by f() must be a tensor."); + const filteredTape = getFilteredNodesXToY(this.state.activeTape, xs, y); + if (!allowNoGradients && filteredTape.length === 0 && xs.length > 0) { + throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y."); + } + return this.tidy("backward", () => { + const accumulatedGradientMap = {}; + accumulatedGradientMap[y.id] = dy == null ? ones(y.shape) : dy; + backpropagateGradients(accumulatedGradientMap, filteredTape, (f2) => this.tidy(f2), add); + const grads2 = xs.map((x) => accumulatedGradientMap[x.id]); + if (this.state.gradientDepth === 0) { + this.state.activeTape.forEach((node) => { + for (const tensor2 of node.saved) { + tensor2.dispose(); + } + }); + this.state.activeTape = null; + } + return {value: y, grads: grads2}; + }); + } + customGrad(f) { + assert(isFunction(f), () => "The f passed in customGrad(f) must be a function."); + return (...inputs) => { + assert(inputs.every((t) => t instanceof Tensor), () => "The args passed in customGrad(f)(x1, x2,...) must all be tensors"); + let res; + const inputMap = {}; + inputs.forEach((input2, i) => { + inputMap[i] = input2; + }); + const forwardFunc = (_, save) => { + res = f(...[...inputs, save]); + assert(res.value instanceof Tensor, () => "The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"); + assert(isFunction(res.gradFunc), () => "The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."); + return res.value; + }; + const backwardsFunc = (dy, saved) => { + const gradRes = res.gradFunc(dy, saved); + const grads2 = Array.isArray(gradRes) ? gradRes : [gradRes]; + assert(grads2.length === inputs.length, () => "The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."); + assert(grads2.every((t) => t instanceof Tensor), () => "The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors."); + const gradMap = {}; + grads2.forEach((grad2, i) => { + gradMap[i] = () => grad2; + }); + return gradMap; + }; + return this.runKernelFunc({ + forwardFunc, + backwardsFunc, + inputs: inputMap + }); + }; + } + readSync(dataId) { + const info = this.state.tensorInfo.get(dataId); + return info.backend.readSync(dataId); + } + read(dataId) { + const info = this.state.tensorInfo.get(dataId); + return info.backend.read(dataId); + } + async time(query) { + const start = now(); + const timingInfo = await this.backend.time(query); + timingInfo.wallMs = now() - start; + return timingInfo; + } + track(result) { + if (this.state.activeScope != null) { + result.scopeId = this.state.activeScope.id; + this.state.activeScope.track.push(result); + } + return result; + } + get registeredVariables() { + return this.state.registeredVariables; + } + reset() { + this.pendingBackendInitId++; + this.state.dispose(); + this.ENV.reset(); + this.state = new EngineState(); + for (const backendName in this.registry) { + this.disposeRegisteredKernels(backendName); + this.registry[backendName].dispose(); + delete this.registry[backendName]; + } + this.backendName = null; + this.backendInstance = null; + this.pendingBackendInit = null; + } +}; +Engine.nextTensorId = 0; +Engine.nextVariableId = 0; +function ones(shape) { + const values = makeOnesTypedArray(sizeFromShape(shape), "float32"); + return ENGINE.makeTensor(values, shape, "float32"); +} +function getOrMakeEngine() { + const ns = getGlobalNamespace(); + if (ns._tfengine == null) { + const environment = new Environment(ns); + ns._tfengine = new Engine(environment); + } + setEnvironmentGlobal(ns._tfengine.ENV); + setTensorTracker(() => ns._tfengine); + return ns._tfengine; +} +var ENGINE = getOrMakeEngine(); +function add(a, b) { + const inputs = {a, b}; + return ENGINE.runKernel(Add, inputs); +} +var device_util_exports = {}; +__export2(device_util_exports, { + isBrowser: () => isBrowser, + isMobile: () => isMobile +}); +/** + * @license + * Copyright 2017 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function _isNavigatorDefined() { + return typeof navigator !== "undefined" && navigator != null; +} +function isMobile() { + if (_isNavigatorDefined()) { + const a = navigator.userAgent || navigator.vendor || window.opera; + return /(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(a) || /1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(a.substr(0, 4)); + } + return false; +} +function isBrowser() { + return typeof window !== "undefined" && window.document != null || typeof WorkerGlobalScope !== "undefined"; +} +/** + * @license + * Copyright 2019 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var ENV2 = env(); +ENV2.registerFlag("DEBUG", () => false, (debugValue) => { + if (debugValue) { + console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance."); + } +}); +ENV2.registerFlag("IS_BROWSER", () => isBrowser()); +ENV2.registerFlag("IS_NODE", () => typeof process !== "undefined" && typeof process.versions !== "undefined" && typeof process.versions.node !== "undefined"); +ENV2.registerFlag("IS_CHROME", () => typeof navigator !== "undefined" && navigator != null && navigator.userAgent != null && /Chrome/.test(navigator.userAgent) && /Google Inc/.test(navigator.vendor)); +ENV2.registerFlag("PROD", () => false); +ENV2.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY", () => ENV2.getBool("DEBUG")); +ENV2.registerFlag("DEPRECATION_WARNINGS_ENABLED", () => true); +ENV2.registerFlag("IS_TEST", () => false); +ENV2.registerFlag("CHECK_COMPUTATION_FOR_ERRORS", () => true); +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function inferShape(val, dtype) { + let firstElem = val; + if (isTypedArray(val)) { + return dtype === "string" ? [] : [val.length]; + } + if (!Array.isArray(val)) { + return []; + } + const shape = []; + while (Array.isArray(firstElem) || isTypedArray(firstElem) && dtype !== "string") { + shape.push(firstElem.length); + firstElem = firstElem[0]; + } + if (Array.isArray(val) && env().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")) { + deepAssertShapeConsistency(val, shape, []); + } + return shape; +} +function deepAssertShapeConsistency(val, shape, indices) { + indices = indices || []; + if (!Array.isArray(val) && !isTypedArray(val)) { + assert(shape.length === 0, () => `Element arr[${indices.join("][")}] is a primitive, but should be an array/TypedArray of ${shape[0]} elements`); + return; + } + assert(shape.length > 0, () => `Element arr[${indices.join("][")}] should be a primitive, but is an array of ${val.length} elements`); + assert(val.length === shape[0], () => `Element arr[${indices.join("][")}] should have ${shape[0]} elements, but has ${val.length} elements`); + const subShape = shape.slice(1); + for (let i = 0; i < val.length; ++i) { + deepAssertShapeConsistency(val[i], subShape, indices.concat(i)); + } +} +function assertDtype(expectedDtype, actualDType, argName, functionName) { + if (expectedDtype === "string_or_numeric") { + return; + } + if (expectedDtype == null) { + throw new Error(`Expected dtype cannot be null.`); + } + if (expectedDtype !== "numeric" && expectedDtype !== actualDType || expectedDtype === "numeric" && actualDType === "string") { + throw new Error(`Argument '${argName}' passed to '${functionName}' must be ${expectedDtype} tensor, but got ${actualDType} tensor`); + } +} +function convertToTensor(x, argName, functionName, parseAsDtype = "numeric") { + if (x instanceof Tensor) { + assertDtype(parseAsDtype, x.dtype, argName, functionName); + return x; + } + let inferredDtype = inferDtype(x); + if (inferredDtype !== "string" && ["bool", "int32", "float32"].indexOf(parseAsDtype) >= 0) { + inferredDtype = parseAsDtype; + } + assertDtype(parseAsDtype, inferredDtype, argName, functionName); + if (x == null || !isTypedArray(x) && !Array.isArray(x) && typeof x !== "number" && typeof x !== "boolean" && typeof x !== "string") { + const type = x == null ? "null" : x.constructor.name; + throw new Error(`Argument '${argName}' passed to '${functionName}' must be a Tensor or TensorLike, but got '${type}'`); + } + const inferredShape = inferShape(x, inferredDtype); + if (!isTypedArray(x) && !Array.isArray(x)) { + x = [x]; + } + const skipTypedArray = true; + const values = inferredDtype !== "string" ? toTypedArray(x, inferredDtype) : flatten(x, [], skipTypedArray); + return ENGINE.makeTensor(values, inferredShape, inferredDtype); +} +function convertToTensorArray(arg, argName, functionName, parseAsDtype = "numeric") { + if (!Array.isArray(arg)) { + throw new Error(`Argument ${argName} passed to ${functionName} must be a \`Tensor[]\` or \`TensorLike[]\``); + } + const tensors = arg; + return tensors.map((t, i) => convertToTensor(t, `${argName}[${i}]`, functionName, parseAsDtype)); +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var OP_SCOPE_SUFFIX = "__op"; +function op(f) { + const keys = Object.keys(f); + if (keys.length !== 1) { + throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${keys.length} keys.`); + } + let opName = keys[0]; + const fn = f[opName]; + if (opName.endsWith("_")) { + opName = opName.substring(0, opName.length - 1); + } + opName = opName + OP_SCOPE_SUFFIX; + const f2 = (...args) => { + ENGINE.startScope(opName); + try { + const result = fn(...args); + if (isPromise(result)) { + console.error("Cannot return a Promise inside of tidy."); + } + ENGINE.endScope(result); + return result; + } catch (ex) { + ENGINE.endScope(null); + throw ex; + } + }; + Object.defineProperty(f2, "name", {value: opName, configurable: true}); + return f2; +} +/** + * @license + * Copyright 2020 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function complex_(real4, imag4) { + const $real = convertToTensor(real4, "real", "complex"); + const $imag = convertToTensor(imag4, "imag", "complex"); + assertShapesMatch($real.shape, $imag.shape, `real and imag shapes, ${$real.shape} and ${$imag.shape}, must match in call to tf.complex().`); + const inputs = {real: $real, imag: $imag}; + return ENGINE.runKernel(Complex, inputs); +} +var complex = op({complex_}); +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function makeTensor(values, shape, inferredShape, dtype) { + if (dtype == null) { + dtype = inferDtype(values); + } + if (dtype === "complex64") { + throw new Error(`Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).`); + } + if (!isTypedArray(values) && !Array.isArray(values) && typeof values !== "number" && typeof values !== "boolean" && typeof values !== "string") { + throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray"); + } + if (shape != null) { + assertNonNegativeIntegerDimensions(shape); + const providedSize = sizeFromShape(shape); + const inferredSize = sizeFromShape(inferredShape); + assert(providedSize === inferredSize, () => `Based on the provided shape, [${shape}], the tensor should have ${providedSize} values but has ${inferredSize}`); + for (let i = 0; i < inferredShape.length; ++i) { + const inferred = inferredShape[i]; + const flatDimsDontMatch = i === inferredShape.length - 1 ? inferred !== sizeFromShape(shape.slice(i)) : true; + assert(inferredShape[i] === shape[i] || !flatDimsDontMatch, () => `Error creating a new Tensor. Inferred shape (${inferredShape}) does not match the provided shape (${shape}). `); + } + } + if (!isTypedArray(values) && !Array.isArray(values)) { + values = [values]; + } + shape = shape || inferredShape; + values = dtype !== "string" ? toTypedArray(values, dtype) : flatten(values, [], true); + return ENGINE.makeTensor(values, shape, dtype); +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function tensor(values, shape, dtype) { + const inferredShape = inferShape(values, dtype); + return makeTensor(values, shape, inferredShape, dtype); +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var DTYPE_VALUE_SIZE_MAP = { + float32: 4, + float16: 2, + int32: 4, + uint16: 2, + uint8: 1, + bool: 1, + complex64: 8 +}; +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var NUM_BYTES_STRING_LENGTH = 4; +async function encodeWeights(tensors, group) { + const specs = []; + const dataPromises = []; + const names = Array.isArray(tensors) ? tensors.map((tensor2) => tensor2.name) : Object.keys(tensors); + for (let i = 0; i < names.length; ++i) { + const name2 = names[i]; + const t = Array.isArray(tensors) ? tensors[i].tensor : tensors[name2]; + if (t.dtype !== "float32" && t.dtype !== "int32" && t.dtype !== "bool" && t.dtype !== "string" && t.dtype !== "complex64") { + throw new Error(`Unsupported dtype in weight '${name2}': ${t.dtype}`); + } + const spec = {name: name2, shape: t.shape, dtype: t.dtype}; + if (t.dtype === "string") { + const utf8bytes = new Promise(async (resolve) => { + const vals = await t.bytes(); + const totalNumBytes = vals.reduce((p2, c) => p2 + c.length, 0) + NUM_BYTES_STRING_LENGTH * vals.length; + const bytes = new Uint8Array(totalNumBytes); + let offset = 0; + for (let i2 = 0; i2 < vals.length; i2++) { + const val = vals[i2]; + const bytesOfLength = new Uint8Array(new Uint32Array([val.length]).buffer); + bytes.set(bytesOfLength, offset); + offset += NUM_BYTES_STRING_LENGTH; + bytes.set(val, offset); + offset += val.length; + } + resolve(bytes); + }); + dataPromises.push(utf8bytes); + } else { + dataPromises.push(t.data()); + } + if (group != null) { + spec.group = group; + } + specs.push(spec); + } + const tensorValues = await Promise.all(dataPromises); + return {data: concatenateTypedArrays(tensorValues), specs}; +} +function decodeWeights(buffer2, specs) { + const out = {}; + let float16Decode; + let offset = 0; + for (const spec of specs) { + const name2 = spec.name; + const dtype = spec.dtype; + const shape = spec.shape; + const size = sizeFromShape(shape); + let values; + if ("quantization" in spec) { + const quantization = spec.quantization; + if (quantization.dtype === "uint8" || quantization.dtype === "uint16") { + if (!("min" in quantization && "scale" in quantization)) { + throw new Error(`Weight ${spec.name} with quantization ${quantization.dtype} doesn't have corresponding metadata min and scale.`); + } + } else if (quantization.dtype === "float16") { + if (dtype !== "float32") { + throw new Error(`Weight ${spec.name} is quantized with ${quantization.dtype} which only supports weights of type float32 not ${dtype}.`); + } + } else { + throw new Error(`Weight ${spec.name} has unknown quantization dtype ${quantization.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`); + } + const quantizationSizeFactor = DTYPE_VALUE_SIZE_MAP[quantization.dtype]; + const byteBuffer = buffer2.slice(offset, offset + size * quantizationSizeFactor); + const quantizedArray = quantization.dtype === "uint8" ? new Uint8Array(byteBuffer) : new Uint16Array(byteBuffer); + if (dtype === "float32") { + if (quantization.dtype === "uint8" || quantization.dtype === "uint16") { + values = new Float32Array(quantizedArray.length); + for (let i = 0; i < quantizedArray.length; i++) { + const v = quantizedArray[i]; + values[i] = v * quantization.scale + quantization.min; + } + } else if (quantization.dtype === "float16") { + if (float16Decode === void 0) { + float16Decode = getFloat16Decoder(); + } + values = float16Decode(quantizedArray); + } else { + throw new Error(`Unsupported quantization type ${quantization.dtype} for weight type float32.`); + } + } else if (dtype === "int32") { + if (quantization.dtype !== "uint8" && quantization.dtype !== "uint16") { + throw new Error(`Unsupported quantization type ${quantization.dtype} for weight type int32.`); + } + values = new Int32Array(quantizedArray.length); + for (let i = 0; i < quantizedArray.length; i++) { + const v = quantizedArray[i]; + values[i] = Math.round(v * quantization.scale + quantization.min); + } + } else { + throw new Error(`Unsupported dtype in weight '${name2}': ${dtype}`); + } + offset += size * quantizationSizeFactor; + } else if (dtype === "string") { + const size2 = sizeFromShape(spec.shape); + values = []; + for (let i = 0; i < size2; i++) { + const byteLength = new Uint32Array(buffer2.slice(offset, offset + NUM_BYTES_STRING_LENGTH))[0]; + offset += NUM_BYTES_STRING_LENGTH; + const bytes = new Uint8Array(buffer2.slice(offset, offset + byteLength)); + values.push(bytes); + offset += byteLength; + } + } else { + const dtypeFactor = DTYPE_VALUE_SIZE_MAP[dtype]; + const byteBuffer = buffer2.slice(offset, offset + size * dtypeFactor); + if (dtype === "float32") { + values = new Float32Array(byteBuffer); + } else if (dtype === "int32") { + values = new Int32Array(byteBuffer); + } else if (dtype === "bool") { + values = new Uint8Array(byteBuffer); + } else if (dtype === "complex64") { + values = new Float32Array(byteBuffer); + const real4 = new Float32Array(values.length / 2); + const image3 = new Float32Array(values.length / 2); + for (let i = 0; i < real4.length; i++) { + real4[i] = values[i * 2]; + image3[i] = values[i * 2 + 1]; + } + const realTensor = tensor(real4, shape, "float32"); + const imageTensor = tensor(image3, shape, "float32"); + out[name2] = complex(realTensor, imageTensor); + realTensor.dispose(); + imageTensor.dispose(); + } else { + throw new Error(`Unsupported dtype in weight '${name2}': ${dtype}`); + } + offset += size * dtypeFactor; + } + if (dtype !== "complex64") { + out[name2] = tensor(values, shape, dtype); + } + } + return out; +} +function concatenateTypedArrays(xs) { + if (xs === null) { + throw new Error(`Invalid input value: ${JSON.stringify(xs)}`); + } + let totalByteLength = 0; + const normalizedXs = []; + xs.forEach((x) => { + totalByteLength += x.byteLength; + normalizedXs.push(x.byteLength === x.buffer.byteLength ? x : new x.constructor(x)); + if (!(x instanceof Float32Array || x instanceof Int32Array || x instanceof Uint8Array)) { + throw new Error(`Unsupported TypedArray subtype: ${x.constructor.name}`); + } + }); + const y = new Uint8Array(totalByteLength); + let offset = 0; + normalizedXs.forEach((x) => { + y.set(new Uint8Array(x.buffer), offset); + offset += x.byteLength; + }); + return y.buffer; +} +var useNodeBuffer = typeof Buffer !== "undefined" && (typeof Blob === "undefined" || typeof atob === "undefined" || typeof btoa === "undefined"); +function stringByteLength(str2) { + if (useNodeBuffer) { + return Buffer.byteLength(str2); + } + return new Blob([str2]).size; +} +function arrayBufferToBase64String(buffer2) { + if (useNodeBuffer) { + return Buffer.from(buffer2).toString("base64"); + } + const buf = new Uint8Array(buffer2); + let s = ""; + for (let i = 0, l = buf.length; i < l; i++) { + s += String.fromCharCode(buf[i]); + } + return btoa(s); +} +function base64StringToArrayBuffer(str2) { + if (useNodeBuffer) { + const buf = Buffer.from(str2, "base64"); + return buf.buffer.slice(buf.byteOffset, buf.byteOffset + buf.byteLength); + } + const s = atob(str2); + const buffer2 = new Uint8Array(s.length); + for (let i = 0; i < s.length; ++i) { + buffer2.set([s.charCodeAt(i)], i); + } + return buffer2.buffer; +} +function concatenateArrayBuffers(buffers) { + if (buffers.length === 1) { + return buffers[0]; + } + let totalByteLength = 0; + buffers.forEach((buffer2) => { + totalByteLength += buffer2.byteLength; + }); + const temp = new Uint8Array(totalByteLength); + let offset = 0; + buffers.forEach((buffer2) => { + temp.set(new Uint8Array(buffer2), offset); + offset += buffer2.byteLength; + }); + return temp.buffer; +} +function basename(path) { + const SEPARATOR = "/"; + path = path.trim(); + while (path.endsWith(SEPARATOR)) { + path = path.slice(0, path.length - 1); + } + const items = path.split(SEPARATOR); + return items[items.length - 1]; +} +function getModelArtifactsInfoForJSON(modelArtifacts) { + if (modelArtifacts.modelTopology instanceof ArrayBuffer) { + throw new Error("Expected JSON model topology, received ArrayBuffer."); + } + return { + dateSaved: new Date(), + modelTopologyType: "JSON", + modelTopologyBytes: modelArtifacts.modelTopology == null ? 0 : stringByteLength(JSON.stringify(modelArtifacts.modelTopology)), + weightSpecsBytes: modelArtifacts.weightSpecs == null ? 0 : stringByteLength(JSON.stringify(modelArtifacts.weightSpecs)), + weightDataBytes: modelArtifacts.weightData == null ? 0 : modelArtifacts.weightData.byteLength + }; +} +function computeFloat16MantisaTable() { + const convertMantissa = (i) => { + let m = i << 13; + let e = 0; + while ((m & 8388608) === 0) { + e -= 8388608; + m <<= 1; + } + m &= ~8388608; + e += 947912704; + return m | e; + }; + const mantisaTable = new Uint32Array(2048); + mantisaTable[0] = 0; + for (let i = 1; i < 1024; i++) { + mantisaTable[i] = convertMantissa(i); + } + for (let i = 1024; i < 2048; i++) { + mantisaTable[i] = 939524096 + (i - 1024 << 13); + } + return mantisaTable; +} +function computeFloat16ExponentTable() { + const exponentTable = new Uint32Array(64); + exponentTable[0] = 0; + exponentTable[31] = 1199570944; + exponentTable[32] = 2147483648; + exponentTable[63] = 3347054592; + for (let i = 1; i < 31; i++) { + exponentTable[i] = i << 23; + } + for (let i = 33; i < 63; i++) { + exponentTable[i] = 2147483648 + (i - 32 << 23); + } + return exponentTable; +} +function computeFloat16OffsetTable() { + const offsetTable = new Uint32Array(64); + for (let i = 0; i < 64; i++) { + offsetTable[i] = 1024; + } + offsetTable[0] = offsetTable[32] = 0; + return offsetTable; +} +function getFloat16Decoder() { + const mantisaTable = computeFloat16MantisaTable(); + const exponentTable = computeFloat16ExponentTable(); + const offsetTable = computeFloat16OffsetTable(); + return (quantizedArray) => { + const buffer2 = new ArrayBuffer(4 * quantizedArray.length); + const bufferUint32View = new Uint32Array(buffer2); + for (let index = 0; index < quantizedArray.length; index++) { + const float16Bits = quantizedArray[index]; + const float32Bits = mantisaTable[offsetTable[float16Bits >> 10] + (float16Bits & 1023)] + exponentTable[float16Bits >> 10]; + bufferUint32View[index] = float32Bits; + } + return new Float32Array(buffer2); + }; +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var IORouterRegistry = class { + constructor() { + this.saveRouters = []; + this.loadRouters = []; + } + static getInstance() { + if (IORouterRegistry.instance == null) { + IORouterRegistry.instance = new IORouterRegistry(); + } + return IORouterRegistry.instance; + } + static registerSaveRouter(saveRouter) { + IORouterRegistry.getInstance().saveRouters.push(saveRouter); + } + static registerLoadRouter(loadRouter) { + IORouterRegistry.getInstance().loadRouters.push(loadRouter); + } + static getSaveHandlers(url) { + return IORouterRegistry.getHandlers(url, "save"); + } + static getLoadHandlers(url, loadOptions) { + return IORouterRegistry.getHandlers(url, "load", loadOptions); + } + static getHandlers(url, handlerType, loadOptions) { + const validHandlers = []; + const routers = handlerType === "load" ? IORouterRegistry.getInstance().loadRouters : IORouterRegistry.getInstance().saveRouters; + routers.forEach((router) => { + const handler = router(url, loadOptions); + if (handler !== null) { + validHandlers.push(handler); + } + }); + return validHandlers; + } +}; +var registerSaveRouter = (loudRouter) => IORouterRegistry.registerSaveRouter(loudRouter); +var registerLoadRouter = (loudRouter) => IORouterRegistry.registerLoadRouter(loudRouter); +var getSaveHandlers = (url) => IORouterRegistry.getSaveHandlers(url); +var getLoadHandlers = (url, loadOptions) => IORouterRegistry.getLoadHandlers(url, loadOptions); +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var DATABASE_NAME = "tensorflowjs"; +var DATABASE_VERSION = 1; +var MODEL_STORE_NAME = "models_store"; +var INFO_STORE_NAME = "model_info_store"; +function getIndexedDBFactory() { + if (!env().getBool("IS_BROWSER")) { + throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser."); + } + const theWindow = typeof window === "undefined" ? self : window; + const factory = theWindow.indexedDB || theWindow.mozIndexedDB || theWindow.webkitIndexedDB || theWindow.msIndexedDB || theWindow.shimIndexedDB; + if (factory == null) { + throw new Error("The current browser does not appear to support IndexedDB."); + } + return factory; +} +function setUpDatabase(openRequest) { + const db = openRequest.result; + db.createObjectStore(MODEL_STORE_NAME, {keyPath: "modelPath"}); + db.createObjectStore(INFO_STORE_NAME, {keyPath: "modelPath"}); +} +var BrowserIndexedDB = class { + constructor(modelPath) { + this.indexedDB = getIndexedDBFactory(); + if (modelPath == null || !modelPath) { + throw new Error("For IndexedDB, modelPath must not be null, undefined or empty."); + } + this.modelPath = modelPath; + } + async save(modelArtifacts) { + if (modelArtifacts.modelTopology instanceof ArrayBuffer) { + throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet."); + } + return this.databaseAction(this.modelPath, modelArtifacts); + } + async load() { + return this.databaseAction(this.modelPath); + } + databaseAction(modelPath, modelArtifacts) { + return new Promise((resolve, reject) => { + const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION); + openRequest.onupgradeneeded = () => setUpDatabase(openRequest); + openRequest.onsuccess = () => { + const db = openRequest.result; + if (modelArtifacts == null) { + const modelTx = db.transaction(MODEL_STORE_NAME, "readonly"); + const modelStore = modelTx.objectStore(MODEL_STORE_NAME); + const getRequest = modelStore.get(this.modelPath); + getRequest.onsuccess = () => { + if (getRequest.result == null) { + db.close(); + return reject(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`)); + } else { + resolve(getRequest.result.modelArtifacts); + } + }; + getRequest.onerror = (error) => { + db.close(); + return reject(getRequest.error); + }; + modelTx.oncomplete = () => db.close(); + } else { + const modelArtifactsInfo = getModelArtifactsInfoForJSON(modelArtifacts); + const infoTx = db.transaction(INFO_STORE_NAME, "readwrite"); + let infoStore = infoTx.objectStore(INFO_STORE_NAME); + const putInfoRequest = infoStore.put({modelPath: this.modelPath, modelArtifactsInfo}); + let modelTx; + putInfoRequest.onsuccess = () => { + modelTx = db.transaction(MODEL_STORE_NAME, "readwrite"); + const modelStore = modelTx.objectStore(MODEL_STORE_NAME); + const putModelRequest = modelStore.put({ + modelPath: this.modelPath, + modelArtifacts, + modelArtifactsInfo + }); + putModelRequest.onsuccess = () => resolve({modelArtifactsInfo}); + putModelRequest.onerror = (error) => { + infoStore = infoTx.objectStore(INFO_STORE_NAME); + const deleteInfoRequest = infoStore.delete(this.modelPath); + deleteInfoRequest.onsuccess = () => { + db.close(); + return reject(putModelRequest.error); + }; + deleteInfoRequest.onerror = (error2) => { + db.close(); + return reject(putModelRequest.error); + }; + }; + }; + putInfoRequest.onerror = (error) => { + db.close(); + return reject(putInfoRequest.error); + }; + infoTx.oncomplete = () => { + if (modelTx == null) { + db.close(); + } else { + modelTx.oncomplete = () => db.close(); + } + }; + } + }; + openRequest.onerror = (error) => reject(openRequest.error); + }); + } +}; +BrowserIndexedDB.URL_SCHEME = "indexeddb://"; +var indexedDBRouter = (url) => { + if (!env().getBool("IS_BROWSER")) { + return null; + } else { + if (!Array.isArray(url) && url.startsWith(BrowserIndexedDB.URL_SCHEME)) { + return browserIndexedDB(url.slice(BrowserIndexedDB.URL_SCHEME.length)); + } else { + return null; + } + } +}; +IORouterRegistry.registerSaveRouter(indexedDBRouter); +IORouterRegistry.registerLoadRouter(indexedDBRouter); +function browserIndexedDB(modelPath) { + return new BrowserIndexedDB(modelPath); +} +function maybeStripScheme(key) { + return key.startsWith(BrowserIndexedDB.URL_SCHEME) ? key.slice(BrowserIndexedDB.URL_SCHEME.length) : key; +} +var BrowserIndexedDBManager = class { + constructor() { + this.indexedDB = getIndexedDBFactory(); + } + async listModels() { + return new Promise((resolve, reject) => { + const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION); + openRequest.onupgradeneeded = () => setUpDatabase(openRequest); + openRequest.onsuccess = () => { + const db = openRequest.result; + const tx = db.transaction(INFO_STORE_NAME, "readonly"); + const store = tx.objectStore(INFO_STORE_NAME); + const getAllInfoRequest = store.getAll(); + getAllInfoRequest.onsuccess = () => { + const out = {}; + for (const item of getAllInfoRequest.result) { + out[item.modelPath] = item.modelArtifactsInfo; + } + resolve(out); + }; + getAllInfoRequest.onerror = (error) => { + db.close(); + return reject(getAllInfoRequest.error); + }; + tx.oncomplete = () => db.close(); + }; + openRequest.onerror = (error) => reject(openRequest.error); + }); + } + async removeModel(path) { + path = maybeStripScheme(path); + return new Promise((resolve, reject) => { + const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION); + openRequest.onupgradeneeded = () => setUpDatabase(openRequest); + openRequest.onsuccess = () => { + const db = openRequest.result; + const infoTx = db.transaction(INFO_STORE_NAME, "readwrite"); + const infoStore = infoTx.objectStore(INFO_STORE_NAME); + const getInfoRequest = infoStore.get(path); + let modelTx; + getInfoRequest.onsuccess = () => { + if (getInfoRequest.result == null) { + db.close(); + return reject(new Error(`Cannot find model with path '${path}' in IndexedDB.`)); + } else { + const deleteInfoRequest = infoStore.delete(path); + const deleteModelData = () => { + modelTx = db.transaction(MODEL_STORE_NAME, "readwrite"); + const modelStore = modelTx.objectStore(MODEL_STORE_NAME); + const deleteModelRequest = modelStore.delete(path); + deleteModelRequest.onsuccess = () => resolve(getInfoRequest.result.modelArtifactsInfo); + deleteModelRequest.onerror = (error) => reject(getInfoRequest.error); + }; + deleteInfoRequest.onsuccess = deleteModelData; + deleteInfoRequest.onerror = (error) => { + deleteModelData(); + db.close(); + return reject(getInfoRequest.error); + }; + } + }; + getInfoRequest.onerror = (error) => { + db.close(); + return reject(getInfoRequest.error); + }; + infoTx.oncomplete = () => { + if (modelTx == null) { + db.close(); + } else { + modelTx.oncomplete = () => db.close(); + } + }; + }; + openRequest.onerror = (error) => reject(openRequest.error); + }); + } +}; +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var PATH_SEPARATOR = "/"; +var PATH_PREFIX = "tensorflowjs_models"; +var INFO_SUFFIX = "info"; +var MODEL_TOPOLOGY_SUFFIX = "model_topology"; +var WEIGHT_SPECS_SUFFIX = "weight_specs"; +var WEIGHT_DATA_SUFFIX = "weight_data"; +var MODEL_METADATA_SUFFIX = "model_metadata"; +function getModelKeys(path) { + return { + info: [PATH_PREFIX, path, INFO_SUFFIX].join(PATH_SEPARATOR), + topology: [PATH_PREFIX, path, MODEL_TOPOLOGY_SUFFIX].join(PATH_SEPARATOR), + weightSpecs: [PATH_PREFIX, path, WEIGHT_SPECS_SUFFIX].join(PATH_SEPARATOR), + weightData: [PATH_PREFIX, path, WEIGHT_DATA_SUFFIX].join(PATH_SEPARATOR), + modelMetadata: [PATH_PREFIX, path, MODEL_METADATA_SUFFIX].join(PATH_SEPARATOR) + }; +} +function getModelPathFromKey(key) { + const items = key.split(PATH_SEPARATOR); + if (items.length < 3) { + throw new Error(`Invalid key format: ${key}`); + } + return items.slice(1, items.length - 1).join(PATH_SEPARATOR); +} +function maybeStripScheme2(key) { + return key.startsWith(BrowserLocalStorage.URL_SCHEME) ? key.slice(BrowserLocalStorage.URL_SCHEME.length) : key; +} +var BrowserLocalStorage = class { + constructor(modelPath) { + if (!env().getBool("IS_BROWSER") || typeof window === "undefined" || typeof window.localStorage === "undefined") { + throw new Error("The current environment does not support local storage."); + } + this.LS = window.localStorage; + if (modelPath == null || !modelPath) { + throw new Error("For local storage, modelPath must not be null, undefined or empty."); + } + this.modelPath = modelPath; + this.keys = getModelKeys(this.modelPath); + } + async save(modelArtifacts) { + if (modelArtifacts.modelTopology instanceof ArrayBuffer) { + throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet."); + } else { + const topology = JSON.stringify(modelArtifacts.modelTopology); + const weightSpecs = JSON.stringify(modelArtifacts.weightSpecs); + const modelArtifactsInfo = getModelArtifactsInfoForJSON(modelArtifacts); + try { + this.LS.setItem(this.keys.info, JSON.stringify(modelArtifactsInfo)); + this.LS.setItem(this.keys.topology, topology); + this.LS.setItem(this.keys.weightSpecs, weightSpecs); + this.LS.setItem(this.keys.weightData, arrayBufferToBase64String(modelArtifacts.weightData)); + const result = { + format: modelArtifacts.format, + generatedBy: modelArtifacts.generatedBy, + convertedBy: modelArtifacts.convertedBy + }; + if (modelArtifacts.signature != null) { + result.signature = modelArtifacts.signature; + } + if (modelArtifacts.userDefinedMetadata != null) { + result.userDefinedMetadata = modelArtifacts.userDefinedMetadata; + } + if (modelArtifacts.modelInitializer != null) { + result.modelInitializer = modelArtifacts.modelInitializer; + } + this.LS.setItem(this.keys.modelMetadata, JSON.stringify(result)); + return {modelArtifactsInfo}; + } catch (err) { + this.LS.removeItem(this.keys.info); + this.LS.removeItem(this.keys.topology); + this.LS.removeItem(this.keys.weightSpecs); + this.LS.removeItem(this.keys.weightData); + this.LS.removeItem(this.keys.modelMetadata); + throw new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${modelArtifactsInfo.modelTopologyBytes}, weightSpecsBytes=${modelArtifactsInfo.weightSpecsBytes}, weightDataBytes=${modelArtifactsInfo.weightDataBytes}.`); + } + } + } + async load() { + const info = JSON.parse(this.LS.getItem(this.keys.info)); + if (info == null) { + throw new Error(`In local storage, there is no model with name '${this.modelPath}'`); + } + if (info.modelTopologyType !== "JSON") { + throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet."); + } + const out = {}; + const topology = JSON.parse(this.LS.getItem(this.keys.topology)); + if (topology == null) { + throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`); + } + out.modelTopology = topology; + const weightSpecs = JSON.parse(this.LS.getItem(this.keys.weightSpecs)); + if (weightSpecs == null) { + throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`); + } + out.weightSpecs = weightSpecs; + const metadataString = this.LS.getItem(this.keys.modelMetadata); + if (metadataString != null) { + const metadata = JSON.parse(metadataString); + out.format = metadata["format"]; + out.generatedBy = metadata["generatedBy"]; + out.convertedBy = metadata["convertedBy"]; + if (metadata["signature"] != null) { + out.signature = metadata["signature"]; + } + if (metadata["userDefinedMetadata"] != null) { + out.userDefinedMetadata = metadata["userDefinedMetadata"]; + } + if (metadata["modelInitializer"] != null) { + out.modelInitializer = metadata["modelInitializer"]; + } + } + const weightDataBase64 = this.LS.getItem(this.keys.weightData); + if (weightDataBase64 == null) { + throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`); + } + out.weightData = base64StringToArrayBuffer(weightDataBase64); + return out; + } +}; +BrowserLocalStorage.URL_SCHEME = "localstorage://"; +var localStorageRouter = (url) => { + if (!env().getBool("IS_BROWSER")) { + return null; + } else { + if (!Array.isArray(url) && url.startsWith(BrowserLocalStorage.URL_SCHEME)) { + return browserLocalStorage(url.slice(BrowserLocalStorage.URL_SCHEME.length)); + } else { + return null; + } + } +}; +IORouterRegistry.registerSaveRouter(localStorageRouter); +IORouterRegistry.registerLoadRouter(localStorageRouter); +function browserLocalStorage(modelPath) { + return new BrowserLocalStorage(modelPath); +} +var BrowserLocalStorageManager = class { + constructor() { + assert(env().getBool("IS_BROWSER"), () => "Current environment is not a web browser"); + assert(typeof window === "undefined" || typeof window.localStorage !== "undefined", () => "Current browser does not appear to support localStorage"); + this.LS = window.localStorage; + } + async listModels() { + const out = {}; + const prefix = PATH_PREFIX + PATH_SEPARATOR; + const suffix = PATH_SEPARATOR + INFO_SUFFIX; + for (let i = 0; i < this.LS.length; ++i) { + const key = this.LS.key(i); + if (key.startsWith(prefix) && key.endsWith(suffix)) { + const modelPath = getModelPathFromKey(key); + out[modelPath] = JSON.parse(this.LS.getItem(key)); + } + } + return out; + } + async removeModel(path) { + path = maybeStripScheme2(path); + const keys = getModelKeys(path); + if (this.LS.getItem(keys.info) == null) { + throw new Error(`Cannot find model at path '${path}'`); + } + const info = JSON.parse(this.LS.getItem(keys.info)); + this.LS.removeItem(keys.info); + this.LS.removeItem(keys.topology); + this.LS.removeItem(keys.weightSpecs); + this.LS.removeItem(keys.weightData); + return info; + } +}; +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var URL_SCHEME_SUFFIX = "://"; +var ModelStoreManagerRegistry = class { + constructor() { + this.managers = {}; + } + static getInstance() { + if (ModelStoreManagerRegistry.instance == null) { + ModelStoreManagerRegistry.instance = new ModelStoreManagerRegistry(); + } + return ModelStoreManagerRegistry.instance; + } + static registerManager(scheme, manager) { + assert(scheme != null, () => "scheme must not be undefined or null."); + if (scheme.endsWith(URL_SCHEME_SUFFIX)) { + scheme = scheme.slice(0, scheme.indexOf(URL_SCHEME_SUFFIX)); + } + assert(scheme.length > 0, () => "scheme must not be an empty string."); + const registry = ModelStoreManagerRegistry.getInstance(); + assert(registry.managers[scheme] == null, () => `A model store manager is already registered for scheme '${scheme}'.`); + registry.managers[scheme] = manager; + } + static getManager(scheme) { + const manager = this.getInstance().managers[scheme]; + if (manager == null) { + throw new Error(`Cannot find model manager for scheme '${scheme}'`); + } + return manager; + } + static getSchemes() { + return Object.keys(this.getInstance().managers); + } +}; +function parseURL(url) { + if (url.indexOf(URL_SCHEME_SUFFIX) === -1) { + throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ModelStoreManagerRegistry.getSchemes().join(",")}`); + } + return { + scheme: url.split(URL_SCHEME_SUFFIX)[0], + path: url.split(URL_SCHEME_SUFFIX)[1] + }; +} +async function cloneModelInternal(sourceURL, destURL, deleteSource = false) { + assert(sourceURL !== destURL, () => `Old path and new path are the same: '${sourceURL}'`); + const loadHandlers = IORouterRegistry.getLoadHandlers(sourceURL); + assert(loadHandlers.length > 0, () => `Copying failed because no load handler is found for source URL ${sourceURL}.`); + assert(loadHandlers.length < 2, () => `Copying failed because more than one (${loadHandlers.length}) load handlers for source URL ${sourceURL}.`); + const loadHandler = loadHandlers[0]; + const saveHandlers = IORouterRegistry.getSaveHandlers(destURL); + assert(saveHandlers.length > 0, () => `Copying failed because no save handler is found for destination URL ${destURL}.`); + assert(saveHandlers.length < 2, () => `Copying failed because more than one (${loadHandlers.length}) save handlers for destination URL ${destURL}.`); + const saveHandler = saveHandlers[0]; + const sourceScheme = parseURL(sourceURL).scheme; + const sourcePath = parseURL(sourceURL).path; + const sameMedium = sourceScheme === parseURL(sourceURL).scheme; + const modelArtifacts = await loadHandler.load(); + if (deleteSource && sameMedium) { + await ModelStoreManagerRegistry.getManager(sourceScheme).removeModel(sourcePath); + } + const saveResult = await saveHandler.save(modelArtifacts); + if (deleteSource && !sameMedium) { + await ModelStoreManagerRegistry.getManager(sourceScheme).removeModel(sourcePath); + } + return saveResult.modelArtifactsInfo; +} +async function listModels() { + const schemes = ModelStoreManagerRegistry.getSchemes(); + const out = {}; + for (const scheme of schemes) { + const schemeOut = await ModelStoreManagerRegistry.getManager(scheme).listModels(); + for (const path in schemeOut) { + const url = scheme + URL_SCHEME_SUFFIX + path; + out[url] = schemeOut[path]; + } + } + return out; +} +async function removeModel(url) { + const schemeAndPath = parseURL(url); + const manager = ModelStoreManagerRegistry.getManager(schemeAndPath.scheme); + return manager.removeModel(schemeAndPath.path); +} +async function copyModel(sourceURL, destURL) { + const deleteSource = false; + return cloneModelInternal(sourceURL, destURL, deleteSource); +} +async function moveModel(sourceURL, destURL) { + const deleteSource = true; + return cloneModelInternal(sourceURL, destURL, deleteSource); +} +/** + * @license + * Copyright 2019 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var PlatformBrowser = class { + fetch(path, init2) { + return fetch(path, init2); + } + now() { + return performance.now(); + } + encode(text, encoding) { + if (encoding !== "utf-8" && encoding !== "utf8") { + throw new Error(`Browser's encoder only supports utf-8, but got ${encoding}`); + } + if (this.textEncoder == null) { + this.textEncoder = new TextEncoder(); + } + return this.textEncoder.encode(text); + } + decode(bytes, encoding) { + return new TextDecoder(encoding).decode(bytes); + } +}; +if (env().get("IS_BROWSER")) { + env().setPlatform("browser", new PlatformBrowser()); + try { + ModelStoreManagerRegistry.registerManager(BrowserLocalStorage.URL_SCHEME, new BrowserLocalStorageManager()); + } catch (err) { + } + try { + ModelStoreManagerRegistry.registerManager(BrowserIndexedDB.URL_SCHEME, new BrowserIndexedDBManager()); + } catch (err) { + } +} +/** + * @license + * Copyright 2019 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var getNodeFetch = { + importFetch: () => require_browser() +}; +var systemFetch; +var PlatformNode = class { + constructor() { + this.util = require("util"); + this.textEncoder = new this.util.TextEncoder(); + } + fetch(path, requestInits) { + if (env().global.fetch != null) { + return env().global.fetch(path, requestInits); + } + if (systemFetch == null) { + systemFetch = getNodeFetch.importFetch(); + } + return systemFetch(path, requestInits); + } + now() { + const time2 = process.hrtime(); + return time2[0] * 1e3 + time2[1] / 1e6; + } + encode(text, encoding) { + if (encoding !== "utf-8" && encoding !== "utf8") { + throw new Error(`Node built-in encoder only supports utf-8, but got ${encoding}`); + } + return this.textEncoder.encode(text); + } + decode(bytes, encoding) { + if (bytes.length === 0) { + return ""; + } + return new this.util.TextDecoder(encoding).decode(bytes); + } +}; +if (env().get("IS_NODE")) { + env().setPlatform("node", new PlatformNode()); +} +/** + * @license + * Copyright 2020 Google Inc. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function buffer(shape, dtype = "float32", values) { + dtype = dtype || "float32"; + assertNonNegativeIntegerDimensions(shape); + return new TensorBuffer(shape, dtype, values); +} +/** + * @license + * Copyright 2020 Google Inc. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function cast_(x, dtype) { + const $x = convertToTensor(x, "x", "cast"); + if (!isValidDtype(dtype)) { + throw new Error(`Failed to cast to unknown dtype ${dtype}`); + } + if (dtype === "string" && $x.dtype !== "string" || dtype !== "string" && $x.dtype === "string") { + throw new Error("Only strings can be casted to strings"); + } + const inputs = {x: $x}; + const attrs = {dtype}; + return ENGINE.runKernel(Cast, inputs, attrs); +} +var cast = op({cast_}); +/** + * @license + * Copyright 2020 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function clone_(x) { + const $x = convertToTensor(x, "x", "clone", "string_or_numeric"); + const inputs = {x: $x}; + return ENGINE.runKernel(Identity, inputs); +} +var clone = op({clone_}); +/** + * @license + * Copyright 2020 Google Inc. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function print2(x, verbose = false) { + console.log(x.toString(verbose)); +} +/** + * @license + * Copyright 2020 Google Inc. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +getOrMakeEngine(); +var opHandler2 = { + buffer, + cast, + clone, + print: print2 +}; +setOpHandler(opHandler2); +var io_exports = {}; +__export2(io_exports, { + browserFiles: () => browserFiles, + browserHTTPRequest: () => browserHTTPRequest, + concatenateArrayBuffers: () => concatenateArrayBuffers, + copyModel: () => copyModel, + decodeWeights: () => decodeWeights, + encodeWeights: () => encodeWeights, + fromMemory: () => fromMemory, + getLoadHandlers: () => getLoadHandlers, + getModelArtifactsInfoForJSON: () => getModelArtifactsInfoForJSON, + getSaveHandlers: () => getSaveHandlers, + http: () => http, + isHTTPScheme: () => isHTTPScheme, + listModels: () => listModels, + loadWeights: () => loadWeights, + moveModel: () => moveModel, + registerLoadRouter: () => registerLoadRouter, + registerSaveRouter: () => registerSaveRouter, + removeModel: () => removeModel, + weightsLoaderFactory: () => weightsLoaderFactory, + withSaveHandler: () => withSaveHandler +}); +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var DEFAULT_FILE_NAME_PREFIX = "model"; +var DEFAULT_JSON_EXTENSION_NAME = ".json"; +var DEFAULT_WEIGHT_DATA_EXTENSION_NAME = ".weights.bin"; +function defer(f) { + return new Promise((resolve) => setTimeout(resolve)).then(f); +} +var BrowserDownloads = class { + constructor(fileNamePrefix) { + if (!env().getBool("IS_BROWSER")) { + throw new Error("browserDownloads() cannot proceed because the current environment is not a browser."); + } + if (fileNamePrefix.startsWith(BrowserDownloads.URL_SCHEME)) { + fileNamePrefix = fileNamePrefix.slice(BrowserDownloads.URL_SCHEME.length); + } + if (fileNamePrefix == null || fileNamePrefix.length === 0) { + fileNamePrefix = DEFAULT_FILE_NAME_PREFIX; + } + this.modelTopologyFileName = fileNamePrefix + DEFAULT_JSON_EXTENSION_NAME; + this.weightDataFileName = fileNamePrefix + DEFAULT_WEIGHT_DATA_EXTENSION_NAME; + } + async save(modelArtifacts) { + if (typeof document === "undefined") { + throw new Error("Browser downloads are not supported in this environment since `document` is not present"); + } + const weightsURL = window.URL.createObjectURL(new Blob([modelArtifacts.weightData], {type: "application/octet-stream"})); + if (modelArtifacts.modelTopology instanceof ArrayBuffer) { + throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet."); + } else { + const weightsManifest = [{ + paths: ["./" + this.weightDataFileName], + weights: modelArtifacts.weightSpecs + }]; + const modelTopologyAndWeightManifest = { + modelTopology: modelArtifacts.modelTopology, + format: modelArtifacts.format, + generatedBy: modelArtifacts.generatedBy, + convertedBy: modelArtifacts.convertedBy, + weightsManifest + }; + if (modelArtifacts.signature != null) { + modelTopologyAndWeightManifest.signature = modelArtifacts.signature; + } + if (modelArtifacts.userDefinedMetadata != null) { + modelTopologyAndWeightManifest.userDefinedMetadata = modelArtifacts.userDefinedMetadata; + } + if (modelArtifacts.modelInitializer != null) { + modelTopologyAndWeightManifest.modelInitializer = modelArtifacts.modelInitializer; + } + const modelTopologyAndWeightManifestURL = window.URL.createObjectURL(new Blob([JSON.stringify(modelTopologyAndWeightManifest)], {type: "application/json"})); + const jsonAnchor = this.jsonAnchor == null ? document.createElement("a") : this.jsonAnchor; + jsonAnchor.download = this.modelTopologyFileName; + jsonAnchor.href = modelTopologyAndWeightManifestURL; + await defer(() => jsonAnchor.dispatchEvent(new MouseEvent("click"))); + if (modelArtifacts.weightData != null) { + const weightDataAnchor = this.weightDataAnchor == null ? document.createElement("a") : this.weightDataAnchor; + weightDataAnchor.download = this.weightDataFileName; + weightDataAnchor.href = weightsURL; + await defer(() => weightDataAnchor.dispatchEvent(new MouseEvent("click"))); + } + return {modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts)}; + } + } +}; +BrowserDownloads.URL_SCHEME = "downloads://"; +var BrowserFiles = class { + constructor(files) { + if (files == null || files.length < 1) { + throw new Error(`When calling browserFiles, at least 1 file is required, but received ${files}`); + } + this.files = files; + } + async load() { + const jsonFile = this.files[0]; + const weightFiles = this.files.slice(1); + return new Promise((resolve, reject) => { + const jsonReader = new FileReader(); + jsonReader.onload = (event) => { + const modelJSON = JSON.parse(event.target.result); + const modelTopology = modelJSON.modelTopology; + if (modelTopology == null) { + reject(new Error(`modelTopology field is missing from file ${jsonFile.name}`)); + return; + } + if (weightFiles.length === 0) { + resolve({modelTopology}); + } + const weightsManifest = modelJSON.weightsManifest; + if (weightsManifest == null) { + reject(new Error(`weightManifest field is missing from file ${jsonFile.name}`)); + return; + } + let pathToFile; + try { + pathToFile = this.checkManifestAndWeightFiles(weightsManifest, weightFiles); + } catch (err) { + reject(err); + return; + } + const weightSpecs = []; + const paths = []; + const perFileBuffers = []; + weightsManifest.forEach((weightsGroup) => { + weightsGroup.paths.forEach((path) => { + paths.push(path); + perFileBuffers.push(null); + }); + weightSpecs.push(...weightsGroup.weights); + }); + weightsManifest.forEach((weightsGroup) => { + weightsGroup.paths.forEach((path) => { + const weightFileReader = new FileReader(); + weightFileReader.onload = (event2) => { + const weightData = event2.target.result; + const index = paths.indexOf(path); + perFileBuffers[index] = weightData; + if (perFileBuffers.indexOf(null) === -1) { + const result = { + modelTopology, + weightSpecs, + weightData: concatenateArrayBuffers(perFileBuffers), + format: modelJSON.format, + generatedBy: modelJSON.generatedBy, + convertedBy: modelJSON.convertedBy + }; + if (modelJSON.signature != null) { + result.signature = modelJSON.signature; + } + if (modelJSON.userDefinedMetadata != null) { + result.userDefinedMetadata = modelJSON.userDefinedMetadata; + } + if (modelJSON.modelInitializer != null) { + result.modelInitializer = modelJSON.modelInitializer; + } + resolve(result); + } + }; + weightFileReader.onerror = (error) => reject(`Failed to weights data from file of path '${path}'.`); + weightFileReader.readAsArrayBuffer(pathToFile[path]); + }); + }); + }; + jsonReader.onerror = (error) => reject(`Failed to read model topology and weights manifest JSON from file '${jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`); + jsonReader.readAsText(jsonFile); + }); + } + checkManifestAndWeightFiles(manifest, files) { + const basenames = []; + const fileNames = files.map((file) => basename(file.name)); + const pathToFile = {}; + for (const group of manifest) { + group.paths.forEach((path) => { + const pathBasename = basename(path); + if (basenames.indexOf(pathBasename) !== -1) { + throw new Error(`Duplicate file basename found in weights manifest: '${pathBasename}'`); + } + basenames.push(pathBasename); + if (fileNames.indexOf(pathBasename) === -1) { + throw new Error(`Weight file with basename '${pathBasename}' is not provided.`); + } else { + pathToFile[path] = files[fileNames.indexOf(pathBasename)]; + } + }); + } + if (basenames.length !== files.length) { + throw new Error(`Mismatch in the number of files in weights manifest (${basenames.length}) and the number of weight files provided (${files.length}).`); + } + return pathToFile; + } +}; +var browserDownloadsRouter = (url) => { + if (!env().getBool("IS_BROWSER")) { + return null; + } else { + if (!Array.isArray(url) && url.startsWith(BrowserDownloads.URL_SCHEME)) { + return browserDownloads(url.slice(BrowserDownloads.URL_SCHEME.length)); + } else { + return null; + } + } +}; +IORouterRegistry.registerSaveRouter(browserDownloadsRouter); +function browserDownloads(fileNamePrefix = "model") { + return new BrowserDownloads(fileNamePrefix); +} +function browserFiles(files) { + return new BrowserFiles(files); +} +/** + * @license + * Copyright 2019 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function monitorPromisesProgress(promises, onProgress, startFraction, endFraction) { + checkPromises(promises); + startFraction = startFraction == null ? 0 : startFraction; + endFraction = endFraction == null ? 1 : endFraction; + checkFraction(startFraction, endFraction); + let resolvedPromise = 0; + const registerMonitor = (promise) => { + promise.then((value) => { + const fraction = startFraction + ++resolvedPromise / promises.length * (endFraction - startFraction); + onProgress(fraction); + return value; + }); + return promise; + }; + function checkPromises(promises2) { + assert(promises2 != null && Array.isArray(promises2) && promises2.length > 0, () => "promises must be a none empty array"); + } + function checkFraction(startFraction2, endFraction2) { + assert(startFraction2 >= 0 && startFraction2 <= 1, () => `Progress fraction must be in range [0, 1], but got startFraction ${startFraction2}`); + assert(endFraction2 >= 0 && endFraction2 <= 1, () => `Progress fraction must be in range [0, 1], but got endFraction ${endFraction2}`); + assert(endFraction2 >= startFraction2, () => `startFraction must be no more than endFraction, but got startFraction ${startFraction2} and endFraction ${endFraction2}`); + } + return Promise.all(promises.map(registerMonitor)); +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +async function loadWeightsAsArrayBuffer(fetchURLs, loadOptions) { + if (loadOptions == null) { + loadOptions = {}; + } + const fetchFunc = loadOptions.fetchFunc == null ? env().platform.fetch : loadOptions.fetchFunc; + const requests = fetchURLs.map((fetchURL) => fetchFunc(fetchURL, loadOptions.requestInit, {isBinary: true})); + const fetchStartFraction = 0; + const fetchEndFraction = 0.5; + const responses = loadOptions.onProgress == null ? await Promise.all(requests) : await monitorPromisesProgress(requests, loadOptions.onProgress, fetchStartFraction, fetchEndFraction); + const bufferPromises = responses.map((response) => response.arrayBuffer()); + const bufferStartFraction = 0.5; + const bufferEndFraction = 1; + const buffers = loadOptions.onProgress == null ? await Promise.all(bufferPromises) : await monitorPromisesProgress(bufferPromises, loadOptions.onProgress, bufferStartFraction, bufferEndFraction); + return buffers; +} +async function loadWeights(manifest, filePathPrefix = "", weightNames, requestInit) { + const fetchWeights = (fetchUrls) => loadWeightsAsArrayBuffer(fetchUrls, {requestInit}); + const loadWeights2 = weightsLoaderFactory(fetchWeights); + return loadWeights2(manifest, filePathPrefix, weightNames); +} +function weightsLoaderFactory(fetchWeightsFunction) { + return async (manifest, filePathPrefix = "", weightNames) => { + const groupIndicesToFetchMap = manifest.map(() => false); + const groupWeightsToFetch = {}; + const weightsFound = weightNames != null ? weightNames.map(() => false) : []; + const allManifestWeightNames = []; + manifest.forEach((manifestGroupConfig, groupIndex) => { + let groupOffset = 0; + manifestGroupConfig.weights.forEach((weightsEntry) => { + const rawDtype = "quantization" in weightsEntry ? weightsEntry.quantization.dtype : weightsEntry.dtype; + const weightsBytes = DTYPE_VALUE_SIZE_MAP[rawDtype] * sizeFromShape(weightsEntry.shape); + const enqueueWeightsForFetchingFn = () => { + groupIndicesToFetchMap[groupIndex] = true; + if (groupWeightsToFetch[groupIndex] == null) { + groupWeightsToFetch[groupIndex] = []; + } + groupWeightsToFetch[groupIndex].push({ + manifestEntry: weightsEntry, + groupOffset, + sizeBytes: weightsBytes + }); + }; + if (weightNames != null) { + weightNames.forEach((weightName, weightIndex) => { + if (weightName === weightsEntry.name) { + enqueueWeightsForFetchingFn(); + weightsFound[weightIndex] = true; + } + }); + } else { + enqueueWeightsForFetchingFn(); + } + allManifestWeightNames.push(weightsEntry.name); + groupOffset += weightsBytes; + }); + }); + if (!weightsFound.every((found) => found)) { + const weightsNotFound = weightNames.filter((_, i) => !weightsFound[i]); + throw new Error(`Could not find weights in manifest with names: ${weightsNotFound.join(", ")}. +Manifest JSON has weights with names: ${allManifestWeightNames.join(", ")}.`); + } + const groupIndicesToFetch = groupIndicesToFetchMap.reduce((accumulator, shouldFetch, i) => { + if (shouldFetch) { + accumulator.push(i); + } + return accumulator; + }, []); + const fetchUrls = []; + groupIndicesToFetch.forEach((i) => { + manifest[i].paths.forEach((filepath) => { + const fetchUrl = filePathPrefix + (!filePathPrefix.endsWith("/") ? "/" : "") + filepath; + fetchUrls.push(fetchUrl); + }); + }); + const buffers = await fetchWeightsFunction(fetchUrls); + const weightsTensorMap = {}; + let bufferIndexOffset = 0; + groupIndicesToFetch.forEach((i) => { + const numBuffers = manifest[i].paths.length; + let groupBytes = 0; + for (let i2 = 0; i2 < numBuffers; i2++) { + groupBytes += buffers[bufferIndexOffset + i2].byteLength; + } + const groupBuffer = new ArrayBuffer(groupBytes); + const groupByteBuffer = new Uint8Array(groupBuffer); + let groupBufferOffset = 0; + for (let i2 = 0; i2 < numBuffers; i2++) { + const buffer2 = new Uint8Array(buffers[bufferIndexOffset + i2]); + groupByteBuffer.set(buffer2, groupBufferOffset); + groupBufferOffset += buffer2.byteLength; + } + const weightsEntries = groupWeightsToFetch[i]; + weightsEntries.forEach((weightsEntry) => { + const byteBuffer = groupBuffer.slice(weightsEntry.groupOffset, weightsEntry.groupOffset + weightsEntry.sizeBytes); + const nameToTensorMap = decodeWeights(byteBuffer, [weightsEntry.manifestEntry]); + for (const name2 in nameToTensorMap) { + weightsTensorMap[name2] = nameToTensorMap[name2]; + } + }); + bufferIndexOffset += numBuffers; + }); + return weightsTensorMap; + }; +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var OCTET_STREAM_MIME_TYPE = "application/octet-stream"; +var JSON_TYPE = "application/json"; +var HTTPRequest = class { + constructor(path, loadOptions) { + this.DEFAULT_METHOD = "POST"; + if (loadOptions == null) { + loadOptions = {}; + } + this.weightPathPrefix = loadOptions.weightPathPrefix; + this.onProgress = loadOptions.onProgress; + this.weightUrlConverter = loadOptions.weightUrlConverter; + if (loadOptions.fetchFunc != null) { + assert(typeof loadOptions.fetchFunc === "function", () => "Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"); + this.fetch = loadOptions.fetchFunc; + } else { + this.fetch = env().platform.fetch; + } + assert(path != null && path.length > 0, () => "URL path for http must not be null, undefined or empty."); + if (Array.isArray(path)) { + assert(path.length === 2, () => `URL paths for http must have a length of 2, (actual length is ${path.length}).`); + } + this.path = path; + if (loadOptions.requestInit != null && loadOptions.requestInit.body != null) { + throw new Error("requestInit is expected to have no pre-existing body, but has one."); + } + this.requestInit = loadOptions.requestInit || {}; + } + async save(modelArtifacts) { + if (modelArtifacts.modelTopology instanceof ArrayBuffer) { + throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet."); + } + const init2 = Object.assign({method: this.DEFAULT_METHOD}, this.requestInit); + init2.body = new FormData(); + const weightsManifest = [{ + paths: ["./model.weights.bin"], + weights: modelArtifacts.weightSpecs + }]; + const modelTopologyAndWeightManifest = { + modelTopology: modelArtifacts.modelTopology, + format: modelArtifacts.format, + generatedBy: modelArtifacts.generatedBy, + convertedBy: modelArtifacts.convertedBy, + weightsManifest + }; + if (modelArtifacts.signature != null) { + modelTopologyAndWeightManifest.signature = modelArtifacts.signature; + } + if (modelArtifacts.userDefinedMetadata != null) { + modelTopologyAndWeightManifest.userDefinedMetadata = modelArtifacts.userDefinedMetadata; + } + if (modelArtifacts.modelInitializer != null) { + modelTopologyAndWeightManifest.modelInitializer = modelArtifacts.modelInitializer; + } + init2.body.append("model.json", new Blob([JSON.stringify(modelTopologyAndWeightManifest)], {type: JSON_TYPE}), "model.json"); + if (modelArtifacts.weightData != null) { + init2.body.append("model.weights.bin", new Blob([modelArtifacts.weightData], {type: OCTET_STREAM_MIME_TYPE}), "model.weights.bin"); + } + const response = await this.fetch(this.path, init2); + if (response.ok) { + return { + modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts), + responses: [response] + }; + } else { + throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${response.status}.`); + } + } + async load() { + const modelConfigRequest = await this.fetch(this.path, this.requestInit); + if (!modelConfigRequest.ok) { + throw new Error(`Request to ${this.path} failed with status code ${modelConfigRequest.status}. Please verify this URL points to the model JSON of the model to load.`); + } + let modelConfig; + try { + modelConfig = await modelConfigRequest.json(); + } catch (e) { + let message = `Failed to parse model JSON of response from ${this.path}.`; + if (this.path.endsWith(".pb")) { + message += " Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository."; + } else { + message += " Please make sure the server is serving valid JSON for this request."; + } + throw new Error(message); + } + const modelTopology = modelConfig.modelTopology; + const weightsManifest = modelConfig.weightsManifest; + const generatedBy = modelConfig.generatedBy; + const convertedBy = modelConfig.convertedBy; + const format = modelConfig.format; + const signature = modelConfig.signature; + const userDefinedMetadata = modelConfig.userDefinedMetadata; + if (modelTopology == null && weightsManifest == null) { + throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`); + } + let weightSpecs; + let weightData; + if (weightsManifest != null) { + const results = await this.loadWeights(weightsManifest); + [weightSpecs, weightData] = results; + } + const artifacts = { + modelTopology, + weightSpecs, + weightData, + generatedBy, + convertedBy, + format + }; + if (signature != null) { + artifacts.signature = signature; + } + if (userDefinedMetadata != null) { + artifacts.userDefinedMetadata = userDefinedMetadata; + } + const initializer = modelConfig.modelInitializer; + if (initializer) { + artifacts.modelInitializer = initializer; + } + return artifacts; + } + async loadWeights(weightsManifest) { + const weightPath = Array.isArray(this.path) ? this.path[1] : this.path; + const [prefix, suffix] = parseUrl(weightPath); + const pathPrefix = this.weightPathPrefix || prefix; + const weightSpecs = []; + for (const entry of weightsManifest) { + weightSpecs.push(...entry.weights); + } + const fetchURLs = []; + const urlPromises = []; + for (const weightsGroup of weightsManifest) { + for (const path of weightsGroup.paths) { + if (this.weightUrlConverter != null) { + urlPromises.push(this.weightUrlConverter(path)); + } else { + fetchURLs.push(pathPrefix + path + suffix); + } + } + } + if (this.weightUrlConverter) { + fetchURLs.push(...await Promise.all(urlPromises)); + } + const buffers = await loadWeightsAsArrayBuffer(fetchURLs, { + requestInit: this.requestInit, + fetchFunc: this.fetch, + onProgress: this.onProgress + }); + return [weightSpecs, concatenateArrayBuffers(buffers)]; + } +}; +HTTPRequest.URL_SCHEME_REGEX = /^https?:\/\//; +function parseUrl(url) { + const lastSlash = url.lastIndexOf("/"); + const lastSearchParam = url.lastIndexOf("?"); + const prefix = url.substring(0, lastSlash); + const suffix = lastSearchParam > lastSlash ? url.substring(lastSearchParam) : ""; + return [prefix + "/", suffix]; +} +function isHTTPScheme(url) { + return url.match(HTTPRequest.URL_SCHEME_REGEX) != null; +} +var httpRouter = (url, loadOptions) => { + if (typeof fetch === "undefined" && (loadOptions == null || loadOptions.fetchFunc == null)) { + return null; + } else { + let isHTTP = true; + if (Array.isArray(url)) { + isHTTP = url.every((urlItem) => isHTTPScheme(urlItem)); + } else { + isHTTP = isHTTPScheme(url); + } + if (isHTTP) { + return http(url, loadOptions); + } + } + return null; +}; +IORouterRegistry.registerSaveRouter(httpRouter); +IORouterRegistry.registerLoadRouter(httpRouter); +function http(path, loadOptions) { + return new HTTPRequest(path, loadOptions); +} +function browserHTTPRequest(path, loadOptions) { + return http(path, loadOptions); +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var PassthroughLoader = class { + constructor(modelArtifacts) { + this.modelArtifacts = modelArtifacts; + } + async load() { + return this.modelArtifacts; + } +}; +var PassthroughSaver = class { + constructor(saveHandler) { + this.saveHandler = saveHandler; + } + async save(modelArtifacts) { + return this.saveHandler(modelArtifacts); + } +}; +function fromMemory(modelArtifacts, weightSpecs, weightData, trainingConfig) { + if (arguments.length === 1) { + const isModelArtifacts = modelArtifacts.modelTopology != null || modelArtifacts.weightSpecs != null; + if (isModelArtifacts) { + return new PassthroughLoader(modelArtifacts); + } else { + console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."); + return new PassthroughLoader({modelTopology: modelArtifacts}); + } + } else { + console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."); + return new PassthroughLoader({ + modelTopology: modelArtifacts, + weightSpecs, + weightData, + trainingConfig + }); + } +} +function withSaveHandler(saveHandler) { + return new PassthroughSaver(saveHandler); +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var math_exports = {}; +__export2(math_exports, { + confusionMatrix: () => confusionMatrix +}); +/** + * @license + * Copyright 2020 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function matMul_(a, b, transposeA = false, transposeB = false) { + let $a = convertToTensor(a, "a", "matMul"); + let $b = convertToTensor(b, "b", "matMul"); + [$a, $b] = makeTypesMatch($a, $b); + const inputs = {a: $a, b: $b}; + const attrs = {transposeA, transposeB}; + return ENGINE.runKernel(BatchMatMul, inputs, attrs); +} +var matMul = op({matMul_}); +/** + * @license + * Copyright 2020 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function oneHot_(indices, depth, onValue = 1, offValue = 0) { + if (depth < 2) { + throw new Error(`Error in oneHot: depth must be >=2, but it is ${depth}`); + } + const $indices = convertToTensor(indices, "indices", "oneHot", "int32"); + const inputs = {indices: $indices}; + const attrs = {depth, onValue, offValue}; + return ENGINE.runKernel(OneHot, inputs, attrs); +} +var oneHot = op({oneHot_}); +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function transpose_(x, perm) { + const $x = convertToTensor(x, "x", "transpose"); + if (perm == null) { + perm = $x.shape.map((s, i) => i).reverse(); + } + assert($x.rank === perm.length, () => `Error in transpose: rank of input ${$x.rank} must match length of perm ${perm}.`); + perm.forEach((axis) => { + assert(axis >= 0 && axis < $x.rank, () => `All entries in 'perm' must be between 0 and ${$x.rank - 1} but got ${perm}`); + }); + if ($x.rank <= 1) { + return $x.clone(); + } + const inputs = {x: $x}; + const attrs = {perm}; + return ENGINE.runKernel(Transpose, inputs, attrs); +} +var transpose = op({transpose_}); +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function confusionMatrix_(labels, predictions, numClasses) { + const $labels = convertToTensor(labels, "labels", "confusionMatrix"); + const $predictions = convertToTensor(predictions, "predictions", "confusionMatrix"); + assert(numClasses == null || numClasses > 0 && Number.isInteger(numClasses), () => `If provided, numClasses must be a positive integer, but got ${numClasses}`); + assert($labels.rank === 1, () => `Expected the rank of labels to be 1, but got ${$labels.rank}`); + assert($predictions.rank === 1, () => `Expected the rank of predictions to be 1, but got ${$predictions.rank}`); + assert($labels.shape[0] === $predictions.shape[0], () => `Mismatch in the number of examples: ${$labels.shape[0]} vs. ${$predictions.shape[0]}. Labels and predictions should have the same number of elements.`); + assert(numClasses > 0 && Number.isInteger(numClasses), () => `numClasses is required to be a positive integer, but got ${numClasses}`); + const oneHotLabels = oneHot(cast($labels, "int32"), numClasses); + const oneHotPredictions = oneHot(cast($predictions, "int32"), numClasses); + const oneHotLabelsT = transpose(oneHotLabels); + const product = matMul(oneHotLabelsT, oneHotPredictions); + return cast(product, "int32"); +} +var confusionMatrix = op({confusionMatrix_}); +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var browser_exports = {}; +__export2(browser_exports, { + fromPixels: () => fromPixels, + toPixels: () => toPixels +}); +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function tensor3d(values, shape, dtype) { + assertNonNull(values); + if (shape != null && shape.length !== 3) { + throw new Error("tensor3d() requires shape to have three numbers"); + } + const inferredShape = inferShape(values, dtype); + if (inferredShape.length !== 3 && inferredShape.length !== 1) { + throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray"); + } + if (inferredShape.length === 1 && shape == null) { + throw new Error("tensor3d() requires shape to be provided when `values` are a flat array"); + } + return makeTensor(values, shape, inferredShape, dtype); +} +/** + * @license + * Copyright 2019 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var fromPixels2DContext; +function fromPixels_(pixels, numChannels = 3) { + if (numChannels > 4) { + throw new Error("Cannot construct Tensor with more than 4 channels from pixels."); + } + if (pixels == null) { + throw new Error("pixels passed to tf.browser.fromPixels() can not be null"); + } + let isPixelData = false; + let isImageData = false; + let isVideo = false; + let isImage = false; + let isCanvasLike = false; + let isImageBitmap = false; + if (pixels.data instanceof Uint8Array) { + isPixelData = true; + } else if (typeof ImageData !== "undefined" && pixels instanceof ImageData) { + isImageData = true; + } else if (typeof HTMLVideoElement !== "undefined" && pixels instanceof HTMLVideoElement) { + isVideo = true; + } else if (typeof HTMLImageElement !== "undefined" && pixels instanceof HTMLImageElement) { + isImage = true; + } else if (pixels.getContext != null) { + isCanvasLike = true; + } else if (typeof ImageBitmap !== "undefined" && pixels instanceof ImageBitmap) { + isImageBitmap = true; + } else { + throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${pixels.constructor.name}`); + } + if (isVideo) { + const HAVE_CURRENT_DATA_READY_STATE = 2; + if (isVideo && pixels.readyState < HAVE_CURRENT_DATA_READY_STATE) { + throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the fg){let A=pu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-pu)*i,o*i));return n==="complex64"&&(y=mu(y),g=mu(g)),["["+y.map((_,b)=>fu(_,a[b],n)).join(", ")+", ..., "+g.map((_,b)=>fu(_,a[o-pu+b],n)).join(", ")+"]"]}let f=n==="complex64"?mu(e):Array.from(e);return["["+f.map((A,y)=>fu(A,a[y],n)).join(", ")+"]"]}let u=t.slice(1),c=r.slice(1),h=r[0]*i,d=[];if(o>fg){for(let f=0;f`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||tg(t,this.size),this.strides=$i(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;rDh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=br().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Dh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await br().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(br().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Po.print(this,e)}clone(){return this.throwIfDisposed(),Po.clone(this)}toString(e=!1){let t=this.dataSync();return ak(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Po.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),br().makeVariable(this,e,t,n)}};Object.defineProperty(Xe,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return N1("Tensor",()=>Xe)}Z();var Au=class extends Xe{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Gr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);br().disposeTensor(this),this.dataId=e.dataId,br().incRef(this,null)}dispose(){br().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Au,Symbol.hasInstance,{value:e=>e instanceof Xe&&e.assign!=null&&e.assign instanceof Function});var lr={};Oe(lr,{assertTypesMatch:()=>Ag,getTensorsInContainer:()=>C1,isTensorInList:()=>uk,makeTypesMatch:()=>gt});var R1;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(R1||(R1={}));var F1;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(F1||(F1={}));var M1;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(M1||(M1={}));var $1;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})($1||($1={}));var O1;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(O1||(O1={}));var ck={float32:$1,int32:F1,bool:M1,complex64:O1};function Yn(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return ck[e][t]}function Ph(e){return Yn(e,"int32")}function gt(e,t){if(e.dtype===t.dtype)return[e,t];let n=Yn(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function Ag(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function uk(e,t){return t.some(n=>n.id===e.id)}function C1(e){let t=[],n=new Set;return yg(e,t,n),t}function yg(e,t,n){if(e==null)return;if(e instanceof Xe){t.push(e);return}if(!hk(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),yg(s,t,n))}}function hk(e){return Array.isArray(e)||typeof e=="object"}function D1(e){return e.kernelName!=null}var gg=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},yu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new gg}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){zo(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof jl)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r(rthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return yu.nextTensorId++}nextVariableId(){return yu.nextVariableId++}clone(e){let t=$.runKernel(hs,{x:e}),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return $.runKernel(Ja,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if($h(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=D1(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(D1(e)){let{kernelName:p,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let A=$h(p,this.backendName);F(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:m,attrs:f,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,g);let _=g.map(b=>{if(b.rank!=null)return b;let{dataId:w,shape:x,dtype:N}=b;return this.makeTensorFromDataId(w,x,N)});if(r){let b=this.getTensorsForGradient(p,m,_);n=this.saveTensorsForBackwardMode(b)}return _}}else{let{forwardFunc:p}=e,m=f=>{!r||(n=f.map(A=>this.keep(this.clone(A))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>p(this.backend,m));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,A),A}}let{inputs:u,attrs:c}=e,h=D1(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),r&&this.addTapeNode(l,u,t,h,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(p=>u[p]!=null?u[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=T1(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&pa(e[0])&&(a=e.map(o=>du(o)));let s=r.write(a,t,n),i=new Xe(t,n,s,this.nextTensorId());if(this.trackTensor(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=ag(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new Xe(t,n,e,this.nextTensorId());return this.trackTensor(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new Au(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*_1(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Au||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*_1(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=T1(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((u,c)=>{if(u==null){let h=n[c],d=nh(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return u}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=C1(e),n=new Set(t.map(a=>a.id));for(let a=0;a{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(a instanceof Xe,()=>"The result y returned by f() must be a tensor.");let s=tk(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?dk(a.shape):n,nk(i,s,l=>this.tidy(l),pk);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return F(fa(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(i=>i instanceof Xe),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),F(n.value instanceof Xe,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(fa(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];F(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(u.every(h=>h instanceof Xe),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((h,d)=>{c[d]=()=>h}),c};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=hu(),n=await this.backend.time(e);return n.wallMs=hu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new gg;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};yu.nextTensorId=0;yu.nextVariableId=0;function dk(e){let t=b1(Rt(e),"float32");return $.makeTensor(t,e,"float32")}function xg(){let e=cg();if(e._tfengine==null){let t=new ug(e);e._tfengine=new yu(t)}return U8(e._tfengine.ENV),ik(()=>e._tfengine),e._tfengine}var $=xg();function pk(e,t){let n={a:e,b:t};return $.runKernel(ma,n)}var Lh={};Oe(Lh,{isBrowser:()=>wg,isMobile:()=>fk});function mk(){return typeof navigator!="undefined"&&navigator!=null}function fk(){if(mk()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function wg(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var vr=J();vr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});vr.registerFlag("IS_BROWSER",()=>wg());vr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");vr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));vr.registerFlag("PROD",()=>!1);vr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>vr.getBool("DEBUG"));vr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);vr.registerFlag("IS_TEST",()=>!1);vr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);function kr(e,t){let n=e;if(nn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||nn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&_g(e,r,[]),r}function _g(e,t,n){if(n=n||[],!Array.isArray(e)&&!nn(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a=0&&(a=r),bg(r,a,t,n),e==null||!nn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=kr(e,a);!nn(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?Oh(e,a):Ga(e,[],!0);return $.makeTensor(i,s,a)}function gu(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>R(a,`${t}[${s}]`,n,r))}var vg="__op";function O(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+vg;let a=(...s)=>{$.startScope(n);try{let i=r(...s);return k1(i)&&console.error("Cannot return a Promise inside of tidy."),$.endScope(i),i}catch(i){throw $.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function Ak(e,t){let n=R(e,"real","complex"),r=R(t,"imag","complex");tn(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return $.runKernel(lh,a)}var xa=O({complex_:Ak});function wa(e,t,n,r){if(r==null&&(r=eh(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!nn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){v1(t);let a=Rt(t),s=Rt(n);F(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!nn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?Oh(e,r):Ga(e,[],!0),$.makeTensor(e,t,r)}function ur(e,t,n){let r=kr(e,n);return wa(e,t,r,n)}var z1={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Wh=4;async function gk(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+Wh*d.length,m=new Uint8Array(p),f=0;for(let A=0;A{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var P1=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Ig(e){return P1?Buffer.byteLength(e):new Blob([e]).size}function wk(e){if(P1)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function Ng(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function xu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Ig(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Ig(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function bk(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function vk(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function kk(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function xk(){let e=bk(),t=vk(),n=kk();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var vt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return vt.instance==null&&(vt.instance=new vt),vt.instance}static registerSaveRouter(e){vt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){vt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return vt.getHandlers(e,"save")}static getLoadHandlers(e,t){return vt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?vt.getInstance().loadRouters:vt.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},Ik=e=>vt.registerSaveRouter(e),Nk=e=>vt.registerLoadRouter(e),Sk=e=>vt.getSaveHandlers(e),Tk=(e,t)=>vt.getLoadHandlers(e,t),W1="tensorflowjs",B1=1,js="models_store",_a="model_info_store";function Sg(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function V1(e){let t=e.result;t.createObjectStore(js,{keyPath:"modelPath"}),t.createObjectStore(_a,{keyPath:"modelPath"})}var Hs=class{constructor(e){if(this.indexedDB=Sg(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(W1,B1);a.onupgradeneeded=()=>V1(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(js,"readonly"),o=i.objectStore(js).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=xu(t),o=s.transaction(_a,"readwrite"),l=o.objectStore(_a),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),c;u.onsuccess=()=>{c=s.transaction(js,"readwrite");let h=c.objectStore(js).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(_a);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=m=>(s.close(),r(h.error))}},u.onerror=h=>(s.close(),r(u.error)),o.oncomplete=()=>{c==null?s.close():c.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};Hs.URL_SCHEME="indexeddb://";var Tg=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Hs.URL_SCHEME)?Ek(e.slice(Hs.URL_SCHEME.length)):null;vt.registerSaveRouter(Tg);vt.registerLoadRouter(Tg);function Ek(e){return new Hs(e)}function Ck(e){return e.startsWith(Hs.URL_SCHEME)?e.slice(Hs.URL_SCHEME.length):e}var Rk=class{constructor(){this.indexedDB=Sg()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(W1,B1);n.onupgradeneeded=()=>V1(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(_a,"readonly"),s=a.objectStore(_a).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=Ck(e),new Promise((t,n)=>{let r=this.indexedDB.open(W1,B1);r.onupgradeneeded=()=>V1(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(_a,"readwrite"),i=s.objectStore(_a),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),c=()=>{l=a.transaction(js,"readwrite");let h=l.objectStore(js).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};u.onsuccess=c,u.onerror=h=>(c(),a.close(),n(o.error))}},o.onerror=u=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},qr="/",Lo="tensorflowjs_models",Eg="info",Fk="model_topology",Mk="weight_specs",$k="weight_data",Ok="model_metadata";function Cg(e){return{info:[Lo,e,Eg].join(qr),topology:[Lo,e,Fk].join(qr),weightSpecs:[Lo,e,Mk].join(qr),weightData:[Lo,e,$k].join(qr),modelMetadata:[Lo,e,Ok].join(qr)}}function Dk(e){let t=e.split(qr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(qr)}function zk(e){return e.startsWith(Gs.URL_SCHEME)?e.slice(Gs.URL_SCHEME.length):e}var Gs=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Cg(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=xu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,wk(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=_k(s),t}};Gs.URL_SCHEME="localstorage://";var Rg=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Gs.URL_SCHEME)?Pk(e.slice(Gs.URL_SCHEME.length)):null;vt.registerSaveRouter(Rg);vt.registerLoadRouter(Rg);function Pk(e){return new Gs(e)}var Lk=class{constructor(){F(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Lo+qr,n=qr+Eg;for(let r=0;r"scheme must not be undefined or null."),e.endsWith(Wo)&&(e=e.slice(0,e.indexOf(Wo))),F(e.length>0,()=>"scheme must not be an empty string.");let n=Bn.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Bh(e){if(e.indexOf(Wo)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Bn.getSchemes().join(",")}`);return{scheme:e.split(Wo)[0],path:e.split(Wo)[1]}}async function Fg(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=vt.getLoadHandlers(e);F(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=vt.getSaveHandlers(t);F(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=Bh(e).scheme,l=Bh(e).path,u=o===Bh(e).scheme,c=await a.load();n&&u&&await Bn.getManager(o).removeModel(l);let h=await i.save(c);return n&&!u&&await Bn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function Wk(){let e=Bn.getSchemes(),t={};for(let n of e){let r=await Bn.getManager(n).listModels();for(let a in r){let s=n+Wo+a;t[s]=r[a]}}return t}async function Bk(e){let t=Bh(e);return Bn.getManager(t.scheme).removeModel(t.path)}async function Vk(e,t){return Fg(e,t,!1)}async function Uk(e,t){return Fg(e,t,!0)}var jk=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new jk);try{Bn.registerManager(Gs.URL_SCHEME,new Lk)}catch(e){}try{Bn.registerManager(Hs.URL_SCHEME,new Rk)}catch(e){}}var Hk={importFetch:()=>U4()},U1,Gk=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(U1==null&&(U1=Hk.importFetch()),U1(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new Gk);function Pe(e,t="float32",n){return t=t||"float32",v1(e),new Ft(e,t,n)}function qk(e,t){let n=R(e,"x","cast");if(!rg(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return $.runKernel(Ja,r,a)}var fe=O({cast_:qk});function Xk(e){let t={x:R(e,"x","clone","string_or_numeric")};return $.runKernel(hs,t)}var Jn=O({clone_:Xk});function Mg(e,t=!1){console.log(e.toString(t))}xg();var Kk={buffer:Pe,cast:fe,clone:Jn,print:Mg};ok(Kk);var mn={};Oe(mn,{browserFiles:()=>Zk,browserHTTPRequest:()=>Jk,concatenateArrayBuffers:()=>L1,copyModel:()=>Vk,decodeWeights:()=>kg,encodeWeights:()=>gk,fromMemory:()=>Qk,getLoadHandlers:()=>Tk,getModelArtifactsInfoForJSON:()=>xu,getSaveHandlers:()=>Sk,http:()=>H1,isHTTPScheme:()=>j1,listModels:()=>Wk,loadWeights:()=>Yk,moveModel:()=>Uk,registerLoadRouter:()=>Nk,registerSaveRouter:()=>Ik,removeModel:()=>Bk,weightsLoaderFactory:()=>$g,withSaveHandler:()=>e9});var t9="model",n9=".json",r9=".weights.bin";function Og(e){return new Promise(t=>setTimeout(t)).then(e)}var Bo=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Bo.URL_SCHEME)&&(e=e.slice(Bo.URL_SCHEME.length)),(e==null||e.length===0)&&(e=t9),this.modelTopologyFileName=e+n9,this.weightDataFileName=e+r9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await Og(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await Og(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:xu(e)}}}};Bo.URL_SCHEME="downloads://";var a9=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let u;try{u=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let c=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(m=>{h.push(m),d.push(null)}),c.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(m=>{let f=new FileReader;f.onload=A=>{let y=A.target.result,g=h.indexOf(m);if(d[g]=y,d.indexOf(null)===-1){let _={modelTopology:o,weightSpecs:c,weightData:L1(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(_.signature=i.signature),i.userDefinedMetadata!=null&&(_.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(_.modelInitializer=i.modelInitializer),n(_)}},f.onerror=A=>r(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(u[m])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>Ng(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=Ng(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},i9=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Bo.URL_SCHEME)?s9(e.slice(Bo.URL_SCHEME.length)):null;vt.registerSaveRouter(i9);function s9(e="model"){return new Bo(e)}function Zk(e){return new a9(e)}function Dg(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(u=>{let c=n+ ++a/e.length*(r-n);return t(c),u}),l);function i(l){F(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),F(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),F(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function zg(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,r=e.map(u=>n(u,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await Dg(r,t.onProgress,a,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await Dg(i,t.onProgress,o,l)}async function Yk(e,t="",n,r){return $g(a=>zg(a,{requestInit:r}))(e,t,n)}function $g(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,m)=>{let f=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=z1[y]*Rt(A.shape),_=()=>{a[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:A,groupOffset:f,sizeBytes:g})};r!=null?r.forEach((b,w)=>{b===A.name&&(_(),i[w]=!0)}):_(),o.push(A.name),f+=g})}),!i.every(p=>p)){let p=r.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}. -Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,m,f)=>(m&&p.push(f),p),[]),u=[];l.forEach(p=>{t[p].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let c=await e(u),h={},d=0;return l.forEach(p=>{let m=t[p].paths.length,f=0;for(let _=0;_{let b=A.slice(_.groupOffset,_.groupOffset+_.sizeBytes),w=kg(b,[_.manifestEntry]);for(let x in w)h[x]=w[x]}),d+=m}),h}}var o9="application/octet-stream",l9="application/json",G1=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:l9}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:o9}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:xu(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let u,c;r!=null&&([u,c]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:u,weightData:c,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=u9(t),a=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(c)):i.push(a+c+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await zg(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,L1(l)]}};G1.URL_SCHEME_REGEX=/^https?:\/\//;function u9(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function j1(e){return e.match(G1.URL_SCHEME_REGEX)!=null}var Pg=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>j1(r)):n=j1(e),n)return H1(e,t)}return null};vt.registerSaveRouter(Pg);vt.registerLoadRouter(Pg);function H1(e,t){return new G1(e,t)}function Jk(e,t){return H1(e,t)}var q1=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},c9=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function Qk(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new q1(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new q1({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new q1({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function e9(e){return new c9(e)}var Lg={};Oe(Lg,{confusionMatrix:()=>h9});function d9(e,t,n=!1,r=!1){let a=R(e,"a","matMul"),s=R(t,"b","matMul");[a,s]=gt(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return $.runKernel(Ya,i,o)}var Ue=O({matMul_:d9});function p9(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:R(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return $.runKernel(_s,a,s)}var Vo=O({oneHot_:p9});function f9(e,t){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{F(s>=0&&s`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return $.runKernel(Ls,r,a)}var tt=O({transpose_:f9});function m9(e,t,n){let r=R(e,"labels","confusionMatrix"),a=R(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),F(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),F(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=Vo(fe(r,"int32"),n),i=Vo(fe(a,"int32"),n),o=tt(s),l=Ue(o,i);return fe(l,"int32")}var h9=O({confusionMatrix_:m9}),Uo={};Oe(Uo,{fromPixels:()=>y9,toPixels:()=>A9});function Vh(e,t,n){if(Ha(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=kr(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return wa(e,t,r,n)}var jo;function g9(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState element.")}if($h(Mh,$.backendName)!=null){let d={pixels:e},p={numChannels:t};return $.runKernel(Mh,d,p)}let[l,u]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],c;i?c=e.getContext("2d").getImageData(0,0,l,u).data:r||n?c=e.data:(s||a||o)&&(jo==null&&(jo=document.createElement("canvas").getContext("2d")),jo.canvas.width=l,jo.canvas.height=u,jo.drawImage(e,0,0,l,u),c=jo.getImageData(0,0,l,u).data);let h;if(t===4)h=new Int32Array(c);else{let d=l*u;h=new Int32Array(d*t);for(let p=0;p4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let u=0;u1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(c[0]=p*o,c[1]=p*o,c[2]=p*o):c[d]=p*o}let h=u*4;l[h+0]=Math.round(c[0]),l[h+1]=Math.round(c[1]),l[h+2]=Math.round(c[2]),l[h+3]=Math.round(c[3])}if(t!=null){t.width=a,t.height=r;let u=t.getContext("2d"),c=new ImageData(l,a,r);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var y9=O({fromPixels_:g9}),X1={};Oe(X1,{prepareAndValidate:()=>Wg});function Wg(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Rt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;hh/u),1].slice(0,s);return[l,i,u,c]}var K1={};Oe(K1,{calculateShapes:()=>Bg,validateInput:()=>Y1,validateUpdateShape:()=>Z1});function Z1(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;hx9,computeFlatOffset:()=>_9,computeOutShape:()=>Vg,getNormalizedAxes:()=>jg,isSliceContinous:()=>w9,maskToAxes:()=>Uh,parseSliceParams:()=>Zg,sliceInfo:()=>b9,startForAxis:()=>Xg,startIndicesWithElidedDims:()=>Hg,stopForAxis:()=>Kg,stopIndicesWithElidedDims:()=>Gg,stridesForAxis:()=>qg,stridesWithElidedDims:()=>Ug});function x9(e,t,n){let r=e.shape.length;F(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),F(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function Uh(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function Vg(e,t,n){let r=[];for(let a=0;a0){let p=t[0],m=n+1;c=Hg(i,p,m,r,e),h=Gg(o,p,m,a,e),d=Ug(s,p,m,e)}else for(let p=0;p-1)s[o]=0;else{let l=Yg(t,n,o),u=r[l];e&1<-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=Yg(t,n,o),u=r[l];e&1<0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=Hl(0,i,l-1),i}function Kg(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=Hl(0,i,l):i=Hl(-1,i,l-1),i}function w9(e,t,n){let r=n.length;for(let a=0;a1){r=a;break}for(let a=r+1;a0||n[a]!==e[a])return!1;return!0}function _9(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.lengthi>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function b9(e,t,n,r,a,s,i,o,l){let u=t.slice(),c=n.slice(),h=r;r==null&&(h=new Array(u.length));let d=Uh(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-u.length,m=Uh(o),f=e.slice();m.forEach(x=>{u[x]=0,c[x]=1,f.splice(x,0,1)});let{begin:A,end:y,strides:g}=jg(f,d,p,u,c,h,a,s,i);u=A,c=y,h=g;let _=Uh(l);_.forEach(x=>{c[x]=u[x]+1,h[x]=1});let b=Vg(u,c,h),w=b.filter((x,N)=>_.indexOf(N)===-1);return{nonStrided:h.every(x=>x===1),$begin:u,$end:c,$strides:h,size:b,newShape:f,outShape:w}}var re={};Oe(re,{Serializable:()=>Qg,SerializationMap:()=>qs,registerClass:()=>ba});var Qg=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},qs=class{constructor(){this.classNameMap={}}static getMap(){return qs.instance==null&&(qs.instance=new qs),qs.instance}static register(e){qs.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ba(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),qs.register(e)}var e5={};Oe(e5,{TEST_EPSILON_FLOAT16:()=>t5,encodeStrings:()=>n5,expectArrayBuffersEqual:()=>T9,expectArraysClose:()=>v9,expectArraysEqual:()=>I9,expectNumbersClose:()=>N9,expectPromiseToFail:()=>k9,expectValuesInRange:()=>S9,testEpsilon:()=>J1});var E9=.001,t5=.1;function v9(e,t,n){return n==null&&(n=J1()),Q1(e,t,(r,a)=>ef(r,a,n))}function J1(){return $.backend.floatPrecision()===32?E9:t5}function Q1(e,t,n){let r=!0;if((nn(e)||nn(t))&&(r=!1),nn(e)&&nn(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=kr(e),o=kr(t);if(!Gr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=nn(e)?e:Ga(e),s=nn(t)?t:Ga(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}. -Actual: ${a}. -Expected: ${s}.`);for(let i=0;it.fail(),()=>t())}function I9(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return pa(e)||pa(e[0])||pa(t)||pa(t[0])?Q1(e,n,(r,a)=>r==a):Q1(e,t,(r,a)=>ef(r,a,0))}function N9(e,t,n){if(n==null&&(n=J1()),!ef(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function ef(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function S9(e,t,n){for(let r=0;rn)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function T9(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function n5(e){for(let t=0;tt.dispose())}function Wt(e){return $.keep(e)}function O9(e){return $.time(e)}function D9(e){return $.setBackend(e)}function z9(){return $.ready()}function P9(){return $.backendName}function L9(e){$.removeBackend(e)}function nf(e){return $.findBackend(e)}function W9(e){return $.findBackendFactory(e)}function Ho(e,t,n=1){return $.registerBackend(e,t,n)}function r5(){return $.backend}function B9(e,t){J().setPlatform(e,t)}function V9(e,t){let n=R(e,"a","add"),r=R(t,"b","add");[n,r]=gt(n,r);let a={a:n,b:r};return $.runKernel(ma,a)}var se=O({add_:V9});function U9(e,t){let n=R(e,"a","floorDiv"),r=R(t,"b","floorDiv");[n,r]=gt(n,r);let a={a:n,b:r};return $.runKernel(ls,a)}var Hh=O({floorDiv_:U9});function j9(e,t){let n=R(e,"a","div"),r=R(t,"b","div");if([n,r]=gt(n,r),n.dtype==="int32"&&r.dtype==="int32")return Hh(n,r);let a={a:n,b:r},s={};return $.runKernel(ss,a,s)}var we=O({div_:j9});function H9(e,t){let n=R(e,"a","mul"),r=R(t,"b","mul");[n,r]=gt(n,r);let a={a:n,b:r};return $.runKernel(ws,a)}var P=O({mul_:H9});function G9(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return $.runKernel(Zl,n)}else{let n={x:t};return $.runKernel(Di,n)}}var Mt=O({abs_:G9});function q9(e){let t={x:R(e,"x","acos")};return $.runKernel(zi,t)}var rf=O({acos_:q9});function X9(e){let t={x:R(e,"x","acosh")};return $.runKernel(Pi,t)}var af=O({acosh_:X9});function K9(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>R(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!Gr(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return $.runKernel(Xa,r)}var Go=O({addN_:K9});function Z9(e,t=null,n=!1){let r={x:R(e,"x","all","bool")},a={axis:t,keepDims:n};return $.runKernel(rh,r,a)}var Gh=O({all_:Z9});function Y9(e,t=null,n=!1){let r={x:R(e,"x","any","bool")},a={axis:t,keepDims:n};return $.runKernel(ah,r,a)}var wu=O({any_:Y9});function J9(e,t=0){let n={x:R(e,"x","argMax")},r={axis:t};return $.runKernel(Ka,n,r)}var _u=O({argMax_:J9});function Q9(e,t=0){let n={x:R(e,"x","argMin")},r={axis:t};return $.runKernel(ql,n,r)}var sf=O({argMin_:Q9});function eI(e){let t={x:R(e,"x","asin")};return $.runKernel(Li,t)}var of=O({asin_:eI});function tI(e){let t={x:R(e,"x","asinh")};return $.runKernel(Wi,t)}var lf=O({asinh_:tI});function nI(e){let t={x:R(e,"x","atan")};return $.runKernel(Bi,t)}var uf=O({atan_:nI});function rI(e,t){let n=R(e,"a","atan2"),r=R(t,"b","atan2");[n,r]=gt(n,r);let a={a:n,b:r};return $.runKernel(Ui,a)}var cf=O({atan2_:rI});function aI(e){let t={x:R(e,"x","atanh")};return $.runKernel(Vi,t)}var hf=O({atanh_:aI});function sI(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=a5(a);return bu(e,o,n,s,r,null,null,l)}function s5(e,t,n,r,a,s,i="channelsLast"){let[o,l]=qh(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return bu(e,u,n,r,a,s,!1,i)}function iI(e,t,n,r,a,s,i="NDHWC"){let[o,l,u]=df(t),c,h;if(i==="NDHWC")h="channelsLast",c=[o,l,u,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",c=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return i5(e,c,n,r,a,!1,h,s)}function bu(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,u,c,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,h]=e;else if(o==="channelsFirst")[l,h,u,c]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,m]=t,[f,A]=qh(n),[y,g]=qh(r),_=qo(d,y),b=qo(p,g),{padInfo:w,outHeight:x,outWidth:N}=oI(a,u,c,f,A,_,b,s,o),T=i?m*h:m,E;return o==="channelsFirst"?E=[l,T,x,N]:o==="channelsLast"&&(E=[l,x,N,T]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:c,inChannels:h,outHeight:x,outWidth:N,outChannels:T,padInfo:w,strideHeight:f,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:_,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:g,inShape:e,outShape:E,filterShape:t}}function i5(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,u,c,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,h,d]=e;else if(i==="channelsFirst")[l,d,u,c,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,m,f,,A]=t,[y,g,_]=df(n),[b,w,x]=df(r),N=qo(p,b),T=qo(m,w),E=qo(f,x),{padInfo:M,outDepth:D,outHeight:L,outWidth:W}=lI(a,u,c,h,y,g,_,N,T,E,o),U=s?A*d:A,j;return i==="channelsFirst"?j=[l,U,D,L,W]:i==="channelsLast"&&(j=[l,D,L,W,U]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:c,inWidth:h,inChannels:d,outDepth:D,outHeight:L,outWidth:W,outChannels:U,padInfo:M,strideDepth:y,strideHeight:g,strideWidth:_,filterDepth:p,filterHeight:m,filterWidth:f,effectiveFilterDepth:N,effectiveFilterHeight:T,effectiveFilterWidth:E,dilationDepth:b,dilationHeight:w,dilationWidth:x,inShape:e,outShape:j,filterShape:t}}function uI(e,t,n,r,a){r==null&&(r=pf(e,t,n));let s=e[0],i=e[1],o=Xs((s-t+2*r)/n+1,a),l=Xs((i-t+2*r)/n+1,a);return[o,l]}function cI(e,t,n,r,a,s){a==null&&(a=pf(e,t,r));let i=e[0],o=e[1],l=e[2],u=Xs((i-t+2*a)/r+1,s),c=Xs((o-t+2*a)/r+1,s),h=Xs((l-t+2*a)/r+1,s);return[u,c,h,n]}function pf(e,t,n,r=1){let a=qo(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function qh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function df(e){return typeof e=="number"?[e,e,e]:e}function qo(e,t){return t<=1?e:e+(e-1)*(t-1)}function oI(e,t,n,r,a,s,i,o,l){let u,c,h;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=uI([t,n],s,r,e,o);c=d[0],h=d[1]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(c-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),m=Math.floor(d/2),f=d-m,A=Math.floor(p/2),y=p-A;u={top:m,bottom:f,left:A,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:p,left:m,right:f,type:d===0&&p===0&&m===0&&f===0?"VALID":"EXPLICIT"},c=Xs((t-s+d+p)/r+1,o),h=Xs((n-i+m+f)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:h}}function lI(e,t,n,r,a,s,i,o,l,u,c){let h,d,p,m;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=cI([t,n,r,1],o,1,a,e,c);d=f[0],p=f[1],m=f[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),m=Math.ceil(r/i);let f=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(m-1)*i+u-r,g=Math.floor(f/2),_=f-g,b=Math.floor(A/2),w=A-b,x=Math.floor(y/2),N=y-x;h={top:b,bottom:w,left:x,right:N,front:g,back:_,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),m=Math.ceil((r-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:m}}function Xs(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function va(e){let[t,n,r]=qh(e);return t===1&&n===1&&r===1}function Nr(e,t){return va(e)||va(t)}function a5(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function hI(e,t){let n={x:R(e,"x","reshape","string_or_numeric")},r={shape:t};return $.runKernel(_o,n,r)}var H=O({reshape_:hI});function dI(e,t,n,r,a){let s=R(e,"x","avgPool","float32"),i=1;F(Nr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&F(Lt(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(Za,u,c);return h=fe(h,s.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var vu=O({avgPool_:dI});function pI(e,t,n,r,a,s="NDHWC"){let i=R(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(Lt(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(Xl,u,c);return h=fe(h,o.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var ff=O({avgPool3d_:pI});function fI(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=gu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor - with dtype ${s.dtype}. `)}),n.length===1)return Jn(n[0]);let r=n,a={axis:t};return $.runKernel(ji,r,a)}var nt=O({concat_:fI});function mI(e){let t={x:R(e,"x","sigmoid")};return $.runKernel(Fs,t)}var In=O({sigmoid_:mI});function AI(e,t,n){let r=R(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return $.runKernel(Io,a,s)}var Ee=O({slice_:AI});function yI(e){let t={x:R(e,"x","tanh")};return $.runKernel(Ps,t)}var Xo=O({tanh_:yI});function gI(e,t,n,r,a,s){let i=R(e,"forgetBias","basicLSTMCell"),o=R(t,"lstmKernel","basicLSTMCell"),l=R(n,"lstmBias","basicLSTMCell"),u=R(r,"data","basicLSTMCell"),c=R(a,"c","basicLSTMCell"),h=R(s,"h","basicLSTMCell"),d=nt([u,h],1),p=Ue(d,o),m=se(p,l),f=m.shape[0],A=m.shape[1]/4,y=[f,A],g=Ee(m,[0,0],y),_=Ee(m,[0,A],y),b=Ee(m,[0,A*2],y),w=Ee(m,[0,A*3],y),x=se(P(In(g),Xo(_)),P(c,In(se(i,b)))),N=P(Xo(x),In(w));return[x,N]}var xI=O({basicLSTMCell_:gI});function wI(e,t,n){let r=R(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);F(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return $.runKernel(Kl,s,i)}var ku=O({batchToSpaceND_:wI});function _I(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function bI(e,t,n,r,a,s){s==null&&(s=.001);let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;r!=null&&(c=R(r,"offset","batchNorm")),F(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:_I(i),scale:u,offset:c,mean:o,variance:l},d={varianceEpsilon:s},p=$.runKernel(us,h,d);return H(p,i.shape)}var Ks=O({batchNorm_:bI});function vI(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;return r!=null&&(c=R(r,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Ks(i,o,l,c,u,s)}var o5=O({batchNorm2d_:vI});function kI(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;return r!=null&&(c=R(r,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Ks(i,o,l,c,u,s)}var l5=O({batchNorm3d_:kI});function II(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;return r!=null&&(c=R(r,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Ks(i,o,l,c,u,s)}var u5=O({batchNorm4d_:II});function NI(e,t,n){let r=R(e,"x","bincount"),a=R(t,"weights","bincount");F(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return $.runKernel(oh,s,i)}var c5=O({bincount_:NI});function SI(e,t){let n=R(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let l=n.shape.slice();for(;l.length=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Jn(n);let i={x:n},o={reps:s};return $.runKernel(ya,i,o)}var Iu=O({broadcastTo_:SI});function TI(e){let t={x:R(e,"x","ceil")};return $.runKernel(Qa,t)}var mf=O({ceil_:TI});function EI(e,t,n){let r=R(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return $.runKernel(Aa,a,s)}var An=O({clipByValue_:EI});function CI(e){return nt(e,0)}var h5=O({concat1d_:CI});function RI(e,t){return nt(e,t)}var Ko=O({concat2d_:RI});function FI(e,t){return nt(e,t)}var d5=O({concat3d_:FI});function MI(e,t){return nt(e,t)}var p5=O({concat4d_:MI});function $I(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","conv2d"),l=R(t,"filter","conv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&F(Lt(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?u.shape[3]:u.shape[1];F(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),F(Nr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:u,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},m=$.runKernel(es,d,p);return c?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Xr=O({conv2d_:$I});function OI(e,t,n,r,a="NWC",s=1,i){let o=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),u=o,c=!1;o.rank===2&&(c=!0,u=H(o,[1,o.shape[0],o.shape[1]])),F(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),F(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&F(Lt(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),F(Nr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),F(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=H(u,[u.shape[0],1,u.shape[1],u.shape[2]]),p=Xr(d,h,[1,n],r,"NHWC",[1,s],i);return c?H(p,[p.shape[2],p.shape[3]]):H(p,[p.shape[0],p.shape[2],p.shape[3]])}var Xh=O({conv1d_:OI});function DI(e,t,n,r,a,s="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];F(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),F(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&F(Lt(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},m=$.runKernel(ts,d,p);return u?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Af=O({conv2DBackpropInput_:DI});function zI(e,t,n,r,a,s){let i=R(e,"x","conv2dTranspose"),o=R(t,"filter","conv2dTranspose");return Af(n,i,o,r,a,"NHWC",s)}var Kh=O({conv2dTranspose_:zI});function PI(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=R(e,"x","conv3d"),o=R(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(Nr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let c={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=$.runKernel(Yl,c,h);return u?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var yf=O({conv3d_:PI});function LI(e,t,n,r,a){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];F(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),F(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=$.runKernel(hh,c,h);return o?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var f5=O({conv3DBackpropInput_:LI});function WI(e,t,n,r,a){let s=R(e,"x","conv3dTranspose"),i=R(t,"filter","conv3dTranspose");return f5(n,s,i,r,a)}var BI=O({conv3dTranspose_:WI});function VI(e){let t={x:R(e,"x","cos")};return $.runKernel(ns,t)}var Nu=O({cos_:VI});function UI(e){let t={x:R(e,"x","cosh")};return $.runKernel(Hi,t)}var Zh=O({cosh_:UI});function jI(e,t=0,n=!1,r=!1){let a={x:R(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return $.runKernel(rs,a,s)}var Yh=O({cumsum_:jI});function HI(e,t,n,r=!1){let a=R(e,"x","denseBincount"),s=R(t,"weights","denseBincount");F(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),F(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return $.runKernel(dh,i,o)}var m5=O({denseBincount_:HI});function GI(e,t,n="NHWC"){let r=R(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];F(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying - ${a} and ${t} for depthToSpace with input shape - ${r.shape}`),F(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying - ${s} and ${t} for depthToSpace with input shape - ${r.shape}`),F(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return $.runKernel(qi,o,l)}var gf=O({depthToSpace_:GI});function qI(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","depthwiseConv2d"),l=R(t,"filter","depthwiseConv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&F(Lt(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:u,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=$.runKernel(as,h,d);return c?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Zo=O({depthwiseConv2d_:qI});function XI(e){let t={x:R(e,"x","diag")};return $.runKernel(mh,t)}var KI=O({diag_:XI});function ZI(e,t,n,r,a=[1,1],s="NHWC"){let i=R(e,"x","dilation2d"),o=R(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let c={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=$.runKernel(Jl,c,h);return u?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var xf=O({dilation2d_:ZI});function YI(e,t){let n=e.length,r=[];for(let a=0;a1&&i===1&&r.unshift(s)}return r}function $t(e,t){let n=[];for(let r=0;r1)&&n.unshift(s)}return n}function pt(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&tn(s.shape,l.shape,"Error in where: ");let u={condition:s,t:o,e:l};return $.runKernel(vo,u)}var yn=O({where_:QI});function eN(e){let t={x:R(e,"x","zerosLike")};return $.runKernel($o,t)}var Be=O({zerosLike_:eN});function tN(e,t){let n=R(e,"a","div"),r=R(t,"b","div");[n,r]=gt(n,r);let a=we(n,r),s=Be(a),i=ka(r,s);return yn(i,s,a)}var wf=O({divNoNan_:tN});function nN(e,t){let n=R(e,"t1","dot"),r=R(t,"t2","dot");F((n.rank===1||n.rank===2)&&(r.rank===1||r.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(F(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=H(n,[1,-1]),o=H(r,[-1,1]),l=Ue(i,o);return H(l,[])}else if(n.rank===1&&r.rank===2){let i=H(n,[1,-1]),o=H(r,[r.shape[0],r.shape[1]]),l=Ue(i,o);return H(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=H(r,[-1,1]),o=Ue(n,i);return H(o,[o.size])}else{let i=H(r,[r.shape[0],r.shape[1]]);return Ue(n,i)}}var A5=O({dot_:nN});function rN(e){let t={x:R(e,"x","elu")};return $.runKernel(Xi,t)}var Yo=O({elu_:rN});function aN(e){let t=R(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=fe(t,"float32"));let n={x:t};return $.runKernel(Ki,n)}var _f=O({erf_:aN});function sN(e){let t={x:R(e,"x","exp")};return $.runKernel(is,t)}var Vn=O({exp_:sN});function iN(e,t=0){let n=R(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return $.runKernel(Yi,r,a)}var Nn=O({expandDims_:iN});function oN(e){let t={x:R(e,"x","expm1")};return $.runKernel(Ji,t)}var bf=O({expm1_:oN});function lN(e,t){let n=R(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return $.runKernel(ya,r,a)}var Ia=O({tile_:lN});function uN(e,t,n,r="float32"){t==null&&(t=e);let a=Pe([e,t],r),s=e<=t?e:t;for(let o=0;o`Error in localResponseNormalization: x must be rank 3 or 4 but got - rank ${s.rank}.`),F(Lt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:r,beta:a},c=$.runKernel(nu,l,u);return o?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var kf=O({localResponseNormalization_:_N});function bN(e){let t={x:R(e,"x","log")};return $.runKernel(ps,t)}var Sn=O({log_:bN});function vN(e){let t={x:R(e,"x","log1p")};return $.runKernel(lo,t)}var ed=O({log1p_:vN});function kN(e){return F(fa(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=R(t,"x","tf.grad","string_or_numeric"),a=n!=null?R(n,"dy","tf.grad"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(r),[r],a);return a!=null&&tn(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),td(i),i[0]})}}function IN(e){return F(fa(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=gu(t,"args","tf.grads","string_or_numeric"),a=n!=null?R(n,"dy","tf.grads"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(...r),r,a);return a!=null&&tn(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),td(i),i})}}function NN(e){return F(fa(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof Xe,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof Xe,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=$.gradients(()=>e(t),[t],n);return td(r),{grad:r[0],value:a}}}function SN(e){return F(fa(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(a=>a instanceof Xe),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof Xe,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=$.gradients(()=>e(...t),t,n);return n!=null&&tn(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),td(r.grads),r}}function _5(e,t){F(fa(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(u=>u instanceof Au),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in $.registeredVariables)t.push($.registeredVariables[u])}let r=n?t.filter(u=>!u.trainable):null,a=t.length;t=t.filter(u=>u.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=$.gradients(e,t,null,s);F(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,c)=>{o[c]!=null&&(l[u.name]=o[c])}),r!=null&&r.forEach(u=>l[u.name]=null),{value:i,grads:l}}function Sr(e){return $.customGrad(e)}function td(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that - the f you passed encloses all operations that lead from x to y.`)}function TN(e){let t={x:R(e,"x","neg")};return $.runKernel(ho,t)}var xt=O({neg_:TN});function EN(e){let t={x:R(e,"x","softplus")};return $.runKernel(To,t)}var Qo=O({softplus_:EN});function CN(e){let t=R(e,"x","logSigmoid");return Sr(n=>({value:xt(Qo(xt(n))),gradFunc:r=>P(r,In(xt(n)))}))(t)}var b5=O({logSigmoid_:CN});function RN(e,t=null,n=!1){let r={x:R(e,"x","max")},a={reductionIndices:t,keepDims:n};return $.runKernel(fs,r,a)}var Un=O({max_:RN});function FN(e,t){let n=R(e,"a","sub"),r=R(t,"b","sub");[n,r]=gt(n,r);let a={a:n,b:r};return $.runKernel(zs,a)}var me=O({sub_:FN});function MN(e,t=null,n=!1){let r=R(e,"x","sum");r.dtype==="bool"&&(r=fe(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel($s,a,s)}var Ne=O({sum_:MN});function $N(e,t=-1){let n=R(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Sr((r,a)=>{let s=!0,i=Un(r,t,!0),o=me(r,i),l=me(fe(o,"float32"),Sn(Ne(Vn(o),t,s)));return a([l]),{value:l,gradFunc:(u,c)=>{let[h]=c,d=!0,p=Vn(h);return me(u,P(Ne(u,t,d),p))}}})(n)}var nd=O({logSoftmax_:$N});function If(e,t){for(let n=0;ne[s]);return[n,a]}function Js(e,t){let n=t.map(r=>1);return v5(e,n,t)}function ON(e,t,n){F(If(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function I5(e,t){if(If(e,t))return null;let n=[];for(let r=0;rn.push(r)),n}function Nf(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function DN(e,t){let n=[];for(let r=t-e;r`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(Nr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&F(Lt(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(As,u,c);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Cu=O({maxPool_:VN});function UN(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=R(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(Lt(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(ru,u,c);return l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Tf=O({maxPool3d_:UN});function jN(e,t,n,r,a=!1){let s={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=$.runKernel(Nh,s,i);return{result:o[0],indexes:o[1]}}var S5=O({maxPoolWithArgmax_:jN});function HN(e,t){let n=R(e,"a","maximum"),r=R(t,"b","maximum");[n,r]=gt(n,r),n.dtype==="bool"&&(n=fe(n,"int32"),r=fe(r,"int32")),pt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(ms,a)}var Tr=O({maximum_:HN});function GN(e,t=null,n=!1){let r={x:R(e,"x","mean")},a={axis:t,keepDims:n};return $.runKernel(ys,r,a)}var wt=O({mean_:GN});function qN(e,t=null,n=!1){let r={x:R(e,"x","min")},a={axis:t,keepDims:n};return $.runKernel(gs,r,a)}var el=O({min_:qN});function XN(e,t){let n=R(e,"a","minimum"),r=R(t,"b","minimum");[n,r]=gt(n,r),n.dtype==="bool"&&(n=fe(n,"int32"),r=fe(r,"int32")),pt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(xs,a)}var tl=O({minimum_:XN});function KN(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=R(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return $.runKernel(au,i,s)}var Ef=O({mirrorPad_:KN});function ZN(e,t){let n=R(e,"a","mod"),r=R(t,"b","mod");[n,r]=gt(n,r);let a={a:n,b:r};return $.runKernel(co,a)}var Cf=O({mod_:ZN});function YN(e){let t=R(e,"x","square"),n={};return $.runKernel("Square",{x:t},n)}var st=O({square_:YN});function JN(e,t=null,n=!1){e=R(e,"x","moments");let r=Zn(t,e.shape),a=wt(e,r,n),s=a.shape;n||(s=Js(a.shape,r));let i=st(me(fe(e,"float32"),H(a,s))),o=wt(i,r,n);return{mean:a,variance:o}}var ad=O({moments_:JN});function QN(e,t,n,r){let a=R(t,"data","multiRNNCell"),s=gu(n,"c","multiRNNCell"),i=gu(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},u=$.runKernel(Sh,o,l);return i===1?H(u,[u.size]):u}var T5=O({multinomial_:tS});function nS(e,t){let n=R(e,"a","notEqual"),r=R(t,"b","notEqual");[n,r]=gt(n,r),pt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(po,a)}var Qs=O({notEqual_:nS});function Nt(e,t="float32"){if(t==="complex64"){let r=Nt(e,"float32"),a=Nt(e,"float32");return xa(r,a)}let n=nh(Rt(e),t);return $.makeTensor(n,e,t)}function Er(e,t="float32"){if(t==="complex64"){let r=Er(e,"float32"),a=Nt(e,"float32");return xa(r,a)}let n=b1(Rt(e),t);return $.makeTensor(n,e,t)}function rS(e){let t={x:R(e,"x","onesLike")};return $.runKernel(yo,t)}var Tn=O({onesLike_:rS});function aS(e,t){let n=R(e,"v1","outerProduct"),r=R(t,"v2","outerProduct");F(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=H(n,[-1,1]),s=H(r,[1,-1]);return Ue(a,s)}var sS=O({outerProduct_:aS});function iS(e,t,n=0){let r=R(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return $.runKernel(bs,s,a)}var Kr=O({pad_:iS});function oS(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Kr(e,[t],n)}var lS=O({pad1d_:oS});function uS(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Kr(e,t,n)}var cS=O({pad2d_:uS});function hS(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Kr(e,t,n)}var dS=O({pad3d_:hS});function pS(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Kr(e,t,n)}var fS=O({pad4d_:pS});function mS(e,t,n){let r=R(e,"x","spaceToBatchND");F(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return $.runKernel(ou,a,s)}var Ru=O({spaceToBatchND_:mS});function gS(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=R(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),F(Nr(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let u=s5(o.shape,t,s,a,r),c=[u.dilationHeight,u.dilationWidth],h;r==="same"?h=yS([u.filterHeight,u.filterWidth],c):h=[[0,0],[0,0]];let d=c[0]===1&&c[1]===1,[p,m]=AS([u.inHeight,u.inWidth],c,h),f=d?r:"valid",A=d?o:Ru(o,c,p),y=(n==="avg"?()=>vu(A,t,s,f):()=>Cu(A,t,s,f))(),g=d?y:ku(y,c,m);return l?H(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function AS(e,t,n){let r=n.map(c=>c[0]),a=n.map(c=>c[1]),s=e.concat(r,a),i=t.map((c,h)=>(c-s[h]%c)%c),o=a.map((c,h)=>c+i[h]),l=t.map((c,h)=>[r[h],o[h]]),u=t.map((c,h)=>[0,i[h]]);return[l,u]}function yS(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var E5=O({pool_:gS});function xS(e,t){let n=R(e,"base","pow"),r=R(t,"exp","pow");[n,r]=gt(n,r);let a={a:n,b:r};return $.runKernel(vs,a)}var Zr=O({pow_:xS});function wS(e,t){let n=R(e,"x","prelu"),r=R(t,"alpha","prelu"),a={x:n,alpha:r};return $.runKernel(ks,a)}var Fu=O({prelu_:wS});function _S(e,t=null,n=!1){let r=R(e,"x","prod");r.dtype==="bool"&&(r=fe(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(xo,a,s)}var sd=O({prod_:_S});function bS(e,t,n){let r=Rt(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},kS=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Rf.alea(a.toString()),this.randn=new Ff(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),athis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Rf.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function NS(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new kS(t,n,r,a),i=Pe(e,r);for(let o=0;o`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),En(t,0)}var DS=O({reverse1d_:OS});function zS(e,t){let n=R(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),En(n,t)}var PS=O({reverse2d_:zS});function LS(e,t){let n=R(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),En(n,t)}var WS=O({reverse3d_:LS});function BS(e,t){let n=R(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),En(n,t)}var VS=O({reverse4d_:BS});function US(e){let t={x:R(e,"x","round")};return $.runKernel(Es,t)}var $f=O({round_:US});function jS(e){let t={x:R(e,"x","rsqrt")};return $.runKernel(Cs,t)}var ld=O({rsqrt_:jS});function _e(e,t){if((nn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&nn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return wa(e,[],[],t)}function HS(e){let t={x:R(e,"x","selu")};return $.runKernel(ko,t)}var ud=O({selu_:HS});function GS(e,t,n,r,a,s=[1,1],i="NHWC"){let o=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),u=R(n,"pointwiseFilter","separableConv2d"),c=o,h=!1;if(o.rank===3&&(h=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),F(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],p=l.shape[3];F(u.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${u.shape[2]}.`);let m=Zo(c,l,r,a,i,s),f=Xr(m,u,1,"valid",i);return h?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Of=O({separableConv2d_:GS});async function qS(e,t){let n=R(e,"x","setdiff1d"),r=R(t,"y","setdiff1d");F(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let c=0;c`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Ee(r,[t],[n])}var dd=O({slice1d_:YS});function JS(e,t,n){let r=R(e,"x","slice2d");return F(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Ee(r,t,n)}var zf=O({slice2d_:JS});function QS(e,t,n){let r=R(e,"x","slice3d");return F(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Ee(r,t,n)}var pd=O({slice3d_:QS});function eT(e,t,n){let r=R(e,"x","slice4d");return F(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Ee(r,t,n)}var $u=O({slice4d_:eT});function tT(e,t=-1){let n=R(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return $.runKernel(Os,r,a)}var Ou=O({softmax_:tT});function nT(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(xh,t)}var Du=O({fft_:nT});function rT(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(wh,t)}var rl=O({ifft_:rT});function aT(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=H(e,[n,t]);r=rl(a)}else{let a=[n,2*(t-1)],s=H(Mu(e),[n,t]),i=H(Jh(e),[n,t]),o=En(Ee(s,[0,1],[n,t-2]),1),l=P(En(Ee(i,[0,1],[n,t-2]),1),_e(-1)),u=nt([s,o],1),c=nt([i,l],1),h=H(xa(u,c),[a[0],a[1]]);r=rl(h)}if(r=Mu(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=H(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var fd=O({irfft_:aT});function sT(e,t,n=0){let r={x:R(e,"x","split")},a={numOrSizeSplits:t,axis:n};return $.runKernel(Eo,r,a)}var Zt=O({split_:sT});function iT(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t0),f=e.shape.map(A=>A);f[e.shape.length-1]=t,a=Ee(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,a=nt([e,Nt(m)],e.shape.length-1),n=t}else a=e;let s=Be(a),i=H(xa(a,s),[r,n]),o=Du(i),l=Math.floor(n/2)+1,u=Mu(o),c=Jh(o),h=Zt(u,[l,n-l],u.shape.length-1),d=Zt(c,[l,n-l],c.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,H(xa(h[0],d[0]),p)}var zu=O({rfft_:iT});function oT(e){let t={x:R(e,"x","sqrt")};return $.runKernel(Ms,t)}var Yt=O({sqrt_:oT});function lT(e,t){let n=R(e,"a","squaredDifference"),r=R(t,"b","squaredDifference");[n,r]=gt(n,r),pt(n.shape,r.shape);let a={a:n,b:r},s={};return $.runKernel(Ds,a,s)}var md=O({squaredDifference_:lT});function uT(e,t){let n=R(e,"x","squeeze");return H(n,Q2(n.shape,t).newShape)}var Sa=O({squeeze_:uT});function cT(e,t=0){let n=gu(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return $.runKernel(go,r,a)}var Cn=O({stack_:cT});function hT(e,t=0){let n={x:R(e,"x","step")},r={alpha:t};return $.runKernel(ga,n,r)}var al=O({step_:hT});function dT(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let u={x:R(e,"x","stridedSlice")},c={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return $.runKernel(Co,u,c)}var Pf=O({stridedSlice_:dT});function pT(e){let t={x:R(e,"x","tan")};return $.runKernel(Ro,t)}var Lf=O({tan_:pT});function Bt(e,t){Ha(e);let n=kr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return wa(e,null,n,t)}function gn(e,t,n){if(Ha(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=kr(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return wa(e,t,r,n)}function fT(e,t,n){if(Ha(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=kr(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return wa(e,t,r,n)}function mT(e,t,n){if(Ha(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=kr(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return wa(e,t,r,n)}function AT(e,t,n){if(Ha(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=kr(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,wa(e,t,r,n)}function yT(e,t=1,n=!0){let r=R(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=$.runKernel(Fo,s,i);return{values:o,indices:l}}var Wf=O({topk_:yT});function gT(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Ff(t,n,r,!0,a),i=Pe(e,r);for(let o=0;o0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=$.runKernel(Fh,r,a);return{values:s,indices:i}}var yd=O({unique_:xT});function wT(e,t,n){let r=R(e,"x","unsortedSegmentSum"),a=R(t,"segmentIds","unsortedSegmentSum","int32");F(Lt(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return $.runKernel(uu,s,i)}var Bf=O({unsortedSegmentSum_:wT});function _T(e,t=0){let n=R(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return $.runKernel(Mo,r,a)}var tr=O({unstack_:_T});function F5(e,t=!0,n,r){return $.makeVariable(e,t,n,r)}function M5(e,t){let n=[];for(let s=0;s0,()=>"mask cannot be scalar"),tn(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f"Shape mismatch in v and x");let l=_e(1),u=me(l,o),c=P(me(i,s),u);if(a){F(r!=null,()=>"When using zeroDebias: true, step is required.");let h=R(r,"step","movingAverage");c=we(c,me(l,Zr(o,h)))}return se(s,c)}var ST=O({movingAverage_:NT});function TT(e,t,n){let r=R(e,"indices","scatterND","int32"),a=R(t,"updates","scatterND");Y1(a,r,n);let s={indices:r,updates:a},i={shape:n};return $.runKernel(bo,s,i)}var O5=O({scatterND_:TT});function ET(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function CT(e,t,n,r=0){let a=R(e,"sparseIndices","sparseToDense","int32"),s=R(t,"sparseValues","sparseToDense"),i=R(r,"defaultValue","sparseToDense",s.dtype);ET(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return $.runKernel(Rh,o,l)}var Uf=O({sparseToDense_:CT});function RT(e,t){let n=R(t,"indices","gatherND","int32"),r={params:R(e,"x","gatherND"),indices:n};return $.runKernel(to,r)}var D5=O({gatherND_:RT});function FT(e,t){if(t==null)return e.shape.slice();if(Gr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Xe?a.clone():a;let s=FT(a,n),i=1-t,o=we(Jo(se(nl(s,0,1,"float32",r),i)),i);return P(a,o)}var z5=O({dropout_:MT});function P5(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function jf(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),F(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),tn(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];F(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,u]=[i.length/s,s],c=eg("bool",l);for(let h=0;hA.value-f.value),c[h]=0;for(let f=0;fDT,depthwiseConv2d:()=>zT,matMul:()=>PT});function LT(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];F(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),F(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),i!=null&&F(Lt(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return $.runKernel(uh,h,d)}var Hf=O({conv2DBackpropFilter_:LT});function xd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return P(e,al(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function wd(e,t){let n=t,r=$t(e.shape,t.shape);return r.length>0&&(n=Ne(n,r)),H(n,e.shape)}function _d(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Cr(e);if(t==="elu")return Yo(e);if(t==="relu6")return od(e);if(t==="prelu")return Fu(e,n);if(t==="leakyrelu")return Tu(e,r);throw new Error(`Unknown fused activation ${t}.`)}var bd=(e,t)=>!(e>0)||t==="linear";function WT({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",bd($.state.gradientDepth,l)===!1){let w=Xr(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),_d(w,l,u,c)}let h=R(e,"x","conv2d"),d=R(t,"filter","conv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&F(Lt(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),F(Nr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let f=bu(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=gt(A,h),pt(f.outShape,A.shape));let y;u!=null&&(y=R(u,"prelu weights","fused conv2d"));let g=(w,x)=>{let[N,T,E,M]=x,D=xd(w,E,l);F(va(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let L=Af(T.shape,D,N,n,r),W=Hf(T,D,N.shape,n,r),U=[L,W];if(M!=null){let j=wd(M,D);U.push(j)}return U},_={x:p,filter:d,bias:A,preluActivationWeights:y},b={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Sr((w,x,N)=>{let T=$.runKernel(Bs,_,b);return N([x,w,T]),m&&(T=H(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Sr((w,x,N,T)=>{let E=$.runKernel(Bs,_,b);return T([x,w,E,N]),m&&(E=H(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(p,d,A)}var DT=O({fusedConv2d_:WT});function BT(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return $.runKernel(ph,u,c)}var L5=O({depthwiseConv2dNativeBackpropFilter_:BT});function VT(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=$.runKernel(fh,u,c);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var W5=O({depthwiseConv2dNativeBackpropInput_:VT});function UT({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(bd($.state.gradientDepth,l)===!1){let w=Zo(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),_d(w,l,u,c)}let h=R(e,"x","depthwiseConv2d"),d=R(t,"filter","depthwiseConv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),F(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),F(Nr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&F(Lt(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let f=bu(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=gt(A,h),pt(f.outShape,A.shape));let y;u!=null&&(y=R(u,"prelu weights","fused depthwiseConv2d"));let g=(w,x)=>{F(va(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[N,T,E,M]=x,D=xd(w,E,l),L=W5(T.shape,D,N,n,r,s,i),W=L5(T,D,N.shape,n,r,s,i);if(M!=null){let U=wd(A,D);return[L,W,U]}return[L,W]},_={x:p,filter:d,bias:A,preluActivationWeights:y},b={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Sr((w,x,N)=>{let T=$.runKernel(Vs,_,b);return N([x,w,T]),m&&(T=H(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Sr((w,x,N,T)=>{let E=$.runKernel(Vs,_,b);return T([x,w,E,N]),m&&(E=H(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(p,d,A)}var zT=O({fusedDepthwiseConv2d_:UT});function jT({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(bd($.state.gradientDepth,s)===!1){let M=Ue(e,t,n,r);return a!=null&&(M=se(M,a)),_d(M,s,i,o)}let l=R(e,"a","fused matMul"),u=R(t,"b","fused matMul");[l,u]=gt(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?u.shape[u.rank-1]:u.shape[u.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),A=Rt(m),y=Rt(f);F(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),F(Gr(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),F(c===h,()=>`Error in fused matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),_=n?H(l,[A,c,d]):H(l,[A,d,c]),b=r?H(u,[y,p,h]):H(u,[y,h,p]),w;a!=null&&(w=R(a,"bias","fused matMul"),[w]=gt(w,l),pt(g,w.shape));let x;i!=null&&(x=R(i,"prelu weights","fused matMul"));let N=(M,D)=>{let[L,W,U,j]=D,X=xd(H(M,U.shape),U,s),G,ee;if(!n&&!r?(G=Ue(X,W,!1,!0),ee=Ue(L,X,!0,!1)):!n&&r?(G=Ue(X,W,!1,!1),ee=Ue(X,L,!0,!1)):n&&!r?(G=Ue(W,X,!1,!0),ee=Ue(L,X,!1,!1)):(G=Ue(W,X,!0,!0),ee=Ue(X,L,!0,!0)),a!=null){let Y=wd(j,X);return[G,ee,Y]}else return[G,ee]},T={a:_,b,bias:w,preluActivationWeights:x},E={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?Sr((M,D,L)=>{let W=$.runKernel(Ws,T,E);return L([M,D,W]),{value:H(W,g),gradFunc:N}})(_,b):Sr((M,D,L,W)=>{let U=$.runKernel(Ws,T,E);return W([M,D,U,L]),{value:H(U,g),gradFunc:N}})(_,b,w)}var PT=O({fusedMatMul_:jT});function HT(e){return jf(e,.54,.46)}var GT=O({hammingWindow_:HT});function qT(e){return jf(e,.5,.5)}var B5=O({hannWindow_:qT});function XT(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Ee(e,s,t)),s+=n;if(r)for(;s`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),F(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),F(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),F(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),F(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let c={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return $.runKernel(Gi,c,h)}var JT=O({cropAndResize_:YT});function QT(e){let t=R(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return $.runKernel(Qi,n,{})}var eE=O({flipLeftRight_:QT});function tE(e,t,n=0,r=.5){let a=R(e,"image","rotateWithOffset","float32");F(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return $.runKernel(Oo,s,i)}var nE=O({rotateWithOffset_:tE});function sl(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function rE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppression"),i=R(t,"scores","nonMaxSuppression"),o=sl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return $.runKernel(fo,{boxes:s,scores:i},l)}var aE=O({nonMaxSuppression_:rE});function iE(e,t,n){let r=sE(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function sE(e,t,n){return lE(e,t,n||oE)}function oE(e,t){return e>t?1:e>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function U5(e,t,n,r,a){return Gf(e,t,n,r,a,0)}function j5(e,t,n,r,a,s){return Gf(e,t,n,r,a,0,!1,s,!0)}function H5(e,t,n,r,a,s){return Gf(e,t,n,r,a,s,!0)}function Gf(e,t,n,r,a,s,i=!1,o=!1,l=!1){let u=[];for(let A=0;Aa&&u.push({score:t[A],boxIndex:A,suppressBeginIndex:0});u.sort(G5);let c=s>0?-.5/s:0,h=[],d=[];for(;h.length0;){let A=u.pop(),{score:y,boxIndex:g,suppressBeginIndex:_}=A;if(y=_;--w){let x=uE(e,g,h[w]);if(x>=r){b=!0;break}if(A.score=A.score*cE(r,c,x),A.score<=a)break}A.suppressBeginIndex=h.length,b||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&iE(u,A,G5))}let p=h.length,m=n-p;o&&m>0&&(h.push(...new Array(m).fill(0)),d.push(...new Array(m).fill(0)));let f={selectedIndices:h};return i&&(f.selectedScores=d),l&&(f.validOutputs=p),f}function uE(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),u=Math.min(a[0],a[2]),c=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),m=(h-u)*(d-c);if(p<=0||m<=0)return 0;let f=Math.max(s,u),A=Math.max(i,c),y=Math.min(o,h),g=Math.min(l,d),_=Math.max(y-f,0)*Math.max(g-A,0);return _/(p+m-_)}function cE(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function G5(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function hE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),o=sl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],c=l[1],{selectedIndices:h}=U5(u,c,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),Bt(h,"int32")}var dE=hE;function pE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=sl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},c={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=$.runKernel(Ao,u,c);return{selectedIndices:h[0],selectedScores:h[1]}}var fE=O({nonMaxSuppressionWithScore_:pE});async function mE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=sl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),c=u[0],h=u[1],{selectedIndices:d,selectedScores:p}=H5(c,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Bt(d,"int32"),selectedScores:Bt(p)}}var AE=mE;function yE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=sl(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:u,iouThreshold:c,scoreThreshold:h,padToMaxOutputSize:s},m=$.runKernel(mo,d,p);return{selectedIndices:m[0],validOutputs:m[1]}}var gE=O({nonMaxSuppressionPadded_:yE});async function xE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=sl(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=j5(d,p,u,c,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Bt(m,"int32"),validOutputs:_e(f,"int32")}}var wE=xE;function _E(e,t,n=!1,r=!1){let a=R(e,"images","resizeBilinear");F(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=$.runKernel(Ns,o,l);return i?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var q5=O({resizeBilinear_:_E});function bE(e,t,n=!1,r=!1){let a=R(e,"images","resizeNearestNeighbor");F(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=$.runKernel(iu,o,l);return i?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var X5=O({resizeNearestNeighbor_:bE});function vE(e,t,n){F(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=R(e,"a","bandPart");F(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(id(0,s,1,"int32"),[-1,1]),l=id(0,i,1,"int32"),u=me(o,l),c=er(Ys(u,_e(+t,"int32")),Na(u,_e(-n,"int32"))),h=Nt([s,i],r.dtype);return H(Cn(tr(H(r,[-1,s,i])).map(d=>yn(c,d,h))),a)}var kE=O({bandPart_:vE});function IE(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=Zt(e,e.shape[0],0).map(a=>Sa(a,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a{let s=r[a];if(a>0)for(let i=0;i=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return K5(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),r=tr(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[u,c]=K5(l,t);a.push(u),s.push(c)});let i=H(Cn(a,0),e.shape),o=H(Cn(s,0),e.shape);return[i,o]}}function K5(e,t=!1){return $.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=vf(n),s=Jn(e),i=gn([[1]],[1,1]),o=Jn(i),l=n>=r?r:n;for(let u=0;u{let p=Ee(s,[u,u],[n-u,1]),m=gd(p),f=Ee(s,[u,u],[1,1]),A=yn(Qn(f,0),gn([[-1]]),gn([[1]])),y=me(f,P(A,m)),g=we(p,y);g.shape[0]===1?o=Jn(i):o=nt([i,Ee(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let _=xt(we(Ue(A,y),m)),b=Ee(s,[u,0],[n-u,r]),w=P(_,o),x=tt(o);if(u===0)s=me(b,Ue(w,Ue(x,b)));else{let E=me(b,Ue(w,Ue(x,b)));s=nt([Ee(s,[0,0],[u,r]),E],0)}let N=tt(w),T=Ee(a,[0,u],[n,a.shape[1]-u]);if(u===0)a=me(T,Ue(Ue(T,o),N));else{let E=me(T,Ue(Ue(T,o),N));a=nt([Ee(a,[0,0],[n,u]),E],1)}return[o,s,a]}),Se([c,h,d])}return!t&&n>r&&(a=Ee(a,[0,0],[n,r]),s=Ee(s,[0,0],[r,r])),[a,s]})}var TE=O({qr_:SE}),sn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(sn||(sn={}));function EE(e,t,n=sn.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=R(t,"weights","computeWeightedLoss"));let s=a==null?r:P(r,a);if(n===sn.NONE)return s;if(n===sn.SUM)return Ne(s);if(n===sn.MEAN){if(a==null)return wt(s);{let i=r.size/a.size,o=we(Ne(s),Ne(a));return i>1?we(o,_e(i)):o}}if(n===sn.SUM_BY_NONZERO_WEIGHTS){if(a==null)return we(Ne(s),_e(r.size));{let i=P(a,Er(r.shape)),o=fe(Ne(Qs(i,_e(0))),"float32");return we(Ne(s),o)}}throw Error(`Unknown reduction: ${n}`)}var Yr=O({computeWeightedLoss_:EE});function CE(e,t,n,r=sn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","absoluteDifference"),s=R(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=R(n,"weights","absoluteDifference")),tn(a.shape,s.shape,"Error in absoluteDifference: ");let o=Mt(me(a,s));return Yr(o,i,r)}var RE=O({absoluteDifference_:CE});function FE(e,t,n,r,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","cosineDistance"),i=R(t,"predictions","cosineDistance"),o=null;r!=null&&(o=R(r,"weights","cosineDistance")),tn(s.shape,i.shape,"Error in cosineDistance: ");let l=_e(1),u=me(l,Ne(P(s,i),n,!0));return Yr(u,o,a)}var ME=O({cosineDistance_:FE});function $E(e,t,n,r=sn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","hingeLoss"),s=R(t,"predictions","hingeLoss"),i=null;n!=null&&(i=R(n,"weights","hingeLoss")),tn(a.shape,s.shape,"Error in hingeLoss: ");let o=_e(1);a=me(P(_e(2),a),o);let l=Cr(me(o,P(a,s)));return Yr(l,i,r)}var OE=O({hingeLoss_:$E});function DE(e,t,n,r=1,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","huberLoss"),i=R(t,"predictions","huberLoss"),o=null;n!=null&&(o=R(n,"weights","huberLoss")),tn(s.shape,i.shape,"Error in huberLoss: ");let l=_e(r),u=Mt(me(i,s)),c=tl(u,l),h=me(u,c),d=se(P(_e(.5),st(c)),P(l,h));return Yr(d,o,a)}var zE=O({huberLoss_:DE});function PE(e,t,n,r=1e-7,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","logLoss"),i=R(t,"predictions","logLoss"),o=null;n!=null&&(o=R(n,"weights","logLoss")),tn(s.shape,i.shape,"Error in logLoss: ");let l=_e(1),u=_e(r),c=xt(P(s,Sn(se(i,u)))),h=P(me(l,s),Sn(se(me(l,i),u))),d=me(c,h);return Yr(d,o,a)}var LE=O({logLoss_:PE});function WE(e,t,n,r=sn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","meanSquaredError"),s=R(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=R(n,"weights","meanSquaredError")),tn(a.shape,s.shape,"Error in meanSquaredError: ");let o=md(a,s);return Yr(o,i,r)}var BE=O({meanSquaredError_:WE});function VE(e,t){let n=R(e,"labels","sigmoidCrossEntropyWithLogits"),r=R(t,"logits","sigmoidCrossEntropyWithLogits");tn(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Cr(r),s=P(r,n),i=ed(Vn(xt(Mt(r))));return se(me(a,s),i)}function UE(e,t,n,r=0,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"multiClassLabels","sigmoidCrossEntropy"),i=R(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","sigmoidCrossEntropy")),tn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let u=_e(r),c=_e(1),h=_e(.5);s=se(P(s,me(c,u)),P(h,u))}let l=VE(s,i);return Yr(l,o,a)}var jE=O({sigmoidCrossEntropy_:UE});function HE(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Sr((r,a,s)=>{let i=Sf(a,[n],!0),o=me(fe(a,"float32"),i);s([r,o]);let l=xt(P(o,r));return{value:Ne(l,[n]),gradFunc:(u,c)=>{let[h,d]=c,p=Js(u.shape,[n]);return[P(H(u,p),me(fe(h,"float32"),Vn(d))),P(H(u,p),me(Vn(d),fe(h,"float32")))]}}})(e,t)}function GE(e,t,n,r=0,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"onehotLabels","softmaxCrossEntropy"),i=R(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","softmaxCrossEntropy")),tn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let u=_e(r),c=_e(1),h=_e(s.shape[1]);s=se(P(s,me(c,u)),we(u,h))}let l=HE(s,i);return Yr(l,o,a)}var qE=O({softmaxCrossEntropy_:GE}),XE={fft:Du,ifft:rl,rfft:zu,irfft:fd},KE={hammingWindow:GT,hannWindow:B5,frame:V5,stft:ZT},Ke={flipLeftRight:eE,resizeNearestNeighbor:X5,resizeBilinear:q5,rotateWithOffset:nE,cropAndResize:JT,nonMaxSuppression:aE,nonMaxSuppressionAsync:dE,nonMaxSuppressionWithScore:fE,nonMaxSuppressionWithScoreAsync:AE,nonMaxSuppressionPadded:gE,nonMaxSuppressionPaddedAsync:wE},Z5={bandPart:kE,gramSchmidt:NE,qr:TE},ZE={absoluteDifference:RE,computeWeightedLoss:Yr,cosineDistance:ME,hingeLoss:OE,huberLoss:zE,logLoss:LE,meanSquaredError:BE,sigmoidCrossEntropy:jE,softmaxCrossEntropy:qE},Jr=class extends Qg{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return Se(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return _5(e,t)}dispose(){this.iterations_!=null&&Se(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:_e(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Jr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var vd=class extends Jr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:B(()=>Be(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:B(()=>Be(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;B(()=>{let l=se(P(i,this.rho),P(st(s),1-this.rho)),u=P(we(Yt(se(o,this.epsilon)),Yt(se(i,this.epsilon))),s),c=se(P(o,this.rho),P(st(u),1-this.rho));i.assign(l),o.assign(c);let h=se(P(u,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Se(this.accumulatedGrads.map(e=>e.variable)),Se(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};vd.className="Adadelta";ba(vd);var kd=class extends Jr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:B(()=>Su(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;B(()=>{let i=se(s,st(a));s.assign(i);let o=se(P(we(a,Yt(se(i,$.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Se(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};kd.className="Adagrad";ba(kd);var Id=class extends Jr{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],B(()=>{this.accBeta1=_e(t).variable(),this.accBeta2=_e(n).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);B(()=>{let n=me(1,this.accBeta1),r=me(1,this.accBeta2);t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:B(()=>Be(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:B(()=>Be(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedSecondMoment[s].variable,h=se(P(u,this.beta1),P(l,1-this.beta1)),d=se(P(c,this.beta2),P(st(l),1-this.beta2)),p=we(h,n),m=we(d,r);u.assign(h),c.assign(d);let f=se(P(we(p,se(Yt(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(P(this.accBeta1,this.beta1)),this.accBeta2.assign(P(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Se(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Se(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),B(()=>{this.accBeta1.assign(Zr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Zr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Id.className="Adam";ba(Id);var Nd=class extends Jr{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],B(()=>{this.iteration=_e(0).variable(),this.accBeta1=_e(t).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);B(()=>{let n=me(1,this.accBeta1),r=we(-this.learningRate,se(P(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:Be(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:Be(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedWeightedInfNorm[s].variable,h=se(P(u,this.beta1),P(l,1-this.beta1)),d=P(c,this.beta2),p=Mt(l),m=Tr(d,p);u.assign(h),c.assign(m);let f=se(P(we(r,n),we(h,se(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(se(this.iteration,1)),this.accBeta1.assign(P(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Se(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Se(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Nd.className="Adamax";ba(Nd);var Pu=class extends Jr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=$.registeredVariables[t];B(()=>{let s=se(P(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Wt(_e(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Pu.className="SGD";ba(Pu);var Sd=class extends Pu{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=_e(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:B(()=>Be(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&B(()=>{let i,o=se(P(this.m,a),s);this.useNesterov?i=se(P(this.c,se(s,P(o,this.m))),r):i=se(P(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Se(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Sd.className="Momentum";ba(Sd);var Td=class extends Jr{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=$.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:B(()=>Be(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:B(()=>Be(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:B(()=>Be(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;B(()=>{let l=se(P(i,this.decay),P(st(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,c=se(P(u,this.decay),P(s,1-this.decay)),h=we(P(s,this.learningRate),Yt(me(l,se(st(c),this.epsilon)))),d=se(P(o,this.momentum),h);i.assign(l),u.assign(c),o.assign(d);let p=me(r,d);r.assign(p)}else{let u=se(P(i,this.decay),P(st(s),1-this.decay)),c=se(P(o,this.momentum),we(P(s,this.learningRate),Yt(se(u,this.epsilon))));i.assign(u),o.assign(c);let h=me(r,c);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Se(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Se(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Se(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Td.className="RMSProp";ba(Td);var ei=class{static sgd(e){return new Pu(e)}static momentum(e,t,n=!1){return new Sd(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new Td(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new Id(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new vd(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new Nd(e,t,n,r,a)}static adagrad(e,t=.1){return new kd(e,t)}},ti={sgd:ei.sgd,momentum:ei.momentum,adadelta:ei.adadelta,adagrad:ei.adagrad,rmsprop:ei.rmsprop,adamax:ei.adamax,adam:ei.adam},YE=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Ed(){return new Promise(e=>YE(()=>e()))}var C={};Oe(C,{ERF_A1:()=>lC,ERF_A2:()=>uC,ERF_A3:()=>cC,ERF_A4:()=>hC,ERF_A5:()=>dC,ERF_P:()=>oC,PARALLELIZE_THRESHOLD:()=>qf,SELU_SCALE:()=>J5,SELU_SCALEALPHA:()=>Y5,applyActivation:()=>_d,assertAndGetBroadcastShape:()=>pt,assertAxesAreInnerMostDims:()=>ON,assertParamsConsistent:()=>JE,assignToTypedArray:()=>wC,axesAreInnerMostDims:()=>If,calculateShapes:()=>Bg,combineLocations:()=>v5,complexWithEvenIndex:()=>yC,complexWithOddIndex:()=>gC,computeConv2DInfo:()=>bu,computeConv3DInfo:()=>i5,computeDefaultPad:()=>pf,computeDilation2DInfo:()=>sI,computeOptimalWindowSize:()=>eC,computeOutAndReduceShapes:()=>k5,computeOutShape:()=>QE,computePool2DInfo:()=>s5,computePool3DInfo:()=>iI,convertConv2DDataFormat:()=>a5,eitherStridesOrDilationsAreOne:()=>Nr,expandShapeToKeepDim:()=>Js,exponent:()=>bC,exponents:()=>_C,fromStringArrayToUint8:()=>IC,fromUint8ToStringArray:()=>kC,getAxesPermutation:()=>I5,getBroadcastDims:()=>YI,getComplexWithIndex:()=>xC,getFusedBiasGradient:()=>wd,getFusedDyActivation:()=>xd,getImageCenter:()=>tC,getInnerMostAxes:()=>DN,getPermuted:()=>rC,getReductionAxes:()=>$t,getReshaped:()=>nC,getReshapedPermuted:()=>aC,getSliceBeginCoords:()=>sC,getSliceSize:()=>iC,getUndoAxesPermutation:()=>Nf,log:()=>fC,mergeRealAndImagArrays:()=>mC,prepareAndValidate:()=>Wg,prepareSplitSize:()=>vC,segment_util:()=>Q5,shouldFuse:()=>bd,slice_util:()=>an,splitRealAndImagArrays:()=>AC,tupleValuesAreOne:()=>va,upcastType:()=>Yn,validateInput:()=>Y1,validateUpdateShape:()=>Z1,warn:()=>pC});function JE(e,t){let n=e[0].length;e.forEach((a,s)=>{F(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function QE(e,t){let n=e[0].slice();for(let r=1;r=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function aC(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var Q5={};Oe(Q5,{collectGatherOpShapeInfo:()=>TC,computeOutShape:()=>SC,segOpComputeOptimalWindowSize:()=>NC});function NC(e,t){let n=!1,r;for(e<=qf?(r=e,n=!0):r=th(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=th(e,r+1);return r}function SC(e,t,n){let r=[],a=e.length;for(let s=0;sa))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) ( - ${s}).`);if(nDh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function IC(e){return e.map(t=>du(t))}var Rr={};Oe(Rr,{nonMaxSuppressionV3Impl:()=>U5,nonMaxSuppressionV4Impl:()=>j5,nonMaxSuppressionV5Impl:()=>H5,whereImpl:()=>M5});function xe(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var EC=Rr.whereImpl,Cd=class extends jl{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Qc(this,Ir())}nextDataId(){return Cd.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&C.warn(` -============================ -Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details. -============================`));let r={id:this.nextDataId()};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let a=n.map(s=>v.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,a){this.data.set(e,{values:t,dtype:r,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>v.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Pe(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return Ir().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){xe([e],"where");let t=this.readSync(e.dataId);return EC(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Cd.nextDataId=0;var Xf={};Oe(Xf,{addImpl:()=>tx,bincountImpl:()=>Kf,bincountReduceImpl:()=>nx,ceilImpl:()=>rx,concatImpl:()=>Zf,expImpl:()=>ax,expm1Impl:()=>sx,floorImpl:()=>ix,gatherV2Impl:()=>ox,greaterImpl:()=>lx,lessImpl:()=>ux,linSpaceImpl:()=>cx,logImpl:()=>hx,maxImpl:()=>dx,maximumImpl:()=>px,minimumImpl:()=>fx,multiplyImpl:()=>Yf,negImpl:()=>mx,notEqualImpl:()=>Ax,prodImpl:()=>yx,rangeImpl:()=>Qf,rsqrtImpl:()=>gx,simpleAbsImpl:()=>ex,sliceImpl:()=>Rd,squaredDifferenceImpl:()=>xx,stridedSliceImpl:()=>wx,subImpl:()=>_x,tileImpl:()=>bx,topKImpl:()=>vx,transposeImpl:()=>Jf,uniqueImpl:()=>kx});function ex(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;xe(t,"abs");let r=new Float32Array(v.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=ex(a),n.makeOutput(r,t.shape,"float32")},RC={kernelName:Di,backendName:"cpu",kernelFunc:CC};function St(e){return(t,n,r,a,s)=>{let i=C.assertAndGetBroadcastShape(t,n),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),c=v.getTypedArrayFromDType(s,u),h=t.length,d=n.length,p=v.computeStrides(t),m=v.computeStrides(n),f=C.getBroadcastDims(t,i),A=C.getBroadcastDims(n,i);if(f.length+A.length===0)for(let y=0;y_[N]=0);let b=v.locToIndex(_,h,p),w=g.slice(-d);A.forEach(N=>w[N]=0);let x=v.locToIndex(w,d,m);c[y]=e(r[b],a[x])}return[c,i]}}function Rn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var FC={kernelName:lh,backendName:"cpu",kernelFunc:Rn};function Fd(e,t,n="float32"){if(n==="complex64"){let a=Fd(e,t,"float32"),s=Fd(e,t,"float32");return Rn({inputs:{real:a,imag:s},backend:e})}let r=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function Fr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var MC={kernelName:hs,backendName:"cpu",kernelFunc:Fr};function ni(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var $C={kernelName:Th,backendName:"cpu",kernelFunc:ni};function Ea(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Fr({inputs:{x:a},backend:n});let i=Fd(n,a.shape,a.dtype),o=Ea({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Rn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=ni({inputs:{input:a},backend:n}),o=Ea({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=Fr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=v.toTypedArray([0],a.dtype),[l,u]=St((c,h)=>c!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var OC={kernelName:Ja,backendName:"cpu",kernelFunc:Ea};function Vt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;xe([i,o],e);let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=Ea({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),h=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,p=l.data.get(h.dataId).values,m=l.data.get(d.dataId).values,f=Ea({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(f.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,_=l.data.get(y.dataId).values,b=l.data.get(g.dataId).values,[w,x,N]=n(i.shape,o.shape,p,m,_,b),T=l.makeTensorInfo(N,"float32",w),E=l.makeTensorInfo(N,"float32",x),M=Rn({inputs:{real:T,imag:E},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(T),l.disposeIntermediateTensorInfo(E),M}else{let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}}}function em(e){return(t,n,r,a,s,i)=>{let o=C.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(o),u=o.length,c=v.computeStrides(o),h=v.getTypedArrayFromDType("float32",l),d=v.getTypedArrayFromDType("float32",l),p=C.getBroadcastDims(t,o),m=C.getBroadcastDims(n,o),f=C.mergeRealAndImagArrays(r,a),A=C.mergeRealAndImagArrays(s,i),y=t.length,g=v.computeStrides(t),_=n.length,b=v.computeStrides(n);if(p.length+m.length===0)for(let w=0;wN[L]=0);let T=v.locToIndex(N,y,g),E=x.slice(-_);m.forEach(L=>E[L]=0);let M=v.locToIndex(E,_,b),D=e(f[T*2],f[T*2+1],A[M*2],A[M*2+1]);h[w]=D.real,d[w]=D.imag}return[h,d,o]}}var tx=St((e,t)=>e+t),DC=em((e,t,n,r)=>({real:e+n,imag:t+r})),Lu=Vt(ma,tx,DC),zC={kernelName:ma,backendName:"cpu",kernelFunc:Lu};function Kf(e,t,n,r,a){let s=v.sizeFromShape(r),i=v.makeZerosTypedArray(a,n);for(let o=0;o=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function nx(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=Pe([a,n],t.dtype);for(let o=0;o=n||(r?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function il(e){return(t,n,r)=>{let a=v.getTypedArrayFromDType(n,t.length);for(let s=0;s{let{x:i}=r;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=v.sizeFromShape(i.shape),c=n||i.dtype,h=v.getArrayFromDType(c,u);for(let d=0;d{let{x:i}=r;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,c=t(l,u,a);return o.makeTensorInfo(i.shape,u,c)}}var rx=il(e=>Math.ceil(e)),PC=ol(Qa,rx),LC={kernelName:Qa,backendName:"cpu",kernelFunc:PC};function Zf(e,t,n,r){let a=v.getArrayFromDType(n,v.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?C.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;uMath.exp(e)),Ix=ol(is,ax),WC={kernelName:is,backendName:"cpu",kernelFunc:Ix},sx=il(e=>Math.expm1(e)),BC=ol(Ji,sx),VC={kernelName:Ji,backendName:"cpu",kernelFunc:BC},ix=il(e=>Math.floor(e)),UC=ol(os,ix),jC={kernelName:os,backendName:"cpu",kernelFunc:UC};function ox(e,t,n){let r=Pe(n,e.dtype);for(let a=0;ae>t?1:0),HC=Vt(no,lx,null,"bool"),GC={kernelName:no,backendName:"cpu",kernelFunc:HC},ux=St((e,t)=>eMath.log(e)),KC=ol(ps,hx),ZC={kernelName:ps,backendName:"cpu",kernelFunc:KC};function dx(e,t,n,r){let a=v.getTypedArrayFromDType(r,v.sizeFromShape(n));for(let s=0;so&&(o=u)}a[s]=o}return a}var px=St((e,t)=>Math.max(e,t)),YC=Vt(ms,px),JC={kernelName:ms,backendName:"cpu",kernelFunc:YC},fx=St((e,t)=>Math.min(e,t)),QC=Vt(xs,fx),eR={kernelName:xs,backendName:"cpu",kernelFunc:QC},Yf=St((e,t)=>e*t),tR=em((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),tm=Vt(ws,Yf,tR),nR={kernelName:ws,backendName:"cpu",kernelFunc:tm};function mx(e,t,n){let r=v.createScalarValue(-1,n);return Yf([],t,r,e,n)}function rR(e){let{inputs:t,backend:n}=e,{x:r}=t;xe(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=mx(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var aR={kernelName:ho,backendName:"cpu",kernelFunc:rR},Ax=St((e,t)=>e!==t?1:0),sR=Vt(po,Ax,null,"bool"),iR={kernelName:po,backendName:"cpu",kernelFunc:sR};function Jf(e,t,n,r,a){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(a),u=v.getTypedArrayFromDType(n,v.sizeFromShape(a));for(let c=0;cn.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,m)}var uR={kernelName:xo,backendName:"cpu",kernelFunc:lR};function Qf(e,t,n,r){let a=e===t,s=e1;if(a||s||i)return v.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(o,r);t1/Math.sqrt(e)),cR=ol(Cs,gx),hR={kernelName:Cs,backendName:"cpu",kernelFunc:cR};function Rd(e,t,n,r,a){let s=an.isSliceContinous(r,t,n),i=v.sizeFromShape(n),o=v.computeStrides(r);if(s){let h=an.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?C.fromUint8ToStringArray(e):e,u=Pe(r,a,l),c=Pe(n,a);for(let h=0;hm+t[f]);c.set(u.get(...p),...d)}return a==="string"?C.fromStringArrayToUint8(c.values):c.values}function ri(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;xe(a,"slice");let[o,l]=an.parseSliceParams(a,s,i);an.assertParamsValid(a,o,l);let u=n.data.get(a.dataId).values,c=Rd(u,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,c)}var dR={kernelName:Io,backendName:"cpu",kernelFunc:ri},xx=St((e,t)=>{let n=e-t;return n*n}),pR=Vt(Ds,xx),fR={kernelName:Ds,backendName:"cpu",kernelFunc:pR};function wx(e,t,n,r){let a=Pe(e,t.dtype);for(let s=0;se-t),mR=em((e,t,n,r)=>({real:e-n,imag:t-r})),nm=Vt(zs,_x,mR),AR={kernelName:zs,backendName:"cpu",kernelFunc:nm};function bx(e,t){let n=new Array(e.rank);for(let a=0;a_.value-g.value);let f=h*r,A=l.subarray(f,f+r),y=u.subarray(f,f+r);for(let g=0;g{for(let A=0;Anew Cd,1);var Sx=rt(Xi,e=>e>=0?e:Math.exp(e)-1),yR={kernelName:Xi,backendName:"cpu",kernelFunc:Sx};function Tx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;xe([a],"leakyRelu");let i=v.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;ue<0?t*e:e);function Ex(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;xe([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=xR(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var wR={kernelName:ks,backendName:"cpu",kernelFunc:Ex},Cx=rt(Is,e=>Math.max(0,e)),_R={kernelName:Is,backendName:"cpu",kernelFunc:Cx},Rx=rt(Ss,e=>Math.min(Math.max(0,e),6)),bR={kernelName:Ss,backendName:"cpu",kernelFunc:Rx};function rm(e,t,n,r,a){if(n==="linear")return Fr({inputs:{x:t},backend:e});if(n==="relu")return Cx({inputs:{x:t},backend:e});if(n==="elu")return Sx({inputs:{x:t},backend:e});if(n==="relu6")return Rx({inputs:{x:t},backend:e});if(n==="prelu")return Ex({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return Tx({inputs:{x:t},backend:e,attrs:{alpha:a}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function ft(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=v.sizeFromShape(a.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let u=n.data.get(a.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,h=u.complexTensorInfos.imag;c.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var vR={kernelName:_o,backendName:"cpu",kernelFunc:ft};function Fx(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;xe([a,s],"matMul");let l=a.shape.length,u=s.shape.length,c=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[u-2]:s.shape[u-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),A=v.sizeFromShape(m),y=v.sizeFromShape(f),g=A===y||A===1||y===1;v.assert(l>=2&&u>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let _=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);v.assert(c===h,()=>`Error in matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let b=i?[A,c,d]:[A,d,c],w=o?[y,p,h]:[y,h,p],x=ft({inputs:{x:a},backend:n,attrs:{shape:b}}),N=ft({inputs:{x:s},backend:n,attrs:{shape:w}}),T=i?x.shape[1]:x.shape[2],E=i?x.shape[2]:x.shape[1],M=o?N.shape[1]:N.shape[2],D=Math.max(A,y),L=n.data.get(x.dataId).values,W=n.data.get(N.dataId).values,U=v.computeStrides(x.shape),j=v.computeStrides(N.shape),[X,G,ee]=i?[U[0],1,U[1]]:[U[0],U[1],1],[Y,ae,te]=o?[1,j[1],j[0]]:[j[1],1,j[0]],ie=E*M,Q=Pe([D,E,M],x.dtype),ce=Q.values,oe=n.blockSize;for(let pe=0;peMath.acos(e)),TR={kernelName:zi,backendName:"cpu",kernelFunc:SR},ER=rt(Pi,e=>Math.acosh(e)),CR={kernelName:Pi,backendName:"cpu",kernelFunc:ER};function RR(e){let{inputs:t,backend:n}=e,r=t;xe(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=Pe(r[0].shape,r[0].dtype),i=s.values;for(let o=0;og&&(g=w,_=b)}p[A]=_}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var PR={kernelName:Ka,backendName:"cpu",kernelFunc:zR};function LR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;xe(a,"argMin");let i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=nr({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[c,h]=C.computeOutAndReduceShapes(l.shape,i),d=v.sizeFromShape(c),p=v.makeZerosTypedArray(d,"int32"),m=v.sizeFromShape(h),f=n.data.get(l.dataId).values;for(let A=0;An.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var WR={kernelName:ql,backendName:"cpu",kernelFunc:LR},BR=rt(Li,e=>Math.asin(e)),VR={kernelName:Li,backendName:"cpu",kernelFunc:BR},UR=rt(Wi,e=>Math.asinh(e)),jR={kernelName:Wi,backendName:"cpu",kernelFunc:UR},HR=rt(Bi,e=>Math.atan(e)),GR={kernelName:Bi,backendName:"cpu",kernelFunc:HR},qR=St((e,t)=>Math.atan2(e,t)),XR=Vt(Ui,qR),KR={kernelName:Ui,backendName:"cpu",kernelFunc:XR},ZR=rt(Vi,e=>Math.atanh(e)),YR={kernelName:Vi,backendName:"cpu",kernelFunc:ZR};function am(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,u=a.dilationWidth,c=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Pe(a.outShape,n),A=f.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],_=a.outShape[3];for(let b=0;bG?G=oe:s==="avg"&&(ee+=oe,Y++)}if(isNaN(G))break}let ae=L+W*_+N;A[ae]=s==="avg"?ee/Y:G}}}return f}function Mx(e,t,n,r,a=!1,s=!1){let i=Pe(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,u=r.dilationHeight,c=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,m=r.padInfo.left,f=Pe(t,n,e);for(let A=0;AM&&(M=X,a?D=s?((A*r.inHeight+L)*r.inWidth+U)*r.inChannels+y:(L*r.inWidth+U)*r.inChannels+y:D=W*d+j)}}i.set(D,A,g,x,y)}}return i}function $x(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,u=a.dilationDepth,c=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,m=a.effectiveFilterWidth,f=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,_=Pe(a.outShape,n),b=_.values,w=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],x=a.outShape[2]*a.outShape[3]*a.outShape[4],N=a.outShape[3]*a.outShape[4],T=a.outShape[4];for(let E=0;Ebe?be=Le:s==="avg"&&(ke+=Le,Re++),isNaN(be))break}if(isNaN(be))break}if(isNaN(be))break}let $e=de+L;b[$e]=s==="avg"?ke/Re:be}}}}return _}function JR(e,t){let n=Pe(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,m=t.padInfo.left;for(let f=0;f=W&&(W=te,U=X*c*h+ee*c+ae)}}}n.set(U,f,y,w,E,A)}}}return n}function QR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;xe(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))h=Fr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=v.computeStrides(a.shape),m=am(d,a.shape,a.dtype,p,c,"avg");h=n.makeTensorInfo(c.outShape,a.dtype,m.values)}return h}var eF={kernelName:Za,backendName:"cpu",kernelFunc:QR};function tF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r;xe(a,"avgPool3d");let c=C.computePool3DInfo(a.shape,s,i,1,o,l,u),h=n.data.get(a.dataId).values,d=$x(h,a.shape,a.dtype,v.computeStrides(a.shape),c,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var nF={kernelName:Xl,backendName:"cpu",kernelFunc:tF};function rF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r;xe([a,s],"avgPool3DGrad");let c=C.computePool3DInfo(s.shape,i,o,1,l,u),h=c.strideDepth,d=c.strideHeight,p=c.strideWidth,m=c.filterDepth,f=c.filterHeight,A=c.filterWidth,y=c.dilationDepth,g=c.dilationHeight,_=c.dilationWidth,b=c.effectiveFilterDepth,w=c.effectiveFilterHeight,x=c.effectiveFilterWidth,N=b-1-c.padInfo.front,T=x-1-c.padInfo.left,E=w-1-c.padInfo.top,M=Pe(s.shape,"float32"),D=1/(m*f*A),L=n.bufferSync(a);for(let W=0;W=c.outDepth||Math.floor(Q)!==Q))for(let ce=0;ce=c.outHeight||Math.floor(oe)!==oe))for(let pe=0;pe=c.outWidth||Math.floor(de)!==de||(te+=L.get(W,Q,oe,de,U))}}}M.set(te*D,W,j,X,G,U)}return n.makeTensorInfo(M.shape,M.dtype,M.values)}var aF={kernelName:ih,backendName:"cpu",kernelFunc:rF};function sF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;xe([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=r,c=C.computePool2DInfo(i.shape,o,l,1,u),h=c.strideHeight,d=c.strideWidth,p=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,A=c.dilationWidth,y=c.effectiveFilterHeight,g=c.effectiveFilterWidth,_=g-1-c.padInfo.left,b=y-1-c.padInfo.top,w=Pe(i.shape,"float32"),x=1/(p*m),N=n.data.get(a.dataId).values,T=Pe(a.shape,"float32",N);for(let E=0;E=c.outHeight||Math.floor(G)!==G))for(let ee=0;ee=c.outWidth||Math.floor(Y)!==Y||(j+=T.get(E,G,Y,M))}}w.set(j*x,E,D,L,M)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var iF={kernelName:sh,backendName:"cpu",kernelFunc:sF};function oF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),xe([a,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=r;u==null&&(u=.001);let c=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(c.length),A=m.length,y=p.length,g=d.length,_=h.length,b=0,w=0,x=0,N=0;for(let T=0;T=A&&(b=0),w>=_&&(w=0),x>=y&&(x=0),N>=g&&(N=0);return n.makeTensorInfo(a.shape,a.dtype,f)}var lF={kernelName:us,backendName:"cpu",kernelFunc:oF};function uF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;xe([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=C.getReshaped(a.shape,s,o),u=C.getPermuted(l.length,s.length),c=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),d=C.getSliceSize(c,i,s.length),p=ft({inputs:{x:a},backend:n,attrs:{shape:l}}),m=nr({inputs:{x:p},backend:n,attrs:{perm:u}}),f=ft({inputs:{x:m},backend:n,attrs:{shape:c}}),A=ri({inputs:{x:f},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var cF={kernelName:Kl,backendName:"cpu",kernelFunc:uF};function hF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,u=Kf(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var dF={kernelName:oh,backendName:"cpu",kernelFunc:hF},pF=rt(Aa,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(v.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;uf.shape),s);if(v.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>v.sizeFromShape(f.shape)>0);if(o.length===1)return Fr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(C.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(b=>ni({inputs:{input:b},backend:n})),A=o.map(b=>ll({inputs:{input:b},backend:n})),y=ul({inputs:f,backend:n,attrs:{axis:s}}),g=ul({inputs:A,backend:n,attrs:{axis:s}}),_=Rn({inputs:{real:y,imag:g},backend:n});return f.forEach(b=>n.disposeIntermediateTensorInfo(b)),A.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),_}let u=o.map(f=>{let A=v.sizeFromShape(f.shape.slice(s));return ft({inputs:{x:f},backend:n,attrs:{shape:[-1,A]}})}),c=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=C.computeOutShape(u.map(f=>f.shape),1);let h=u[0].shape[0]===1,d=Zf(c,i,t[0].dtype,h),p=C.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(p,t[0].dtype,d);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var gF={kernelName:ji,backendName:"cpu",kernelFunc:ul};function Ox(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:c}=r;xe([a,s],"conv2d");let h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!1,h),p=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,_=d.dataFormat==="channelsLast",b=new Ft(d.outShape,a.dtype),w=v.computeStrides(a.shape),x=v.computeStrides(s.shape),N=w[0],T=_?w[1]:w[2],E=_?w[2]:1,M=_?1:w[1],D=b.strides[0],L=_?b.strides[1]:b.strides[2],W=_?b.strides[2]:1,U=_?1:b.strides[1],j=n.data.get(a.dataId).values,X=n.data.get(s.dataId).values,G=b.values;for(let ee=0;ee=d.inHeight)continue;let pe=ce*x[0],de=Y+oe*T;for(let be=0;be=d.inWidth)continue;let Je=pe+$e*x[1],Qe=de+Fe*E,at=Je;for(let Ge=0;Ge=u.inDepth)continue;let ee=X*E[0],Y=D+G*T[1];for(let ae=0;ae=u.inHeight)continue;let oe=ee+Q*E[1],pe=Y+ce*T[2];for(let de=0;de=u.inWidth)continue;let Fe=oe+Re*E[2],Je=pe+$e*u.inChannels,Qe=Fe;for(let at=0;atMath.cos(e)),RF={kernelName:ns,backendName:"cpu",kernelFunc:CF},FF=rt(Hi,e=>Math.cosh(e)),MF={kernelName:Hi,backendName:"cpu",kernelFunc:FF};function $F(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=r,[c,h,d,p]=a.shape,m=s.shape[0],[f,A]=o,y=Pe([m,f,A,p],"float32"),g=n.data.get(s.dataId).values,_=n.data.get(i.dataId).values,b=n.data.get(a.dataId).values,w=v.computeStrides(a.shape),x=v.computeStrides(y.shape);for(let N=0;N=c)continue;let U=f>1?(D-E)*(h-1)/(f-1):0,j=A>1?(L-M)*(d-1)/(A-1):0;for(let X=0;X1?E*(h-1)+X*U:.5*(E+D)*(h-1);if(G<0||G>h-1){for(let ee=0;ee1?M*(d-1)+te*j:.5*(M+L)*(d-1);if(ie<0||ie>d-1){for(let pe=0;pe1?M*(d-1)+ee*j:.5*(M+L)*(d-1);if(Y<0||Y>d-1){for(let ie=0;iey+m-g-1:(y,g)=>y+g;for(let y=0;y`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),v.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],u=a.shape[2],c=a.shape[3],h=l*s,d=u*s,p=c/(s*s),m=n.data.get(a.dataId).values,f=new Float32Array(o*h*d*p),A=0;for(let y=0;y`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=C.computeConv2DInfo(a.shape,s.shape,i,d,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:A,dilationWidth:y,padInfo:g}=p,_=g.left,b=g.top,w=p.outChannels/p.inChannels,x=new Ft(p.outShape,a.dtype),N=n.data.get(a.dataId).values,T=n.data.get(s.dataId).values,E=x.values;for(let M=0;M=p.inHeight)continue;let ee=X*h[0],Y=D+G*c[1];for(let ae=0;ae=p.inWidth)continue;let oe=ee+Q*h[1],pe=Y+ce*p.inChannels,de=te,be=oe;for(let ke=0;ke{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(r.dataId).values,c=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:m,inWidth:f,inChannels:A,outHeight:y,outWidth:g,padInfo:_,strideHeight:b,strideWidth:w,filterHeight:x,filterWidth:N,dilationHeight:T,dilationWidth:E,outShape:M}=C.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),D=v.sizeFromShape(M),L=M.length,W=v.getArrayFromDType(r.dtype,D);for(let U=0;U=0&&Q=0&&oeae&&(ae=be)}}}let te=v.locToIndex([U,j,G,Y],L,v.computeStrides(M));W[te]=ae}}}return{dataId:l.write(v.toTypedArray(W,r.dtype),M,r.dtype),shape:M,dtype:r.dtype}}},ZF={kernelName:yh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:_,strideWidth:b,filterHeight:w,filterWidth:x,dilationHeight:N,dilationWidth:T,outShape:E}=C.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===E.length,()=>`Error in ${yh}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=v.toNestedArray(E,u.data.get(s.dataId).values),D=v.makeZerosNestedTypedArray(a.shape,a.dtype);for(let L=0;L=0&&ie=0&&ceee&&(ee=oe,Y=te,ae=Q)}}}D[Y][ae][G]+=M[L][W][j][G]}}}return{dataId:u.write(v.toTypedArray(D,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},YF={kernelName:Ah,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:_,strideWidth:b,filterHeight:w,filterWidth:x,dilationHeight:N,dilationWidth:T,outShape:E}=C.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===E.length,()=>`Error in ${Ah}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=v.toNestedArray(E,u.data.get(s.dataId).values),D=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let L=0;L=0&&ie=0&&ceee&&(ee=oe,Y=ie,ae=ce)}}}D[L][Y][ae][G]+=M[L][W][j][G]}}}return{dataId:u.write(v.toTypedArray(D,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function JF(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;xe([r,a],"eluGrad");let s=new Float32Array(v.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(a.shape,"float32",s)}var QF={kernelName:gh,backendName:"cpu",kernelFunc:JF},eM=St((e,t)=>e===t?1:0),zx=Vt(Zi,eM,null,"bool"),tM={kernelName:Zi,backendName:"cpu",kernelFunc:zx},nM=C.ERF_P,rM=C.ERF_A1,aM=C.ERF_A2,sM=C.ERF_A3,iM=C.ERF_A4,oM=C.ERF_A5,lM=rt(Ki,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+nM*n);return t*(1-((((oM*r+iM)*r+sM)*r+aM)*r+rM)*r*Math.exp(-n*n))}),uM={kernelName:Ki,backendName:"cpu",kernelFunc:lM};function Md(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),ft({inputs:{x:a},backend:n,attrs:{shape:o}})}var cM={kernelName:Yi,backendName:"cpu",kernelFunc:Md},hM=St((e,t)=>e/t),sm=Vt(ss,hM),im={kernelName:ss,backendName:"cpu",kernelFunc:sm};function Px(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[a,s],c=v.sizeFromShape(u),h=v.getTypedArrayFromDType("float32",c),d=v.getTypedArrayFromDType("float32",c);for(let A=0;A{let{image:r}=e,a=n,s=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(r.shape)),[i,o,l,u]=r.shape,c=a.data.get(r.dataId).values;for(let h=0;h=0&&_Math.floor(e/t)),_M=Vt(ls,wM,null,"int32"),bM={kernelName:ls,backendName:"cpu",kernelFunc:_M};function vM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=Ox({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=Lu({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=rm(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var kM={kernelName:Bs,backendName:"cpu",kernelFunc:vM};function IM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=Dx({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=Lu({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=rm(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var NM={kernelName:Vs,backendName:"cpu",kernelFunc:IM};function SM(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=v.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,u,c,h]=C.prepareAndValidate(r,a);if(u===0)return n.makeTensorInfo(l,r.dtype,[]);let d=Pe([u,c],r.dtype),p=n.data.get(a.dataId).values,m=n.data.get(r.dataId).values;for(let f=0;f=s/c)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;ge>=t?1:0),FM=Vt(cs,RM,null,"bool"),MM={kernelName:cs,backendName:"cpu",kernelFunc:FM};function $M(e){let{inputs:t,backend:n}=e,{input:r}=t,a=v.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=ft({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=Px(o,!0,n),u=ft({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var OM={kernelName:wh,backendName:"cpu",kernelFunc:$M},DM=rt(ro,e=>Number.isFinite(e)?1:0,"bool"),zM={kernelName:ro,backendName:"cpu",kernelFunc:DM},PM=rt(ao,e=>Math.abs(e)===Infinity?1:0,"bool"),LM={kernelName:ao,backendName:"cpu",kernelFunc:PM},WM=rt(so,e=>Number.isNaN(e)?1:0,"bool"),BM={kernelName:so,backendName:"cpu",kernelFunc:WM},VM=St((e,t)=>e<=t?1:0),UM=Vt(oo,VM,null,"bool"),jM={kernelName:oo,backendName:"cpu",kernelFunc:UM};function HM(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=cx(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var GM={kernelName:bh,backendName:"cpu",kernelFunc:HM},qM=rt(lo,e=>Math.log1p(e)),XM={kernelName:lo,backendName:"cpu",kernelFunc:qM},KM=St((e,t)=>e&&t),ZM=Vt(uo,KM,null,"bool"),YM={kernelName:uo,backendName:"cpu",kernelFunc:ZM},JM=rt(eu,e=>e?0:1,"bool"),QM={kernelName:eu,backendName:"cpu",kernelFunc:JM},e$=St((e,t)=>e||t),t$=Vt(tu,e$,null,"bool"),n$={kernelName:tu,backendName:"cpu",kernelFunc:t$};function r$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;xe(a,"LRN");let u=a.shape[3],c=u-1,h=n.data.get(a.dataId).values,d=v.sizeFromShape(a.shape),p=new Float32Array(d);function m(f){let A=f%u,y=f-A+Math.max(0,A-s),g=f-A+Math.min(A+s,c),_=0;for(;y<=g;y++){let b=h[y];_+=b*b}return _}for(let f=0;f`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))h=Fr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=v.computeStrides(a.shape),m=am(d,a.shape,a.dtype,p,c,"max");h=n.makeTensorInfo(c.outShape,a.dtype,m.values)}return h}var u$={kernelName:As,backendName:"cpu",kernelFunc:l$};function c$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r;xe(a,"maxPool3d");let c=C.computePool3DInfo(a.shape,s,i,1,o,l,u),h=n.data.get(a.dataId).values,d=$x(h,a.shape,a.dtype,v.computeStrides(a.shape),c,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var h$={kernelName:ru,backendName:"cpu",kernelFunc:c$};function d$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r;xe([a,s],"maxPool3DGrad");let c=C.computePool3DInfo(s.shape,i,o,1,l,u),h=n.bufferSync(s),d=JR(h,c),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,A=c.dilationDepth,y=c.dilationHeight,g=c.dilationWidth,_=c.effectiveFilterDepth,b=c.effectiveFilterHeight,w=c.effectiveFilterWidth,x=_-1-c.padInfo.front,N=w-1-c.padInfo.left,T=b-1-c.padInfo.top,E=Pe(s.shape,"float32"),M=n.bufferSync(a);for(let D=0;D=c.outDepth||Math.floor(te)!==te))for(let ie=0;ie=c.outHeight||Math.floor(Q)!==Q))for(let ce=0;ce=c.outWidth||Math.floor(oe)!==oe)continue;let pe=_*b*w-1-d.get(D,te,Q,oe,L),de=ae*b*w+ie*w+ce,be=pe===de?1:0;be!==0&&(Y+=M.get(D,te,Q,oe,L)*be)}}}E.set(Y,D,W,U,j,L)}return n.makeTensorInfo(E.shape,E.dtype,E.values)}var p$={kernelName:Ih,backendName:"cpu",kernelFunc:d$};function f$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;xe([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:h}=r,d=C.computePool2DInfo(o.shape,l,u,1,c,h),p=n.data.get(o.dataId).values,m=Pe(d.outShape,o.dtype,Mx(p,o.shape,o.dtype,d).values),f=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,_=d.effectiveFilterHeight,b=d.effectiveFilterWidth,w=b-1-d.padInfo.left,x=_-1-d.padInfo.top,N=Pe(o.shape,"float32"),T=n.data.get(a.dataId).values,E=Pe(a.shape,"float32",T);for(let M=0;M=d.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y=d.outWidth||Math.floor(ae)!==ae)continue;let te=_*b-1-m.get(M,ee,ae,D),ie=G*b+Y,Q=te===ie?1:0;Q!==0&&(X+=E.get(M,ee,ae,D)*Q)}}N.set(X,M,L,W,D)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var m$={kernelName:kh,backendName:"cpu",kernelFunc:f$};function A$(e,t,n,r,a){let s=v.computeStrides(t),i=am(e,t,n,s,a,"max"),o=Mx(e,t,n,a,!0,r);return[i.values,o.values]}var y$={kernelName:Nh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;xe(r,"MaxPoolWithArgmax");let u=l.data.get(r.dataId).values,c=C.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=A$(u,r.shape,r.dtype,o,c),p=l.write(h,c.outShape,r.dtype),m=l.write(d,c.outShape,r.dtype);return[{dataId:p,shape:c.outShape,dtype:r.dtype},{dataId:m,shape:c.outShape,dtype:"int32"}]}};function $d(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;xe(a,"sum");let o;a.dtype==="bool"?o=Ea({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=Fr({inputs:{x:a},backend:n});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),c=C.getAxesPermutation(u,l),h=u,d=o;c!=null&&(d=nr({inputs:{x:o},backend:n,attrs:{perm:c}}),h=C.getInnerMostAxes(h.length,l)),C.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,m]=C.computeOutAndReduceShapes(d.shape,h),f=C.upcastType(d.dtype,"int32"),A=Fd(n,p,f),y=v.sizeFromShape(m),g=n.data.get(A.dataId).values,_=n.data.get(d.dataId).values;for(let b=0;bn.disposeIntermediateTensorInfo(f)),m}var w$={kernelName:ys,backendName:"cpu",kernelFunc:x$};function _$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;xe(a,"min");let o=v.parseAxisParam(s,a.shape),l=o,u=C.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=nr({inputs:{x:a},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("min",l,c.shape.length);let[h,d]=C.computeOutAndReduceShapes(c.shape,l),p=v.sizeFromShape(d),m=v.makeZerosTypedArray(v.sizeFromShape(h),c.dtype),f=n.data.get(c.dataId).values;for(let y=0;yg[0]+a.shape[_]+g[1]),l=s.map(g=>g[0]),u=s.map((g,_)=>g[0]+a.shape[_]),c=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=v.computeStrides(a.shape),m=v.sizeFromShape(o),f=o.length,A=v.computeStrides(o),y=v.getTypedArrayFromDType(a.dtype,m);for(let g=0;g=u[w]&&(_[w]=(u[w]-1)*2-_[w]+c);_=_.map((w,x)=>w-l[x]);let b=v.locToIndex(_,d,p);y[g]=h[b]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var k$={kernelName:au,backendName:"cpu",kernelFunc:v$},I$=St((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),N$=Vt(co,I$),S$={kernelName:co,backendName:"cpu",kernelFunc:N$},T$=Mi(s8());function Wx(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],a.shape),u=Lx({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=C.expandShapeToKeepDim(u.shape,l),h=ft({inputs:{x:u},backend:n,attrs:{shape:c}}),d=nm({inputs:{a,b:h},backend:n}),p=Ix({inputs:{x:d},backend:n}),m=$d({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),f=ft({inputs:{x:m},backend:n,attrs:{shape:c}}),A=sm({inputs:{a:p,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var E$={kernelName:Os,backendName:"cpu",kernelFunc:Wx};function C$(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;xe(a,"multinomial");let l=o?a:Wx({inputs:{logits:a},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],h=n.data.get(l.dataId).values,d=[u,s],p=v.makeZerosTypedArray(v.sizeFromShape(d),"int32");for(let m=0;m=0&&c[h]{v.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=Md({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=ul({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var H$={kernelName:go,backendName:"cpu",kernelFunc:Vx};function G$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;xe(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),u=n.data.get(a.dataId).values,c=v.sizeFromShape(a.shape),h=a.shape.length,d=v.computeStrides(a.shape),p=v.sizeFromShape(o),m=o.length,f=v.computeStrides(o),A=v.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;yb+l[w]),_=v.locToIndex(g,m,f);A[_]=u[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var Ux={kernelName:bs,backendName:"cpu",kernelFunc:G$},q$=St((e,t)=>Math.pow(e,t)),X$=Vt(vs,q$),K$={kernelName:vs,backendName:"cpu",kernelFunc:X$};function Z$(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=Qf(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var Y$={kernelName:su,backendName:"cpu",kernelFunc:Z$},J$=rt(wo,e=>1/e),Q$={kernelName:wo,backendName:"cpu",kernelFunc:J$};function eO(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;xe(a,"resizeBilinear");let l=v.computeStrides(a.shape),[u,c]=o,[h,d,p,m]=a.shape,f=n.data.get(a.dataId).values,A=new Float32Array(v.sizeFromShape([h,u,c,m])),y=[s&&u>1?d-1:d,s&&c>1?p-1:p],g=[s&&u>1?u-1:u,s&&c>1?c-1:c],_=0,b=y[0]/g[0],w=y[1]/g[1];for(let x=0;x1?u-1:u,i&&p>1?c-1:c],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=f[0]/A[0],g=f[1]/A[1],_=n.data.get(s.dataId).values,b=0;for(let w=0;w1?d-1:d,s&&c>1?p-1:p],g=[s&&u>1?u-1:u,s&&c>1?c-1:c],_=y[0]/g[0],b=y[1]/g[1],w=0;for(let x=0;x1?c-1:c,i&&m>1?h-1:h],g=[i&&p>1?p-1:p,i&&m>1?m-1:m],_=y[0]/g[0],b=y[1]/g[1],w=1/_,x=1/b,N=Math.ceil(w)*2+2,T=Math.ceil(x)*2+2;for(let E=0;E=p)continue;let Q=M+ie*l[1],ce=ie*_,oe=Math.min(c-1,i?Math.round(ce):Math.floor(ce));if(D===oe)for(let pe=0;pe=m)continue;let be=Q+de*l[2],ke=de*b,Re=Math.min(h-1,i?Math.round(ke):Math.floor(ke));j===Re&&(ae+=A[be+Y])}}f[X+Y]=ae}}}}return n.makeTensorInfo(a.shape,a.dtype,f)}var oO={kernelName:Eh,backendName:"cpu",kernelFunc:iO};function lO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;xe(a,"reverse");let i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return Fr({inputs:{x:a},backend:n});let l=new Ft(a.shape,a.dtype),u=n.bufferSync(a);for(let c=0;cd[p]=a.shape[p]-1-d[p]),l.set(u.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var uO={kernelName:Ts,backendName:"cpu",kernelFunc:lO},cO={kernelName:Oo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(r.shape)),[u,c,h,d]=r.shape,[p,m]=C.getImageCenter(i,c,h),f=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let _=0;_=0&&W=0&&U{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),dO={kernelName:Es,backendName:"cpu",kernelFunc:hO};function jx(e,t,n,r,a,s,i,o,l,u){let c=[r/a,a],h=e.values,d=t.values;if(r===0)return Pe(n,t.dtype);let p=Pe(c,t.dtype);p.values.fill(l);for(let m=0;m=r/a)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y1||a.shape.length===1?1:v.sizeFromShape(a.shape.slice(1));for(let m=0;me>=0?gO*e:yO*(Math.exp(e)-1)),wO={kernelName:ko,backendName:"cpu",kernelFunc:xO},_O=rt(Fs,e=>1/(1+Math.exp(-e))),bO={kernelName:Fs,backendName:"cpu",kernelFunc:_O},vO=rt(So,e=>e<0?-1:e>0?1:0),kO={kernelName:So,backendName:"cpu",kernelFunc:vO},IO=rt(Rs,e=>Math.sin(e)),NO={kernelName:Rs,backendName:"cpu",kernelFunc:IO},SO=rt(No,e=>Math.sinh(e)),TO={kernelName:No,backendName:"cpu",kernelFunc:SO},EO=11920928955078125e-23,Hx=Math.log(EO)+2,CO=rt(To,e=>{let t=e>-Hx,n=e{let d=[...c];d[o]=h;let p=ri({inputs:{x:a},backend:n,attrs:{begin:u,size:d}});return u[o]+=h,p})}var zO={kernelName:Eo,backendName:"cpu",kernelFunc:DO},PO=rt(Ms,e=>Math.sqrt(e)),LO={kernelName:Ms,backendName:"cpu",kernelFunc:PO},WO={kernelName:lu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;xe(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),VO={kernelName:ga,backendName:"cpu",kernelFunc:BO};function UO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r;xe(a,"stridedSlice");let{nonStrided:p,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=an.sliceInfo(a.shape,s,i,o,l,u,c,h,d),_=ft({inputs:{x:a},backend:n,attrs:{shape:y}}),b;if(p){let x=ri({inputs:{x:_},backend:n,attrs:{begin:m,size:A}});b=ft({inputs:{x},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(x)}else if(g.some(x=>x===0))b=n.makeTensorInfo(g,a.dtype,[]);else{let x=n.bufferSync(_),N=wx(g,x,f,m);b=n.makeTensorInfo(N.shape,N.dtype,N.values)}let w=ft({inputs:{x:b},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(_),n.disposeIntermediateTensorInfo(b),w}var jO={kernelName:Co,backendName:"cpu",kernelFunc:UO},HO=rt(Ro,e=>Math.tan(e)),GO={kernelName:Ro,backendName:"cpu",kernelFunc:HO},qO=rt(Ps,e=>Math.tanh(e)),XO={kernelName:Ps,backendName:"cpu",kernelFunc:qO};function KO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;xe(a,"tile");let i=bx(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var ZO={kernelName:ya,backendName:"cpu",kernelFunc:KO};function YO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;xe(a,"topk");let o=n.data.get(a.dataId).values,[l,u]=vx(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var JO={kernelName:Fo,backendName:"cpu",kernelFunc:YO};function QO(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;xe(s,"unique");let i=r.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=kx(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([u.length],"int32",u)]}var eD={kernelName:Fh,backendName:"cpu",kernelFunc:QO};function tD(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape.length,o=a.shape[s],l=new Array(i-1),u=0;for(let p=0;pn.disposeIntermediateTensorInfo(m)),p}var aD={kernelName:uu,backendName:"cpu",kernelFunc:rD},sD=[NR,RC,TR,CR,zC,FR,$R,DR,PR,WR,VR,jR,GR,KR,YR,eF,nF,aF,iF,kR,lF,cF,dF,OC,LC,fF,FC,AF,gF,_F,vF,xF,SF,EF,IF,RF,MF,OF,zF,LF,BF,VF,jF,GF,XF,KF,YF,ZF,im,yR,QF,tM,uM,WC,cM,VC,AM,gM,xM,jC,bM,kM,NM,TM,CM,GC,MM,MC,OM,yF,zM,LM,BM,gR,XC,jM,GM,ZC,XM,YM,QM,n$,a$,i$,JC,u$,h$,p$,m$,y$,o$,w$,b$,eR,k$,S$,R$,nR,aR,$$,z$,W$,iR,V$,j$,H$,Ux,K$,wR,uR,Y$,$C,Q$,_R,bR,vR,tO,rO,sO,oO,uO,cO,dO,hR,fO,AO,wO,bO,kO,NO,TO,dR,E$,RO,MO,OO,zO,LO,WO,fR,VO,jO,AR,g$,GO,XO,ZO,JO,oR,eD,nD,aD,U$];for(let e of sD)Us(e);var Gx={};Oe(Gx,{assertNotComplex:()=>cl,bindCanvasToFramebuffer:()=>lD,bindColorTextureToFramebuffer:()=>zd,bindTextureToProgramUniformSampler:()=>ow,bindTextureUnit:()=>aw,bindVertexBufferToProgramAttribute:()=>um,callAndCheck:()=>ye,canBeRepresented:()=>qx,createFragmentShader:()=>Zx,createFramebuffer:()=>rw,createProgram:()=>Yx,createStaticIndexBuffer:()=>ew,createStaticVertexBuffer:()=>Qx,createTexture:()=>tw,createVertexShader:()=>Kx,getBatchDim:()=>ai,getExtensionOrThrow:()=>Wu,getFramebufferErrorMessage:()=>lw,getMaxTexturesInShader:()=>hw,getNumChannels:()=>iD,getProgramUniformLocation:()=>iw,getProgramUniformLocationOrThrow:()=>sw,getRowsCols:()=>si,getShapeAs3D:()=>Pd,getTextureShapeFromLogicalShape:()=>uw,getWebGLDisjointQueryTimerVersion:()=>dw,getWebGLErrorMessage:()=>Xx,getWebGLMaxTextureSize:()=>cw,hasExtension:()=>jn,isCapableOfRenderingToFloatTexture:()=>pw,isDownloadFloatTextureEnabled:()=>fw,isReshapeFree:()=>Vu,isWebGLFenceEnabled:()=>mw,isWebGLVersionEnabled:()=>hm,linkProgram:()=>Jx,resetMaxTextureSize:()=>uD,resetMaxTexturesInShader:()=>cD,unbindColorTextureFromFramebuffer:()=>cm,unbindTextureUnit:()=>oD,validateFramebuffer:()=>Bu,validateProgram:()=>Dd,validateTextureSize:()=>nw});var ii={},dm={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Ld(e,t){ii[e]=t}function Mr(e){if(!(e in ii)){let n=hD(e);if(n!==null)ii[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=ii[e];return t.isContextLost()?(delete ii[e],Mr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),ii[e])}function dD(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function hD(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=dD(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete ii[e]},!1),e===1?t.getContext("webgl",dm)||t.getContext("experimental-webgl",dm):t.getContext("webgl2",dm)}var Uu;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Uu||(Uu={}));var Hn;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Hn||(Hn={}));var Jt;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Jt||(Jt={}));function ju(e,t){return[t,e]}function pD(e,t){return e*t}function Hu(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function hl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function fD(e,t){let[n,r]=hl(e,t);return n*r*4}function pm(e,t){let n=e,r,a,s,i,o,l,u,c,h,d;return J().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,c=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,c=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:h,textureTypeFloat:d}}function ye(e,t){let n=t();return J().getBool("DEBUG")&&mD(e),n}function mD(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+Xx(e,t))}var AD=596e-10,yD=65504;function qx(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||ADe.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Kx(e,t){let n=Qr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ye(e,()=>e.shaderSource(n,t)),ye(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function Zx(e,t){let n=Qr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ye(e,()=>e.shaderSource(n,t)),ye(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw gD(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var xD=/ERROR: [0-9]+:([0-9]+):/g;function gD(e,t){let n=xD.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(` -`),s=a.length.toString().length+2,i=a.map((h,d)=>v.rightPad((d+1).toString(),s)+h),o=0;for(let h=0;he.createProgram(),"Unable to create WebGLProgram.")}function Jx(e,t){if(ye(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Dd(e,t){if(ye(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function Qx(e,t){let n=Qr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ye(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ye(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function ew(e,t){let n=Qr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ye(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),ye(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function iD(){return J().getNumber("WEBGL_VERSION")===2?1:4}function tw(e){return Qr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function nw(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function rw(e){return Qr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function um(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(ye(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),ye(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),ye(e,()=>e.enableVertexAttribArray(o)),!0)}function aw(e,t,n){Aw(e,n),ye(e,()=>e.activeTexture(e.TEXTURE0+n)),ye(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function oD(e,t){Aw(e,t),ye(e,()=>e.activeTexture(e.TEXTURE0+t)),ye(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function sw(e,t,n){return Qr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function iw(e,t,n){return e.getUniformLocation(t,n)}function ow(e,t,n,r){ye(e,()=>aw(e,t,r)),ye(e,()=>e.uniform1i(n,r))}function lD(e){ye(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ye(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ye(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function zd(e,t,n){ye(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),ye(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function cm(e,t){ye(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ye(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Bu(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+lw(e,t))}function lw(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Qr(e,t,n){let r=ye(e,()=>t());if(r==null)throw new Error(n);return r}function Aw(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(rn){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function ai(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function si(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Pd(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[ai(e),...si(e)]),t}function uw(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?v.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let r=v.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=ai(e),s=2,i=2;return e.length&&([s,i]=si(e)),r=a*(s/2)*(i/2),v.sizeToSquarishShape(r).map(o=>o*2)}return v.sizeToSquarishShape(r)}function Wd(e){return e%2==0}function Vu(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||Wd(n)&&Wd(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Wd(e[0])&&Wd(t[0])}var Bd,Vd;function cw(e){if(Bd==null){let t=Mr(e);Bd=t.getParameter(t.MAX_TEXTURE_SIZE)}return Bd}function uD(){Bd=null}function cD(){Vd=null}function hw(e){if(Vd==null){let t=Mr(e);Vd=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Vd)}function dw(e){if(e===0)return 0;let t,n=Mr(e);return jn(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:jn(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function jn(e,t){return e.getExtension(t)!=null}function hm(e){try{if(Mr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function pw(e){if(e===0)return!1;let t=Mr(e);if(e===1){if(!jn(t,"OES_texture_float"))return!1}else if(!jn(t,"EXT_color_buffer_float"))return!1;return fm(t)}function fw(e){if(e===0)return!1;let t=Mr(e);if(e===1){if(!jn(t,"OES_texture_float")||!jn(t,"WEBGL_color_buffer_float"))return!1}else{if(jn(t,"EXT_color_buffer_float"))return fm(t);let n="EXT_color_buffer_half_float";if(jn(t,n)){let r=t.getExtension(n);return wD(t,r)}return!1}return fm(t)}function fm(e){let t=pm(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function wD(e,t){let n=pm(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function mw(e){return e!==2?!1:Mr(e).fenceSync!=null}function cl(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ce=J();Ce.registerFlag("HAS_WEBGL",()=>Ce.getNumber("WEBGL_VERSION")>0);Ce.registerFlag("WEBGL_VERSION",()=>hm(2)?2:hm(1)?1:0);Ce.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ce.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ce.get("WEBGL_VERSION")===2);Ce.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ce.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ce.registerFlag("WEBGL_PACK",()=>Ce.getBool("HAS_WEBGL"));Ce.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_CLIP",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Ce.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_REDUCE",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_CONV_IM2COL",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>cw(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>hw(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ce.getNumber("WEBGL_VERSION");return e===0?0:dw(e)});Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ce.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Lh.isMobile());Ce.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>pw(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ce.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ce.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ce.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>fw(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_FENCE_API_ENABLED",()=>mw(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ce.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ce.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ce.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function on(){let e,t,n,r,a,s,i,o,l,u;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=` +var __create = Object.create; +var __defProp = Object.defineProperty; +var __getProtoOf = Object.getPrototypeOf; +var __hasOwnProp = Object.prototype.hasOwnProperty; +var __getOwnPropNames = Object.getOwnPropertyNames; +var __getOwnPropDesc = Object.getOwnPropertyDescriptor; +var __markAsModule = (target) => __defProp(target, "__esModule", {value: true}); +var __commonJS = (callback, module2) => () => { + if (!module2) { + module2 = {exports: {}}; + callback(module2.exports, module2); + } + return module2.exports; +}; +var __export = (target, all4) => { + for (var name2 in all4) + __defProp(target, name2, {get: all4[name2], enumerable: true}); +}; +var __exportStar = (target, module2, desc) => { + if (module2 && typeof module2 === "object" || typeof module2 === "function") { + for (let key of __getOwnPropNames(module2)) + if (!__hasOwnProp.call(target, key) && key !== "default") + __defProp(target, key, {get: () => module2[key], enumerable: !(desc = __getOwnPropDesc(module2, key)) || desc.enumerable}); + } + return target; +}; +var __toModule = (module2) => { + if (module2 && module2.__esModule) + return module2; + return __exportStar(__markAsModule(__defProp(module2 != null ? __create(__getProtoOf(module2)) : {}, "default", {value: module2, enumerable: true})), module2); +}; + +// src/blazeface/facemesh.ts +var require_facemesh = __commonJS((exports) => { + __markAsModule(exports); + __export(exports, { + MediaPipeFaceMesh: () => MediaPipeFaceMesh, + load: () => load9 + }); + var MediaPipeFaceMesh = class { + constructor(blazeFace, blazeMeshModel, irisModel, config3) { + this.facePipeline = new Pipeline(blazeFace, blazeMeshModel, irisModel, config3); + this.config = config3; + } + async estimateFaces(input2, config3) { + const predictions = await this.facePipeline.predict(input2, config3); + const results = []; + for (const prediction of predictions || []) { + if (prediction.isDisposedInternal) + continue; + const mesh = prediction.coords ? prediction.coords.arraySync() : null; + const meshRaw = prediction.rawCoords; + const annotations2 = {}; + if (mesh && mesh.length > 0) { + for (const key of Object.keys(MESH_ANNOTATIONS)) + annotations2[key] = MESH_ANNOTATIONS[key].map((index) => mesh[index]); + } + const boxRaw = config3.face.mesh.returnRawData && prediction.box ? {topLeft: prediction.box.startPoint, bottomRight: prediction.box.endPoint} : null; + const box3 = prediction.box ? [ + Math.max(0, prediction.box.startPoint[0]), + Math.max(0, prediction.box.startPoint[1]), + Math.min(input2.shape[2], prediction.box.endPoint[0]) - prediction.box.startPoint[0], + Math.min(input2.shape[1], prediction.box.endPoint[1]) - prediction.box.startPoint[1] + ] : 0; + results.push({ + confidence: prediction.faceConfidence || prediction.boxConfidence || 0, + boxConfidence: prediction.boxConfidence, + faceConfidence: prediction.faceConfidence, + box: box3, + mesh, + boxRaw, + meshRaw, + annotations: annotations2, + image: prediction.image ? clone(prediction.image) : null + }); + if (prediction.coords) + prediction.coords.dispose(); + if (prediction.image) + prediction.image.dispose(); + } + return results; + } + }; + var faceModels = [null, null, null]; + async function load9(config3) { + faceModels = await Promise.all([ + !faceModels[0] && config3.face.enabled ? load(config3) : null, + !faceModels[1] && config3.face.mesh.enabled ? loadGraphModel(config3.face.mesh.modelPath, {fromTFHub: config3.face.mesh.modelPath.includes("tfhub.dev")}) : null, + !faceModels[2] && config3.face.iris.enabled ? loadGraphModel(config3.face.iris.modelPath, {fromTFHub: config3.face.iris.modelPath.includes("tfhub.dev")}) : null + ]); + const faceMesh = new MediaPipeFaceMesh(faceModels[0], faceModels[1], faceModels[2], config3); + if (config3.face.mesh.enabled && config3.debug) + log(`load model: ${config3.face.mesh.modelPath.match(/\/(.*)\./)[1]}`); + if (config3.face.iris.enabled && config3.debug) + log(`load model: ${config3.face.iris.modelPath.match(/\/(.*)\./)[1]}`); + return faceMesh; + } + exports.triangulation = TRI468; +}); + +// src/posenet/keypoints.ts +var require_keypoints = __commonJS((exports) => { + __markAsModule(exports); + __export(exports, { + NUM_KEYPOINTS: () => NUM_KEYPOINTS3, + connectedPartIndices: () => connectedPartIndices, + partChannels: () => partChannels, + partIds: () => partIds2, + partNames: () => partNames2, + poseChain: () => poseChain2 + }); + var partNames2 = [ + "nose", + "leftEye", + "rightEye", + "leftEar", + "rightEar", + "leftShoulder", + "rightShoulder", + "leftElbow", + "rightElbow", + "leftWrist", + "rightWrist", + "leftHip", + "rightHip", + "leftKnee", + "rightKnee", + "leftAnkle", + "rightAnkle" + ]; + var NUM_KEYPOINTS3 = exports.partNames.length; + var partIds2 = exports.partNames.reduce((result, jointName, i) => { + result[jointName] = i; + return result; + }, {}); + var connectedPartNames = [ + ["leftHip", "leftShoulder"], + ["leftElbow", "leftShoulder"], + ["leftElbow", "leftWrist"], + ["leftHip", "leftKnee"], + ["leftKnee", "leftAnkle"], + ["rightHip", "rightShoulder"], + ["rightElbow", "rightShoulder"], + ["rightElbow", "rightWrist"], + ["rightHip", "rightKnee"], + ["rightKnee", "rightAnkle"], + ["leftShoulder", "rightShoulder"], + ["leftHip", "rightHip"] + ]; + var connectedPartIndices = connectedPartNames.map(([jointNameA, jointNameB]) => [partIds2[jointNameA], partIds2[jointNameB]]); + var poseChain2 = [ + ["nose", "leftEye"], + ["leftEye", "leftEar"], + ["nose", "rightEye"], + ["rightEye", "rightEar"], + ["nose", "leftShoulder"], + ["leftShoulder", "leftElbow"], + ["leftElbow", "leftWrist"], + ["leftShoulder", "leftHip"], + ["leftHip", "leftKnee"], + ["leftKnee", "leftAnkle"], + ["nose", "rightShoulder"], + ["rightShoulder", "rightElbow"], + ["rightElbow", "rightWrist"], + ["rightShoulder", "rightHip"], + ["rightHip", "rightKnee"], + ["rightKnee", "rightAnkle"] + ]; + var partChannels = [ + "left_face", + "right_face", + "right_upper_leg_front", + "right_lower_leg_back", + "right_upper_leg_back", + "left_lower_leg_front", + "left_upper_leg_front", + "left_upper_leg_back", + "left_lower_leg_back", + "right_feet", + "right_lower_leg_front", + "left_feet", + "torso_front", + "torso_back", + "right_upper_arm_front", + "right_upper_arm_back", + "right_lower_arm_back", + "left_lower_arm_front", + "left_upper_arm_front", + "left_upper_arm_back", + "left_lower_arm_back", + "right_hand", + "right_lower_arm_front", + "left_hand" + ]; +}); + +// src/log.ts +function log(...msg) { + const dt = new Date(); + const ts = `${dt.getHours().toString().padStart(2, "0")}:${dt.getMinutes().toString().padStart(2, "0")}:${dt.getSeconds().toString().padStart(2, "0")}.${dt.getMilliseconds().toString().padStart(3, "0")}`; + if (msg) + console.log(ts, "Human:", ...msg); +} + +// dist/tfjs.esm.js +var tfjs_esm_exports = {}; +__export(tfjs_esm_exports, { + Abs: () => Abs, + Acos: () => Acos, + Acosh: () => Acosh, + AdadeltaOptimizer: () => AdadeltaOptimizer, + AdagradOptimizer: () => AdagradOptimizer, + AdamOptimizer: () => AdamOptimizer, + AdamaxOptimizer: () => AdamaxOptimizer, + Add: () => Add, + AddN: () => AddN, + All: () => All, + Any: () => Any, + ArgMax: () => ArgMax, + ArgMin: () => ArgMin, + Asin: () => Asin, + Asinh: () => Asinh, + Atan: () => Atan, + Atan2: () => Atan2, + Atanh: () => Atanh, + AvgPool: () => AvgPool, + AvgPool3D: () => AvgPool3D, + AvgPool3DGrad: () => AvgPool3DGrad, + AvgPoolGrad: () => AvgPoolGrad, + BackendWasm: () => BackendWasm, + BatchMatMul: () => BatchMatMul, + BatchToSpaceND: () => BatchToSpaceND, + Bincount: () => Bincount, + BroadcastTo: () => BroadcastTo, + Callback: () => Callback, + CallbackList: () => CallbackList, + Cast: () => Cast, + Ceil: () => Ceil, + ClipByValue: () => ClipByValue, + Complex: () => Complex, + ComplexAbs: () => ComplexAbs, + Concat: () => Concat, + Conv2D: () => Conv2D, + Conv2DBackpropFilter: () => Conv2DBackpropFilter, + Conv2DBackpropInput: () => Conv2DBackpropInput, + Conv3D: () => Conv3D, + Conv3DBackpropFilterV2: () => Conv3DBackpropFilterV2, + Conv3DBackpropInputV2: () => Conv3DBackpropInputV2, + Cos: () => Cos, + Cosh: () => Cosh, + CropAndResize: () => CropAndResize, + Cumsum: () => Cumsum, + CustomCallback: () => CustomCallback, + DataStorage: () => DataStorage, + DenseBincount: () => DenseBincount, + DepthToSpace: () => DepthToSpace, + DepthwiseConv2dNative: () => DepthwiseConv2dNative, + DepthwiseConv2dNativeBackpropFilter: () => DepthwiseConv2dNativeBackpropFilter, + DepthwiseConv2dNativeBackpropInput: () => DepthwiseConv2dNativeBackpropInput, + Diag: () => Diag, + Dilation2D: () => Dilation2D, + Dilation2DBackpropFilter: () => Dilation2DBackpropFilter, + Dilation2DBackpropInput: () => Dilation2DBackpropInput, + ENV: () => ENV, + EarlyStopping: () => EarlyStopping, + Elu: () => Elu, + EluGrad: () => EluGrad, + Environment: () => Environment, + Equal: () => Equal, + Erf: () => Erf, + Exp: () => Exp, + ExpandDims: () => ExpandDims, + Expm1: () => Expm1, + FFT: () => FFT, + Fill: () => Fill, + FlipLeftRight: () => FlipLeftRight, + Floor: () => Floor, + FloorDiv: () => FloorDiv, + FromPixels: () => FromPixels, + FusedBatchNorm: () => FusedBatchNorm, + FusedConv2D: () => FusedConv2D, + FusedDepthwiseConv2D: () => FusedDepthwiseConv2D, + GPGPUContext: () => GPGPUContext, + GatherNd: () => GatherNd, + GatherV2: () => GatherV2, + GraphModel: () => GraphModel, + Greater: () => Greater, + GreaterEqual: () => GreaterEqual, + History: () => History, + IFFT: () => IFFT, + Identity: () => Identity, + Imag: () => Imag, + InputSpec: () => InputSpec, + IsFinite: () => IsFinite, + IsInf: () => IsInf, + IsNan: () => IsNan, + KernelBackend: () => KernelBackend, + LRN: () => LRN, + LRNGrad: () => LRNGrad, + LayerVariable: () => LayerVariable, + LayersModel: () => LayersModel, + LeakyRelu: () => LeakyRelu, + Less: () => Less, + LessEqual: () => LessEqual, + LinSpace: () => LinSpace, + Log: () => Log, + Log1p: () => Log1p, + LogSoftmax: () => LogSoftmax, + LogicalAnd: () => LogicalAnd, + LogicalNot: () => LogicalNot, + LogicalOr: () => LogicalOr, + MathBackendCPU: () => MathBackendCPU, + MathBackendWebGL: () => MathBackendWebGL, + Max: () => Max, + MaxPool: () => MaxPool, + MaxPool3D: () => MaxPool3D, + MaxPool3DGrad: () => MaxPool3DGrad, + MaxPoolGrad: () => MaxPoolGrad, + MaxPoolWithArgmax: () => MaxPoolWithArgmax, + Maximum: () => Maximum, + Mean: () => Mean, + Min: () => Min, + Minimum: () => Minimum, + MirrorPad: () => MirrorPad, + Mod: () => Mod, + MomentumOptimizer: () => MomentumOptimizer, + Multinomial: () => Multinomial, + Multiply: () => Multiply, + Neg: () => Neg, + NonMaxSuppressionV3: () => NonMaxSuppressionV3, + NonMaxSuppressionV4: () => NonMaxSuppressionV4, + NonMaxSuppressionV5: () => NonMaxSuppressionV5, + NotEqual: () => NotEqual, + OP_SCOPE_SUFFIX: () => OP_SCOPE_SUFFIX, + OneHot: () => OneHot, + OnesLike: () => OnesLike, + Optimizer: () => Optimizer, + Pack: () => Pack, + PadV2: () => PadV2, + Pool: () => Pool, + Pow: () => Pow, + Prelu: () => Prelu, + Prod: () => Prod, + RMSPropOptimizer: () => RMSPropOptimizer, + RNN: () => RNN, + Range: () => Range, + Rank: () => Rank, + Real: () => Real, + RealDiv: () => RealDiv, + Reciprocal: () => Reciprocal, + Reduction: () => Reduction, + Relu: () => Relu, + Relu6: () => Relu6, + Reshape: () => Reshape, + ResizeBilinear: () => ResizeBilinear, + ResizeBilinearGrad: () => ResizeBilinearGrad, + ResizeNearestNeighbor: () => ResizeNearestNeighbor, + ResizeNearestNeighborGrad: () => ResizeNearestNeighborGrad, + Reverse: () => Reverse, + RotateWithOffset: () => RotateWithOffset, + Round: () => Round, + Rsqrt: () => Rsqrt, + SGDOptimizer: () => SGDOptimizer, + ScatterNd: () => ScatterNd, + Select: () => Select, + Selu: () => Selu, + Sequential: () => Sequential, + Sigmoid: () => Sigmoid, + Sign: () => Sign, + Sin: () => Sin, + Sinh: () => Sinh, + Slice: () => Slice, + Softmax: () => Softmax, + Softplus: () => Softplus, + SpaceToBatchND: () => SpaceToBatchND, + SparseToDense: () => SparseToDense, + SplitV: () => SplitV, + Sqrt: () => Sqrt, + Square: () => Square, + SquaredDifference: () => SquaredDifference, + Step: () => Step, + StridedSlice: () => StridedSlice, + Sub: () => Sub, + Sum: () => Sum, + SymbolicTensor: () => SymbolicTensor, + Tan: () => Tan, + Tanh: () => Tanh, + Tensor: () => Tensor, + TensorBuffer: () => TensorBuffer, + Tile: () => Tile, + TopK: () => TopK, + Transpose: () => Transpose, + Unique: () => Unique, + Unpack: () => Unpack, + UnsortedSegmentSum: () => UnsortedSegmentSum, + Variable: () => Variable, + ZerosLike: () => ZerosLike, + _FusedMatMul: () => _FusedMatMul, + abs: () => abs, + acos: () => acos, + acosh: () => acosh, + add: () => add2, + addN: () => addN, + all: () => all, + any: () => any, + argMax: () => argMax, + argMin: () => argMin, + asin: () => asin, + asinh: () => asinh, + atan: () => atan, + atan2: () => atan2, + atanh: () => atanh, + avgPool: () => avgPool, + avgPool3d: () => avgPool3d, + backend: () => backend, + backend_util: () => backend_util_exports, + basicLSTMCell: () => basicLSTMCell, + batchNorm: () => batchNorm, + batchNorm2d: () => batchNorm2d, + batchNorm3d: () => batchNorm3d, + batchNorm4d: () => batchNorm4d, + batchToSpaceND: () => batchToSpaceND, + bincount: () => bincount, + booleanMaskAsync: () => booleanMaskAsync, + broadcastTo: () => broadcastTo, + browser: () => browser_exports, + buffer: () => buffer, + callbacks: () => callbacks, + cast: () => cast, + ceil: () => ceil, + clipByValue: () => clipByValue, + clone: () => clone, + complex: () => complex, + concat: () => concat, + concat1d: () => concat1d, + concat2d: () => concat2d, + concat3d: () => concat3d, + concat4d: () => concat4d, + constraints: () => exports_constraints_exports, + conv1d: () => conv1d, + conv2d: () => conv2d, + conv2dTranspose: () => conv2dTranspose, + conv3d: () => conv3d, + conv3dTranspose: () => conv3dTranspose, + copyRegisteredKernels: () => copyRegisteredKernels, + cos: () => cos, + cosh: () => cosh, + cosineWindow: () => cosineWindow, + cumsum: () => cumsum, + customGrad: () => customGrad, + data: () => dist_exports, + denseBincount: () => denseBincount, + deprecationWarn: () => deprecationWarn, + depthToSpace: () => depthToSpace, + depthwiseConv2d: () => depthwiseConv2d, + deregisterOp: () => deregisterOp, + device_util: () => device_util_exports, + diag: () => diag, + dilation2d: () => dilation2d, + disableDeprecationWarnings: () => disableDeprecationWarnings, + dispose: () => dispose, + disposeVariables: () => disposeVariables, + div: () => div, + divNoNan: () => divNoNan, + dot: () => dot, + dropout: () => dropout, + elu: () => elu, + enableDebugMode: () => enableDebugMode, + enableProdMode: () => enableProdMode, + enclosingPowerOfTwo: () => enclosingPowerOfTwo, + engine: () => engine, + env: () => env, + equal: () => equal, + erf: () => erf, + exp: () => exp, + expandDims: () => expandDims, + expm1: () => expm1, + eye: () => eye, + fft: () => fft, + fill: () => fill, + findBackend: () => findBackend, + findBackendFactory: () => findBackendFactory, + floor: () => floor, + floorDiv: () => floorDiv, + forceHalfFloat: () => forceHalfFloat, + fused: () => fused_ops_exports, + gather: () => gather, + gatherND: () => gatherND, + gather_util: () => gather_nd_util_exports, + getBackend: () => getBackend, + getGradient: () => getGradient, + getKernel: () => getKernel, + getKernelsForBackend: () => getKernelsForBackend, + gpgpu_util: () => gpgpu_util_exports, + grad: () => grad, + grads: () => grads, + greater: () => greater, + greaterEqual: () => greaterEqual, + ifft: () => ifft, + imag: () => imag, + image: () => image, + inTopKAsync: () => inTopKAsync, + initializers: () => exports_initializers_exports, + input: () => input, + io: () => io_exports, + irfft: () => irfft, + isFinite: () => isFinite2, + isInf: () => isInf, + isNaN: () => isNaN2, + keep: () => keep, + kernel_impls: () => kernel_impls_exports, + layers: () => exports_layers_exports, + leakyRelu: () => leakyRelu, + less: () => less, + lessEqual: () => lessEqual, + linalg: () => linalg, + linspace: () => linspace, + loadGraphModel: () => loadGraphModel, + loadLayersModel: () => loadLayersModel, + localResponseNormalization: () => localResponseNormalization, + log: () => log2, + log1p: () => log1p, + logSigmoid: () => logSigmoid, + logSoftmax: () => logSoftmax, + logSumExp: () => logSumExp, + logicalAnd: () => logicalAnd, + logicalNot: () => logicalNot, + logicalOr: () => logicalOr, + logicalXor: () => logicalXor, + losses: () => losses, + matMul: () => matMul, + math: () => math_exports, + max: () => max, + maxPool: () => maxPool, + maxPool3d: () => maxPool3d, + maxPoolWithArgmax: () => maxPoolWithArgmax, + maximum: () => maximum, + mean: () => mean, + memory: () => memory, + metrics: () => exports_metrics_exports, + min: () => min, + minimum: () => minimum, + mirrorPad: () => mirrorPad, + mod: () => mod, + model: () => model, + models: () => exports_models_exports, + moments: () => moments, + movingAverage: () => movingAverage, + mul: () => mul, + multiRNNCell: () => multiRNNCell, + multinomial: () => multinomial, + neg: () => neg, + nextFrame: () => nextFrame, + norm: () => norm, + notEqual: () => notEqual, + oneHot: () => oneHot, + ones: () => ones2, + onesLike: () => onesLike, + op: () => op, + outerProduct: () => outerProduct, + pad: () => pad, + pad1d: () => pad1d, + pad2d: () => pad2d, + pad3d: () => pad3d, + pad4d: () => pad4d, + pool: () => pool, + pow: () => pow, + prelu: () => prelu, + print: () => print2, + prod: () => prod, + profile: () => profile, + rand: () => rand, + randomGamma: () => randomGamma, + randomNormal: () => randomNormal, + randomUniform: () => randomUniform, + range: () => range, + ready: () => ready, + real: () => real, + reciprocal: () => reciprocal, + registerBackend: () => registerBackend, + registerCallbackConstructor: () => registerCallbackConstructor, + registerGradient: () => registerGradient, + registerKernel: () => registerKernel, + registerOp: () => registerOp, + regularizers: () => exports_regularizers_exports, + relu: () => relu, + relu6: () => relu6, + removeBackend: () => removeBackend, + reshape: () => reshape, + reverse: () => reverse, + reverse1d: () => reverse1d, + reverse2d: () => reverse2d, + reverse3d: () => reverse3d, + reverse4d: () => reverse4d, + rfft: () => rfft, + round: () => round2, + rsqrt: () => rsqrt, + scalar: () => scalar, + scatterND: () => scatterND, + scatter_util: () => scatter_nd_util_exports, + selu: () => selu, + separableConv2d: () => separableConv2d, + sequential: () => sequential, + serialization: () => serialization_exports, + setBackend: () => setBackend, + setPlatform: () => setPlatform, + setWasmPath: () => setWasmPath, + setWasmPaths: () => setWasmPaths, + setWebGLContext: () => setWebGLContext, + setdiff1dAsync: () => setdiff1dAsync, + shared: () => shared_exports, + sigmoid: () => sigmoid, + sign: () => sign, + signal: () => signal, + sin: () => sin, + sinh: () => sinh, + slice: () => slice, + slice1d: () => slice1d, + slice2d: () => slice2d, + slice3d: () => slice3d, + slice4d: () => slice4d, + slice_util: () => slice_util_exports, + softmax: () => softmax, + softplus: () => softplus, + spaceToBatchND: () => spaceToBatchND, + sparseToDense: () => sparseToDense, + spectral: () => spectral, + split: () => split, + sqrt: () => sqrt, + square: () => square, + squaredDifference: () => squaredDifference, + squeeze: () => squeeze, + stack: () => stack, + step: () => step, + stridedSlice: () => stridedSlice, + sub: () => sub, + sum: () => sum2, + sumOutType: () => sumOutType, + tan: () => tan, + tanh: () => tanh2, + tensor: () => tensor, + tensor1d: () => tensor1d, + tensor2d: () => tensor2d, + tensor3d: () => tensor3d, + tensor4d: () => tensor4d, + tensor5d: () => tensor5d, + tensor6d: () => tensor6d, + tensor_util: () => tensor_util_exports, + test_util: () => test_util_exports, + tidy: () => tidy, + tile: () => tile, + time: () => time, + topk: () => topk, + train: () => train, + transpose: () => transpose, + truncatedNormal: () => truncatedNormal, + unique: () => unique, + unregisterGradient: () => unregisterGradient, + unregisterKernel: () => unregisterKernel, + unsortedSegmentSum: () => unsortedSegmentSum, + unstack: () => unstack, + upcastType: () => upcastType, + util: () => util_exports, + valueAndGrad: () => valueAndGrad, + valueAndGrads: () => valueAndGrads, + variable: () => variable, + variableGrads: () => variableGrads, + version: () => version13, + version_converter: () => version11, + version_core: () => version6, + version_cpu: () => version7, + version_layers: () => version10, + version_wasm: () => version9, + version_webgl: () => version8, + webgl: () => webgl, + webgl_util: () => webgl_util_exports, + where: () => where, + whereAsync: () => whereAsync, + zeros: () => zeros, + zerosLike: () => zerosLike +}); +var __create2 = Object.create; +var __defProp2 = Object.defineProperty; +var __getProtoOf2 = Object.getPrototypeOf; +var __hasOwnProp2 = Object.prototype.hasOwnProperty; +var __getOwnPropNames2 = Object.getOwnPropertyNames; +var __getOwnPropDesc2 = Object.getOwnPropertyDescriptor; +var __markAsModule2 = (target) => __defProp2(target, "__esModule", {value: true}); +var __commonJS2 = (callback, module2) => () => { + if (!module2) { + module2 = {exports: {}}; + callback(module2.exports, module2); + } + return module2.exports; +}; +var __export2 = (target, all4) => { + for (var name2 in all4) + __defProp2(target, name2, {get: all4[name2], enumerable: true}); +}; +var __exportStar2 = (target, module2, desc) => { + if (module2 && typeof module2 === "object" || typeof module2 === "function") { + for (let key of __getOwnPropNames2(module2)) + if (!__hasOwnProp2.call(target, key) && key !== "default") + __defProp2(target, key, {get: () => module2[key], enumerable: !(desc = __getOwnPropDesc2(module2, key)) || desc.enumerable}); + } + return target; +}; +var __toModule2 = (module2) => { + if (module2 && module2.__esModule) + return module2; + return __exportStar2(__markAsModule2(__defProp2(module2 != null ? __create2(__getProtoOf2(module2)) : {}, "default", {value: module2, enumerable: true})), module2); +}; +var require_browser = __commonJS2(() => { +}); +var require_alea = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function Alea(seed) { + var me = this, mash = Mash(); + me.next = function() { + var t = 2091639 * me.s0 + me.c * 23283064365386963e-26; + me.s0 = me.s1; + me.s1 = me.s2; + return me.s2 = t - (me.c = t | 0); + }; + me.c = 1; + me.s0 = mash(" "); + me.s1 = mash(" "); + me.s2 = mash(" "); + me.s0 -= mash(seed); + if (me.s0 < 0) { + me.s0 += 1; + } + me.s1 -= mash(seed); + if (me.s1 < 0) { + me.s1 += 1; + } + me.s2 -= mash(seed); + if (me.s2 < 0) { + me.s2 += 1; + } + mash = null; + } + function copy(f, t) { + t.c = f.c; + t.s0 = f.s0; + t.s1 = f.s1; + t.s2 = f.s2; + return t; + } + function impl(seed, opts) { + var xg = new Alea(seed), state = opts && opts.state, prng = xg.next; + prng.int32 = function() { + return xg.next() * 4294967296 | 0; + }; + prng.double = function() { + return prng() + (prng() * 2097152 | 0) * 11102230246251565e-32; + }; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + function Mash() { + var n = 4022871197; + var mash = function(data2) { + data2 = data2.toString(); + for (var i = 0; i < data2.length; i++) { + n += data2.charCodeAt(i); + var h = 0.02519603282416938 * n; + n = h >>> 0; + h -= n; + h *= n; + n = h >>> 0; + h -= n; + n += h * 4294967296; + } + return (n >>> 0) * 23283064365386963e-26; + }; + return mash; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.alea = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xor128 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.x = 0; + me.y = 0; + me.z = 0; + me.w = 0; + me.next = function() { + var t = me.x ^ me.x << 11; + me.x = me.y; + me.y = me.z; + me.z = me.w; + return me.w ^= me.w >>> 19 ^ t ^ t >>> 8; + }; + if (seed === (seed | 0)) { + me.x = seed; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 64; k++) { + me.x ^= strseed.charCodeAt(k) | 0; + me.next(); + } + } + function copy(f, t) { + t.x = f.x; + t.y = f.y; + t.z = f.z; + t.w = f.w; + return t; + } + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xor128 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xorwow = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.next = function() { + var t = me.x ^ me.x >>> 2; + me.x = me.y; + me.y = me.z; + me.z = me.w; + me.w = me.v; + return (me.d = me.d + 362437 | 0) + (me.v = me.v ^ me.v << 4 ^ (t ^ t << 1)) | 0; + }; + me.x = 0; + me.y = 0; + me.z = 0; + me.w = 0; + me.v = 0; + if (seed === (seed | 0)) { + me.x = seed; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 64; k++) { + me.x ^= strseed.charCodeAt(k) | 0; + if (k == strseed.length) { + me.d = me.x << 10 ^ me.x >>> 4; + } + me.next(); + } + } + function copy(f, t) { + t.x = f.x; + t.y = f.y; + t.z = f.z; + t.w = f.w; + t.v = f.v; + t.d = f.d; + return t; + } + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xorwow = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xorshift7 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this; + me.next = function() { + var X = me.x, i = me.i, t, v, w; + t = X[i]; + t ^= t >>> 7; + v = t ^ t << 24; + t = X[i + 1 & 7]; + v ^= t ^ t >>> 10; + t = X[i + 3 & 7]; + v ^= t ^ t >>> 3; + t = X[i + 4 & 7]; + v ^= t ^ t << 7; + t = X[i + 7 & 7]; + t = t ^ t << 13; + v ^= t ^ t << 9; + X[i] = v; + me.i = i + 1 & 7; + return v; + }; + function init2(me2, seed2) { + var j, w, X = []; + if (seed2 === (seed2 | 0)) { + w = X[0] = seed2; + } else { + seed2 = "" + seed2; + for (j = 0; j < seed2.length; ++j) { + X[j & 7] = X[j & 7] << 15 ^ seed2.charCodeAt(j) + X[j + 1 & 7] << 13; + } + } + while (X.length < 8) + X.push(0); + for (j = 0; j < 8 && X[j] === 0; ++j) + ; + if (j == 8) + w = X[7] = -1; + else + w = X[j]; + me2.x = X; + me2.i = 0; + for (j = 256; j > 0; --j) { + me2.next(); + } + } + init2(me, seed); + } + function copy(f, t) { + t.x = f.x.slice(); + t.i = f.i; + return t; + } + function impl(seed, opts) { + if (seed == null) + seed = +new Date(); + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (state.x) + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xorshift7 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xor4096 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this; + me.next = function() { + var w = me.w, X = me.X, i = me.i, t, v; + me.w = w = w + 1640531527 | 0; + v = X[i + 34 & 127]; + t = X[i = i + 1 & 127]; + v ^= v << 13; + t ^= t << 17; + v ^= v >>> 15; + t ^= t >>> 12; + v = X[i] = v ^ t; + me.i = i; + return v + (w ^ w >>> 16) | 0; + }; + function init2(me2, seed2) { + var t, v, i, j, w, X = [], limit = 128; + if (seed2 === (seed2 | 0)) { + v = seed2; + seed2 = null; + } else { + seed2 = seed2 + "\0"; + v = 0; + limit = Math.max(limit, seed2.length); + } + for (i = 0, j = -32; j < limit; ++j) { + if (seed2) + v ^= seed2.charCodeAt((j + 32) % seed2.length); + if (j === 0) + w = v; + v ^= v << 10; + v ^= v >>> 15; + v ^= v << 4; + v ^= v >>> 13; + if (j >= 0) { + w = w + 1640531527 | 0; + t = X[j & 127] ^= v + w; + i = t == 0 ? i + 1 : 0; + } + } + if (i >= 128) { + X[(seed2 && seed2.length || 0) & 127] = -1; + } + i = 127; + for (j = 4 * 128; j > 0; --j) { + v = X[i + 34 & 127]; + t = X[i = i + 1 & 127]; + v ^= v << 13; + t ^= t << 17; + v ^= v >>> 15; + t ^= t >>> 12; + X[i] = v ^ t; + } + me2.w = w; + me2.X = X; + me2.i = i; + } + init2(me, seed); + } + function copy(f, t) { + t.i = f.i; + t.w = f.w; + t.X = f.X.slice(); + return t; + } + ; + function impl(seed, opts) { + if (seed == null) + seed = +new Date(); + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (state.X) + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xor4096 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_tychei = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.next = function() { + var b = me.b, c = me.c, d = me.d, a = me.a; + b = b << 25 ^ b >>> 7 ^ c; + c = c - d | 0; + d = d << 24 ^ d >>> 8 ^ a; + a = a - b | 0; + me.b = b = b << 20 ^ b >>> 12 ^ c; + me.c = c = c - d | 0; + me.d = d << 16 ^ c >>> 16 ^ a; + return me.a = a - b | 0; + }; + me.a = 0; + me.b = 0; + me.c = 2654435769 | 0; + me.d = 1367130551; + if (seed === Math.floor(seed)) { + me.a = seed / 4294967296 | 0; + me.b = seed | 0; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 20; k++) { + me.b ^= strseed.charCodeAt(k) | 0; + me.next(); + } + } + function copy(f, t) { + t.a = f.a; + t.b = f.b; + t.c = f.c; + t.d = f.d; + return t; + } + ; + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.tychei = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_crypto = __commonJS2(() => { +}); +var require_seedrandom = __commonJS2((exports, module2) => { + (function(pool3, math) { + var global2 = this, width = 256, chunks = 6, digits = 52, rngname = "random", startdenom = math.pow(width, chunks), significance = math.pow(2, digits), overflow = significance * 2, mask = width - 1, nodecrypto; + function seedrandom5(seed, options, callback) { + var key = []; + options = options == true ? {entropy: true} : options || {}; + var shortseed = mixkey(flatten4(options.entropy ? [seed, tostring(pool3)] : seed == null ? autoseed() : seed, 3), key); + var arc4 = new ARC4(key); + var prng = function() { + var n = arc4.g(chunks), d = startdenom, x = 0; + while (n < significance) { + n = (n + x) * width; + d *= width; + x = arc4.g(1); + } + while (n >= overflow) { + n /= 2; + d /= 2; + x >>>= 1; + } + return (n + x) / d; + }; + prng.int32 = function() { + return arc4.g(4) | 0; + }; + prng.quick = function() { + return arc4.g(4) / 4294967296; + }; + prng.double = prng; + mixkey(tostring(arc4.S), pool3); + return (options.pass || callback || function(prng2, seed2, is_math_call, state) { + if (state) { + if (state.S) { + copy(state, arc4); + } + prng2.state = function() { + return copy(arc4, {}); + }; + } + if (is_math_call) { + math[rngname] = prng2; + return seed2; + } else + return prng2; + })(prng, shortseed, "global" in options ? options.global : this == math, options.state); + } + math["seed" + rngname] = seedrandom5; + function ARC4(key) { + var t, keylen = key.length, me = this, i = 0, j = me.i = me.j = 0, s = me.S = []; + if (!keylen) { + key = [keylen++]; + } + while (i < width) { + s[i] = i++; + } + for (i = 0; i < width; i++) { + s[i] = s[j = mask & j + key[i % keylen] + (t = s[i])]; + s[j] = t; + } + (me.g = function(count2) { + var t2, r = 0, i2 = me.i, j2 = me.j, s2 = me.S; + while (count2--) { + t2 = s2[i2 = mask & i2 + 1]; + r = r * width + s2[mask & (s2[i2] = s2[j2 = mask & j2 + t2]) + (s2[j2] = t2)]; + } + me.i = i2; + me.j = j2; + return r; + })(width); + } + function copy(f, t) { + t.i = f.i; + t.j = f.j; + t.S = f.S.slice(); + return t; + } + ; + function flatten4(obj, depth) { + var result = [], typ = typeof obj, prop; + if (depth && typ == "object") { + for (prop in obj) { + try { + result.push(flatten4(obj[prop], depth - 1)); + } catch (e) { + } + } + } + return result.length ? result : typ == "string" ? obj : obj + "\0"; + } + function mixkey(seed, key) { + var stringseed = seed + "", smear, j = 0; + while (j < stringseed.length) { + key[mask & j] = mask & (smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++); + } + return tostring(key); + } + function autoseed() { + try { + var out; + if (nodecrypto && (out = nodecrypto.randomBytes)) { + out = out(width); + } else { + out = new Uint8Array(width); + (global2.crypto || global2.msCrypto).getRandomValues(out); + } + return tostring(out); + } catch (e) { + var browser2 = global2.navigator, plugins = browser2 && browser2.plugins; + return [+new Date(), global2, plugins, global2.screen, tostring(pool3)]; + } + } + function tostring(a) { + return String.fromCharCode.apply(0, a); + } + mixkey(math.random(), pool3); + if (typeof module2 == "object" && module2.exports) { + module2.exports = seedrandom5; + try { + nodecrypto = require_crypto(); + } catch (ex) { + } + } else if (typeof define == "function" && define.amd) { + define(function() { + return seedrandom5; + }); + } + })([], Math); +}); +var require_seedrandom2 = __commonJS2((exports, module2) => { + var alea5 = require_alea(); + var xor128 = require_xor128(); + var xorwow = require_xorwow(); + var xorshift7 = require_xorshift7(); + var xor4096 = require_xor4096(); + var tychei = require_tychei(); + var sr = require_seedrandom(); + sr.alea = alea5; + sr.xor128 = xor128; + sr.xorwow = xorwow; + sr.xorshift7 = xorshift7; + sr.xor4096 = xor4096; + sr.tychei = tychei; + module2.exports = sr; +}); +var require_alea2 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function Alea(seed) { + var me = this, mash = Mash(); + me.next = function() { + var t = 2091639 * me.s0 + me.c * 23283064365386963e-26; + me.s0 = me.s1; + me.s1 = me.s2; + return me.s2 = t - (me.c = t | 0); + }; + me.c = 1; + me.s0 = mash(" "); + me.s1 = mash(" "); + me.s2 = mash(" "); + me.s0 -= mash(seed); + if (me.s0 < 0) { + me.s0 += 1; + } + me.s1 -= mash(seed); + if (me.s1 < 0) { + me.s1 += 1; + } + me.s2 -= mash(seed); + if (me.s2 < 0) { + me.s2 += 1; + } + mash = null; + } + function copy(f, t) { + t.c = f.c; + t.s0 = f.s0; + t.s1 = f.s1; + t.s2 = f.s2; + return t; + } + function impl(seed, opts) { + var xg = new Alea(seed), state = opts && opts.state, prng = xg.next; + prng.int32 = function() { + return xg.next() * 4294967296 | 0; + }; + prng.double = function() { + return prng() + (prng() * 2097152 | 0) * 11102230246251565e-32; + }; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + function Mash() { + var n = 4022871197; + var mash = function(data2) { + data2 = data2.toString(); + for (var i = 0; i < data2.length; i++) { + n += data2.charCodeAt(i); + var h = 0.02519603282416938 * n; + n = h >>> 0; + h -= n; + h *= n; + n = h >>> 0; + h -= n; + n += h * 4294967296; + } + return (n >>> 0) * 23283064365386963e-26; + }; + return mash; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.alea = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xor1282 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.x = 0; + me.y = 0; + me.z = 0; + me.w = 0; + me.next = function() { + var t = me.x ^ me.x << 11; + me.x = me.y; + me.y = me.z; + me.z = me.w; + return me.w ^= me.w >>> 19 ^ t ^ t >>> 8; + }; + if (seed === (seed | 0)) { + me.x = seed; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 64; k++) { + me.x ^= strseed.charCodeAt(k) | 0; + me.next(); + } + } + function copy(f, t) { + t.x = f.x; + t.y = f.y; + t.z = f.z; + t.w = f.w; + return t; + } + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xor128 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xorwow2 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.next = function() { + var t = me.x ^ me.x >>> 2; + me.x = me.y; + me.y = me.z; + me.z = me.w; + me.w = me.v; + return (me.d = me.d + 362437 | 0) + (me.v = me.v ^ me.v << 4 ^ (t ^ t << 1)) | 0; + }; + me.x = 0; + me.y = 0; + me.z = 0; + me.w = 0; + me.v = 0; + if (seed === (seed | 0)) { + me.x = seed; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 64; k++) { + me.x ^= strseed.charCodeAt(k) | 0; + if (k == strseed.length) { + me.d = me.x << 10 ^ me.x >>> 4; + } + me.next(); + } + } + function copy(f, t) { + t.x = f.x; + t.y = f.y; + t.z = f.z; + t.w = f.w; + t.v = f.v; + t.d = f.d; + return t; + } + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xorwow = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xorshift72 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this; + me.next = function() { + var X = me.x, i = me.i, t, v, w; + t = X[i]; + t ^= t >>> 7; + v = t ^ t << 24; + t = X[i + 1 & 7]; + v ^= t ^ t >>> 10; + t = X[i + 3 & 7]; + v ^= t ^ t >>> 3; + t = X[i + 4 & 7]; + v ^= t ^ t << 7; + t = X[i + 7 & 7]; + t = t ^ t << 13; + v ^= t ^ t << 9; + X[i] = v; + me.i = i + 1 & 7; + return v; + }; + function init2(me2, seed2) { + var j, w, X = []; + if (seed2 === (seed2 | 0)) { + w = X[0] = seed2; + } else { + seed2 = "" + seed2; + for (j = 0; j < seed2.length; ++j) { + X[j & 7] = X[j & 7] << 15 ^ seed2.charCodeAt(j) + X[j + 1 & 7] << 13; + } + } + while (X.length < 8) + X.push(0); + for (j = 0; j < 8 && X[j] === 0; ++j) + ; + if (j == 8) + w = X[7] = -1; + else + w = X[j]; + me2.x = X; + me2.i = 0; + for (j = 256; j > 0; --j) { + me2.next(); + } + } + init2(me, seed); + } + function copy(f, t) { + t.x = f.x.slice(); + t.i = f.i; + return t; + } + function impl(seed, opts) { + if (seed == null) + seed = +new Date(); + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (state.x) + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xorshift7 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xor40962 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this; + me.next = function() { + var w = me.w, X = me.X, i = me.i, t, v; + me.w = w = w + 1640531527 | 0; + v = X[i + 34 & 127]; + t = X[i = i + 1 & 127]; + v ^= v << 13; + t ^= t << 17; + v ^= v >>> 15; + t ^= t >>> 12; + v = X[i] = v ^ t; + me.i = i; + return v + (w ^ w >>> 16) | 0; + }; + function init2(me2, seed2) { + var t, v, i, j, w, X = [], limit = 128; + if (seed2 === (seed2 | 0)) { + v = seed2; + seed2 = null; + } else { + seed2 = seed2 + "\0"; + v = 0; + limit = Math.max(limit, seed2.length); + } + for (i = 0, j = -32; j < limit; ++j) { + if (seed2) + v ^= seed2.charCodeAt((j + 32) % seed2.length); + if (j === 0) + w = v; + v ^= v << 10; + v ^= v >>> 15; + v ^= v << 4; + v ^= v >>> 13; + if (j >= 0) { + w = w + 1640531527 | 0; + t = X[j & 127] ^= v + w; + i = t == 0 ? i + 1 : 0; + } + } + if (i >= 128) { + X[(seed2 && seed2.length || 0) & 127] = -1; + } + i = 127; + for (j = 4 * 128; j > 0; --j) { + v = X[i + 34 & 127]; + t = X[i = i + 1 & 127]; + v ^= v << 13; + t ^= t << 17; + v ^= v >>> 15; + t ^= t >>> 12; + X[i] = v ^ t; + } + me2.w = w; + me2.X = X; + me2.i = i; + } + init2(me, seed); + } + function copy(f, t) { + t.i = f.i; + t.w = f.w; + t.X = f.X.slice(); + return t; + } + ; + function impl(seed, opts) { + if (seed == null) + seed = +new Date(); + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (state.X) + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xor4096 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_tychei2 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.next = function() { + var b = me.b, c = me.c, d = me.d, a = me.a; + b = b << 25 ^ b >>> 7 ^ c; + c = c - d | 0; + d = d << 24 ^ d >>> 8 ^ a; + a = a - b | 0; + me.b = b = b << 20 ^ b >>> 12 ^ c; + me.c = c = c - d | 0; + me.d = d << 16 ^ c >>> 16 ^ a; + return me.a = a - b | 0; + }; + me.a = 0; + me.b = 0; + me.c = 2654435769 | 0; + me.d = 1367130551; + if (seed === Math.floor(seed)) { + me.a = seed / 4294967296 | 0; + me.b = seed | 0; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 20; k++) { + me.b ^= strseed.charCodeAt(k) | 0; + me.next(); + } + } + function copy(f, t) { + t.a = f.a; + t.b = f.b; + t.c = f.c; + t.d = f.d; + return t; + } + ; + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.tychei = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_seedrandom3 = __commonJS2((exports, module2) => { + (function(pool3, math) { + var global2 = this, width = 256, chunks = 6, digits = 52, rngname = "random", startdenom = math.pow(width, chunks), significance = math.pow(2, digits), overflow = significance * 2, mask = width - 1, nodecrypto; + function seedrandom5(seed, options, callback) { + var key = []; + options = options == true ? {entropy: true} : options || {}; + var shortseed = mixkey(flatten4(options.entropy ? [seed, tostring(pool3)] : seed == null ? autoseed() : seed, 3), key); + var arc4 = new ARC4(key); + var prng = function() { + var n = arc4.g(chunks), d = startdenom, x = 0; + while (n < significance) { + n = (n + x) * width; + d *= width; + x = arc4.g(1); + } + while (n >= overflow) { + n /= 2; + d /= 2; + x >>>= 1; + } + return (n + x) / d; + }; + prng.int32 = function() { + return arc4.g(4) | 0; + }; + prng.quick = function() { + return arc4.g(4) / 4294967296; + }; + prng.double = prng; + mixkey(tostring(arc4.S), pool3); + return (options.pass || callback || function(prng2, seed2, is_math_call, state) { + if (state) { + if (state.S) { + copy(state, arc4); + } + prng2.state = function() { + return copy(arc4, {}); + }; + } + if (is_math_call) { + math[rngname] = prng2; + return seed2; + } else + return prng2; + })(prng, shortseed, "global" in options ? options.global : this == math, options.state); + } + math["seed" + rngname] = seedrandom5; + function ARC4(key) { + var t, keylen = key.length, me = this, i = 0, j = me.i = me.j = 0, s = me.S = []; + if (!keylen) { + key = [keylen++]; + } + while (i < width) { + s[i] = i++; + } + for (i = 0; i < width; i++) { + s[i] = s[j = mask & j + key[i % keylen] + (t = s[i])]; + s[j] = t; + } + (me.g = function(count2) { + var t2, r = 0, i2 = me.i, j2 = me.j, s2 = me.S; + while (count2--) { + t2 = s2[i2 = mask & i2 + 1]; + r = r * width + s2[mask & (s2[i2] = s2[j2 = mask & j2 + t2]) + (s2[j2] = t2)]; + } + me.i = i2; + me.j = j2; + return r; + })(width); + } + function copy(f, t) { + t.i = f.i; + t.j = f.j; + t.S = f.S.slice(); + return t; + } + ; + function flatten4(obj, depth) { + var result = [], typ = typeof obj, prop; + if (depth && typ == "object") { + for (prop in obj) { + try { + result.push(flatten4(obj[prop], depth - 1)); + } catch (e) { + } + } + } + return result.length ? result : typ == "string" ? obj : obj + "\0"; + } + function mixkey(seed, key) { + var stringseed = seed + "", smear, j = 0; + while (j < stringseed.length) { + key[mask & j] = mask & (smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++); + } + return tostring(key); + } + function autoseed() { + try { + var out; + if (nodecrypto && (out = nodecrypto.randomBytes)) { + out = out(width); + } else { + out = new Uint8Array(width); + (global2.crypto || global2.msCrypto).getRandomValues(out); + } + return tostring(out); + } catch (e) { + var browser2 = global2.navigator, plugins = browser2 && browser2.plugins; + return [+new Date(), global2, plugins, global2.screen, tostring(pool3)]; + } + } + function tostring(a) { + return String.fromCharCode.apply(0, a); + } + mixkey(math.random(), pool3); + if (typeof module2 == "object" && module2.exports) { + module2.exports = seedrandom5; + try { + nodecrypto = require_crypto(); + } catch (ex) { + } + } else if (typeof define == "function" && define.amd) { + define(function() { + return seedrandom5; + }); + } + })([], Math); +}); +var require_seedrandom4 = __commonJS2((exports, module2) => { + var alea5 = require_alea2(); + var xor128 = require_xor1282(); + var xorwow = require_xorwow2(); + var xorshift7 = require_xorshift72(); + var xor4096 = require_xor40962(); + var tychei = require_tychei2(); + var sr = require_seedrandom3(); + sr.alea = alea5; + sr.xor128 = xor128; + sr.xorwow = xorwow; + sr.xorshift7 = xorshift7; + sr.xor4096 = xor4096; + sr.tychei = tychei; + module2.exports = sr; +}); +var require_path = __commonJS2(() => { +}); +var require_worker_threads = __commonJS2(() => { +}); +var require_perf_hooks = __commonJS2(() => { +}); +var require_tfjs_backend_wasm_threaded_simd = __commonJS2((exports, module2) => { + var WasmBackendModuleThreadedSimd = function() { + var _scriptDir = typeof document !== "undefined" && document.currentScript ? document.currentScript.src : void 0; + if (typeof __filename !== "undefined") + _scriptDir = _scriptDir || __filename; + return function(WasmBackendModuleThreadedSimd2) { + WasmBackendModuleThreadedSimd2 = WasmBackendModuleThreadedSimd2 || {}; + function GROWABLE_HEAP_I8() { + if (wasmMemory.buffer != buffer2) { + updateGlobalBufferAndViews(wasmMemory.buffer); + } + return HEAP8; + } + function GROWABLE_HEAP_U8() { + if (wasmMemory.buffer != buffer2) { + updateGlobalBufferAndViews(wasmMemory.buffer); + } + return HEAPU8; + } + function GROWABLE_HEAP_I32() { + if (wasmMemory.buffer != buffer2) { + updateGlobalBufferAndViews(wasmMemory.buffer); + } + return HEAP32; + } + function GROWABLE_HEAP_U32() { + if (wasmMemory.buffer != buffer2) { + updateGlobalBufferAndViews(wasmMemory.buffer); + } + return HEAPU32; + } + function GROWABLE_HEAP_F64() { + if (wasmMemory.buffer != buffer2) { + updateGlobalBufferAndViews(wasmMemory.buffer); + } + return HEAPF64; + } + var Module = typeof WasmBackendModuleThreadedSimd2 !== "undefined" ? WasmBackendModuleThreadedSimd2 : {}; + var readyPromiseResolve, readyPromiseReject; + Module["ready"] = new Promise(function(resolve, reject) { + readyPromiseResolve = resolve; + readyPromiseReject = reject; + }); + var moduleOverrides = {}; + var key; + for (key in Module) { + if (Module.hasOwnProperty(key)) { + moduleOverrides[key] = Module[key]; + } + } + var arguments_ = []; + var thisProgram = "./this.program"; + var quit_ = function(status, toThrow) { + throw toThrow; + }; + var ENVIRONMENT_IS_WEB = false; + var ENVIRONMENT_IS_WORKER = false; + var ENVIRONMENT_IS_NODE = false; + var ENVIRONMENT_IS_SHELL = false; + ENVIRONMENT_IS_WEB = typeof window === "object"; + ENVIRONMENT_IS_WORKER = typeof importScripts === "function"; + ENVIRONMENT_IS_NODE = typeof process === "object" && typeof process.versions === "object" && typeof process.versions.node === "string"; + ENVIRONMENT_IS_SHELL = !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER; + var ENVIRONMENT_IS_PTHREAD = Module["ENVIRONMENT_IS_PTHREAD"] || false; + if (ENVIRONMENT_IS_PTHREAD) { + buffer2 = Module["buffer"]; + } + var scriptDirectory = ""; + function locateFile(path) { + if (Module["locateFile"]) { + return Module["locateFile"](path, scriptDirectory); + } + return scriptDirectory + path; + } + var read_, readAsync, readBinary, setWindowTitle; + var nodeFS; + var nodePath; + if (ENVIRONMENT_IS_NODE) { + if (ENVIRONMENT_IS_WORKER) { + scriptDirectory = require_path().dirname(scriptDirectory) + "/"; + } else { + scriptDirectory = __dirname + "/"; + } + read_ = function shell_read(filename, binary) { + if (!nodeFS) + nodeFS = require("fs"); + if (!nodePath) + nodePath = require_path(); + filename = nodePath["normalize"](filename); + return nodeFS["readFileSync"](filename, binary ? null : "utf8"); + }; + readBinary = function readBinary2(filename) { + var ret = read_(filename, true); + if (!ret.buffer) { + ret = new Uint8Array(ret); + } + assert3(ret.buffer); + return ret; + }; + if (process["argv"].length > 1) { + thisProgram = process["argv"][1].replace(/\\/g, "/"); + } + arguments_ = process["argv"].slice(2); + process["on"]("uncaughtException", function(ex) { + if (!(ex instanceof ExitStatus)) { + throw ex; + } + }); + process["on"]("unhandledRejection", abort); + quit_ = function(status) { + process["exit"](status); + }; + Module["inspect"] = function() { + return "[Emscripten Module object]"; + }; + var nodeWorkerThreads; + try { + nodeWorkerThreads = require_worker_threads(); + } catch (e) { + console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'); + throw e; + } + global.Worker = nodeWorkerThreads.Worker; + } else if (ENVIRONMENT_IS_SHELL) { + if (typeof read != "undefined") { + read_ = function shell_read(f) { + return read(f); + }; + } + readBinary = function readBinary2(f) { + var data2; + if (typeof readbuffer === "function") { + return new Uint8Array(readbuffer(f)); + } + data2 = read(f, "binary"); + assert3(typeof data2 === "object"); + return data2; + }; + if (typeof scriptArgs != "undefined") { + arguments_ = scriptArgs; + } else if (typeof arguments != "undefined") { + arguments_ = arguments; + } + if (typeof quit === "function") { + quit_ = function(status) { + quit(status); + }; + } + if (typeof print !== "undefined") { + if (typeof console === "undefined") + console = {}; + console.log = print; + console.warn = console.error = typeof printErr !== "undefined" ? printErr : print; + } + } else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) { + if (ENVIRONMENT_IS_WORKER) { + scriptDirectory = self.location.href; + } else if (typeof document !== "undefined" && document.currentScript) { + scriptDirectory = document.currentScript.src; + } + if (typeof _scriptDir !== "undefined" && _scriptDir) { + scriptDirectory = _scriptDir; + } + if (scriptDirectory.indexOf("blob:") !== 0) { + scriptDirectory = scriptDirectory.substr(0, scriptDirectory.lastIndexOf("/") + 1); + } else { + scriptDirectory = ""; + } + if (ENVIRONMENT_IS_NODE) { + read_ = function shell_read(filename, binary) { + if (!nodeFS) + nodeFS = require("fs"); + if (!nodePath) + nodePath = require_path(); + filename = nodePath["normalize"](filename); + return nodeFS["readFileSync"](filename, binary ? null : "utf8"); + }; + readBinary = function readBinary2(filename) { + var ret = read_(filename, true); + if (!ret.buffer) { + ret = new Uint8Array(ret); + } + assert3(ret.buffer); + return ret; + }; + } else { + read_ = function(url) { + var xhr = new XMLHttpRequest(); + xhr.open("GET", url, false); + xhr.send(null); + return xhr.responseText; + }; + if (ENVIRONMENT_IS_WORKER) { + readBinary = function(url) { + var xhr = new XMLHttpRequest(); + xhr.open("GET", url, false); + xhr.responseType = "arraybuffer"; + xhr.send(null); + return new Uint8Array(xhr.response); + }; + } + readAsync = function(url, onload, onerror) { + var xhr = new XMLHttpRequest(); + xhr.open("GET", url, true); + xhr.responseType = "arraybuffer"; + xhr.onload = function() { + if (xhr.status == 200 || xhr.status == 0 && xhr.response) { + onload(xhr.response); + return; + } + onerror(); + }; + xhr.onerror = onerror; + xhr.send(null); + }; + } + setWindowTitle = function(title) { + document.title = title; + }; + } else { + } + if (ENVIRONMENT_IS_NODE) { + if (typeof performance === "undefined") { + global.performance = require_perf_hooks().performance; + } + } + var out = Module["print"] || console.log.bind(console); + var err = Module["printErr"] || console.warn.bind(console); + for (key in moduleOverrides) { + if (moduleOverrides.hasOwnProperty(key)) { + Module[key] = moduleOverrides[key]; + } + } + moduleOverrides = null; + if (Module["arguments"]) + arguments_ = Module["arguments"]; + if (Module["thisProgram"]) + thisProgram = Module["thisProgram"]; + if (Module["quit"]) + quit_ = Module["quit"]; + var Atomics_load = Atomics.load; + var Atomics_store = Atomics.store; + var Atomics_compareExchange = Atomics.compareExchange; + var wasmBinary; + if (Module["wasmBinary"]) + wasmBinary = Module["wasmBinary"]; + var noExitRuntime = Module["noExitRuntime"] || true; + if (typeof WebAssembly !== "object") { + abort("no native wasm support detected"); + } + var wasmMemory; + var wasmModule; + var ABORT = false; + var EXITSTATUS; + function assert3(condition, text) { + if (!condition) { + abort("Assertion failed: " + text); + } + } + function getCFunc(ident) { + var func2 = Module["_" + ident]; + assert3(func2, "Cannot call unknown function " + ident + ", make sure it is exported"); + return func2; + } + function ccall(ident, returnType, argTypes, args, opts) { + var toC = {string: function(str) { + var ret2 = 0; + if (str !== null && str !== void 0 && str !== 0) { + var len = (str.length << 2) + 1; + ret2 = stackAlloc(len); + stringToUTF8(str, ret2, len); + } + return ret2; + }, array: function(arr) { + var ret2 = stackAlloc(arr.length); + writeArrayToMemory(arr, ret2); + return ret2; + }}; + function convertReturnValue(ret2) { + if (returnType === "string") + return UTF8ToString(ret2); + if (returnType === "boolean") + return Boolean(ret2); + return ret2; + } + var func2 = getCFunc(ident); + var cArgs = []; + var stack2 = 0; + if (args) { + for (var i = 0; i < args.length; i++) { + var converter = toC[argTypes[i]]; + if (converter) { + if (stack2 === 0) + stack2 = stackSave(); + cArgs[i] = converter(args[i]); + } else { + cArgs[i] = args[i]; + } + } + } + var ret = func2.apply(null, cArgs); + ret = convertReturnValue(ret); + if (stack2 !== 0) + stackRestore(stack2); + return ret; + } + function cwrap(ident, returnType, argTypes, opts) { + argTypes = argTypes || []; + var numericArgs = argTypes.every(function(type) { + return type === "number"; + }); + var numericRet = returnType !== "string"; + if (numericRet && numericArgs && !opts) { + return getCFunc(ident); + } + return function() { + return ccall(ident, returnType, argTypes, arguments, opts); + }; + } + function UTF8ArrayToString(heap, idx, maxBytesToRead) { + var endIdx = idx + maxBytesToRead; + var str = ""; + while (!(idx >= endIdx)) { + var u0 = heap[idx++]; + if (!u0) + return str; + if (!(u0 & 128)) { + str += String.fromCharCode(u0); + continue; + } + var u1 = heap[idx++] & 63; + if ((u0 & 224) == 192) { + str += String.fromCharCode((u0 & 31) << 6 | u1); + continue; + } + var u2 = heap[idx++] & 63; + if ((u0 & 240) == 224) { + u0 = (u0 & 15) << 12 | u1 << 6 | u2; + } else { + u0 = (u0 & 7) << 18 | u1 << 12 | u2 << 6 | heap[idx++] & 63; + } + if (u0 < 65536) { + str += String.fromCharCode(u0); + } else { + var ch = u0 - 65536; + str += String.fromCharCode(55296 | ch >> 10, 56320 | ch & 1023); + } + } + return str; + } + function UTF8ToString(ptr, maxBytesToRead) { + return ptr ? UTF8ArrayToString(GROWABLE_HEAP_U8(), ptr, maxBytesToRead) : ""; + } + function stringToUTF8Array(str, heap, outIdx, maxBytesToWrite) { + if (!(maxBytesToWrite > 0)) + return 0; + var startIdx = outIdx; + var endIdx = outIdx + maxBytesToWrite - 1; + for (var i = 0; i < str.length; ++i) { + var u = str.charCodeAt(i); + if (u >= 55296 && u <= 57343) { + var u1 = str.charCodeAt(++i); + u = 65536 + ((u & 1023) << 10) | u1 & 1023; + } + if (u <= 127) { + if (outIdx >= endIdx) + break; + heap[outIdx++] = u; + } else if (u <= 2047) { + if (outIdx + 1 >= endIdx) + break; + heap[outIdx++] = 192 | u >> 6; + heap[outIdx++] = 128 | u & 63; + } else if (u <= 65535) { + if (outIdx + 2 >= endIdx) + break; + heap[outIdx++] = 224 | u >> 12; + heap[outIdx++] = 128 | u >> 6 & 63; + heap[outIdx++] = 128 | u & 63; + } else { + if (outIdx + 3 >= endIdx) + break; + heap[outIdx++] = 240 | u >> 18; + heap[outIdx++] = 128 | u >> 12 & 63; + heap[outIdx++] = 128 | u >> 6 & 63; + heap[outIdx++] = 128 | u & 63; + } + } + heap[outIdx] = 0; + return outIdx - startIdx; + } + function stringToUTF8(str, outPtr, maxBytesToWrite) { + return stringToUTF8Array(str, GROWABLE_HEAP_U8(), outPtr, maxBytesToWrite); + } + function lengthBytesUTF8(str) { + var len = 0; + for (var i = 0; i < str.length; ++i) { + var u = str.charCodeAt(i); + if (u >= 55296 && u <= 57343) + u = 65536 + ((u & 1023) << 10) | str.charCodeAt(++i) & 1023; + if (u <= 127) + ++len; + else if (u <= 2047) + len += 2; + else if (u <= 65535) + len += 3; + else + len += 4; + } + return len; + } + function writeArrayToMemory(array2, buffer3) { + GROWABLE_HEAP_I8().set(array2, buffer3); + } + function alignUp(x, multiple) { + if (x % multiple > 0) { + x += multiple - x % multiple; + } + return x; + } + var buffer2, HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64; + function updateGlobalBufferAndViews(buf) { + buffer2 = buf; + Module["HEAP8"] = HEAP8 = new Int8Array(buf); + Module["HEAP16"] = HEAP16 = new Int16Array(buf); + Module["HEAP32"] = HEAP32 = new Int32Array(buf); + Module["HEAPU8"] = HEAPU8 = new Uint8Array(buf); + Module["HEAPU16"] = HEAPU16 = new Uint16Array(buf); + Module["HEAPU32"] = HEAPU32 = new Uint32Array(buf); + Module["HEAPF32"] = HEAPF32 = new Float32Array(buf); + Module["HEAPF64"] = HEAPF64 = new Float64Array(buf); + } + var INITIAL_MEMORY = Module["INITIAL_MEMORY"] || 16777216; + if (ENVIRONMENT_IS_PTHREAD) { + wasmMemory = Module["wasmMemory"]; + buffer2 = Module["buffer"]; + } else { + if (Module["wasmMemory"]) { + wasmMemory = Module["wasmMemory"]; + } else { + wasmMemory = new WebAssembly.Memory({initial: INITIAL_MEMORY / 65536, maximum: 2147483648 / 65536, shared: true}); + if (!(wasmMemory.buffer instanceof SharedArrayBuffer)) { + err("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"); + if (ENVIRONMENT_IS_NODE) { + console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"); + } + throw Error("bad memory"); + } + } + } + if (wasmMemory) { + buffer2 = wasmMemory.buffer; + } + INITIAL_MEMORY = buffer2.byteLength; + updateGlobalBufferAndViews(buffer2); + var wasmTable; + var __ATPRERUN__ = []; + var __ATINIT__ = []; + var __ATMAIN__ = []; + var __ATEXIT__ = []; + var __ATPOSTRUN__ = []; + var runtimeInitialized = false; + var runtimeExited = false; + if (!ENVIRONMENT_IS_PTHREAD) + __ATINIT__.push({func: function() { + ___wasm_call_ctors(); + }}); + if (ENVIRONMENT_IS_PTHREAD) + runtimeInitialized = true; + function preRun() { + if (ENVIRONMENT_IS_PTHREAD) + return; + if (Module["preRun"]) { + if (typeof Module["preRun"] == "function") + Module["preRun"] = [Module["preRun"]]; + while (Module["preRun"].length) { + addOnPreRun(Module["preRun"].shift()); + } + } + callRuntimeCallbacks(__ATPRERUN__); + } + function initRuntime() { + runtimeInitialized = true; + callRuntimeCallbacks(__ATINIT__); + } + function preMain() { + if (ENVIRONMENT_IS_PTHREAD) + return; + callRuntimeCallbacks(__ATMAIN__); + } + function exitRuntime() { + if (ENVIRONMENT_IS_PTHREAD) + return; + runtimeExited = true; + } + function postRun() { + if (ENVIRONMENT_IS_PTHREAD) + return; + if (Module["postRun"]) { + if (typeof Module["postRun"] == "function") + Module["postRun"] = [Module["postRun"]]; + while (Module["postRun"].length) { + addOnPostRun(Module["postRun"].shift()); + } + } + callRuntimeCallbacks(__ATPOSTRUN__); + } + function addOnPreRun(cb) { + __ATPRERUN__.unshift(cb); + } + function addOnPostRun(cb) { + __ATPOSTRUN__.unshift(cb); + } + var runDependencies = 0; + var runDependencyWatcher = null; + var dependenciesFulfilled = null; + function addRunDependency(id) { + assert3(!ENVIRONMENT_IS_PTHREAD, "addRunDependency cannot be used in a pthread worker"); + runDependencies++; + if (Module["monitorRunDependencies"]) { + Module["monitorRunDependencies"](runDependencies); + } + } + function removeRunDependency(id) { + runDependencies--; + if (Module["monitorRunDependencies"]) { + Module["monitorRunDependencies"](runDependencies); + } + if (runDependencies == 0) { + if (runDependencyWatcher !== null) { + clearInterval(runDependencyWatcher); + runDependencyWatcher = null; + } + if (dependenciesFulfilled) { + var callback = dependenciesFulfilled; + dependenciesFulfilled = null; + callback(); + } + } + } + Module["preloadedImages"] = {}; + Module["preloadedAudios"] = {}; + function abort(what) { + if (Module["onAbort"]) { + Module["onAbort"](what); + } + if (ENVIRONMENT_IS_PTHREAD) + console.error("Pthread aborting at " + new Error().stack); + what += ""; + err(what); + ABORT = true; + EXITSTATUS = 1; + what = "abort(" + what + "). Build with -s ASSERTIONS=1 for more info."; + var e = new WebAssembly.RuntimeError(what); + readyPromiseReject(e); + throw e; + } + function hasPrefix(str, prefix) { + return String.prototype.startsWith ? str.startsWith(prefix) : str.indexOf(prefix) === 0; + } + var dataURIPrefix = "data:application/octet-stream;base64,"; + function isDataURI(filename) { + return hasPrefix(filename, dataURIPrefix); + } + var fileURIPrefix = "file://"; + function isFileURI(filename) { + return hasPrefix(filename, fileURIPrefix); + } + var wasmBinaryFile = "tfjs-backend-wasm-threaded-simd.wasm"; + if (!isDataURI(wasmBinaryFile)) { + wasmBinaryFile = locateFile(wasmBinaryFile); + } + function getBinary(file) { + try { + if (file == wasmBinaryFile && wasmBinary) { + return new Uint8Array(wasmBinary); + } + if (readBinary) { + return readBinary(file); + } else { + throw "both async and sync fetching of the wasm failed"; + } + } catch (err2) { + abort(err2); + } + } + function getBinaryPromise() { + if (!wasmBinary && (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER)) { + if (typeof fetch === "function" && !isFileURI(wasmBinaryFile)) { + return fetch(wasmBinaryFile, {credentials: "same-origin"}).then(function(response) { + if (!response["ok"]) { + throw "failed to load wasm binary file at '" + wasmBinaryFile + "'"; + } + return response["arrayBuffer"](); + }).catch(function() { + return getBinary(wasmBinaryFile); + }); + } else { + if (readAsync) { + return new Promise(function(resolve, reject) { + readAsync(wasmBinaryFile, function(response) { + resolve(new Uint8Array(response)); + }, reject); + }); + } + } + } + return Promise.resolve().then(function() { + return getBinary(wasmBinaryFile); + }); + } + function createWasm() { + var info = {a: asmLibraryArg}; + function receiveInstance(instance, module22) { + var exports3 = instance.exports; + Module["asm"] = exports3; + wasmTable = Module["asm"]["F"]; + wasmModule = module22; + if (!ENVIRONMENT_IS_PTHREAD) { + var numWorkersToLoad = PThread.unusedWorkers.length; + PThread.unusedWorkers.forEach(function(w) { + PThread.loadWasmModuleToWorker(w, function() { + if (!--numWorkersToLoad) + removeRunDependency("wasm-instantiate"); + }); + }); + } + } + if (!ENVIRONMENT_IS_PTHREAD) { + addRunDependency("wasm-instantiate"); + } + function receiveInstantiatedSource(output) { + receiveInstance(output["instance"], output["module"]); + } + function instantiateArrayBuffer(receiver) { + return getBinaryPromise().then(function(binary) { + return WebAssembly.instantiate(binary, info); + }).then(receiver, function(reason) { + err("failed to asynchronously prepare wasm: " + reason); + abort(reason); + }); + } + function instantiateAsync() { + if (!wasmBinary && typeof WebAssembly.instantiateStreaming === "function" && !isDataURI(wasmBinaryFile) && !isFileURI(wasmBinaryFile) && typeof fetch === "function") { + return fetch(wasmBinaryFile, {credentials: "same-origin"}).then(function(response) { + var result = WebAssembly.instantiateStreaming(response, info); + return result.then(receiveInstantiatedSource, function(reason) { + err("wasm streaming compile failed: " + reason); + err("falling back to ArrayBuffer instantiation"); + return instantiateArrayBuffer(receiveInstantiatedSource); + }); + }); + } else { + return instantiateArrayBuffer(receiveInstantiatedSource); + } + } + if (Module["instantiateWasm"]) { + try { + var exports2 = Module["instantiateWasm"](info, receiveInstance); + return exports2; + } catch (e) { + err("Module.instantiateWasm callback failed with error: " + e); + return false; + } + } + instantiateAsync().catch(readyPromiseReject); + return {}; + } + var ASM_CONSTS = {8991: function($0, $1) { + setTimeout(function() { + __emscripten_do_dispatch_to_thread($0, $1); + }, 0); + }}; + function initPthreadsJS() { + PThread.initRuntime(); + } + function callRuntimeCallbacks(callbacks2) { + while (callbacks2.length > 0) { + var callback = callbacks2.shift(); + if (typeof callback == "function") { + callback(Module); + continue; + } + var func2 = callback.func; + if (typeof func2 === "number") { + if (callback.arg === void 0) { + wasmTable.get(func2)(); + } else { + wasmTable.get(func2)(callback.arg); + } + } else { + func2(callback.arg === void 0 ? null : callback.arg); + } + } + } + function _emscripten_futex_wake(addr, count2) { + if (addr <= 0 || addr > GROWABLE_HEAP_I8().length || addr & true || count2 < 0) + return -28; + if (count2 == 0) + return 0; + if (count2 >= 2147483647) + count2 = Infinity; + var mainThreadWaitAddress = Atomics.load(GROWABLE_HEAP_I32(), __emscripten_main_thread_futex >> 2); + var mainThreadWoken = 0; + if (mainThreadWaitAddress == addr) { + var loadedAddr = Atomics.compareExchange(GROWABLE_HEAP_I32(), __emscripten_main_thread_futex >> 2, mainThreadWaitAddress, 0); + if (loadedAddr == mainThreadWaitAddress) { + --count2; + mainThreadWoken = 1; + if (count2 <= 0) + return 1; + } + } + var ret = Atomics.notify(GROWABLE_HEAP_I32(), addr >> 2, count2); + if (ret >= 0) + return ret + mainThreadWoken; + throw "Atomics.notify returned an unexpected value " + ret; + } + Module["_emscripten_futex_wake"] = _emscripten_futex_wake; + function killThread(pthread_ptr) { + if (ENVIRONMENT_IS_PTHREAD) + throw "Internal Error! killThread() can only ever be called from main application thread!"; + if (!pthread_ptr) + throw "Internal Error! Null pthread_ptr in killThread!"; + GROWABLE_HEAP_I32()[pthread_ptr + 12 >> 2] = 0; + var pthread = PThread.pthreads[pthread_ptr]; + pthread.worker.terminate(); + PThread.freeThreadData(pthread); + PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(pthread.worker), 1); + pthread.worker.pthread = void 0; + } + function cancelThread(pthread_ptr) { + if (ENVIRONMENT_IS_PTHREAD) + throw "Internal Error! cancelThread() can only ever be called from main application thread!"; + if (!pthread_ptr) + throw "Internal Error! Null pthread_ptr in cancelThread!"; + var pthread = PThread.pthreads[pthread_ptr]; + pthread.worker.postMessage({cmd: "cancel"}); + } + function cleanupThread(pthread_ptr) { + if (ENVIRONMENT_IS_PTHREAD) + throw "Internal Error! cleanupThread() can only ever be called from main application thread!"; + if (!pthread_ptr) + throw "Internal Error! Null pthread_ptr in cleanupThread!"; + GROWABLE_HEAP_I32()[pthread_ptr + 12 >> 2] = 0; + var pthread = PThread.pthreads[pthread_ptr]; + if (pthread) { + var worker = pthread.worker; + PThread.returnWorkerToPool(worker); + } + } + var PThread = {unusedWorkers: [], runningWorkers: [], initMainThreadBlock: function() { + var pthreadPoolSize = 8; + for (var i = 0; i < pthreadPoolSize; ++i) { + PThread.allocateUnusedWorker(); + } + }, initRuntime: function() { + var tb = _malloc(228); + for (var i = 0; i < 228 / 4; ++i) + GROWABLE_HEAP_U32()[tb / 4 + i] = 0; + GROWABLE_HEAP_I32()[tb + 12 >> 2] = tb; + var headPtr = tb + 152; + GROWABLE_HEAP_I32()[headPtr >> 2] = headPtr; + var tlsMemory = _malloc(512); + for (var i = 0; i < 128; ++i) + GROWABLE_HEAP_U32()[tlsMemory / 4 + i] = 0; + Atomics.store(GROWABLE_HEAP_U32(), tb + 100 >> 2, tlsMemory); + Atomics.store(GROWABLE_HEAP_U32(), tb + 40 >> 2, tb); + __emscripten_thread_init(tb, !ENVIRONMENT_IS_WORKER, 1); + _emscripten_register_main_browser_thread_id(tb); + }, initWorker: function() { + }, pthreads: {}, threadExitHandlers: [], setThreadStatus: function() { + }, runExitHandlers: function() { + while (PThread.threadExitHandlers.length > 0) { + PThread.threadExitHandlers.pop()(); + } + if (ENVIRONMENT_IS_PTHREAD && _pthread_self()) + ___pthread_tsd_run_dtors(); + }, threadExit: function(exitCode) { + var tb = _pthread_self(); + if (tb) { + Atomics.store(GROWABLE_HEAP_U32(), tb + 4 >> 2, exitCode); + Atomics.store(GROWABLE_HEAP_U32(), tb + 0 >> 2, 1); + Atomics.store(GROWABLE_HEAP_U32(), tb + 56 >> 2, 1); + Atomics.store(GROWABLE_HEAP_U32(), tb + 60 >> 2, 0); + PThread.runExitHandlers(); + _emscripten_futex_wake(tb + 0, 2147483647); + __emscripten_thread_init(0, 0, 0); + if (ENVIRONMENT_IS_PTHREAD) { + postMessage({cmd: "exit"}); + } + } + }, threadCancel: function() { + PThread.runExitHandlers(); + var tb = _pthread_self(); + Atomics.store(GROWABLE_HEAP_U32(), tb + 4 >> 2, -1); + Atomics.store(GROWABLE_HEAP_U32(), tb + 0 >> 2, 1); + _emscripten_futex_wake(tb + 0, 2147483647); + __emscripten_thread_init(0, 0, 0); + postMessage({cmd: "cancelDone"}); + }, terminateAllThreads: function() { + for (var t in PThread.pthreads) { + var pthread = PThread.pthreads[t]; + if (pthread && pthread.worker) { + PThread.returnWorkerToPool(pthread.worker); + } + } + PThread.pthreads = {}; + for (var i = 0; i < PThread.unusedWorkers.length; ++i) { + var worker = PThread.unusedWorkers[i]; + worker.terminate(); + } + PThread.unusedWorkers = []; + for (var i = 0; i < PThread.runningWorkers.length; ++i) { + var worker = PThread.runningWorkers[i]; + var pthread = worker.pthread; + PThread.freeThreadData(pthread); + worker.terminate(); + } + PThread.runningWorkers = []; + }, freeThreadData: function(pthread) { + if (!pthread) + return; + if (pthread.threadInfoStruct) { + var tlsMemory = GROWABLE_HEAP_I32()[pthread.threadInfoStruct + 100 >> 2]; + GROWABLE_HEAP_I32()[pthread.threadInfoStruct + 100 >> 2] = 0; + _free(tlsMemory); + _free(pthread.threadInfoStruct); + } + pthread.threadInfoStruct = 0; + if (pthread.allocatedOwnStack && pthread.stackBase) + _free(pthread.stackBase); + pthread.stackBase = 0; + if (pthread.worker) + pthread.worker.pthread = null; + }, returnWorkerToPool: function(worker) { + PThread.runWithoutMainThreadQueuedCalls(function() { + delete PThread.pthreads[worker.pthread.threadInfoStruct]; + PThread.unusedWorkers.push(worker); + PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(worker), 1); + PThread.freeThreadData(worker.pthread); + worker.pthread = void 0; + }); + }, runWithoutMainThreadQueuedCalls: function(func2) { + GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls >> 2] = 0; + try { + func2(); + } finally { + GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls >> 2] = 1; + } + }, receiveObjectTransfer: function(data2) { + }, loadWasmModuleToWorker: function(worker, onFinishedLoading) { + worker.onmessage = function(e) { + var d = e["data"]; + var cmd = d["cmd"]; + if (worker.pthread) + PThread.currentProxiedOperationCallerThread = worker.pthread.threadInfoStruct; + if (d["targetThread"] && d["targetThread"] != _pthread_self()) { + var thread = PThread.pthreads[d.targetThread]; + if (thread) { + thread.worker.postMessage(e.data, d["transferList"]); + } else { + console.error('Internal error! Worker sent a message "' + cmd + '" to target pthread ' + d["targetThread"] + ", but that thread no longer exists!"); + } + PThread.currentProxiedOperationCallerThread = void 0; + return; + } + if (cmd === "processQueuedMainThreadWork") { + _emscripten_main_thread_process_queued_calls(); + } else if (cmd === "spawnThread") { + spawnThread(e.data); + } else if (cmd === "cleanupThread") { + cleanupThread(d["thread"]); + } else if (cmd === "killThread") { + killThread(d["thread"]); + } else if (cmd === "cancelThread") { + cancelThread(d["thread"]); + } else if (cmd === "loaded") { + worker.loaded = true; + if (onFinishedLoading) + onFinishedLoading(worker); + if (worker.runPthread) { + worker.runPthread(); + delete worker.runPthread; + } + } else if (cmd === "print") { + out("Thread " + d["threadId"] + ": " + d["text"]); + } else if (cmd === "printErr") { + err("Thread " + d["threadId"] + ": " + d["text"]); + } else if (cmd === "alert") { + alert("Thread " + d["threadId"] + ": " + d["text"]); + } else if (cmd === "exit") { + var detached = worker.pthread && Atomics.load(GROWABLE_HEAP_U32(), worker.pthread.threadInfoStruct + 64 >> 2); + if (detached) { + PThread.returnWorkerToPool(worker); + } + } else if (cmd === "exitProcess") { + try { + exit(d["returnCode"]); + } catch (e2) { + if (e2 instanceof ExitStatus) + return; + throw e2; + } + } else if (cmd === "cancelDone") { + PThread.returnWorkerToPool(worker); + } else if (cmd === "objectTransfer") { + PThread.receiveObjectTransfer(e.data); + } else if (e.data.target === "setimmediate") { + worker.postMessage(e.data); + } else { + err("worker sent an unknown command " + cmd); + } + PThread.currentProxiedOperationCallerThread = void 0; + }; + worker.onerror = function(e) { + err("pthread sent an error! " + e.filename + ":" + e.lineno + ": " + e.message); + }; + if (ENVIRONMENT_IS_NODE) { + worker.on("message", function(data2) { + worker.onmessage({data: data2}); + }); + worker.on("error", function(data2) { + worker.onerror(data2); + }); + worker.on("exit", function(data2) { + }); + } + worker.postMessage({cmd: "load", urlOrBlob: Module["mainScriptUrlOrBlob"] || _scriptDir, wasmMemory, wasmModule}); + }, allocateUnusedWorker: function() { + var pthreadMainJs = locateFile("tfjs-backend-wasm-threaded-simd.worker.js"); + PThread.unusedWorkers.push(new Worker(pthreadMainJs)); + }, getNewWorker: function() { + if (PThread.unusedWorkers.length == 0) { + PThread.allocateUnusedWorker(); + PThread.loadWasmModuleToWorker(PThread.unusedWorkers[0]); + } + if (PThread.unusedWorkers.length > 0) + return PThread.unusedWorkers.pop(); + else + return null; + }, busySpinWait: function(msecs) { + var t = performance.now() + msecs; + while (performance.now() < t) { + } + }}; + function establishStackSpace(stackTop, stackMax) { + _emscripten_stack_set_limits(stackTop, stackMax); + stackRestore(stackTop); + } + Module["establishStackSpace"] = establishStackSpace; + function getNoExitRuntime() { + return noExitRuntime; + } + Module["getNoExitRuntime"] = getNoExitRuntime; + function invokeEntryPoint(ptr, arg) { + return wasmTable.get(ptr)(arg); + } + Module["invokeEntryPoint"] = invokeEntryPoint; + function ___assert_fail(condition, filename, line, func2) { + abort("Assertion failed: " + UTF8ToString(condition) + ", at: " + [filename ? UTF8ToString(filename) : "unknown filename", line, func2 ? UTF8ToString(func2) : "unknown function"]); + } + function ___call_main(argc, argv) { + var returnCode = _main(argc, argv); + } + var _emscripten_get_now; + if (ENVIRONMENT_IS_NODE) { + _emscripten_get_now = function() { + var t = process["hrtime"](); + return t[0] * 1e3 + t[1] / 1e6; + }; + } else if (ENVIRONMENT_IS_PTHREAD) { + _emscripten_get_now = function() { + return performance.now() - Module["__performance_now_clock_drift"]; + }; + } else if (typeof dateNow !== "undefined") { + _emscripten_get_now = dateNow; + } else + _emscripten_get_now = function() { + return performance.now(); + }; + function setErrNo(value) { + GROWABLE_HEAP_I32()[___errno_location() >> 2] = value; + return value; + } + function _atexit(func2, arg) { + if (ENVIRONMENT_IS_PTHREAD) + return _emscripten_proxy_to_main_thread_js(1, 1, func2, arg); + } + function __emscripten_notify_thread_queue(targetThreadId, mainThreadId) { + if (targetThreadId == mainThreadId) { + postMessage({cmd: "processQueuedMainThreadWork"}); + } else if (ENVIRONMENT_IS_PTHREAD) { + postMessage({targetThread: targetThreadId, cmd: "processThreadQueue"}); + } else { + var pthread = PThread.pthreads[targetThreadId]; + var worker = pthread && pthread.worker; + if (!worker) { + return; + } + worker.postMessage({cmd: "processThreadQueue"}); + } + return 1; + } + function _abort() { + abort(); + } + function _emscripten_asm_const_int(code, sigPtr, argbuf) { + var args = readAsmConstArgs(sigPtr, argbuf); + return ASM_CONSTS[code].apply(null, args); + } + function _emscripten_conditional_set_current_thread_status(expectedStatus, newStatus) { + } + function _emscripten_futex_wait(addr, val, timeout) { + if (addr <= 0 || addr > GROWABLE_HEAP_I8().length || addr & true) + return -28; + if (!ENVIRONMENT_IS_WEB) { + var ret = Atomics.wait(GROWABLE_HEAP_I32(), addr >> 2, val, timeout); + if (ret === "timed-out") + return -73; + if (ret === "not-equal") + return -6; + if (ret === "ok") + return 0; + throw "Atomics.wait returned an unexpected value " + ret; + } else { + if (Atomics.load(GROWABLE_HEAP_I32(), addr >> 2) != val) { + return -6; + } + var tNow = performance.now(); + var tEnd = tNow + timeout; + var lastAddr = Atomics.exchange(GROWABLE_HEAP_I32(), __emscripten_main_thread_futex >> 2, addr); + while (1) { + tNow = performance.now(); + if (tNow > tEnd) { + lastAddr = Atomics.exchange(GROWABLE_HEAP_I32(), __emscripten_main_thread_futex >> 2, 0); + return -73; + } + lastAddr = Atomics.exchange(GROWABLE_HEAP_I32(), __emscripten_main_thread_futex >> 2, 0); + if (lastAddr == 0) { + break; + } + _emscripten_main_thread_process_queued_calls(); + if (Atomics.load(GROWABLE_HEAP_I32(), addr >> 2) != val) { + return -6; + } + lastAddr = Atomics.exchange(GROWABLE_HEAP_I32(), __emscripten_main_thread_futex >> 2, addr); + } + return 0; + } + } + function _emscripten_memcpy_big(dest, src, num) { + GROWABLE_HEAP_U8().copyWithin(dest, src, src + num); + } + function _emscripten_num_logical_cores() { + if (ENVIRONMENT_IS_NODE) + return require("os").cpus().length; + return navigator["hardwareConcurrency"]; + } + function _emscripten_proxy_to_main_thread_js(index, sync) { + var numCallArgs = arguments.length - 2; + var stack2 = stackSave(); + var serializedNumCallArgs = numCallArgs; + var args = stackAlloc(serializedNumCallArgs * 8); + var b = args >> 3; + for (var i = 0; i < numCallArgs; i++) { + var arg = arguments[2 + i]; + GROWABLE_HEAP_F64()[b + i] = arg; + } + var ret = _emscripten_run_in_main_runtime_thread_js(index, serializedNumCallArgs, args, sync); + stackRestore(stack2); + return ret; + } + var _emscripten_receive_on_main_thread_js_callArgs = []; + var readAsmConstArgsArray = []; + function readAsmConstArgs(sigPtr, buf) { + readAsmConstArgsArray.length = 0; + var ch; + buf >>= 2; + while (ch = GROWABLE_HEAP_U8()[sigPtr++]) { + var double = ch < 105; + if (double && buf & 1) + buf++; + readAsmConstArgsArray.push(double ? GROWABLE_HEAP_F64()[buf++ >> 1] : GROWABLE_HEAP_I32()[buf]); + ++buf; + } + return readAsmConstArgsArray; + } + function _emscripten_receive_on_main_thread_js(index, numCallArgs, args) { + _emscripten_receive_on_main_thread_js_callArgs.length = numCallArgs; + var b = args >> 3; + for (var i = 0; i < numCallArgs; i++) { + _emscripten_receive_on_main_thread_js_callArgs[i] = GROWABLE_HEAP_F64()[b + i]; + } + var isEmAsmConst = index < 0; + var func2 = !isEmAsmConst ? proxiedFunctionTable[index] : ASM_CONSTS[-index - 1]; + return func2.apply(null, _emscripten_receive_on_main_thread_js_callArgs); + } + function _emscripten_get_heap_size() { + return GROWABLE_HEAP_U8().length; + } + function emscripten_realloc_buffer(size) { + try { + wasmMemory.grow(size - buffer2.byteLength + 65535 >>> 16); + updateGlobalBufferAndViews(wasmMemory.buffer); + return 1; + } catch (e) { + } + } + function _emscripten_resize_heap(requestedSize) { + var oldSize = _emscripten_get_heap_size(); + if (requestedSize <= oldSize) { + return false; + } + var maxHeapSize = 2147483648; + if (requestedSize > maxHeapSize) { + return false; + } + for (var cutDown = 1; cutDown <= 4; cutDown *= 2) { + var overGrownHeapSize = oldSize * (1 + 0.2 / cutDown); + overGrownHeapSize = Math.min(overGrownHeapSize, requestedSize + 100663296); + var newSize = Math.min(maxHeapSize, alignUp(Math.max(requestedSize, overGrownHeapSize), 65536)); + var replacement = emscripten_realloc_buffer(newSize); + if (replacement) { + return true; + } + } + return false; + } + var JSEvents = {inEventHandler: 0, removeAllEventListeners: function() { + for (var i = JSEvents.eventHandlers.length - 1; i >= 0; --i) { + JSEvents._removeHandler(i); + } + JSEvents.eventHandlers = []; + JSEvents.deferredCalls = []; + }, registerRemoveEventListeners: function() { + if (!JSEvents.removeEventListenersRegistered) { + __ATEXIT__.push(JSEvents.removeAllEventListeners); + JSEvents.removeEventListenersRegistered = true; + } + }, deferredCalls: [], deferCall: function(targetFunction, precedence, argsList) { + function arraysHaveEqualContent(arrA, arrB) { + if (arrA.length != arrB.length) + return false; + for (var i2 in arrA) { + if (arrA[i2] != arrB[i2]) + return false; + } + return true; + } + for (var i in JSEvents.deferredCalls) { + var call = JSEvents.deferredCalls[i]; + if (call.targetFunction == targetFunction && arraysHaveEqualContent(call.argsList, argsList)) { + return; + } + } + JSEvents.deferredCalls.push({targetFunction, precedence, argsList}); + JSEvents.deferredCalls.sort(function(x, y) { + return x.precedence < y.precedence; + }); + }, removeDeferredCalls: function(targetFunction) { + for (var i = 0; i < JSEvents.deferredCalls.length; ++i) { + if (JSEvents.deferredCalls[i].targetFunction == targetFunction) { + JSEvents.deferredCalls.splice(i, 1); + --i; + } + } + }, canPerformEventHandlerRequests: function() { + return JSEvents.inEventHandler && JSEvents.currentEventHandler.allowsDeferredCalls; + }, runDeferredCalls: function() { + if (!JSEvents.canPerformEventHandlerRequests()) { + return; + } + for (var i = 0; i < JSEvents.deferredCalls.length; ++i) { + var call = JSEvents.deferredCalls[i]; + JSEvents.deferredCalls.splice(i, 1); + --i; + call.targetFunction.apply(null, call.argsList); + } + }, eventHandlers: [], removeAllHandlersOnTarget: function(target, eventTypeString) { + for (var i = 0; i < JSEvents.eventHandlers.length; ++i) { + if (JSEvents.eventHandlers[i].target == target && (!eventTypeString || eventTypeString == JSEvents.eventHandlers[i].eventTypeString)) { + JSEvents._removeHandler(i--); + } + } + }, _removeHandler: function(i) { + var h = JSEvents.eventHandlers[i]; + h.target.removeEventListener(h.eventTypeString, h.eventListenerFunc, h.useCapture); + JSEvents.eventHandlers.splice(i, 1); + }, registerOrRemoveHandler: function(eventHandler) { + var jsEventHandler = function jsEventHandler2(event) { + ++JSEvents.inEventHandler; + JSEvents.currentEventHandler = eventHandler; + JSEvents.runDeferredCalls(); + eventHandler.handlerFunc(event); + JSEvents.runDeferredCalls(); + --JSEvents.inEventHandler; + }; + if (eventHandler.callbackfunc) { + eventHandler.eventListenerFunc = jsEventHandler; + eventHandler.target.addEventListener(eventHandler.eventTypeString, jsEventHandler, eventHandler.useCapture); + JSEvents.eventHandlers.push(eventHandler); + JSEvents.registerRemoveEventListeners(); + } else { + for (var i = 0; i < JSEvents.eventHandlers.length; ++i) { + if (JSEvents.eventHandlers[i].target == eventHandler.target && JSEvents.eventHandlers[i].eventTypeString == eventHandler.eventTypeString) { + JSEvents._removeHandler(i--); + } + } + } + }, queueEventHandlerOnThread_iiii: function(targetThread, eventHandlerFunc, eventTypeId, eventData, userData) { + var stackTop = stackSave(); + var varargs = stackAlloc(12); + GROWABLE_HEAP_I32()[varargs >> 2] = eventTypeId; + GROWABLE_HEAP_I32()[varargs + 4 >> 2] = eventData; + GROWABLE_HEAP_I32()[varargs + 8 >> 2] = userData; + __emscripten_call_on_thread(0, targetThread, 637534208, eventHandlerFunc, eventData, varargs); + stackRestore(stackTop); + }, getTargetThreadForEventCallback: function(targetThread) { + switch (targetThread) { + case 1: + return 0; + case 2: + return PThread.currentProxiedOperationCallerThread; + default: + return targetThread; + } + }, getNodeNameForTarget: function(target) { + if (!target) + return ""; + if (target == window) + return "#window"; + if (target == screen) + return "#screen"; + return target && target.nodeName ? target.nodeName : ""; + }, fullscreenEnabled: function() { + return document.fullscreenEnabled || document.webkitFullscreenEnabled; + }}; + function stringToNewUTF8(jsString) { + var length = lengthBytesUTF8(jsString) + 1; + var cString = _malloc(length); + stringToUTF8(jsString, cString, length); + return cString; + } + function _emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread, targetCanvas, width, height) { + var stackTop = stackSave(); + var varargs = stackAlloc(12); + var targetCanvasPtr = 0; + if (targetCanvas) { + targetCanvasPtr = stringToNewUTF8(targetCanvas); + } + GROWABLE_HEAP_I32()[varargs >> 2] = targetCanvasPtr; + GROWABLE_HEAP_I32()[varargs + 4 >> 2] = width; + GROWABLE_HEAP_I32()[varargs + 8 >> 2] = height; + __emscripten_call_on_thread(0, targetThread, 657457152, 0, targetCanvasPtr, varargs); + stackRestore(stackTop); + } + function _emscripten_set_offscreencanvas_size_on_target_thread(targetThread, targetCanvas, width, height) { + targetCanvas = targetCanvas ? UTF8ToString(targetCanvas) : ""; + _emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread, targetCanvas, width, height); + } + function maybeCStringToJsString(cString) { + return cString > 2 ? UTF8ToString(cString) : cString; + } + var specialHTMLTargets = [0, typeof document !== "undefined" ? document : 0, typeof window !== "undefined" ? window : 0]; + function findEventTarget(target) { + target = maybeCStringToJsString(target); + var domElement = specialHTMLTargets[target] || (typeof document !== "undefined" ? document.querySelector(target) : void 0); + return domElement; + } + function findCanvasEventTarget(target) { + return findEventTarget(target); + } + function _emscripten_set_canvas_element_size_calling_thread(target, width, height) { + var canvas = findCanvasEventTarget(target); + if (!canvas) + return -4; + if (canvas.canvasSharedPtr) { + GROWABLE_HEAP_I32()[canvas.canvasSharedPtr >> 2] = width; + GROWABLE_HEAP_I32()[canvas.canvasSharedPtr + 4 >> 2] = height; + } + if (canvas.offscreenCanvas || !canvas.controlTransferredOffscreen) { + if (canvas.offscreenCanvas) + canvas = canvas.offscreenCanvas; + var autoResizeViewport = false; + if (canvas.GLctxObject && canvas.GLctxObject.GLctx) { + var prevViewport = canvas.GLctxObject.GLctx.getParameter(2978); + autoResizeViewport = prevViewport[0] === 0 && prevViewport[1] === 0 && prevViewport[2] === canvas.width && prevViewport[3] === canvas.height; + } + canvas.width = width; + canvas.height = height; + if (autoResizeViewport) { + canvas.GLctxObject.GLctx.viewport(0, 0, width, height); + } + } else if (canvas.canvasSharedPtr) { + var targetThread = GROWABLE_HEAP_I32()[canvas.canvasSharedPtr + 8 >> 2]; + _emscripten_set_offscreencanvas_size_on_target_thread(targetThread, target, width, height); + return 1; + } else { + return -4; + } + return 0; + } + function _emscripten_set_canvas_element_size_main_thread(target, width, height) { + if (ENVIRONMENT_IS_PTHREAD) + return _emscripten_proxy_to_main_thread_js(2, 1, target, width, height); + return _emscripten_set_canvas_element_size_calling_thread(target, width, height); + } + function _emscripten_set_canvas_element_size(target, width, height) { + var canvas = findCanvasEventTarget(target); + if (canvas) { + return _emscripten_set_canvas_element_size_calling_thread(target, width, height); + } else { + return _emscripten_set_canvas_element_size_main_thread(target, width, height); + } + } + function _emscripten_set_current_thread_status(newStatus) { + } + function _emscripten_set_thread_name(threadId, name2) { + } + function __webgl_enable_ANGLE_instanced_arrays(ctx) { + var ext = ctx.getExtension("ANGLE_instanced_arrays"); + if (ext) { + ctx["vertexAttribDivisor"] = function(index, divisor) { + ext["vertexAttribDivisorANGLE"](index, divisor); + }; + ctx["drawArraysInstanced"] = function(mode, first, count2, primcount) { + ext["drawArraysInstancedANGLE"](mode, first, count2, primcount); + }; + ctx["drawElementsInstanced"] = function(mode, count2, type, indices, primcount) { + ext["drawElementsInstancedANGLE"](mode, count2, type, indices, primcount); + }; + return 1; + } + } + function __webgl_enable_OES_vertex_array_object(ctx) { + var ext = ctx.getExtension("OES_vertex_array_object"); + if (ext) { + ctx["createVertexArray"] = function() { + return ext["createVertexArrayOES"](); + }; + ctx["deleteVertexArray"] = function(vao) { + ext["deleteVertexArrayOES"](vao); + }; + ctx["bindVertexArray"] = function(vao) { + ext["bindVertexArrayOES"](vao); + }; + ctx["isVertexArray"] = function(vao) { + return ext["isVertexArrayOES"](vao); + }; + return 1; + } + } + function __webgl_enable_WEBGL_draw_buffers(ctx) { + var ext = ctx.getExtension("WEBGL_draw_buffers"); + if (ext) { + ctx["drawBuffers"] = function(n, bufs) { + ext["drawBuffersWEBGL"](n, bufs); + }; + return 1; + } + } + function __webgl_enable_WEBGL_multi_draw(ctx) { + return !!(ctx.multiDrawWebgl = ctx.getExtension("WEBGL_multi_draw")); + } + var GL = {counter: 1, buffers: [], programs: [], framebuffers: [], renderbuffers: [], textures: [], uniforms: [], shaders: [], vaos: [], contexts: {}, offscreenCanvases: {}, timerQueriesEXT: [], programInfos: {}, stringCache: {}, unpackAlignment: 4, recordError: function recordError(errorCode) { + if (!GL.lastError) { + GL.lastError = errorCode; + } + }, getNewId: function(table) { + var ret = GL.counter++; + for (var i = table.length; i < ret; i++) { + table[i] = null; + } + return ret; + }, getSource: function(shader, count2, string, length) { + var source = ""; + for (var i = 0; i < count2; ++i) { + var len = length ? GROWABLE_HEAP_I32()[length + i * 4 >> 2] : -1; + source += UTF8ToString(GROWABLE_HEAP_I32()[string + i * 4 >> 2], len < 0 ? void 0 : len); + } + return source; + }, createContext: function(canvas, webGLContextAttributes) { + var ctx = canvas.getContext("webgl", webGLContextAttributes); + if (!ctx) + return 0; + var handle = GL.registerContext(ctx, webGLContextAttributes); + return handle; + }, registerContext: function(ctx, webGLContextAttributes) { + var handle = _malloc(8); + GROWABLE_HEAP_I32()[handle + 4 >> 2] = _pthread_self(); + var context = {handle, attributes: webGLContextAttributes, version: webGLContextAttributes.majorVersion, GLctx: ctx}; + if (ctx.canvas) + ctx.canvas.GLctxObject = context; + GL.contexts[handle] = context; + if (typeof webGLContextAttributes.enableExtensionsByDefault === "undefined" || webGLContextAttributes.enableExtensionsByDefault) { + GL.initExtensions(context); + } + return handle; + }, makeContextCurrent: function(contextHandle) { + GL.currentContext = GL.contexts[contextHandle]; + Module.ctx = GLctx = GL.currentContext && GL.currentContext.GLctx; + return !(contextHandle && !GLctx); + }, getContext: function(contextHandle) { + return GL.contexts[contextHandle]; + }, deleteContext: function(contextHandle) { + if (GL.currentContext === GL.contexts[contextHandle]) + GL.currentContext = null; + if (typeof JSEvents === "object") + JSEvents.removeAllHandlersOnTarget(GL.contexts[contextHandle].GLctx.canvas); + if (GL.contexts[contextHandle] && GL.contexts[contextHandle].GLctx.canvas) + GL.contexts[contextHandle].GLctx.canvas.GLctxObject = void 0; + _free(GL.contexts[contextHandle].handle); + GL.contexts[contextHandle] = null; + }, initExtensions: function(context) { + if (!context) + context = GL.currentContext; + if (context.initExtensionsDone) + return; + context.initExtensionsDone = true; + var GLctx2 = context.GLctx; + __webgl_enable_ANGLE_instanced_arrays(GLctx2); + __webgl_enable_OES_vertex_array_object(GLctx2); + __webgl_enable_WEBGL_draw_buffers(GLctx2); + GLctx2.disjointTimerQueryExt = GLctx2.getExtension("EXT_disjoint_timer_query"); + __webgl_enable_WEBGL_multi_draw(GLctx2); + var exts = GLctx2.getSupportedExtensions() || []; + exts.forEach(function(ext) { + if (ext.indexOf("lose_context") < 0 && ext.indexOf("debug") < 0) { + GLctx2.getExtension(ext); + } + }); + }, populateUniformTable: function(program) { + var p2 = GL.programs[program]; + var ptable = GL.programInfos[program] = {uniforms: {}, maxUniformLength: 0, maxAttributeLength: -1, maxUniformBlockNameLength: -1}; + var utable = ptable.uniforms; + var numUniforms = GLctx.getProgramParameter(p2, 35718); + for (var i = 0; i < numUniforms; ++i) { + var u = GLctx.getActiveUniform(p2, i); + var name2 = u.name; + ptable.maxUniformLength = Math.max(ptable.maxUniformLength, name2.length + 1); + if (name2.slice(-1) == "]") { + name2 = name2.slice(0, name2.lastIndexOf("[")); + } + var loc = GLctx.getUniformLocation(p2, name2); + if (loc) { + var id = GL.getNewId(GL.uniforms); + utable[name2] = [u.size, id]; + GL.uniforms[id] = loc; + for (var j = 1; j < u.size; ++j) { + var n = name2 + "[" + j + "]"; + loc = GLctx.getUniformLocation(p2, n); + id = GL.getNewId(GL.uniforms); + GL.uniforms[id] = loc; + } + } + } + }}; + var __emscripten_webgl_power_preferences = ["default", "low-power", "high-performance"]; + function _emscripten_webgl_do_create_context(target, attributes) { + var a = attributes >> 2; + var powerPreference = GROWABLE_HEAP_I32()[a + (24 >> 2)]; + var contextAttributes = {alpha: !!GROWABLE_HEAP_I32()[a + (0 >> 2)], depth: !!GROWABLE_HEAP_I32()[a + (4 >> 2)], stencil: !!GROWABLE_HEAP_I32()[a + (8 >> 2)], antialias: !!GROWABLE_HEAP_I32()[a + (12 >> 2)], premultipliedAlpha: !!GROWABLE_HEAP_I32()[a + (16 >> 2)], preserveDrawingBuffer: !!GROWABLE_HEAP_I32()[a + (20 >> 2)], powerPreference: __emscripten_webgl_power_preferences[powerPreference], failIfMajorPerformanceCaveat: !!GROWABLE_HEAP_I32()[a + (28 >> 2)], majorVersion: GROWABLE_HEAP_I32()[a + (32 >> 2)], minorVersion: GROWABLE_HEAP_I32()[a + (36 >> 2)], enableExtensionsByDefault: GROWABLE_HEAP_I32()[a + (40 >> 2)], explicitSwapControl: GROWABLE_HEAP_I32()[a + (44 >> 2)], proxyContextToMainThread: GROWABLE_HEAP_I32()[a + (48 >> 2)], renderViaOffscreenBackBuffer: GROWABLE_HEAP_I32()[a + (52 >> 2)]}; + var canvas = findCanvasEventTarget(target); + if (!canvas) { + return 0; + } + if (contextAttributes.explicitSwapControl) { + return 0; + } + var contextHandle = GL.createContext(canvas, contextAttributes); + return contextHandle; + } + function _emscripten_webgl_create_context(a0, a12) { + return _emscripten_webgl_do_create_context(a0, a12); + } + var SYSCALLS = {mappings: {}, buffers: [null, [], []], printChar: function(stream, curr) { + var buffer3 = SYSCALLS.buffers[stream]; + if (curr === 0 || curr === 10) { + (stream === 1 ? out : err)(UTF8ArrayToString(buffer3, 0)); + buffer3.length = 0; + } else { + buffer3.push(curr); + } + }, varargs: void 0, get: function() { + SYSCALLS.varargs += 4; + var ret = GROWABLE_HEAP_I32()[SYSCALLS.varargs - 4 >> 2]; + return ret; + }, getStr: function(ptr) { + var ret = UTF8ToString(ptr); + return ret; + }, get64: function(low, high) { + return low; + }}; + function _fd_close(fd) { + if (ENVIRONMENT_IS_PTHREAD) + return _emscripten_proxy_to_main_thread_js(3, 1, fd); + return 0; + } + function _fd_seek(fd, offset_low, offset_high, whence, newOffset) { + if (ENVIRONMENT_IS_PTHREAD) + return _emscripten_proxy_to_main_thread_js(4, 1, fd, offset_low, offset_high, whence, newOffset); + } + function _fd_write(fd, iov, iovcnt, pnum) { + if (ENVIRONMENT_IS_PTHREAD) + return _emscripten_proxy_to_main_thread_js(5, 1, fd, iov, iovcnt, pnum); + var num = 0; + for (var i = 0; i < iovcnt; i++) { + var ptr = GROWABLE_HEAP_I32()[iov + i * 8 >> 2]; + var len = GROWABLE_HEAP_I32()[iov + (i * 8 + 4) >> 2]; + for (var j = 0; j < len; j++) { + SYSCALLS.printChar(fd, GROWABLE_HEAP_U8()[ptr + j]); + } + num += len; + } + GROWABLE_HEAP_I32()[pnum >> 2] = num; + return 0; + } + function _pthread_cleanup_pop(execute2) { + var routine = PThread.threadExitHandlers.pop(); + if (execute2) + routine(); + } + function _pthread_cleanup_push(routine, arg) { + PThread.threadExitHandlers.push(function() { + wasmTable.get(routine)(arg); + }); + } + function spawnThread(threadParams) { + if (ENVIRONMENT_IS_PTHREAD) + throw "Internal Error! spawnThread() can only ever be called from main application thread!"; + var worker = PThread.getNewWorker(); + if (worker.pthread !== void 0) + throw "Internal error!"; + if (!threadParams.pthread_ptr) + throw "Internal error, no pthread ptr!"; + PThread.runningWorkers.push(worker); + var tlsMemory = _malloc(128 * 4); + for (var i = 0; i < 128; ++i) { + GROWABLE_HEAP_I32()[tlsMemory + i * 4 >> 2] = 0; + } + var stackHigh = threadParams.stackBase + threadParams.stackSize; + var pthread = PThread.pthreads[threadParams.pthread_ptr] = {worker, stackBase: threadParams.stackBase, stackSize: threadParams.stackSize, allocatedOwnStack: threadParams.allocatedOwnStack, threadInfoStruct: threadParams.pthread_ptr}; + var tis = pthread.threadInfoStruct >> 2; + Atomics.store(GROWABLE_HEAP_U32(), tis + (64 >> 2), threadParams.detached); + Atomics.store(GROWABLE_HEAP_U32(), tis + (100 >> 2), tlsMemory); + Atomics.store(GROWABLE_HEAP_U32(), tis + (40 >> 2), pthread.threadInfoStruct); + Atomics.store(GROWABLE_HEAP_U32(), tis + (80 >> 2), threadParams.stackSize); + Atomics.store(GROWABLE_HEAP_U32(), tis + (76 >> 2), stackHigh); + Atomics.store(GROWABLE_HEAP_U32(), tis + (104 >> 2), threadParams.stackSize); + Atomics.store(GROWABLE_HEAP_U32(), tis + (104 + 8 >> 2), stackHigh); + Atomics.store(GROWABLE_HEAP_U32(), tis + (104 + 12 >> 2), threadParams.detached); + var global_libc = _emscripten_get_global_libc(); + var global_locale = global_libc + 40; + Atomics.store(GROWABLE_HEAP_U32(), tis + (172 >> 2), global_locale); + worker.pthread = pthread; + var msg = {cmd: "run", start_routine: threadParams.startRoutine, arg: threadParams.arg, threadInfoStruct: threadParams.pthread_ptr, stackBase: threadParams.stackBase, stackSize: threadParams.stackSize}; + worker.runPthread = function() { + msg.time = performance.now(); + worker.postMessage(msg, threadParams.transferList); + }; + if (worker.loaded) { + worker.runPthread(); + delete worker.runPthread; + } + } + function _pthread_create(pthread_ptr, attr, start_routine, arg) { + if (typeof SharedArrayBuffer === "undefined") { + err("Current environment does not support SharedArrayBuffer, pthreads are not available!"); + return 6; + } + if (!pthread_ptr) { + err("pthread_create called with a null thread pointer!"); + return 28; + } + var transferList = []; + var error = 0; + if (ENVIRONMENT_IS_PTHREAD && (transferList.length === 0 || error)) { + return _emscripten_sync_run_in_main_thread_4(687865856, pthread_ptr, attr, start_routine, arg); + } + if (error) + return error; + var stackSize = 0; + var stackBase = 0; + var detached = 0; + if (attr && attr != -1) { + stackSize = GROWABLE_HEAP_I32()[attr >> 2]; + stackSize += 81920; + stackBase = GROWABLE_HEAP_I32()[attr + 8 >> 2]; + detached = GROWABLE_HEAP_I32()[attr + 12 >> 2] !== 0; + } else { + stackSize = 2097152; + } + var allocatedOwnStack = stackBase == 0; + if (allocatedOwnStack) { + stackBase = _memalign(16, stackSize); + } else { + stackBase -= stackSize; + assert3(stackBase > 0); + } + var threadInfoStruct = _malloc(228); + for (var i = 0; i < 228 >> 2; ++i) + GROWABLE_HEAP_U32()[(threadInfoStruct >> 2) + i] = 0; + GROWABLE_HEAP_I32()[pthread_ptr >> 2] = threadInfoStruct; + GROWABLE_HEAP_I32()[threadInfoStruct + 12 >> 2] = threadInfoStruct; + var headPtr = threadInfoStruct + 152; + GROWABLE_HEAP_I32()[headPtr >> 2] = headPtr; + var threadParams = {stackBase, stackSize, allocatedOwnStack, detached, startRoutine: start_routine, pthread_ptr: threadInfoStruct, arg, transferList}; + if (ENVIRONMENT_IS_PTHREAD) { + threadParams.cmd = "spawnThread"; + postMessage(threadParams, transferList); + } else { + spawnThread(threadParams); + } + return 0; + } + function _sysconf(name2) { + if (ENVIRONMENT_IS_PTHREAD) + return _emscripten_proxy_to_main_thread_js(6, 1, name2); + switch (name2) { + case 30: + return 16384; + case 85: + var maxHeapSize = 2147483648; + return maxHeapSize / 16384; + case 132: + case 133: + case 12: + case 137: + case 138: + case 15: + case 235: + case 16: + case 17: + case 18: + case 19: + case 20: + case 149: + case 13: + case 10: + case 236: + case 153: + case 9: + case 21: + case 22: + case 159: + case 154: + case 14: + case 77: + case 78: + case 139: + case 82: + case 68: + case 67: + case 164: + case 11: + case 29: + case 47: + case 48: + case 95: + case 52: + case 51: + case 46: + return 200809; + case 27: + case 246: + case 127: + case 128: + case 23: + case 24: + case 160: + case 161: + case 181: + case 182: + case 242: + case 183: + case 184: + case 243: + case 244: + case 245: + case 165: + case 178: + case 179: + case 49: + case 50: + case 168: + case 169: + case 175: + case 170: + case 171: + case 172: + case 97: + case 76: + case 32: + case 173: + case 35: + case 80: + case 81: + case 79: + return -1; + case 176: + case 177: + case 7: + case 155: + case 8: + case 157: + case 125: + case 126: + case 92: + case 93: + case 129: + case 130: + case 131: + case 94: + case 91: + return 1; + case 74: + case 60: + case 69: + case 70: + case 4: + return 1024; + case 31: + case 42: + case 72: + return 32; + case 87: + case 26: + case 33: + return 2147483647; + case 34: + case 1: + return 47839; + case 38: + case 36: + return 99; + case 43: + case 37: + return 2048; + case 0: + return 2097152; + case 3: + return 65536; + case 28: + return 32768; + case 44: + return 32767; + case 75: + return 16384; + case 39: + return 1e3; + case 89: + return 700; + case 71: + return 256; + case 40: + return 255; + case 2: + return 100; + case 180: + return 64; + case 25: + return 20; + case 5: + return 16; + case 6: + return 6; + case 73: + return 4; + case 84: { + if (typeof navigator === "object") + return navigator["hardwareConcurrency"] || 1; + return 1; + } + } + setErrNo(28); + return -1; + } + if (!ENVIRONMENT_IS_PTHREAD) + PThread.initMainThreadBlock(); + var GLctx; + var proxiedFunctionTable = [null, _atexit, _emscripten_set_canvas_element_size_main_thread, _fd_close, _fd_seek, _fd_write, _sysconf]; + var asmLibraryArg = {e: ___assert_fail, r: ___call_main, x: __emscripten_notify_thread_queue, b: _abort, y: _emscripten_asm_const_int, j: _emscripten_conditional_set_current_thread_status, c: _emscripten_futex_wait, d: _emscripten_futex_wake, f: _emscripten_get_now, p: _emscripten_memcpy_big, z: _emscripten_num_logical_cores, u: _emscripten_receive_on_main_thread_js, q: _emscripten_resize_heap, v: _emscripten_set_canvas_element_size, i: _emscripten_set_current_thread_status, t: _emscripten_set_thread_name, w: _emscripten_webgl_create_context, m: _fd_close, n: _fd_seek, g: _fd_write, o: initPthreadsJS, a: wasmMemory || Module["wasmMemory"], k: _pthread_cleanup_pop, l: _pthread_cleanup_push, h: _pthread_create, s: _sysconf}; + var asm = createWasm(); + var ___wasm_call_ctors = Module["___wasm_call_ctors"] = function() { + return (___wasm_call_ctors = Module["___wasm_call_ctors"] = Module["asm"]["A"]).apply(null, arguments); + }; + var _init = Module["_init"] = function() { + return (_init = Module["_init"] = Module["asm"]["B"]).apply(null, arguments); + }; + var _register_tensor = Module["_register_tensor"] = function() { + return (_register_tensor = Module["_register_tensor"] = Module["asm"]["C"]).apply(null, arguments); + }; + var _dispose_data = Module["_dispose_data"] = function() { + return (_dispose_data = Module["_dispose_data"] = Module["asm"]["D"]).apply(null, arguments); + }; + var _dispose = Module["_dispose"] = function() { + return (_dispose = Module["_dispose"] = Module["asm"]["E"]).apply(null, arguments); + }; + var _Abs = Module["_Abs"] = function() { + return (_Abs = Module["_Abs"] = Module["asm"]["G"]).apply(null, arguments); + }; + var _Add = Module["_Add"] = function() { + return (_Add = Module["_Add"] = Module["asm"]["H"]).apply(null, arguments); + }; + var _AddN = Module["_AddN"] = function() { + return (_AddN = Module["_AddN"] = Module["asm"]["I"]).apply(null, arguments); + }; + var _ArgMax = Module["_ArgMax"] = function() { + return (_ArgMax = Module["_ArgMax"] = Module["asm"]["J"]).apply(null, arguments); + }; + var _AvgPool = Module["_AvgPool"] = function() { + return (_AvgPool = Module["_AvgPool"] = Module["asm"]["K"]).apply(null, arguments); + }; + var _BatchMatMul = Module["_BatchMatMul"] = function() { + return (_BatchMatMul = Module["_BatchMatMul"] = Module["asm"]["L"]).apply(null, arguments); + }; + var _Ceil = Module["_Ceil"] = function() { + return (_Ceil = Module["_Ceil"] = Module["asm"]["M"]).apply(null, arguments); + }; + var _ClipByValue = Module["_ClipByValue"] = function() { + return (_ClipByValue = Module["_ClipByValue"] = Module["asm"]["N"]).apply(null, arguments); + }; + var _Conv2D = Module["_Conv2D"] = function() { + return (_Conv2D = Module["_Conv2D"] = Module["asm"]["O"]).apply(null, arguments); + }; + var _Conv2DBackpropInput = Module["_Conv2DBackpropInput"] = function() { + return (_Conv2DBackpropInput = Module["_Conv2DBackpropInput"] = Module["asm"]["P"]).apply(null, arguments); + }; + var _Cos = Module["_Cos"] = function() { + return (_Cos = Module["_Cos"] = Module["asm"]["Q"]).apply(null, arguments); + }; + var _CropAndResize = Module["_CropAndResize"] = function() { + return (_CropAndResize = Module["_CropAndResize"] = Module["asm"]["R"]).apply(null, arguments); + }; + var _Cumsum = Module["_Cumsum"] = function() { + return (_Cumsum = Module["_Cumsum"] = Module["asm"]["S"]).apply(null, arguments); + }; + var _DepthToSpace = Module["_DepthToSpace"] = function() { + return (_DepthToSpace = Module["_DepthToSpace"] = Module["asm"]["T"]).apply(null, arguments); + }; + var _DepthwiseConv2dNative = Module["_DepthwiseConv2dNative"] = function() { + return (_DepthwiseConv2dNative = Module["_DepthwiseConv2dNative"] = Module["asm"]["U"]).apply(null, arguments); + }; + var _Equal = Module["_Equal"] = function() { + return (_Equal = Module["_Equal"] = Module["asm"]["V"]).apply(null, arguments); + }; + var _Exp = Module["_Exp"] = function() { + return (_Exp = Module["_Exp"] = Module["asm"]["W"]).apply(null, arguments); + }; + var _FlipLeftRight = Module["_FlipLeftRight"] = function() { + return (_FlipLeftRight = Module["_FlipLeftRight"] = Module["asm"]["X"]).apply(null, arguments); + }; + var _Floor = Module["_Floor"] = function() { + return (_Floor = Module["_Floor"] = Module["asm"]["Y"]).apply(null, arguments); + }; + var _FloorDiv = Module["_FloorDiv"] = function() { + return (_FloorDiv = Module["_FloorDiv"] = Module["asm"]["Z"]).apply(null, arguments); + }; + var _FusedBatchNorm = Module["_FusedBatchNorm"] = function() { + return (_FusedBatchNorm = Module["_FusedBatchNorm"] = Module["asm"]["_"]).apply(null, arguments); + }; + var _FusedConv2D = Module["_FusedConv2D"] = function() { + return (_FusedConv2D = Module["_FusedConv2D"] = Module["asm"]["$"]).apply(null, arguments); + }; + var _FusedDepthwiseConv2D = Module["_FusedDepthwiseConv2D"] = function() { + return (_FusedDepthwiseConv2D = Module["_FusedDepthwiseConv2D"] = Module["asm"]["aa"]).apply(null, arguments); + }; + var _Gather = Module["_Gather"] = function() { + return (_Gather = Module["_Gather"] = Module["asm"]["ba"]).apply(null, arguments); + }; + var _GatherNd = Module["_GatherNd"] = function() { + return (_GatherNd = Module["_GatherNd"] = Module["asm"]["ca"]).apply(null, arguments); + }; + var _Greater = Module["_Greater"] = function() { + return (_Greater = Module["_Greater"] = Module["asm"]["da"]).apply(null, arguments); + }; + var _GreaterEqual = Module["_GreaterEqual"] = function() { + return (_GreaterEqual = Module["_GreaterEqual"] = Module["asm"]["ea"]).apply(null, arguments); + }; + var _LeakyRelu = Module["_LeakyRelu"] = function() { + return (_LeakyRelu = Module["_LeakyRelu"] = Module["asm"]["fa"]).apply(null, arguments); + }; + var _Less = Module["_Less"] = function() { + return (_Less = Module["_Less"] = Module["asm"]["ga"]).apply(null, arguments); + }; + var _LessEqual = Module["_LessEqual"] = function() { + return (_LessEqual = Module["_LessEqual"] = Module["asm"]["ha"]).apply(null, arguments); + }; + var _Log = Module["_Log"] = function() { + return (_Log = Module["_Log"] = Module["asm"]["ia"]).apply(null, arguments); + }; + var _LogicalAnd = Module["_LogicalAnd"] = function() { + return (_LogicalAnd = Module["_LogicalAnd"] = Module["asm"]["ja"]).apply(null, arguments); + }; + var _Max = Module["_Max"] = function() { + return (_Max = Module["_Max"] = Module["asm"]["ka"]).apply(null, arguments); + }; + var _MaxPool = Module["_MaxPool"] = function() { + return (_MaxPool = Module["_MaxPool"] = Module["asm"]["la"]).apply(null, arguments); + }; + var _Maximum = Module["_Maximum"] = function() { + return (_Maximum = Module["_Maximum"] = Module["asm"]["ma"]).apply(null, arguments); + }; + var _Mean = Module["_Mean"] = function() { + return (_Mean = Module["_Mean"] = Module["asm"]["na"]).apply(null, arguments); + }; + var _Min = Module["_Min"] = function() { + return (_Min = Module["_Min"] = Module["asm"]["oa"]).apply(null, arguments); + }; + var _Minimum = Module["_Minimum"] = function() { + return (_Minimum = Module["_Minimum"] = Module["asm"]["pa"]).apply(null, arguments); + }; + var _Multiply = Module["_Multiply"] = function() { + return (_Multiply = Module["_Multiply"] = Module["asm"]["qa"]).apply(null, arguments); + }; + var _Neg = Module["_Neg"] = function() { + return (_Neg = Module["_Neg"] = Module["asm"]["ra"]).apply(null, arguments); + }; + var _NonMaxSuppressionV3 = Module["_NonMaxSuppressionV3"] = function() { + return (_NonMaxSuppressionV3 = Module["_NonMaxSuppressionV3"] = Module["asm"]["sa"]).apply(null, arguments); + }; + var _NonMaxSuppressionV4 = Module["_NonMaxSuppressionV4"] = function() { + return (_NonMaxSuppressionV4 = Module["_NonMaxSuppressionV4"] = Module["asm"]["ta"]).apply(null, arguments); + }; + var _NonMaxSuppressionV5 = Module["_NonMaxSuppressionV5"] = function() { + return (_NonMaxSuppressionV5 = Module["_NonMaxSuppressionV5"] = Module["asm"]["ua"]).apply(null, arguments); + }; + var _NotEqual = Module["_NotEqual"] = function() { + return (_NotEqual = Module["_NotEqual"] = Module["asm"]["va"]).apply(null, arguments); + }; + var _OneHot = Module["_OneHot"] = function() { + return (_OneHot = Module["_OneHot"] = Module["asm"]["wa"]).apply(null, arguments); + }; + var _PadV2 = Module["_PadV2"] = function() { + return (_PadV2 = Module["_PadV2"] = Module["asm"]["xa"]).apply(null, arguments); + }; + var _Pow = Module["_Pow"] = function() { + return (_Pow = Module["_Pow"] = Module["asm"]["ya"]).apply(null, arguments); + }; + var _Prelu = Module["_Prelu"] = function() { + return (_Prelu = Module["_Prelu"] = Module["asm"]["za"]).apply(null, arguments); + }; + var _Prod = Module["_Prod"] = function() { + return (_Prod = Module["_Prod"] = Module["asm"]["Aa"]).apply(null, arguments); + }; + var _RealDiv = Module["_RealDiv"] = function() { + return (_RealDiv = Module["_RealDiv"] = Module["asm"]["Ba"]).apply(null, arguments); + }; + var _Relu = Module["_Relu"] = function() { + return (_Relu = Module["_Relu"] = Module["asm"]["Ca"]).apply(null, arguments); + }; + var _Relu6 = Module["_Relu6"] = function() { + return (_Relu6 = Module["_Relu6"] = Module["asm"]["Da"]).apply(null, arguments); + }; + var _ResizeBilinear = Module["_ResizeBilinear"] = function() { + return (_ResizeBilinear = Module["_ResizeBilinear"] = Module["asm"]["Ea"]).apply(null, arguments); + }; + var _Reverse = Module["_Reverse"] = function() { + return (_Reverse = Module["_Reverse"] = Module["asm"]["Fa"]).apply(null, arguments); + }; + var _RotateWithOffset = Module["_RotateWithOffset"] = function() { + return (_RotateWithOffset = Module["_RotateWithOffset"] = Module["asm"]["Ga"]).apply(null, arguments); + }; + var _Round = Module["_Round"] = function() { + return (_Round = Module["_Round"] = Module["asm"]["Ha"]).apply(null, arguments); + }; + var _Rsqrt = Module["_Rsqrt"] = function() { + return (_Rsqrt = Module["_Rsqrt"] = Module["asm"]["Ia"]).apply(null, arguments); + }; + var _ScatterNd = Module["_ScatterNd"] = function() { + return (_ScatterNd = Module["_ScatterNd"] = Module["asm"]["Ja"]).apply(null, arguments); + }; + var _SelectV2 = Module["_SelectV2"] = function() { + return (_SelectV2 = Module["_SelectV2"] = Module["asm"]["Ka"]).apply(null, arguments); + }; + var _Sigmoid = Module["_Sigmoid"] = function() { + return (_Sigmoid = Module["_Sigmoid"] = Module["asm"]["La"]).apply(null, arguments); + }; + var _Sin = Module["_Sin"] = function() { + return (_Sin = Module["_Sin"] = Module["asm"]["Ma"]).apply(null, arguments); + }; + var _Softmax = Module["_Softmax"] = function() { + return (_Softmax = Module["_Softmax"] = Module["asm"]["Na"]).apply(null, arguments); + }; + var _Sqrt = Module["_Sqrt"] = function() { + return (_Sqrt = Module["_Sqrt"] = Module["asm"]["Oa"]).apply(null, arguments); + }; + var _Square = Module["_Square"] = function() { + return (_Square = Module["_Square"] = Module["asm"]["Pa"]).apply(null, arguments); + }; + var _SquaredDifference = Module["_SquaredDifference"] = function() { + return (_SquaredDifference = Module["_SquaredDifference"] = Module["asm"]["Qa"]).apply(null, arguments); + }; + var _Step = Module["_Step"] = function() { + return (_Step = Module["_Step"] = Module["asm"]["Ra"]).apply(null, arguments); + }; + var _StridedSlice = Module["_StridedSlice"] = function() { + return (_StridedSlice = Module["_StridedSlice"] = Module["asm"]["Sa"]).apply(null, arguments); + }; + var _Sub = Module["_Sub"] = function() { + return (_Sub = Module["_Sub"] = Module["asm"]["Ta"]).apply(null, arguments); + }; + var _Sum = Module["_Sum"] = function() { + return (_Sum = Module["_Sum"] = Module["asm"]["Ua"]).apply(null, arguments); + }; + var _Tanh = Module["_Tanh"] = function() { + return (_Tanh = Module["_Tanh"] = Module["asm"]["Va"]).apply(null, arguments); + }; + var _Tile = Module["_Tile"] = function() { + return (_Tile = Module["_Tile"] = Module["asm"]["Wa"]).apply(null, arguments); + }; + var _TopK = Module["_TopK"] = function() { + return (_TopK = Module["_TopK"] = Module["asm"]["Xa"]).apply(null, arguments); + }; + var _Transpose = Module["_Transpose"] = function() { + return (_Transpose = Module["_Transpose"] = Module["asm"]["Ya"]).apply(null, arguments); + }; + var __FusedMatMul = Module["__FusedMatMul"] = function() { + return (__FusedMatMul = Module["__FusedMatMul"] = Module["asm"]["Za"]).apply(null, arguments); + }; + var _malloc = Module["_malloc"] = function() { + return (_malloc = Module["_malloc"] = Module["asm"]["_a"]).apply(null, arguments); + }; + var _free = Module["_free"] = function() { + return (_free = Module["_free"] = Module["asm"]["$a"]).apply(null, arguments); + }; + var ___errno_location = Module["___errno_location"] = function() { + return (___errno_location = Module["___errno_location"] = Module["asm"]["ab"]).apply(null, arguments); + }; + var _emscripten_get_global_libc = Module["_emscripten_get_global_libc"] = function() { + return (_emscripten_get_global_libc = Module["_emscripten_get_global_libc"] = Module["asm"]["bb"]).apply(null, arguments); + }; + var _pthread_self = Module["_pthread_self"] = function() { + return (_pthread_self = Module["_pthread_self"] = Module["asm"]["cb"]).apply(null, arguments); + }; + var ___pthread_tsd_run_dtors = Module["___pthread_tsd_run_dtors"] = function() { + return (___pthread_tsd_run_dtors = Module["___pthread_tsd_run_dtors"] = Module["asm"]["db"]).apply(null, arguments); + }; + var _emscripten_main_thread_process_queued_calls = Module["_emscripten_main_thread_process_queued_calls"] = function() { + return (_emscripten_main_thread_process_queued_calls = Module["_emscripten_main_thread_process_queued_calls"] = Module["asm"]["eb"]).apply(null, arguments); + }; + var _emscripten_current_thread_process_queued_calls = Module["_emscripten_current_thread_process_queued_calls"] = function() { + return (_emscripten_current_thread_process_queued_calls = Module["_emscripten_current_thread_process_queued_calls"] = Module["asm"]["fb"]).apply(null, arguments); + }; + var _emscripten_register_main_browser_thread_id = Module["_emscripten_register_main_browser_thread_id"] = function() { + return (_emscripten_register_main_browser_thread_id = Module["_emscripten_register_main_browser_thread_id"] = Module["asm"]["gb"]).apply(null, arguments); + }; + var __emscripten_do_dispatch_to_thread = Module["__emscripten_do_dispatch_to_thread"] = function() { + return (__emscripten_do_dispatch_to_thread = Module["__emscripten_do_dispatch_to_thread"] = Module["asm"]["hb"]).apply(null, arguments); + }; + var _emscripten_sync_run_in_main_thread_4 = Module["_emscripten_sync_run_in_main_thread_4"] = function() { + return (_emscripten_sync_run_in_main_thread_4 = Module["_emscripten_sync_run_in_main_thread_4"] = Module["asm"]["ib"]).apply(null, arguments); + }; + var _emscripten_run_in_main_runtime_thread_js = Module["_emscripten_run_in_main_runtime_thread_js"] = function() { + return (_emscripten_run_in_main_runtime_thread_js = Module["_emscripten_run_in_main_runtime_thread_js"] = Module["asm"]["jb"]).apply(null, arguments); + }; + var __emscripten_call_on_thread = Module["__emscripten_call_on_thread"] = function() { + return (__emscripten_call_on_thread = Module["__emscripten_call_on_thread"] = Module["asm"]["kb"]).apply(null, arguments); + }; + var _emscripten_tls_init = Module["_emscripten_tls_init"] = function() { + return (_emscripten_tls_init = Module["_emscripten_tls_init"] = Module["asm"]["lb"]).apply(null, arguments); + }; + var __emscripten_thread_init = Module["__emscripten_thread_init"] = function() { + return (__emscripten_thread_init = Module["__emscripten_thread_init"] = Module["asm"]["mb"]).apply(null, arguments); + }; + var stackSave = Module["stackSave"] = function() { + return (stackSave = Module["stackSave"] = Module["asm"]["nb"]).apply(null, arguments); + }; + var stackRestore = Module["stackRestore"] = function() { + return (stackRestore = Module["stackRestore"] = Module["asm"]["ob"]).apply(null, arguments); + }; + var stackAlloc = Module["stackAlloc"] = function() { + return (stackAlloc = Module["stackAlloc"] = Module["asm"]["pb"]).apply(null, arguments); + }; + var _emscripten_stack_set_limits = Module["_emscripten_stack_set_limits"] = function() { + return (_emscripten_stack_set_limits = Module["_emscripten_stack_set_limits"] = Module["asm"]["qb"]).apply(null, arguments); + }; + var _memalign = Module["_memalign"] = function() { + return (_memalign = Module["_memalign"] = Module["asm"]["rb"]).apply(null, arguments); + }; + var __emscripten_allow_main_runtime_queued_calls = Module["__emscripten_allow_main_runtime_queued_calls"] = 9880; + var __emscripten_main_thread_futex = Module["__emscripten_main_thread_futex"] = 11368; + Module["cwrap"] = cwrap; + Module["PThread"] = PThread; + Module["PThread"] = PThread; + Module["wasmMemory"] = wasmMemory; + Module["ExitStatus"] = ExitStatus; + var calledRun; + function ExitStatus(status) { + this.name = "ExitStatus"; + this.message = "Program terminated with exit(" + status + ")"; + this.status = status; + } + dependenciesFulfilled = function runCaller() { + if (!calledRun) + run2(); + if (!calledRun) + dependenciesFulfilled = runCaller; + }; + function run2(args) { + args = args || arguments_; + if (runDependencies > 0) { + return; + } + if (ENVIRONMENT_IS_PTHREAD) { + readyPromiseResolve(Module); + postMessage({cmd: "loaded"}); + return; + } + preRun(); + if (runDependencies > 0) { + return; + } + function doRun() { + if (calledRun) + return; + calledRun = true; + Module["calledRun"] = true; + if (ABORT) + return; + initRuntime(); + preMain(); + readyPromiseResolve(Module); + if (Module["onRuntimeInitialized"]) + Module["onRuntimeInitialized"](); + postRun(); + } + if (Module["setStatus"]) { + Module["setStatus"]("Running..."); + setTimeout(function() { + setTimeout(function() { + Module["setStatus"](""); + }, 1); + doRun(); + }, 1); + } else { + doRun(); + } + } + Module["run"] = run2; + function exit(status, implicit) { + if (implicit && noExitRuntime && status === 0) { + return; + } + if (!implicit) { + if (ENVIRONMENT_IS_PTHREAD) { + postMessage({cmd: "exitProcess", returnCode: status}); + throw new ExitStatus(status); + } else { + } + } + if (noExitRuntime) { + } else { + PThread.terminateAllThreads(); + EXITSTATUS = status; + exitRuntime(); + if (Module["onExit"]) + Module["onExit"](status); + ABORT = true; + } + quit_(status, new ExitStatus(status)); + } + if (Module["preInit"]) { + if (typeof Module["preInit"] == "function") + Module["preInit"] = [Module["preInit"]]; + while (Module["preInit"].length > 0) { + Module["preInit"].pop()(); + } + } + if (ENVIRONMENT_IS_PTHREAD) { + noExitRuntime = false; + PThread.initWorker(); + } + run2(); + return WasmBackendModuleThreadedSimd2.ready; + }; + }(); + if (typeof exports === "object" && typeof module2 === "object") + module2.exports = WasmBackendModuleThreadedSimd; + else if (typeof define === "function" && define["amd"]) + define([], function() { + return WasmBackendModuleThreadedSimd; + }); + else if (typeof exports === "object") + exports["WasmBackendModuleThreadedSimd"] = WasmBackendModuleThreadedSimd; +}); +var require_tfjs_backend_wasm = __commonJS2((exports, module2) => { + var WasmBackendModule = function() { + var _scriptDir = typeof document !== "undefined" && document.currentScript ? document.currentScript.src : void 0; + if (typeof __filename !== "undefined") + _scriptDir = _scriptDir || __filename; + return function(WasmBackendModule2) { + WasmBackendModule2 = WasmBackendModule2 || {}; + var Module = typeof WasmBackendModule2 !== "undefined" ? WasmBackendModule2 : {}; + var readyPromiseResolve, readyPromiseReject; + Module["ready"] = new Promise(function(resolve, reject) { + readyPromiseResolve = resolve; + readyPromiseReject = reject; + }); + var moduleOverrides = {}; + var key; + for (key in Module) { + if (Module.hasOwnProperty(key)) { + moduleOverrides[key] = Module[key]; + } + } + var arguments_ = []; + var thisProgram = "./this.program"; + var quit_ = function(status, toThrow) { + throw toThrow; + }; + var ENVIRONMENT_IS_WEB = false; + var ENVIRONMENT_IS_WORKER = false; + var ENVIRONMENT_IS_NODE = false; + var ENVIRONMENT_IS_SHELL = false; + ENVIRONMENT_IS_WEB = typeof window === "object"; + ENVIRONMENT_IS_WORKER = typeof importScripts === "function"; + ENVIRONMENT_IS_NODE = typeof process === "object" && typeof process.versions === "object" && typeof process.versions.node === "string"; + ENVIRONMENT_IS_SHELL = !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER; + var scriptDirectory = ""; + function locateFile(path) { + if (Module["locateFile"]) { + return Module["locateFile"](path, scriptDirectory); + } + return scriptDirectory + path; + } + var read_, readAsync, readBinary, setWindowTitle; + var nodeFS; + var nodePath; + if (ENVIRONMENT_IS_NODE) { + if (ENVIRONMENT_IS_WORKER) { + scriptDirectory = require_path().dirname(scriptDirectory) + "/"; + } else { + scriptDirectory = __dirname + "/"; + } + read_ = function shell_read(filename, binary) { + if (!nodeFS) + nodeFS = require("fs"); + if (!nodePath) + nodePath = require_path(); + filename = nodePath["normalize"](filename); + return nodeFS["readFileSync"](filename, binary ? null : "utf8"); + }; + readBinary = function readBinary2(filename) { + var ret = read_(filename, true); + if (!ret.buffer) { + ret = new Uint8Array(ret); + } + assert3(ret.buffer); + return ret; + }; + if (process["argv"].length > 1) { + thisProgram = process["argv"][1].replace(/\\/g, "/"); + } + arguments_ = process["argv"].slice(2); + process["on"]("uncaughtException", function(ex) { + if (!(ex instanceof ExitStatus)) { + throw ex; + } + }); + process["on"]("unhandledRejection", abort); + quit_ = function(status) { + process["exit"](status); + }; + Module["inspect"] = function() { + return "[Emscripten Module object]"; + }; + } else if (ENVIRONMENT_IS_SHELL) { + if (typeof read != "undefined") { + read_ = function shell_read(f) { + return read(f); + }; + } + readBinary = function readBinary2(f) { + var data2; + if (typeof readbuffer === "function") { + return new Uint8Array(readbuffer(f)); + } + data2 = read(f, "binary"); + assert3(typeof data2 === "object"); + return data2; + }; + if (typeof scriptArgs != "undefined") { + arguments_ = scriptArgs; + } else if (typeof arguments != "undefined") { + arguments_ = arguments; + } + if (typeof quit === "function") { + quit_ = function(status) { + quit(status); + }; + } + if (typeof print !== "undefined") { + if (typeof console === "undefined") + console = {}; + console.log = print; + console.warn = console.error = typeof printErr !== "undefined" ? printErr : print; + } + } else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) { + if (ENVIRONMENT_IS_WORKER) { + scriptDirectory = self.location.href; + } else if (typeof document !== "undefined" && document.currentScript) { + scriptDirectory = document.currentScript.src; + } + if (_scriptDir) { + scriptDirectory = _scriptDir; + } + if (scriptDirectory.indexOf("blob:") !== 0) { + scriptDirectory = scriptDirectory.substr(0, scriptDirectory.lastIndexOf("/") + 1); + } else { + scriptDirectory = ""; + } + { + read_ = function(url) { + var xhr = new XMLHttpRequest(); + xhr.open("GET", url, false); + xhr.send(null); + return xhr.responseText; + }; + if (ENVIRONMENT_IS_WORKER) { + readBinary = function(url) { + var xhr = new XMLHttpRequest(); + xhr.open("GET", url, false); + xhr.responseType = "arraybuffer"; + xhr.send(null); + return new Uint8Array(xhr.response); + }; + } + readAsync = function(url, onload, onerror) { + var xhr = new XMLHttpRequest(); + xhr.open("GET", url, true); + xhr.responseType = "arraybuffer"; + xhr.onload = function() { + if (xhr.status == 200 || xhr.status == 0 && xhr.response) { + onload(xhr.response); + return; + } + onerror(); + }; + xhr.onerror = onerror; + xhr.send(null); + }; + } + setWindowTitle = function(title) { + document.title = title; + }; + } else { + } + var out = Module["print"] || console.log.bind(console); + var err = Module["printErr"] || console.warn.bind(console); + for (key in moduleOverrides) { + if (moduleOverrides.hasOwnProperty(key)) { + Module[key] = moduleOverrides[key]; + } + } + moduleOverrides = null; + if (Module["arguments"]) + arguments_ = Module["arguments"]; + if (Module["thisProgram"]) + thisProgram = Module["thisProgram"]; + if (Module["quit"]) + quit_ = Module["quit"]; + var wasmBinary; + if (Module["wasmBinary"]) + wasmBinary = Module["wasmBinary"]; + var noExitRuntime = Module["noExitRuntime"] || true; + if (typeof WebAssembly !== "object") { + abort("no native wasm support detected"); + } + var wasmMemory; + var ABORT = false; + var EXITSTATUS; + function assert3(condition, text) { + if (!condition) { + abort("Assertion failed: " + text); + } + } + function getCFunc(ident) { + var func2 = Module["_" + ident]; + assert3(func2, "Cannot call unknown function " + ident + ", make sure it is exported"); + return func2; + } + function ccall(ident, returnType, argTypes, args, opts) { + var toC = {string: function(str) { + var ret2 = 0; + if (str !== null && str !== void 0 && str !== 0) { + var len = (str.length << 2) + 1; + ret2 = stackAlloc(len); + stringToUTF8(str, ret2, len); + } + return ret2; + }, array: function(arr) { + var ret2 = stackAlloc(arr.length); + writeArrayToMemory(arr, ret2); + return ret2; + }}; + function convertReturnValue(ret2) { + if (returnType === "string") + return UTF8ToString(ret2); + if (returnType === "boolean") + return Boolean(ret2); + return ret2; + } + var func2 = getCFunc(ident); + var cArgs = []; + var stack2 = 0; + if (args) { + for (var i = 0; i < args.length; i++) { + var converter = toC[argTypes[i]]; + if (converter) { + if (stack2 === 0) + stack2 = stackSave(); + cArgs[i] = converter(args[i]); + } else { + cArgs[i] = args[i]; + } + } + } + var ret = func2.apply(null, cArgs); + ret = convertReturnValue(ret); + if (stack2 !== 0) + stackRestore(stack2); + return ret; + } + function cwrap(ident, returnType, argTypes, opts) { + argTypes = argTypes || []; + var numericArgs = argTypes.every(function(type) { + return type === "number"; + }); + var numericRet = returnType !== "string"; + if (numericRet && numericArgs && !opts) { + return getCFunc(ident); + } + return function() { + return ccall(ident, returnType, argTypes, arguments, opts); + }; + } + var UTF8Decoder = typeof TextDecoder !== "undefined" ? new TextDecoder("utf8") : void 0; + function UTF8ArrayToString(heap, idx, maxBytesToRead) { + var endIdx = idx + maxBytesToRead; + var endPtr = idx; + while (heap[endPtr] && !(endPtr >= endIdx)) + ++endPtr; + if (endPtr - idx > 16 && heap.subarray && UTF8Decoder) { + return UTF8Decoder.decode(heap.subarray(idx, endPtr)); + } else { + var str = ""; + while (idx < endPtr) { + var u0 = heap[idx++]; + if (!(u0 & 128)) { + str += String.fromCharCode(u0); + continue; + } + var u1 = heap[idx++] & 63; + if ((u0 & 224) == 192) { + str += String.fromCharCode((u0 & 31) << 6 | u1); + continue; + } + var u2 = heap[idx++] & 63; + if ((u0 & 240) == 224) { + u0 = (u0 & 15) << 12 | u1 << 6 | u2; + } else { + u0 = (u0 & 7) << 18 | u1 << 12 | u2 << 6 | heap[idx++] & 63; + } + if (u0 < 65536) { + str += String.fromCharCode(u0); + } else { + var ch = u0 - 65536; + str += String.fromCharCode(55296 | ch >> 10, 56320 | ch & 1023); + } + } + } + return str; + } + function UTF8ToString(ptr, maxBytesToRead) { + return ptr ? UTF8ArrayToString(HEAPU8, ptr, maxBytesToRead) : ""; + } + function stringToUTF8Array(str, heap, outIdx, maxBytesToWrite) { + if (!(maxBytesToWrite > 0)) + return 0; + var startIdx = outIdx; + var endIdx = outIdx + maxBytesToWrite - 1; + for (var i = 0; i < str.length; ++i) { + var u = str.charCodeAt(i); + if (u >= 55296 && u <= 57343) { + var u1 = str.charCodeAt(++i); + u = 65536 + ((u & 1023) << 10) | u1 & 1023; + } + if (u <= 127) { + if (outIdx >= endIdx) + break; + heap[outIdx++] = u; + } else if (u <= 2047) { + if (outIdx + 1 >= endIdx) + break; + heap[outIdx++] = 192 | u >> 6; + heap[outIdx++] = 128 | u & 63; + } else if (u <= 65535) { + if (outIdx + 2 >= endIdx) + break; + heap[outIdx++] = 224 | u >> 12; + heap[outIdx++] = 128 | u >> 6 & 63; + heap[outIdx++] = 128 | u & 63; + } else { + if (outIdx + 3 >= endIdx) + break; + heap[outIdx++] = 240 | u >> 18; + heap[outIdx++] = 128 | u >> 12 & 63; + heap[outIdx++] = 128 | u >> 6 & 63; + heap[outIdx++] = 128 | u & 63; + } + } + heap[outIdx] = 0; + return outIdx - startIdx; + } + function stringToUTF8(str, outPtr, maxBytesToWrite) { + return stringToUTF8Array(str, HEAPU8, outPtr, maxBytesToWrite); + } + function writeArrayToMemory(array2, buffer3) { + HEAP8.set(array2, buffer3); + } + function alignUp(x, multiple) { + if (x % multiple > 0) { + x += multiple - x % multiple; + } + return x; + } + var buffer2, HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64; + function updateGlobalBufferAndViews(buf) { + buffer2 = buf; + Module["HEAP8"] = HEAP8 = new Int8Array(buf); + Module["HEAP16"] = HEAP16 = new Int16Array(buf); + Module["HEAP32"] = HEAP32 = new Int32Array(buf); + Module["HEAPU8"] = HEAPU8 = new Uint8Array(buf); + Module["HEAPU16"] = HEAPU16 = new Uint16Array(buf); + Module["HEAPU32"] = HEAPU32 = new Uint32Array(buf); + Module["HEAPF32"] = HEAPF32 = new Float32Array(buf); + Module["HEAPF64"] = HEAPF64 = new Float64Array(buf); + } + var INITIAL_MEMORY = Module["INITIAL_MEMORY"] || 16777216; + var wasmTable; + var __ATPRERUN__ = []; + var __ATINIT__ = []; + var __ATMAIN__ = []; + var __ATPOSTRUN__ = []; + var runtimeInitialized = false; + __ATINIT__.push({func: function() { + ___wasm_call_ctors(); + }}); + function preRun() { + if (Module["preRun"]) { + if (typeof Module["preRun"] == "function") + Module["preRun"] = [Module["preRun"]]; + while (Module["preRun"].length) { + addOnPreRun(Module["preRun"].shift()); + } + } + callRuntimeCallbacks(__ATPRERUN__); + } + function initRuntime() { + runtimeInitialized = true; + callRuntimeCallbacks(__ATINIT__); + } + function preMain() { + callRuntimeCallbacks(__ATMAIN__); + } + function postRun() { + if (Module["postRun"]) { + if (typeof Module["postRun"] == "function") + Module["postRun"] = [Module["postRun"]]; + while (Module["postRun"].length) { + addOnPostRun(Module["postRun"].shift()); + } + } + callRuntimeCallbacks(__ATPOSTRUN__); + } + function addOnPreRun(cb) { + __ATPRERUN__.unshift(cb); + } + function addOnPostRun(cb) { + __ATPOSTRUN__.unshift(cb); + } + var runDependencies = 0; + var runDependencyWatcher = null; + var dependenciesFulfilled = null; + function addRunDependency(id) { + runDependencies++; + if (Module["monitorRunDependencies"]) { + Module["monitorRunDependencies"](runDependencies); + } + } + function removeRunDependency(id) { + runDependencies--; + if (Module["monitorRunDependencies"]) { + Module["monitorRunDependencies"](runDependencies); + } + if (runDependencies == 0) { + if (runDependencyWatcher !== null) { + clearInterval(runDependencyWatcher); + runDependencyWatcher = null; + } + if (dependenciesFulfilled) { + var callback = dependenciesFulfilled; + dependenciesFulfilled = null; + callback(); + } + } + } + Module["preloadedImages"] = {}; + Module["preloadedAudios"] = {}; + function abort(what) { + if (Module["onAbort"]) { + Module["onAbort"](what); + } + what += ""; + err(what); + ABORT = true; + EXITSTATUS = 1; + what = "abort(" + what + "). Build with -s ASSERTIONS=1 for more info."; + var e = new WebAssembly.RuntimeError(what); + readyPromiseReject(e); + throw e; + } + function hasPrefix(str, prefix) { + return String.prototype.startsWith ? str.startsWith(prefix) : str.indexOf(prefix) === 0; + } + var dataURIPrefix = "data:application/octet-stream;base64,"; + function isDataURI(filename) { + return hasPrefix(filename, dataURIPrefix); + } + var fileURIPrefix = "file://"; + function isFileURI(filename) { + return hasPrefix(filename, fileURIPrefix); + } + var wasmBinaryFile = "tfjs-backend-wasm.wasm"; + if (!isDataURI(wasmBinaryFile)) { + wasmBinaryFile = locateFile(wasmBinaryFile); + } + function getBinary(file) { + try { + if (file == wasmBinaryFile && wasmBinary) { + return new Uint8Array(wasmBinary); + } + if (readBinary) { + return readBinary(file); + } else { + throw "both async and sync fetching of the wasm failed"; + } + } catch (err2) { + abort(err2); + } + } + function getBinaryPromise() { + if (!wasmBinary && (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER)) { + if (typeof fetch === "function" && !isFileURI(wasmBinaryFile)) { + return fetch(wasmBinaryFile, {credentials: "same-origin"}).then(function(response) { + if (!response["ok"]) { + throw "failed to load wasm binary file at '" + wasmBinaryFile + "'"; + } + return response["arrayBuffer"](); + }).catch(function() { + return getBinary(wasmBinaryFile); + }); + } else { + if (readAsync) { + return new Promise(function(resolve, reject) { + readAsync(wasmBinaryFile, function(response) { + resolve(new Uint8Array(response)); + }, reject); + }); + } + } + } + return Promise.resolve().then(function() { + return getBinary(wasmBinaryFile); + }); + } + function createWasm() { + var info = {a: asmLibraryArg}; + function receiveInstance(instance, module22) { + var exports3 = instance.exports; + Module["asm"] = exports3; + wasmMemory = Module["asm"]["g"]; + updateGlobalBufferAndViews(wasmMemory.buffer); + wasmTable = Module["asm"]["m"]; + removeRunDependency("wasm-instantiate"); + } + addRunDependency("wasm-instantiate"); + function receiveInstantiatedSource(output) { + receiveInstance(output["instance"]); + } + function instantiateArrayBuffer(receiver) { + return getBinaryPromise().then(function(binary) { + return WebAssembly.instantiate(binary, info); + }).then(receiver, function(reason) { + err("failed to asynchronously prepare wasm: " + reason); + abort(reason); + }); + } + function instantiateAsync() { + if (!wasmBinary && typeof WebAssembly.instantiateStreaming === "function" && !isDataURI(wasmBinaryFile) && !isFileURI(wasmBinaryFile) && typeof fetch === "function") { + return fetch(wasmBinaryFile, {credentials: "same-origin"}).then(function(response) { + var result = WebAssembly.instantiateStreaming(response, info); + return result.then(receiveInstantiatedSource, function(reason) { + err("wasm streaming compile failed: " + reason); + err("falling back to ArrayBuffer instantiation"); + return instantiateArrayBuffer(receiveInstantiatedSource); + }); + }); + } else { + return instantiateArrayBuffer(receiveInstantiatedSource); + } + } + if (Module["instantiateWasm"]) { + try { + var exports2 = Module["instantiateWasm"](info, receiveInstance); + return exports2; + } catch (e) { + err("Module.instantiateWasm callback failed with error: " + e); + return false; + } + } + instantiateAsync().catch(readyPromiseReject); + return {}; + } + function callRuntimeCallbacks(callbacks2) { + while (callbacks2.length > 0) { + var callback = callbacks2.shift(); + if (typeof callback == "function") { + callback(Module); + continue; + } + var func2 = callback.func; + if (typeof func2 === "number") { + if (callback.arg === void 0) { + wasmTable.get(func2)(); + } else { + wasmTable.get(func2)(callback.arg); + } + } else { + func2(callback.arg === void 0 ? null : callback.arg); + } + } + } + function _abort() { + abort(); + } + function _emscripten_memcpy_big(dest, src, num) { + HEAPU8.copyWithin(dest, src, src + num); + } + function _emscripten_get_heap_size() { + return HEAPU8.length; + } + function emscripten_realloc_buffer(size) { + try { + wasmMemory.grow(size - buffer2.byteLength + 65535 >>> 16); + updateGlobalBufferAndViews(wasmMemory.buffer); + return 1; + } catch (e) { + } + } + function _emscripten_resize_heap(requestedSize) { + var oldSize = _emscripten_get_heap_size(); + var maxHeapSize = 2147483648; + if (requestedSize > maxHeapSize) { + return false; + } + for (var cutDown = 1; cutDown <= 4; cutDown *= 2) { + var overGrownHeapSize = oldSize * (1 + 0.2 / cutDown); + overGrownHeapSize = Math.min(overGrownHeapSize, requestedSize + 100663296); + var newSize = Math.min(maxHeapSize, alignUp(Math.max(requestedSize, overGrownHeapSize), 65536)); + var replacement = emscripten_realloc_buffer(newSize); + if (replacement) { + return true; + } + } + return false; + } + var SYSCALLS = {mappings: {}, buffers: [null, [], []], printChar: function(stream, curr) { + var buffer3 = SYSCALLS.buffers[stream]; + if (curr === 0 || curr === 10) { + (stream === 1 ? out : err)(UTF8ArrayToString(buffer3, 0)); + buffer3.length = 0; + } else { + buffer3.push(curr); + } + }, varargs: void 0, get: function() { + SYSCALLS.varargs += 4; + var ret = HEAP32[SYSCALLS.varargs - 4 >> 2]; + return ret; + }, getStr: function(ptr) { + var ret = UTF8ToString(ptr); + return ret; + }, get64: function(low, high) { + return low; + }}; + function _fd_close(fd) { + return 0; + } + function _fd_seek(fd, offset_low, offset_high, whence, newOffset) { + } + function _fd_write(fd, iov, iovcnt, pnum) { + var num = 0; + for (var i = 0; i < iovcnt; i++) { + var ptr = HEAP32[iov + i * 8 >> 2]; + var len = HEAP32[iov + (i * 8 + 4) >> 2]; + for (var j = 0; j < len; j++) { + SYSCALLS.printChar(fd, HEAPU8[ptr + j]); + } + num += len; + } + HEAP32[pnum >> 2] = num; + return 0; + } + var asmLibraryArg = {a: _abort, d: _emscripten_memcpy_big, e: _emscripten_resize_heap, f: _fd_close, c: _fd_seek, b: _fd_write}; + var asm = createWasm(); + var ___wasm_call_ctors = Module["___wasm_call_ctors"] = function() { + return (___wasm_call_ctors = Module["___wasm_call_ctors"] = Module["asm"]["h"]).apply(null, arguments); + }; + var _init = Module["_init"] = function() { + return (_init = Module["_init"] = Module["asm"]["i"]).apply(null, arguments); + }; + var _register_tensor = Module["_register_tensor"] = function() { + return (_register_tensor = Module["_register_tensor"] = Module["asm"]["j"]).apply(null, arguments); + }; + var _dispose_data = Module["_dispose_data"] = function() { + return (_dispose_data = Module["_dispose_data"] = Module["asm"]["k"]).apply(null, arguments); + }; + var _dispose = Module["_dispose"] = function() { + return (_dispose = Module["_dispose"] = Module["asm"]["l"]).apply(null, arguments); + }; + var _Abs = Module["_Abs"] = function() { + return (_Abs = Module["_Abs"] = Module["asm"]["n"]).apply(null, arguments); + }; + var _Add = Module["_Add"] = function() { + return (_Add = Module["_Add"] = Module["asm"]["o"]).apply(null, arguments); + }; + var _AddN = Module["_AddN"] = function() { + return (_AddN = Module["_AddN"] = Module["asm"]["p"]).apply(null, arguments); + }; + var _ArgMax = Module["_ArgMax"] = function() { + return (_ArgMax = Module["_ArgMax"] = Module["asm"]["q"]).apply(null, arguments); + }; + var _AvgPool = Module["_AvgPool"] = function() { + return (_AvgPool = Module["_AvgPool"] = Module["asm"]["r"]).apply(null, arguments); + }; + var _BatchMatMul = Module["_BatchMatMul"] = function() { + return (_BatchMatMul = Module["_BatchMatMul"] = Module["asm"]["s"]).apply(null, arguments); + }; + var _Ceil = Module["_Ceil"] = function() { + return (_Ceil = Module["_Ceil"] = Module["asm"]["t"]).apply(null, arguments); + }; + var _ClipByValue = Module["_ClipByValue"] = function() { + return (_ClipByValue = Module["_ClipByValue"] = Module["asm"]["u"]).apply(null, arguments); + }; + var _Conv2D = Module["_Conv2D"] = function() { + return (_Conv2D = Module["_Conv2D"] = Module["asm"]["v"]).apply(null, arguments); + }; + var _Conv2DBackpropInput = Module["_Conv2DBackpropInput"] = function() { + return (_Conv2DBackpropInput = Module["_Conv2DBackpropInput"] = Module["asm"]["w"]).apply(null, arguments); + }; + var _Cos = Module["_Cos"] = function() { + return (_Cos = Module["_Cos"] = Module["asm"]["x"]).apply(null, arguments); + }; + var _CropAndResize = Module["_CropAndResize"] = function() { + return (_CropAndResize = Module["_CropAndResize"] = Module["asm"]["y"]).apply(null, arguments); + }; + var _Cumsum = Module["_Cumsum"] = function() { + return (_Cumsum = Module["_Cumsum"] = Module["asm"]["z"]).apply(null, arguments); + }; + var _DepthToSpace = Module["_DepthToSpace"] = function() { + return (_DepthToSpace = Module["_DepthToSpace"] = Module["asm"]["A"]).apply(null, arguments); + }; + var _DepthwiseConv2dNative = Module["_DepthwiseConv2dNative"] = function() { + return (_DepthwiseConv2dNative = Module["_DepthwiseConv2dNative"] = Module["asm"]["B"]).apply(null, arguments); + }; + var _Equal = Module["_Equal"] = function() { + return (_Equal = Module["_Equal"] = Module["asm"]["C"]).apply(null, arguments); + }; + var _Exp = Module["_Exp"] = function() { + return (_Exp = Module["_Exp"] = Module["asm"]["D"]).apply(null, arguments); + }; + var _FlipLeftRight = Module["_FlipLeftRight"] = function() { + return (_FlipLeftRight = Module["_FlipLeftRight"] = Module["asm"]["E"]).apply(null, arguments); + }; + var _Floor = Module["_Floor"] = function() { + return (_Floor = Module["_Floor"] = Module["asm"]["F"]).apply(null, arguments); + }; + var _FloorDiv = Module["_FloorDiv"] = function() { + return (_FloorDiv = Module["_FloorDiv"] = Module["asm"]["G"]).apply(null, arguments); + }; + var _FusedBatchNorm = Module["_FusedBatchNorm"] = function() { + return (_FusedBatchNorm = Module["_FusedBatchNorm"] = Module["asm"]["H"]).apply(null, arguments); + }; + var _FusedConv2D = Module["_FusedConv2D"] = function() { + return (_FusedConv2D = Module["_FusedConv2D"] = Module["asm"]["I"]).apply(null, arguments); + }; + var _FusedDepthwiseConv2D = Module["_FusedDepthwiseConv2D"] = function() { + return (_FusedDepthwiseConv2D = Module["_FusedDepthwiseConv2D"] = Module["asm"]["J"]).apply(null, arguments); + }; + var _Gather = Module["_Gather"] = function() { + return (_Gather = Module["_Gather"] = Module["asm"]["K"]).apply(null, arguments); + }; + var _GatherNd = Module["_GatherNd"] = function() { + return (_GatherNd = Module["_GatherNd"] = Module["asm"]["L"]).apply(null, arguments); + }; + var _Greater = Module["_Greater"] = function() { + return (_Greater = Module["_Greater"] = Module["asm"]["M"]).apply(null, arguments); + }; + var _GreaterEqual = Module["_GreaterEqual"] = function() { + return (_GreaterEqual = Module["_GreaterEqual"] = Module["asm"]["N"]).apply(null, arguments); + }; + var _LeakyRelu = Module["_LeakyRelu"] = function() { + return (_LeakyRelu = Module["_LeakyRelu"] = Module["asm"]["O"]).apply(null, arguments); + }; + var _Less = Module["_Less"] = function() { + return (_Less = Module["_Less"] = Module["asm"]["P"]).apply(null, arguments); + }; + var _LessEqual = Module["_LessEqual"] = function() { + return (_LessEqual = Module["_LessEqual"] = Module["asm"]["Q"]).apply(null, arguments); + }; + var _Log = Module["_Log"] = function() { + return (_Log = Module["_Log"] = Module["asm"]["R"]).apply(null, arguments); + }; + var _LogicalAnd = Module["_LogicalAnd"] = function() { + return (_LogicalAnd = Module["_LogicalAnd"] = Module["asm"]["S"]).apply(null, arguments); + }; + var _Max = Module["_Max"] = function() { + return (_Max = Module["_Max"] = Module["asm"]["T"]).apply(null, arguments); + }; + var _MaxPool = Module["_MaxPool"] = function() { + return (_MaxPool = Module["_MaxPool"] = Module["asm"]["U"]).apply(null, arguments); + }; + var _Maximum = Module["_Maximum"] = function() { + return (_Maximum = Module["_Maximum"] = Module["asm"]["V"]).apply(null, arguments); + }; + var _Mean = Module["_Mean"] = function() { + return (_Mean = Module["_Mean"] = Module["asm"]["W"]).apply(null, arguments); + }; + var _Min = Module["_Min"] = function() { + return (_Min = Module["_Min"] = Module["asm"]["X"]).apply(null, arguments); + }; + var _Minimum = Module["_Minimum"] = function() { + return (_Minimum = Module["_Minimum"] = Module["asm"]["Y"]).apply(null, arguments); + }; + var _Multiply = Module["_Multiply"] = function() { + return (_Multiply = Module["_Multiply"] = Module["asm"]["Z"]).apply(null, arguments); + }; + var _Neg = Module["_Neg"] = function() { + return (_Neg = Module["_Neg"] = Module["asm"]["_"]).apply(null, arguments); + }; + var _NonMaxSuppressionV3 = Module["_NonMaxSuppressionV3"] = function() { + return (_NonMaxSuppressionV3 = Module["_NonMaxSuppressionV3"] = Module["asm"]["$"]).apply(null, arguments); + }; + var _NonMaxSuppressionV4 = Module["_NonMaxSuppressionV4"] = function() { + return (_NonMaxSuppressionV4 = Module["_NonMaxSuppressionV4"] = Module["asm"]["aa"]).apply(null, arguments); + }; + var _NonMaxSuppressionV5 = Module["_NonMaxSuppressionV5"] = function() { + return (_NonMaxSuppressionV5 = Module["_NonMaxSuppressionV5"] = Module["asm"]["ba"]).apply(null, arguments); + }; + var _NotEqual = Module["_NotEqual"] = function() { + return (_NotEqual = Module["_NotEqual"] = Module["asm"]["ca"]).apply(null, arguments); + }; + var _OneHot = Module["_OneHot"] = function() { + return (_OneHot = Module["_OneHot"] = Module["asm"]["da"]).apply(null, arguments); + }; + var _PadV2 = Module["_PadV2"] = function() { + return (_PadV2 = Module["_PadV2"] = Module["asm"]["ea"]).apply(null, arguments); + }; + var _Pow = Module["_Pow"] = function() { + return (_Pow = Module["_Pow"] = Module["asm"]["fa"]).apply(null, arguments); + }; + var _Prelu = Module["_Prelu"] = function() { + return (_Prelu = Module["_Prelu"] = Module["asm"]["ga"]).apply(null, arguments); + }; + var _Prod = Module["_Prod"] = function() { + return (_Prod = Module["_Prod"] = Module["asm"]["ha"]).apply(null, arguments); + }; + var _RealDiv = Module["_RealDiv"] = function() { + return (_RealDiv = Module["_RealDiv"] = Module["asm"]["ia"]).apply(null, arguments); + }; + var _Relu = Module["_Relu"] = function() { + return (_Relu = Module["_Relu"] = Module["asm"]["ja"]).apply(null, arguments); + }; + var _Relu6 = Module["_Relu6"] = function() { + return (_Relu6 = Module["_Relu6"] = Module["asm"]["ka"]).apply(null, arguments); + }; + var _ResizeBilinear = Module["_ResizeBilinear"] = function() { + return (_ResizeBilinear = Module["_ResizeBilinear"] = Module["asm"]["la"]).apply(null, arguments); + }; + var _Reverse = Module["_Reverse"] = function() { + return (_Reverse = Module["_Reverse"] = Module["asm"]["ma"]).apply(null, arguments); + }; + var _RotateWithOffset = Module["_RotateWithOffset"] = function() { + return (_RotateWithOffset = Module["_RotateWithOffset"] = Module["asm"]["na"]).apply(null, arguments); + }; + var _Round = Module["_Round"] = function() { + return (_Round = Module["_Round"] = Module["asm"]["oa"]).apply(null, arguments); + }; + var _Rsqrt = Module["_Rsqrt"] = function() { + return (_Rsqrt = Module["_Rsqrt"] = Module["asm"]["pa"]).apply(null, arguments); + }; + var _ScatterNd = Module["_ScatterNd"] = function() { + return (_ScatterNd = Module["_ScatterNd"] = Module["asm"]["qa"]).apply(null, arguments); + }; + var _SelectV2 = Module["_SelectV2"] = function() { + return (_SelectV2 = Module["_SelectV2"] = Module["asm"]["ra"]).apply(null, arguments); + }; + var _Sigmoid = Module["_Sigmoid"] = function() { + return (_Sigmoid = Module["_Sigmoid"] = Module["asm"]["sa"]).apply(null, arguments); + }; + var _Sin = Module["_Sin"] = function() { + return (_Sin = Module["_Sin"] = Module["asm"]["ta"]).apply(null, arguments); + }; + var _Softmax = Module["_Softmax"] = function() { + return (_Softmax = Module["_Softmax"] = Module["asm"]["ua"]).apply(null, arguments); + }; + var _Sqrt = Module["_Sqrt"] = function() { + return (_Sqrt = Module["_Sqrt"] = Module["asm"]["va"]).apply(null, arguments); + }; + var _Square = Module["_Square"] = function() { + return (_Square = Module["_Square"] = Module["asm"]["wa"]).apply(null, arguments); + }; + var _SquaredDifference = Module["_SquaredDifference"] = function() { + return (_SquaredDifference = Module["_SquaredDifference"] = Module["asm"]["xa"]).apply(null, arguments); + }; + var _Step = Module["_Step"] = function() { + return (_Step = Module["_Step"] = Module["asm"]["ya"]).apply(null, arguments); + }; + var _StridedSlice = Module["_StridedSlice"] = function() { + return (_StridedSlice = Module["_StridedSlice"] = Module["asm"]["za"]).apply(null, arguments); + }; + var _Sub = Module["_Sub"] = function() { + return (_Sub = Module["_Sub"] = Module["asm"]["Aa"]).apply(null, arguments); + }; + var _Sum = Module["_Sum"] = function() { + return (_Sum = Module["_Sum"] = Module["asm"]["Ba"]).apply(null, arguments); + }; + var _Tanh = Module["_Tanh"] = function() { + return (_Tanh = Module["_Tanh"] = Module["asm"]["Ca"]).apply(null, arguments); + }; + var _Tile = Module["_Tile"] = function() { + return (_Tile = Module["_Tile"] = Module["asm"]["Da"]).apply(null, arguments); + }; + var _TopK = Module["_TopK"] = function() { + return (_TopK = Module["_TopK"] = Module["asm"]["Ea"]).apply(null, arguments); + }; + var _Transpose = Module["_Transpose"] = function() { + return (_Transpose = Module["_Transpose"] = Module["asm"]["Fa"]).apply(null, arguments); + }; + var __FusedMatMul = Module["__FusedMatMul"] = function() { + return (__FusedMatMul = Module["__FusedMatMul"] = Module["asm"]["Ga"]).apply(null, arguments); + }; + var _malloc = Module["_malloc"] = function() { + return (_malloc = Module["_malloc"] = Module["asm"]["Ha"]).apply(null, arguments); + }; + var _free = Module["_free"] = function() { + return (_free = Module["_free"] = Module["asm"]["Ia"]).apply(null, arguments); + }; + var stackSave = Module["stackSave"] = function() { + return (stackSave = Module["stackSave"] = Module["asm"]["Ja"]).apply(null, arguments); + }; + var stackRestore = Module["stackRestore"] = function() { + return (stackRestore = Module["stackRestore"] = Module["asm"]["Ka"]).apply(null, arguments); + }; + var stackAlloc = Module["stackAlloc"] = function() { + return (stackAlloc = Module["stackAlloc"] = Module["asm"]["La"]).apply(null, arguments); + }; + Module["cwrap"] = cwrap; + var calledRun; + function ExitStatus(status) { + this.name = "ExitStatus"; + this.message = "Program terminated with exit(" + status + ")"; + this.status = status; + } + dependenciesFulfilled = function runCaller() { + if (!calledRun) + run2(); + if (!calledRun) + dependenciesFulfilled = runCaller; + }; + function run2(args) { + args = args || arguments_; + if (runDependencies > 0) { + return; + } + preRun(); + if (runDependencies > 0) { + return; + } + function doRun() { + if (calledRun) + return; + calledRun = true; + Module["calledRun"] = true; + if (ABORT) + return; + initRuntime(); + preMain(); + readyPromiseResolve(Module); + if (Module["onRuntimeInitialized"]) + Module["onRuntimeInitialized"](); + postRun(); + } + if (Module["setStatus"]) { + Module["setStatus"]("Running..."); + setTimeout(function() { + setTimeout(function() { + Module["setStatus"](""); + }, 1); + doRun(); + }, 1); + } else { + doRun(); + } + } + Module["run"] = run2; + if (Module["preInit"]) { + if (typeof Module["preInit"] == "function") + Module["preInit"] = [Module["preInit"]]; + while (Module["preInit"].length > 0) { + Module["preInit"].pop()(); + } + } + run2(); + return WasmBackendModule2.ready; + }; + }(); + if (typeof exports === "object" && typeof module2 === "object") + module2.exports = WasmBackendModule; + else if (typeof define === "function" && define["amd"]) + define([], function() { + return WasmBackendModule; + }); + else if (typeof exports === "object") + exports["WasmBackendModule"] = WasmBackendModule; +}); +var require_alea3 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function Alea(seed) { + var me = this, mash = Mash(); + me.next = function() { + var t = 2091639 * me.s0 + me.c * 23283064365386963e-26; + me.s0 = me.s1; + me.s1 = me.s2; + return me.s2 = t - (me.c = t | 0); + }; + me.c = 1; + me.s0 = mash(" "); + me.s1 = mash(" "); + me.s2 = mash(" "); + me.s0 -= mash(seed); + if (me.s0 < 0) { + me.s0 += 1; + } + me.s1 -= mash(seed); + if (me.s1 < 0) { + me.s1 += 1; + } + me.s2 -= mash(seed); + if (me.s2 < 0) { + me.s2 += 1; + } + mash = null; + } + function copy(f, t) { + t.c = f.c; + t.s0 = f.s0; + t.s1 = f.s1; + t.s2 = f.s2; + return t; + } + function impl(seed, opts) { + var xg = new Alea(seed), state = opts && opts.state, prng = xg.next; + prng.int32 = function() { + return xg.next() * 4294967296 | 0; + }; + prng.double = function() { + return prng() + (prng() * 2097152 | 0) * 11102230246251565e-32; + }; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + function Mash() { + var n = 4022871197; + var mash = function(data2) { + data2 = String(data2); + for (var i = 0; i < data2.length; i++) { + n += data2.charCodeAt(i); + var h = 0.02519603282416938 * n; + n = h >>> 0; + h -= n; + h *= n; + n = h >>> 0; + h -= n; + n += h * 4294967296; + } + return (n >>> 0) * 23283064365386963e-26; + }; + return mash; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.alea = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xor1283 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.x = 0; + me.y = 0; + me.z = 0; + me.w = 0; + me.next = function() { + var t = me.x ^ me.x << 11; + me.x = me.y; + me.y = me.z; + me.z = me.w; + return me.w ^= me.w >>> 19 ^ t ^ t >>> 8; + }; + if (seed === (seed | 0)) { + me.x = seed; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 64; k++) { + me.x ^= strseed.charCodeAt(k) | 0; + me.next(); + } + } + function copy(f, t) { + t.x = f.x; + t.y = f.y; + t.z = f.z; + t.w = f.w; + return t; + } + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xor128 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xorwow3 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.next = function() { + var t = me.x ^ me.x >>> 2; + me.x = me.y; + me.y = me.z; + me.z = me.w; + me.w = me.v; + return (me.d = me.d + 362437 | 0) + (me.v = me.v ^ me.v << 4 ^ (t ^ t << 1)) | 0; + }; + me.x = 0; + me.y = 0; + me.z = 0; + me.w = 0; + me.v = 0; + if (seed === (seed | 0)) { + me.x = seed; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 64; k++) { + me.x ^= strseed.charCodeAt(k) | 0; + if (k == strseed.length) { + me.d = me.x << 10 ^ me.x >>> 4; + } + me.next(); + } + } + function copy(f, t) { + t.x = f.x; + t.y = f.y; + t.z = f.z; + t.w = f.w; + t.v = f.v; + t.d = f.d; + return t; + } + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xorwow = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xorshift73 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this; + me.next = function() { + var X = me.x, i = me.i, t, v, w; + t = X[i]; + t ^= t >>> 7; + v = t ^ t << 24; + t = X[i + 1 & 7]; + v ^= t ^ t >>> 10; + t = X[i + 3 & 7]; + v ^= t ^ t >>> 3; + t = X[i + 4 & 7]; + v ^= t ^ t << 7; + t = X[i + 7 & 7]; + t = t ^ t << 13; + v ^= t ^ t << 9; + X[i] = v; + me.i = i + 1 & 7; + return v; + }; + function init2(me2, seed2) { + var j, w, X = []; + if (seed2 === (seed2 | 0)) { + w = X[0] = seed2; + } else { + seed2 = "" + seed2; + for (j = 0; j < seed2.length; ++j) { + X[j & 7] = X[j & 7] << 15 ^ seed2.charCodeAt(j) + X[j + 1 & 7] << 13; + } + } + while (X.length < 8) + X.push(0); + for (j = 0; j < 8 && X[j] === 0; ++j) + ; + if (j == 8) + w = X[7] = -1; + else + w = X[j]; + me2.x = X; + me2.i = 0; + for (j = 256; j > 0; --j) { + me2.next(); + } + } + init2(me, seed); + } + function copy(f, t) { + t.x = f.x.slice(); + t.i = f.i; + return t; + } + function impl(seed, opts) { + if (seed == null) + seed = +new Date(); + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (state.x) + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xorshift7 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_xor40963 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this; + me.next = function() { + var w = me.w, X = me.X, i = me.i, t, v; + me.w = w = w + 1640531527 | 0; + v = X[i + 34 & 127]; + t = X[i = i + 1 & 127]; + v ^= v << 13; + t ^= t << 17; + v ^= v >>> 15; + t ^= t >>> 12; + v = X[i] = v ^ t; + me.i = i; + return v + (w ^ w >>> 16) | 0; + }; + function init2(me2, seed2) { + var t, v, i, j, w, X = [], limit = 128; + if (seed2 === (seed2 | 0)) { + v = seed2; + seed2 = null; + } else { + seed2 = seed2 + "\0"; + v = 0; + limit = Math.max(limit, seed2.length); + } + for (i = 0, j = -32; j < limit; ++j) { + if (seed2) + v ^= seed2.charCodeAt((j + 32) % seed2.length); + if (j === 0) + w = v; + v ^= v << 10; + v ^= v >>> 15; + v ^= v << 4; + v ^= v >>> 13; + if (j >= 0) { + w = w + 1640531527 | 0; + t = X[j & 127] ^= v + w; + i = t == 0 ? i + 1 : 0; + } + } + if (i >= 128) { + X[(seed2 && seed2.length || 0) & 127] = -1; + } + i = 127; + for (j = 4 * 128; j > 0; --j) { + v = X[i + 34 & 127]; + t = X[i = i + 1 & 127]; + v ^= v << 13; + t ^= t << 17; + v ^= v >>> 15; + t ^= t >>> 12; + X[i] = v ^ t; + } + me2.w = w; + me2.X = X; + me2.i = i; + } + init2(me, seed); + } + function copy(f, t) { + t.i = f.i; + t.w = f.w; + t.X = f.X.slice(); + return t; + } + ; + function impl(seed, opts) { + if (seed == null) + seed = +new Date(); + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (state.X) + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xor4096 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_tychei3 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.next = function() { + var b = me.b, c = me.c, d = me.d, a = me.a; + b = b << 25 ^ b >>> 7 ^ c; + c = c - d | 0; + d = d << 24 ^ d >>> 8 ^ a; + a = a - b | 0; + me.b = b = b << 20 ^ b >>> 12 ^ c; + me.c = c = c - d | 0; + me.d = d << 16 ^ c >>> 16 ^ a; + return me.a = a - b | 0; + }; + me.a = 0; + me.b = 0; + me.c = 2654435769 | 0; + me.d = 1367130551; + if (seed === Math.floor(seed)) { + me.a = seed / 4294967296 | 0; + me.b = seed | 0; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 20; k++) { + me.b ^= strseed.charCodeAt(k) | 0; + me.next(); + } + } + function copy(f, t) { + t.a = f.a; + t.b = f.b; + t.c = f.c; + t.d = f.d; + return t; + } + ; + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.tychei = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); +}); +var require_seedrandom5 = __commonJS2((exports, module2) => { + (function(global2, pool3, math) { + var width = 256, chunks = 6, digits = 52, rngname = "random", startdenom = math.pow(width, chunks), significance = math.pow(2, digits), overflow = significance * 2, mask = width - 1, nodecrypto; + function seedrandom5(seed, options, callback) { + var key = []; + options = options == true ? {entropy: true} : options || {}; + var shortseed = mixkey(flatten4(options.entropy ? [seed, tostring(pool3)] : seed == null ? autoseed() : seed, 3), key); + var arc4 = new ARC4(key); + var prng = function() { + var n = arc4.g(chunks), d = startdenom, x = 0; + while (n < significance) { + n = (n + x) * width; + d *= width; + x = arc4.g(1); + } + while (n >= overflow) { + n /= 2; + d /= 2; + x >>>= 1; + } + return (n + x) / d; + }; + prng.int32 = function() { + return arc4.g(4) | 0; + }; + prng.quick = function() { + return arc4.g(4) / 4294967296; + }; + prng.double = prng; + mixkey(tostring(arc4.S), pool3); + return (options.pass || callback || function(prng2, seed2, is_math_call, state) { + if (state) { + if (state.S) { + copy(state, arc4); + } + prng2.state = function() { + return copy(arc4, {}); + }; + } + if (is_math_call) { + math[rngname] = prng2; + return seed2; + } else + return prng2; + })(prng, shortseed, "global" in options ? options.global : this == math, options.state); + } + function ARC4(key) { + var t, keylen = key.length, me = this, i = 0, j = me.i = me.j = 0, s = me.S = []; + if (!keylen) { + key = [keylen++]; + } + while (i < width) { + s[i] = i++; + } + for (i = 0; i < width; i++) { + s[i] = s[j = mask & j + key[i % keylen] + (t = s[i])]; + s[j] = t; + } + (me.g = function(count2) { + var t2, r = 0, i2 = me.i, j2 = me.j, s2 = me.S; + while (count2--) { + t2 = s2[i2 = mask & i2 + 1]; + r = r * width + s2[mask & (s2[i2] = s2[j2 = mask & j2 + t2]) + (s2[j2] = t2)]; + } + me.i = i2; + me.j = j2; + return r; + })(width); + } + function copy(f, t) { + t.i = f.i; + t.j = f.j; + t.S = f.S.slice(); + return t; + } + ; + function flatten4(obj, depth) { + var result = [], typ = typeof obj, prop; + if (depth && typ == "object") { + for (prop in obj) { + try { + result.push(flatten4(obj[prop], depth - 1)); + } catch (e) { + } + } + } + return result.length ? result : typ == "string" ? obj : obj + "\0"; + } + function mixkey(seed, key) { + var stringseed = seed + "", smear, j = 0; + while (j < stringseed.length) { + key[mask & j] = mask & (smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++); + } + return tostring(key); + } + function autoseed() { + try { + var out; + if (nodecrypto && (out = nodecrypto.randomBytes)) { + out = out(width); + } else { + out = new Uint8Array(width); + (global2.crypto || global2.msCrypto).getRandomValues(out); + } + return tostring(out); + } catch (e) { + var browser2 = global2.navigator, plugins = browser2 && browser2.plugins; + return [+new Date(), global2, plugins, global2.screen, tostring(pool3)]; + } + } + function tostring(a) { + return String.fromCharCode.apply(0, a); + } + mixkey(math.random(), pool3); + if (typeof module2 == "object" && module2.exports) { + module2.exports = seedrandom5; + try { + nodecrypto = require_crypto(); + } catch (ex) { + } + } else if (typeof define == "function" && define.amd) { + define(function() { + return seedrandom5; + }); + } else { + math["seed" + rngname] = seedrandom5; + } + })(typeof self !== "undefined" ? self : exports, [], Math); +}); +var require_seedrandom6 = __commonJS2((exports, module2) => { + var alea5 = require_alea3(); + var xor128 = require_xor1283(); + var xorwow = require_xorwow3(); + var xorshift7 = require_xorshift73(); + var xor4096 = require_xor40963(); + var tychei = require_tychei3(); + var sr = require_seedrandom5(); + sr.alea = alea5; + sr.xor128 = xor128; + sr.xorwow = xorwow; + sr.xorshift7 = xorshift7; + sr.xor4096 = xor4096; + sr.tychei = tychei; + module2.exports = sr; +}); +var require_string_decoder = __commonJS2(() => { +}); +var version = "3.2.0"; +var version2 = "3.2.0"; +var version3 = "3.2.0"; +var version4 = "3.2.0"; +var version5 = "3.2.0"; +/** + * @license + * Copyright 2020 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var EPSILON_FLOAT32 = 1e-7; +var EPSILON_FLOAT16 = 1e-4; +var DataStorage = class { + constructor(backend22, dataMover) { + this.backend = backend22; + this.dataMover = dataMover; + this.data = new WeakMap(); + this.dataIdsCount = 0; + } + get(dataId) { + if (!this.data.has(dataId)) { + this.dataMover.moveData(this.backend, dataId); + } + return this.data.get(dataId); + } + set(dataId, value) { + this.dataIdsCount++; + this.data.set(dataId, value); + } + has(dataId) { + return this.data.has(dataId); + } + delete(dataId) { + this.dataIdsCount--; + return this.data.delete(dataId); + } + numDataIds() { + return this.dataIdsCount; + } +}; +var KernelBackend = class { + refCount(dataId) { + return notYetImplemented("refCount"); + } + incRef(dataId) { + return notYetImplemented("incRef"); + } + timerAvailable() { + return true; + } + time(f) { + return notYetImplemented("time"); + } + read(dataId) { + return notYetImplemented("read"); + } + readSync(dataId) { + return notYetImplemented("readSync"); + } + numDataIds() { + return notYetImplemented("numDataIds"); + } + disposeData(dataId, force) { + return notYetImplemented("disposeData"); + } + write(values, shape, dtype) { + return notYetImplemented("write"); + } + move(dataId, values, shape, dtype, refCount) { + return notYetImplemented("move"); + } + memory() { + return notYetImplemented("memory"); + } + floatPrecision() { + return notYetImplemented("floatPrecision"); + } + epsilon() { + return this.floatPrecision() === 32 ? EPSILON_FLOAT32 : EPSILON_FLOAT16; + } + dispose() { + return notYetImplemented("dispose"); + } +}; +function notYetImplemented(kernelName) { + throw new Error(`'${kernelName}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`); +} +/** + * @license + * Copyright 2020 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function shuffle(array2) { + let counter = array2.length; + let temp = 0; + let index = 0; + while (counter > 0) { + index = Math.random() * counter | 0; + counter--; + temp = array2[counter]; + array2[counter] = array2[index]; + array2[index] = temp; + } +} +function shuffleCombo(array2, array22) { + if (array2.length !== array22.length) { + throw new Error(`Array sizes must match to be shuffled together First array length was ${array2.length}Second array length was ${array22.length}`); + } + let counter = array2.length; + let temp, temp2; + let index = 0; + while (counter > 0) { + index = Math.random() * counter | 0; + counter--; + temp = array2[counter]; + temp2 = array22[counter]; + array2[counter] = array2[index]; + array22[counter] = array22[index]; + array2[index] = temp; + array22[index] = temp2; + } +} +function clamp(min6, x, max6) { + return Math.max(min6, Math.min(x, max6)); +} +function nearestLargerEven(val) { + return val % 2 === 0 ? val : val + 1; +} +function sum(arr) { + let sum6 = 0; + for (let i = 0; i < arr.length; i++) { + sum6 += arr[i]; + } + return sum6; +} +function randUniform(a, b) { + const r = Math.random(); + return b * r + (1 - r) * a; +} +function distSquared(a, b) { + let result = 0; + for (let i = 0; i < a.length; i++) { + const diff = Number(a[i]) - Number(b[i]); + result += diff * diff; + } + return result; +} +function assert(expr, msg) { + if (!expr) { + throw new Error(typeof msg === "string" ? msg : msg()); + } +} +function assertShapesMatch(shapeA, shapeB, errorMessagePrefix = "") { + assert(arraysEqual(shapeA, shapeB), () => errorMessagePrefix + ` Shapes ${shapeA} and ${shapeB} must match`); +} +function assertNonNull(a) { + assert(a != null, () => `The input to the tensor constructor must be a non-null value.`); +} +function flatten(arr, result = [], skipTypedArray = false) { + if (result == null) { + result = []; + } + if (Array.isArray(arr) || isTypedArray(arr) && !skipTypedArray) { + for (let i = 0; i < arr.length; ++i) { + flatten(arr[i], result, skipTypedArray); + } + } else { + result.push(arr); + } + return result; +} +function sizeFromShape(shape) { + if (shape.length === 0) { + return 1; + } + let size = shape[0]; + for (let i = 1; i < shape.length; i++) { + size *= shape[i]; + } + return size; +} +function isScalarShape(shape) { + return shape.length === 0; +} +function arraysEqual(n1, n2) { + if (n1 === n2) { + return true; + } + if (n1 == null || n2 == null) { + return false; + } + if (n1.length !== n2.length) { + return false; + } + for (let i = 0; i < n1.length; i++) { + if (n1[i] !== n2[i]) { + return false; + } + } + return true; +} +function isInt(a) { + return a % 1 === 0; +} +function tanh(x) { + if (Math.tanh != null) { + return Math.tanh(x); + } + if (x === Infinity) { + return 1; + } else if (x === -Infinity) { + return -1; + } else { + const e2x = Math.exp(2 * x); + return (e2x - 1) / (e2x + 1); + } +} +function sizeToSquarishShape(size) { + const width = Math.ceil(Math.sqrt(size)); + return [width, Math.ceil(size / width)]; +} +function createShuffledIndices(n) { + const shuffledIndices = new Uint32Array(n); + for (let i = 0; i < n; ++i) { + shuffledIndices[i] = i; + } + shuffle(shuffledIndices); + return shuffledIndices; +} +function rightPad(a, size) { + if (size <= a.length) { + return a; + } + return a + " ".repeat(size - a.length); +} +function repeatedTry(checkFn, delayFn = (counter) => 0, maxCounter) { + return new Promise((resolve, reject) => { + let tryCount = 0; + const tryFn = () => { + if (checkFn()) { + resolve(); + return; + } + tryCount++; + const nextBackoff = delayFn(tryCount); + if (maxCounter != null && tryCount >= maxCounter) { + reject(); + return; + } + setTimeout(tryFn, nextBackoff); + }; + tryFn(); + }); +} +function inferFromImplicitShape(shape, size) { + let shapeProd = 1; + let implicitIdx = -1; + for (let i = 0; i < shape.length; ++i) { + if (shape[i] >= 0) { + shapeProd *= shape[i]; + } else if (shape[i] === -1) { + if (implicitIdx !== -1) { + throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${implicitIdx} and dim ${i}`); + } + implicitIdx = i; + } else if (shape[i] < 0) { + throw Error(`Shapes can not be < 0. Found ${shape[i]} at dim ${i}`); + } + } + if (implicitIdx === -1) { + if (size > 0 && size !== shapeProd) { + throw Error(`Size(${size}) must match the product of shape ${shape}`); + } + return shape; + } + if (shapeProd === 0) { + throw Error(`Cannot infer the missing size in [${shape}] when there are 0 elements`); + } + if (size % shapeProd !== 0) { + throw Error(`The implicit shape can't be a fractional number. Got ${size} / ${shapeProd}`); + } + const newShape = shape.slice(); + newShape[implicitIdx] = size / shapeProd; + return newShape; +} +function parseAxisParam(axis, shape) { + const rank = shape.length; + axis = axis == null ? shape.map((s, i) => i) : [].concat(axis); + assert(axis.every((ax) => ax >= -rank && ax < rank), () => `All values in axis param must be in range [-${rank}, ${rank}) but got axis ${axis}`); + assert(axis.every((ax) => isInt(ax)), () => `All values in axis param must be integers but got axis ${axis}`); + return axis.map((a) => a < 0 ? rank + a : a); +} +function squeezeShape(shape, axis) { + const newShape = []; + const keptDims = []; + const isEmptyArray = axis != null && Array.isArray(axis) && axis.length === 0; + const axes = axis == null || isEmptyArray ? null : parseAxisParam(axis, shape).sort(); + let j = 0; + for (let i = 0; i < shape.length; ++i) { + if (axes != null) { + if (axes[j] === i && shape[i] !== 1) { + throw new Error(`Can't squeeze axis ${i} since its dim '${shape[i]}' is not 1`); + } + if ((axes[j] == null || axes[j] > i) && shape[i] === 1) { + newShape.push(shape[i]); + keptDims.push(i); + } + if (axes[j] <= i) { + j++; + } + } + if (shape[i] !== 1) { + newShape.push(shape[i]); + keptDims.push(i); + } + } + return {newShape, keptDims}; +} +function getTypedArrayFromDType(dtype, size) { + let values = null; + if (dtype == null || dtype === "float32") { + values = new Float32Array(size); + } else if (dtype === "int32") { + values = new Int32Array(size); + } else if (dtype === "bool") { + values = new Uint8Array(size); + } else { + throw new Error(`Unknown data type ${dtype}`); + } + return values; +} +function getArrayFromDType(dtype, size) { + let values = null; + if (dtype == null || dtype === "float32") { + values = new Float32Array(size); + } else if (dtype === "int32") { + values = new Int32Array(size); + } else if (dtype === "bool") { + values = new Uint8Array(size); + } else if (dtype === "string") { + values = new Array(size); + } else { + throw new Error(`Unknown data type ${dtype}`); + } + return values; +} +function checkConversionForErrors(vals, dtype) { + for (let i = 0; i < vals.length; i++) { + const num = vals[i]; + if (isNaN(num) || !isFinite(num)) { + throw Error(`A tensor of type ${dtype} being uploaded contains ${num}.`); + } + } +} +function isValidDtype(dtype) { + return dtype === "bool" || dtype === "complex64" || dtype === "float32" || dtype === "int32" || dtype === "string"; +} +function hasEncodingLoss(oldType, newType) { + if (newType === "complex64") { + return false; + } + if (newType === "float32" && oldType !== "complex64") { + return false; + } + if (newType === "int32" && oldType !== "float32" && oldType !== "complex64") { + return false; + } + if (newType === "bool" && oldType === "bool") { + return false; + } + return true; +} +function isTypedArray(a) { + return a instanceof Float32Array || a instanceof Int32Array || a instanceof Uint8Array; +} +function bytesPerElement(dtype) { + if (dtype === "float32" || dtype === "int32") { + return 4; + } else if (dtype === "complex64") { + return 8; + } else if (dtype === "bool") { + return 1; + } else { + throw new Error(`Unknown dtype ${dtype}`); + } +} +function bytesFromStringArray(arr) { + if (arr == null) { + return 0; + } + let bytes = 0; + arr.forEach((x) => bytes += x.length); + return bytes; +} +function isString(value) { + return typeof value === "string" || value instanceof String; +} +function isBoolean(value) { + return typeof value === "boolean"; +} +function isNumber(value) { + return typeof value === "number"; +} +function inferDtype(values) { + if (Array.isArray(values)) { + return inferDtype(values[0]); + } + if (values instanceof Float32Array) { + return "float32"; + } else if (values instanceof Int32Array || values instanceof Uint8Array) { + return "int32"; + } else if (isNumber(values)) { + return "float32"; + } else if (isString(values)) { + return "string"; + } else if (isBoolean(values)) { + return "bool"; + } + return "float32"; +} +function isFunction(f) { + return !!(f && f.constructor && f.call && f.apply); +} +function nearestDivisor(size, start) { + for (let i = start; i < size; ++i) { + if (size % i === 0) { + return i; + } + } + return size; +} +function computeStrides(shape) { + const rank = shape.length; + if (rank < 2) { + return []; + } + const strides = new Array(rank - 1); + strides[rank - 2] = shape[rank - 1]; + for (let i = rank - 3; i >= 0; --i) { + strides[i] = strides[i + 1] * shape[i + 1]; + } + return strides; +} +function createNestedArray(offset, shape, a) { + const ret = new Array(); + if (shape.length === 1) { + const d = shape[0]; + for (let i = 0; i < d; i++) { + ret[i] = a[offset + i]; + } + } else { + const d = shape[0]; + const rest = shape.slice(1); + const len = rest.reduce((acc, c) => acc * c); + for (let i = 0; i < d; i++) { + ret[i] = createNestedArray(offset + i * len, rest, a); + } + } + return ret; +} +function toNestedArray(shape, a) { + if (shape.length === 0) { + return a[0]; + } + const size = shape.reduce((acc, c) => acc * c); + if (size === 0) { + return []; + } + if (size !== a.length) { + throw new Error(`[${shape}] does not match the input size ${a.length}.`); + } + return createNestedArray(0, shape, a); +} +function makeOnesTypedArray(size, dtype) { + const array2 = makeZerosTypedArray(size, dtype); + for (let i = 0; i < array2.length; i++) { + array2[i] = 1; + } + return array2; +} +function makeZerosTypedArray(size, dtype) { + if (dtype == null || dtype === "float32" || dtype === "complex64") { + return new Float32Array(size); + } else if (dtype === "int32") { + return new Int32Array(size); + } else if (dtype === "bool") { + return new Uint8Array(size); + } else { + throw new Error(`Unknown data type ${dtype}`); + } +} +function makeZerosNestedTypedArray(shape, dtype) { + const size = shape.reduce((prev, curr) => prev * curr, 1); + if (dtype == null || dtype === "float32") { + return toNestedArray(shape, new Float32Array(size)); + } else if (dtype === "int32") { + return toNestedArray(shape, new Int32Array(size)); + } else if (dtype === "bool") { + return toNestedArray(shape, new Uint8Array(size)); + } else { + throw new Error(`Unknown data type ${dtype}`); + } +} +function assertNonNegativeIntegerDimensions(shape) { + shape.forEach((dimSize) => { + assert(Number.isInteger(dimSize) && dimSize >= 0, () => `Tensor must have a shape comprised of positive integers but got shape [${shape}].`); + }); +} +function locToIndex(locs, rank, strides) { + if (rank === 0) { + return 0; + } else if (rank === 1) { + return locs[0]; + } + let index = locs[locs.length - 1]; + for (let i = 0; i < locs.length - 1; ++i) { + index += strides[i] * locs[i]; + } + return index; +} +function indexToLoc(index, rank, strides) { + if (rank === 0) { + return []; + } else if (rank === 1) { + return [index]; + } + const locs = new Array(rank); + for (let i = 0; i < locs.length - 1; ++i) { + locs[i] = Math.floor(index / strides[i]); + index -= locs[i] * strides[i]; + } + locs[locs.length - 1] = index; + return locs; +} +function isPromise(object) { + return object && object.then && typeof object.then === "function"; +} +/** + * @license + * Copyright 2017 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var TENSORFLOWJS_FLAGS_PREFIX = "tfjsflags"; +var Environment = class { + constructor(global2) { + this.global = global2; + this.flags = {}; + this.flagRegistry = {}; + this.urlFlags = {}; + this.populateURLFlags(); + } + setPlatform(platformName, platform) { + if (this.platform != null) { + console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${platform}.`); + } + this.platformName = platformName; + this.platform = platform; + } + registerFlag(flagName, evaluationFn, setHook) { + this.flagRegistry[flagName] = {evaluationFn, setHook}; + if (this.urlFlags[flagName] != null) { + const flagValue = this.urlFlags[flagName]; + console.warn(`Setting feature override from URL ${flagName}: ${flagValue}.`); + this.set(flagName, flagValue); + } + } + async getAsync(flagName) { + if (flagName in this.flags) { + return this.flags[flagName]; + } + this.flags[flagName] = await this.evaluateFlag(flagName); + return this.flags[flagName]; + } + get(flagName) { + if (flagName in this.flags) { + return this.flags[flagName]; + } + const flagValue = this.evaluateFlag(flagName); + if (isPromise(flagValue)) { + throw new Error(`Flag ${flagName} cannot be synchronously evaluated. Please use getAsync() instead.`); + } + this.flags[flagName] = flagValue; + return this.flags[flagName]; + } + getNumber(flagName) { + return this.get(flagName); + } + getBool(flagName) { + return this.get(flagName); + } + getFlags() { + return this.flags; + } + get features() { + return this.flags; + } + set(flagName, value) { + if (this.flagRegistry[flagName] == null) { + throw new Error(`Cannot set flag ${flagName} as it has not been registered.`); + } + this.flags[flagName] = value; + if (this.flagRegistry[flagName].setHook != null) { + this.flagRegistry[flagName].setHook(value); + } + } + evaluateFlag(flagName) { + if (this.flagRegistry[flagName] == null) { + throw new Error(`Cannot evaluate flag '${flagName}': no evaluation function found.`); + } + return this.flagRegistry[flagName].evaluationFn(); + } + setFlags(flags) { + this.flags = Object.assign({}, flags); + } + reset() { + this.flags = {}; + this.urlFlags = {}; + this.populateURLFlags(); + } + populateURLFlags() { + if (typeof this.global === "undefined" || typeof this.global.location === "undefined" || typeof this.global.location.search === "undefined") { + return; + } + const urlParams = getQueryParams(this.global.location.search); + if (TENSORFLOWJS_FLAGS_PREFIX in urlParams) { + const keyValues = urlParams[TENSORFLOWJS_FLAGS_PREFIX].split(","); + keyValues.forEach((keyValue) => { + const [key, value] = keyValue.split(":"); + this.urlFlags[key] = parseValue(key, value); + }); + } + } +}; +function getQueryParams(queryString) { + const params = {}; + queryString.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g, (s, ...t) => { + decodeParam(params, t[0], t[1]); + return t.join("="); + }); + return params; +} +function decodeParam(params, name2, value) { + params[decodeURIComponent(name2)] = decodeURIComponent(value || ""); +} +function parseValue(flagName, value) { + value = value.toLowerCase(); + if (value === "true" || value === "false") { + return value === "true"; + } else if (`${+value}` === value) { + return +value; + } + throw new Error(`Could not parse value flag value ${value} for flag ${flagName}.`); +} +function env() { + return ENV; +} +var ENV = null; +function setEnvironmentGlobal(environment) { + ENV = environment; +} +/** + * @license + * Copyright 2020 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var globalNameSpace; +function getGlobalNamespace() { + if (globalNameSpace == null) { + let ns; + if (typeof window !== "undefined") { + ns = window; + } else if (typeof global !== "undefined") { + ns = global; + } else if (typeof process !== "undefined") { + ns = process; + } else if (typeof self !== "undefined") { + ns = self; + } else { + throw new Error("Could not find a global object"); + } + globalNameSpace = ns; + } + return globalNameSpace; +} +function getGlobalMap() { + const ns = getGlobalNamespace(); + if (ns._tfGlobals == null) { + ns._tfGlobals = new Map(); + } + return ns._tfGlobals; +} +function getGlobal(key, init2) { + const globalMap = getGlobalMap(); + if (globalMap.has(key)) { + return globalMap.get(key); + } else { + const singleton = init2(); + globalMap.set(key, singleton); + return globalMap.get(key); + } +} +var Abs = "Abs"; +var Acos = "Acos"; +var Acosh = "Acosh"; +var Add = "Add"; +var AddN = "AddN"; +var All = "All"; +var Any = "Any"; +var ArgMax = "ArgMax"; +var ArgMin = "ArgMin"; +var Asin = "Asin"; +var Asinh = "Asinh"; +var Atan = "Atan"; +var Atanh = "Atanh"; +var Atan2 = "Atan2"; +var AvgPool = "AvgPool"; +var AvgPoolGrad = "AvgPoolGrad"; +var AvgPool3D = "AvgPool3D"; +var AvgPool3DGrad = "AvgPool3DGrad"; +var BatchMatMul = "BatchMatMul"; +var BatchToSpaceND = "BatchToSpaceND"; +var Bincount = "Bincount"; +var BroadcastTo = "BroadcastTo"; +var Cast = "Cast"; +var Ceil = "Ceil"; +var ClipByValue = "ClipByValue"; +var Complex = "Complex"; +var ComplexAbs = "ComplexAbs"; +var Concat = "Concat"; +var Conv2D = "Conv2D"; +var Conv2DBackpropFilter = "Conv2DBackpropFilter"; +var Conv2DBackpropInput = "Conv2DBackpropInput"; +var Conv3D = "Conv3D"; +var Conv3DBackpropFilterV2 = "Conv3DBackpropFilterV2"; +var Conv3DBackpropInputV2 = "Conv3DBackpropInputV2"; +var Cos = "Cos"; +var Cosh = "Cosh"; +var Cumsum = "Cumsum"; +var CropAndResize = "CropAndResize"; +var DenseBincount = "DenseBincount"; +var DepthToSpace = "DepthToSpace"; +var DepthwiseConv2dNative = "DepthwiseConv2dNative"; +var DepthwiseConv2dNativeBackpropFilter = "DepthwiseConv2dNativeBackpropFilter"; +var DepthwiseConv2dNativeBackpropInput = "DepthwiseConv2dNativeBackpropInput"; +var Diag = "Diag"; +var Dilation2D = "Dilation2D"; +var Dilation2DBackpropInput = "Dilation2DBackpropInput"; +var Dilation2DBackpropFilter = "Dilation2DBackpropFilter"; +var RealDiv = "RealDiv"; +var Elu = "Elu"; +var EluGrad = "EluGrad"; +var Erf = "Erf"; +var Equal = "Equal"; +var Exp = "Exp"; +var ExpandDims = "ExpandDims"; +var Expm1 = "Expm1"; +var FFT = "FFT"; +var Fill = "Fill"; +var FlipLeftRight = "FlipLeftRight"; +var Floor = "Floor"; +var FloorDiv = "FloorDiv"; +var FusedBatchNorm = "FusedBatchNorm"; +var GatherV2 = "GatherV2"; +var GatherNd = "GatherNd"; +var Greater = "Greater"; +var GreaterEqual = "GreaterEqual"; +var Identity = "Identity"; +var IFFT = "IFFT"; +var Imag = "Imag"; +var IsFinite = "IsFinite"; +var IsInf = "IsInf"; +var IsNan = "IsNan"; +var LeakyRelu = "LeakyRelu"; +var Less = "Less"; +var LessEqual = "LessEqual"; +var LinSpace = "LinSpace"; +var Log = "Log"; +var Log1p = "Log1p"; +var LogicalAnd = "LogicalAnd"; +var LogicalNot = "LogicalNot"; +var LogicalOr = "LogicalOr"; +var LogSoftmax = "LogSoftmax"; +var LRN = "LRN"; +var LRNGrad = "LRNGrad"; +var Max = "Max"; +var Maximum = "Maximum"; +var MaxPool = "MaxPool"; +var MaxPoolGrad = "MaxPoolGrad"; +var MaxPool3D = "MaxPool3D"; +var MaxPool3DGrad = "MaxPool3DGrad"; +var MaxPoolWithArgmax = "MaxPoolWithArgmax"; +var Mean = "Mean"; +var Min = "Min"; +var Minimum = "Minimum"; +var MirrorPad = "MirrorPad"; +var Mod = "Mod"; +var Multinomial = "Multinomial"; +var Multiply = "Multiply"; +var Neg = "Neg"; +var NotEqual = "NotEqual"; +var NonMaxSuppressionV3 = "NonMaxSuppressionV3"; +var NonMaxSuppressionV4 = "NonMaxSuppressionV4"; +var NonMaxSuppressionV5 = "NonMaxSuppressionV5"; +var OnesLike = "OnesLike"; +var OneHot = "OneHot"; +var Pack = "Pack"; +var PadV2 = "PadV2"; +var Pool = "Pool"; +var Pow = "Pow"; +var Prelu = "Prelu"; +var Prod = "Prod"; +var Range = "Range"; +var Real = "Real"; +var Reciprocal = "Reciprocal"; +var Relu = "Relu"; +var Reshape = "Reshape"; +var ResizeNearestNeighbor = "ResizeNearestNeighbor"; +var ResizeNearestNeighborGrad = "ResizeNearestNeighborGrad"; +var ResizeBilinear = "ResizeBilinear"; +var ResizeBilinearGrad = "ResizeBilinearGrad"; +var Relu6 = "Relu6"; +var Reverse = "Reverse"; +var Round = "Round"; +var Rsqrt = "Rsqrt"; +var ScatterNd = "ScatterNd"; +var Select = "Select"; +var Selu = "Selu"; +var Slice = "Slice"; +var Sin = "Sin"; +var Sinh = "Sinh"; +var Sign = "Sign"; +var Sigmoid = "Sigmoid"; +var Softplus = "Softplus"; +var Sqrt = "Sqrt"; +var Sum = "Sum"; +var SpaceToBatchND = "SpaceToBatchND"; +var SplitV = "SplitV"; +var Softmax = "Softmax"; +var SquaredDifference = "SquaredDifference"; +var Square = "Square"; +var Sub = "Sub"; +var SparseToDense = "SparseToDense"; +var StridedSlice = "StridedSlice"; +var Tan = "Tan"; +var Tanh = "Tanh"; +var Tile = "Tile"; +var TopK = "TopK"; +var Transpose = "Transpose"; +var Unique = "Unique"; +var Unpack = "Unpack"; +var UnsortedSegmentSum = "UnsortedSegmentSum"; +var ZerosLike = "ZerosLike"; +var Step = "Step"; +var FromPixels = "FromPixels"; +var RotateWithOffset = "RotateWithOffset"; +var _FusedMatMul = "_FusedMatMul"; +var FusedConv2D = "FusedConv2D"; +var FusedDepthwiseConv2D = "FusedDepthwiseConv2D"; +/** + * @license + * Copyright 2019 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var kernelRegistry = getGlobal("kernelRegistry", () => new Map()); +var gradRegistry = getGlobal("gradRegistry", () => new Map()); +function getKernel(kernelName, backendName) { + const key = makeKey(kernelName, backendName); + return kernelRegistry.get(key); +} +function getGradient(kernelName) { + return gradRegistry.get(kernelName); +} +function getKernelsForBackend(backendName) { + const it = kernelRegistry.entries(); + const result = []; + while (true) { + const {done, value} = it.next(); + if (done) { + break; + } + const [key, config3] = value; + const [backend22] = key.split("_"); + if (backend22 === backendName) { + result.push(config3); + } + } + return result; +} +function registerKernel(config3) { + const {kernelName, backendName} = config3; + const key = makeKey(kernelName, backendName); + if (kernelRegistry.has(key)) { + console.warn(`The kernel '${kernelName}' for backend '${backendName}' is already registered`); + } + kernelRegistry.set(key, config3); +} +function registerGradient(config3) { + const {kernelName} = config3; + if (gradRegistry.has(kernelName)) { + if (env().getBool("DEBUG")) { + console.warn(`Overriding the gradient for '${kernelName}'`); + } + } + gradRegistry.set(kernelName, config3); +} +function unregisterKernel(kernelName, backendName) { + const key = makeKey(kernelName, backendName); + if (!kernelRegistry.has(key)) { + throw new Error(`The kernel '${kernelName}' for backend '${backendName}' is not registered`); + } + kernelRegistry.delete(key); +} +function unregisterGradient(kernelName) { + if (!gradRegistry.has(kernelName)) { + throw new Error(`The gradient '${kernelName}' for backend is not registered`); + } + gradRegistry.delete(kernelName); +} +function copyRegisteredKernels(registeredBackendName, newBackendName) { + const kernels = getKernelsForBackend(registeredBackendName); + kernels.forEach((kernelConfig) => { + const newKernelConfig = Object.assign({}, kernelConfig, {backendName: newBackendName}); + registerKernel(newKernelConfig); + }); +} +function makeKey(kernelName, backendName) { + return `${backendName}_${kernelName}`; +} +var util_exports = {}; +__export2(util_exports, { + arraysEqual: () => arraysEqual, + assert: () => assert, + assertNonNegativeIntegerDimensions: () => assertNonNegativeIntegerDimensions, + assertNonNull: () => assertNonNull, + assertShapesMatch: () => assertShapesMatch, + bytesFromStringArray: () => bytesFromStringArray, + bytesPerElement: () => bytesPerElement, + checkConversionForErrors: () => checkConversionForErrors, + clamp: () => clamp, + computeStrides: () => computeStrides, + createScalarValue: () => createScalarValue, + createShuffledIndices: () => createShuffledIndices, + decodeString: () => decodeString, + distSquared: () => distSquared, + encodeString: () => encodeString, + fetch: () => fetch2, + flatten: () => flatten, + getArrayFromDType: () => getArrayFromDType, + getTypedArrayFromDType: () => getTypedArrayFromDType, + hasEncodingLoss: () => hasEncodingLoss, + indexToLoc: () => indexToLoc, + inferDtype: () => inferDtype, + inferFromImplicitShape: () => inferFromImplicitShape, + isBoolean: () => isBoolean, + isFunction: () => isFunction, + isInt: () => isInt, + isNumber: () => isNumber, + isPromise: () => isPromise, + isScalarShape: () => isScalarShape, + isString: () => isString, + isTypedArray: () => isTypedArray, + isValidDtype: () => isValidDtype, + locToIndex: () => locToIndex, + makeOnesTypedArray: () => makeOnesTypedArray, + makeZerosNestedTypedArray: () => makeZerosNestedTypedArray, + makeZerosTypedArray: () => makeZerosTypedArray, + nearestDivisor: () => nearestDivisor, + nearestLargerEven: () => nearestLargerEven, + now: () => now, + parseAxisParam: () => parseAxisParam, + randUniform: () => randUniform, + repeatedTry: () => repeatedTry, + rightPad: () => rightPad, + shuffle: () => shuffle, + shuffleCombo: () => shuffleCombo, + sizeFromShape: () => sizeFromShape, + sizeToSquarishShape: () => sizeToSquarishShape, + squeezeShape: () => squeezeShape, + sum: () => sum, + tanh: () => tanh, + toNestedArray: () => toNestedArray, + toTypedArray: () => toTypedArray +}); +/** + * @license + * Copyright 2017 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function createScalarValue(value, dtype) { + if (dtype === "string") { + return encodeString(value); + } + return toTypedArray([value], dtype); +} +function noConversionNeeded(a, dtype) { + return a instanceof Float32Array && dtype === "float32" || a instanceof Int32Array && dtype === "int32" || a instanceof Uint8Array && dtype === "bool"; +} +function toTypedArray(a, dtype) { + if (dtype === "string") { + throw new Error("Cannot convert a string[] to a TypedArray"); + } + if (Array.isArray(a)) { + a = flatten(a); + } + if (env().getBool("DEBUG")) { + checkConversionForErrors(a, dtype); + } + if (noConversionNeeded(a, dtype)) { + return a; + } + if (dtype == null || dtype === "float32" || dtype === "complex64") { + return new Float32Array(a); + } else if (dtype === "int32") { + return new Int32Array(a); + } else if (dtype === "bool") { + const bool = new Uint8Array(a.length); + for (let i = 0; i < bool.length; ++i) { + if (Math.round(a[i]) !== 0) { + bool[i] = 1; + } + } + return bool; + } else { + throw new Error(`Unknown data type ${dtype}`); + } +} +function now() { + return env().platform.now(); +} +function fetch2(path, requestInits) { + return env().platform.fetch(path, requestInits); +} +function encodeString(s, encoding = "utf-8") { + encoding = encoding || "utf-8"; + return env().platform.encode(s, encoding); +} +function decodeString(bytes, encoding = "utf-8") { + encoding = encoding || "utf-8"; + return env().platform.decode(bytes, encoding); +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var Profiler = class { + constructor(backendTimer, logger) { + this.backendTimer = backendTimer; + this.logger = logger; + if (logger == null) { + this.logger = new Logger(); + } + } + profileKernel(kernelName, inputs, f) { + let outputs; + const holdResultWrapperFn = () => { + outputs = f(); + }; + let timer; + const start = now(); + if (this.backendTimer.timerAvailable()) { + timer = this.backendTimer.time(holdResultWrapperFn); + } else { + holdResultWrapperFn(); + for (const output of outputs) { + output.dataSync(); + } + timer = Promise.resolve({kernelMs: now() - start}); + } + if (env().getBool("CHECK_COMPUTATION_FOR_ERRORS")) { + for (let i = 0; i < outputs.length; i++) { + const output = outputs[i]; + output.data().then((tensorVals) => { + checkComputationForErrors(tensorVals, output.dtype, kernelName); + }); + } + } + const kernelProfile = { + kernelName, + outputs, + inputs, + timeMs: timer.then((timing) => timing.kernelMs), + extraInfo: timer.then((timing) => timing.getExtraProfileInfo != null ? timing.getExtraProfileInfo() : "") + }; + return kernelProfile; + } + logKernelProfile(kernelProfile) { + const {kernelName, outputs, timeMs, inputs, extraInfo} = kernelProfile; + outputs.forEach((result) => { + Promise.all([result.data(), timeMs, extraInfo]).then((valueContainer) => { + this.logger.logKernelProfile(kernelName, result, valueContainer[0], valueContainer[1], inputs, valueContainer[2]); + }); + }); + } +}; +function checkComputationForErrors(vals, dtype, kernelName) { + if (dtype !== "float32") { + return false; + } + for (let i = 0; i < vals.length; i++) { + const num = vals[i]; + if (isNaN(num) || !isFinite(num)) { + console.warn(`Found ${num} in the result of '${kernelName}'`); + return true; + } + } + return false; +} +var Logger = class { + logKernelProfile(name2, result, vals, timeMs, inputs, extraInfo) { + const time2 = typeof timeMs === "number" ? rightPad(`${timeMs}ms`, 9) : timeMs["error"]; + const paddedName = rightPad(name2, 25); + const rank = result.rank; + const size = result.size; + const shape = rightPad(result.shape.toString(), 14); + let inputShapesDescription = ""; + for (const name22 in inputs) { + const input2 = inputs[name22]; + if (input2 != null) { + const inputShape = input2.shape || result.shape; + const inputRank = inputShape.length; + inputShapesDescription += `${name22}: ${inputRank}D ${inputRank > 0 ? inputShape : ""} `; + } + } + console.log(`%c${paddedName} %c${time2} %c${rank}D ${shape} %c${size} %c${inputShapesDescription} %c${extraInfo}`, "font-weight:bold", "color:red", "color:blue", "color: orange", "color: green", "color: steelblue"); + } +}; +/** + * @license + * Copyright 2017 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function getFilteredNodesXToY(tape, xs, y) { + const tensorsFromX = {}; + const nodesFromX = {}; + for (let i = 0; i < xs.length; i++) { + tensorsFromX[xs[i].id] = true; + } + for (let i = 0; i < tape.length; i++) { + const node = tape[i]; + const nodeInputs = node.inputs; + for (const inputName in nodeInputs) { + const input2 = nodeInputs[inputName]; + let anyInputFromX = false; + for (let j = 0; j < xs.length; j++) { + if (tensorsFromX[input2.id]) { + node.outputs.forEach((output) => tensorsFromX[output.id] = true); + anyInputFromX = true; + nodesFromX[node.id] = true; + break; + } + } + if (anyInputFromX) { + break; + } + } + } + const tensorsLeadToY = {}; + tensorsLeadToY[y.id] = true; + const nodesToY = {}; + for (let i = tape.length - 1; i >= 0; i--) { + const node = tape[i]; + const nodeInputs = node.inputs; + for (let j = 0; j < node.outputs.length; j++) { + if (tensorsLeadToY[node.outputs[j].id]) { + for (const inputName in nodeInputs) { + tensorsLeadToY[nodeInputs[inputName].id] = true; + nodesToY[node.id] = true; + } + break; + } + } + } + const filteredTape = []; + for (let i = 0; i < tape.length; i++) { + const node = tape[i]; + if (nodesFromX[node.id] && nodesToY[node.id]) { + const prunedInputs = {}; + for (const inputName in node.inputs) { + const nodeInput = node.inputs[inputName]; + if (tensorsFromX[nodeInput.id]) { + prunedInputs[inputName] = nodeInput; + } + } + const prunedNode = Object.assign({}, node); + prunedNode.inputs = prunedInputs; + prunedNode.outputs = node.outputs; + filteredTape.push(prunedNode); + } + } + return filteredTape; +} +function backpropagateGradients(tensorAccumulatedGradientMap, filteredTape, tidy2, add5) { + for (let i = filteredTape.length - 1; i >= 0; i--) { + const node = filteredTape[i]; + const dys = []; + node.outputs.forEach((o) => { + const gradTensor = tensorAccumulatedGradientMap[o.id]; + if (gradTensor != null) { + dys.push(gradTensor); + } else { + dys.push(null); + } + }); + if (node.gradient == null) { + throw new Error(`Cannot compute gradient: gradient function not found for ${node.kernelName}.`); + } + const inputGradients = node.gradient(dys); + for (const inputName in node.inputs) { + if (!(inputName in inputGradients)) { + throw new Error(`Cannot backprop through input ${inputName}. Available gradients found: ${Object.keys(inputGradients)}.`); + } + const dx = tidy2(() => inputGradients[inputName]()); + if (dx.dtype !== "float32") { + throw new Error(`Error in gradient for op ${node.kernelName}. The gradient of input ${inputName} must have 'float32' dtype, but has '${dx.dtype}'`); + } + const x = node.inputs[inputName]; + if (!arraysEqual(dx.shape, x.shape)) { + throw new Error(`Error in gradient for op ${node.kernelName}. The gradient of input '${inputName}' has shape '${dx.shape}', which does not match the shape of the input '${x.shape}'`); + } + if (tensorAccumulatedGradientMap[x.id] == null) { + tensorAccumulatedGradientMap[x.id] = dx; + } else { + const curGradient = tensorAccumulatedGradientMap[x.id]; + tensorAccumulatedGradientMap[x.id] = add5(curGradient, dx); + curGradient.dispose(); + } + } + } +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var FORMAT_LIMIT_NUM_VALS = 20; +var FORMAT_NUM_FIRST_LAST_VALS = 3; +var FORMAT_NUM_SIG_DIGITS = 7; +function tensorToString(vals, shape, dtype, verbose) { + const strides = computeStrides(shape); + const padPerCol = computeMaxSizePerColumn(vals, shape, dtype, strides); + const rank = shape.length; + const valsLines = subTensorToString(vals, shape, dtype, strides, padPerCol); + const lines = ["Tensor"]; + if (verbose) { + lines.push(` dtype: ${dtype}`); + lines.push(` rank: ${rank}`); + lines.push(` shape: [${shape}]`); + lines.push(` values:`); + } + lines.push(valsLines.map((l) => " " + l).join("\n")); + return lines.join("\n"); +} +function computeMaxSizePerColumn(vals, shape, dtype, strides) { + const n = sizeFromShape(shape); + const numCols = strides[strides.length - 1]; + const padPerCol = new Array(numCols).fill(0); + const rank = shape.length; + const valuesOrTuples = dtype === "complex64" ? createComplexTuples(vals) : vals; + if (rank > 1) { + for (let row = 0; row < n / numCols; row++) { + const offset = row * numCols; + for (let j = 0; j < numCols; j++) { + padPerCol[j] = Math.max(padPerCol[j], valToString(valuesOrTuples[offset + j], 0, dtype).length); + } + } + } + return padPerCol; +} +function valToString(val, pad3, dtype) { + let valStr; + if (Array.isArray(val)) { + valStr = `${parseFloat(val[0].toFixed(FORMAT_NUM_SIG_DIGITS))} + ${parseFloat(val[1].toFixed(FORMAT_NUM_SIG_DIGITS))}j`; + } else if (isString(val)) { + valStr = `'${val}'`; + } else if (dtype === "bool") { + valStr = boolNumToString(val); + } else { + valStr = parseFloat(val.toFixed(FORMAT_NUM_SIG_DIGITS)).toString(); + } + return rightPad(valStr, pad3); +} +function boolNumToString(v) { + return v === 0 ? "false" : "true"; +} +function subTensorToString(vals, shape, dtype, strides, padPerCol, isLast = true) { + const storagePerElement = dtype === "complex64" ? 2 : 1; + const size = shape[0]; + const rank = shape.length; + if (rank === 0) { + if (dtype === "complex64") { + const complexTuple = createComplexTuples(vals); + return [valToString(complexTuple[0], 0, dtype)]; + } + if (dtype === "bool") { + return [boolNumToString(vals[0])]; + } + return [vals[0].toString()]; + } + if (rank === 1) { + if (size > FORMAT_LIMIT_NUM_VALS) { + const firstValsSize = FORMAT_NUM_FIRST_LAST_VALS * storagePerElement; + let firstVals = Array.from(vals.slice(0, firstValsSize)); + let lastVals = Array.from(vals.slice((size - FORMAT_NUM_FIRST_LAST_VALS) * storagePerElement, size * storagePerElement)); + if (dtype === "complex64") { + firstVals = createComplexTuples(firstVals); + lastVals = createComplexTuples(lastVals); + } + return [ + "[" + firstVals.map((x, i) => valToString(x, padPerCol[i], dtype)).join(", ") + ", ..., " + lastVals.map((x, i) => valToString(x, padPerCol[size - FORMAT_NUM_FIRST_LAST_VALS + i], dtype)).join(", ") + "]" + ]; + } + const displayVals = dtype === "complex64" ? createComplexTuples(vals) : Array.from(vals); + return [ + "[" + displayVals.map((x, i) => valToString(x, padPerCol[i], dtype)).join(", ") + "]" + ]; + } + const subshape = shape.slice(1); + const substrides = strides.slice(1); + const stride = strides[0] * storagePerElement; + const lines = []; + if (size > FORMAT_LIMIT_NUM_VALS) { + for (let i = 0; i < FORMAT_NUM_FIRST_LAST_VALS; i++) { + const start = i * stride; + const end = start + stride; + lines.push(...subTensorToString(vals.slice(start, end), subshape, dtype, substrides, padPerCol, false)); + } + lines.push("..."); + for (let i = size - FORMAT_NUM_FIRST_LAST_VALS; i < size; i++) { + const start = i * stride; + const end = start + stride; + lines.push(...subTensorToString(vals.slice(start, end), subshape, dtype, substrides, padPerCol, i === size - 1)); + } + } else { + for (let i = 0; i < size; i++) { + const start = i * stride; + const end = start + stride; + lines.push(...subTensorToString(vals.slice(start, end), subshape, dtype, substrides, padPerCol, i === size - 1)); + } + } + const sep = rank === 2 ? "," : ""; + lines[0] = "[" + lines[0] + sep; + for (let i = 1; i < lines.length - 1; i++) { + lines[i] = " " + lines[i] + sep; + } + let newLineSep = ",\n"; + for (let i = 2; i < rank; i++) { + newLineSep += "\n"; + } + lines[lines.length - 1] = " " + lines[lines.length - 1] + "]" + (isLast ? "" : newLineSep); + return lines; +} +function createComplexTuples(vals) { + const complexTuples = []; + for (let i = 0; i < vals.length; i += 2) { + complexTuples.push([vals[i], vals[i + 1]]); + } + return complexTuples; +} +/** + * @license + * Copyright 2017 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var TensorBuffer = class { + constructor(shape, dtype, values) { + this.dtype = dtype; + this.shape = shape.slice(); + this.size = sizeFromShape(shape); + if (values != null) { + const n = values.length; + assert(n === this.size, () => `Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`); + } + if (dtype === "complex64") { + throw new Error(`complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).`); + } + this.values = values || getArrayFromDType(dtype, this.size); + this.strides = computeStrides(shape); + } + set(value, ...locs) { + if (locs.length === 0) { + locs = [0]; + } + assert(locs.length === this.rank, () => `The number of provided coordinates (${locs.length}) must match the rank (${this.rank})`); + const index = this.locToIndex(locs); + this.values[index] = value; + } + get(...locs) { + if (locs.length === 0) { + locs = [0]; + } + let i = 0; + for (const loc of locs) { + if (loc < 0 || loc >= this.shape[i]) { + const msg = `Requested out of range element at ${locs}. Buffer shape=${this.shape}`; + throw new Error(msg); + } + i++; + } + let index = locs[locs.length - 1]; + for (let i2 = 0; i2 < locs.length - 1; ++i2) { + index += this.strides[i2] * locs[i2]; + } + return this.values[index]; + } + locToIndex(locs) { + if (this.rank === 0) { + return 0; + } else if (this.rank === 1) { + return locs[0]; + } + let index = locs[locs.length - 1]; + for (let i = 0; i < locs.length - 1; ++i) { + index += this.strides[i] * locs[i]; + } + return index; + } + indexToLoc(index) { + if (this.rank === 0) { + return []; + } else if (this.rank === 1) { + return [index]; + } + const locs = new Array(this.shape.length); + for (let i = 0; i < locs.length - 1; ++i) { + locs[i] = Math.floor(index / this.strides[i]); + index -= locs[i] * this.strides[i]; + } + locs[locs.length - 1] = index; + return locs; + } + get rank() { + return this.shape.length; + } + toTensor() { + return trackerFn().makeTensor(this.values, this.shape, this.dtype); + } +}; +var trackerFn = null; +var opHandler = null; +var deprecationWarningFn = null; +function setTensorTracker(fn) { + trackerFn = fn; +} +function setOpHandler(handler) { + opHandler = handler; +} +function setDeprecationWarningFn(fn) { + deprecationWarningFn = fn; +} +var Tensor = class { + constructor(shape, dtype, dataId, id) { + this.kept = false; + this.isDisposedInternal = false; + this.shape = shape.slice(); + this.dtype = dtype || "float32"; + this.size = sizeFromShape(shape); + this.strides = computeStrides(shape); + this.dataId = dataId; + this.id = id; + this.rankType = this.rank < 5 ? this.rank.toString() : "higher"; + } + get rank() { + return this.shape.length; + } + async buffer() { + const vals = await this.data(); + return opHandler.buffer(this.shape, this.dtype, vals); + } + bufferSync() { + return opHandler.buffer(this.shape, this.dtype, this.dataSync()); + } + async array() { + const vals = await this.data(); + return toNestedArray(this.shape, vals); + } + arraySync() { + return toNestedArray(this.shape, this.dataSync()); + } + async data() { + this.throwIfDisposed(); + const data2 = trackerFn().read(this.dataId); + if (this.dtype === "string") { + const bytes = await data2; + try { + return bytes.map((b) => decodeString(b)); + } catch (_a) { + throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes()."); + } + } + return data2; + } + dataSync() { + this.throwIfDisposed(); + const data2 = trackerFn().readSync(this.dataId); + if (this.dtype === "string") { + try { + return data2.map((b) => decodeString(b)); + } catch (_a) { + throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes()."); + } + } + return data2; + } + async bytes() { + this.throwIfDisposed(); + const data2 = await trackerFn().read(this.dataId); + if (this.dtype === "string") { + return data2; + } else { + return new Uint8Array(data2.buffer); + } + } + dispose() { + if (this.isDisposed) { + return; + } + trackerFn().disposeTensor(this); + this.isDisposedInternal = true; + } + get isDisposed() { + return this.isDisposedInternal; + } + throwIfDisposed() { + if (this.isDisposed) { + throw new Error(`Tensor is disposed.`); + } + } + print(verbose = false) { + return opHandler.print(this, verbose); + } + clone() { + this.throwIfDisposed(); + return opHandler.clone(this); + } + toString(verbose = false) { + const vals = this.dataSync(); + return tensorToString(vals, this.shape, this.dtype, verbose); + } + cast(dtype) { + this.throwIfDisposed(); + return opHandler.cast(this, dtype); + } + variable(trainable = true, name2, dtype) { + this.throwIfDisposed(); + return trackerFn().makeVariable(this, trainable, name2, dtype); + } +}; +Object.defineProperty(Tensor, Symbol.hasInstance, { + value: (instance) => { + return !!instance && instance.data != null && instance.dataSync != null && instance.throwIfDisposed != null; + } +}); +function getGlobalTensorClass() { + return getGlobal("Tensor", () => { + return Tensor; + }); +} +getGlobalTensorClass(); +var Variable = class extends Tensor { + constructor(initialValue, trainable, name2, tensorId) { + super(initialValue.shape, initialValue.dtype, initialValue.dataId, tensorId); + this.trainable = trainable; + this.name = name2; + } + assign(newValue) { + if (newValue.dtype !== this.dtype) { + throw new Error(`dtype of the new value (${newValue.dtype}) and previous value (${this.dtype}) must match`); + } + if (!arraysEqual(newValue.shape, this.shape)) { + throw new Error(`shape of the new value (${newValue.shape}) and previous value (${this.shape}) must match`); + } + trackerFn().disposeTensor(this); + this.dataId = newValue.dataId; + trackerFn().incRef(this, null); + } + dispose() { + trackerFn().disposeVariable(this); + this.isDisposedInternal = true; + } +}; +Object.defineProperty(Variable, Symbol.hasInstance, { + value: (instance) => { + return instance instanceof Tensor && instance.assign != null && instance.assign instanceof Function; + } +}); +var tensor_util_exports = {}; +__export2(tensor_util_exports, { + assertTypesMatch: () => assertTypesMatch, + getTensorsInContainer: () => getTensorsInContainer, + isTensorInList: () => isTensorInList, + makeTypesMatch: () => makeTypesMatch +}); +/** + * @license + * Copyright 2017 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var Rank; +(function(Rank2) { + Rank2["R0"] = "R0"; + Rank2["R1"] = "R1"; + Rank2["R2"] = "R2"; + Rank2["R3"] = "R3"; + Rank2["R4"] = "R4"; + Rank2["R5"] = "R5"; + Rank2["R6"] = "R6"; +})(Rank || (Rank = {})); +var UpcastInt32AndMap; +(function(UpcastInt32AndMap2) { + UpcastInt32AndMap2["float32"] = "float32"; + UpcastInt32AndMap2["int32"] = "int32"; + UpcastInt32AndMap2["bool"] = "int32"; + UpcastInt32AndMap2["complex64"] = "complex64"; +})(UpcastInt32AndMap || (UpcastInt32AndMap = {})); +var UpcastBoolAndMap; +(function(UpcastBoolAndMap2) { + UpcastBoolAndMap2["float32"] = "float32"; + UpcastBoolAndMap2["int32"] = "int32"; + UpcastBoolAndMap2["bool"] = "bool"; + UpcastBoolAndMap2["complex64"] = "complex64"; +})(UpcastBoolAndMap || (UpcastBoolAndMap = {})); +var UpcastFloat32AndMap; +(function(UpcastFloat32AndMap2) { + UpcastFloat32AndMap2["float32"] = "float32"; + UpcastFloat32AndMap2["int32"] = "float32"; + UpcastFloat32AndMap2["bool"] = "float32"; + UpcastFloat32AndMap2["complex64"] = "complex64"; +})(UpcastFloat32AndMap || (UpcastFloat32AndMap = {})); +var UpcastComplex64AndMap; +(function(UpcastComplex64AndMap2) { + UpcastComplex64AndMap2["float32"] = "complex64"; + UpcastComplex64AndMap2["int32"] = "complex64"; + UpcastComplex64AndMap2["bool"] = "complex64"; + UpcastComplex64AndMap2["complex64"] = "complex64"; +})(UpcastComplex64AndMap || (UpcastComplex64AndMap = {})); +var upcastTypeMap = { + float32: UpcastFloat32AndMap, + int32: UpcastInt32AndMap, + bool: UpcastBoolAndMap, + complex64: UpcastComplex64AndMap +}; +function upcastType(typeA, typeB) { + if (typeA === "string" || typeB === "string") { + if (typeA === "string" && typeB === "string") { + return "string"; + } + throw new Error(`Can not upcast ${typeA} with ${typeB}`); + } + return upcastTypeMap[typeA][typeB]; +} +function sumOutType(type) { + return upcastType(type, "int32"); +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function makeTypesMatch(a, b) { + if (a.dtype === b.dtype) { + return [a, b]; + } + const dtype = upcastType(a.dtype, b.dtype); + return [a.cast(dtype), b.cast(dtype)]; +} +function assertTypesMatch(a, b) { + assert(a.dtype === b.dtype, () => `The dtypes of the first(${a.dtype}) and second(${b.dtype}) input must match`); +} +function isTensorInList(tensor2, tensorList) { + return tensorList.some((x) => x.id === tensor2.id); +} +function getTensorsInContainer(result) { + const list = []; + const seen = new Set(); + walkTensorContainer(result, list, seen); + return list; +} +function walkTensorContainer(container, list, seen) { + if (container == null) { + return; + } + if (container instanceof Tensor) { + list.push(container); + return; + } + if (!isIterable(container)) { + return; + } + const iterable = container; + for (const k in iterable) { + const val = iterable[k]; + if (!seen.has(val)) { + seen.add(val); + walkTensorContainer(val, list, seen); + } + } +} +function isIterable(obj) { + return Array.isArray(obj) || typeof obj === "object"; +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function isRegisteredKernelInvocation(kernelInvocation) { + return kernelInvocation.kernelName != null; +} +var EngineState = class { + constructor() { + this.registeredVariables = {}; + this.nextTapeNodeId = 0; + this.numBytes = 0; + this.numTensors = 0; + this.numStringTensors = 0; + this.numDataBuffers = 0; + this.gradientDepth = 0; + this.kernelDepth = 0; + this.scopeStack = []; + this.numDataMovesStack = []; + this.nextScopeId = 0; + this.tensorInfo = new WeakMap(); + this.profiling = false; + this.activeProfile = { + newBytes: 0, + newTensors: 0, + peakBytes: 0, + kernels: [], + result: null, + get kernelNames() { + return Array.from(new Set(this.kernels.map((k) => k.name))); + } + }; + } + dispose() { + for (const variableName in this.registeredVariables) { + this.registeredVariables[variableName].dispose(); + } + } +}; +var Engine = class { + constructor(ENV5) { + this.ENV = ENV5; + this.registry = {}; + this.registryFactory = {}; + this.pendingBackendInitId = 0; + this.state = new EngineState(); + } + async ready() { + if (this.pendingBackendInit != null) { + return this.pendingBackendInit.then(() => { + }); + } + if (this.backendInstance != null) { + return; + } + const sortedBackends = this.getSortedBackends(); + for (let i = 0; i < sortedBackends.length; i++) { + const backendName = sortedBackends[i]; + const success = await this.initializeBackend(backendName).success; + if (success) { + await this.setBackend(backendName); + return; + } + } + throw new Error(`Could not initialize any backends, all backend initializations failed.`); + } + get backend() { + if (this.pendingBackendInit != null) { + throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`); + } + if (this.backendInstance == null) { + const {name: name2, asyncInit} = this.initializeBackendsAndReturnBest(); + if (asyncInit) { + throw new Error(`The highest priority backend '${name2}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`); + } + this.setBackend(name2); + } + return this.backendInstance; + } + backendNames() { + return Object.keys(this.registryFactory); + } + findBackend(backendName) { + if (!(backendName in this.registry)) { + if (backendName in this.registryFactory) { + const {asyncInit} = this.initializeBackend(backendName); + if (asyncInit) { + return null; + } + } else { + return null; + } + } + return this.registry[backendName]; + } + findBackendFactory(backendName) { + if (!(backendName in this.registryFactory)) { + return null; + } + return this.registryFactory[backendName].factory; + } + registerBackend(backendName, factory, priority = 1) { + if (backendName in this.registryFactory) { + console.warn(`${backendName} backend was already registered. Reusing existing backend factory.`); + return false; + } + this.registryFactory[backendName] = {factory, priority}; + return true; + } + async setBackend(backendName) { + if (this.registryFactory[backendName] == null) { + throw new Error(`Backend name '${backendName}' not found in registry`); + } + this.backendName = backendName; + if (this.registry[backendName] == null) { + this.backendInstance = null; + const {success, asyncInit} = this.initializeBackend(backendName); + const result = asyncInit ? await success : success; + if (!result) { + return false; + } + } + this.backendInstance = this.registry[backendName]; + this.setupRegisteredKernels(); + this.profiler = new Profiler(this.backendInstance); + return true; + } + setupRegisteredKernels() { + const kernels = getKernelsForBackend(this.backendName); + kernels.forEach((kernel) => { + if (kernel.setupFunc != null) { + kernel.setupFunc(this.backendInstance); + } + }); + } + disposeRegisteredKernels(backendName) { + const kernels = getKernelsForBackend(backendName); + kernels.forEach((kernel) => { + if (kernel.disposeFunc != null) { + kernel.disposeFunc(this.registry[backendName]); + } + }); + } + initializeBackend(backendName) { + const registryFactoryEntry = this.registryFactory[backendName]; + if (registryFactoryEntry == null) { + throw new Error(`Cannot initialize backend ${backendName}, no registration found.`); + } + try { + const backend22 = registryFactoryEntry.factory(); + if (backend22 && !(backend22 instanceof KernelBackend) && typeof backend22.then === "function") { + const promiseId = ++this.pendingBackendInitId; + const success = backend22.then((backendInstance) => { + if (promiseId < this.pendingBackendInitId) { + return false; + } + this.registry[backendName] = backendInstance; + this.pendingBackendInit = null; + return true; + }).catch((err) => { + if (promiseId < this.pendingBackendInitId) { + return false; + } + this.pendingBackendInit = null; + console.warn(`Initialization of backend ${backendName} failed`); + console.warn(err.stack || err.message); + return false; + }); + this.pendingBackendInit = success; + return {success, asyncInit: true}; + } else { + this.registry[backendName] = backend22; + return {success: true, asyncInit: false}; + } + } catch (err) { + console.warn(`Initialization of backend ${backendName} failed`); + console.warn(err.stack || err.message); + return {success: false, asyncInit: false}; + } + } + removeBackend(backendName) { + if (!(backendName in this.registryFactory)) { + throw new Error(`${backendName} backend not found in registry`); + } + if (this.backendName === backendName && this.pendingBackendInit != null) { + this.pendingBackendInitId++; + } + if (backendName in this.registry) { + this.disposeRegisteredKernels(backendName); + this.registry[backendName].dispose(); + delete this.registry[backendName]; + } + delete this.registryFactory[backendName]; + if (this.backendName === backendName) { + this.pendingBackendInit = null; + this.backendName = null; + this.backendInstance = null; + } + } + getSortedBackends() { + if (Object.keys(this.registryFactory).length === 0) { + throw new Error("No backend found in registry."); + } + return Object.keys(this.registryFactory).sort((a, b) => { + return this.registryFactory[b].priority - this.registryFactory[a].priority; + }); + } + initializeBackendsAndReturnBest() { + const sortedBackends = this.getSortedBackends(); + for (let i = 0; i < sortedBackends.length; i++) { + const backendName = sortedBackends[i]; + const {success, asyncInit} = this.initializeBackend(backendName); + if (asyncInit || success) { + return {name: backendName, asyncInit}; + } + } + throw new Error(`Could not initialize any backends, all backend initializations failed.`); + } + moveData(backend22, dataId) { + const info = this.state.tensorInfo.get(dataId); + const srcBackend = info.backend; + const values = this.readSync(dataId); + const refCount = srcBackend.refCount(dataId); + srcBackend.disposeData(dataId, true); + info.backend = backend22; + backend22.move(dataId, values, info.shape, info.dtype, refCount); + if (this.shouldCheckForMemLeaks()) { + this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1]++; + } + } + tidy(nameOrFn, fn) { + let name2 = null; + if (fn == null) { + if (typeof nameOrFn !== "function") { + throw new Error("Please provide a function to tidy()"); + } + fn = nameOrFn; + } else { + if (typeof nameOrFn !== "string" && !(nameOrFn instanceof String)) { + throw new Error("When calling with two arguments, the first argument to tidy() must be a string"); + } + if (typeof fn !== "function") { + throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function"); + } + name2 = nameOrFn; + } + let result; + return this.scopedRun(() => this.startScope(name2), () => this.endScope(result), () => { + result = fn(); + if (result instanceof Promise) { + console.error("Cannot return a Promise inside of tidy."); + } + return result; + }); + } + scopedRun(start, end, f) { + start(); + try { + const res = f(); + end(); + return res; + } catch (ex) { + end(); + throw ex; + } + } + nextTensorId() { + return Engine.nextTensorId++; + } + nextVariableId() { + return Engine.nextVariableId++; + } + clone(x) { + const y = ENGINE.runKernel(Identity, {x}); + const inputs = {x}; + const grad2 = (dy) => ({ + x: () => { + const dtype = "float32"; + const gradInputs = {x: dy}; + const attrs = {dtype}; + return ENGINE.runKernel(Cast, gradInputs, attrs); + } + }); + const saved = []; + this.addTapeNode(this.state.activeScope.name, inputs, [y], grad2, saved, {}); + return y; + } + runKernel(kernelName, inputs, attrs) { + const hasKernel = getKernel(kernelName, this.backendName) != null; + if (!hasKernel) { + throw new Error(`Kernel '${kernelName}' not registered for backend '${this.backendName}'`); + } + return this.runKernelFunc({kernelName, inputs, attrs}); + } + shouldCheckForMemLeaks() { + return this.ENV.getBool("IS_TEST"); + } + checkKernelForMemLeak(kernelName, numDataIdsBefore, outInfos) { + const numDataIdsAfter = this.backend.numDataIds(); + let numOutputDataIds = 0; + outInfos.forEach((info) => { + numOutputDataIds += info.dtype === "complex64" ? 3 : 1; + }); + const numMoves = this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1]; + const dataIdsLeaked = numDataIdsAfter - numDataIdsBefore - numOutputDataIds - numMoves; + if (dataIdsLeaked > 0) { + throw new Error(`Backend '${this.backendName}' has an internal memory leak (${dataIdsLeaked} data ids) after running '${kernelName}'`); + } + } + runKernelFunc(kernelParams) { + let outputs; + let saved = []; + const isTapeOn = this.isTapeOn(); + const startingBytecount = this.state.numBytes; + const startingNumTensors = this.state.numTensors; + if (this.shouldCheckForMemLeaks()) { + this.state.numDataMovesStack.push(0); + } + let kernelFunc3; + if (this.backendName == null) { + this.backend; + } + let out; + const kernelOrScopeName = isRegisteredKernelInvocation(kernelParams) ? kernelParams.kernelName : this.state.activeScope != null ? this.state.activeScope.name : ""; + if (isRegisteredKernelInvocation(kernelParams)) { + const {kernelName, inputs: inputs2, attrs: attrs2} = kernelParams; + if (this.backendName == null) { + this.backend; + } + const kernel = getKernel(kernelName, this.backendName); + assert(kernel != null, () => `Cannot find registered kernel '${kernelName}' for backend '${this.backendName}'`); + kernelFunc3 = () => { + const numDataIdsBefore = this.backend.numDataIds(); + out = kernel.kernelFunc({inputs: inputs2, attrs: attrs2, backend: this.backend}); + const outInfos = Array.isArray(out) ? out : [out]; + if (this.shouldCheckForMemLeaks()) { + this.checkKernelForMemLeak(kernelName, numDataIdsBefore, outInfos); + } + const outTensors = outInfos.map((outInfo) => { + if (outInfo.rank != null) { + return outInfo; + } + const {dataId, shape, dtype} = outInfo; + return this.makeTensorFromDataId(dataId, shape, dtype); + }); + if (isTapeOn) { + const tensorsToSave = this.getTensorsForGradient(kernelName, inputs2, outTensors); + saved = this.saveTensorsForBackwardMode(tensorsToSave); + } + return outTensors; + }; + } else { + const {forwardFunc} = kernelParams; + const saveFunc = (tensors) => { + if (!isTapeOn) { + return; + } + saved = tensors.map((tensor2) => this.keep(this.clone(tensor2))); + }; + kernelFunc3 = () => { + const numDataIdsBefore = this.backend.numDataIds(); + out = this.tidy(() => forwardFunc(this.backend, saveFunc)); + const outs = Array.isArray(out) ? out : [out]; + if (this.shouldCheckForMemLeaks()) { + this.checkKernelForMemLeak(kernelOrScopeName, numDataIdsBefore, outs); + } + return outs; + }; + } + const {inputs, attrs} = kernelParams; + const backwardsFunc = isRegisteredKernelInvocation(kernelParams) ? null : kernelParams.backwardsFunc; + let kernelProfile; + this.scopedRun(() => this.state.kernelDepth++, () => this.state.kernelDepth--, () => { + if (!this.ENV.getBool("DEBUG") && !this.state.profiling) { + outputs = kernelFunc3(); + } else { + kernelProfile = this.profiler.profileKernel(kernelOrScopeName, inputs, () => kernelFunc3()); + if (this.ENV.getBool("DEBUG")) { + this.profiler.logKernelProfile(kernelProfile); + } + outputs = kernelProfile.outputs; + } + }); + if (isTapeOn) { + this.addTapeNode(kernelOrScopeName, inputs, outputs, backwardsFunc, saved, attrs); + } + if (this.state.profiling) { + this.state.activeProfile.kernels.push({ + name: kernelOrScopeName, + bytesAdded: this.state.numBytes - startingBytecount, + totalBytesSnapshot: this.state.numBytes, + tensorsAdded: this.state.numTensors - startingNumTensors, + totalTensorsSnapshot: this.state.numTensors, + inputShapes: Object.keys(inputs).map((key) => inputs[key] != null ? inputs[key].shape : null), + outputShapes: outputs.map((item) => item.shape), + kernelTimeMs: kernelProfile.timeMs, + extraInfo: kernelProfile.extraInfo + }); + } + return Array.isArray(out) ? outputs : outputs[0]; + } + saveTensorsForBackwardMode(tensors) { + const saved = tensors.map((tensor2) => this.keep(this.clone(tensor2))); + return saved; + } + getTensorsForGradient(kernelName, inputs, outputs) { + const gradConfig = getGradient(kernelName); + if (gradConfig != null) { + const inputsToSave = gradConfig.inputsToSave || []; + const outputsToSave = gradConfig.outputsToSave || []; + let inputTensorsToSave; + if (gradConfig.saveAllInputs) { + assert(Array.isArray(inputs), () => "saveAllInputs is true, expected inputs to be an array."); + inputTensorsToSave = Object.keys(inputs).map((key) => inputs[key]); + } else { + inputTensorsToSave = inputsToSave.map((inputName) => inputs[inputName]); + } + const outputTensorsToSave = outputs.filter((_, i) => outputsToSave[i]); + return inputTensorsToSave.concat(outputTensorsToSave); + } + return []; + } + makeTensor(values, shape, dtype, backend22) { + if (values == null) { + throw new Error("Values passed to engine.makeTensor() are null"); + } + dtype = dtype || "float32"; + backend22 = backend22 || this.backend; + let backendVals = values; + if (dtype === "string" && isString(values[0])) { + backendVals = values.map((d) => encodeString(d)); + } + const dataId = backend22.write(backendVals, shape, dtype); + const t = new Tensor(shape, dtype, dataId, this.nextTensorId()); + this.trackTensor(t, backend22); + if (dtype === "string") { + const info = this.state.tensorInfo.get(dataId); + const newBytes = bytesFromStringArray(backendVals); + this.state.numBytes += newBytes - info.bytes; + info.bytes = newBytes; + } + return t; + } + makeTensorFromDataId(dataId, shape, dtype, backend22) { + dtype = dtype || "float32"; + const t = new Tensor(shape, dtype, dataId, this.nextTensorId()); + this.trackTensor(t, backend22); + return t; + } + makeVariable(initialValue, trainable = true, name2, dtype) { + name2 = name2 || this.nextVariableId().toString(); + if (dtype != null && dtype !== initialValue.dtype) { + initialValue = initialValue.cast(dtype); + } + const v = new Variable(initialValue, trainable, name2, this.nextTensorId()); + if (this.state.registeredVariables[v.name] != null) { + throw new Error(`Variable with name ${v.name} was already registered`); + } + this.state.registeredVariables[v.name] = v; + this.incRef(v, this.backend); + return v; + } + trackTensor(a, backend22) { + this.state.numTensors++; + if (a.dtype === "string") { + this.state.numStringTensors++; + } + let bytes = 0; + if (a.dtype !== "complex64" && a.dtype !== "string") { + bytes = a.size * bytesPerElement(a.dtype); + } + this.state.numBytes += bytes; + if (!this.state.tensorInfo.has(a.dataId)) { + this.state.numDataBuffers++; + this.state.tensorInfo.set(a.dataId, { + backend: backend22 || this.backend, + dtype: a.dtype, + shape: a.shape, + bytes + }); + } + if (!(a instanceof Variable)) { + this.track(a); + } + } + incRef(a, backend22) { + this.trackTensor(a, backend22); + this.backend.incRef(a.dataId); + } + removeDataId(dataId, backend22) { + if (this.state.tensorInfo.has(dataId) && this.state.tensorInfo.get(dataId).backend === backend22) { + this.state.tensorInfo.delete(dataId); + this.state.numDataBuffers--; + } + } + disposeTensor(a) { + if (!this.state.tensorInfo.has(a.dataId)) { + return; + } + const info = this.state.tensorInfo.get(a.dataId); + this.state.numTensors--; + if (a.dtype === "string") { + this.state.numStringTensors--; + this.state.numBytes -= info.bytes; + } + if (a.dtype !== "complex64" && a.dtype !== "string") { + const bytes = a.size * bytesPerElement(a.dtype); + this.state.numBytes -= bytes; + } + if (info.backend.disposeData(a.dataId)) { + this.removeDataId(a.dataId, info.backend); + } + } + disposeVariables() { + for (const varName in this.state.registeredVariables) { + const v = this.state.registeredVariables[varName]; + this.disposeVariable(v); + } + } + disposeVariable(v) { + this.disposeTensor(v); + if (this.state.registeredVariables[v.name] != null) { + delete this.state.registeredVariables[v.name]; + } + } + memory() { + const info = this.backend.memory(); + info.numTensors = this.state.numTensors; + info.numDataBuffers = this.state.numDataBuffers; + info.numBytes = this.state.numBytes; + if (this.state.numStringTensors > 0) { + info.unreliable = true; + if (info.reasons == null) { + info.reasons = []; + } + info.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)"); + } + return info; + } + async profile(query) { + this.state.profiling = true; + const startBytes = this.state.numBytes; + const startNumTensors = this.state.numTensors; + this.state.activeProfile.kernels = []; + this.state.activeProfile.result = await query(); + this.state.profiling = false; + this.state.activeProfile.peakBytes = Math.max(...this.state.activeProfile.kernels.map((d) => d.totalBytesSnapshot)); + this.state.activeProfile.newBytes = this.state.numBytes - startBytes; + this.state.activeProfile.newTensors = this.state.numTensors - startNumTensors; + for (const kernel of this.state.activeProfile.kernels) { + kernel.kernelTimeMs = await kernel.kernelTimeMs; + kernel.extraInfo = await kernel.extraInfo; + } + return this.state.activeProfile; + } + isTapeOn() { + return this.state.gradientDepth > 0 && this.state.kernelDepth === 0; + } + addTapeNode(kernelName, inputs, outputs, gradientsFunc, saved, attrs) { + const tapeNode = {id: this.state.nextTapeNodeId++, kernelName, inputs, outputs, saved}; + const gradConfig = getGradient(kernelName); + if (gradConfig != null) { + gradientsFunc = gradConfig.gradFunc; + } + if (gradientsFunc != null) { + tapeNode.gradient = (dys) => { + dys = dys.map((dy, i) => { + if (dy == null) { + const output = outputs[i]; + const vals = makeZerosTypedArray(output.size, output.dtype); + return this.makeTensor(vals, output.shape, output.dtype); + } + return dy; + }); + return gradientsFunc(dys.length > 1 ? dys : dys[0], saved, attrs); + }; + } + this.state.activeTape.push(tapeNode); + } + keep(result) { + result.kept = true; + return result; + } + startTape() { + if (this.state.gradientDepth === 0) { + this.state.activeTape = []; + } + this.state.gradientDepth++; + } + endTape() { + this.state.gradientDepth--; + } + startScope(name2) { + const scopeInfo = { + track: [], + name: "unnamed scope", + id: this.state.nextScopeId++ + }; + if (name2) { + scopeInfo.name = name2; + } + this.state.scopeStack.push(scopeInfo); + this.state.activeScope = scopeInfo; + } + endScope(result) { + const tensorsToTrackInParent = getTensorsInContainer(result); + const tensorsToTrackInParentSet = new Set(tensorsToTrackInParent.map((t) => t.id)); + for (let i = 0; i < this.state.activeScope.track.length; i++) { + const tensor2 = this.state.activeScope.track[i]; + if (!tensor2.kept && !tensorsToTrackInParentSet.has(tensor2.id)) { + tensor2.dispose(); + } + } + const oldScope = this.state.scopeStack.pop(); + this.state.activeScope = this.state.scopeStack.length === 0 ? null : this.state.scopeStack[this.state.scopeStack.length - 1]; + tensorsToTrackInParent.forEach((tensor2) => { + if (!tensor2.kept && tensor2.scopeId === oldScope.id) { + this.track(tensor2); + } + }); + } + gradients(f, xs, dy, allowNoGradients = false) { + assert(xs.length > 0, () => "gradients() received an empty list of xs."); + if (dy != null && dy.dtype !== "float32") { + throw new Error(`dy must have 'float32' dtype, but has '${dy.dtype}'`); + } + const y = this.scopedRun(() => this.startTape(), () => this.endTape(), () => this.tidy("forward", f)); + assert(y instanceof Tensor, () => "The result y returned by f() must be a tensor."); + const filteredTape = getFilteredNodesXToY(this.state.activeTape, xs, y); + if (!allowNoGradients && filteredTape.length === 0 && xs.length > 0) { + throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y."); + } + return this.tidy("backward", () => { + const accumulatedGradientMap = {}; + accumulatedGradientMap[y.id] = dy == null ? ones(y.shape) : dy; + backpropagateGradients(accumulatedGradientMap, filteredTape, (f2) => this.tidy(f2), add); + const grads2 = xs.map((x) => accumulatedGradientMap[x.id]); + if (this.state.gradientDepth === 0) { + this.state.activeTape.forEach((node) => { + for (const tensor2 of node.saved) { + tensor2.dispose(); + } + }); + this.state.activeTape = null; + } + return {value: y, grads: grads2}; + }); + } + customGrad(f) { + assert(isFunction(f), () => "The f passed in customGrad(f) must be a function."); + return (...inputs) => { + assert(inputs.every((t) => t instanceof Tensor), () => "The args passed in customGrad(f)(x1, x2,...) must all be tensors"); + let res; + const inputMap = {}; + inputs.forEach((input2, i) => { + inputMap[i] = input2; + }); + const forwardFunc = (_, save) => { + res = f(...[...inputs, save]); + assert(res.value instanceof Tensor, () => "The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"); + assert(isFunction(res.gradFunc), () => "The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."); + return res.value; + }; + const backwardsFunc = (dy, saved) => { + const gradRes = res.gradFunc(dy, saved); + const grads2 = Array.isArray(gradRes) ? gradRes : [gradRes]; + assert(grads2.length === inputs.length, () => "The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."); + assert(grads2.every((t) => t instanceof Tensor), () => "The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors."); + const gradMap = {}; + grads2.forEach((grad2, i) => { + gradMap[i] = () => grad2; + }); + return gradMap; + }; + return this.runKernelFunc({ + forwardFunc, + backwardsFunc, + inputs: inputMap + }); + }; + } + readSync(dataId) { + const info = this.state.tensorInfo.get(dataId); + return info.backend.readSync(dataId); + } + read(dataId) { + const info = this.state.tensorInfo.get(dataId); + return info.backend.read(dataId); + } + async time(query) { + const start = now(); + const timingInfo = await this.backend.time(query); + timingInfo.wallMs = now() - start; + return timingInfo; + } + track(result) { + if (this.state.activeScope != null) { + result.scopeId = this.state.activeScope.id; + this.state.activeScope.track.push(result); + } + return result; + } + get registeredVariables() { + return this.state.registeredVariables; + } + reset() { + this.pendingBackendInitId++; + this.state.dispose(); + this.ENV.reset(); + this.state = new EngineState(); + for (const backendName in this.registry) { + this.disposeRegisteredKernels(backendName); + this.registry[backendName].dispose(); + delete this.registry[backendName]; + } + this.backendName = null; + this.backendInstance = null; + this.pendingBackendInit = null; + } +}; +Engine.nextTensorId = 0; +Engine.nextVariableId = 0; +function ones(shape) { + const values = makeOnesTypedArray(sizeFromShape(shape), "float32"); + return ENGINE.makeTensor(values, shape, "float32"); +} +function getOrMakeEngine() { + const ns = getGlobalNamespace(); + if (ns._tfengine == null) { + const environment = new Environment(ns); + ns._tfengine = new Engine(environment); + } + setEnvironmentGlobal(ns._tfengine.ENV); + setTensorTracker(() => ns._tfengine); + return ns._tfengine; +} +var ENGINE = getOrMakeEngine(); +function add(a, b) { + const inputs = {a, b}; + return ENGINE.runKernel(Add, inputs); +} +var device_util_exports = {}; +__export2(device_util_exports, { + isBrowser: () => isBrowser, + isMobile: () => isMobile +}); +/** + * @license + * Copyright 2017 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function _isNavigatorDefined() { + return typeof navigator !== "undefined" && navigator != null; +} +function isMobile() { + if (_isNavigatorDefined()) { + const a = navigator.userAgent || navigator.vendor || window.opera; + return /(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(a) || /1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(a.substr(0, 4)); + } + return false; +} +function isBrowser() { + return typeof window !== "undefined" && window.document != null || typeof WorkerGlobalScope !== "undefined"; +} +/** + * @license + * Copyright 2019 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var ENV2 = env(); +ENV2.registerFlag("DEBUG", () => false, (debugValue) => { + if (debugValue) { + console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance."); + } +}); +ENV2.registerFlag("IS_BROWSER", () => isBrowser()); +ENV2.registerFlag("IS_NODE", () => typeof process !== "undefined" && typeof process.versions !== "undefined" && typeof process.versions.node !== "undefined"); +ENV2.registerFlag("IS_CHROME", () => typeof navigator !== "undefined" && navigator != null && navigator.userAgent != null && /Chrome/.test(navigator.userAgent) && /Google Inc/.test(navigator.vendor)); +ENV2.registerFlag("PROD", () => false); +ENV2.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY", () => ENV2.getBool("DEBUG")); +ENV2.registerFlag("DEPRECATION_WARNINGS_ENABLED", () => true); +ENV2.registerFlag("IS_TEST", () => false); +ENV2.registerFlag("CHECK_COMPUTATION_FOR_ERRORS", () => true); +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function inferShape(val, dtype) { + let firstElem = val; + if (isTypedArray(val)) { + return dtype === "string" ? [] : [val.length]; + } + if (!Array.isArray(val)) { + return []; + } + const shape = []; + while (Array.isArray(firstElem) || isTypedArray(firstElem) && dtype !== "string") { + shape.push(firstElem.length); + firstElem = firstElem[0]; + } + if (Array.isArray(val) && env().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")) { + deepAssertShapeConsistency(val, shape, []); + } + return shape; +} +function deepAssertShapeConsistency(val, shape, indices) { + indices = indices || []; + if (!Array.isArray(val) && !isTypedArray(val)) { + assert(shape.length === 0, () => `Element arr[${indices.join("][")}] is a primitive, but should be an array/TypedArray of ${shape[0]} elements`); + return; + } + assert(shape.length > 0, () => `Element arr[${indices.join("][")}] should be a primitive, but is an array of ${val.length} elements`); + assert(val.length === shape[0], () => `Element arr[${indices.join("][")}] should have ${shape[0]} elements, but has ${val.length} elements`); + const subShape = shape.slice(1); + for (let i = 0; i < val.length; ++i) { + deepAssertShapeConsistency(val[i], subShape, indices.concat(i)); + } +} +function assertDtype(expectedDtype, actualDType, argName, functionName) { + if (expectedDtype === "string_or_numeric") { + return; + } + if (expectedDtype == null) { + throw new Error(`Expected dtype cannot be null.`); + } + if (expectedDtype !== "numeric" && expectedDtype !== actualDType || expectedDtype === "numeric" && actualDType === "string") { + throw new Error(`Argument '${argName}' passed to '${functionName}' must be ${expectedDtype} tensor, but got ${actualDType} tensor`); + } +} +function convertToTensor(x, argName, functionName, parseAsDtype = "numeric") { + if (x instanceof Tensor) { + assertDtype(parseAsDtype, x.dtype, argName, functionName); + return x; + } + let inferredDtype = inferDtype(x); + if (inferredDtype !== "string" && ["bool", "int32", "float32"].indexOf(parseAsDtype) >= 0) { + inferredDtype = parseAsDtype; + } + assertDtype(parseAsDtype, inferredDtype, argName, functionName); + if (x == null || !isTypedArray(x) && !Array.isArray(x) && typeof x !== "number" && typeof x !== "boolean" && typeof x !== "string") { + const type = x == null ? "null" : x.constructor.name; + throw new Error(`Argument '${argName}' passed to '${functionName}' must be a Tensor or TensorLike, but got '${type}'`); + } + const inferredShape = inferShape(x, inferredDtype); + if (!isTypedArray(x) && !Array.isArray(x)) { + x = [x]; + } + const skipTypedArray = true; + const values = inferredDtype !== "string" ? toTypedArray(x, inferredDtype) : flatten(x, [], skipTypedArray); + return ENGINE.makeTensor(values, inferredShape, inferredDtype); +} +function convertToTensorArray(arg, argName, functionName, parseAsDtype = "numeric") { + if (!Array.isArray(arg)) { + throw new Error(`Argument ${argName} passed to ${functionName} must be a \`Tensor[]\` or \`TensorLike[]\``); + } + const tensors = arg; + return tensors.map((t, i) => convertToTensor(t, `${argName}[${i}]`, functionName, parseAsDtype)); +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var OP_SCOPE_SUFFIX = "__op"; +function op(f) { + const keys = Object.keys(f); + if (keys.length !== 1) { + throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${keys.length} keys.`); + } + let opName = keys[0]; + const fn = f[opName]; + if (opName.endsWith("_")) { + opName = opName.substring(0, opName.length - 1); + } + opName = opName + OP_SCOPE_SUFFIX; + const f2 = (...args) => { + ENGINE.startScope(opName); + try { + const result = fn(...args); + if (isPromise(result)) { + console.error("Cannot return a Promise inside of tidy."); + } + ENGINE.endScope(result); + return result; + } catch (ex) { + ENGINE.endScope(null); + throw ex; + } + }; + Object.defineProperty(f2, "name", {value: opName, configurable: true}); + return f2; +} +/** + * @license + * Copyright 2020 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function complex_(real4, imag4) { + const $real = convertToTensor(real4, "real", "complex"); + const $imag = convertToTensor(imag4, "imag", "complex"); + assertShapesMatch($real.shape, $imag.shape, `real and imag shapes, ${$real.shape} and ${$imag.shape}, must match in call to tf.complex().`); + const inputs = {real: $real, imag: $imag}; + return ENGINE.runKernel(Complex, inputs); +} +var complex = op({complex_}); +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function makeTensor(values, shape, inferredShape, dtype) { + if (dtype == null) { + dtype = inferDtype(values); + } + if (dtype === "complex64") { + throw new Error(`Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).`); + } + if (!isTypedArray(values) && !Array.isArray(values) && typeof values !== "number" && typeof values !== "boolean" && typeof values !== "string") { + throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray"); + } + if (shape != null) { + assertNonNegativeIntegerDimensions(shape); + const providedSize = sizeFromShape(shape); + const inferredSize = sizeFromShape(inferredShape); + assert(providedSize === inferredSize, () => `Based on the provided shape, [${shape}], the tensor should have ${providedSize} values but has ${inferredSize}`); + for (let i = 0; i < inferredShape.length; ++i) { + const inferred = inferredShape[i]; + const flatDimsDontMatch = i === inferredShape.length - 1 ? inferred !== sizeFromShape(shape.slice(i)) : true; + assert(inferredShape[i] === shape[i] || !flatDimsDontMatch, () => `Error creating a new Tensor. Inferred shape (${inferredShape}) does not match the provided shape (${shape}). `); + } + } + if (!isTypedArray(values) && !Array.isArray(values)) { + values = [values]; + } + shape = shape || inferredShape; + values = dtype !== "string" ? toTypedArray(values, dtype) : flatten(values, [], true); + return ENGINE.makeTensor(values, shape, dtype); +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function tensor(values, shape, dtype) { + const inferredShape = inferShape(values, dtype); + return makeTensor(values, shape, inferredShape, dtype); +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var DTYPE_VALUE_SIZE_MAP = { + float32: 4, + float16: 2, + int32: 4, + uint16: 2, + uint8: 1, + bool: 1, + complex64: 8 +}; +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var NUM_BYTES_STRING_LENGTH = 4; +async function encodeWeights(tensors, group) { + const specs = []; + const dataPromises = []; + const names = Array.isArray(tensors) ? tensors.map((tensor2) => tensor2.name) : Object.keys(tensors); + for (let i = 0; i < names.length; ++i) { + const name2 = names[i]; + const t = Array.isArray(tensors) ? tensors[i].tensor : tensors[name2]; + if (t.dtype !== "float32" && t.dtype !== "int32" && t.dtype !== "bool" && t.dtype !== "string" && t.dtype !== "complex64") { + throw new Error(`Unsupported dtype in weight '${name2}': ${t.dtype}`); + } + const spec = {name: name2, shape: t.shape, dtype: t.dtype}; + if (t.dtype === "string") { + const utf8bytes = new Promise(async (resolve) => { + const vals = await t.bytes(); + const totalNumBytes = vals.reduce((p2, c) => p2 + c.length, 0) + NUM_BYTES_STRING_LENGTH * vals.length; + const bytes = new Uint8Array(totalNumBytes); + let offset = 0; + for (let i2 = 0; i2 < vals.length; i2++) { + const val = vals[i2]; + const bytesOfLength = new Uint8Array(new Uint32Array([val.length]).buffer); + bytes.set(bytesOfLength, offset); + offset += NUM_BYTES_STRING_LENGTH; + bytes.set(val, offset); + offset += val.length; + } + resolve(bytes); + }); + dataPromises.push(utf8bytes); + } else { + dataPromises.push(t.data()); + } + if (group != null) { + spec.group = group; + } + specs.push(spec); + } + const tensorValues = await Promise.all(dataPromises); + return {data: concatenateTypedArrays(tensorValues), specs}; +} +function decodeWeights(buffer2, specs) { + const out = {}; + let float16Decode; + let offset = 0; + for (const spec of specs) { + const name2 = spec.name; + const dtype = spec.dtype; + const shape = spec.shape; + const size = sizeFromShape(shape); + let values; + if ("quantization" in spec) { + const quantization = spec.quantization; + if (quantization.dtype === "uint8" || quantization.dtype === "uint16") { + if (!("min" in quantization && "scale" in quantization)) { + throw new Error(`Weight ${spec.name} with quantization ${quantization.dtype} doesn't have corresponding metadata min and scale.`); + } + } else if (quantization.dtype === "float16") { + if (dtype !== "float32") { + throw new Error(`Weight ${spec.name} is quantized with ${quantization.dtype} which only supports weights of type float32 not ${dtype}.`); + } + } else { + throw new Error(`Weight ${spec.name} has unknown quantization dtype ${quantization.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`); + } + const quantizationSizeFactor = DTYPE_VALUE_SIZE_MAP[quantization.dtype]; + const byteBuffer = buffer2.slice(offset, offset + size * quantizationSizeFactor); + const quantizedArray = quantization.dtype === "uint8" ? new Uint8Array(byteBuffer) : new Uint16Array(byteBuffer); + if (dtype === "float32") { + if (quantization.dtype === "uint8" || quantization.dtype === "uint16") { + values = new Float32Array(quantizedArray.length); + for (let i = 0; i < quantizedArray.length; i++) { + const v = quantizedArray[i]; + values[i] = v * quantization.scale + quantization.min; + } + } else if (quantization.dtype === "float16") { + if (float16Decode === void 0) { + float16Decode = getFloat16Decoder(); + } + values = float16Decode(quantizedArray); + } else { + throw new Error(`Unsupported quantization type ${quantization.dtype} for weight type float32.`); + } + } else if (dtype === "int32") { + if (quantization.dtype !== "uint8" && quantization.dtype !== "uint16") { + throw new Error(`Unsupported quantization type ${quantization.dtype} for weight type int32.`); + } + values = new Int32Array(quantizedArray.length); + for (let i = 0; i < quantizedArray.length; i++) { + const v = quantizedArray[i]; + values[i] = Math.round(v * quantization.scale + quantization.min); + } + } else { + throw new Error(`Unsupported dtype in weight '${name2}': ${dtype}`); + } + offset += size * quantizationSizeFactor; + } else if (dtype === "string") { + const size2 = sizeFromShape(spec.shape); + values = []; + for (let i = 0; i < size2; i++) { + const byteLength = new Uint32Array(buffer2.slice(offset, offset + NUM_BYTES_STRING_LENGTH))[0]; + offset += NUM_BYTES_STRING_LENGTH; + const bytes = new Uint8Array(buffer2.slice(offset, offset + byteLength)); + values.push(bytes); + offset += byteLength; + } + } else { + const dtypeFactor = DTYPE_VALUE_SIZE_MAP[dtype]; + const byteBuffer = buffer2.slice(offset, offset + size * dtypeFactor); + if (dtype === "float32") { + values = new Float32Array(byteBuffer); + } else if (dtype === "int32") { + values = new Int32Array(byteBuffer); + } else if (dtype === "bool") { + values = new Uint8Array(byteBuffer); + } else if (dtype === "complex64") { + values = new Float32Array(byteBuffer); + const real4 = new Float32Array(values.length / 2); + const image3 = new Float32Array(values.length / 2); + for (let i = 0; i < real4.length; i++) { + real4[i] = values[i * 2]; + image3[i] = values[i * 2 + 1]; + } + const realTensor = tensor(real4, shape, "float32"); + const imageTensor = tensor(image3, shape, "float32"); + out[name2] = complex(realTensor, imageTensor); + realTensor.dispose(); + imageTensor.dispose(); + } else { + throw new Error(`Unsupported dtype in weight '${name2}': ${dtype}`); + } + offset += size * dtypeFactor; + } + if (dtype !== "complex64") { + out[name2] = tensor(values, shape, dtype); + } + } + return out; +} +function concatenateTypedArrays(xs) { + if (xs === null) { + throw new Error(`Invalid input value: ${JSON.stringify(xs)}`); + } + let totalByteLength = 0; + const normalizedXs = []; + xs.forEach((x) => { + totalByteLength += x.byteLength; + normalizedXs.push(x.byteLength === x.buffer.byteLength ? x : new x.constructor(x)); + if (!(x instanceof Float32Array || x instanceof Int32Array || x instanceof Uint8Array)) { + throw new Error(`Unsupported TypedArray subtype: ${x.constructor.name}`); + } + }); + const y = new Uint8Array(totalByteLength); + let offset = 0; + normalizedXs.forEach((x) => { + y.set(new Uint8Array(x.buffer), offset); + offset += x.byteLength; + }); + return y.buffer; +} +var useNodeBuffer = typeof Buffer !== "undefined" && (typeof Blob === "undefined" || typeof atob === "undefined" || typeof btoa === "undefined"); +function stringByteLength(str) { + if (useNodeBuffer) { + return Buffer.byteLength(str); + } + return new Blob([str]).size; +} +function arrayBufferToBase64String(buffer2) { + if (useNodeBuffer) { + return Buffer.from(buffer2).toString("base64"); + } + const buf = new Uint8Array(buffer2); + let s = ""; + for (let i = 0, l = buf.length; i < l; i++) { + s += String.fromCharCode(buf[i]); + } + return btoa(s); +} +function base64StringToArrayBuffer(str) { + if (useNodeBuffer) { + const buf = Buffer.from(str, "base64"); + return buf.buffer.slice(buf.byteOffset, buf.byteOffset + buf.byteLength); + } + const s = atob(str); + const buffer2 = new Uint8Array(s.length); + for (let i = 0; i < s.length; ++i) { + buffer2.set([s.charCodeAt(i)], i); + } + return buffer2.buffer; +} +function concatenateArrayBuffers(buffers) { + if (buffers.length === 1) { + return buffers[0]; + } + let totalByteLength = 0; + buffers.forEach((buffer2) => { + totalByteLength += buffer2.byteLength; + }); + const temp = new Uint8Array(totalByteLength); + let offset = 0; + buffers.forEach((buffer2) => { + temp.set(new Uint8Array(buffer2), offset); + offset += buffer2.byteLength; + }); + return temp.buffer; +} +function basename(path) { + const SEPARATOR = "/"; + path = path.trim(); + while (path.endsWith(SEPARATOR)) { + path = path.slice(0, path.length - 1); + } + const items = path.split(SEPARATOR); + return items[items.length - 1]; +} +function getModelArtifactsInfoForJSON(modelArtifacts) { + if (modelArtifacts.modelTopology instanceof ArrayBuffer) { + throw new Error("Expected JSON model topology, received ArrayBuffer."); + } + return { + dateSaved: new Date(), + modelTopologyType: "JSON", + modelTopologyBytes: modelArtifacts.modelTopology == null ? 0 : stringByteLength(JSON.stringify(modelArtifacts.modelTopology)), + weightSpecsBytes: modelArtifacts.weightSpecs == null ? 0 : stringByteLength(JSON.stringify(modelArtifacts.weightSpecs)), + weightDataBytes: modelArtifacts.weightData == null ? 0 : modelArtifacts.weightData.byteLength + }; +} +function computeFloat16MantisaTable() { + const convertMantissa = (i) => { + let m = i << 13; + let e = 0; + while ((m & 8388608) === 0) { + e -= 8388608; + m <<= 1; + } + m &= ~8388608; + e += 947912704; + return m | e; + }; + const mantisaTable = new Uint32Array(2048); + mantisaTable[0] = 0; + for (let i = 1; i < 1024; i++) { + mantisaTable[i] = convertMantissa(i); + } + for (let i = 1024; i < 2048; i++) { + mantisaTable[i] = 939524096 + (i - 1024 << 13); + } + return mantisaTable; +} +function computeFloat16ExponentTable() { + const exponentTable = new Uint32Array(64); + exponentTable[0] = 0; + exponentTable[31] = 1199570944; + exponentTable[32] = 2147483648; + exponentTable[63] = 3347054592; + for (let i = 1; i < 31; i++) { + exponentTable[i] = i << 23; + } + for (let i = 33; i < 63; i++) { + exponentTable[i] = 2147483648 + (i - 32 << 23); + } + return exponentTable; +} +function computeFloat16OffsetTable() { + const offsetTable = new Uint32Array(64); + for (let i = 0; i < 64; i++) { + offsetTable[i] = 1024; + } + offsetTable[0] = offsetTable[32] = 0; + return offsetTable; +} +function getFloat16Decoder() { + const mantisaTable = computeFloat16MantisaTable(); + const exponentTable = computeFloat16ExponentTable(); + const offsetTable = computeFloat16OffsetTable(); + return (quantizedArray) => { + const buffer2 = new ArrayBuffer(4 * quantizedArray.length); + const bufferUint32View = new Uint32Array(buffer2); + for (let index = 0; index < quantizedArray.length; index++) { + const float16Bits = quantizedArray[index]; + const float32Bits = mantisaTable[offsetTable[float16Bits >> 10] + (float16Bits & 1023)] + exponentTable[float16Bits >> 10]; + bufferUint32View[index] = float32Bits; + } + return new Float32Array(buffer2); + }; +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var IORouterRegistry = class { + constructor() { + this.saveRouters = []; + this.loadRouters = []; + } + static getInstance() { + if (IORouterRegistry.instance == null) { + IORouterRegistry.instance = new IORouterRegistry(); + } + return IORouterRegistry.instance; + } + static registerSaveRouter(saveRouter) { + IORouterRegistry.getInstance().saveRouters.push(saveRouter); + } + static registerLoadRouter(loadRouter) { + IORouterRegistry.getInstance().loadRouters.push(loadRouter); + } + static getSaveHandlers(url) { + return IORouterRegistry.getHandlers(url, "save"); + } + static getLoadHandlers(url, loadOptions) { + return IORouterRegistry.getHandlers(url, "load", loadOptions); + } + static getHandlers(url, handlerType, loadOptions) { + const validHandlers = []; + const routers = handlerType === "load" ? IORouterRegistry.getInstance().loadRouters : IORouterRegistry.getInstance().saveRouters; + routers.forEach((router) => { + const handler = router(url, loadOptions); + if (handler !== null) { + validHandlers.push(handler); + } + }); + return validHandlers; + } +}; +var registerSaveRouter = (loudRouter) => IORouterRegistry.registerSaveRouter(loudRouter); +var registerLoadRouter = (loudRouter) => IORouterRegistry.registerLoadRouter(loudRouter); +var getSaveHandlers = (url) => IORouterRegistry.getSaveHandlers(url); +var getLoadHandlers = (url, loadOptions) => IORouterRegistry.getLoadHandlers(url, loadOptions); +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var DATABASE_NAME = "tensorflowjs"; +var DATABASE_VERSION = 1; +var MODEL_STORE_NAME = "models_store"; +var INFO_STORE_NAME = "model_info_store"; +function getIndexedDBFactory() { + if (!env().getBool("IS_BROWSER")) { + throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser."); + } + const theWindow = typeof window === "undefined" ? self : window; + const factory = theWindow.indexedDB || theWindow.mozIndexedDB || theWindow.webkitIndexedDB || theWindow.msIndexedDB || theWindow.shimIndexedDB; + if (factory == null) { + throw new Error("The current browser does not appear to support IndexedDB."); + } + return factory; +} +function setUpDatabase(openRequest) { + const db = openRequest.result; + db.createObjectStore(MODEL_STORE_NAME, {keyPath: "modelPath"}); + db.createObjectStore(INFO_STORE_NAME, {keyPath: "modelPath"}); +} +var BrowserIndexedDB = class { + constructor(modelPath) { + this.indexedDB = getIndexedDBFactory(); + if (modelPath == null || !modelPath) { + throw new Error("For IndexedDB, modelPath must not be null, undefined or empty."); + } + this.modelPath = modelPath; + } + async save(modelArtifacts) { + if (modelArtifacts.modelTopology instanceof ArrayBuffer) { + throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet."); + } + return this.databaseAction(this.modelPath, modelArtifacts); + } + async load() { + return this.databaseAction(this.modelPath); + } + databaseAction(modelPath, modelArtifacts) { + return new Promise((resolve, reject) => { + const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION); + openRequest.onupgradeneeded = () => setUpDatabase(openRequest); + openRequest.onsuccess = () => { + const db = openRequest.result; + if (modelArtifacts == null) { + const modelTx = db.transaction(MODEL_STORE_NAME, "readonly"); + const modelStore = modelTx.objectStore(MODEL_STORE_NAME); + const getRequest = modelStore.get(this.modelPath); + getRequest.onsuccess = () => { + if (getRequest.result == null) { + db.close(); + return reject(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`)); + } else { + resolve(getRequest.result.modelArtifacts); + } + }; + getRequest.onerror = (error) => { + db.close(); + return reject(getRequest.error); + }; + modelTx.oncomplete = () => db.close(); + } else { + const modelArtifactsInfo = getModelArtifactsInfoForJSON(modelArtifacts); + const infoTx = db.transaction(INFO_STORE_NAME, "readwrite"); + let infoStore = infoTx.objectStore(INFO_STORE_NAME); + const putInfoRequest = infoStore.put({modelPath: this.modelPath, modelArtifactsInfo}); + let modelTx; + putInfoRequest.onsuccess = () => { + modelTx = db.transaction(MODEL_STORE_NAME, "readwrite"); + const modelStore = modelTx.objectStore(MODEL_STORE_NAME); + const putModelRequest = modelStore.put({ + modelPath: this.modelPath, + modelArtifacts, + modelArtifactsInfo + }); + putModelRequest.onsuccess = () => resolve({modelArtifactsInfo}); + putModelRequest.onerror = (error) => { + infoStore = infoTx.objectStore(INFO_STORE_NAME); + const deleteInfoRequest = infoStore.delete(this.modelPath); + deleteInfoRequest.onsuccess = () => { + db.close(); + return reject(putModelRequest.error); + }; + deleteInfoRequest.onerror = (error2) => { + db.close(); + return reject(putModelRequest.error); + }; + }; + }; + putInfoRequest.onerror = (error) => { + db.close(); + return reject(putInfoRequest.error); + }; + infoTx.oncomplete = () => { + if (modelTx == null) { + db.close(); + } else { + modelTx.oncomplete = () => db.close(); + } + }; + } + }; + openRequest.onerror = (error) => reject(openRequest.error); + }); + } +}; +BrowserIndexedDB.URL_SCHEME = "indexeddb://"; +var indexedDBRouter = (url) => { + if (!env().getBool("IS_BROWSER")) { + return null; + } else { + if (!Array.isArray(url) && url.startsWith(BrowserIndexedDB.URL_SCHEME)) { + return browserIndexedDB(url.slice(BrowserIndexedDB.URL_SCHEME.length)); + } else { + return null; + } + } +}; +IORouterRegistry.registerSaveRouter(indexedDBRouter); +IORouterRegistry.registerLoadRouter(indexedDBRouter); +function browserIndexedDB(modelPath) { + return new BrowserIndexedDB(modelPath); +} +function maybeStripScheme(key) { + return key.startsWith(BrowserIndexedDB.URL_SCHEME) ? key.slice(BrowserIndexedDB.URL_SCHEME.length) : key; +} +var BrowserIndexedDBManager = class { + constructor() { + this.indexedDB = getIndexedDBFactory(); + } + async listModels() { + return new Promise((resolve, reject) => { + const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION); + openRequest.onupgradeneeded = () => setUpDatabase(openRequest); + openRequest.onsuccess = () => { + const db = openRequest.result; + const tx = db.transaction(INFO_STORE_NAME, "readonly"); + const store = tx.objectStore(INFO_STORE_NAME); + const getAllInfoRequest = store.getAll(); + getAllInfoRequest.onsuccess = () => { + const out = {}; + for (const item of getAllInfoRequest.result) { + out[item.modelPath] = item.modelArtifactsInfo; + } + resolve(out); + }; + getAllInfoRequest.onerror = (error) => { + db.close(); + return reject(getAllInfoRequest.error); + }; + tx.oncomplete = () => db.close(); + }; + openRequest.onerror = (error) => reject(openRequest.error); + }); + } + async removeModel(path) { + path = maybeStripScheme(path); + return new Promise((resolve, reject) => { + const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION); + openRequest.onupgradeneeded = () => setUpDatabase(openRequest); + openRequest.onsuccess = () => { + const db = openRequest.result; + const infoTx = db.transaction(INFO_STORE_NAME, "readwrite"); + const infoStore = infoTx.objectStore(INFO_STORE_NAME); + const getInfoRequest = infoStore.get(path); + let modelTx; + getInfoRequest.onsuccess = () => { + if (getInfoRequest.result == null) { + db.close(); + return reject(new Error(`Cannot find model with path '${path}' in IndexedDB.`)); + } else { + const deleteInfoRequest = infoStore.delete(path); + const deleteModelData = () => { + modelTx = db.transaction(MODEL_STORE_NAME, "readwrite"); + const modelStore = modelTx.objectStore(MODEL_STORE_NAME); + const deleteModelRequest = modelStore.delete(path); + deleteModelRequest.onsuccess = () => resolve(getInfoRequest.result.modelArtifactsInfo); + deleteModelRequest.onerror = (error) => reject(getInfoRequest.error); + }; + deleteInfoRequest.onsuccess = deleteModelData; + deleteInfoRequest.onerror = (error) => { + deleteModelData(); + db.close(); + return reject(getInfoRequest.error); + }; + } + }; + getInfoRequest.onerror = (error) => { + db.close(); + return reject(getInfoRequest.error); + }; + infoTx.oncomplete = () => { + if (modelTx == null) { + db.close(); + } else { + modelTx.oncomplete = () => db.close(); + } + }; + }; + openRequest.onerror = (error) => reject(openRequest.error); + }); + } +}; +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var PATH_SEPARATOR = "/"; +var PATH_PREFIX = "tensorflowjs_models"; +var INFO_SUFFIX = "info"; +var MODEL_TOPOLOGY_SUFFIX = "model_topology"; +var WEIGHT_SPECS_SUFFIX = "weight_specs"; +var WEIGHT_DATA_SUFFIX = "weight_data"; +var MODEL_METADATA_SUFFIX = "model_metadata"; +function getModelKeys(path) { + return { + info: [PATH_PREFIX, path, INFO_SUFFIX].join(PATH_SEPARATOR), + topology: [PATH_PREFIX, path, MODEL_TOPOLOGY_SUFFIX].join(PATH_SEPARATOR), + weightSpecs: [PATH_PREFIX, path, WEIGHT_SPECS_SUFFIX].join(PATH_SEPARATOR), + weightData: [PATH_PREFIX, path, WEIGHT_DATA_SUFFIX].join(PATH_SEPARATOR), + modelMetadata: [PATH_PREFIX, path, MODEL_METADATA_SUFFIX].join(PATH_SEPARATOR) + }; +} +function getModelPathFromKey(key) { + const items = key.split(PATH_SEPARATOR); + if (items.length < 3) { + throw new Error(`Invalid key format: ${key}`); + } + return items.slice(1, items.length - 1).join(PATH_SEPARATOR); +} +function maybeStripScheme2(key) { + return key.startsWith(BrowserLocalStorage.URL_SCHEME) ? key.slice(BrowserLocalStorage.URL_SCHEME.length) : key; +} +var BrowserLocalStorage = class { + constructor(modelPath) { + if (!env().getBool("IS_BROWSER") || typeof window === "undefined" || typeof window.localStorage === "undefined") { + throw new Error("The current environment does not support local storage."); + } + this.LS = window.localStorage; + if (modelPath == null || !modelPath) { + throw new Error("For local storage, modelPath must not be null, undefined or empty."); + } + this.modelPath = modelPath; + this.keys = getModelKeys(this.modelPath); + } + async save(modelArtifacts) { + if (modelArtifacts.modelTopology instanceof ArrayBuffer) { + throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet."); + } else { + const topology = JSON.stringify(modelArtifacts.modelTopology); + const weightSpecs = JSON.stringify(modelArtifacts.weightSpecs); + const modelArtifactsInfo = getModelArtifactsInfoForJSON(modelArtifacts); + try { + this.LS.setItem(this.keys.info, JSON.stringify(modelArtifactsInfo)); + this.LS.setItem(this.keys.topology, topology); + this.LS.setItem(this.keys.weightSpecs, weightSpecs); + this.LS.setItem(this.keys.weightData, arrayBufferToBase64String(modelArtifacts.weightData)); + const result = { + format: modelArtifacts.format, + generatedBy: modelArtifacts.generatedBy, + convertedBy: modelArtifacts.convertedBy + }; + if (modelArtifacts.signature != null) { + result.signature = modelArtifacts.signature; + } + if (modelArtifacts.userDefinedMetadata != null) { + result.userDefinedMetadata = modelArtifacts.userDefinedMetadata; + } + if (modelArtifacts.modelInitializer != null) { + result.modelInitializer = modelArtifacts.modelInitializer; + } + this.LS.setItem(this.keys.modelMetadata, JSON.stringify(result)); + return {modelArtifactsInfo}; + } catch (err) { + this.LS.removeItem(this.keys.info); + this.LS.removeItem(this.keys.topology); + this.LS.removeItem(this.keys.weightSpecs); + this.LS.removeItem(this.keys.weightData); + this.LS.removeItem(this.keys.modelMetadata); + throw new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${modelArtifactsInfo.modelTopologyBytes}, weightSpecsBytes=${modelArtifactsInfo.weightSpecsBytes}, weightDataBytes=${modelArtifactsInfo.weightDataBytes}.`); + } + } + } + async load() { + const info = JSON.parse(this.LS.getItem(this.keys.info)); + if (info == null) { + throw new Error(`In local storage, there is no model with name '${this.modelPath}'`); + } + if (info.modelTopologyType !== "JSON") { + throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet."); + } + const out = {}; + const topology = JSON.parse(this.LS.getItem(this.keys.topology)); + if (topology == null) { + throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`); + } + out.modelTopology = topology; + const weightSpecs = JSON.parse(this.LS.getItem(this.keys.weightSpecs)); + if (weightSpecs == null) { + throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`); + } + out.weightSpecs = weightSpecs; + const metadataString = this.LS.getItem(this.keys.modelMetadata); + if (metadataString != null) { + const metadata = JSON.parse(metadataString); + out.format = metadata["format"]; + out.generatedBy = metadata["generatedBy"]; + out.convertedBy = metadata["convertedBy"]; + if (metadata["signature"] != null) { + out.signature = metadata["signature"]; + } + if (metadata["userDefinedMetadata"] != null) { + out.userDefinedMetadata = metadata["userDefinedMetadata"]; + } + if (metadata["modelInitializer"] != null) { + out.modelInitializer = metadata["modelInitializer"]; + } + } + const weightDataBase64 = this.LS.getItem(this.keys.weightData); + if (weightDataBase64 == null) { + throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`); + } + out.weightData = base64StringToArrayBuffer(weightDataBase64); + return out; + } +}; +BrowserLocalStorage.URL_SCHEME = "localstorage://"; +var localStorageRouter = (url) => { + if (!env().getBool("IS_BROWSER")) { + return null; + } else { + if (!Array.isArray(url) && url.startsWith(BrowserLocalStorage.URL_SCHEME)) { + return browserLocalStorage(url.slice(BrowserLocalStorage.URL_SCHEME.length)); + } else { + return null; + } + } +}; +IORouterRegistry.registerSaveRouter(localStorageRouter); +IORouterRegistry.registerLoadRouter(localStorageRouter); +function browserLocalStorage(modelPath) { + return new BrowserLocalStorage(modelPath); +} +var BrowserLocalStorageManager = class { + constructor() { + assert(env().getBool("IS_BROWSER"), () => "Current environment is not a web browser"); + assert(typeof window === "undefined" || typeof window.localStorage !== "undefined", () => "Current browser does not appear to support localStorage"); + this.LS = window.localStorage; + } + async listModels() { + const out = {}; + const prefix = PATH_PREFIX + PATH_SEPARATOR; + const suffix = PATH_SEPARATOR + INFO_SUFFIX; + for (let i = 0; i < this.LS.length; ++i) { + const key = this.LS.key(i); + if (key.startsWith(prefix) && key.endsWith(suffix)) { + const modelPath = getModelPathFromKey(key); + out[modelPath] = JSON.parse(this.LS.getItem(key)); + } + } + return out; + } + async removeModel(path) { + path = maybeStripScheme2(path); + const keys = getModelKeys(path); + if (this.LS.getItem(keys.info) == null) { + throw new Error(`Cannot find model at path '${path}'`); + } + const info = JSON.parse(this.LS.getItem(keys.info)); + this.LS.removeItem(keys.info); + this.LS.removeItem(keys.topology); + this.LS.removeItem(keys.weightSpecs); + this.LS.removeItem(keys.weightData); + return info; + } +}; +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var URL_SCHEME_SUFFIX = "://"; +var ModelStoreManagerRegistry = class { + constructor() { + this.managers = {}; + } + static getInstance() { + if (ModelStoreManagerRegistry.instance == null) { + ModelStoreManagerRegistry.instance = new ModelStoreManagerRegistry(); + } + return ModelStoreManagerRegistry.instance; + } + static registerManager(scheme, manager) { + assert(scheme != null, () => "scheme must not be undefined or null."); + if (scheme.endsWith(URL_SCHEME_SUFFIX)) { + scheme = scheme.slice(0, scheme.indexOf(URL_SCHEME_SUFFIX)); + } + assert(scheme.length > 0, () => "scheme must not be an empty string."); + const registry = ModelStoreManagerRegistry.getInstance(); + assert(registry.managers[scheme] == null, () => `A model store manager is already registered for scheme '${scheme}'.`); + registry.managers[scheme] = manager; + } + static getManager(scheme) { + const manager = this.getInstance().managers[scheme]; + if (manager == null) { + throw new Error(`Cannot find model manager for scheme '${scheme}'`); + } + return manager; + } + static getSchemes() { + return Object.keys(this.getInstance().managers); + } +}; +function parseURL(url) { + if (url.indexOf(URL_SCHEME_SUFFIX) === -1) { + throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ModelStoreManagerRegistry.getSchemes().join(",")}`); + } + return { + scheme: url.split(URL_SCHEME_SUFFIX)[0], + path: url.split(URL_SCHEME_SUFFIX)[1] + }; +} +async function cloneModelInternal(sourceURL, destURL, deleteSource = false) { + assert(sourceURL !== destURL, () => `Old path and new path are the same: '${sourceURL}'`); + const loadHandlers = IORouterRegistry.getLoadHandlers(sourceURL); + assert(loadHandlers.length > 0, () => `Copying failed because no load handler is found for source URL ${sourceURL}.`); + assert(loadHandlers.length < 2, () => `Copying failed because more than one (${loadHandlers.length}) load handlers for source URL ${sourceURL}.`); + const loadHandler = loadHandlers[0]; + const saveHandlers = IORouterRegistry.getSaveHandlers(destURL); + assert(saveHandlers.length > 0, () => `Copying failed because no save handler is found for destination URL ${destURL}.`); + assert(saveHandlers.length < 2, () => `Copying failed because more than one (${loadHandlers.length}) save handlers for destination URL ${destURL}.`); + const saveHandler = saveHandlers[0]; + const sourceScheme = parseURL(sourceURL).scheme; + const sourcePath = parseURL(sourceURL).path; + const sameMedium = sourceScheme === parseURL(sourceURL).scheme; + const modelArtifacts = await loadHandler.load(); + if (deleteSource && sameMedium) { + await ModelStoreManagerRegistry.getManager(sourceScheme).removeModel(sourcePath); + } + const saveResult = await saveHandler.save(modelArtifacts); + if (deleteSource && !sameMedium) { + await ModelStoreManagerRegistry.getManager(sourceScheme).removeModel(sourcePath); + } + return saveResult.modelArtifactsInfo; +} +async function listModels() { + const schemes = ModelStoreManagerRegistry.getSchemes(); + const out = {}; + for (const scheme of schemes) { + const schemeOut = await ModelStoreManagerRegistry.getManager(scheme).listModels(); + for (const path in schemeOut) { + const url = scheme + URL_SCHEME_SUFFIX + path; + out[url] = schemeOut[path]; + } + } + return out; +} +async function removeModel(url) { + const schemeAndPath = parseURL(url); + const manager = ModelStoreManagerRegistry.getManager(schemeAndPath.scheme); + return manager.removeModel(schemeAndPath.path); +} +async function copyModel(sourceURL, destURL) { + const deleteSource = false; + return cloneModelInternal(sourceURL, destURL, deleteSource); +} +async function moveModel(sourceURL, destURL) { + const deleteSource = true; + return cloneModelInternal(sourceURL, destURL, deleteSource); +} +/** + * @license + * Copyright 2019 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var PlatformBrowser = class { + fetch(path, init2) { + return fetch(path, init2); + } + now() { + return performance.now(); + } + encode(text, encoding) { + if (encoding !== "utf-8" && encoding !== "utf8") { + throw new Error(`Browser's encoder only supports utf-8, but got ${encoding}`); + } + if (this.textEncoder == null) { + this.textEncoder = new TextEncoder(); + } + return this.textEncoder.encode(text); + } + decode(bytes, encoding) { + return new TextDecoder(encoding).decode(bytes); + } +}; +if (env().get("IS_BROWSER")) { + env().setPlatform("browser", new PlatformBrowser()); + try { + ModelStoreManagerRegistry.registerManager(BrowserLocalStorage.URL_SCHEME, new BrowserLocalStorageManager()); + } catch (err) { + } + try { + ModelStoreManagerRegistry.registerManager(BrowserIndexedDB.URL_SCHEME, new BrowserIndexedDBManager()); + } catch (err) { + } +} +/** + * @license + * Copyright 2019 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var getNodeFetch = { + importFetch: () => require_browser() +}; +var systemFetch; +var PlatformNode = class { + constructor() { + this.util = require("util"); + this.textEncoder = new this.util.TextEncoder(); + } + fetch(path, requestInits) { + if (env().global.fetch != null) { + return env().global.fetch(path, requestInits); + } + if (systemFetch == null) { + systemFetch = getNodeFetch.importFetch(); + } + return systemFetch(path, requestInits); + } + now() { + const time2 = process.hrtime(); + return time2[0] * 1e3 + time2[1] / 1e6; + } + encode(text, encoding) { + if (encoding !== "utf-8" && encoding !== "utf8") { + throw new Error(`Node built-in encoder only supports utf-8, but got ${encoding}`); + } + return this.textEncoder.encode(text); + } + decode(bytes, encoding) { + if (bytes.length === 0) { + return ""; + } + return new this.util.TextDecoder(encoding).decode(bytes); + } +}; +if (env().get("IS_NODE")) { + env().setPlatform("node", new PlatformNode()); +} +/** + * @license + * Copyright 2020 Google Inc. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function buffer(shape, dtype = "float32", values) { + dtype = dtype || "float32"; + assertNonNegativeIntegerDimensions(shape); + return new TensorBuffer(shape, dtype, values); +} +/** + * @license + * Copyright 2020 Google Inc. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function cast_(x, dtype) { + const $x = convertToTensor(x, "x", "cast"); + if (!isValidDtype(dtype)) { + throw new Error(`Failed to cast to unknown dtype ${dtype}`); + } + if (dtype === "string" && $x.dtype !== "string" || dtype !== "string" && $x.dtype === "string") { + throw new Error("Only strings can be casted to strings"); + } + const inputs = {x: $x}; + const attrs = {dtype}; + return ENGINE.runKernel(Cast, inputs, attrs); +} +var cast = op({cast_}); +/** + * @license + * Copyright 2020 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function clone_(x) { + const $x = convertToTensor(x, "x", "clone", "string_or_numeric"); + const inputs = {x: $x}; + return ENGINE.runKernel(Identity, inputs); +} +var clone = op({clone_}); +/** + * @license + * Copyright 2020 Google Inc. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function print2(x, verbose = false) { + console.log(x.toString(verbose)); +} +/** + * @license + * Copyright 2020 Google Inc. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +getOrMakeEngine(); +var opHandler2 = { + buffer, + cast, + clone, + print: print2 +}; +setOpHandler(opHandler2); +var io_exports = {}; +__export2(io_exports, { + browserFiles: () => browserFiles, + browserHTTPRequest: () => browserHTTPRequest, + concatenateArrayBuffers: () => concatenateArrayBuffers, + copyModel: () => copyModel, + decodeWeights: () => decodeWeights, + encodeWeights: () => encodeWeights, + fromMemory: () => fromMemory, + getLoadHandlers: () => getLoadHandlers, + getModelArtifactsInfoForJSON: () => getModelArtifactsInfoForJSON, + getSaveHandlers: () => getSaveHandlers, + http: () => http, + isHTTPScheme: () => isHTTPScheme, + listModels: () => listModels, + loadWeights: () => loadWeights, + moveModel: () => moveModel, + registerLoadRouter: () => registerLoadRouter, + registerSaveRouter: () => registerSaveRouter, + removeModel: () => removeModel, + weightsLoaderFactory: () => weightsLoaderFactory, + withSaveHandler: () => withSaveHandler +}); +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var DEFAULT_FILE_NAME_PREFIX = "model"; +var DEFAULT_JSON_EXTENSION_NAME = ".json"; +var DEFAULT_WEIGHT_DATA_EXTENSION_NAME = ".weights.bin"; +function defer(f) { + return new Promise((resolve) => setTimeout(resolve)).then(f); +} +var BrowserDownloads = class { + constructor(fileNamePrefix) { + if (!env().getBool("IS_BROWSER")) { + throw new Error("browserDownloads() cannot proceed because the current environment is not a browser."); + } + if (fileNamePrefix.startsWith(BrowserDownloads.URL_SCHEME)) { + fileNamePrefix = fileNamePrefix.slice(BrowserDownloads.URL_SCHEME.length); + } + if (fileNamePrefix == null || fileNamePrefix.length === 0) { + fileNamePrefix = DEFAULT_FILE_NAME_PREFIX; + } + this.modelTopologyFileName = fileNamePrefix + DEFAULT_JSON_EXTENSION_NAME; + this.weightDataFileName = fileNamePrefix + DEFAULT_WEIGHT_DATA_EXTENSION_NAME; + } + async save(modelArtifacts) { + if (typeof document === "undefined") { + throw new Error("Browser downloads are not supported in this environment since `document` is not present"); + } + const weightsURL = window.URL.createObjectURL(new Blob([modelArtifacts.weightData], {type: "application/octet-stream"})); + if (modelArtifacts.modelTopology instanceof ArrayBuffer) { + throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet."); + } else { + const weightsManifest = [{ + paths: ["./" + this.weightDataFileName], + weights: modelArtifacts.weightSpecs + }]; + const modelTopologyAndWeightManifest = { + modelTopology: modelArtifacts.modelTopology, + format: modelArtifacts.format, + generatedBy: modelArtifacts.generatedBy, + convertedBy: modelArtifacts.convertedBy, + weightsManifest + }; + if (modelArtifacts.signature != null) { + modelTopologyAndWeightManifest.signature = modelArtifacts.signature; + } + if (modelArtifacts.userDefinedMetadata != null) { + modelTopologyAndWeightManifest.userDefinedMetadata = modelArtifacts.userDefinedMetadata; + } + if (modelArtifacts.modelInitializer != null) { + modelTopologyAndWeightManifest.modelInitializer = modelArtifacts.modelInitializer; + } + const modelTopologyAndWeightManifestURL = window.URL.createObjectURL(new Blob([JSON.stringify(modelTopologyAndWeightManifest)], {type: "application/json"})); + const jsonAnchor = this.jsonAnchor == null ? document.createElement("a") : this.jsonAnchor; + jsonAnchor.download = this.modelTopologyFileName; + jsonAnchor.href = modelTopologyAndWeightManifestURL; + await defer(() => jsonAnchor.dispatchEvent(new MouseEvent("click"))); + if (modelArtifacts.weightData != null) { + const weightDataAnchor = this.weightDataAnchor == null ? document.createElement("a") : this.weightDataAnchor; + weightDataAnchor.download = this.weightDataFileName; + weightDataAnchor.href = weightsURL; + await defer(() => weightDataAnchor.dispatchEvent(new MouseEvent("click"))); + } + return {modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts)}; + } + } +}; +BrowserDownloads.URL_SCHEME = "downloads://"; +var BrowserFiles = class { + constructor(files) { + if (files == null || files.length < 1) { + throw new Error(`When calling browserFiles, at least 1 file is required, but received ${files}`); + } + this.files = files; + } + async load() { + const jsonFile = this.files[0]; + const weightFiles = this.files.slice(1); + return new Promise((resolve, reject) => { + const jsonReader = new FileReader(); + jsonReader.onload = (event) => { + const modelJSON = JSON.parse(event.target.result); + const modelTopology = modelJSON.modelTopology; + if (modelTopology == null) { + reject(new Error(`modelTopology field is missing from file ${jsonFile.name}`)); + return; + } + if (weightFiles.length === 0) { + resolve({modelTopology}); + } + const weightsManifest = modelJSON.weightsManifest; + if (weightsManifest == null) { + reject(new Error(`weightManifest field is missing from file ${jsonFile.name}`)); + return; + } + let pathToFile; + try { + pathToFile = this.checkManifestAndWeightFiles(weightsManifest, weightFiles); + } catch (err) { + reject(err); + return; + } + const weightSpecs = []; + const paths = []; + const perFileBuffers = []; + weightsManifest.forEach((weightsGroup) => { + weightsGroup.paths.forEach((path) => { + paths.push(path); + perFileBuffers.push(null); + }); + weightSpecs.push(...weightsGroup.weights); + }); + weightsManifest.forEach((weightsGroup) => { + weightsGroup.paths.forEach((path) => { + const weightFileReader = new FileReader(); + weightFileReader.onload = (event2) => { + const weightData = event2.target.result; + const index = paths.indexOf(path); + perFileBuffers[index] = weightData; + if (perFileBuffers.indexOf(null) === -1) { + const result = { + modelTopology, + weightSpecs, + weightData: concatenateArrayBuffers(perFileBuffers), + format: modelJSON.format, + generatedBy: modelJSON.generatedBy, + convertedBy: modelJSON.convertedBy + }; + if (modelJSON.signature != null) { + result.signature = modelJSON.signature; + } + if (modelJSON.userDefinedMetadata != null) { + result.userDefinedMetadata = modelJSON.userDefinedMetadata; + } + if (modelJSON.modelInitializer != null) { + result.modelInitializer = modelJSON.modelInitializer; + } + resolve(result); + } + }; + weightFileReader.onerror = (error) => reject(`Failed to weights data from file of path '${path}'.`); + weightFileReader.readAsArrayBuffer(pathToFile[path]); + }); + }); + }; + jsonReader.onerror = (error) => reject(`Failed to read model topology and weights manifest JSON from file '${jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`); + jsonReader.readAsText(jsonFile); + }); + } + checkManifestAndWeightFiles(manifest, files) { + const basenames = []; + const fileNames = files.map((file) => basename(file.name)); + const pathToFile = {}; + for (const group of manifest) { + group.paths.forEach((path) => { + const pathBasename = basename(path); + if (basenames.indexOf(pathBasename) !== -1) { + throw new Error(`Duplicate file basename found in weights manifest: '${pathBasename}'`); + } + basenames.push(pathBasename); + if (fileNames.indexOf(pathBasename) === -1) { + throw new Error(`Weight file with basename '${pathBasename}' is not provided.`); + } else { + pathToFile[path] = files[fileNames.indexOf(pathBasename)]; + } + }); + } + if (basenames.length !== files.length) { + throw new Error(`Mismatch in the number of files in weights manifest (${basenames.length}) and the number of weight files provided (${files.length}).`); + } + return pathToFile; + } +}; +var browserDownloadsRouter = (url) => { + if (!env().getBool("IS_BROWSER")) { + return null; + } else { + if (!Array.isArray(url) && url.startsWith(BrowserDownloads.URL_SCHEME)) { + return browserDownloads(url.slice(BrowserDownloads.URL_SCHEME.length)); + } else { + return null; + } + } +}; +IORouterRegistry.registerSaveRouter(browserDownloadsRouter); +function browserDownloads(fileNamePrefix = "model") { + return new BrowserDownloads(fileNamePrefix); +} +function browserFiles(files) { + return new BrowserFiles(files); +} +/** + * @license + * Copyright 2019 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function monitorPromisesProgress(promises, onProgress, startFraction, endFraction) { + checkPromises(promises); + startFraction = startFraction == null ? 0 : startFraction; + endFraction = endFraction == null ? 1 : endFraction; + checkFraction(startFraction, endFraction); + let resolvedPromise = 0; + const registerMonitor = (promise) => { + promise.then((value) => { + const fraction = startFraction + ++resolvedPromise / promises.length * (endFraction - startFraction); + onProgress(fraction); + return value; + }); + return promise; + }; + function checkPromises(promises2) { + assert(promises2 != null && Array.isArray(promises2) && promises2.length > 0, () => "promises must be a none empty array"); + } + function checkFraction(startFraction2, endFraction2) { + assert(startFraction2 >= 0 && startFraction2 <= 1, () => `Progress fraction must be in range [0, 1], but got startFraction ${startFraction2}`); + assert(endFraction2 >= 0 && endFraction2 <= 1, () => `Progress fraction must be in range [0, 1], but got endFraction ${endFraction2}`); + assert(endFraction2 >= startFraction2, () => `startFraction must be no more than endFraction, but got startFraction ${startFraction2} and endFraction ${endFraction2}`); + } + return Promise.all(promises.map(registerMonitor)); +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +async function loadWeightsAsArrayBuffer(fetchURLs, loadOptions) { + if (loadOptions == null) { + loadOptions = {}; + } + const fetchFunc = loadOptions.fetchFunc == null ? env().platform.fetch : loadOptions.fetchFunc; + const requests = fetchURLs.map((fetchURL) => fetchFunc(fetchURL, loadOptions.requestInit, {isBinary: true})); + const fetchStartFraction = 0; + const fetchEndFraction = 0.5; + const responses = loadOptions.onProgress == null ? await Promise.all(requests) : await monitorPromisesProgress(requests, loadOptions.onProgress, fetchStartFraction, fetchEndFraction); + const bufferPromises = responses.map((response) => response.arrayBuffer()); + const bufferStartFraction = 0.5; + const bufferEndFraction = 1; + const buffers = loadOptions.onProgress == null ? await Promise.all(bufferPromises) : await monitorPromisesProgress(bufferPromises, loadOptions.onProgress, bufferStartFraction, bufferEndFraction); + return buffers; +} +async function loadWeights(manifest, filePathPrefix = "", weightNames, requestInit) { + const fetchWeights = (fetchUrls) => loadWeightsAsArrayBuffer(fetchUrls, {requestInit}); + const loadWeights2 = weightsLoaderFactory(fetchWeights); + return loadWeights2(manifest, filePathPrefix, weightNames); +} +function weightsLoaderFactory(fetchWeightsFunction) { + return async (manifest, filePathPrefix = "", weightNames) => { + const groupIndicesToFetchMap = manifest.map(() => false); + const groupWeightsToFetch = {}; + const weightsFound = weightNames != null ? weightNames.map(() => false) : []; + const allManifestWeightNames = []; + manifest.forEach((manifestGroupConfig, groupIndex) => { + let groupOffset = 0; + manifestGroupConfig.weights.forEach((weightsEntry) => { + const rawDtype = "quantization" in weightsEntry ? weightsEntry.quantization.dtype : weightsEntry.dtype; + const weightsBytes = DTYPE_VALUE_SIZE_MAP[rawDtype] * sizeFromShape(weightsEntry.shape); + const enqueueWeightsForFetchingFn = () => { + groupIndicesToFetchMap[groupIndex] = true; + if (groupWeightsToFetch[groupIndex] == null) { + groupWeightsToFetch[groupIndex] = []; + } + groupWeightsToFetch[groupIndex].push({ + manifestEntry: weightsEntry, + groupOffset, + sizeBytes: weightsBytes + }); + }; + if (weightNames != null) { + weightNames.forEach((weightName, weightIndex) => { + if (weightName === weightsEntry.name) { + enqueueWeightsForFetchingFn(); + weightsFound[weightIndex] = true; + } + }); + } else { + enqueueWeightsForFetchingFn(); + } + allManifestWeightNames.push(weightsEntry.name); + groupOffset += weightsBytes; + }); + }); + if (!weightsFound.every((found) => found)) { + const weightsNotFound = weightNames.filter((_, i) => !weightsFound[i]); + throw new Error(`Could not find weights in manifest with names: ${weightsNotFound.join(", ")}. +Manifest JSON has weights with names: ${allManifestWeightNames.join(", ")}.`); + } + const groupIndicesToFetch = groupIndicesToFetchMap.reduce((accumulator, shouldFetch, i) => { + if (shouldFetch) { + accumulator.push(i); + } + return accumulator; + }, []); + const fetchUrls = []; + groupIndicesToFetch.forEach((i) => { + manifest[i].paths.forEach((filepath) => { + const fetchUrl = filePathPrefix + (!filePathPrefix.endsWith("/") ? "/" : "") + filepath; + fetchUrls.push(fetchUrl); + }); + }); + const buffers = await fetchWeightsFunction(fetchUrls); + const weightsTensorMap = {}; + let bufferIndexOffset = 0; + groupIndicesToFetch.forEach((i) => { + const numBuffers = manifest[i].paths.length; + let groupBytes = 0; + for (let i2 = 0; i2 < numBuffers; i2++) { + groupBytes += buffers[bufferIndexOffset + i2].byteLength; + } + const groupBuffer = new ArrayBuffer(groupBytes); + const groupByteBuffer = new Uint8Array(groupBuffer); + let groupBufferOffset = 0; + for (let i2 = 0; i2 < numBuffers; i2++) { + const buffer2 = new Uint8Array(buffers[bufferIndexOffset + i2]); + groupByteBuffer.set(buffer2, groupBufferOffset); + groupBufferOffset += buffer2.byteLength; + } + const weightsEntries = groupWeightsToFetch[i]; + weightsEntries.forEach((weightsEntry) => { + const byteBuffer = groupBuffer.slice(weightsEntry.groupOffset, weightsEntry.groupOffset + weightsEntry.sizeBytes); + const nameToTensorMap = decodeWeights(byteBuffer, [weightsEntry.manifestEntry]); + for (const name2 in nameToTensorMap) { + weightsTensorMap[name2] = nameToTensorMap[name2]; + } + }); + bufferIndexOffset += numBuffers; + }); + return weightsTensorMap; + }; +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var OCTET_STREAM_MIME_TYPE = "application/octet-stream"; +var JSON_TYPE = "application/json"; +var HTTPRequest = class { + constructor(path, loadOptions) { + this.DEFAULT_METHOD = "POST"; + if (loadOptions == null) { + loadOptions = {}; + } + this.weightPathPrefix = loadOptions.weightPathPrefix; + this.onProgress = loadOptions.onProgress; + this.weightUrlConverter = loadOptions.weightUrlConverter; + if (loadOptions.fetchFunc != null) { + assert(typeof loadOptions.fetchFunc === "function", () => "Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"); + this.fetch = loadOptions.fetchFunc; + } else { + this.fetch = env().platform.fetch; + } + assert(path != null && path.length > 0, () => "URL path for http must not be null, undefined or empty."); + if (Array.isArray(path)) { + assert(path.length === 2, () => `URL paths for http must have a length of 2, (actual length is ${path.length}).`); + } + this.path = path; + if (loadOptions.requestInit != null && loadOptions.requestInit.body != null) { + throw new Error("requestInit is expected to have no pre-existing body, but has one."); + } + this.requestInit = loadOptions.requestInit || {}; + } + async save(modelArtifacts) { + if (modelArtifacts.modelTopology instanceof ArrayBuffer) { + throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet."); + } + const init2 = Object.assign({method: this.DEFAULT_METHOD}, this.requestInit); + init2.body = new FormData(); + const weightsManifest = [{ + paths: ["./model.weights.bin"], + weights: modelArtifacts.weightSpecs + }]; + const modelTopologyAndWeightManifest = { + modelTopology: modelArtifacts.modelTopology, + format: modelArtifacts.format, + generatedBy: modelArtifacts.generatedBy, + convertedBy: modelArtifacts.convertedBy, + weightsManifest + }; + if (modelArtifacts.signature != null) { + modelTopologyAndWeightManifest.signature = modelArtifacts.signature; + } + if (modelArtifacts.userDefinedMetadata != null) { + modelTopologyAndWeightManifest.userDefinedMetadata = modelArtifacts.userDefinedMetadata; + } + if (modelArtifacts.modelInitializer != null) { + modelTopologyAndWeightManifest.modelInitializer = modelArtifacts.modelInitializer; + } + init2.body.append("model.json", new Blob([JSON.stringify(modelTopologyAndWeightManifest)], {type: JSON_TYPE}), "model.json"); + if (modelArtifacts.weightData != null) { + init2.body.append("model.weights.bin", new Blob([modelArtifacts.weightData], {type: OCTET_STREAM_MIME_TYPE}), "model.weights.bin"); + } + const response = await this.fetch(this.path, init2); + if (response.ok) { + return { + modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts), + responses: [response] + }; + } else { + throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${response.status}.`); + } + } + async load() { + const modelConfigRequest = await this.fetch(this.path, this.requestInit); + if (!modelConfigRequest.ok) { + throw new Error(`Request to ${this.path} failed with status code ${modelConfigRequest.status}. Please verify this URL points to the model JSON of the model to load.`); + } + let modelConfig; + try { + modelConfig = await modelConfigRequest.json(); + } catch (e) { + let message = `Failed to parse model JSON of response from ${this.path}.`; + if (this.path.endsWith(".pb")) { + message += " Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository."; + } else { + message += " Please make sure the server is serving valid JSON for this request."; + } + throw new Error(message); + } + const modelTopology = modelConfig.modelTopology; + const weightsManifest = modelConfig.weightsManifest; + const generatedBy = modelConfig.generatedBy; + const convertedBy = modelConfig.convertedBy; + const format = modelConfig.format; + const signature = modelConfig.signature; + const userDefinedMetadata = modelConfig.userDefinedMetadata; + if (modelTopology == null && weightsManifest == null) { + throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`); + } + let weightSpecs; + let weightData; + if (weightsManifest != null) { + const results = await this.loadWeights(weightsManifest); + [weightSpecs, weightData] = results; + } + const artifacts = { + modelTopology, + weightSpecs, + weightData, + generatedBy, + convertedBy, + format + }; + if (signature != null) { + artifacts.signature = signature; + } + if (userDefinedMetadata != null) { + artifacts.userDefinedMetadata = userDefinedMetadata; + } + const initializer = modelConfig.modelInitializer; + if (initializer) { + artifacts.modelInitializer = initializer; + } + return artifacts; + } + async loadWeights(weightsManifest) { + const weightPath = Array.isArray(this.path) ? this.path[1] : this.path; + const [prefix, suffix] = parseUrl(weightPath); + const pathPrefix = this.weightPathPrefix || prefix; + const weightSpecs = []; + for (const entry of weightsManifest) { + weightSpecs.push(...entry.weights); + } + const fetchURLs = []; + const urlPromises = []; + for (const weightsGroup of weightsManifest) { + for (const path of weightsGroup.paths) { + if (this.weightUrlConverter != null) { + urlPromises.push(this.weightUrlConverter(path)); + } else { + fetchURLs.push(pathPrefix + path + suffix); + } + } + } + if (this.weightUrlConverter) { + fetchURLs.push(...await Promise.all(urlPromises)); + } + const buffers = await loadWeightsAsArrayBuffer(fetchURLs, { + requestInit: this.requestInit, + fetchFunc: this.fetch, + onProgress: this.onProgress + }); + return [weightSpecs, concatenateArrayBuffers(buffers)]; + } +}; +HTTPRequest.URL_SCHEME_REGEX = /^https?:\/\//; +function parseUrl(url) { + const lastSlash = url.lastIndexOf("/"); + const lastSearchParam = url.lastIndexOf("?"); + const prefix = url.substring(0, lastSlash); + const suffix = lastSearchParam > lastSlash ? url.substring(lastSearchParam) : ""; + return [prefix + "/", suffix]; +} +function isHTTPScheme(url) { + return url.match(HTTPRequest.URL_SCHEME_REGEX) != null; +} +var httpRouter = (url, loadOptions) => { + if (typeof fetch === "undefined" && (loadOptions == null || loadOptions.fetchFunc == null)) { + return null; + } else { + let isHTTP = true; + if (Array.isArray(url)) { + isHTTP = url.every((urlItem) => isHTTPScheme(urlItem)); + } else { + isHTTP = isHTTPScheme(url); + } + if (isHTTP) { + return http(url, loadOptions); + } + } + return null; +}; +IORouterRegistry.registerSaveRouter(httpRouter); +IORouterRegistry.registerLoadRouter(httpRouter); +function http(path, loadOptions) { + return new HTTPRequest(path, loadOptions); +} +function browserHTTPRequest(path, loadOptions) { + return http(path, loadOptions); +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var PassthroughLoader = class { + constructor(modelArtifacts) { + this.modelArtifacts = modelArtifacts; + } + async load() { + return this.modelArtifacts; + } +}; +var PassthroughSaver = class { + constructor(saveHandler) { + this.saveHandler = saveHandler; + } + async save(modelArtifacts) { + return this.saveHandler(modelArtifacts); + } +}; +function fromMemory(modelArtifacts, weightSpecs, weightData, trainingConfig) { + if (arguments.length === 1) { + const isModelArtifacts = modelArtifacts.modelTopology != null || modelArtifacts.weightSpecs != null; + if (isModelArtifacts) { + return new PassthroughLoader(modelArtifacts); + } else { + console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."); + return new PassthroughLoader({modelTopology: modelArtifacts}); + } + } else { + console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."); + return new PassthroughLoader({ + modelTopology: modelArtifacts, + weightSpecs, + weightData, + trainingConfig + }); + } +} +function withSaveHandler(saveHandler) { + return new PassthroughSaver(saveHandler); +} +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var math_exports = {}; +__export2(math_exports, { + confusionMatrix: () => confusionMatrix +}); +/** + * @license + * Copyright 2020 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function matMul_(a, b, transposeA = false, transposeB = false) { + let $a = convertToTensor(a, "a", "matMul"); + let $b = convertToTensor(b, "b", "matMul"); + [$a, $b] = makeTypesMatch($a, $b); + const inputs = {a: $a, b: $b}; + const attrs = {transposeA, transposeB}; + return ENGINE.runKernel(BatchMatMul, inputs, attrs); +} +var matMul = op({matMul_}); +/** + * @license + * Copyright 2020 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function oneHot_(indices, depth, onValue = 1, offValue = 0) { + if (depth < 2) { + throw new Error(`Error in oneHot: depth must be >=2, but it is ${depth}`); + } + const $indices = convertToTensor(indices, "indices", "oneHot", "int32"); + const inputs = {indices: $indices}; + const attrs = {depth, onValue, offValue}; + return ENGINE.runKernel(OneHot, inputs, attrs); +} +var oneHot = op({oneHot_}); +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function transpose_(x, perm) { + const $x = convertToTensor(x, "x", "transpose"); + if (perm == null) { + perm = $x.shape.map((s, i) => i).reverse(); + } + assert($x.rank === perm.length, () => `Error in transpose: rank of input ${$x.rank} must match length of perm ${perm}.`); + perm.forEach((axis) => { + assert(axis >= 0 && axis < $x.rank, () => `All entries in 'perm' must be between 0 and ${$x.rank - 1} but got ${perm}`); + }); + if ($x.rank <= 1) { + return $x.clone(); + } + const inputs = {x: $x}; + const attrs = {perm}; + return ENGINE.runKernel(Transpose, inputs, attrs); +} +var transpose = op({transpose_}); +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function confusionMatrix_(labels, predictions, numClasses) { + const $labels = convertToTensor(labels, "labels", "confusionMatrix"); + const $predictions = convertToTensor(predictions, "predictions", "confusionMatrix"); + assert(numClasses == null || numClasses > 0 && Number.isInteger(numClasses), () => `If provided, numClasses must be a positive integer, but got ${numClasses}`); + assert($labels.rank === 1, () => `Expected the rank of labels to be 1, but got ${$labels.rank}`); + assert($predictions.rank === 1, () => `Expected the rank of predictions to be 1, but got ${$predictions.rank}`); + assert($labels.shape[0] === $predictions.shape[0], () => `Mismatch in the number of examples: ${$labels.shape[0]} vs. ${$predictions.shape[0]}. Labels and predictions should have the same number of elements.`); + assert(numClasses > 0 && Number.isInteger(numClasses), () => `numClasses is required to be a positive integer, but got ${numClasses}`); + const oneHotLabels = oneHot(cast($labels, "int32"), numClasses); + const oneHotPredictions = oneHot(cast($predictions, "int32"), numClasses); + const oneHotLabelsT = transpose(oneHotLabels); + const product = matMul(oneHotLabelsT, oneHotPredictions); + return cast(product, "int32"); +} +var confusionMatrix = op({confusionMatrix_}); +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var browser_exports = {}; +__export2(browser_exports, { + fromPixels: () => fromPixels, + toPixels: () => toPixels +}); +/** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +function tensor3d(values, shape, dtype) { + assertNonNull(values); + if (shape != null && shape.length !== 3) { + throw new Error("tensor3d() requires shape to have three numbers"); + } + const inferredShape = inferShape(values, dtype); + if (inferredShape.length !== 3 && inferredShape.length !== 1) { + throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray"); + } + if (inferredShape.length === 1 && shape == null) { + throw new Error("tensor3d() requires shape to be provided when `values` are a flat array"); + } + return makeTensor(values, shape, inferredShape, dtype); +} +/** + * @license + * Copyright 2019 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ +var fromPixels2DContext; +function fromPixels_(pixels, numChannels = 3) { + if (numChannels > 4) { + throw new Error("Cannot construct Tensor with more than 4 channels from pixels."); + } + if (pixels == null) { + throw new Error("pixels passed to tf.browser.fromPixels() can not be null"); + } + let isPixelData = false; + let isImageData = false; + let isVideo = false; + let isImage = false; + let isCanvasLike = false; + let isImageBitmap = false; + if (pixels.data instanceof Uint8Array) { + isPixelData = true; + } else if (typeof ImageData !== "undefined" && pixels instanceof ImageData) { + isImageData = true; + } else if (typeof HTMLVideoElement !== "undefined" && pixels instanceof HTMLVideoElement) { + isVideo = true; + } else if (typeof HTMLImageElement !== "undefined" && pixels instanceof HTMLImageElement) { + isImage = true; + } else if (pixels.getContext != null) { + isCanvasLike = true; + } else if (typeof ImageBitmap !== "undefined" && pixels instanceof ImageBitmap) { + isImageBitmap = true; + } else { + throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${pixels.constructor.name}`); + } + if (isVideo) { + const HAVE_CURRENT_DATA_READY_STATE = 2; + if (isVideo && pixels.readyState < HAVE_CURRENT_DATA_READY_STATE) { + throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the mg){let A=pu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-pu)*i,o*i));return n==="complex64"&&(y=mu(y),g=mu(g)),["["+y.map((_,b)=>fu(_,a[b],n)).join(", ")+", ..., "+g.map((_,b)=>fu(_,a[o-pu+b],n)).join(", ")+"]"]}let f=n==="complex64"?mu(e):Array.from(e);return["["+f.map((A,y)=>fu(A,a[y],n)).join(", ")+"]"]}let u=t.slice(1),c=r.slice(1),h=r[0]*i,d=[];if(o>mg){for(let f=0;f`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||ng(t,this.size),this.strides=$i(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;rDh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=br().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Dh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await br().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(br().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Po.print(this,e)}clone(){return this.throwIfDisposed(),Po.clone(this)}toString(e=!1){let t=this.dataSync();return ak(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Po.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),br().makeVariable(this,e,t,n)}};Object.defineProperty(Xe,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return N1("Tensor",()=>Xe)}Z();var Au=class extends Xe{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Gr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);br().disposeTensor(this),this.dataId=e.dataId,br().incRef(this,null)}dispose(){br().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Au,Symbol.hasInstance,{value:e=>e instanceof Xe&&e.assign!=null&&e.assign instanceof Function});var ur={};Oe(ur,{assertTypesMatch:()=>yg,getTensorsInContainer:()=>C1,isTensorInList:()=>uk,makeTypesMatch:()=>gt});var R1;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(R1||(R1={}));var F1;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(F1||(F1={}));var M1;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(M1||(M1={}));var $1;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})($1||($1={}));var O1;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(O1||(O1={}));var ck={float32:$1,int32:F1,bool:M1,complex64:O1};function Yn(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return ck[e][t]}function Ph(e){return Yn(e,"int32")}function gt(e,t){if(e.dtype===t.dtype)return[e,t];let n=Yn(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function yg(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function uk(e,t){return t.some(n=>n.id===e.id)}function C1(e){let t=[],n=new Set;return gg(e,t,n),t}function gg(e,t,n){if(e==null)return;if(e instanceof Xe){t.push(e);return}if(!hk(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),gg(s,t,n))}}function hk(e){return Array.isArray(e)||typeof e=="object"}function D1(e){return e.kernelName!=null}var xg=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},yu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new xg}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){zo(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof jl)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r(rthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return yu.nextTensorId++}nextVariableId(){return yu.nextVariableId++}clone(e){let t=$.runKernel(hs,{x:e}),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return $.runKernel(Ja,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if($h(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=D1(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(D1(e)){let{kernelName:p,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let A=$h(p,this.backendName);F(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:m,attrs:f,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,g);let _=g.map(b=>{if(b.rank!=null)return b;let{dataId:w,shape:x,dtype:N}=b;return this.makeTensorFromDataId(w,x,N)});if(r){let b=this.getTensorsForGradient(p,m,_);n=this.saveTensorsForBackwardMode(b)}return _}}else{let{forwardFunc:p}=e,m=f=>{!r||(n=f.map(A=>this.keep(this.clone(A))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>p(this.backend,m));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,A),A}}let{inputs:u,attrs:c}=e,h=D1(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),r&&this.addTapeNode(l,u,t,h,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(p=>u[p]!=null?u[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=T1(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&pa(e[0])&&(a=e.map(o=>du(o)));let s=r.write(a,t,n),i=new Xe(t,n,s,this.nextTensorId());if(this.trackTensor(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=sg(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new Xe(t,n,e,this.nextTensorId());return this.trackTensor(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new Au(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*_1(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Au||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*_1(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=T1(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((u,c)=>{if(u==null){let h=n[c],d=nh(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return u}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=C1(e),n=new Set(t.map(a=>a.id));for(let a=0;a{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(a instanceof Xe,()=>"The result y returned by f() must be a tensor.");let s=tk(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?dk(a.shape):n,nk(i,s,l=>this.tidy(l),pk);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return F(fa(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(i=>i instanceof Xe),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),F(n.value instanceof Xe,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(fa(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];F(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(u.every(h=>h instanceof Xe),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((h,d)=>{c[d]=()=>h}),c};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=hu(),n=await this.backend.time(e);return n.wallMs=hu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new xg;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};yu.nextTensorId=0;yu.nextVariableId=0;function dk(e){let t=b1(Rt(e),"float32");return $.makeTensor(t,e,"float32")}function wg(){let e=hg();if(e._tfengine==null){let t=new cg(e);e._tfengine=new yu(t)}return U8(e._tfengine.ENV),ik(()=>e._tfengine),e._tfengine}var $=wg();function pk(e,t){let n={a:e,b:t};return $.runKernel(ma,n)}var Lh={};Oe(Lh,{isBrowser:()=>_g,isMobile:()=>fk});function mk(){return typeof navigator!="undefined"&&navigator!=null}function fk(){if(mk()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function _g(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var vr=J();vr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});vr.registerFlag("IS_BROWSER",()=>_g());vr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");vr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));vr.registerFlag("PROD",()=>!1);vr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>vr.getBool("DEBUG"));vr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);vr.registerFlag("IS_TEST",()=>!1);vr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);function kr(e,t){let n=e;if(nn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||nn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&bg(e,r,[]),r}function bg(e,t,n){if(n=n||[],!Array.isArray(e)&&!nn(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a=0&&(a=r),vg(r,a,t,n),e==null||!nn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=kr(e,a);!nn(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?Oh(e,a):Ga(e,[],!0);return $.makeTensor(i,s,a)}function gu(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>R(a,`${t}[${s}]`,n,r))}var kg="__op";function O(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+kg;let a=(...s)=>{$.startScope(n);try{let i=r(...s);return k1(i)&&console.error("Cannot return a Promise inside of tidy."),$.endScope(i),i}catch(i){throw $.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function Ak(e,t){let n=R(e,"real","complex"),r=R(t,"imag","complex");tn(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return $.runKernel(lh,a)}var xa=O({complex_:Ak});function wa(e,t,n,r){if(r==null&&(r=eh(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!nn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){v1(t);let a=Rt(t),s=Rt(n);F(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!nn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?Oh(e,r):Ga(e,[],!0),$.makeTensor(e,t,r)}function cr(e,t,n){let r=kr(e,n);return wa(e,t,r,n)}var z1={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Wh=4;async function gk(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+Wh*d.length,m=new Uint8Array(p),f=0;for(let A=0;A{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var P1=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Ng(e){return P1?Buffer.byteLength(e):new Blob([e]).size}function wk(e){if(P1)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function Sg(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function xu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Ng(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Ng(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function bk(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function vk(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function kk(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function xk(){let e=bk(),t=vk(),n=kk();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var vt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return vt.instance==null&&(vt.instance=new vt),vt.instance}static registerSaveRouter(e){vt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){vt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return vt.getHandlers(e,"save")}static getLoadHandlers(e,t){return vt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?vt.getInstance().loadRouters:vt.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},Ik=e=>vt.registerSaveRouter(e),Nk=e=>vt.registerLoadRouter(e),Sk=e=>vt.getSaveHandlers(e),Tk=(e,t)=>vt.getLoadHandlers(e,t),W1="tensorflowjs",B1=1,js="models_store",_a="model_info_store";function Tg(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function V1(e){let t=e.result;t.createObjectStore(js,{keyPath:"modelPath"}),t.createObjectStore(_a,{keyPath:"modelPath"})}var Hs=class{constructor(e){if(this.indexedDB=Tg(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(W1,B1);a.onupgradeneeded=()=>V1(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(js,"readonly"),o=i.objectStore(js).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=xu(t),o=s.transaction(_a,"readwrite"),l=o.objectStore(_a),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),c;u.onsuccess=()=>{c=s.transaction(js,"readwrite");let h=c.objectStore(js).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(_a);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=m=>(s.close(),r(h.error))}},u.onerror=h=>(s.close(),r(u.error)),o.oncomplete=()=>{c==null?s.close():c.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};Hs.URL_SCHEME="indexeddb://";var Eg=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Hs.URL_SCHEME)?Ek(e.slice(Hs.URL_SCHEME.length)):null;vt.registerSaveRouter(Eg);vt.registerLoadRouter(Eg);function Ek(e){return new Hs(e)}function Ck(e){return e.startsWith(Hs.URL_SCHEME)?e.slice(Hs.URL_SCHEME.length):e}var Rk=class{constructor(){this.indexedDB=Tg()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(W1,B1);n.onupgradeneeded=()=>V1(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(_a,"readonly"),s=a.objectStore(_a).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=Ck(e),new Promise((t,n)=>{let r=this.indexedDB.open(W1,B1);r.onupgradeneeded=()=>V1(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(_a,"readwrite"),i=s.objectStore(_a),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),c=()=>{l=a.transaction(js,"readwrite");let h=l.objectStore(js).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};u.onsuccess=c,u.onerror=h=>(c(),a.close(),n(o.error))}},o.onerror=u=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},qr="/",Lo="tensorflowjs_models",Cg="info",Fk="model_topology",Mk="weight_specs",$k="weight_data",Ok="model_metadata";function Rg(e){return{info:[Lo,e,Cg].join(qr),topology:[Lo,e,Fk].join(qr),weightSpecs:[Lo,e,Mk].join(qr),weightData:[Lo,e,$k].join(qr),modelMetadata:[Lo,e,Ok].join(qr)}}function Dk(e){let t=e.split(qr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(qr)}function zk(e){return e.startsWith(Gs.URL_SCHEME)?e.slice(Gs.URL_SCHEME.length):e}var Gs=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Rg(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=xu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,wk(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=_k(s),t}};Gs.URL_SCHEME="localstorage://";var Fg=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Gs.URL_SCHEME)?Pk(e.slice(Gs.URL_SCHEME.length)):null;vt.registerSaveRouter(Fg);vt.registerLoadRouter(Fg);function Pk(e){return new Gs(e)}var Lk=class{constructor(){F(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Lo+qr,n=qr+Cg;for(let r=0;r"scheme must not be undefined or null."),e.endsWith(Wo)&&(e=e.slice(0,e.indexOf(Wo))),F(e.length>0,()=>"scheme must not be an empty string.");let n=Bn.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Bh(e){if(e.indexOf(Wo)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Bn.getSchemes().join(",")}`);return{scheme:e.split(Wo)[0],path:e.split(Wo)[1]}}async function Mg(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=vt.getLoadHandlers(e);F(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=vt.getSaveHandlers(t);F(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=Bh(e).scheme,l=Bh(e).path,u=o===Bh(e).scheme,c=await a.load();n&&u&&await Bn.getManager(o).removeModel(l);let h=await i.save(c);return n&&!u&&await Bn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function Wk(){let e=Bn.getSchemes(),t={};for(let n of e){let r=await Bn.getManager(n).listModels();for(let a in r){let s=n+Wo+a;t[s]=r[a]}}return t}async function Bk(e){let t=Bh(e);return Bn.getManager(t.scheme).removeModel(t.path)}async function Vk(e,t){return Mg(e,t,!1)}async function Uk(e,t){return Mg(e,t,!0)}var jk=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new jk);try{Bn.registerManager(Gs.URL_SCHEME,new Lk)}catch(e){}try{Bn.registerManager(Hs.URL_SCHEME,new Rk)}catch(e){}}var Hk={importFetch:()=>U4()},U1,Gk=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(U1==null&&(U1=Hk.importFetch()),U1(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new Gk);function Pe(e,t="float32",n){return t=t||"float32",v1(e),new Ft(e,t,n)}function qk(e,t){let n=R(e,"x","cast");if(!ag(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return $.runKernel(Ja,r,a)}var fe=O({cast_:qk});function Xk(e){let t={x:R(e,"x","clone","string_or_numeric")};return $.runKernel(hs,t)}var Jn=O({clone_:Xk});function $g(e,t=!1){console.log(e.toString(t))}wg();var Kk={buffer:Pe,cast:fe,clone:Jn,print:$g};ok(Kk);var mn={};Oe(mn,{browserFiles:()=>Zk,browserHTTPRequest:()=>Jk,concatenateArrayBuffers:()=>L1,copyModel:()=>Vk,decodeWeights:()=>Ig,encodeWeights:()=>gk,fromMemory:()=>Qk,getLoadHandlers:()=>Tk,getModelArtifactsInfoForJSON:()=>xu,getSaveHandlers:()=>Sk,http:()=>H1,isHTTPScheme:()=>j1,listModels:()=>Wk,loadWeights:()=>Yk,moveModel:()=>Uk,registerLoadRouter:()=>Nk,registerSaveRouter:()=>Ik,removeModel:()=>Bk,weightsLoaderFactory:()=>Og,withSaveHandler:()=>e9});var t9="model",n9=".json",r9=".weights.bin";function Dg(e){return new Promise(t=>setTimeout(t)).then(e)}var Bo=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Bo.URL_SCHEME)&&(e=e.slice(Bo.URL_SCHEME.length)),(e==null||e.length===0)&&(e=t9),this.modelTopologyFileName=e+n9,this.weightDataFileName=e+r9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await Dg(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await Dg(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:xu(e)}}}};Bo.URL_SCHEME="downloads://";var a9=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let u;try{u=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let c=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(m=>{h.push(m),d.push(null)}),c.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(m=>{let f=new FileReader;f.onload=A=>{let y=A.target.result,g=h.indexOf(m);if(d[g]=y,d.indexOf(null)===-1){let _={modelTopology:o,weightSpecs:c,weightData:L1(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(_.signature=i.signature),i.userDefinedMetadata!=null&&(_.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(_.modelInitializer=i.modelInitializer),n(_)}},f.onerror=A=>r(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(u[m])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>Sg(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=Sg(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},i9=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Bo.URL_SCHEME)?s9(e.slice(Bo.URL_SCHEME.length)):null;vt.registerSaveRouter(i9);function s9(e="model"){return new Bo(e)}function Zk(e){return new a9(e)}function zg(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(u=>{let c=n+ ++a/e.length*(r-n);return t(c),u}),l);function i(l){F(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),F(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),F(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function Pg(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,r=e.map(u=>n(u,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await zg(r,t.onProgress,a,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await zg(i,t.onProgress,o,l)}async function Yk(e,t="",n,r){return Og(a=>Pg(a,{requestInit:r}))(e,t,n)}function Og(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,m)=>{let f=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=z1[y]*Rt(A.shape),_=()=>{a[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:A,groupOffset:f,sizeBytes:g})};r!=null?r.forEach((b,w)=>{b===A.name&&(_(),i[w]=!0)}):_(),o.push(A.name),f+=g})}),!i.every(p=>p)){let p=r.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}. -Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,m,f)=>(m&&p.push(f),p),[]),u=[];l.forEach(p=>{t[p].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let c=await e(u),h={},d=0;return l.forEach(p=>{let m=t[p].paths.length,f=0;for(let _=0;_{let b=A.slice(_.groupOffset,_.groupOffset+_.sizeBytes),w=Ig(b,[_.manifestEntry]);for(let x in w)h[x]=w[x]}),d+=m}),h}}var o9="application/octet-stream",l9="application/json",G1=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:l9}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:o9}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:xu(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let u,c;r!=null&&([u,c]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:u,weightData:c,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=u9(t),a=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(c)):i.push(a+c+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await Pg(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,L1(l)]}};G1.URL_SCHEME_REGEX=/^https?:\/\//;function u9(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function j1(e){return e.match(G1.URL_SCHEME_REGEX)!=null}var Lg=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>j1(r)):n=j1(e),n)return H1(e,t)}return null};vt.registerSaveRouter(Lg);vt.registerLoadRouter(Lg);function H1(e,t){return new G1(e,t)}function Jk(e,t){return H1(e,t)}var q1=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},c9=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function Qk(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new q1(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new q1({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new q1({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function e9(e){return new c9(e)}var Wg={};Oe(Wg,{confusionMatrix:()=>h9});function d9(e,t,n=!1,r=!1){let a=R(e,"a","matMul"),s=R(t,"b","matMul");[a,s]=gt(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return $.runKernel(Ya,i,o)}var Ue=O({matMul_:d9});function p9(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:R(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return $.runKernel(_s,a,s)}var Vo=O({oneHot_:p9});function f9(e,t){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{F(s>=0&&s`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return $.runKernel(Ls,r,a)}var tt=O({transpose_:f9});function m9(e,t,n){let r=R(e,"labels","confusionMatrix"),a=R(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),F(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),F(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=Vo(fe(r,"int32"),n),i=Vo(fe(a,"int32"),n),o=tt(s),l=Ue(o,i);return fe(l,"int32")}var h9=O({confusionMatrix_:m9}),Uo={};Oe(Uo,{fromPixels:()=>y9,toPixels:()=>A9});function Vh(e,t,n){if(Ha(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=kr(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return wa(e,t,r,n)}var jo;function g9(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState element.")}if($h(Mh,$.backendName)!=null){let d={pixels:e},p={numChannels:t};return $.runKernel(Mh,d,p)}let[l,u]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],c;i?c=e.getContext("2d").getImageData(0,0,l,u).data:r||n?c=e.data:(s||a||o)&&(jo==null&&(jo=document.createElement("canvas").getContext("2d")),jo.canvas.width=l,jo.canvas.height=u,jo.drawImage(e,0,0,l,u),c=jo.getImageData(0,0,l,u).data);let h;if(t===4)h=new Int32Array(c);else{let d=l*u;h=new Int32Array(d*t);for(let p=0;p4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let u=0;u1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(c[0]=p*o,c[1]=p*o,c[2]=p*o):c[d]=p*o}let h=u*4;l[h+0]=Math.round(c[0]),l[h+1]=Math.round(c[1]),l[h+2]=Math.round(c[2]),l[h+3]=Math.round(c[3])}if(t!=null){t.width=a,t.height=r;let u=t.getContext("2d"),c=new ImageData(l,a,r);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var y9=O({fromPixels_:g9}),X1={};Oe(X1,{prepareAndValidate:()=>Bg});function Bg(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Rt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;hh/u),1].slice(0,s);return[l,i,u,c]}var K1={};Oe(K1,{calculateShapes:()=>Vg,validateInput:()=>Y1,validateUpdateShape:()=>Z1});function Z1(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;hx9,computeFlatOffset:()=>_9,computeOutShape:()=>Ug,getNormalizedAxes:()=>Hg,isSliceContinous:()=>w9,maskToAxes:()=>Uh,parseSliceParams:()=>Yg,sliceInfo:()=>b9,startForAxis:()=>Kg,startIndicesWithElidedDims:()=>Gg,stopForAxis:()=>Zg,stopIndicesWithElidedDims:()=>qg,stridesForAxis:()=>Xg,stridesWithElidedDims:()=>jg});function x9(e,t,n){let r=e.shape.length;F(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),F(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function Uh(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function Ug(e,t,n){let r=[];for(let a=0;a0){let p=t[0],m=n+1;c=Gg(i,p,m,r,e),h=qg(o,p,m,a,e),d=jg(s,p,m,e)}else for(let p=0;p-1)s[o]=0;else{let l=Jg(t,n,o),u=r[l];e&1<-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=Jg(t,n,o),u=r[l];e&1<0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=Hl(0,i,l-1),i}function Zg(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=Hl(0,i,l):i=Hl(-1,i,l-1),i}function w9(e,t,n){let r=n.length;for(let a=0;a1){r=a;break}for(let a=r+1;a0||n[a]!==e[a])return!1;return!0}function _9(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.lengthi>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function b9(e,t,n,r,a,s,i,o,l){let u=t.slice(),c=n.slice(),h=r;r==null&&(h=new Array(u.length));let d=Uh(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-u.length,m=Uh(o),f=e.slice();m.forEach(x=>{u[x]=0,c[x]=1,f.splice(x,0,1)});let{begin:A,end:y,strides:g}=Hg(f,d,p,u,c,h,a,s,i);u=A,c=y,h=g;let _=Uh(l);_.forEach(x=>{c[x]=u[x]+1,h[x]=1});let b=Ug(u,c,h),w=b.filter((x,N)=>_.indexOf(N)===-1);return{nonStrided:h.every(x=>x===1),$begin:u,$end:c,$strides:h,size:b,newShape:f,outShape:w}}var re={};Oe(re,{Serializable:()=>e5,SerializationMap:()=>qs,registerClass:()=>ba});var e5=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},qs=class{constructor(){this.classNameMap={}}static getMap(){return qs.instance==null&&(qs.instance=new qs),qs.instance}static register(e){qs.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ba(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),qs.register(e)}var t5={};Oe(t5,{TEST_EPSILON_FLOAT16:()=>n5,encodeStrings:()=>r5,expectArrayBuffersEqual:()=>T9,expectArraysClose:()=>v9,expectArraysEqual:()=>I9,expectNumbersClose:()=>N9,expectPromiseToFail:()=>k9,expectValuesInRange:()=>S9,testEpsilon:()=>J1});var E9=.001,n5=.1;function v9(e,t,n){return n==null&&(n=J1()),Q1(e,t,(r,a)=>ef(r,a,n))}function J1(){return $.backend.floatPrecision()===32?E9:n5}function Q1(e,t,n){let r=!0;if((nn(e)||nn(t))&&(r=!1),nn(e)&&nn(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=kr(e),o=kr(t);if(!Gr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=nn(e)?e:Ga(e),s=nn(t)?t:Ga(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}. -Actual: ${a}. -Expected: ${s}.`);for(let i=0;it.fail(),()=>t())}function I9(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return pa(e)||pa(e[0])||pa(t)||pa(t[0])?Q1(e,n,(r,a)=>r==a):Q1(e,t,(r,a)=>ef(r,a,0))}function N9(e,t,n){if(n==null&&(n=J1()),!ef(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function ef(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function S9(e,t,n){for(let r=0;rn)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function T9(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function r5(e){for(let t=0;tt.dispose())}function Wt(e){return $.keep(e)}function O9(e){return $.time(e)}function D9(e){return $.setBackend(e)}function z9(){return $.ready()}function P9(){return $.backendName}function L9(e){$.removeBackend(e)}function nf(e){return $.findBackend(e)}function W9(e){return $.findBackendFactory(e)}function Ho(e,t,n=1){return $.registerBackend(e,t,n)}function a5(){return $.backend}function B9(e,t){J().setPlatform(e,t)}function V9(e,t){let n=R(e,"a","add"),r=R(t,"b","add");[n,r]=gt(n,r);let a={a:n,b:r};return $.runKernel(ma,a)}var se=O({add_:V9});function U9(e,t){let n=R(e,"a","floorDiv"),r=R(t,"b","floorDiv");[n,r]=gt(n,r);let a={a:n,b:r};return $.runKernel(ls,a)}var Hh=O({floorDiv_:U9});function j9(e,t){let n=R(e,"a","div"),r=R(t,"b","div");if([n,r]=gt(n,r),n.dtype==="int32"&&r.dtype==="int32")return Hh(n,r);let a={a:n,b:r},s={};return $.runKernel(ss,a,s)}var we=O({div_:j9});function H9(e,t){let n=R(e,"a","mul"),r=R(t,"b","mul");[n,r]=gt(n,r);let a={a:n,b:r};return $.runKernel(ws,a)}var P=O({mul_:H9});function G9(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return $.runKernel(Zl,n)}else{let n={x:t};return $.runKernel(Di,n)}}var Mt=O({abs_:G9});function q9(e){let t={x:R(e,"x","acos")};return $.runKernel(zi,t)}var rf=O({acos_:q9});function X9(e){let t={x:R(e,"x","acosh")};return $.runKernel(Pi,t)}var af=O({acosh_:X9});function K9(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>R(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!Gr(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return $.runKernel(Xa,r)}var Go=O({addN_:K9});function Z9(e,t=null,n=!1){let r={x:R(e,"x","all","bool")},a={axis:t,keepDims:n};return $.runKernel(rh,r,a)}var Gh=O({all_:Z9});function Y9(e,t=null,n=!1){let r={x:R(e,"x","any","bool")},a={axis:t,keepDims:n};return $.runKernel(ah,r,a)}var wu=O({any_:Y9});function J9(e,t=0){let n={x:R(e,"x","argMax")},r={axis:t};return $.runKernel(Ka,n,r)}var _u=O({argMax_:J9});function Q9(e,t=0){let n={x:R(e,"x","argMin")},r={axis:t};return $.runKernel(ql,n,r)}var sf=O({argMin_:Q9});function eI(e){let t={x:R(e,"x","asin")};return $.runKernel(Li,t)}var of=O({asin_:eI});function tI(e){let t={x:R(e,"x","asinh")};return $.runKernel(Wi,t)}var lf=O({asinh_:tI});function nI(e){let t={x:R(e,"x","atan")};return $.runKernel(Bi,t)}var uf=O({atan_:nI});function rI(e,t){let n=R(e,"a","atan2"),r=R(t,"b","atan2");[n,r]=gt(n,r);let a={a:n,b:r};return $.runKernel(Ui,a)}var cf=O({atan2_:rI});function aI(e){let t={x:R(e,"x","atanh")};return $.runKernel(Vi,t)}var hf=O({atanh_:aI});function sI(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=s5(a);return bu(e,o,n,s,r,null,null,l)}function i5(e,t,n,r,a,s,i="channelsLast"){let[o,l]=qh(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return bu(e,u,n,r,a,s,!1,i)}function iI(e,t,n,r,a,s,i="NDHWC"){let[o,l,u]=df(t),c,h;if(i==="NDHWC")h="channelsLast",c=[o,l,u,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",c=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return o5(e,c,n,r,a,!1,h,s)}function bu(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,u,c,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,h]=e;else if(o==="channelsFirst")[l,h,u,c]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,m]=t,[f,A]=qh(n),[y,g]=qh(r),_=qo(d,y),b=qo(p,g),{padInfo:w,outHeight:x,outWidth:N}=oI(a,u,c,f,A,_,b,s,o),T=i?m*h:m,E;return o==="channelsFirst"?E=[l,T,x,N]:o==="channelsLast"&&(E=[l,x,N,T]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:c,inChannels:h,outHeight:x,outWidth:N,outChannels:T,padInfo:w,strideHeight:f,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:_,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:g,inShape:e,outShape:E,filterShape:t}}function o5(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,u,c,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,h,d]=e;else if(i==="channelsFirst")[l,d,u,c,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,m,f,,A]=t,[y,g,_]=df(n),[b,w,x]=df(r),N=qo(p,b),T=qo(m,w),E=qo(f,x),{padInfo:M,outDepth:D,outHeight:L,outWidth:W}=lI(a,u,c,h,y,g,_,N,T,E,o),U=s?A*d:A,j;return i==="channelsFirst"?j=[l,U,D,L,W]:i==="channelsLast"&&(j=[l,D,L,W,U]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:c,inWidth:h,inChannels:d,outDepth:D,outHeight:L,outWidth:W,outChannels:U,padInfo:M,strideDepth:y,strideHeight:g,strideWidth:_,filterDepth:p,filterHeight:m,filterWidth:f,effectiveFilterDepth:N,effectiveFilterHeight:T,effectiveFilterWidth:E,dilationDepth:b,dilationHeight:w,dilationWidth:x,inShape:e,outShape:j,filterShape:t}}function uI(e,t,n,r,a){r==null&&(r=pf(e,t,n));let s=e[0],i=e[1],o=Xs((s-t+2*r)/n+1,a),l=Xs((i-t+2*r)/n+1,a);return[o,l]}function cI(e,t,n,r,a,s){a==null&&(a=pf(e,t,r));let i=e[0],o=e[1],l=e[2],u=Xs((i-t+2*a)/r+1,s),c=Xs((o-t+2*a)/r+1,s),h=Xs((l-t+2*a)/r+1,s);return[u,c,h,n]}function pf(e,t,n,r=1){let a=qo(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function qh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function df(e){return typeof e=="number"?[e,e,e]:e}function qo(e,t){return t<=1?e:e+(e-1)*(t-1)}function oI(e,t,n,r,a,s,i,o,l){let u,c,h;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=uI([t,n],s,r,e,o);c=d[0],h=d[1]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(c-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),m=Math.floor(d/2),f=d-m,A=Math.floor(p/2),y=p-A;u={top:m,bottom:f,left:A,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:p,left:m,right:f,type:d===0&&p===0&&m===0&&f===0?"VALID":"EXPLICIT"},c=Xs((t-s+d+p)/r+1,o),h=Xs((n-i+m+f)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:h}}function lI(e,t,n,r,a,s,i,o,l,u,c){let h,d,p,m;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=cI([t,n,r,1],o,1,a,e,c);d=f[0],p=f[1],m=f[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),m=Math.ceil(r/i);let f=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(m-1)*i+u-r,g=Math.floor(f/2),_=f-g,b=Math.floor(A/2),w=A-b,x=Math.floor(y/2),N=y-x;h={top:b,bottom:w,left:x,right:N,front:g,back:_,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),m=Math.ceil((r-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:m}}function Xs(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function va(e){let[t,n,r]=qh(e);return t===1&&n===1&&r===1}function Nr(e,t){return va(e)||va(t)}function s5(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function hI(e,t){let n={x:R(e,"x","reshape","string_or_numeric")},r={shape:t};return $.runKernel(_o,n,r)}var H=O({reshape_:hI});function dI(e,t,n,r,a){let s=R(e,"x","avgPool","float32"),i=1;F(Nr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&F(Lt(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(Za,u,c);return h=fe(h,s.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var vu=O({avgPool_:dI});function pI(e,t,n,r,a,s="NDHWC"){let i=R(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(Lt(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(Xl,u,c);return h=fe(h,o.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var ff=O({avgPool3d_:pI});function fI(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=gu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor - with dtype ${s.dtype}. `)}),n.length===1)return Jn(n[0]);let r=n,a={axis:t};return $.runKernel(ji,r,a)}var nt=O({concat_:fI});function mI(e){let t={x:R(e,"x","sigmoid")};return $.runKernel(Fs,t)}var In=O({sigmoid_:mI});function AI(e,t,n){let r=R(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return $.runKernel(Io,a,s)}var Ee=O({slice_:AI});function yI(e){let t={x:R(e,"x","tanh")};return $.runKernel(Ps,t)}var Xo=O({tanh_:yI});function gI(e,t,n,r,a,s){let i=R(e,"forgetBias","basicLSTMCell"),o=R(t,"lstmKernel","basicLSTMCell"),l=R(n,"lstmBias","basicLSTMCell"),u=R(r,"data","basicLSTMCell"),c=R(a,"c","basicLSTMCell"),h=R(s,"h","basicLSTMCell"),d=nt([u,h],1),p=Ue(d,o),m=se(p,l),f=m.shape[0],A=m.shape[1]/4,y=[f,A],g=Ee(m,[0,0],y),_=Ee(m,[0,A],y),b=Ee(m,[0,A*2],y),w=Ee(m,[0,A*3],y),x=se(P(In(g),Xo(_)),P(c,In(se(i,b)))),N=P(Xo(x),In(w));return[x,N]}var xI=O({basicLSTMCell_:gI});function wI(e,t,n){let r=R(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);F(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return $.runKernel(Kl,s,i)}var ku=O({batchToSpaceND_:wI});function _I(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function bI(e,t,n,r,a,s){s==null&&(s=.001);let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;r!=null&&(c=R(r,"offset","batchNorm")),F(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:_I(i),scale:u,offset:c,mean:o,variance:l},d={varianceEpsilon:s},p=$.runKernel(us,h,d);return H(p,i.shape)}var Ks=O({batchNorm_:bI});function vI(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;return r!=null&&(c=R(r,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Ks(i,o,l,c,u,s)}var l5=O({batchNorm2d_:vI});function kI(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;return r!=null&&(c=R(r,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Ks(i,o,l,c,u,s)}var u5=O({batchNorm3d_:kI});function II(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;return r!=null&&(c=R(r,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Ks(i,o,l,c,u,s)}var c5=O({batchNorm4d_:II});function NI(e,t,n){let r=R(e,"x","bincount"),a=R(t,"weights","bincount");F(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return $.runKernel(oh,s,i)}var h5=O({bincount_:NI});function SI(e,t){let n=R(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let l=n.shape.slice();for(;l.length=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Jn(n);let i={x:n},o={reps:s};return $.runKernel(ya,i,o)}var Iu=O({broadcastTo_:SI});function TI(e){let t={x:R(e,"x","ceil")};return $.runKernel(Qa,t)}var mf=O({ceil_:TI});function EI(e,t,n){let r=R(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return $.runKernel(Aa,a,s)}var An=O({clipByValue_:EI});function CI(e){return nt(e,0)}var d5=O({concat1d_:CI});function RI(e,t){return nt(e,t)}var Ko=O({concat2d_:RI});function FI(e,t){return nt(e,t)}var p5=O({concat3d_:FI});function MI(e,t){return nt(e,t)}var f5=O({concat4d_:MI});function $I(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","conv2d"),l=R(t,"filter","conv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&F(Lt(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?u.shape[3]:u.shape[1];F(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),F(Nr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:u,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},m=$.runKernel(es,d,p);return c?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Xr=O({conv2d_:$I});function OI(e,t,n,r,a="NWC",s=1,i){let o=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),u=o,c=!1;o.rank===2&&(c=!0,u=H(o,[1,o.shape[0],o.shape[1]])),F(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),F(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&F(Lt(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),F(Nr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),F(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=H(u,[u.shape[0],1,u.shape[1],u.shape[2]]),p=Xr(d,h,[1,n],r,"NHWC",[1,s],i);return c?H(p,[p.shape[2],p.shape[3]]):H(p,[p.shape[0],p.shape[2],p.shape[3]])}var Xh=O({conv1d_:OI});function DI(e,t,n,r,a,s="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];F(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),F(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&F(Lt(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},m=$.runKernel(ts,d,p);return u?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Af=O({conv2DBackpropInput_:DI});function zI(e,t,n,r,a,s){let i=R(e,"x","conv2dTranspose"),o=R(t,"filter","conv2dTranspose");return Af(n,i,o,r,a,"NHWC",s)}var Kh=O({conv2dTranspose_:zI});function PI(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=R(e,"x","conv3d"),o=R(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(Nr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let c={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=$.runKernel(Yl,c,h);return u?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var yf=O({conv3d_:PI});function LI(e,t,n,r,a){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];F(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),F(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=$.runKernel(hh,c,h);return o?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var m5=O({conv3DBackpropInput_:LI});function WI(e,t,n,r,a){let s=R(e,"x","conv3dTranspose"),i=R(t,"filter","conv3dTranspose");return m5(n,s,i,r,a)}var BI=O({conv3dTranspose_:WI});function VI(e){let t={x:R(e,"x","cos")};return $.runKernel(ns,t)}var Nu=O({cos_:VI});function UI(e){let t={x:R(e,"x","cosh")};return $.runKernel(Hi,t)}var Zh=O({cosh_:UI});function jI(e,t=0,n=!1,r=!1){let a={x:R(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return $.runKernel(rs,a,s)}var Yh=O({cumsum_:jI});function HI(e,t,n,r=!1){let a=R(e,"x","denseBincount"),s=R(t,"weights","denseBincount");F(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),F(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return $.runKernel(dh,i,o)}var A5=O({denseBincount_:HI});function GI(e,t,n="NHWC"){let r=R(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];F(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying - ${a} and ${t} for depthToSpace with input shape - ${r.shape}`),F(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying - ${s} and ${t} for depthToSpace with input shape - ${r.shape}`),F(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return $.runKernel(qi,o,l)}var gf=O({depthToSpace_:GI});function qI(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","depthwiseConv2d"),l=R(t,"filter","depthwiseConv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&F(Lt(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:u,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=$.runKernel(as,h,d);return c?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Zo=O({depthwiseConv2d_:qI});function XI(e){let t={x:R(e,"x","diag")};return $.runKernel(mh,t)}var KI=O({diag_:XI});function ZI(e,t,n,r,a=[1,1],s="NHWC"){let i=R(e,"x","dilation2d"),o=R(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let c={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=$.runKernel(Jl,c,h);return u?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var xf=O({dilation2d_:ZI});function YI(e,t){let n=e.length,r=[];for(let a=0;a1&&i===1&&r.unshift(s)}return r}function $t(e,t){let n=[];for(let r=0;r1)&&n.unshift(s)}return n}function pt(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&tn(s.shape,l.shape,"Error in where: ");let u={condition:s,t:o,e:l};return $.runKernel(vo,u)}var yn=O({where_:QI});function eN(e){let t={x:R(e,"x","zerosLike")};return $.runKernel($o,t)}var Be=O({zerosLike_:eN});function tN(e,t){let n=R(e,"a","div"),r=R(t,"b","div");[n,r]=gt(n,r);let a=we(n,r),s=Be(a),i=ka(r,s);return yn(i,s,a)}var wf=O({divNoNan_:tN});function nN(e,t){let n=R(e,"t1","dot"),r=R(t,"t2","dot");F((n.rank===1||n.rank===2)&&(r.rank===1||r.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(F(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=H(n,[1,-1]),o=H(r,[-1,1]),l=Ue(i,o);return H(l,[])}else if(n.rank===1&&r.rank===2){let i=H(n,[1,-1]),o=H(r,[r.shape[0],r.shape[1]]),l=Ue(i,o);return H(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=H(r,[-1,1]),o=Ue(n,i);return H(o,[o.size])}else{let i=H(r,[r.shape[0],r.shape[1]]);return Ue(n,i)}}var y5=O({dot_:nN});function rN(e){let t={x:R(e,"x","elu")};return $.runKernel(Xi,t)}var Yo=O({elu_:rN});function aN(e){let t=R(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=fe(t,"float32"));let n={x:t};return $.runKernel(Ki,n)}var _f=O({erf_:aN});function sN(e){let t={x:R(e,"x","exp")};return $.runKernel(is,t)}var Vn=O({exp_:sN});function iN(e,t=0){let n=R(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return $.runKernel(Yi,r,a)}var Nn=O({expandDims_:iN});function oN(e){let t={x:R(e,"x","expm1")};return $.runKernel(Ji,t)}var bf=O({expm1_:oN});function lN(e,t){let n=R(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return $.runKernel(ya,r,a)}var Ia=O({tile_:lN});function uN(e,t,n,r="float32"){t==null&&(t=e);let a=Pe([e,t],r),s=e<=t?e:t;for(let o=0;o`Error in localResponseNormalization: x must be rank 3 or 4 but got - rank ${s.rank}.`),F(Lt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:r,beta:a},c=$.runKernel(nu,l,u);return o?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var kf=O({localResponseNormalization_:_N});function bN(e){let t={x:R(e,"x","log")};return $.runKernel(ps,t)}var Sn=O({log_:bN});function vN(e){let t={x:R(e,"x","log1p")};return $.runKernel(lo,t)}var ed=O({log1p_:vN});function kN(e){return F(fa(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=R(t,"x","tf.grad","string_or_numeric"),a=n!=null?R(n,"dy","tf.grad"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(r),[r],a);return a!=null&&tn(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),td(i),i[0]})}}function IN(e){return F(fa(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=gu(t,"args","tf.grads","string_or_numeric"),a=n!=null?R(n,"dy","tf.grads"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(...r),r,a);return a!=null&&tn(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),td(i),i})}}function NN(e){return F(fa(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof Xe,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof Xe,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=$.gradients(()=>e(t),[t],n);return td(r),{grad:r[0],value:a}}}function SN(e){return F(fa(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(a=>a instanceof Xe),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof Xe,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=$.gradients(()=>e(...t),t,n);return n!=null&&tn(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),td(r.grads),r}}function b5(e,t){F(fa(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(u=>u instanceof Au),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in $.registeredVariables)t.push($.registeredVariables[u])}let r=n?t.filter(u=>!u.trainable):null,a=t.length;t=t.filter(u=>u.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=$.gradients(e,t,null,s);F(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,c)=>{o[c]!=null&&(l[u.name]=o[c])}),r!=null&&r.forEach(u=>l[u.name]=null),{value:i,grads:l}}function Sr(e){return $.customGrad(e)}function td(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that - the f you passed encloses all operations that lead from x to y.`)}function TN(e){let t={x:R(e,"x","neg")};return $.runKernel(ho,t)}var xt=O({neg_:TN});function EN(e){let t={x:R(e,"x","softplus")};return $.runKernel(To,t)}var Qo=O({softplus_:EN});function CN(e){let t=R(e,"x","logSigmoid");return Sr(n=>({value:xt(Qo(xt(n))),gradFunc:r=>P(r,In(xt(n)))}))(t)}var v5=O({logSigmoid_:CN});function RN(e,t=null,n=!1){let r={x:R(e,"x","max")},a={reductionIndices:t,keepDims:n};return $.runKernel(fs,r,a)}var Un=O({max_:RN});function FN(e,t){let n=R(e,"a","sub"),r=R(t,"b","sub");[n,r]=gt(n,r);let a={a:n,b:r};return $.runKernel(zs,a)}var me=O({sub_:FN});function MN(e,t=null,n=!1){let r=R(e,"x","sum");r.dtype==="bool"&&(r=fe(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel($s,a,s)}var Ne=O({sum_:MN});function $N(e,t=-1){let n=R(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Sr((r,a)=>{let s=!0,i=Un(r,t,!0),o=me(r,i),l=me(fe(o,"float32"),Sn(Ne(Vn(o),t,s)));return a([l]),{value:l,gradFunc:(u,c)=>{let[h]=c,d=!0,p=Vn(h);return me(u,P(Ne(u,t,d),p))}}})(n)}var nd=O({logSoftmax_:$N});function If(e,t){for(let n=0;ne[s]);return[n,a]}function Js(e,t){let n=t.map(r=>1);return k5(e,n,t)}function ON(e,t,n){F(If(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function N5(e,t){if(If(e,t))return null;let n=[];for(let r=0;rn.push(r)),n}function Nf(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function DN(e,t){let n=[];for(let r=t-e;r`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(Nr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&F(Lt(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(As,u,c);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Cu=O({maxPool_:VN});function UN(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=R(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(Lt(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(ru,u,c);return l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Tf=O({maxPool3d_:UN});function jN(e,t,n,r,a=!1){let s={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=$.runKernel(Nh,s,i);return{result:o[0],indexes:o[1]}}var T5=O({maxPoolWithArgmax_:jN});function HN(e,t){let n=R(e,"a","maximum"),r=R(t,"b","maximum");[n,r]=gt(n,r),n.dtype==="bool"&&(n=fe(n,"int32"),r=fe(r,"int32")),pt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(ms,a)}var Tr=O({maximum_:HN});function GN(e,t=null,n=!1){let r={x:R(e,"x","mean")},a={axis:t,keepDims:n};return $.runKernel(ys,r,a)}var wt=O({mean_:GN});function qN(e,t=null,n=!1){let r={x:R(e,"x","min")},a={axis:t,keepDims:n};return $.runKernel(gs,r,a)}var el=O({min_:qN});function XN(e,t){let n=R(e,"a","minimum"),r=R(t,"b","minimum");[n,r]=gt(n,r),n.dtype==="bool"&&(n=fe(n,"int32"),r=fe(r,"int32")),pt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(xs,a)}var tl=O({minimum_:XN});function KN(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=R(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return $.runKernel(au,i,s)}var Ef=O({mirrorPad_:KN});function ZN(e,t){let n=R(e,"a","mod"),r=R(t,"b","mod");[n,r]=gt(n,r);let a={a:n,b:r};return $.runKernel(co,a)}var Cf=O({mod_:ZN});function YN(e){let t=R(e,"x","square"),n={};return $.runKernel("Square",{x:t},n)}var st=O({square_:YN});function JN(e,t=null,n=!1){e=R(e,"x","moments");let r=Zn(t,e.shape),a=wt(e,r,n),s=a.shape;n||(s=Js(a.shape,r));let i=st(me(fe(e,"float32"),H(a,s))),o=wt(i,r,n);return{mean:a,variance:o}}var ad=O({moments_:JN});function QN(e,t,n,r){let a=R(t,"data","multiRNNCell"),s=gu(n,"c","multiRNNCell"),i=gu(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},u=$.runKernel(Sh,o,l);return i===1?H(u,[u.size]):u}var E5=O({multinomial_:tS});function nS(e,t){let n=R(e,"a","notEqual"),r=R(t,"b","notEqual");[n,r]=gt(n,r),pt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(po,a)}var Qs=O({notEqual_:nS});function Nt(e,t="float32"){if(t==="complex64"){let r=Nt(e,"float32"),a=Nt(e,"float32");return xa(r,a)}let n=nh(Rt(e),t);return $.makeTensor(n,e,t)}function Er(e,t="float32"){if(t==="complex64"){let r=Er(e,"float32"),a=Nt(e,"float32");return xa(r,a)}let n=b1(Rt(e),t);return $.makeTensor(n,e,t)}function rS(e){let t={x:R(e,"x","onesLike")};return $.runKernel(yo,t)}var Tn=O({onesLike_:rS});function aS(e,t){let n=R(e,"v1","outerProduct"),r=R(t,"v2","outerProduct");F(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=H(n,[-1,1]),s=H(r,[1,-1]);return Ue(a,s)}var sS=O({outerProduct_:aS});function iS(e,t,n=0){let r=R(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return $.runKernel(bs,s,a)}var Kr=O({pad_:iS});function oS(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Kr(e,[t],n)}var lS=O({pad1d_:oS});function uS(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Kr(e,t,n)}var cS=O({pad2d_:uS});function hS(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Kr(e,t,n)}var dS=O({pad3d_:hS});function pS(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Kr(e,t,n)}var fS=O({pad4d_:pS});function mS(e,t,n){let r=R(e,"x","spaceToBatchND");F(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return $.runKernel(ou,a,s)}var Ru=O({spaceToBatchND_:mS});function gS(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=R(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),F(Nr(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let u=i5(o.shape,t,s,a,r),c=[u.dilationHeight,u.dilationWidth],h;r==="same"?h=yS([u.filterHeight,u.filterWidth],c):h=[[0,0],[0,0]];let d=c[0]===1&&c[1]===1,[p,m]=AS([u.inHeight,u.inWidth],c,h),f=d?r:"valid",A=d?o:Ru(o,c,p),y=(n==="avg"?()=>vu(A,t,s,f):()=>Cu(A,t,s,f))(),g=d?y:ku(y,c,m);return l?H(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function AS(e,t,n){let r=n.map(c=>c[0]),a=n.map(c=>c[1]),s=e.concat(r,a),i=t.map((c,h)=>(c-s[h]%c)%c),o=a.map((c,h)=>c+i[h]),l=t.map((c,h)=>[r[h],o[h]]),u=t.map((c,h)=>[0,i[h]]);return[l,u]}function yS(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var C5=O({pool_:gS});function xS(e,t){let n=R(e,"base","pow"),r=R(t,"exp","pow");[n,r]=gt(n,r);let a={a:n,b:r};return $.runKernel(vs,a)}var Zr=O({pow_:xS});function wS(e,t){let n=R(e,"x","prelu"),r=R(t,"alpha","prelu"),a={x:n,alpha:r};return $.runKernel(ks,a)}var Fu=O({prelu_:wS});function _S(e,t=null,n=!1){let r=R(e,"x","prod");r.dtype==="bool"&&(r=fe(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(xo,a,s)}var sd=O({prod_:_S});function bS(e,t,n){let r=Rt(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},kS=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Rf.alea(a.toString()),this.randn=new Ff(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),athis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Rf.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function NS(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new kS(t,n,r,a),i=Pe(e,r);for(let o=0;o`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),En(t,0)}var DS=O({reverse1d_:OS});function zS(e,t){let n=R(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),En(n,t)}var PS=O({reverse2d_:zS});function LS(e,t){let n=R(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),En(n,t)}var WS=O({reverse3d_:LS});function BS(e,t){let n=R(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),En(n,t)}var VS=O({reverse4d_:BS});function US(e){let t={x:R(e,"x","round")};return $.runKernel(Es,t)}var $f=O({round_:US});function jS(e){let t={x:R(e,"x","rsqrt")};return $.runKernel(Cs,t)}var ld=O({rsqrt_:jS});function _e(e,t){if((nn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&nn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return wa(e,[],[],t)}function HS(e){let t={x:R(e,"x","selu")};return $.runKernel(ko,t)}var ud=O({selu_:HS});function GS(e,t,n,r,a,s=[1,1],i="NHWC"){let o=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),u=R(n,"pointwiseFilter","separableConv2d"),c=o,h=!1;if(o.rank===3&&(h=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),F(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],p=l.shape[3];F(u.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${u.shape[2]}.`);let m=Zo(c,l,r,a,i,s),f=Xr(m,u,1,"valid",i);return h?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Of=O({separableConv2d_:GS});async function qS(e,t){let n=R(e,"x","setdiff1d"),r=R(t,"y","setdiff1d");F(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let c=0;c`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Ee(r,[t],[n])}var dd=O({slice1d_:YS});function JS(e,t,n){let r=R(e,"x","slice2d");return F(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Ee(r,t,n)}var zf=O({slice2d_:JS});function QS(e,t,n){let r=R(e,"x","slice3d");return F(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Ee(r,t,n)}var pd=O({slice3d_:QS});function eT(e,t,n){let r=R(e,"x","slice4d");return F(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Ee(r,t,n)}var $u=O({slice4d_:eT});function tT(e,t=-1){let n=R(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return $.runKernel(Os,r,a)}var Ou=O({softmax_:tT});function nT(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(xh,t)}var Du=O({fft_:nT});function rT(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(wh,t)}var rl=O({ifft_:rT});function aT(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=H(e,[n,t]);r=rl(a)}else{let a=[n,2*(t-1)],s=H(Mu(e),[n,t]),i=H(Jh(e),[n,t]),o=En(Ee(s,[0,1],[n,t-2]),1),l=P(En(Ee(i,[0,1],[n,t-2]),1),_e(-1)),u=nt([s,o],1),c=nt([i,l],1),h=H(xa(u,c),[a[0],a[1]]);r=rl(h)}if(r=Mu(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=H(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var fd=O({irfft_:aT});function sT(e,t,n=0){let r={x:R(e,"x","split")},a={numOrSizeSplits:t,axis:n};return $.runKernel(Eo,r,a)}var Zt=O({split_:sT});function iT(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t0),f=e.shape.map(A=>A);f[e.shape.length-1]=t,a=Ee(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,a=nt([e,Nt(m)],e.shape.length-1),n=t}else a=e;let s=Be(a),i=H(xa(a,s),[r,n]),o=Du(i),l=Math.floor(n/2)+1,u=Mu(o),c=Jh(o),h=Zt(u,[l,n-l],u.shape.length-1),d=Zt(c,[l,n-l],c.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,H(xa(h[0],d[0]),p)}var zu=O({rfft_:iT});function oT(e){let t={x:R(e,"x","sqrt")};return $.runKernel(Ms,t)}var Yt=O({sqrt_:oT});function lT(e,t){let n=R(e,"a","squaredDifference"),r=R(t,"b","squaredDifference");[n,r]=gt(n,r),pt(n.shape,r.shape);let a={a:n,b:r},s={};return $.runKernel(Ds,a,s)}var md=O({squaredDifference_:lT});function uT(e,t){let n=R(e,"x","squeeze");return H(n,eg(n.shape,t).newShape)}var Sa=O({squeeze_:uT});function cT(e,t=0){let n=gu(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return $.runKernel(go,r,a)}var Cn=O({stack_:cT});function hT(e,t=0){let n={x:R(e,"x","step")},r={alpha:t};return $.runKernel(ga,n,r)}var al=O({step_:hT});function dT(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let u={x:R(e,"x","stridedSlice")},c={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return $.runKernel(Co,u,c)}var Pf=O({stridedSlice_:dT});function pT(e){let t={x:R(e,"x","tan")};return $.runKernel(Ro,t)}var Lf=O({tan_:pT});function Bt(e,t){Ha(e);let n=kr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return wa(e,null,n,t)}function gn(e,t,n){if(Ha(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=kr(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return wa(e,t,r,n)}function fT(e,t,n){if(Ha(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=kr(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return wa(e,t,r,n)}function mT(e,t,n){if(Ha(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=kr(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return wa(e,t,r,n)}function AT(e,t,n){if(Ha(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=kr(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,wa(e,t,r,n)}function yT(e,t=1,n=!0){let r=R(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=$.runKernel(Fo,s,i);return{values:o,indices:l}}var Wf=O({topk_:yT});function gT(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Ff(t,n,r,!0,a),i=Pe(e,r);for(let o=0;o0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=$.runKernel(Fh,r,a);return{values:s,indices:i}}var yd=O({unique_:xT});function wT(e,t,n){let r=R(e,"x","unsortedSegmentSum"),a=R(t,"segmentIds","unsortedSegmentSum","int32");F(Lt(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return $.runKernel(uu,s,i)}var Bf=O({unsortedSegmentSum_:wT});function _T(e,t=0){let n=R(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return $.runKernel(Mo,r,a)}var tr=O({unstack_:_T});function M5(e,t=!0,n,r){return $.makeVariable(e,t,n,r)}function $5(e,t){let n=[];for(let s=0;s0,()=>"mask cannot be scalar"),tn(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f"Shape mismatch in v and x");let l=_e(1),u=me(l,o),c=P(me(i,s),u);if(a){F(r!=null,()=>"When using zeroDebias: true, step is required.");let h=R(r,"step","movingAverage");c=we(c,me(l,Zr(o,h)))}return se(s,c)}var ST=O({movingAverage_:NT});function TT(e,t,n){let r=R(e,"indices","scatterND","int32"),a=R(t,"updates","scatterND");Y1(a,r,n);let s={indices:r,updates:a},i={shape:n};return $.runKernel(bo,s,i)}var D5=O({scatterND_:TT});function ET(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function CT(e,t,n,r=0){let a=R(e,"sparseIndices","sparseToDense","int32"),s=R(t,"sparseValues","sparseToDense"),i=R(r,"defaultValue","sparseToDense",s.dtype);ET(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return $.runKernel(Rh,o,l)}var Uf=O({sparseToDense_:CT});function RT(e,t){let n=R(t,"indices","gatherND","int32"),r={params:R(e,"x","gatherND"),indices:n};return $.runKernel(to,r)}var z5=O({gatherND_:RT});function FT(e,t){if(t==null)return e.shape.slice();if(Gr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Xe?a.clone():a;let s=FT(a,n),i=1-t,o=we(Jo(se(nl(s,0,1,"float32",r),i)),i);return P(a,o)}var P5=O({dropout_:MT});function L5(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function jf(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),F(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),tn(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];F(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,u]=[i.length/s,s],c=tg("bool",l);for(let h=0;hA.value-f.value),c[h]=0;for(let f=0;fDT,depthwiseConv2d:()=>zT,matMul:()=>PT});function LT(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];F(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),F(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),i!=null&&F(Lt(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return $.runKernel(uh,h,d)}var Hf=O({conv2DBackpropFilter_:LT});function xd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return P(e,al(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function wd(e,t){let n=t,r=$t(e.shape,t.shape);return r.length>0&&(n=Ne(n,r)),H(n,e.shape)}function _d(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Cr(e);if(t==="elu")return Yo(e);if(t==="relu6")return od(e);if(t==="prelu")return Fu(e,n);if(t==="leakyrelu")return Tu(e,r);throw new Error(`Unknown fused activation ${t}.`)}var bd=(e,t)=>!(e>0)||t==="linear";function WT({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",bd($.state.gradientDepth,l)===!1){let w=Xr(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),_d(w,l,u,c)}let h=R(e,"x","conv2d"),d=R(t,"filter","conv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&F(Lt(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),F(Nr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let f=bu(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=gt(A,h),pt(f.outShape,A.shape));let y;u!=null&&(y=R(u,"prelu weights","fused conv2d"));let g=(w,x)=>{let[N,T,E,M]=x,D=xd(w,E,l);F(va(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let L=Af(T.shape,D,N,n,r),W=Hf(T,D,N.shape,n,r),U=[L,W];if(M!=null){let j=wd(M,D);U.push(j)}return U},_={x:p,filter:d,bias:A,preluActivationWeights:y},b={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Sr((w,x,N)=>{let T=$.runKernel(Bs,_,b);return N([x,w,T]),m&&(T=H(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Sr((w,x,N,T)=>{let E=$.runKernel(Bs,_,b);return T([x,w,E,N]),m&&(E=H(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(p,d,A)}var DT=O({fusedConv2d_:WT});function BT(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return $.runKernel(ph,u,c)}var W5=O({depthwiseConv2dNativeBackpropFilter_:BT});function VT(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=$.runKernel(fh,u,c);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var B5=O({depthwiseConv2dNativeBackpropInput_:VT});function UT({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(bd($.state.gradientDepth,l)===!1){let w=Zo(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),_d(w,l,u,c)}let h=R(e,"x","depthwiseConv2d"),d=R(t,"filter","depthwiseConv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),F(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),F(Nr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&F(Lt(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let f=bu(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=gt(A,h),pt(f.outShape,A.shape));let y;u!=null&&(y=R(u,"prelu weights","fused depthwiseConv2d"));let g=(w,x)=>{F(va(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[N,T,E,M]=x,D=xd(w,E,l),L=B5(T.shape,D,N,n,r,s,i),W=W5(T,D,N.shape,n,r,s,i);if(M!=null){let U=wd(A,D);return[L,W,U]}return[L,W]},_={x:p,filter:d,bias:A,preluActivationWeights:y},b={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Sr((w,x,N)=>{let T=$.runKernel(Vs,_,b);return N([x,w,T]),m&&(T=H(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Sr((w,x,N,T)=>{let E=$.runKernel(Vs,_,b);return T([x,w,E,N]),m&&(E=H(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(p,d,A)}var zT=O({fusedDepthwiseConv2d_:UT});function jT({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(bd($.state.gradientDepth,s)===!1){let M=Ue(e,t,n,r);return a!=null&&(M=se(M,a)),_d(M,s,i,o)}let l=R(e,"a","fused matMul"),u=R(t,"b","fused matMul");[l,u]=gt(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?u.shape[u.rank-1]:u.shape[u.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),A=Rt(m),y=Rt(f);F(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),F(Gr(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),F(c===h,()=>`Error in fused matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),_=n?H(l,[A,c,d]):H(l,[A,d,c]),b=r?H(u,[y,p,h]):H(u,[y,h,p]),w;a!=null&&(w=R(a,"bias","fused matMul"),[w]=gt(w,l),pt(g,w.shape));let x;i!=null&&(x=R(i,"prelu weights","fused matMul"));let N=(M,D)=>{let[L,W,U,j]=D,X=xd(H(M,U.shape),U,s),G,ee;if(!n&&!r?(G=Ue(X,W,!1,!0),ee=Ue(L,X,!0,!1)):!n&&r?(G=Ue(X,W,!1,!1),ee=Ue(X,L,!0,!1)):n&&!r?(G=Ue(W,X,!1,!0),ee=Ue(L,X,!1,!1)):(G=Ue(W,X,!0,!0),ee=Ue(X,L,!0,!0)),a!=null){let Y=wd(j,X);return[G,ee,Y]}else return[G,ee]},T={a:_,b,bias:w,preluActivationWeights:x},E={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?Sr((M,D,L)=>{let W=$.runKernel(Ws,T,E);return L([M,D,W]),{value:H(W,g),gradFunc:N}})(_,b):Sr((M,D,L,W)=>{let U=$.runKernel(Ws,T,E);return W([M,D,U,L]),{value:H(U,g),gradFunc:N}})(_,b,w)}var PT=O({fusedMatMul_:jT});function HT(e){return jf(e,.54,.46)}var GT=O({hammingWindow_:HT});function qT(e){return jf(e,.5,.5)}var V5=O({hannWindow_:qT});function XT(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Ee(e,s,t)),s+=n;if(r)for(;s`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),F(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),F(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),F(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),F(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let c={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return $.runKernel(Gi,c,h)}var JT=O({cropAndResize_:YT});function QT(e){let t=R(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return $.runKernel(Qi,n,{})}var eE=O({flipLeftRight_:QT});function tE(e,t,n=0,r=.5){let a=R(e,"image","rotateWithOffset","float32");F(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return $.runKernel(Oo,s,i)}var nE=O({rotateWithOffset_:tE});function sl(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function rE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppression"),i=R(t,"scores","nonMaxSuppression"),o=sl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return $.runKernel(fo,{boxes:s,scores:i},l)}var aE=O({nonMaxSuppression_:rE});function iE(e,t,n){let r=sE(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function sE(e,t,n){return lE(e,t,n||oE)}function oE(e,t){return e>t?1:e>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function j5(e,t,n,r,a){return Gf(e,t,n,r,a,0)}function H5(e,t,n,r,a,s){return Gf(e,t,n,r,a,0,!1,s,!0)}function G5(e,t,n,r,a,s){return Gf(e,t,n,r,a,s,!0)}function Gf(e,t,n,r,a,s,i=!1,o=!1,l=!1){let u=[];for(let A=0;Aa&&u.push({score:t[A],boxIndex:A,suppressBeginIndex:0});u.sort(q5);let c=s>0?-.5/s:0,h=[],d=[];for(;h.length0;){let A=u.pop(),{score:y,boxIndex:g,suppressBeginIndex:_}=A;if(y=_;--w){let x=uE(e,g,h[w]);if(x>=r){b=!0;break}if(A.score=A.score*cE(r,c,x),A.score<=a)break}A.suppressBeginIndex=h.length,b||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&iE(u,A,q5))}let p=h.length,m=n-p;o&&m>0&&(h.push(...new Array(m).fill(0)),d.push(...new Array(m).fill(0)));let f={selectedIndices:h};return i&&(f.selectedScores=d),l&&(f.validOutputs=p),f}function uE(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),u=Math.min(a[0],a[2]),c=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),m=(h-u)*(d-c);if(p<=0||m<=0)return 0;let f=Math.max(s,u),A=Math.max(i,c),y=Math.min(o,h),g=Math.min(l,d),_=Math.max(y-f,0)*Math.max(g-A,0);return _/(p+m-_)}function cE(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function q5(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function hE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),o=sl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],c=l[1],{selectedIndices:h}=j5(u,c,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),Bt(h,"int32")}var dE=hE;function pE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=sl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},c={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=$.runKernel(Ao,u,c);return{selectedIndices:h[0],selectedScores:h[1]}}var fE=O({nonMaxSuppressionWithScore_:pE});async function mE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=sl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),c=u[0],h=u[1],{selectedIndices:d,selectedScores:p}=G5(c,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Bt(d,"int32"),selectedScores:Bt(p)}}var AE=mE;function yE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=sl(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:u,iouThreshold:c,scoreThreshold:h,padToMaxOutputSize:s},m=$.runKernel(mo,d,p);return{selectedIndices:m[0],validOutputs:m[1]}}var gE=O({nonMaxSuppressionPadded_:yE});async function xE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=sl(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=H5(d,p,u,c,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Bt(m,"int32"),validOutputs:_e(f,"int32")}}var wE=xE;function _E(e,t,n=!1,r=!1){let a=R(e,"images","resizeBilinear");F(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=$.runKernel(Ns,o,l);return i?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var X5=O({resizeBilinear_:_E});function bE(e,t,n=!1,r=!1){let a=R(e,"images","resizeNearestNeighbor");F(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=$.runKernel(iu,o,l);return i?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var K5=O({resizeNearestNeighbor_:bE});function vE(e,t,n){F(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=R(e,"a","bandPart");F(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(id(0,s,1,"int32"),[-1,1]),l=id(0,i,1,"int32"),u=me(o,l),c=er(Ys(u,_e(+t,"int32")),Na(u,_e(-n,"int32"))),h=Nt([s,i],r.dtype);return H(Cn(tr(H(r,[-1,s,i])).map(d=>yn(c,d,h))),a)}var kE=O({bandPart_:vE});function IE(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=Zt(e,e.shape[0],0).map(a=>Sa(a,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a{let s=r[a];if(a>0)for(let i=0;i=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Z5(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),r=tr(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[u,c]=Z5(l,t);a.push(u),s.push(c)});let i=H(Cn(a,0),e.shape),o=H(Cn(s,0),e.shape);return[i,o]}}function Z5(e,t=!1){return $.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=vf(n),s=Jn(e),i=gn([[1]],[1,1]),o=Jn(i),l=n>=r?r:n;for(let u=0;u{let p=Ee(s,[u,u],[n-u,1]),m=gd(p),f=Ee(s,[u,u],[1,1]),A=yn(Qn(f,0),gn([[-1]]),gn([[1]])),y=me(f,P(A,m)),g=we(p,y);g.shape[0]===1?o=Jn(i):o=nt([i,Ee(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let _=xt(we(Ue(A,y),m)),b=Ee(s,[u,0],[n-u,r]),w=P(_,o),x=tt(o);if(u===0)s=me(b,Ue(w,Ue(x,b)));else{let E=me(b,Ue(w,Ue(x,b)));s=nt([Ee(s,[0,0],[u,r]),E],0)}let N=tt(w),T=Ee(a,[0,u],[n,a.shape[1]-u]);if(u===0)a=me(T,Ue(Ue(T,o),N));else{let E=me(T,Ue(Ue(T,o),N));a=nt([Ee(a,[0,0],[n,u]),E],1)}return[o,s,a]}),Se([c,h,d])}return!t&&n>r&&(a=Ee(a,[0,0],[n,r]),s=Ee(s,[0,0],[r,r])),[a,s]})}var TE=O({qr_:SE}),sn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(sn||(sn={}));function EE(e,t,n=sn.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=R(t,"weights","computeWeightedLoss"));let s=a==null?r:P(r,a);if(n===sn.NONE)return s;if(n===sn.SUM)return Ne(s);if(n===sn.MEAN){if(a==null)return wt(s);{let i=r.size/a.size,o=we(Ne(s),Ne(a));return i>1?we(o,_e(i)):o}}if(n===sn.SUM_BY_NONZERO_WEIGHTS){if(a==null)return we(Ne(s),_e(r.size));{let i=P(a,Er(r.shape)),o=fe(Ne(Qs(i,_e(0))),"float32");return we(Ne(s),o)}}throw Error(`Unknown reduction: ${n}`)}var Yr=O({computeWeightedLoss_:EE});function CE(e,t,n,r=sn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","absoluteDifference"),s=R(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=R(n,"weights","absoluteDifference")),tn(a.shape,s.shape,"Error in absoluteDifference: ");let o=Mt(me(a,s));return Yr(o,i,r)}var RE=O({absoluteDifference_:CE});function FE(e,t,n,r,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","cosineDistance"),i=R(t,"predictions","cosineDistance"),o=null;r!=null&&(o=R(r,"weights","cosineDistance")),tn(s.shape,i.shape,"Error in cosineDistance: ");let l=_e(1),u=me(l,Ne(P(s,i),n,!0));return Yr(u,o,a)}var ME=O({cosineDistance_:FE});function $E(e,t,n,r=sn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","hingeLoss"),s=R(t,"predictions","hingeLoss"),i=null;n!=null&&(i=R(n,"weights","hingeLoss")),tn(a.shape,s.shape,"Error in hingeLoss: ");let o=_e(1);a=me(P(_e(2),a),o);let l=Cr(me(o,P(a,s)));return Yr(l,i,r)}var OE=O({hingeLoss_:$E});function DE(e,t,n,r=1,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","huberLoss"),i=R(t,"predictions","huberLoss"),o=null;n!=null&&(o=R(n,"weights","huberLoss")),tn(s.shape,i.shape,"Error in huberLoss: ");let l=_e(r),u=Mt(me(i,s)),c=tl(u,l),h=me(u,c),d=se(P(_e(.5),st(c)),P(l,h));return Yr(d,o,a)}var zE=O({huberLoss_:DE});function PE(e,t,n,r=1e-7,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","logLoss"),i=R(t,"predictions","logLoss"),o=null;n!=null&&(o=R(n,"weights","logLoss")),tn(s.shape,i.shape,"Error in logLoss: ");let l=_e(1),u=_e(r),c=xt(P(s,Sn(se(i,u)))),h=P(me(l,s),Sn(se(me(l,i),u))),d=me(c,h);return Yr(d,o,a)}var LE=O({logLoss_:PE});function WE(e,t,n,r=sn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","meanSquaredError"),s=R(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=R(n,"weights","meanSquaredError")),tn(a.shape,s.shape,"Error in meanSquaredError: ");let o=md(a,s);return Yr(o,i,r)}var BE=O({meanSquaredError_:WE});function VE(e,t){let n=R(e,"labels","sigmoidCrossEntropyWithLogits"),r=R(t,"logits","sigmoidCrossEntropyWithLogits");tn(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Cr(r),s=P(r,n),i=ed(Vn(xt(Mt(r))));return se(me(a,s),i)}function UE(e,t,n,r=0,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"multiClassLabels","sigmoidCrossEntropy"),i=R(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","sigmoidCrossEntropy")),tn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let u=_e(r),c=_e(1),h=_e(.5);s=se(P(s,me(c,u)),P(h,u))}let l=VE(s,i);return Yr(l,o,a)}var jE=O({sigmoidCrossEntropy_:UE});function HE(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Sr((r,a,s)=>{let i=Sf(a,[n],!0),o=me(fe(a,"float32"),i);s([r,o]);let l=xt(P(o,r));return{value:Ne(l,[n]),gradFunc:(u,c)=>{let[h,d]=c,p=Js(u.shape,[n]);return[P(H(u,p),me(fe(h,"float32"),Vn(d))),P(H(u,p),me(Vn(d),fe(h,"float32")))]}}})(e,t)}function GE(e,t,n,r=0,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"onehotLabels","softmaxCrossEntropy"),i=R(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","softmaxCrossEntropy")),tn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let u=_e(r),c=_e(1),h=_e(s.shape[1]);s=se(P(s,me(c,u)),we(u,h))}let l=HE(s,i);return Yr(l,o,a)}var qE=O({softmaxCrossEntropy_:GE}),XE={fft:Du,ifft:rl,rfft:zu,irfft:fd},KE={hammingWindow:GT,hannWindow:V5,frame:U5,stft:ZT},Ke={flipLeftRight:eE,resizeNearestNeighbor:K5,resizeBilinear:X5,rotateWithOffset:nE,cropAndResize:JT,nonMaxSuppression:aE,nonMaxSuppressionAsync:dE,nonMaxSuppressionWithScore:fE,nonMaxSuppressionWithScoreAsync:AE,nonMaxSuppressionPadded:gE,nonMaxSuppressionPaddedAsync:wE},Y5={bandPart:kE,gramSchmidt:NE,qr:TE},ZE={absoluteDifference:RE,computeWeightedLoss:Yr,cosineDistance:ME,hingeLoss:OE,huberLoss:zE,logLoss:LE,meanSquaredError:BE,sigmoidCrossEntropy:jE,softmaxCrossEntropy:qE},Jr=class extends e5{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return Se(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return b5(e,t)}dispose(){this.iterations_!=null&&Se(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:_e(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Jr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var vd=class extends Jr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:B(()=>Be(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:B(()=>Be(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;B(()=>{let l=se(P(i,this.rho),P(st(s),1-this.rho)),u=P(we(Yt(se(o,this.epsilon)),Yt(se(i,this.epsilon))),s),c=se(P(o,this.rho),P(st(u),1-this.rho));i.assign(l),o.assign(c);let h=se(P(u,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Se(this.accumulatedGrads.map(e=>e.variable)),Se(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};vd.className="Adadelta";ba(vd);var kd=class extends Jr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:B(()=>Su(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;B(()=>{let i=se(s,st(a));s.assign(i);let o=se(P(we(a,Yt(se(i,$.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Se(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};kd.className="Adagrad";ba(kd);var Id=class extends Jr{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],B(()=>{this.accBeta1=_e(t).variable(),this.accBeta2=_e(n).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);B(()=>{let n=me(1,this.accBeta1),r=me(1,this.accBeta2);t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:B(()=>Be(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:B(()=>Be(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedSecondMoment[s].variable,h=se(P(u,this.beta1),P(l,1-this.beta1)),d=se(P(c,this.beta2),P(st(l),1-this.beta2)),p=we(h,n),m=we(d,r);u.assign(h),c.assign(d);let f=se(P(we(p,se(Yt(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(P(this.accBeta1,this.beta1)),this.accBeta2.assign(P(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Se(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Se(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),B(()=>{this.accBeta1.assign(Zr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Zr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Id.className="Adam";ba(Id);var Nd=class extends Jr{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],B(()=>{this.iteration=_e(0).variable(),this.accBeta1=_e(t).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);B(()=>{let n=me(1,this.accBeta1),r=we(-this.learningRate,se(P(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:Be(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:Be(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedWeightedInfNorm[s].variable,h=se(P(u,this.beta1),P(l,1-this.beta1)),d=P(c,this.beta2),p=Mt(l),m=Tr(d,p);u.assign(h),c.assign(m);let f=se(P(we(r,n),we(h,se(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(se(this.iteration,1)),this.accBeta1.assign(P(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Se(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Se(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Nd.className="Adamax";ba(Nd);var Pu=class extends Jr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=$.registeredVariables[t];B(()=>{let s=se(P(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Wt(_e(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Pu.className="SGD";ba(Pu);var Sd=class extends Pu{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=_e(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:B(()=>Be(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&B(()=>{let i,o=se(P(this.m,a),s);this.useNesterov?i=se(P(this.c,se(s,P(o,this.m))),r):i=se(P(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Se(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Sd.className="Momentum";ba(Sd);var Td=class extends Jr{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=$.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:B(()=>Be(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:B(()=>Be(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:B(()=>Be(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;B(()=>{let l=se(P(i,this.decay),P(st(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,c=se(P(u,this.decay),P(s,1-this.decay)),h=we(P(s,this.learningRate),Yt(me(l,se(st(c),this.epsilon)))),d=se(P(o,this.momentum),h);i.assign(l),u.assign(c),o.assign(d);let p=me(r,d);r.assign(p)}else{let u=se(P(i,this.decay),P(st(s),1-this.decay)),c=se(P(o,this.momentum),we(P(s,this.learningRate),Yt(se(u,this.epsilon))));i.assign(u),o.assign(c);let h=me(r,c);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Se(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Se(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Se(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Td.className="RMSProp";ba(Td);var ei=class{static sgd(e){return new Pu(e)}static momentum(e,t,n=!1){return new Sd(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new Td(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new Id(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new vd(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new Nd(e,t,n,r,a)}static adagrad(e,t=.1){return new kd(e,t)}},ti={sgd:ei.sgd,momentum:ei.momentum,adadelta:ei.adadelta,adagrad:ei.adagrad,rmsprop:ei.rmsprop,adamax:ei.adamax,adam:ei.adam},YE=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Ed(){return new Promise(e=>YE(()=>e()))}var C={};Oe(C,{ERF_A1:()=>lC,ERF_A2:()=>uC,ERF_A3:()=>cC,ERF_A4:()=>hC,ERF_A5:()=>dC,ERF_P:()=>oC,PARALLELIZE_THRESHOLD:()=>qf,SELU_SCALE:()=>Q5,SELU_SCALEALPHA:()=>J5,applyActivation:()=>_d,assertAndGetBroadcastShape:()=>pt,assertAxesAreInnerMostDims:()=>ON,assertParamsConsistent:()=>JE,assignToTypedArray:()=>wC,axesAreInnerMostDims:()=>If,calculateShapes:()=>Vg,combineLocations:()=>k5,complexWithEvenIndex:()=>yC,complexWithOddIndex:()=>gC,computeConv2DInfo:()=>bu,computeConv3DInfo:()=>o5,computeDefaultPad:()=>pf,computeDilation2DInfo:()=>sI,computeOptimalWindowSize:()=>eC,computeOutAndReduceShapes:()=>I5,computeOutShape:()=>QE,computePool2DInfo:()=>i5,computePool3DInfo:()=>iI,convertConv2DDataFormat:()=>s5,eitherStridesOrDilationsAreOne:()=>Nr,expandShapeToKeepDim:()=>Js,exponent:()=>bC,exponents:()=>_C,fromStringArrayToUint8:()=>IC,fromUint8ToStringArray:()=>kC,getAxesPermutation:()=>N5,getBroadcastDims:()=>YI,getComplexWithIndex:()=>xC,getFusedBiasGradient:()=>wd,getFusedDyActivation:()=>xd,getImageCenter:()=>tC,getInnerMostAxes:()=>DN,getPermuted:()=>rC,getReductionAxes:()=>$t,getReshaped:()=>nC,getReshapedPermuted:()=>aC,getSliceBeginCoords:()=>sC,getSliceSize:()=>iC,getUndoAxesPermutation:()=>Nf,log:()=>fC,mergeRealAndImagArrays:()=>mC,prepareAndValidate:()=>Bg,prepareSplitSize:()=>vC,segment_util:()=>ex,shouldFuse:()=>bd,slice_util:()=>an,splitRealAndImagArrays:()=>AC,tupleValuesAreOne:()=>va,upcastType:()=>Yn,validateInput:()=>Y1,validateUpdateShape:()=>Z1,warn:()=>pC});function JE(e,t){let n=e[0].length;e.forEach((a,s)=>{F(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function QE(e,t){let n=e[0].slice();for(let r=1;r=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function aC(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var ex={};Oe(ex,{collectGatherOpShapeInfo:()=>TC,computeOutShape:()=>SC,segOpComputeOptimalWindowSize:()=>NC});function NC(e,t){let n=!1,r;for(e<=qf?(r=e,n=!0):r=th(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=th(e,r+1);return r}function SC(e,t,n){let r=[],a=e.length;for(let s=0;sa))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) ( - ${s}).`);if(nDh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function IC(e){return e.map(t=>du(t))}var Rr={};Oe(Rr,{nonMaxSuppressionV3Impl:()=>j5,nonMaxSuppressionV4Impl:()=>H5,nonMaxSuppressionV5Impl:()=>G5,whereImpl:()=>$5});function xe(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var EC=Rr.whereImpl,Cd=class extends jl{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Qc(this,Ir())}nextDataId(){return Cd.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&C.warn(` -============================ -Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details. -============================`));let r={id:this.nextDataId()};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let a=n.map(s=>v.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,a){this.data.set(e,{values:t,dtype:r,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>v.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Pe(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return Ir().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){xe([e],"where");let t=this.readSync(e.dataId);return EC(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Cd.nextDataId=0;var Xf={};Oe(Xf,{addImpl:()=>nx,bincountImpl:()=>Kf,bincountReduceImpl:()=>rx,ceilImpl:()=>ax,concatImpl:()=>Zf,expImpl:()=>sx,expm1Impl:()=>ix,floorImpl:()=>ox,gatherV2Impl:()=>lx,greaterImpl:()=>ux,lessImpl:()=>cx,linSpaceImpl:()=>hx,logImpl:()=>dx,maxImpl:()=>px,maximumImpl:()=>fx,minimumImpl:()=>mx,multiplyImpl:()=>Yf,negImpl:()=>Ax,notEqualImpl:()=>yx,prodImpl:()=>gx,rangeImpl:()=>Qf,rsqrtImpl:()=>xx,simpleAbsImpl:()=>tx,sliceImpl:()=>Rd,squaredDifferenceImpl:()=>wx,stridedSliceImpl:()=>_x,subImpl:()=>bx,tileImpl:()=>vx,topKImpl:()=>kx,transposeImpl:()=>Jf,uniqueImpl:()=>Ix});function tx(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;xe(t,"abs");let r=new Float32Array(v.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=tx(a),n.makeOutput(r,t.shape,"float32")},RC={kernelName:Di,backendName:"cpu",kernelFunc:CC};function St(e){return(t,n,r,a,s)=>{let i=C.assertAndGetBroadcastShape(t,n),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),c=v.getTypedArrayFromDType(s,u),h=t.length,d=n.length,p=v.computeStrides(t),m=v.computeStrides(n),f=C.getBroadcastDims(t,i),A=C.getBroadcastDims(n,i);if(f.length+A.length===0)for(let y=0;y_[N]=0);let b=v.locToIndex(_,h,p),w=g.slice(-d);A.forEach(N=>w[N]=0);let x=v.locToIndex(w,d,m);c[y]=e(r[b],a[x])}return[c,i]}}function Rn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var FC={kernelName:lh,backendName:"cpu",kernelFunc:Rn};function Fd(e,t,n="float32"){if(n==="complex64"){let a=Fd(e,t,"float32"),s=Fd(e,t,"float32");return Rn({inputs:{real:a,imag:s},backend:e})}let r=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function Fr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var MC={kernelName:hs,backendName:"cpu",kernelFunc:Fr};function ni(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var $C={kernelName:Th,backendName:"cpu",kernelFunc:ni};function Ea(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Fr({inputs:{x:a},backend:n});let i=Fd(n,a.shape,a.dtype),o=Ea({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Rn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=ni({inputs:{input:a},backend:n}),o=Ea({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=Fr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=v.toTypedArray([0],a.dtype),[l,u]=St((c,h)=>c!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var OC={kernelName:Ja,backendName:"cpu",kernelFunc:Ea};function Vt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;xe([i,o],e);let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=Ea({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),h=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,p=l.data.get(h.dataId).values,m=l.data.get(d.dataId).values,f=Ea({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(f.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,_=l.data.get(y.dataId).values,b=l.data.get(g.dataId).values,[w,x,N]=n(i.shape,o.shape,p,m,_,b),T=l.makeTensorInfo(N,"float32",w),E=l.makeTensorInfo(N,"float32",x),M=Rn({inputs:{real:T,imag:E},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(T),l.disposeIntermediateTensorInfo(E),M}else{let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}}}function em(e){return(t,n,r,a,s,i)=>{let o=C.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(o),u=o.length,c=v.computeStrides(o),h=v.getTypedArrayFromDType("float32",l),d=v.getTypedArrayFromDType("float32",l),p=C.getBroadcastDims(t,o),m=C.getBroadcastDims(n,o),f=C.mergeRealAndImagArrays(r,a),A=C.mergeRealAndImagArrays(s,i),y=t.length,g=v.computeStrides(t),_=n.length,b=v.computeStrides(n);if(p.length+m.length===0)for(let w=0;wN[L]=0);let T=v.locToIndex(N,y,g),E=x.slice(-_);m.forEach(L=>E[L]=0);let M=v.locToIndex(E,_,b),D=e(f[T*2],f[T*2+1],A[M*2],A[M*2+1]);h[w]=D.real,d[w]=D.imag}return[h,d,o]}}var nx=St((e,t)=>e+t),DC=em((e,t,n,r)=>({real:e+n,imag:t+r})),Lu=Vt(ma,nx,DC),zC={kernelName:ma,backendName:"cpu",kernelFunc:Lu};function Kf(e,t,n,r,a){let s=v.sizeFromShape(r),i=v.makeZerosTypedArray(a,n);for(let o=0;o=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function rx(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=Pe([a,n],t.dtype);for(let o=0;o=n||(r?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function il(e){return(t,n,r)=>{let a=v.getTypedArrayFromDType(n,t.length);for(let s=0;s{let{x:i}=r;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=v.sizeFromShape(i.shape),c=n||i.dtype,h=v.getArrayFromDType(c,u);for(let d=0;d{let{x:i}=r;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,c=t(l,u,a);return o.makeTensorInfo(i.shape,u,c)}}var ax=il(e=>Math.ceil(e)),PC=ol(Qa,ax),LC={kernelName:Qa,backendName:"cpu",kernelFunc:PC};function Zf(e,t,n,r){let a=v.getArrayFromDType(n,v.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?C.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;uMath.exp(e)),Nx=ol(is,sx),WC={kernelName:is,backendName:"cpu",kernelFunc:Nx},ix=il(e=>Math.expm1(e)),BC=ol(Ji,ix),VC={kernelName:Ji,backendName:"cpu",kernelFunc:BC},ox=il(e=>Math.floor(e)),UC=ol(os,ox),jC={kernelName:os,backendName:"cpu",kernelFunc:UC};function lx(e,t,n){let r=Pe(n,e.dtype);for(let a=0;ae>t?1:0),HC=Vt(no,ux,null,"bool"),GC={kernelName:no,backendName:"cpu",kernelFunc:HC},cx=St((e,t)=>eMath.log(e)),KC=ol(ps,dx),ZC={kernelName:ps,backendName:"cpu",kernelFunc:KC};function px(e,t,n,r){let a=v.getTypedArrayFromDType(r,v.sizeFromShape(n));for(let s=0;so&&(o=u)}a[s]=o}return a}var fx=St((e,t)=>Math.max(e,t)),YC=Vt(ms,fx),JC={kernelName:ms,backendName:"cpu",kernelFunc:YC},mx=St((e,t)=>Math.min(e,t)),QC=Vt(xs,mx),eR={kernelName:xs,backendName:"cpu",kernelFunc:QC},Yf=St((e,t)=>e*t),tR=em((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),tm=Vt(ws,Yf,tR),nR={kernelName:ws,backendName:"cpu",kernelFunc:tm};function Ax(e,t,n){let r=v.createScalarValue(-1,n);return Yf([],t,r,e,n)}function rR(e){let{inputs:t,backend:n}=e,{x:r}=t;xe(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=Ax(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var aR={kernelName:ho,backendName:"cpu",kernelFunc:rR},yx=St((e,t)=>e!==t?1:0),sR=Vt(po,yx,null,"bool"),iR={kernelName:po,backendName:"cpu",kernelFunc:sR};function Jf(e,t,n,r,a){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(a),u=v.getTypedArrayFromDType(n,v.sizeFromShape(a));for(let c=0;cn.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,m)}var uR={kernelName:xo,backendName:"cpu",kernelFunc:lR};function Qf(e,t,n,r){let a=e===t,s=e1;if(a||s||i)return v.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(o,r);t1/Math.sqrt(e)),cR=ol(Cs,xx),hR={kernelName:Cs,backendName:"cpu",kernelFunc:cR};function Rd(e,t,n,r,a){let s=an.isSliceContinous(r,t,n),i=v.sizeFromShape(n),o=v.computeStrides(r);if(s){let h=an.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?C.fromUint8ToStringArray(e):e,u=Pe(r,a,l),c=Pe(n,a);for(let h=0;hm+t[f]);c.set(u.get(...p),...d)}return a==="string"?C.fromStringArrayToUint8(c.values):c.values}function ri(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;xe(a,"slice");let[o,l]=an.parseSliceParams(a,s,i);an.assertParamsValid(a,o,l);let u=n.data.get(a.dataId).values,c=Rd(u,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,c)}var dR={kernelName:Io,backendName:"cpu",kernelFunc:ri},wx=St((e,t)=>{let n=e-t;return n*n}),pR=Vt(Ds,wx),fR={kernelName:Ds,backendName:"cpu",kernelFunc:pR};function _x(e,t,n,r){let a=Pe(e,t.dtype);for(let s=0;se-t),mR=em((e,t,n,r)=>({real:e-n,imag:t-r})),nm=Vt(zs,bx,mR),AR={kernelName:zs,backendName:"cpu",kernelFunc:nm};function vx(e,t){let n=new Array(e.rank);for(let a=0;a_.value-g.value);let f=h*r,A=l.subarray(f,f+r),y=u.subarray(f,f+r);for(let g=0;g{for(let A=0;Anew Cd,1);var Tx=rt(Xi,e=>e>=0?e:Math.exp(e)-1),yR={kernelName:Xi,backendName:"cpu",kernelFunc:Tx};function Ex(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;xe([a],"leakyRelu");let i=v.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;ue<0?t*e:e);function Cx(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;xe([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=xR(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var wR={kernelName:ks,backendName:"cpu",kernelFunc:Cx},Rx=rt(Is,e=>Math.max(0,e)),_R={kernelName:Is,backendName:"cpu",kernelFunc:Rx},Fx=rt(Ss,e=>Math.min(Math.max(0,e),6)),bR={kernelName:Ss,backendName:"cpu",kernelFunc:Fx};function rm(e,t,n,r,a){if(n==="linear")return Fr({inputs:{x:t},backend:e});if(n==="relu")return Rx({inputs:{x:t},backend:e});if(n==="elu")return Tx({inputs:{x:t},backend:e});if(n==="relu6")return Fx({inputs:{x:t},backend:e});if(n==="prelu")return Cx({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return Ex({inputs:{x:t},backend:e,attrs:{alpha:a}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function ft(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=v.sizeFromShape(a.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let u=n.data.get(a.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,h=u.complexTensorInfos.imag;c.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var vR={kernelName:_o,backendName:"cpu",kernelFunc:ft};function Mx(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;xe([a,s],"matMul");let l=a.shape.length,u=s.shape.length,c=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[u-2]:s.shape[u-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),A=v.sizeFromShape(m),y=v.sizeFromShape(f),g=A===y||A===1||y===1;v.assert(l>=2&&u>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let _=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);v.assert(c===h,()=>`Error in matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let b=i?[A,c,d]:[A,d,c],w=o?[y,p,h]:[y,h,p],x=ft({inputs:{x:a},backend:n,attrs:{shape:b}}),N=ft({inputs:{x:s},backend:n,attrs:{shape:w}}),T=i?x.shape[1]:x.shape[2],E=i?x.shape[2]:x.shape[1],M=o?N.shape[1]:N.shape[2],D=Math.max(A,y),L=n.data.get(x.dataId).values,W=n.data.get(N.dataId).values,U=v.computeStrides(x.shape),j=v.computeStrides(N.shape),[X,G,ee]=i?[U[0],1,U[1]]:[U[0],U[1],1],[Y,ae,te]=o?[1,j[1],j[0]]:[j[1],1,j[0]],ie=E*M,Q=Pe([D,E,M],x.dtype),ce=Q.values,oe=n.blockSize;for(let pe=0;peMath.acos(e)),TR={kernelName:zi,backendName:"cpu",kernelFunc:SR},ER=rt(Pi,e=>Math.acosh(e)),CR={kernelName:Pi,backendName:"cpu",kernelFunc:ER};function RR(e){let{inputs:t,backend:n}=e,r=t;xe(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=Pe(r[0].shape,r[0].dtype),i=s.values;for(let o=0;og&&(g=w,_=b)}p[A]=_}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var PR={kernelName:Ka,backendName:"cpu",kernelFunc:zR};function LR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;xe(a,"argMin");let i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=nr({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[c,h]=C.computeOutAndReduceShapes(l.shape,i),d=v.sizeFromShape(c),p=v.makeZerosTypedArray(d,"int32"),m=v.sizeFromShape(h),f=n.data.get(l.dataId).values;for(let A=0;An.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var WR={kernelName:ql,backendName:"cpu",kernelFunc:LR},BR=rt(Li,e=>Math.asin(e)),VR={kernelName:Li,backendName:"cpu",kernelFunc:BR},UR=rt(Wi,e=>Math.asinh(e)),jR={kernelName:Wi,backendName:"cpu",kernelFunc:UR},HR=rt(Bi,e=>Math.atan(e)),GR={kernelName:Bi,backendName:"cpu",kernelFunc:HR},qR=St((e,t)=>Math.atan2(e,t)),XR=Vt(Ui,qR),KR={kernelName:Ui,backendName:"cpu",kernelFunc:XR},ZR=rt(Vi,e=>Math.atanh(e)),YR={kernelName:Vi,backendName:"cpu",kernelFunc:ZR};function am(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,u=a.dilationWidth,c=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Pe(a.outShape,n),A=f.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],_=a.outShape[3];for(let b=0;bG?G=oe:s==="avg"&&(ee+=oe,Y++)}if(isNaN(G))break}let ae=L+W*_+N;A[ae]=s==="avg"?ee/Y:G}}}return f}function $x(e,t,n,r,a=!1,s=!1){let i=Pe(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,u=r.dilationHeight,c=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,m=r.padInfo.left,f=Pe(t,n,e);for(let A=0;AM&&(M=X,a?D=s?((A*r.inHeight+L)*r.inWidth+U)*r.inChannels+y:(L*r.inWidth+U)*r.inChannels+y:D=W*d+j)}}i.set(D,A,g,x,y)}}return i}function Ox(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,u=a.dilationDepth,c=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,m=a.effectiveFilterWidth,f=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,_=Pe(a.outShape,n),b=_.values,w=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],x=a.outShape[2]*a.outShape[3]*a.outShape[4],N=a.outShape[3]*a.outShape[4],T=a.outShape[4];for(let E=0;Ebe?be=Le:s==="avg"&&(ke+=Le,Re++),isNaN(be))break}if(isNaN(be))break}if(isNaN(be))break}let $e=de+L;b[$e]=s==="avg"?ke/Re:be}}}}return _}function JR(e,t){let n=Pe(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,m=t.padInfo.left;for(let f=0;f=W&&(W=te,U=X*c*h+ee*c+ae)}}}n.set(U,f,y,w,E,A)}}}return n}function QR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;xe(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))h=Fr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=v.computeStrides(a.shape),m=am(d,a.shape,a.dtype,p,c,"avg");h=n.makeTensorInfo(c.outShape,a.dtype,m.values)}return h}var eF={kernelName:Za,backendName:"cpu",kernelFunc:QR};function tF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r;xe(a,"avgPool3d");let c=C.computePool3DInfo(a.shape,s,i,1,o,l,u),h=n.data.get(a.dataId).values,d=Ox(h,a.shape,a.dtype,v.computeStrides(a.shape),c,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var nF={kernelName:Xl,backendName:"cpu",kernelFunc:tF};function rF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r;xe([a,s],"avgPool3DGrad");let c=C.computePool3DInfo(s.shape,i,o,1,l,u),h=c.strideDepth,d=c.strideHeight,p=c.strideWidth,m=c.filterDepth,f=c.filterHeight,A=c.filterWidth,y=c.dilationDepth,g=c.dilationHeight,_=c.dilationWidth,b=c.effectiveFilterDepth,w=c.effectiveFilterHeight,x=c.effectiveFilterWidth,N=b-1-c.padInfo.front,T=x-1-c.padInfo.left,E=w-1-c.padInfo.top,M=Pe(s.shape,"float32"),D=1/(m*f*A),L=n.bufferSync(a);for(let W=0;W=c.outDepth||Math.floor(Q)!==Q))for(let ce=0;ce=c.outHeight||Math.floor(oe)!==oe))for(let pe=0;pe=c.outWidth||Math.floor(de)!==de||(te+=L.get(W,Q,oe,de,U))}}}M.set(te*D,W,j,X,G,U)}return n.makeTensorInfo(M.shape,M.dtype,M.values)}var aF={kernelName:ih,backendName:"cpu",kernelFunc:rF};function sF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;xe([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=r,c=C.computePool2DInfo(i.shape,o,l,1,u),h=c.strideHeight,d=c.strideWidth,p=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,A=c.dilationWidth,y=c.effectiveFilterHeight,g=c.effectiveFilterWidth,_=g-1-c.padInfo.left,b=y-1-c.padInfo.top,w=Pe(i.shape,"float32"),x=1/(p*m),N=n.data.get(a.dataId).values,T=Pe(a.shape,"float32",N);for(let E=0;E=c.outHeight||Math.floor(G)!==G))for(let ee=0;ee=c.outWidth||Math.floor(Y)!==Y||(j+=T.get(E,G,Y,M))}}w.set(j*x,E,D,L,M)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var iF={kernelName:sh,backendName:"cpu",kernelFunc:sF};function oF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),xe([a,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=r;u==null&&(u=.001);let c=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(c.length),A=m.length,y=p.length,g=d.length,_=h.length,b=0,w=0,x=0,N=0;for(let T=0;T=A&&(b=0),w>=_&&(w=0),x>=y&&(x=0),N>=g&&(N=0);return n.makeTensorInfo(a.shape,a.dtype,f)}var lF={kernelName:us,backendName:"cpu",kernelFunc:oF};function uF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;xe([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=C.getReshaped(a.shape,s,o),u=C.getPermuted(l.length,s.length),c=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),d=C.getSliceSize(c,i,s.length),p=ft({inputs:{x:a},backend:n,attrs:{shape:l}}),m=nr({inputs:{x:p},backend:n,attrs:{perm:u}}),f=ft({inputs:{x:m},backend:n,attrs:{shape:c}}),A=ri({inputs:{x:f},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var cF={kernelName:Kl,backendName:"cpu",kernelFunc:uF};function hF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,u=Kf(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var dF={kernelName:oh,backendName:"cpu",kernelFunc:hF},pF=rt(Aa,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(v.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;uf.shape),s);if(v.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>v.sizeFromShape(f.shape)>0);if(o.length===1)return Fr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(C.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(b=>ni({inputs:{input:b},backend:n})),A=o.map(b=>ll({inputs:{input:b},backend:n})),y=ul({inputs:f,backend:n,attrs:{axis:s}}),g=ul({inputs:A,backend:n,attrs:{axis:s}}),_=Rn({inputs:{real:y,imag:g},backend:n});return f.forEach(b=>n.disposeIntermediateTensorInfo(b)),A.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),_}let u=o.map(f=>{let A=v.sizeFromShape(f.shape.slice(s));return ft({inputs:{x:f},backend:n,attrs:{shape:[-1,A]}})}),c=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=C.computeOutShape(u.map(f=>f.shape),1);let h=u[0].shape[0]===1,d=Zf(c,i,t[0].dtype,h),p=C.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(p,t[0].dtype,d);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var gF={kernelName:ji,backendName:"cpu",kernelFunc:ul};function Dx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:c}=r;xe([a,s],"conv2d");let h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!1,h),p=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,_=d.dataFormat==="channelsLast",b=new Ft(d.outShape,a.dtype),w=v.computeStrides(a.shape),x=v.computeStrides(s.shape),N=w[0],T=_?w[1]:w[2],E=_?w[2]:1,M=_?1:w[1],D=b.strides[0],L=_?b.strides[1]:b.strides[2],W=_?b.strides[2]:1,U=_?1:b.strides[1],j=n.data.get(a.dataId).values,X=n.data.get(s.dataId).values,G=b.values;for(let ee=0;ee=d.inHeight)continue;let pe=ce*x[0],de=Y+oe*T;for(let be=0;be=d.inWidth)continue;let Je=pe+$e*x[1],Qe=de+Fe*E,at=Je;for(let Ge=0;Ge=u.inDepth)continue;let ee=X*E[0],Y=D+G*T[1];for(let ae=0;ae=u.inHeight)continue;let oe=ee+Q*E[1],pe=Y+ce*T[2];for(let de=0;de=u.inWidth)continue;let Fe=oe+Re*E[2],Je=pe+$e*u.inChannels,Qe=Fe;for(let at=0;atMath.cos(e)),RF={kernelName:ns,backendName:"cpu",kernelFunc:CF},FF=rt(Hi,e=>Math.cosh(e)),MF={kernelName:Hi,backendName:"cpu",kernelFunc:FF};function $F(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=r,[c,h,d,p]=a.shape,m=s.shape[0],[f,A]=o,y=Pe([m,f,A,p],"float32"),g=n.data.get(s.dataId).values,_=n.data.get(i.dataId).values,b=n.data.get(a.dataId).values,w=v.computeStrides(a.shape),x=v.computeStrides(y.shape);for(let N=0;N=c)continue;let U=f>1?(D-E)*(h-1)/(f-1):0,j=A>1?(L-M)*(d-1)/(A-1):0;for(let X=0;X1?E*(h-1)+X*U:.5*(E+D)*(h-1);if(G<0||G>h-1){for(let ee=0;ee1?M*(d-1)+te*j:.5*(M+L)*(d-1);if(ie<0||ie>d-1){for(let pe=0;pe1?M*(d-1)+ee*j:.5*(M+L)*(d-1);if(Y<0||Y>d-1){for(let ie=0;iey+m-g-1:(y,g)=>y+g;for(let y=0;y`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),v.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],u=a.shape[2],c=a.shape[3],h=l*s,d=u*s,p=c/(s*s),m=n.data.get(a.dataId).values,f=new Float32Array(o*h*d*p),A=0;for(let y=0;y`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=C.computeConv2DInfo(a.shape,s.shape,i,d,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:A,dilationWidth:y,padInfo:g}=p,_=g.left,b=g.top,w=p.outChannels/p.inChannels,x=new Ft(p.outShape,a.dtype),N=n.data.get(a.dataId).values,T=n.data.get(s.dataId).values,E=x.values;for(let M=0;M=p.inHeight)continue;let ee=X*h[0],Y=D+G*c[1];for(let ae=0;ae=p.inWidth)continue;let oe=ee+Q*h[1],pe=Y+ce*p.inChannels,de=te,be=oe;for(let ke=0;ke{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(r.dataId).values,c=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:m,inWidth:f,inChannels:A,outHeight:y,outWidth:g,padInfo:_,strideHeight:b,strideWidth:w,filterHeight:x,filterWidth:N,dilationHeight:T,dilationWidth:E,outShape:M}=C.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),D=v.sizeFromShape(M),L=M.length,W=v.getArrayFromDType(r.dtype,D);for(let U=0;U=0&&Q=0&&oeae&&(ae=be)}}}let te=v.locToIndex([U,j,G,Y],L,v.computeStrides(M));W[te]=ae}}}return{dataId:l.write(v.toTypedArray(W,r.dtype),M,r.dtype),shape:M,dtype:r.dtype}}},ZF={kernelName:yh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:_,strideWidth:b,filterHeight:w,filterWidth:x,dilationHeight:N,dilationWidth:T,outShape:E}=C.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===E.length,()=>`Error in ${yh}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=v.toNestedArray(E,u.data.get(s.dataId).values),D=v.makeZerosNestedTypedArray(a.shape,a.dtype);for(let L=0;L=0&&ie=0&&ceee&&(ee=oe,Y=te,ae=Q)}}}D[Y][ae][G]+=M[L][W][j][G]}}}return{dataId:u.write(v.toTypedArray(D,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},YF={kernelName:Ah,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:_,strideWidth:b,filterHeight:w,filterWidth:x,dilationHeight:N,dilationWidth:T,outShape:E}=C.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===E.length,()=>`Error in ${Ah}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=v.toNestedArray(E,u.data.get(s.dataId).values),D=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let L=0;L=0&&ie=0&&ceee&&(ee=oe,Y=ie,ae=ce)}}}D[L][Y][ae][G]+=M[L][W][j][G]}}}return{dataId:u.write(v.toTypedArray(D,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function JF(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;xe([r,a],"eluGrad");let s=new Float32Array(v.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(a.shape,"float32",s)}var QF={kernelName:gh,backendName:"cpu",kernelFunc:JF},eM=St((e,t)=>e===t?1:0),Px=Vt(Zi,eM,null,"bool"),tM={kernelName:Zi,backendName:"cpu",kernelFunc:Px},nM=C.ERF_P,rM=C.ERF_A1,aM=C.ERF_A2,sM=C.ERF_A3,iM=C.ERF_A4,oM=C.ERF_A5,lM=rt(Ki,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+nM*n);return t*(1-((((oM*r+iM)*r+sM)*r+aM)*r+rM)*r*Math.exp(-n*n))}),uM={kernelName:Ki,backendName:"cpu",kernelFunc:lM};function Md(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),ft({inputs:{x:a},backend:n,attrs:{shape:o}})}var cM={kernelName:Yi,backendName:"cpu",kernelFunc:Md},hM=St((e,t)=>e/t),sm=Vt(ss,hM),im={kernelName:ss,backendName:"cpu",kernelFunc:sm};function Lx(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[a,s],c=v.sizeFromShape(u),h=v.getTypedArrayFromDType("float32",c),d=v.getTypedArrayFromDType("float32",c);for(let A=0;A{let{image:r}=e,a=n,s=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(r.shape)),[i,o,l,u]=r.shape,c=a.data.get(r.dataId).values;for(let h=0;h=0&&_Math.floor(e/t)),_M=Vt(ls,wM,null,"int32"),bM={kernelName:ls,backendName:"cpu",kernelFunc:_M};function vM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=Dx({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=Lu({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=rm(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var kM={kernelName:Bs,backendName:"cpu",kernelFunc:vM};function IM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=zx({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=Lu({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=rm(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var NM={kernelName:Vs,backendName:"cpu",kernelFunc:IM};function SM(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=v.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,u,c,h]=C.prepareAndValidate(r,a);if(u===0)return n.makeTensorInfo(l,r.dtype,[]);let d=Pe([u,c],r.dtype),p=n.data.get(a.dataId).values,m=n.data.get(r.dataId).values;for(let f=0;f=s/c)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;ge>=t?1:0),FM=Vt(cs,RM,null,"bool"),MM={kernelName:cs,backendName:"cpu",kernelFunc:FM};function $M(e){let{inputs:t,backend:n}=e,{input:r}=t,a=v.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=ft({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=Lx(o,!0,n),u=ft({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var OM={kernelName:wh,backendName:"cpu",kernelFunc:$M},DM=rt(ro,e=>Number.isFinite(e)?1:0,"bool"),zM={kernelName:ro,backendName:"cpu",kernelFunc:DM},PM=rt(ao,e=>Math.abs(e)===Infinity?1:0,"bool"),LM={kernelName:ao,backendName:"cpu",kernelFunc:PM},WM=rt(so,e=>Number.isNaN(e)?1:0,"bool"),BM={kernelName:so,backendName:"cpu",kernelFunc:WM},VM=St((e,t)=>e<=t?1:0),UM=Vt(oo,VM,null,"bool"),jM={kernelName:oo,backendName:"cpu",kernelFunc:UM};function HM(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=hx(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var GM={kernelName:bh,backendName:"cpu",kernelFunc:HM},qM=rt(lo,e=>Math.log1p(e)),XM={kernelName:lo,backendName:"cpu",kernelFunc:qM},KM=St((e,t)=>e&&t),ZM=Vt(uo,KM,null,"bool"),YM={kernelName:uo,backendName:"cpu",kernelFunc:ZM},JM=rt(eu,e=>e?0:1,"bool"),QM={kernelName:eu,backendName:"cpu",kernelFunc:JM},e$=St((e,t)=>e||t),t$=Vt(tu,e$,null,"bool"),n$={kernelName:tu,backendName:"cpu",kernelFunc:t$};function r$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;xe(a,"LRN");let u=a.shape[3],c=u-1,h=n.data.get(a.dataId).values,d=v.sizeFromShape(a.shape),p=new Float32Array(d);function m(f){let A=f%u,y=f-A+Math.max(0,A-s),g=f-A+Math.min(A+s,c),_=0;for(;y<=g;y++){let b=h[y];_+=b*b}return _}for(let f=0;f`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))h=Fr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=v.computeStrides(a.shape),m=am(d,a.shape,a.dtype,p,c,"max");h=n.makeTensorInfo(c.outShape,a.dtype,m.values)}return h}var u$={kernelName:As,backendName:"cpu",kernelFunc:l$};function c$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r;xe(a,"maxPool3d");let c=C.computePool3DInfo(a.shape,s,i,1,o,l,u),h=n.data.get(a.dataId).values,d=Ox(h,a.shape,a.dtype,v.computeStrides(a.shape),c,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var h$={kernelName:ru,backendName:"cpu",kernelFunc:c$};function d$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r;xe([a,s],"maxPool3DGrad");let c=C.computePool3DInfo(s.shape,i,o,1,l,u),h=n.bufferSync(s),d=JR(h,c),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,A=c.dilationDepth,y=c.dilationHeight,g=c.dilationWidth,_=c.effectiveFilterDepth,b=c.effectiveFilterHeight,w=c.effectiveFilterWidth,x=_-1-c.padInfo.front,N=w-1-c.padInfo.left,T=b-1-c.padInfo.top,E=Pe(s.shape,"float32"),M=n.bufferSync(a);for(let D=0;D=c.outDepth||Math.floor(te)!==te))for(let ie=0;ie=c.outHeight||Math.floor(Q)!==Q))for(let ce=0;ce=c.outWidth||Math.floor(oe)!==oe)continue;let pe=_*b*w-1-d.get(D,te,Q,oe,L),de=ae*b*w+ie*w+ce,be=pe===de?1:0;be!==0&&(Y+=M.get(D,te,Q,oe,L)*be)}}}E.set(Y,D,W,U,j,L)}return n.makeTensorInfo(E.shape,E.dtype,E.values)}var p$={kernelName:Ih,backendName:"cpu",kernelFunc:d$};function f$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;xe([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:h}=r,d=C.computePool2DInfo(o.shape,l,u,1,c,h),p=n.data.get(o.dataId).values,m=Pe(d.outShape,o.dtype,$x(p,o.shape,o.dtype,d).values),f=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,_=d.effectiveFilterHeight,b=d.effectiveFilterWidth,w=b-1-d.padInfo.left,x=_-1-d.padInfo.top,N=Pe(o.shape,"float32"),T=n.data.get(a.dataId).values,E=Pe(a.shape,"float32",T);for(let M=0;M=d.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y=d.outWidth||Math.floor(ae)!==ae)continue;let te=_*b-1-m.get(M,ee,ae,D),ie=G*b+Y,Q=te===ie?1:0;Q!==0&&(X+=E.get(M,ee,ae,D)*Q)}}N.set(X,M,L,W,D)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var m$={kernelName:kh,backendName:"cpu",kernelFunc:f$};function A$(e,t,n,r,a){let s=v.computeStrides(t),i=am(e,t,n,s,a,"max"),o=$x(e,t,n,a,!0,r);return[i.values,o.values]}var y$={kernelName:Nh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;xe(r,"MaxPoolWithArgmax");let u=l.data.get(r.dataId).values,c=C.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=A$(u,r.shape,r.dtype,o,c),p=l.write(h,c.outShape,r.dtype),m=l.write(d,c.outShape,r.dtype);return[{dataId:p,shape:c.outShape,dtype:r.dtype},{dataId:m,shape:c.outShape,dtype:"int32"}]}};function $d(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;xe(a,"sum");let o;a.dtype==="bool"?o=Ea({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=Fr({inputs:{x:a},backend:n});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),c=C.getAxesPermutation(u,l),h=u,d=o;c!=null&&(d=nr({inputs:{x:o},backend:n,attrs:{perm:c}}),h=C.getInnerMostAxes(h.length,l)),C.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,m]=C.computeOutAndReduceShapes(d.shape,h),f=C.upcastType(d.dtype,"int32"),A=Fd(n,p,f),y=v.sizeFromShape(m),g=n.data.get(A.dataId).values,_=n.data.get(d.dataId).values;for(let b=0;bn.disposeIntermediateTensorInfo(f)),m}var w$={kernelName:ys,backendName:"cpu",kernelFunc:x$};function _$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;xe(a,"min");let o=v.parseAxisParam(s,a.shape),l=o,u=C.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=nr({inputs:{x:a},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("min",l,c.shape.length);let[h,d]=C.computeOutAndReduceShapes(c.shape,l),p=v.sizeFromShape(d),m=v.makeZerosTypedArray(v.sizeFromShape(h),c.dtype),f=n.data.get(c.dataId).values;for(let y=0;yg[0]+a.shape[_]+g[1]),l=s.map(g=>g[0]),u=s.map((g,_)=>g[0]+a.shape[_]),c=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=v.computeStrides(a.shape),m=v.sizeFromShape(o),f=o.length,A=v.computeStrides(o),y=v.getTypedArrayFromDType(a.dtype,m);for(let g=0;g=u[w]&&(_[w]=(u[w]-1)*2-_[w]+c);_=_.map((w,x)=>w-l[x]);let b=v.locToIndex(_,d,p);y[g]=h[b]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var k$={kernelName:au,backendName:"cpu",kernelFunc:v$},I$=St((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),N$=Vt(co,I$),S$={kernelName:co,backendName:"cpu",kernelFunc:N$},T$=Mi(s8());function Bx(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],a.shape),u=Wx({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=C.expandShapeToKeepDim(u.shape,l),h=ft({inputs:{x:u},backend:n,attrs:{shape:c}}),d=nm({inputs:{a,b:h},backend:n}),p=Nx({inputs:{x:d},backend:n}),m=$d({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),f=ft({inputs:{x:m},backend:n,attrs:{shape:c}}),A=sm({inputs:{a:p,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var E$={kernelName:Os,backendName:"cpu",kernelFunc:Bx};function C$(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;xe(a,"multinomial");let l=o?a:Bx({inputs:{logits:a},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],h=n.data.get(l.dataId).values,d=[u,s],p=v.makeZerosTypedArray(v.sizeFromShape(d),"int32");for(let m=0;m=0&&c[h]{v.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=Md({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=ul({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var H$={kernelName:go,backendName:"cpu",kernelFunc:Ux};function G$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;xe(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),u=n.data.get(a.dataId).values,c=v.sizeFromShape(a.shape),h=a.shape.length,d=v.computeStrides(a.shape),p=v.sizeFromShape(o),m=o.length,f=v.computeStrides(o),A=v.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;yb+l[w]),_=v.locToIndex(g,m,f);A[_]=u[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var jx={kernelName:bs,backendName:"cpu",kernelFunc:G$},q$=St((e,t)=>Math.pow(e,t)),X$=Vt(vs,q$),K$={kernelName:vs,backendName:"cpu",kernelFunc:X$};function Z$(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=Qf(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var Y$={kernelName:su,backendName:"cpu",kernelFunc:Z$},J$=rt(wo,e=>1/e),Q$={kernelName:wo,backendName:"cpu",kernelFunc:J$};function eO(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;xe(a,"resizeBilinear");let l=v.computeStrides(a.shape),[u,c]=o,[h,d,p,m]=a.shape,f=n.data.get(a.dataId).values,A=new Float32Array(v.sizeFromShape([h,u,c,m])),y=[s&&u>1?d-1:d,s&&c>1?p-1:p],g=[s&&u>1?u-1:u,s&&c>1?c-1:c],_=0,b=y[0]/g[0],w=y[1]/g[1];for(let x=0;x1?u-1:u,i&&p>1?c-1:c],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=f[0]/A[0],g=f[1]/A[1],_=n.data.get(s.dataId).values,b=0;for(let w=0;w1?d-1:d,s&&c>1?p-1:p],g=[s&&u>1?u-1:u,s&&c>1?c-1:c],_=y[0]/g[0],b=y[1]/g[1],w=0;for(let x=0;x1?c-1:c,i&&m>1?h-1:h],g=[i&&p>1?p-1:p,i&&m>1?m-1:m],_=y[0]/g[0],b=y[1]/g[1],w=1/_,x=1/b,N=Math.ceil(w)*2+2,T=Math.ceil(x)*2+2;for(let E=0;E=p)continue;let Q=M+ie*l[1],ce=ie*_,oe=Math.min(c-1,i?Math.round(ce):Math.floor(ce));if(D===oe)for(let pe=0;pe=m)continue;let be=Q+de*l[2],ke=de*b,Re=Math.min(h-1,i?Math.round(ke):Math.floor(ke));j===Re&&(ae+=A[be+Y])}}f[X+Y]=ae}}}}return n.makeTensorInfo(a.shape,a.dtype,f)}var oO={kernelName:Eh,backendName:"cpu",kernelFunc:iO};function lO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;xe(a,"reverse");let i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return Fr({inputs:{x:a},backend:n});let l=new Ft(a.shape,a.dtype),u=n.bufferSync(a);for(let c=0;cd[p]=a.shape[p]-1-d[p]),l.set(u.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var uO={kernelName:Ts,backendName:"cpu",kernelFunc:lO},cO={kernelName:Oo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(r.shape)),[u,c,h,d]=r.shape,[p,m]=C.getImageCenter(i,c,h),f=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let _=0;_=0&&W=0&&U{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),dO={kernelName:Es,backendName:"cpu",kernelFunc:hO};function Hx(e,t,n,r,a,s,i,o,l,u){let c=[r/a,a],h=e.values,d=t.values;if(r===0)return Pe(n,t.dtype);let p=Pe(c,t.dtype);p.values.fill(l);for(let m=0;m=r/a)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y1||a.shape.length===1?1:v.sizeFromShape(a.shape.slice(1));for(let m=0;me>=0?gO*e:yO*(Math.exp(e)-1)),wO={kernelName:ko,backendName:"cpu",kernelFunc:xO},_O=rt(Fs,e=>1/(1+Math.exp(-e))),bO={kernelName:Fs,backendName:"cpu",kernelFunc:_O},vO=rt(So,e=>e<0?-1:e>0?1:0),kO={kernelName:So,backendName:"cpu",kernelFunc:vO},IO=rt(Rs,e=>Math.sin(e)),NO={kernelName:Rs,backendName:"cpu",kernelFunc:IO},SO=rt(No,e=>Math.sinh(e)),TO={kernelName:No,backendName:"cpu",kernelFunc:SO},EO=11920928955078125e-23,Gx=Math.log(EO)+2,CO=rt(To,e=>{let t=e>-Gx,n=e{let d=[...c];d[o]=h;let p=ri({inputs:{x:a},backend:n,attrs:{begin:u,size:d}});return u[o]+=h,p})}var zO={kernelName:Eo,backendName:"cpu",kernelFunc:DO},PO=rt(Ms,e=>Math.sqrt(e)),LO={kernelName:Ms,backendName:"cpu",kernelFunc:PO},WO={kernelName:lu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;xe(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),VO={kernelName:ga,backendName:"cpu",kernelFunc:BO};function UO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r;xe(a,"stridedSlice");let{nonStrided:p,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=an.sliceInfo(a.shape,s,i,o,l,u,c,h,d),_=ft({inputs:{x:a},backend:n,attrs:{shape:y}}),b;if(p){let x=ri({inputs:{x:_},backend:n,attrs:{begin:m,size:A}});b=ft({inputs:{x},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(x)}else if(g.some(x=>x===0))b=n.makeTensorInfo(g,a.dtype,[]);else{let x=n.bufferSync(_),N=_x(g,x,f,m);b=n.makeTensorInfo(N.shape,N.dtype,N.values)}let w=ft({inputs:{x:b},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(_),n.disposeIntermediateTensorInfo(b),w}var jO={kernelName:Co,backendName:"cpu",kernelFunc:UO},HO=rt(Ro,e=>Math.tan(e)),GO={kernelName:Ro,backendName:"cpu",kernelFunc:HO},qO=rt(Ps,e=>Math.tanh(e)),XO={kernelName:Ps,backendName:"cpu",kernelFunc:qO};function KO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;xe(a,"tile");let i=vx(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var ZO={kernelName:ya,backendName:"cpu",kernelFunc:KO};function YO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;xe(a,"topk");let o=n.data.get(a.dataId).values,[l,u]=kx(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var JO={kernelName:Fo,backendName:"cpu",kernelFunc:YO};function QO(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;xe(s,"unique");let i=r.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=Ix(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([u.length],"int32",u)]}var eD={kernelName:Fh,backendName:"cpu",kernelFunc:QO};function tD(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape.length,o=a.shape[s],l=new Array(i-1),u=0;for(let p=0;pn.disposeIntermediateTensorInfo(m)),p}var aD={kernelName:uu,backendName:"cpu",kernelFunc:rD},sD=[NR,RC,TR,CR,zC,FR,$R,DR,PR,WR,VR,jR,GR,KR,YR,eF,nF,aF,iF,kR,lF,cF,dF,OC,LC,fF,FC,AF,gF,_F,vF,xF,SF,EF,IF,RF,MF,OF,zF,LF,BF,VF,jF,GF,XF,KF,YF,ZF,im,yR,QF,tM,uM,WC,cM,VC,AM,gM,xM,jC,bM,kM,NM,TM,CM,GC,MM,MC,OM,yF,zM,LM,BM,gR,XC,jM,GM,ZC,XM,YM,QM,n$,a$,i$,JC,u$,h$,p$,m$,y$,o$,w$,b$,eR,k$,S$,R$,nR,aR,$$,z$,W$,iR,V$,j$,H$,jx,K$,wR,uR,Y$,$C,Q$,_R,bR,vR,tO,rO,sO,oO,uO,cO,dO,hR,fO,AO,wO,bO,kO,NO,TO,dR,E$,RO,MO,OO,zO,LO,WO,fR,VO,jO,AR,g$,GO,XO,ZO,JO,oR,eD,nD,aD,U$];for(let e of sD)Us(e);var qx={};Oe(qx,{assertNotComplex:()=>cl,bindCanvasToFramebuffer:()=>lD,bindColorTextureToFramebuffer:()=>zd,bindTextureToProgramUniformSampler:()=>lw,bindTextureUnit:()=>sw,bindVertexBufferToProgramAttribute:()=>um,callAndCheck:()=>ye,canBeRepresented:()=>Xx,createFragmentShader:()=>Yx,createFramebuffer:()=>aw,createProgram:()=>Jx,createStaticIndexBuffer:()=>tw,createStaticVertexBuffer:()=>ew,createTexture:()=>nw,createVertexShader:()=>Zx,getBatchDim:()=>ai,getExtensionOrThrow:()=>Wu,getFramebufferErrorMessage:()=>uw,getMaxTexturesInShader:()=>dw,getNumChannels:()=>iD,getProgramUniformLocation:()=>ow,getProgramUniformLocationOrThrow:()=>iw,getRowsCols:()=>si,getShapeAs3D:()=>Pd,getTextureShapeFromLogicalShape:()=>cw,getWebGLDisjointQueryTimerVersion:()=>pw,getWebGLErrorMessage:()=>Kx,getWebGLMaxTextureSize:()=>hw,hasExtension:()=>jn,isCapableOfRenderingToFloatTexture:()=>fw,isDownloadFloatTextureEnabled:()=>mw,isReshapeFree:()=>Vu,isWebGLFenceEnabled:()=>Aw,isWebGLVersionEnabled:()=>hm,linkProgram:()=>Qx,resetMaxTextureSize:()=>uD,resetMaxTexturesInShader:()=>cD,unbindColorTextureFromFramebuffer:()=>cm,unbindTextureUnit:()=>oD,validateFramebuffer:()=>Bu,validateProgram:()=>Dd,validateTextureSize:()=>rw});var ii={},dm={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Ld(e,t){ii[e]=t}function Mr(e){if(!(e in ii)){let n=hD(e);if(n!==null)ii[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=ii[e];return t.isContextLost()?(delete ii[e],Mr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),ii[e])}function dD(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function hD(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=dD(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete ii[e]},!1),e===1?t.getContext("webgl",dm)||t.getContext("experimental-webgl",dm):t.getContext("webgl2",dm)}var Uu;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Uu||(Uu={}));var Hn;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Hn||(Hn={}));var Jt;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Jt||(Jt={}));function ju(e,t){return[t,e]}function pD(e,t){return e*t}function Hu(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function hl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function fD(e,t){let[n,r]=hl(e,t);return n*r*4}function pm(e,t){let n=e,r,a,s,i,o,l,u,c,h,d;return J().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,c=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,c=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:h,textureTypeFloat:d}}function ye(e,t){let n=t();return J().getBool("DEBUG")&&mD(e),n}function mD(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+Kx(e,t))}var AD=596e-10,yD=65504;function Xx(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||ADe.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Zx(e,t){let n=Qr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ye(e,()=>e.shaderSource(n,t)),ye(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function Yx(e,t){let n=Qr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ye(e,()=>e.shaderSource(n,t)),ye(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw gD(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var xD=/ERROR: [0-9]+:([0-9]+):/g;function gD(e,t){let n=xD.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(` -`),s=a.length.toString().length+2,i=a.map((h,d)=>v.rightPad((d+1).toString(),s)+h),o=0;for(let h=0;he.createProgram(),"Unable to create WebGLProgram.")}function Qx(e,t){if(ye(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Dd(e,t){if(ye(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function ew(e,t){let n=Qr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ye(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ye(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function tw(e,t){let n=Qr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ye(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),ye(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function iD(){return J().getNumber("WEBGL_VERSION")===2?1:4}function nw(e){return Qr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function rw(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function aw(e){return Qr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function um(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(ye(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),ye(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),ye(e,()=>e.enableVertexAttribArray(o)),!0)}function sw(e,t,n){yw(e,n),ye(e,()=>e.activeTexture(e.TEXTURE0+n)),ye(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function oD(e,t){yw(e,t),ye(e,()=>e.activeTexture(e.TEXTURE0+t)),ye(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function iw(e,t,n){return Qr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function ow(e,t,n){return e.getUniformLocation(t,n)}function lw(e,t,n,r){ye(e,()=>sw(e,t,r)),ye(e,()=>e.uniform1i(n,r))}function lD(e){ye(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ye(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ye(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function zd(e,t,n){ye(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),ye(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function cm(e,t){ye(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ye(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Bu(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+uw(e,t))}function uw(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Qr(e,t,n){let r=ye(e,()=>t());if(r==null)throw new Error(n);return r}function yw(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(rn){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function ai(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function si(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Pd(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[ai(e),...si(e)]),t}function cw(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?v.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let r=v.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=ai(e),s=2,i=2;return e.length&&([s,i]=si(e)),r=a*(s/2)*(i/2),v.sizeToSquarishShape(r).map(o=>o*2)}return v.sizeToSquarishShape(r)}function Wd(e){return e%2==0}function Vu(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||Wd(n)&&Wd(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Wd(e[0])&&Wd(t[0])}var Bd,Vd;function hw(e){if(Bd==null){let t=Mr(e);Bd=t.getParameter(t.MAX_TEXTURE_SIZE)}return Bd}function uD(){Bd=null}function cD(){Vd=null}function dw(e){if(Vd==null){let t=Mr(e);Vd=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Vd)}function pw(e){if(e===0)return 0;let t,n=Mr(e);return jn(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:jn(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function jn(e,t){return e.getExtension(t)!=null}function hm(e){try{if(Mr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function fw(e){if(e===0)return!1;let t=Mr(e);if(e===1){if(!jn(t,"OES_texture_float"))return!1}else if(!jn(t,"EXT_color_buffer_float"))return!1;return fm(t)}function mw(e){if(e===0)return!1;let t=Mr(e);if(e===1){if(!jn(t,"OES_texture_float")||!jn(t,"WEBGL_color_buffer_float"))return!1}else{if(jn(t,"EXT_color_buffer_float"))return fm(t);let n="EXT_color_buffer_half_float";if(jn(t,n)){let r=t.getExtension(n);return wD(t,r)}return!1}return fm(t)}function fm(e){let t=pm(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function wD(e,t){let n=pm(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function Aw(e){return e!==2?!1:Mr(e).fenceSync!=null}function cl(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ce=J();Ce.registerFlag("HAS_WEBGL",()=>Ce.getNumber("WEBGL_VERSION")>0);Ce.registerFlag("WEBGL_VERSION",()=>hm(2)?2:hm(1)?1:0);Ce.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ce.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ce.get("WEBGL_VERSION")===2);Ce.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ce.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ce.registerFlag("WEBGL_PACK",()=>Ce.getBool("HAS_WEBGL"));Ce.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_CLIP",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Ce.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_REDUCE",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_CONV_IM2COL",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>hw(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>dw(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ce.getNumber("WEBGL_VERSION");return e===0?0:pw(e)});Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ce.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Lh.isMobile());Ce.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>fw(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ce.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ce.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ce.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>mw(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_FENCE_API_ENABLED",()=>Aw(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ce.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ce.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ce.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function on(){let e,t,n,r,a,s,i,o,l,u;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=` +var Human = (() => { + var __create = Object.create; + var __defProp = Object.defineProperty; + var __getProtoOf = Object.getPrototypeOf; + var __hasOwnProp = Object.prototype.hasOwnProperty; + var __getOwnPropNames = Object.getOwnPropertyNames; + var __getOwnPropDesc = Object.getOwnPropertyDescriptor; + var __markAsModule = (target) => __defProp(target, "__esModule", {value: true}); + var __commonJS = (callback, module2) => () => { + if (!module2) { + module2 = {exports: {}}; + callback(module2.exports, module2); + } + return module2.exports; + }; + var __export = (target, all4) => { + for (var name2 in all4) + __defProp(target, name2, {get: all4[name2], enumerable: true}); + }; + var __exportStar = (target, module2, desc) => { + if (module2 && typeof module2 === "object" || typeof module2 === "function") { + for (let key of __getOwnPropNames(module2)) + if (!__hasOwnProp.call(target, key) && key !== "default") + __defProp(target, key, {get: () => module2[key], enumerable: !(desc = __getOwnPropDesc(module2, key)) || desc.enumerable}); + } + return target; + }; + var __toModule = (module2) => { + if (module2 && module2.__esModule) + return module2; + return __exportStar(__markAsModule(__defProp(module2 != null ? __create(__getProtoOf(module2)) : {}, "default", {value: module2, enumerable: true})), module2); + }; + + // src/blazeface/facemesh.ts + var require_facemesh = __commonJS((exports) => { + __markAsModule(exports); + __export(exports, { + MediaPipeFaceMesh: () => MediaPipeFaceMesh, + load: () => load9 + }); + var MediaPipeFaceMesh = class { + constructor(blazeFace, blazeMeshModel, irisModel, config3) { + this.facePipeline = new Pipeline(blazeFace, blazeMeshModel, irisModel, config3); + this.config = config3; + } + async estimateFaces(input2, config3) { + const predictions = await this.facePipeline.predict(input2, config3); + const results = []; + for (const prediction of predictions || []) { + if (prediction.isDisposedInternal) + continue; + const mesh = prediction.coords ? prediction.coords.arraySync() : null; + const meshRaw = prediction.rawCoords; + const annotations2 = {}; + if (mesh && mesh.length > 0) { + for (const key of Object.keys(MESH_ANNOTATIONS)) + annotations2[key] = MESH_ANNOTATIONS[key].map((index) => mesh[index]); + } + const boxRaw = config3.face.mesh.returnRawData && prediction.box ? {topLeft: prediction.box.startPoint, bottomRight: prediction.box.endPoint} : null; + const box3 = prediction.box ? [ + Math.max(0, prediction.box.startPoint[0]), + Math.max(0, prediction.box.startPoint[1]), + Math.min(input2.shape[2], prediction.box.endPoint[0]) - prediction.box.startPoint[0], + Math.min(input2.shape[1], prediction.box.endPoint[1]) - prediction.box.startPoint[1] + ] : 0; + results.push({ + confidence: prediction.faceConfidence || prediction.boxConfidence || 0, + boxConfidence: prediction.boxConfidence, + faceConfidence: prediction.faceConfidence, + box: box3, + mesh, + boxRaw, + meshRaw, + annotations: annotations2, + image: prediction.image ? clone(prediction.image) : null + }); + if (prediction.coords) + prediction.coords.dispose(); + if (prediction.image) + prediction.image.dispose(); + } + return results; + } + }; + var faceModels = [null, null, null]; + async function load9(config3) { + faceModels = await Promise.all([ + !faceModels[0] && config3.face.enabled ? load(config3) : null, + !faceModels[1] && config3.face.mesh.enabled ? loadGraphModel(config3.face.mesh.modelPath, {fromTFHub: config3.face.mesh.modelPath.includes("tfhub.dev")}) : null, + !faceModels[2] && config3.face.iris.enabled ? loadGraphModel(config3.face.iris.modelPath, {fromTFHub: config3.face.iris.modelPath.includes("tfhub.dev")}) : null + ]); + const faceMesh = new MediaPipeFaceMesh(faceModels[0], faceModels[1], faceModels[2], config3); + if (config3.face.mesh.enabled && config3.debug) + log(`load model: ${config3.face.mesh.modelPath.match(/\/(.*)\./)[1]}`); + if (config3.face.iris.enabled && config3.debug) + log(`load model: ${config3.face.iris.modelPath.match(/\/(.*)\./)[1]}`); + return faceMesh; + } + exports.triangulation = TRI468; + }); + + // src/posenet/keypoints.ts + var require_keypoints = __commonJS((exports) => { + __markAsModule(exports); + __export(exports, { + NUM_KEYPOINTS: () => NUM_KEYPOINTS3, + connectedPartIndices: () => connectedPartIndices, + partChannels: () => partChannels, + partIds: () => partIds2, + partNames: () => partNames2, + poseChain: () => poseChain2 + }); + var partNames2 = [ + "nose", + "leftEye", + "rightEye", + "leftEar", + "rightEar", + "leftShoulder", + "rightShoulder", + "leftElbow", + "rightElbow", + "leftWrist", + "rightWrist", + "leftHip", + "rightHip", + "leftKnee", + "rightKnee", + "leftAnkle", + "rightAnkle" + ]; + var NUM_KEYPOINTS3 = exports.partNames.length; + var partIds2 = exports.partNames.reduce((result, jointName, i) => { + result[jointName] = i; + return result; + }, {}); + var connectedPartNames = [ + ["leftHip", "leftShoulder"], + ["leftElbow", "leftShoulder"], + ["leftElbow", "leftWrist"], + ["leftHip", "leftKnee"], + ["leftKnee", "leftAnkle"], + ["rightHip", "rightShoulder"], + ["rightElbow", "rightShoulder"], + ["rightElbow", "rightWrist"], + ["rightHip", "rightKnee"], + ["rightKnee", "rightAnkle"], + ["leftShoulder", "rightShoulder"], + ["leftHip", "rightHip"] + ]; + var connectedPartIndices = connectedPartNames.map(([jointNameA, jointNameB]) => [partIds2[jointNameA], partIds2[jointNameB]]); + var poseChain2 = [ + ["nose", "leftEye"], + ["leftEye", "leftEar"], + ["nose", "rightEye"], + ["rightEye", "rightEar"], + ["nose", "leftShoulder"], + ["leftShoulder", "leftElbow"], + ["leftElbow", "leftWrist"], + ["leftShoulder", "leftHip"], + ["leftHip", "leftKnee"], + ["leftKnee", "leftAnkle"], + ["nose", "rightShoulder"], + ["rightShoulder", "rightElbow"], + ["rightElbow", "rightWrist"], + ["rightShoulder", "rightHip"], + ["rightHip", "rightKnee"], + ["rightKnee", "rightAnkle"] + ]; + var partChannels = [ + "left_face", + "right_face", + "right_upper_leg_front", + "right_lower_leg_back", + "right_upper_leg_back", + "left_lower_leg_front", + "left_upper_leg_front", + "left_upper_leg_back", + "left_lower_leg_back", + "right_feet", + "right_lower_leg_front", + "left_feet", + "torso_front", + "torso_back", + "right_upper_arm_front", + "right_upper_arm_back", + "right_lower_arm_back", + "left_lower_arm_front", + "left_upper_arm_front", + "left_upper_arm_back", + "left_lower_arm_back", + "right_hand", + "right_lower_arm_front", + "left_hand" + ]; + }); + + // src/human.ts + var human_exports = {}; + __export(human_exports, { + default: () => Human + }); + + // src/log.ts + function log(...msg) { + const dt = new Date(); + const ts = `${dt.getHours().toString().padStart(2, "0")}:${dt.getMinutes().toString().padStart(2, "0")}:${dt.getSeconds().toString().padStart(2, "0")}.${dt.getMilliseconds().toString().padStart(3, "0")}`; + if (msg) + console.log(ts, "Human:", ...msg); + } + + // dist/tfjs.esm.js + var tfjs_esm_exports = {}; + __export(tfjs_esm_exports, { + Abs: () => Abs, + Acos: () => Acos, + Acosh: () => Acosh, + AdadeltaOptimizer: () => AdadeltaOptimizer, + AdagradOptimizer: () => AdagradOptimizer, + AdamOptimizer: () => AdamOptimizer, + AdamaxOptimizer: () => AdamaxOptimizer, + Add: () => Add, + AddN: () => AddN, + All: () => All, + Any: () => Any, + ArgMax: () => ArgMax, + ArgMin: () => ArgMin, + Asin: () => Asin, + Asinh: () => Asinh, + Atan: () => Atan, + Atan2: () => Atan2, + Atanh: () => Atanh, + AvgPool: () => AvgPool, + AvgPool3D: () => AvgPool3D, + AvgPool3DGrad: () => AvgPool3DGrad, + AvgPoolGrad: () => AvgPoolGrad, + BackendWasm: () => BackendWasm, + BatchMatMul: () => BatchMatMul, + BatchToSpaceND: () => BatchToSpaceND, + Bincount: () => Bincount, + BroadcastTo: () => BroadcastTo, + Callback: () => Callback, + CallbackList: () => CallbackList, + Cast: () => Cast, + Ceil: () => Ceil, + ClipByValue: () => ClipByValue, + Complex: () => Complex, + ComplexAbs: () => ComplexAbs, + Concat: () => Concat, + Conv2D: () => Conv2D, + Conv2DBackpropFilter: () => Conv2DBackpropFilter, + Conv2DBackpropInput: () => Conv2DBackpropInput, + Conv3D: () => Conv3D, + Conv3DBackpropFilterV2: () => Conv3DBackpropFilterV2, + Conv3DBackpropInputV2: () => Conv3DBackpropInputV2, + Cos: () => Cos, + Cosh: () => Cosh, + CropAndResize: () => CropAndResize, + Cumsum: () => Cumsum, + CustomCallback: () => CustomCallback, + DataStorage: () => DataStorage, + DenseBincount: () => DenseBincount, + DepthToSpace: () => DepthToSpace, + DepthwiseConv2dNative: () => DepthwiseConv2dNative, + DepthwiseConv2dNativeBackpropFilter: () => DepthwiseConv2dNativeBackpropFilter, + DepthwiseConv2dNativeBackpropInput: () => DepthwiseConv2dNativeBackpropInput, + Diag: () => Diag, + Dilation2D: () => Dilation2D, + Dilation2DBackpropFilter: () => Dilation2DBackpropFilter, + Dilation2DBackpropInput: () => Dilation2DBackpropInput, + ENV: () => ENV, + EarlyStopping: () => EarlyStopping, + Elu: () => Elu, + EluGrad: () => EluGrad, + Environment: () => Environment, + Equal: () => Equal, + Erf: () => Erf, + Exp: () => Exp, + ExpandDims: () => ExpandDims, + Expm1: () => Expm1, + FFT: () => FFT, + Fill: () => Fill, + FlipLeftRight: () => FlipLeftRight, + Floor: () => Floor, + FloorDiv: () => FloorDiv, + FromPixels: () => FromPixels, + FusedBatchNorm: () => FusedBatchNorm, + FusedConv2D: () => FusedConv2D, + FusedDepthwiseConv2D: () => FusedDepthwiseConv2D, + GPGPUContext: () => GPGPUContext, + GatherNd: () => GatherNd, + GatherV2: () => GatherV2, + GraphModel: () => GraphModel, + Greater: () => Greater, + GreaterEqual: () => GreaterEqual, + History: () => History, + IFFT: () => IFFT, + Identity: () => Identity, + Imag: () => Imag, + InputSpec: () => InputSpec, + IsFinite: () => IsFinite, + IsInf: () => IsInf, + IsNan: () => IsNan, + KernelBackend: () => KernelBackend, + LRN: () => LRN, + LRNGrad: () => LRNGrad, + LayerVariable: () => LayerVariable, + LayersModel: () => LayersModel, + LeakyRelu: () => LeakyRelu, + Less: () => Less, + LessEqual: () => LessEqual, + LinSpace: () => LinSpace, + Log: () => Log, + Log1p: () => Log1p, + LogSoftmax: () => LogSoftmax, + LogicalAnd: () => LogicalAnd, + LogicalNot: () => LogicalNot, + LogicalOr: () => LogicalOr, + MathBackendCPU: () => MathBackendCPU, + MathBackendWebGL: () => MathBackendWebGL, + Max: () => Max, + MaxPool: () => MaxPool, + MaxPool3D: () => MaxPool3D, + MaxPool3DGrad: () => MaxPool3DGrad, + MaxPoolGrad: () => MaxPoolGrad, + MaxPoolWithArgmax: () => MaxPoolWithArgmax, + Maximum: () => Maximum, + Mean: () => Mean, + Min: () => Min, + Minimum: () => Minimum, + MirrorPad: () => MirrorPad, + Mod: () => Mod, + MomentumOptimizer: () => MomentumOptimizer, + Multinomial: () => Multinomial, + Multiply: () => Multiply, + Neg: () => Neg, + NonMaxSuppressionV3: () => NonMaxSuppressionV3, + NonMaxSuppressionV4: () => NonMaxSuppressionV4, + NonMaxSuppressionV5: () => NonMaxSuppressionV5, + NotEqual: () => NotEqual, + OP_SCOPE_SUFFIX: () => OP_SCOPE_SUFFIX, + OneHot: () => OneHot, + OnesLike: () => OnesLike, + Optimizer: () => Optimizer, + Pack: () => Pack, + PadV2: () => PadV2, + Pool: () => Pool, + Pow: () => Pow, + Prelu: () => Prelu, + Prod: () => Prod, + RMSPropOptimizer: () => RMSPropOptimizer, + RNN: () => RNN, + Range: () => Range, + Rank: () => Rank, + Real: () => Real, + RealDiv: () => RealDiv, + Reciprocal: () => Reciprocal, + Reduction: () => Reduction, + Relu: () => Relu, + Relu6: () => Relu6, + Reshape: () => Reshape, + ResizeBilinear: () => ResizeBilinear, + ResizeBilinearGrad: () => ResizeBilinearGrad, + ResizeNearestNeighbor: () => ResizeNearestNeighbor, + ResizeNearestNeighborGrad: () => ResizeNearestNeighborGrad, + Reverse: () => Reverse, + RotateWithOffset: () => RotateWithOffset, + Round: () => Round, + Rsqrt: () => Rsqrt, + SGDOptimizer: () => SGDOptimizer, + ScatterNd: () => ScatterNd, + Select: () => Select, + Selu: () => Selu, + Sequential: () => Sequential, + Sigmoid: () => Sigmoid, + Sign: () => Sign, + Sin: () => Sin, + Sinh: () => Sinh, + Slice: () => Slice, + Softmax: () => Softmax, + Softplus: () => Softplus, + SpaceToBatchND: () => SpaceToBatchND, + SparseToDense: () => SparseToDense, + SplitV: () => SplitV, + Sqrt: () => Sqrt, + Square: () => Square, + SquaredDifference: () => SquaredDifference, + Step: () => Step, + StridedSlice: () => StridedSlice, + Sub: () => Sub, + Sum: () => Sum, + SymbolicTensor: () => SymbolicTensor, + Tan: () => Tan, + Tanh: () => Tanh, + Tensor: () => Tensor, + TensorBuffer: () => TensorBuffer, + Tile: () => Tile, + TopK: () => TopK, + Transpose: () => Transpose, + Unique: () => Unique, + Unpack: () => Unpack, + UnsortedSegmentSum: () => UnsortedSegmentSum, + Variable: () => Variable, + ZerosLike: () => ZerosLike, + _FusedMatMul: () => _FusedMatMul, + abs: () => abs, + acos: () => acos, + acosh: () => acosh, + add: () => add2, + addN: () => addN, + all: () => all, + any: () => any, + argMax: () => argMax, + argMin: () => argMin, + asin: () => asin, + asinh: () => asinh, + atan: () => atan, + atan2: () => atan2, + atanh: () => atanh, + avgPool: () => avgPool, + avgPool3d: () => avgPool3d, + backend: () => backend, + backend_util: () => backend_util_exports, + basicLSTMCell: () => basicLSTMCell, + batchNorm: () => batchNorm, + batchNorm2d: () => batchNorm2d, + batchNorm3d: () => batchNorm3d, + batchNorm4d: () => batchNorm4d, + batchToSpaceND: () => batchToSpaceND, + bincount: () => bincount, + booleanMaskAsync: () => booleanMaskAsync, + broadcastTo: () => broadcastTo, + browser: () => browser_exports, + buffer: () => buffer, + callbacks: () => callbacks, + cast: () => cast, + ceil: () => ceil, + clipByValue: () => clipByValue, + clone: () => clone, + complex: () => complex, + concat: () => concat, + concat1d: () => concat1d, + concat2d: () => concat2d, + concat3d: () => concat3d, + concat4d: () => concat4d, + constraints: () => exports_constraints_exports, + conv1d: () => conv1d, + conv2d: () => conv2d, + conv2dTranspose: () => conv2dTranspose, + conv3d: () => conv3d, + conv3dTranspose: () => conv3dTranspose, + copyRegisteredKernels: () => copyRegisteredKernels, + cos: () => cos, + cosh: () => cosh, + cosineWindow: () => cosineWindow, + cumsum: () => cumsum, + customGrad: () => customGrad, + data: () => dist_exports, + denseBincount: () => denseBincount, + deprecationWarn: () => deprecationWarn, + depthToSpace: () => depthToSpace, + depthwiseConv2d: () => depthwiseConv2d, + deregisterOp: () => deregisterOp, + device_util: () => device_util_exports, + diag: () => diag, + dilation2d: () => dilation2d, + disableDeprecationWarnings: () => disableDeprecationWarnings, + dispose: () => dispose, + disposeVariables: () => disposeVariables, + div: () => div, + divNoNan: () => divNoNan, + dot: () => dot, + dropout: () => dropout, + elu: () => elu, + enableDebugMode: () => enableDebugMode, + enableProdMode: () => enableProdMode, + enclosingPowerOfTwo: () => enclosingPowerOfTwo, + engine: () => engine, + env: () => env, + equal: () => equal, + erf: () => erf, + exp: () => exp, + expandDims: () => expandDims, + expm1: () => expm1, + eye: () => eye, + fft: () => fft, + fill: () => fill, + findBackend: () => findBackend, + findBackendFactory: () => findBackendFactory, + floor: () => floor, + floorDiv: () => floorDiv, + forceHalfFloat: () => forceHalfFloat, + fused: () => fused_ops_exports, + gather: () => gather, + gatherND: () => gatherND, + gather_util: () => gather_nd_util_exports, + getBackend: () => getBackend, + getGradient: () => getGradient, + getKernel: () => getKernel, + getKernelsForBackend: () => getKernelsForBackend, + gpgpu_util: () => gpgpu_util_exports, + grad: () => grad, + grads: () => grads, + greater: () => greater, + greaterEqual: () => greaterEqual, + ifft: () => ifft, + imag: () => imag, + image: () => image, + inTopKAsync: () => inTopKAsync, + initializers: () => exports_initializers_exports, + input: () => input, + io: () => io_exports, + irfft: () => irfft, + isFinite: () => isFinite2, + isInf: () => isInf, + isNaN: () => isNaN2, + keep: () => keep, + kernel_impls: () => kernel_impls_exports, + layers: () => exports_layers_exports, + leakyRelu: () => leakyRelu, + less: () => less, + lessEqual: () => lessEqual, + linalg: () => linalg, + linspace: () => linspace, + loadGraphModel: () => loadGraphModel, + loadLayersModel: () => loadLayersModel, + localResponseNormalization: () => localResponseNormalization, + log: () => log2, + log1p: () => log1p, + logSigmoid: () => logSigmoid, + logSoftmax: () => logSoftmax, + logSumExp: () => logSumExp, + logicalAnd: () => logicalAnd, + logicalNot: () => logicalNot, + logicalOr: () => logicalOr, + logicalXor: () => logicalXor, + losses: () => losses, + matMul: () => matMul, + math: () => math_exports, + max: () => max, + maxPool: () => maxPool, + maxPool3d: () => maxPool3d, + maxPoolWithArgmax: () => maxPoolWithArgmax, + maximum: () => maximum, + mean: () => mean, + memory: () => memory, + metrics: () => exports_metrics_exports, + min: () => min, + minimum: () => minimum, + mirrorPad: () => mirrorPad, + mod: () => mod, + model: () => model, + models: () => exports_models_exports, + moments: () => moments, + movingAverage: () => movingAverage, + mul: () => mul, + multiRNNCell: () => multiRNNCell, + multinomial: () => multinomial, + neg: () => neg, + nextFrame: () => nextFrame, + norm: () => norm, + notEqual: () => notEqual, + oneHot: () => oneHot, + ones: () => ones2, + onesLike: () => onesLike, + op: () => op, + outerProduct: () => outerProduct, + pad: () => pad, + pad1d: () => pad1d, + pad2d: () => pad2d, + pad3d: () => pad3d, + pad4d: () => pad4d, + pool: () => pool, + pow: () => pow, + prelu: () => prelu, + print: () => print2, + prod: () => prod, + profile: () => profile, + rand: () => rand, + randomGamma: () => randomGamma, + randomNormal: () => randomNormal, + randomUniform: () => randomUniform, + range: () => range, + ready: () => ready, + real: () => real, + reciprocal: () => reciprocal, + registerBackend: () => registerBackend, + registerCallbackConstructor: () => registerCallbackConstructor, + registerGradient: () => registerGradient, + registerKernel: () => registerKernel, + registerOp: () => registerOp, + regularizers: () => exports_regularizers_exports, + relu: () => relu, + relu6: () => relu6, + removeBackend: () => removeBackend, + reshape: () => reshape, + reverse: () => reverse, + reverse1d: () => reverse1d, + reverse2d: () => reverse2d, + reverse3d: () => reverse3d, + reverse4d: () => reverse4d, + rfft: () => rfft, + round: () => round2, + rsqrt: () => rsqrt, + scalar: () => scalar, + scatterND: () => scatterND, + scatter_util: () => scatter_nd_util_exports, + selu: () => selu, + separableConv2d: () => separableConv2d, + sequential: () => sequential, + serialization: () => serialization_exports, + setBackend: () => setBackend, + setPlatform: () => setPlatform, + setWasmPath: () => setWasmPath, + setWasmPaths: () => setWasmPaths, + setWebGLContext: () => setWebGLContext, + setdiff1dAsync: () => setdiff1dAsync, + shared: () => shared_exports, + sigmoid: () => sigmoid, + sign: () => sign, + signal: () => signal, + sin: () => sin, + sinh: () => sinh, + slice: () => slice, + slice1d: () => slice1d, + slice2d: () => slice2d, + slice3d: () => slice3d, + slice4d: () => slice4d, + slice_util: () => slice_util_exports, + softmax: () => softmax, + softplus: () => softplus, + spaceToBatchND: () => spaceToBatchND, + sparseToDense: () => sparseToDense, + spectral: () => spectral, + split: () => split, + sqrt: () => sqrt, + square: () => square, + squaredDifference: () => squaredDifference, + squeeze: () => squeeze, + stack: () => stack, + step: () => step, + stridedSlice: () => stridedSlice, + sub: () => sub, + sum: () => sum2, + sumOutType: () => sumOutType, + tan: () => tan, + tanh: () => tanh2, + tensor: () => tensor, + tensor1d: () => tensor1d, + tensor2d: () => tensor2d, + tensor3d: () => tensor3d, + tensor4d: () => tensor4d, + tensor5d: () => tensor5d, + tensor6d: () => tensor6d, + tensor_util: () => tensor_util_exports, + test_util: () => test_util_exports, + tidy: () => tidy, + tile: () => tile, + time: () => time, + topk: () => topk, + train: () => train, + transpose: () => transpose, + truncatedNormal: () => truncatedNormal, + unique: () => unique, + unregisterGradient: () => unregisterGradient, + unregisterKernel: () => unregisterKernel, + unsortedSegmentSum: () => unsortedSegmentSum, + unstack: () => unstack, + upcastType: () => upcastType, + util: () => util_exports, + valueAndGrad: () => valueAndGrad, + valueAndGrads: () => valueAndGrads, + variable: () => variable, + variableGrads: () => variableGrads, + version: () => version13, + version_converter: () => version11, + version_core: () => version6, + version_cpu: () => version7, + version_layers: () => version10, + version_wasm: () => version9, + version_webgl: () => version8, + webgl: () => webgl, + webgl_util: () => webgl_util_exports, + where: () => where, + whereAsync: () => whereAsync, + zeros: () => zeros, + zerosLike: () => zerosLike + }); + var __create2 = Object.create; + var __defProp2 = Object.defineProperty; + var __getProtoOf2 = Object.getPrototypeOf; + var __hasOwnProp2 = Object.prototype.hasOwnProperty; + var __getOwnPropNames2 = Object.getOwnPropertyNames; + var __getOwnPropDesc2 = Object.getOwnPropertyDescriptor; + var __markAsModule2 = (target) => __defProp2(target, "__esModule", {value: true}); + var __commonJS2 = (callback, module2) => () => { + if (!module2) { + module2 = {exports: {}}; + callback(module2.exports, module2); + } + return module2.exports; + }; + var __export2 = (target, all4) => { + for (var name2 in all4) + __defProp2(target, name2, {get: all4[name2], enumerable: true}); + }; + var __exportStar2 = (target, module2, desc) => { + if (module2 && typeof module2 === "object" || typeof module2 === "function") { + for (let key of __getOwnPropNames2(module2)) + if (!__hasOwnProp2.call(target, key) && key !== "default") + __defProp2(target, key, {get: () => module2[key], enumerable: !(desc = __getOwnPropDesc2(module2, key)) || desc.enumerable}); + } + return target; + }; + var __toModule2 = (module2) => { + if (module2 && module2.__esModule) + return module2; + return __exportStar2(__markAsModule2(__defProp2(module2 != null ? __create2(__getProtoOf2(module2)) : {}, "default", {value: module2, enumerable: true})), module2); + }; + var require_browser = __commonJS2(() => { + }); + var require_alea = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function Alea(seed) { + var me = this, mash = Mash(); + me.next = function() { + var t = 2091639 * me.s0 + me.c * 23283064365386963e-26; + me.s0 = me.s1; + me.s1 = me.s2; + return me.s2 = t - (me.c = t | 0); + }; + me.c = 1; + me.s0 = mash(" "); + me.s1 = mash(" "); + me.s2 = mash(" "); + me.s0 -= mash(seed); + if (me.s0 < 0) { + me.s0 += 1; + } + me.s1 -= mash(seed); + if (me.s1 < 0) { + me.s1 += 1; + } + me.s2 -= mash(seed); + if (me.s2 < 0) { + me.s2 += 1; + } + mash = null; + } + function copy(f, t) { + t.c = f.c; + t.s0 = f.s0; + t.s1 = f.s1; + t.s2 = f.s2; + return t; + } + function impl(seed, opts) { + var xg = new Alea(seed), state = opts && opts.state, prng = xg.next; + prng.int32 = function() { + return xg.next() * 4294967296 | 0; + }; + prng.double = function() { + return prng() + (prng() * 2097152 | 0) * 11102230246251565e-32; + }; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + function Mash() { + var n = 4022871197; + var mash = function(data2) { + data2 = data2.toString(); + for (var i = 0; i < data2.length; i++) { + n += data2.charCodeAt(i); + var h = 0.02519603282416938 * n; + n = h >>> 0; + h -= n; + h *= n; + n = h >>> 0; + h -= n; + n += h * 4294967296; + } + return (n >>> 0) * 23283064365386963e-26; + }; + return mash; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.alea = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); + }); + var require_xor128 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.x = 0; + me.y = 0; + me.z = 0; + me.w = 0; + me.next = function() { + var t = me.x ^ me.x << 11; + me.x = me.y; + me.y = me.z; + me.z = me.w; + return me.w ^= me.w >>> 19 ^ t ^ t >>> 8; + }; + if (seed === (seed | 0)) { + me.x = seed; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 64; k++) { + me.x ^= strseed.charCodeAt(k) | 0; + me.next(); + } + } + function copy(f, t) { + t.x = f.x; + t.y = f.y; + t.z = f.z; + t.w = f.w; + return t; + } + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xor128 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); + }); + var require_xorwow = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.next = function() { + var t = me.x ^ me.x >>> 2; + me.x = me.y; + me.y = me.z; + me.z = me.w; + me.w = me.v; + return (me.d = me.d + 362437 | 0) + (me.v = me.v ^ me.v << 4 ^ (t ^ t << 1)) | 0; + }; + me.x = 0; + me.y = 0; + me.z = 0; + me.w = 0; + me.v = 0; + if (seed === (seed | 0)) { + me.x = seed; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 64; k++) { + me.x ^= strseed.charCodeAt(k) | 0; + if (k == strseed.length) { + me.d = me.x << 10 ^ me.x >>> 4; + } + me.next(); + } + } + function copy(f, t) { + t.x = f.x; + t.y = f.y; + t.z = f.z; + t.w = f.w; + t.v = f.v; + t.d = f.d; + return t; + } + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xorwow = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); + }); + var require_xorshift7 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this; + me.next = function() { + var X = me.x, i = me.i, t, v, w; + t = X[i]; + t ^= t >>> 7; + v = t ^ t << 24; + t = X[i + 1 & 7]; + v ^= t ^ t >>> 10; + t = X[i + 3 & 7]; + v ^= t ^ t >>> 3; + t = X[i + 4 & 7]; + v ^= t ^ t << 7; + t = X[i + 7 & 7]; + t = t ^ t << 13; + v ^= t ^ t << 9; + X[i] = v; + me.i = i + 1 & 7; + return v; + }; + function init2(me2, seed2) { + var j, w, X = []; + if (seed2 === (seed2 | 0)) { + w = X[0] = seed2; + } else { + seed2 = "" + seed2; + for (j = 0; j < seed2.length; ++j) { + X[j & 7] = X[j & 7] << 15 ^ seed2.charCodeAt(j) + X[j + 1 & 7] << 13; + } + } + while (X.length < 8) + X.push(0); + for (j = 0; j < 8 && X[j] === 0; ++j) + ; + if (j == 8) + w = X[7] = -1; + else + w = X[j]; + me2.x = X; + me2.i = 0; + for (j = 256; j > 0; --j) { + me2.next(); + } + } + init2(me, seed); + } + function copy(f, t) { + t.x = f.x.slice(); + t.i = f.i; + return t; + } + function impl(seed, opts) { + if (seed == null) + seed = +new Date(); + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (state.x) + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xorshift7 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); + }); + var require_xor4096 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this; + me.next = function() { + var w = me.w, X = me.X, i = me.i, t, v; + me.w = w = w + 1640531527 | 0; + v = X[i + 34 & 127]; + t = X[i = i + 1 & 127]; + v ^= v << 13; + t ^= t << 17; + v ^= v >>> 15; + t ^= t >>> 12; + v = X[i] = v ^ t; + me.i = i; + return v + (w ^ w >>> 16) | 0; + }; + function init2(me2, seed2) { + var t, v, i, j, w, X = [], limit = 128; + if (seed2 === (seed2 | 0)) { + v = seed2; + seed2 = null; + } else { + seed2 = seed2 + "\0"; + v = 0; + limit = Math.max(limit, seed2.length); + } + for (i = 0, j = -32; j < limit; ++j) { + if (seed2) + v ^= seed2.charCodeAt((j + 32) % seed2.length); + if (j === 0) + w = v; + v ^= v << 10; + v ^= v >>> 15; + v ^= v << 4; + v ^= v >>> 13; + if (j >= 0) { + w = w + 1640531527 | 0; + t = X[j & 127] ^= v + w; + i = t == 0 ? i + 1 : 0; + } + } + if (i >= 128) { + X[(seed2 && seed2.length || 0) & 127] = -1; + } + i = 127; + for (j = 4 * 128; j > 0; --j) { + v = X[i + 34 & 127]; + t = X[i = i + 1 & 127]; + v ^= v << 13; + t ^= t << 17; + v ^= v >>> 15; + t ^= t >>> 12; + X[i] = v ^ t; + } + me2.w = w; + me2.X = X; + me2.i = i; + } + init2(me, seed); + } + function copy(f, t) { + t.i = f.i; + t.w = f.w; + t.X = f.X.slice(); + return t; + } + ; + function impl(seed, opts) { + if (seed == null) + seed = +new Date(); + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (state.X) + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xor4096 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); + }); + var require_tychei = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.next = function() { + var b = me.b, c = me.c, d = me.d, a = me.a; + b = b << 25 ^ b >>> 7 ^ c; + c = c - d | 0; + d = d << 24 ^ d >>> 8 ^ a; + a = a - b | 0; + me.b = b = b << 20 ^ b >>> 12 ^ c; + me.c = c = c - d | 0; + me.d = d << 16 ^ c >>> 16 ^ a; + return me.a = a - b | 0; + }; + me.a = 0; + me.b = 0; + me.c = 2654435769 | 0; + me.d = 1367130551; + if (seed === Math.floor(seed)) { + me.a = seed / 4294967296 | 0; + me.b = seed | 0; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 20; k++) { + me.b ^= strseed.charCodeAt(k) | 0; + me.next(); + } + } + function copy(f, t) { + t.a = f.a; + t.b = f.b; + t.c = f.c; + t.d = f.d; + return t; + } + ; + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.tychei = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); + }); + var require_crypto = __commonJS2(() => { + }); + var require_seedrandom = __commonJS2((exports, module2) => { + (function(pool3, math) { + var global2 = this, width = 256, chunks = 6, digits = 52, rngname = "random", startdenom = math.pow(width, chunks), significance = math.pow(2, digits), overflow = significance * 2, mask = width - 1, nodecrypto; + function seedrandom5(seed, options, callback) { + var key = []; + options = options == true ? {entropy: true} : options || {}; + var shortseed = mixkey(flatten4(options.entropy ? [seed, tostring(pool3)] : seed == null ? autoseed() : seed, 3), key); + var arc4 = new ARC4(key); + var prng = function() { + var n = arc4.g(chunks), d = startdenom, x = 0; + while (n < significance) { + n = (n + x) * width; + d *= width; + x = arc4.g(1); + } + while (n >= overflow) { + n /= 2; + d /= 2; + x >>>= 1; + } + return (n + x) / d; + }; + prng.int32 = function() { + return arc4.g(4) | 0; + }; + prng.quick = function() { + return arc4.g(4) / 4294967296; + }; + prng.double = prng; + mixkey(tostring(arc4.S), pool3); + return (options.pass || callback || function(prng2, seed2, is_math_call, state) { + if (state) { + if (state.S) { + copy(state, arc4); + } + prng2.state = function() { + return copy(arc4, {}); + }; + } + if (is_math_call) { + math[rngname] = prng2; + return seed2; + } else + return prng2; + })(prng, shortseed, "global" in options ? options.global : this == math, options.state); + } + math["seed" + rngname] = seedrandom5; + function ARC4(key) { + var t, keylen = key.length, me = this, i = 0, j = me.i = me.j = 0, s = me.S = []; + if (!keylen) { + key = [keylen++]; + } + while (i < width) { + s[i] = i++; + } + for (i = 0; i < width; i++) { + s[i] = s[j = mask & j + key[i % keylen] + (t = s[i])]; + s[j] = t; + } + (me.g = function(count2) { + var t2, r = 0, i2 = me.i, j2 = me.j, s2 = me.S; + while (count2--) { + t2 = s2[i2 = mask & i2 + 1]; + r = r * width + s2[mask & (s2[i2] = s2[j2 = mask & j2 + t2]) + (s2[j2] = t2)]; + } + me.i = i2; + me.j = j2; + return r; + })(width); + } + function copy(f, t) { + t.i = f.i; + t.j = f.j; + t.S = f.S.slice(); + return t; + } + ; + function flatten4(obj, depth) { + var result = [], typ = typeof obj, prop; + if (depth && typ == "object") { + for (prop in obj) { + try { + result.push(flatten4(obj[prop], depth - 1)); + } catch (e) { + } + } + } + return result.length ? result : typ == "string" ? obj : obj + "\0"; + } + function mixkey(seed, key) { + var stringseed = seed + "", smear, j = 0; + while (j < stringseed.length) { + key[mask & j] = mask & (smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++); + } + return tostring(key); + } + function autoseed() { + try { + var out; + if (nodecrypto && (out = nodecrypto.randomBytes)) { + out = out(width); + } else { + out = new Uint8Array(width); + (global2.crypto || global2.msCrypto).getRandomValues(out); + } + return tostring(out); + } catch (e) { + var browser2 = global2.navigator, plugins = browser2 && browser2.plugins; + return [+new Date(), global2, plugins, global2.screen, tostring(pool3)]; + } + } + function tostring(a) { + return String.fromCharCode.apply(0, a); + } + mixkey(math.random(), pool3); + if (typeof module2 == "object" && module2.exports) { + module2.exports = seedrandom5; + try { + nodecrypto = require_crypto(); + } catch (ex) { + } + } else if (typeof define == "function" && define.amd) { + define(function() { + return seedrandom5; + }); + } + })([], Math); + }); + var require_seedrandom2 = __commonJS2((exports, module2) => { + var alea5 = require_alea(); + var xor128 = require_xor128(); + var xorwow = require_xorwow(); + var xorshift7 = require_xorshift7(); + var xor4096 = require_xor4096(); + var tychei = require_tychei(); + var sr = require_seedrandom(); + sr.alea = alea5; + sr.xor128 = xor128; + sr.xorwow = xorwow; + sr.xorshift7 = xorshift7; + sr.xor4096 = xor4096; + sr.tychei = tychei; + module2.exports = sr; + }); + var require_alea2 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function Alea(seed) { + var me = this, mash = Mash(); + me.next = function() { + var t = 2091639 * me.s0 + me.c * 23283064365386963e-26; + me.s0 = me.s1; + me.s1 = me.s2; + return me.s2 = t - (me.c = t | 0); + }; + me.c = 1; + me.s0 = mash(" "); + me.s1 = mash(" "); + me.s2 = mash(" "); + me.s0 -= mash(seed); + if (me.s0 < 0) { + me.s0 += 1; + } + me.s1 -= mash(seed); + if (me.s1 < 0) { + me.s1 += 1; + } + me.s2 -= mash(seed); + if (me.s2 < 0) { + me.s2 += 1; + } + mash = null; + } + function copy(f, t) { + t.c = f.c; + t.s0 = f.s0; + t.s1 = f.s1; + t.s2 = f.s2; + return t; + } + function impl(seed, opts) { + var xg = new Alea(seed), state = opts && opts.state, prng = xg.next; + prng.int32 = function() { + return xg.next() * 4294967296 | 0; + }; + prng.double = function() { + return prng() + (prng() * 2097152 | 0) * 11102230246251565e-32; + }; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + function Mash() { + var n = 4022871197; + var mash = function(data2) { + data2 = data2.toString(); + for (var i = 0; i < data2.length; i++) { + n += data2.charCodeAt(i); + var h = 0.02519603282416938 * n; + n = h >>> 0; + h -= n; + h *= n; + n = h >>> 0; + h -= n; + n += h * 4294967296; + } + return (n >>> 0) * 23283064365386963e-26; + }; + return mash; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.alea = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); + }); + var require_xor1282 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.x = 0; + me.y = 0; + me.z = 0; + me.w = 0; + me.next = function() { + var t = me.x ^ me.x << 11; + me.x = me.y; + me.y = me.z; + me.z = me.w; + return me.w ^= me.w >>> 19 ^ t ^ t >>> 8; + }; + if (seed === (seed | 0)) { + me.x = seed; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 64; k++) { + me.x ^= strseed.charCodeAt(k) | 0; + me.next(); + } + } + function copy(f, t) { + t.x = f.x; + t.y = f.y; + t.z = f.z; + t.w = f.w; + return t; + } + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xor128 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); + }); + var require_xorwow2 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.next = function() { + var t = me.x ^ me.x >>> 2; + me.x = me.y; + me.y = me.z; + me.z = me.w; + me.w = me.v; + return (me.d = me.d + 362437 | 0) + (me.v = me.v ^ me.v << 4 ^ (t ^ t << 1)) | 0; + }; + me.x = 0; + me.y = 0; + me.z = 0; + me.w = 0; + me.v = 0; + if (seed === (seed | 0)) { + me.x = seed; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 64; k++) { + me.x ^= strseed.charCodeAt(k) | 0; + if (k == strseed.length) { + me.d = me.x << 10 ^ me.x >>> 4; + } + me.next(); + } + } + function copy(f, t) { + t.x = f.x; + t.y = f.y; + t.z = f.z; + t.w = f.w; + t.v = f.v; + t.d = f.d; + return t; + } + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xorwow = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); + }); + var require_xorshift72 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this; + me.next = function() { + var X = me.x, i = me.i, t, v, w; + t = X[i]; + t ^= t >>> 7; + v = t ^ t << 24; + t = X[i + 1 & 7]; + v ^= t ^ t >>> 10; + t = X[i + 3 & 7]; + v ^= t ^ t >>> 3; + t = X[i + 4 & 7]; + v ^= t ^ t << 7; + t = X[i + 7 & 7]; + t = t ^ t << 13; + v ^= t ^ t << 9; + X[i] = v; + me.i = i + 1 & 7; + return v; + }; + function init2(me2, seed2) { + var j, w, X = []; + if (seed2 === (seed2 | 0)) { + w = X[0] = seed2; + } else { + seed2 = "" + seed2; + for (j = 0; j < seed2.length; ++j) { + X[j & 7] = X[j & 7] << 15 ^ seed2.charCodeAt(j) + X[j + 1 & 7] << 13; + } + } + while (X.length < 8) + X.push(0); + for (j = 0; j < 8 && X[j] === 0; ++j) + ; + if (j == 8) + w = X[7] = -1; + else + w = X[j]; + me2.x = X; + me2.i = 0; + for (j = 256; j > 0; --j) { + me2.next(); + } + } + init2(me, seed); + } + function copy(f, t) { + t.x = f.x.slice(); + t.i = f.i; + return t; + } + function impl(seed, opts) { + if (seed == null) + seed = +new Date(); + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (state.x) + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xorshift7 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); + }); + var require_xor40962 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this; + me.next = function() { + var w = me.w, X = me.X, i = me.i, t, v; + me.w = w = w + 1640531527 | 0; + v = X[i + 34 & 127]; + t = X[i = i + 1 & 127]; + v ^= v << 13; + t ^= t << 17; + v ^= v >>> 15; + t ^= t >>> 12; + v = X[i] = v ^ t; + me.i = i; + return v + (w ^ w >>> 16) | 0; + }; + function init2(me2, seed2) { + var t, v, i, j, w, X = [], limit = 128; + if (seed2 === (seed2 | 0)) { + v = seed2; + seed2 = null; + } else { + seed2 = seed2 + "\0"; + v = 0; + limit = Math.max(limit, seed2.length); + } + for (i = 0, j = -32; j < limit; ++j) { + if (seed2) + v ^= seed2.charCodeAt((j + 32) % seed2.length); + if (j === 0) + w = v; + v ^= v << 10; + v ^= v >>> 15; + v ^= v << 4; + v ^= v >>> 13; + if (j >= 0) { + w = w + 1640531527 | 0; + t = X[j & 127] ^= v + w; + i = t == 0 ? i + 1 : 0; + } + } + if (i >= 128) { + X[(seed2 && seed2.length || 0) & 127] = -1; + } + i = 127; + for (j = 4 * 128; j > 0; --j) { + v = X[i + 34 & 127]; + t = X[i = i + 1 & 127]; + v ^= v << 13; + t ^= t << 17; + v ^= v >>> 15; + t ^= t >>> 12; + X[i] = v ^ t; + } + me2.w = w; + me2.X = X; + me2.i = i; + } + init2(me, seed); + } + function copy(f, t) { + t.i = f.i; + t.w = f.w; + t.X = f.X.slice(); + return t; + } + ; + function impl(seed, opts) { + if (seed == null) + seed = +new Date(); + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (state.X) + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xor4096 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); + }); + var require_tychei2 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.next = function() { + var b = me.b, c = me.c, d = me.d, a = me.a; + b = b << 25 ^ b >>> 7 ^ c; + c = c - d | 0; + d = d << 24 ^ d >>> 8 ^ a; + a = a - b | 0; + me.b = b = b << 20 ^ b >>> 12 ^ c; + me.c = c = c - d | 0; + me.d = d << 16 ^ c >>> 16 ^ a; + return me.a = a - b | 0; + }; + me.a = 0; + me.b = 0; + me.c = 2654435769 | 0; + me.d = 1367130551; + if (seed === Math.floor(seed)) { + me.a = seed / 4294967296 | 0; + me.b = seed | 0; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 20; k++) { + me.b ^= strseed.charCodeAt(k) | 0; + me.next(); + } + } + function copy(f, t) { + t.a = f.a; + t.b = f.b; + t.c = f.c; + t.d = f.d; + return t; + } + ; + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.tychei = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); + }); + var require_seedrandom3 = __commonJS2((exports, module2) => { + (function(pool3, math) { + var global2 = this, width = 256, chunks = 6, digits = 52, rngname = "random", startdenom = math.pow(width, chunks), significance = math.pow(2, digits), overflow = significance * 2, mask = width - 1, nodecrypto; + function seedrandom5(seed, options, callback) { + var key = []; + options = options == true ? {entropy: true} : options || {}; + var shortseed = mixkey(flatten4(options.entropy ? [seed, tostring(pool3)] : seed == null ? autoseed() : seed, 3), key); + var arc4 = new ARC4(key); + var prng = function() { + var n = arc4.g(chunks), d = startdenom, x = 0; + while (n < significance) { + n = (n + x) * width; + d *= width; + x = arc4.g(1); + } + while (n >= overflow) { + n /= 2; + d /= 2; + x >>>= 1; + } + return (n + x) / d; + }; + prng.int32 = function() { + return arc4.g(4) | 0; + }; + prng.quick = function() { + return arc4.g(4) / 4294967296; + }; + prng.double = prng; + mixkey(tostring(arc4.S), pool3); + return (options.pass || callback || function(prng2, seed2, is_math_call, state) { + if (state) { + if (state.S) { + copy(state, arc4); + } + prng2.state = function() { + return copy(arc4, {}); + }; + } + if (is_math_call) { + math[rngname] = prng2; + return seed2; + } else + return prng2; + })(prng, shortseed, "global" in options ? options.global : this == math, options.state); + } + math["seed" + rngname] = seedrandom5; + function ARC4(key) { + var t, keylen = key.length, me = this, i = 0, j = me.i = me.j = 0, s = me.S = []; + if (!keylen) { + key = [keylen++]; + } + while (i < width) { + s[i] = i++; + } + for (i = 0; i < width; i++) { + s[i] = s[j = mask & j + key[i % keylen] + (t = s[i])]; + s[j] = t; + } + (me.g = function(count2) { + var t2, r = 0, i2 = me.i, j2 = me.j, s2 = me.S; + while (count2--) { + t2 = s2[i2 = mask & i2 + 1]; + r = r * width + s2[mask & (s2[i2] = s2[j2 = mask & j2 + t2]) + (s2[j2] = t2)]; + } + me.i = i2; + me.j = j2; + return r; + })(width); + } + function copy(f, t) { + t.i = f.i; + t.j = f.j; + t.S = f.S.slice(); + return t; + } + ; + function flatten4(obj, depth) { + var result = [], typ = typeof obj, prop; + if (depth && typ == "object") { + for (prop in obj) { + try { + result.push(flatten4(obj[prop], depth - 1)); + } catch (e) { + } + } + } + return result.length ? result : typ == "string" ? obj : obj + "\0"; + } + function mixkey(seed, key) { + var stringseed = seed + "", smear, j = 0; + while (j < stringseed.length) { + key[mask & j] = mask & (smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++); + } + return tostring(key); + } + function autoseed() { + try { + var out; + if (nodecrypto && (out = nodecrypto.randomBytes)) { + out = out(width); + } else { + out = new Uint8Array(width); + (global2.crypto || global2.msCrypto).getRandomValues(out); + } + return tostring(out); + } catch (e) { + var browser2 = global2.navigator, plugins = browser2 && browser2.plugins; + return [+new Date(), global2, plugins, global2.screen, tostring(pool3)]; + } + } + function tostring(a) { + return String.fromCharCode.apply(0, a); + } + mixkey(math.random(), pool3); + if (typeof module2 == "object" && module2.exports) { + module2.exports = seedrandom5; + try { + nodecrypto = require_crypto(); + } catch (ex) { + } + } else if (typeof define == "function" && define.amd) { + define(function() { + return seedrandom5; + }); + } + })([], Math); + }); + var require_seedrandom4 = __commonJS2((exports, module2) => { + var alea5 = require_alea2(); + var xor128 = require_xor1282(); + var xorwow = require_xorwow2(); + var xorshift7 = require_xorshift72(); + var xor4096 = require_xor40962(); + var tychei = require_tychei2(); + var sr = require_seedrandom3(); + sr.alea = alea5; + sr.xor128 = xor128; + sr.xorwow = xorwow; + sr.xorshift7 = xorshift7; + sr.xor4096 = xor4096; + sr.tychei = tychei; + module2.exports = sr; + }); + var require_path = __commonJS2(() => { + }); + var require_worker_threads = __commonJS2(() => { + }); + var require_perf_hooks = __commonJS2(() => { + }); + var require_tfjs_backend_wasm_threaded_simd = __commonJS2((exports, module2) => { + var WasmBackendModuleThreadedSimd = function() { + var _scriptDir = typeof document !== "undefined" && document.currentScript ? document.currentScript.src : void 0; + if (typeof __filename !== "undefined") + _scriptDir = _scriptDir || __filename; + return function(WasmBackendModuleThreadedSimd2) { + WasmBackendModuleThreadedSimd2 = WasmBackendModuleThreadedSimd2 || {}; + function GROWABLE_HEAP_I8() { + if (wasmMemory.buffer != buffer2) { + updateGlobalBufferAndViews(wasmMemory.buffer); + } + return HEAP8; + } + function GROWABLE_HEAP_U8() { + if (wasmMemory.buffer != buffer2) { + updateGlobalBufferAndViews(wasmMemory.buffer); + } + return HEAPU8; + } + function GROWABLE_HEAP_I32() { + if (wasmMemory.buffer != buffer2) { + updateGlobalBufferAndViews(wasmMemory.buffer); + } + return HEAP32; + } + function GROWABLE_HEAP_U32() { + if (wasmMemory.buffer != buffer2) { + updateGlobalBufferAndViews(wasmMemory.buffer); + } + return HEAPU32; + } + function GROWABLE_HEAP_F64() { + if (wasmMemory.buffer != buffer2) { + updateGlobalBufferAndViews(wasmMemory.buffer); + } + return HEAPF64; + } + var Module = typeof WasmBackendModuleThreadedSimd2 !== "undefined" ? WasmBackendModuleThreadedSimd2 : {}; + var readyPromiseResolve, readyPromiseReject; + Module["ready"] = new Promise(function(resolve, reject) { + readyPromiseResolve = resolve; + readyPromiseReject = reject; + }); + var moduleOverrides = {}; + var key; + for (key in Module) { + if (Module.hasOwnProperty(key)) { + moduleOverrides[key] = Module[key]; + } + } + var arguments_ = []; + var thisProgram = "./this.program"; + var quit_ = function(status, toThrow) { + throw toThrow; + }; + var ENVIRONMENT_IS_WEB = false; + var ENVIRONMENT_IS_WORKER = false; + var ENVIRONMENT_IS_NODE = false; + var ENVIRONMENT_IS_SHELL = false; + ENVIRONMENT_IS_WEB = typeof window === "object"; + ENVIRONMENT_IS_WORKER = typeof importScripts === "function"; + ENVIRONMENT_IS_NODE = typeof process === "object" && typeof process.versions === "object" && typeof process.versions.node === "string"; + ENVIRONMENT_IS_SHELL = !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER; + var ENVIRONMENT_IS_PTHREAD = Module["ENVIRONMENT_IS_PTHREAD"] || false; + if (ENVIRONMENT_IS_PTHREAD) { + buffer2 = Module["buffer"]; + } + var scriptDirectory = ""; + function locateFile(path) { + if (Module["locateFile"]) { + return Module["locateFile"](path, scriptDirectory); + } + return scriptDirectory + path; + } + var read_, readAsync, readBinary, setWindowTitle; + var nodeFS; + var nodePath; + if (ENVIRONMENT_IS_NODE) { + if (ENVIRONMENT_IS_WORKER) { + scriptDirectory = require_path().dirname(scriptDirectory) + "/"; + } else { + scriptDirectory = __dirname + "/"; + } + read_ = function shell_read(filename, binary) { + if (!nodeFS) + nodeFS = require("fs"); + if (!nodePath) + nodePath = require_path(); + filename = nodePath["normalize"](filename); + return nodeFS["readFileSync"](filename, binary ? null : "utf8"); + }; + readBinary = function readBinary2(filename) { + var ret = read_(filename, true); + if (!ret.buffer) { + ret = new Uint8Array(ret); + } + assert3(ret.buffer); + return ret; + }; + if (process["argv"].length > 1) { + thisProgram = process["argv"][1].replace(/\\/g, "/"); + } + arguments_ = process["argv"].slice(2); + process["on"]("uncaughtException", function(ex) { + if (!(ex instanceof ExitStatus)) { + throw ex; + } + }); + process["on"]("unhandledRejection", abort); + quit_ = function(status) { + process["exit"](status); + }; + Module["inspect"] = function() { + return "[Emscripten Module object]"; + }; + var nodeWorkerThreads; + try { + nodeWorkerThreads = require_worker_threads(); + } catch (e) { + console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'); + throw e; + } + global.Worker = nodeWorkerThreads.Worker; + } else if (ENVIRONMENT_IS_SHELL) { + if (typeof read != "undefined") { + read_ = function shell_read(f) { + return read(f); + }; + } + readBinary = function readBinary2(f) { + var data2; + if (typeof readbuffer === "function") { + return new Uint8Array(readbuffer(f)); + } + data2 = read(f, "binary"); + assert3(typeof data2 === "object"); + return data2; + }; + if (typeof scriptArgs != "undefined") { + arguments_ = scriptArgs; + } else if (typeof arguments != "undefined") { + arguments_ = arguments; + } + if (typeof quit === "function") { + quit_ = function(status) { + quit(status); + }; + } + if (typeof print !== "undefined") { + if (typeof console === "undefined") + console = {}; + console.log = print; + console.warn = console.error = typeof printErr !== "undefined" ? printErr : print; + } + } else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) { + if (ENVIRONMENT_IS_WORKER) { + scriptDirectory = self.location.href; + } else if (typeof document !== "undefined" && document.currentScript) { + scriptDirectory = document.currentScript.src; + } + if (typeof _scriptDir !== "undefined" && _scriptDir) { + scriptDirectory = _scriptDir; + } + if (scriptDirectory.indexOf("blob:") !== 0) { + scriptDirectory = scriptDirectory.substr(0, scriptDirectory.lastIndexOf("/") + 1); + } else { + scriptDirectory = ""; + } + if (ENVIRONMENT_IS_NODE) { + read_ = function shell_read(filename, binary) { + if (!nodeFS) + nodeFS = require("fs"); + if (!nodePath) + nodePath = require_path(); + filename = nodePath["normalize"](filename); + return nodeFS["readFileSync"](filename, binary ? null : "utf8"); + }; + readBinary = function readBinary2(filename) { + var ret = read_(filename, true); + if (!ret.buffer) { + ret = new Uint8Array(ret); + } + assert3(ret.buffer); + return ret; + }; + } else { + read_ = function(url) { + var xhr = new XMLHttpRequest(); + xhr.open("GET", url, false); + xhr.send(null); + return xhr.responseText; + }; + if (ENVIRONMENT_IS_WORKER) { + readBinary = function(url) { + var xhr = new XMLHttpRequest(); + xhr.open("GET", url, false); + xhr.responseType = "arraybuffer"; + xhr.send(null); + return new Uint8Array(xhr.response); + }; + } + readAsync = function(url, onload, onerror) { + var xhr = new XMLHttpRequest(); + xhr.open("GET", url, true); + xhr.responseType = "arraybuffer"; + xhr.onload = function() { + if (xhr.status == 200 || xhr.status == 0 && xhr.response) { + onload(xhr.response); + return; + } + onerror(); + }; + xhr.onerror = onerror; + xhr.send(null); + }; + } + setWindowTitle = function(title) { + document.title = title; + }; + } else { + } + if (ENVIRONMENT_IS_NODE) { + if (typeof performance === "undefined") { + global.performance = require_perf_hooks().performance; + } + } + var out = Module["print"] || console.log.bind(console); + var err = Module["printErr"] || console.warn.bind(console); + for (key in moduleOverrides) { + if (moduleOverrides.hasOwnProperty(key)) { + Module[key] = moduleOverrides[key]; + } + } + moduleOverrides = null; + if (Module["arguments"]) + arguments_ = Module["arguments"]; + if (Module["thisProgram"]) + thisProgram = Module["thisProgram"]; + if (Module["quit"]) + quit_ = Module["quit"]; + var Atomics_load = Atomics.load; + var Atomics_store = Atomics.store; + var Atomics_compareExchange = Atomics.compareExchange; + var wasmBinary; + if (Module["wasmBinary"]) + wasmBinary = Module["wasmBinary"]; + var noExitRuntime = Module["noExitRuntime"] || true; + if (typeof WebAssembly !== "object") { + abort("no native wasm support detected"); + } + var wasmMemory; + var wasmModule; + var ABORT = false; + var EXITSTATUS; + function assert3(condition, text) { + if (!condition) { + abort("Assertion failed: " + text); + } + } + function getCFunc(ident) { + var func2 = Module["_" + ident]; + assert3(func2, "Cannot call unknown function " + ident + ", make sure it is exported"); + return func2; + } + function ccall(ident, returnType, argTypes, args, opts) { + var toC = {string: function(str) { + var ret2 = 0; + if (str !== null && str !== void 0 && str !== 0) { + var len = (str.length << 2) + 1; + ret2 = stackAlloc(len); + stringToUTF8(str, ret2, len); + } + return ret2; + }, array: function(arr) { + var ret2 = stackAlloc(arr.length); + writeArrayToMemory(arr, ret2); + return ret2; + }}; + function convertReturnValue(ret2) { + if (returnType === "string") + return UTF8ToString(ret2); + if (returnType === "boolean") + return Boolean(ret2); + return ret2; + } + var func2 = getCFunc(ident); + var cArgs = []; + var stack2 = 0; + if (args) { + for (var i = 0; i < args.length; i++) { + var converter = toC[argTypes[i]]; + if (converter) { + if (stack2 === 0) + stack2 = stackSave(); + cArgs[i] = converter(args[i]); + } else { + cArgs[i] = args[i]; + } + } + } + var ret = func2.apply(null, cArgs); + ret = convertReturnValue(ret); + if (stack2 !== 0) + stackRestore(stack2); + return ret; + } + function cwrap(ident, returnType, argTypes, opts) { + argTypes = argTypes || []; + var numericArgs = argTypes.every(function(type) { + return type === "number"; + }); + var numericRet = returnType !== "string"; + if (numericRet && numericArgs && !opts) { + return getCFunc(ident); + } + return function() { + return ccall(ident, returnType, argTypes, arguments, opts); + }; + } + function UTF8ArrayToString(heap, idx, maxBytesToRead) { + var endIdx = idx + maxBytesToRead; + var str = ""; + while (!(idx >= endIdx)) { + var u0 = heap[idx++]; + if (!u0) + return str; + if (!(u0 & 128)) { + str += String.fromCharCode(u0); + continue; + } + var u1 = heap[idx++] & 63; + if ((u0 & 224) == 192) { + str += String.fromCharCode((u0 & 31) << 6 | u1); + continue; + } + var u2 = heap[idx++] & 63; + if ((u0 & 240) == 224) { + u0 = (u0 & 15) << 12 | u1 << 6 | u2; + } else { + u0 = (u0 & 7) << 18 | u1 << 12 | u2 << 6 | heap[idx++] & 63; + } + if (u0 < 65536) { + str += String.fromCharCode(u0); + } else { + var ch = u0 - 65536; + str += String.fromCharCode(55296 | ch >> 10, 56320 | ch & 1023); + } + } + return str; + } + function UTF8ToString(ptr, maxBytesToRead) { + return ptr ? UTF8ArrayToString(GROWABLE_HEAP_U8(), ptr, maxBytesToRead) : ""; + } + function stringToUTF8Array(str, heap, outIdx, maxBytesToWrite) { + if (!(maxBytesToWrite > 0)) + return 0; + var startIdx = outIdx; + var endIdx = outIdx + maxBytesToWrite - 1; + for (var i = 0; i < str.length; ++i) { + var u = str.charCodeAt(i); + if (u >= 55296 && u <= 57343) { + var u1 = str.charCodeAt(++i); + u = 65536 + ((u & 1023) << 10) | u1 & 1023; + } + if (u <= 127) { + if (outIdx >= endIdx) + break; + heap[outIdx++] = u; + } else if (u <= 2047) { + if (outIdx + 1 >= endIdx) + break; + heap[outIdx++] = 192 | u >> 6; + heap[outIdx++] = 128 | u & 63; + } else if (u <= 65535) { + if (outIdx + 2 >= endIdx) + break; + heap[outIdx++] = 224 | u >> 12; + heap[outIdx++] = 128 | u >> 6 & 63; + heap[outIdx++] = 128 | u & 63; + } else { + if (outIdx + 3 >= endIdx) + break; + heap[outIdx++] = 240 | u >> 18; + heap[outIdx++] = 128 | u >> 12 & 63; + heap[outIdx++] = 128 | u >> 6 & 63; + heap[outIdx++] = 128 | u & 63; + } + } + heap[outIdx] = 0; + return outIdx - startIdx; + } + function stringToUTF8(str, outPtr, maxBytesToWrite) { + return stringToUTF8Array(str, GROWABLE_HEAP_U8(), outPtr, maxBytesToWrite); + } + function lengthBytesUTF8(str) { + var len = 0; + for (var i = 0; i < str.length; ++i) { + var u = str.charCodeAt(i); + if (u >= 55296 && u <= 57343) + u = 65536 + ((u & 1023) << 10) | str.charCodeAt(++i) & 1023; + if (u <= 127) + ++len; + else if (u <= 2047) + len += 2; + else if (u <= 65535) + len += 3; + else + len += 4; + } + return len; + } + function writeArrayToMemory(array2, buffer3) { + GROWABLE_HEAP_I8().set(array2, buffer3); + } + function alignUp(x, multiple) { + if (x % multiple > 0) { + x += multiple - x % multiple; + } + return x; + } + var buffer2, HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64; + function updateGlobalBufferAndViews(buf) { + buffer2 = buf; + Module["HEAP8"] = HEAP8 = new Int8Array(buf); + Module["HEAP16"] = HEAP16 = new Int16Array(buf); + Module["HEAP32"] = HEAP32 = new Int32Array(buf); + Module["HEAPU8"] = HEAPU8 = new Uint8Array(buf); + Module["HEAPU16"] = HEAPU16 = new Uint16Array(buf); + Module["HEAPU32"] = HEAPU32 = new Uint32Array(buf); + Module["HEAPF32"] = HEAPF32 = new Float32Array(buf); + Module["HEAPF64"] = HEAPF64 = new Float64Array(buf); + } + var INITIAL_MEMORY = Module["INITIAL_MEMORY"] || 16777216; + if (ENVIRONMENT_IS_PTHREAD) { + wasmMemory = Module["wasmMemory"]; + buffer2 = Module["buffer"]; + } else { + if (Module["wasmMemory"]) { + wasmMemory = Module["wasmMemory"]; + } else { + wasmMemory = new WebAssembly.Memory({initial: INITIAL_MEMORY / 65536, maximum: 2147483648 / 65536, shared: true}); + if (!(wasmMemory.buffer instanceof SharedArrayBuffer)) { + err("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"); + if (ENVIRONMENT_IS_NODE) { + console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"); + } + throw Error("bad memory"); + } + } + } + if (wasmMemory) { + buffer2 = wasmMemory.buffer; + } + INITIAL_MEMORY = buffer2.byteLength; + updateGlobalBufferAndViews(buffer2); + var wasmTable; + var __ATPRERUN__ = []; + var __ATINIT__ = []; + var __ATMAIN__ = []; + var __ATEXIT__ = []; + var __ATPOSTRUN__ = []; + var runtimeInitialized = false; + var runtimeExited = false; + if (!ENVIRONMENT_IS_PTHREAD) + __ATINIT__.push({func: function() { + ___wasm_call_ctors(); + }}); + if (ENVIRONMENT_IS_PTHREAD) + runtimeInitialized = true; + function preRun() { + if (ENVIRONMENT_IS_PTHREAD) + return; + if (Module["preRun"]) { + if (typeof Module["preRun"] == "function") + Module["preRun"] = [Module["preRun"]]; + while (Module["preRun"].length) { + addOnPreRun(Module["preRun"].shift()); + } + } + callRuntimeCallbacks(__ATPRERUN__); + } + function initRuntime() { + runtimeInitialized = true; + callRuntimeCallbacks(__ATINIT__); + } + function preMain() { + if (ENVIRONMENT_IS_PTHREAD) + return; + callRuntimeCallbacks(__ATMAIN__); + } + function exitRuntime() { + if (ENVIRONMENT_IS_PTHREAD) + return; + runtimeExited = true; + } + function postRun() { + if (ENVIRONMENT_IS_PTHREAD) + return; + if (Module["postRun"]) { + if (typeof Module["postRun"] == "function") + Module["postRun"] = [Module["postRun"]]; + while (Module["postRun"].length) { + addOnPostRun(Module["postRun"].shift()); + } + } + callRuntimeCallbacks(__ATPOSTRUN__); + } + function addOnPreRun(cb) { + __ATPRERUN__.unshift(cb); + } + function addOnPostRun(cb) { + __ATPOSTRUN__.unshift(cb); + } + var runDependencies = 0; + var runDependencyWatcher = null; + var dependenciesFulfilled = null; + function addRunDependency(id) { + assert3(!ENVIRONMENT_IS_PTHREAD, "addRunDependency cannot be used in a pthread worker"); + runDependencies++; + if (Module["monitorRunDependencies"]) { + Module["monitorRunDependencies"](runDependencies); + } + } + function removeRunDependency(id) { + runDependencies--; + if (Module["monitorRunDependencies"]) { + Module["monitorRunDependencies"](runDependencies); + } + if (runDependencies == 0) { + if (runDependencyWatcher !== null) { + clearInterval(runDependencyWatcher); + runDependencyWatcher = null; + } + if (dependenciesFulfilled) { + var callback = dependenciesFulfilled; + dependenciesFulfilled = null; + callback(); + } + } + } + Module["preloadedImages"] = {}; + Module["preloadedAudios"] = {}; + function abort(what) { + if (Module["onAbort"]) { + Module["onAbort"](what); + } + if (ENVIRONMENT_IS_PTHREAD) + console.error("Pthread aborting at " + new Error().stack); + what += ""; + err(what); + ABORT = true; + EXITSTATUS = 1; + what = "abort(" + what + "). Build with -s ASSERTIONS=1 for more info."; + var e = new WebAssembly.RuntimeError(what); + readyPromiseReject(e); + throw e; + } + function hasPrefix(str, prefix) { + return String.prototype.startsWith ? str.startsWith(prefix) : str.indexOf(prefix) === 0; + } + var dataURIPrefix = "data:application/octet-stream;base64,"; + function isDataURI(filename) { + return hasPrefix(filename, dataURIPrefix); + } + var fileURIPrefix = "file://"; + function isFileURI(filename) { + return hasPrefix(filename, fileURIPrefix); + } + var wasmBinaryFile = "tfjs-backend-wasm-threaded-simd.wasm"; + if (!isDataURI(wasmBinaryFile)) { + wasmBinaryFile = locateFile(wasmBinaryFile); + } + function getBinary(file) { + try { + if (file == wasmBinaryFile && wasmBinary) { + return new Uint8Array(wasmBinary); + } + if (readBinary) { + return readBinary(file); + } else { + throw "both async and sync fetching of the wasm failed"; + } + } catch (err2) { + abort(err2); + } + } + function getBinaryPromise() { + if (!wasmBinary && (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER)) { + if (typeof fetch === "function" && !isFileURI(wasmBinaryFile)) { + return fetch(wasmBinaryFile, {credentials: "same-origin"}).then(function(response) { + if (!response["ok"]) { + throw "failed to load wasm binary file at '" + wasmBinaryFile + "'"; + } + return response["arrayBuffer"](); + }).catch(function() { + return getBinary(wasmBinaryFile); + }); + } else { + if (readAsync) { + return new Promise(function(resolve, reject) { + readAsync(wasmBinaryFile, function(response) { + resolve(new Uint8Array(response)); + }, reject); + }); + } + } + } + return Promise.resolve().then(function() { + return getBinary(wasmBinaryFile); + }); + } + function createWasm() { + var info = {a: asmLibraryArg}; + function receiveInstance(instance, module22) { + var exports3 = instance.exports; + Module["asm"] = exports3; + wasmTable = Module["asm"]["F"]; + wasmModule = module22; + if (!ENVIRONMENT_IS_PTHREAD) { + var numWorkersToLoad = PThread.unusedWorkers.length; + PThread.unusedWorkers.forEach(function(w) { + PThread.loadWasmModuleToWorker(w, function() { + if (!--numWorkersToLoad) + removeRunDependency("wasm-instantiate"); + }); + }); + } + } + if (!ENVIRONMENT_IS_PTHREAD) { + addRunDependency("wasm-instantiate"); + } + function receiveInstantiatedSource(output) { + receiveInstance(output["instance"], output["module"]); + } + function instantiateArrayBuffer(receiver) { + return getBinaryPromise().then(function(binary) { + return WebAssembly.instantiate(binary, info); + }).then(receiver, function(reason) { + err("failed to asynchronously prepare wasm: " + reason); + abort(reason); + }); + } + function instantiateAsync() { + if (!wasmBinary && typeof WebAssembly.instantiateStreaming === "function" && !isDataURI(wasmBinaryFile) && !isFileURI(wasmBinaryFile) && typeof fetch === "function") { + return fetch(wasmBinaryFile, {credentials: "same-origin"}).then(function(response) { + var result = WebAssembly.instantiateStreaming(response, info); + return result.then(receiveInstantiatedSource, function(reason) { + err("wasm streaming compile failed: " + reason); + err("falling back to ArrayBuffer instantiation"); + return instantiateArrayBuffer(receiveInstantiatedSource); + }); + }); + } else { + return instantiateArrayBuffer(receiveInstantiatedSource); + } + } + if (Module["instantiateWasm"]) { + try { + var exports2 = Module["instantiateWasm"](info, receiveInstance); + return exports2; + } catch (e) { + err("Module.instantiateWasm callback failed with error: " + e); + return false; + } + } + instantiateAsync().catch(readyPromiseReject); + return {}; + } + var ASM_CONSTS = {8991: function($0, $1) { + setTimeout(function() { + __emscripten_do_dispatch_to_thread($0, $1); + }, 0); + }}; + function initPthreadsJS() { + PThread.initRuntime(); + } + function callRuntimeCallbacks(callbacks2) { + while (callbacks2.length > 0) { + var callback = callbacks2.shift(); + if (typeof callback == "function") { + callback(Module); + continue; + } + var func2 = callback.func; + if (typeof func2 === "number") { + if (callback.arg === void 0) { + wasmTable.get(func2)(); + } else { + wasmTable.get(func2)(callback.arg); + } + } else { + func2(callback.arg === void 0 ? null : callback.arg); + } + } + } + function _emscripten_futex_wake(addr, count2) { + if (addr <= 0 || addr > GROWABLE_HEAP_I8().length || addr & true || count2 < 0) + return -28; + if (count2 == 0) + return 0; + if (count2 >= 2147483647) + count2 = Infinity; + var mainThreadWaitAddress = Atomics.load(GROWABLE_HEAP_I32(), __emscripten_main_thread_futex >> 2); + var mainThreadWoken = 0; + if (mainThreadWaitAddress == addr) { + var loadedAddr = Atomics.compareExchange(GROWABLE_HEAP_I32(), __emscripten_main_thread_futex >> 2, mainThreadWaitAddress, 0); + if (loadedAddr == mainThreadWaitAddress) { + --count2; + mainThreadWoken = 1; + if (count2 <= 0) + return 1; + } + } + var ret = Atomics.notify(GROWABLE_HEAP_I32(), addr >> 2, count2); + if (ret >= 0) + return ret + mainThreadWoken; + throw "Atomics.notify returned an unexpected value " + ret; + } + Module["_emscripten_futex_wake"] = _emscripten_futex_wake; + function killThread(pthread_ptr) { + if (ENVIRONMENT_IS_PTHREAD) + throw "Internal Error! killThread() can only ever be called from main application thread!"; + if (!pthread_ptr) + throw "Internal Error! Null pthread_ptr in killThread!"; + GROWABLE_HEAP_I32()[pthread_ptr + 12 >> 2] = 0; + var pthread = PThread.pthreads[pthread_ptr]; + pthread.worker.terminate(); + PThread.freeThreadData(pthread); + PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(pthread.worker), 1); + pthread.worker.pthread = void 0; + } + function cancelThread(pthread_ptr) { + if (ENVIRONMENT_IS_PTHREAD) + throw "Internal Error! cancelThread() can only ever be called from main application thread!"; + if (!pthread_ptr) + throw "Internal Error! Null pthread_ptr in cancelThread!"; + var pthread = PThread.pthreads[pthread_ptr]; + pthread.worker.postMessage({cmd: "cancel"}); + } + function cleanupThread(pthread_ptr) { + if (ENVIRONMENT_IS_PTHREAD) + throw "Internal Error! cleanupThread() can only ever be called from main application thread!"; + if (!pthread_ptr) + throw "Internal Error! Null pthread_ptr in cleanupThread!"; + GROWABLE_HEAP_I32()[pthread_ptr + 12 >> 2] = 0; + var pthread = PThread.pthreads[pthread_ptr]; + if (pthread) { + var worker = pthread.worker; + PThread.returnWorkerToPool(worker); + } + } + var PThread = {unusedWorkers: [], runningWorkers: [], initMainThreadBlock: function() { + var pthreadPoolSize = 8; + for (var i = 0; i < pthreadPoolSize; ++i) { + PThread.allocateUnusedWorker(); + } + }, initRuntime: function() { + var tb = _malloc(228); + for (var i = 0; i < 228 / 4; ++i) + GROWABLE_HEAP_U32()[tb / 4 + i] = 0; + GROWABLE_HEAP_I32()[tb + 12 >> 2] = tb; + var headPtr = tb + 152; + GROWABLE_HEAP_I32()[headPtr >> 2] = headPtr; + var tlsMemory = _malloc(512); + for (var i = 0; i < 128; ++i) + GROWABLE_HEAP_U32()[tlsMemory / 4 + i] = 0; + Atomics.store(GROWABLE_HEAP_U32(), tb + 100 >> 2, tlsMemory); + Atomics.store(GROWABLE_HEAP_U32(), tb + 40 >> 2, tb); + __emscripten_thread_init(tb, !ENVIRONMENT_IS_WORKER, 1); + _emscripten_register_main_browser_thread_id(tb); + }, initWorker: function() { + }, pthreads: {}, threadExitHandlers: [], setThreadStatus: function() { + }, runExitHandlers: function() { + while (PThread.threadExitHandlers.length > 0) { + PThread.threadExitHandlers.pop()(); + } + if (ENVIRONMENT_IS_PTHREAD && _pthread_self()) + ___pthread_tsd_run_dtors(); + }, threadExit: function(exitCode) { + var tb = _pthread_self(); + if (tb) { + Atomics.store(GROWABLE_HEAP_U32(), tb + 4 >> 2, exitCode); + Atomics.store(GROWABLE_HEAP_U32(), tb + 0 >> 2, 1); + Atomics.store(GROWABLE_HEAP_U32(), tb + 56 >> 2, 1); + Atomics.store(GROWABLE_HEAP_U32(), tb + 60 >> 2, 0); + PThread.runExitHandlers(); + _emscripten_futex_wake(tb + 0, 2147483647); + __emscripten_thread_init(0, 0, 0); + if (ENVIRONMENT_IS_PTHREAD) { + postMessage({cmd: "exit"}); + } + } + }, threadCancel: function() { + PThread.runExitHandlers(); + var tb = _pthread_self(); + Atomics.store(GROWABLE_HEAP_U32(), tb + 4 >> 2, -1); + Atomics.store(GROWABLE_HEAP_U32(), tb + 0 >> 2, 1); + _emscripten_futex_wake(tb + 0, 2147483647); + __emscripten_thread_init(0, 0, 0); + postMessage({cmd: "cancelDone"}); + }, terminateAllThreads: function() { + for (var t in PThread.pthreads) { + var pthread = PThread.pthreads[t]; + if (pthread && pthread.worker) { + PThread.returnWorkerToPool(pthread.worker); + } + } + PThread.pthreads = {}; + for (var i = 0; i < PThread.unusedWorkers.length; ++i) { + var worker = PThread.unusedWorkers[i]; + worker.terminate(); + } + PThread.unusedWorkers = []; + for (var i = 0; i < PThread.runningWorkers.length; ++i) { + var worker = PThread.runningWorkers[i]; + var pthread = worker.pthread; + PThread.freeThreadData(pthread); + worker.terminate(); + } + PThread.runningWorkers = []; + }, freeThreadData: function(pthread) { + if (!pthread) + return; + if (pthread.threadInfoStruct) { + var tlsMemory = GROWABLE_HEAP_I32()[pthread.threadInfoStruct + 100 >> 2]; + GROWABLE_HEAP_I32()[pthread.threadInfoStruct + 100 >> 2] = 0; + _free(tlsMemory); + _free(pthread.threadInfoStruct); + } + pthread.threadInfoStruct = 0; + if (pthread.allocatedOwnStack && pthread.stackBase) + _free(pthread.stackBase); + pthread.stackBase = 0; + if (pthread.worker) + pthread.worker.pthread = null; + }, returnWorkerToPool: function(worker) { + PThread.runWithoutMainThreadQueuedCalls(function() { + delete PThread.pthreads[worker.pthread.threadInfoStruct]; + PThread.unusedWorkers.push(worker); + PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(worker), 1); + PThread.freeThreadData(worker.pthread); + worker.pthread = void 0; + }); + }, runWithoutMainThreadQueuedCalls: function(func2) { + GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls >> 2] = 0; + try { + func2(); + } finally { + GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls >> 2] = 1; + } + }, receiveObjectTransfer: function(data2) { + }, loadWasmModuleToWorker: function(worker, onFinishedLoading) { + worker.onmessage = function(e) { + var d = e["data"]; + var cmd = d["cmd"]; + if (worker.pthread) + PThread.currentProxiedOperationCallerThread = worker.pthread.threadInfoStruct; + if (d["targetThread"] && d["targetThread"] != _pthread_self()) { + var thread = PThread.pthreads[d.targetThread]; + if (thread) { + thread.worker.postMessage(e.data, d["transferList"]); + } else { + console.error('Internal error! Worker sent a message "' + cmd + '" to target pthread ' + d["targetThread"] + ", but that thread no longer exists!"); + } + PThread.currentProxiedOperationCallerThread = void 0; + return; + } + if (cmd === "processQueuedMainThreadWork") { + _emscripten_main_thread_process_queued_calls(); + } else if (cmd === "spawnThread") { + spawnThread(e.data); + } else if (cmd === "cleanupThread") { + cleanupThread(d["thread"]); + } else if (cmd === "killThread") { + killThread(d["thread"]); + } else if (cmd === "cancelThread") { + cancelThread(d["thread"]); + } else if (cmd === "loaded") { + worker.loaded = true; + if (onFinishedLoading) + onFinishedLoading(worker); + if (worker.runPthread) { + worker.runPthread(); + delete worker.runPthread; + } + } else if (cmd === "print") { + out("Thread " + d["threadId"] + ": " + d["text"]); + } else if (cmd === "printErr") { + err("Thread " + d["threadId"] + ": " + d["text"]); + } else if (cmd === "alert") { + alert("Thread " + d["threadId"] + ": " + d["text"]); + } else if (cmd === "exit") { + var detached = worker.pthread && Atomics.load(GROWABLE_HEAP_U32(), worker.pthread.threadInfoStruct + 64 >> 2); + if (detached) { + PThread.returnWorkerToPool(worker); + } + } else if (cmd === "exitProcess") { + try { + exit(d["returnCode"]); + } catch (e2) { + if (e2 instanceof ExitStatus) + return; + throw e2; + } + } else if (cmd === "cancelDone") { + PThread.returnWorkerToPool(worker); + } else if (cmd === "objectTransfer") { + PThread.receiveObjectTransfer(e.data); + } else if (e.data.target === "setimmediate") { + worker.postMessage(e.data); + } else { + err("worker sent an unknown command " + cmd); + } + PThread.currentProxiedOperationCallerThread = void 0; + }; + worker.onerror = function(e) { + err("pthread sent an error! " + e.filename + ":" + e.lineno + ": " + e.message); + }; + if (ENVIRONMENT_IS_NODE) { + worker.on("message", function(data2) { + worker.onmessage({data: data2}); + }); + worker.on("error", function(data2) { + worker.onerror(data2); + }); + worker.on("exit", function(data2) { + }); + } + worker.postMessage({cmd: "load", urlOrBlob: Module["mainScriptUrlOrBlob"] || _scriptDir, wasmMemory, wasmModule}); + }, allocateUnusedWorker: function() { + var pthreadMainJs = locateFile("tfjs-backend-wasm-threaded-simd.worker.js"); + PThread.unusedWorkers.push(new Worker(pthreadMainJs)); + }, getNewWorker: function() { + if (PThread.unusedWorkers.length == 0) { + PThread.allocateUnusedWorker(); + PThread.loadWasmModuleToWorker(PThread.unusedWorkers[0]); + } + if (PThread.unusedWorkers.length > 0) + return PThread.unusedWorkers.pop(); + else + return null; + }, busySpinWait: function(msecs) { + var t = performance.now() + msecs; + while (performance.now() < t) { + } + }}; + function establishStackSpace(stackTop, stackMax) { + _emscripten_stack_set_limits(stackTop, stackMax); + stackRestore(stackTop); + } + Module["establishStackSpace"] = establishStackSpace; + function getNoExitRuntime() { + return noExitRuntime; + } + Module["getNoExitRuntime"] = getNoExitRuntime; + function invokeEntryPoint(ptr, arg) { + return wasmTable.get(ptr)(arg); + } + Module["invokeEntryPoint"] = invokeEntryPoint; + function ___assert_fail(condition, filename, line, func2) { + abort("Assertion failed: " + UTF8ToString(condition) + ", at: " + [filename ? UTF8ToString(filename) : "unknown filename", line, func2 ? UTF8ToString(func2) : "unknown function"]); + } + function ___call_main(argc, argv) { + var returnCode = _main(argc, argv); + } + var _emscripten_get_now; + if (ENVIRONMENT_IS_NODE) { + _emscripten_get_now = function() { + var t = process["hrtime"](); + return t[0] * 1e3 + t[1] / 1e6; + }; + } else if (ENVIRONMENT_IS_PTHREAD) { + _emscripten_get_now = function() { + return performance.now() - Module["__performance_now_clock_drift"]; + }; + } else if (typeof dateNow !== "undefined") { + _emscripten_get_now = dateNow; + } else + _emscripten_get_now = function() { + return performance.now(); + }; + function setErrNo(value) { + GROWABLE_HEAP_I32()[___errno_location() >> 2] = value; + return value; + } + function _atexit(func2, arg) { + if (ENVIRONMENT_IS_PTHREAD) + return _emscripten_proxy_to_main_thread_js(1, 1, func2, arg); + } + function __emscripten_notify_thread_queue(targetThreadId, mainThreadId) { + if (targetThreadId == mainThreadId) { + postMessage({cmd: "processQueuedMainThreadWork"}); + } else if (ENVIRONMENT_IS_PTHREAD) { + postMessage({targetThread: targetThreadId, cmd: "processThreadQueue"}); + } else { + var pthread = PThread.pthreads[targetThreadId]; + var worker = pthread && pthread.worker; + if (!worker) { + return; + } + worker.postMessage({cmd: "processThreadQueue"}); + } + return 1; + } + function _abort() { + abort(); + } + function _emscripten_asm_const_int(code, sigPtr, argbuf) { + var args = readAsmConstArgs(sigPtr, argbuf); + return ASM_CONSTS[code].apply(null, args); + } + function _emscripten_conditional_set_current_thread_status(expectedStatus, newStatus) { + } + function _emscripten_futex_wait(addr, val, timeout) { + if (addr <= 0 || addr > GROWABLE_HEAP_I8().length || addr & true) + return -28; + if (!ENVIRONMENT_IS_WEB) { + var ret = Atomics.wait(GROWABLE_HEAP_I32(), addr >> 2, val, timeout); + if (ret === "timed-out") + return -73; + if (ret === "not-equal") + return -6; + if (ret === "ok") + return 0; + throw "Atomics.wait returned an unexpected value " + ret; + } else { + if (Atomics.load(GROWABLE_HEAP_I32(), addr >> 2) != val) { + return -6; + } + var tNow = performance.now(); + var tEnd = tNow + timeout; + var lastAddr = Atomics.exchange(GROWABLE_HEAP_I32(), __emscripten_main_thread_futex >> 2, addr); + while (1) { + tNow = performance.now(); + if (tNow > tEnd) { + lastAddr = Atomics.exchange(GROWABLE_HEAP_I32(), __emscripten_main_thread_futex >> 2, 0); + return -73; + } + lastAddr = Atomics.exchange(GROWABLE_HEAP_I32(), __emscripten_main_thread_futex >> 2, 0); + if (lastAddr == 0) { + break; + } + _emscripten_main_thread_process_queued_calls(); + if (Atomics.load(GROWABLE_HEAP_I32(), addr >> 2) != val) { + return -6; + } + lastAddr = Atomics.exchange(GROWABLE_HEAP_I32(), __emscripten_main_thread_futex >> 2, addr); + } + return 0; + } + } + function _emscripten_memcpy_big(dest, src, num) { + GROWABLE_HEAP_U8().copyWithin(dest, src, src + num); + } + function _emscripten_num_logical_cores() { + if (ENVIRONMENT_IS_NODE) + return require("os").cpus().length; + return navigator["hardwareConcurrency"]; + } + function _emscripten_proxy_to_main_thread_js(index, sync) { + var numCallArgs = arguments.length - 2; + var stack2 = stackSave(); + var serializedNumCallArgs = numCallArgs; + var args = stackAlloc(serializedNumCallArgs * 8); + var b = args >> 3; + for (var i = 0; i < numCallArgs; i++) { + var arg = arguments[2 + i]; + GROWABLE_HEAP_F64()[b + i] = arg; + } + var ret = _emscripten_run_in_main_runtime_thread_js(index, serializedNumCallArgs, args, sync); + stackRestore(stack2); + return ret; + } + var _emscripten_receive_on_main_thread_js_callArgs = []; + var readAsmConstArgsArray = []; + function readAsmConstArgs(sigPtr, buf) { + readAsmConstArgsArray.length = 0; + var ch; + buf >>= 2; + while (ch = GROWABLE_HEAP_U8()[sigPtr++]) { + var double = ch < 105; + if (double && buf & 1) + buf++; + readAsmConstArgsArray.push(double ? GROWABLE_HEAP_F64()[buf++ >> 1] : GROWABLE_HEAP_I32()[buf]); + ++buf; + } + return readAsmConstArgsArray; + } + function _emscripten_receive_on_main_thread_js(index, numCallArgs, args) { + _emscripten_receive_on_main_thread_js_callArgs.length = numCallArgs; + var b = args >> 3; + for (var i = 0; i < numCallArgs; i++) { + _emscripten_receive_on_main_thread_js_callArgs[i] = GROWABLE_HEAP_F64()[b + i]; + } + var isEmAsmConst = index < 0; + var func2 = !isEmAsmConst ? proxiedFunctionTable[index] : ASM_CONSTS[-index - 1]; + return func2.apply(null, _emscripten_receive_on_main_thread_js_callArgs); + } + function _emscripten_get_heap_size() { + return GROWABLE_HEAP_U8().length; + } + function emscripten_realloc_buffer(size) { + try { + wasmMemory.grow(size - buffer2.byteLength + 65535 >>> 16); + updateGlobalBufferAndViews(wasmMemory.buffer); + return 1; + } catch (e) { + } + } + function _emscripten_resize_heap(requestedSize) { + var oldSize = _emscripten_get_heap_size(); + if (requestedSize <= oldSize) { + return false; + } + var maxHeapSize = 2147483648; + if (requestedSize > maxHeapSize) { + return false; + } + for (var cutDown = 1; cutDown <= 4; cutDown *= 2) { + var overGrownHeapSize = oldSize * (1 + 0.2 / cutDown); + overGrownHeapSize = Math.min(overGrownHeapSize, requestedSize + 100663296); + var newSize = Math.min(maxHeapSize, alignUp(Math.max(requestedSize, overGrownHeapSize), 65536)); + var replacement = emscripten_realloc_buffer(newSize); + if (replacement) { + return true; + } + } + return false; + } + var JSEvents = {inEventHandler: 0, removeAllEventListeners: function() { + for (var i = JSEvents.eventHandlers.length - 1; i >= 0; --i) { + JSEvents._removeHandler(i); + } + JSEvents.eventHandlers = []; + JSEvents.deferredCalls = []; + }, registerRemoveEventListeners: function() { + if (!JSEvents.removeEventListenersRegistered) { + __ATEXIT__.push(JSEvents.removeAllEventListeners); + JSEvents.removeEventListenersRegistered = true; + } + }, deferredCalls: [], deferCall: function(targetFunction, precedence, argsList) { + function arraysHaveEqualContent(arrA, arrB) { + if (arrA.length != arrB.length) + return false; + for (var i2 in arrA) { + if (arrA[i2] != arrB[i2]) + return false; + } + return true; + } + for (var i in JSEvents.deferredCalls) { + var call = JSEvents.deferredCalls[i]; + if (call.targetFunction == targetFunction && arraysHaveEqualContent(call.argsList, argsList)) { + return; + } + } + JSEvents.deferredCalls.push({targetFunction, precedence, argsList}); + JSEvents.deferredCalls.sort(function(x, y) { + return x.precedence < y.precedence; + }); + }, removeDeferredCalls: function(targetFunction) { + for (var i = 0; i < JSEvents.deferredCalls.length; ++i) { + if (JSEvents.deferredCalls[i].targetFunction == targetFunction) { + JSEvents.deferredCalls.splice(i, 1); + --i; + } + } + }, canPerformEventHandlerRequests: function() { + return JSEvents.inEventHandler && JSEvents.currentEventHandler.allowsDeferredCalls; + }, runDeferredCalls: function() { + if (!JSEvents.canPerformEventHandlerRequests()) { + return; + } + for (var i = 0; i < JSEvents.deferredCalls.length; ++i) { + var call = JSEvents.deferredCalls[i]; + JSEvents.deferredCalls.splice(i, 1); + --i; + call.targetFunction.apply(null, call.argsList); + } + }, eventHandlers: [], removeAllHandlersOnTarget: function(target, eventTypeString) { + for (var i = 0; i < JSEvents.eventHandlers.length; ++i) { + if (JSEvents.eventHandlers[i].target == target && (!eventTypeString || eventTypeString == JSEvents.eventHandlers[i].eventTypeString)) { + JSEvents._removeHandler(i--); + } + } + }, _removeHandler: function(i) { + var h = JSEvents.eventHandlers[i]; + h.target.removeEventListener(h.eventTypeString, h.eventListenerFunc, h.useCapture); + JSEvents.eventHandlers.splice(i, 1); + }, registerOrRemoveHandler: function(eventHandler) { + var jsEventHandler = function jsEventHandler2(event) { + ++JSEvents.inEventHandler; + JSEvents.currentEventHandler = eventHandler; + JSEvents.runDeferredCalls(); + eventHandler.handlerFunc(event); + JSEvents.runDeferredCalls(); + --JSEvents.inEventHandler; + }; + if (eventHandler.callbackfunc) { + eventHandler.eventListenerFunc = jsEventHandler; + eventHandler.target.addEventListener(eventHandler.eventTypeString, jsEventHandler, eventHandler.useCapture); + JSEvents.eventHandlers.push(eventHandler); + JSEvents.registerRemoveEventListeners(); + } else { + for (var i = 0; i < JSEvents.eventHandlers.length; ++i) { + if (JSEvents.eventHandlers[i].target == eventHandler.target && JSEvents.eventHandlers[i].eventTypeString == eventHandler.eventTypeString) { + JSEvents._removeHandler(i--); + } + } + } + }, queueEventHandlerOnThread_iiii: function(targetThread, eventHandlerFunc, eventTypeId, eventData, userData) { + var stackTop = stackSave(); + var varargs = stackAlloc(12); + GROWABLE_HEAP_I32()[varargs >> 2] = eventTypeId; + GROWABLE_HEAP_I32()[varargs + 4 >> 2] = eventData; + GROWABLE_HEAP_I32()[varargs + 8 >> 2] = userData; + __emscripten_call_on_thread(0, targetThread, 637534208, eventHandlerFunc, eventData, varargs); + stackRestore(stackTop); + }, getTargetThreadForEventCallback: function(targetThread) { + switch (targetThread) { + case 1: + return 0; + case 2: + return PThread.currentProxiedOperationCallerThread; + default: + return targetThread; + } + }, getNodeNameForTarget: function(target) { + if (!target) + return ""; + if (target == window) + return "#window"; + if (target == screen) + return "#screen"; + return target && target.nodeName ? target.nodeName : ""; + }, fullscreenEnabled: function() { + return document.fullscreenEnabled || document.webkitFullscreenEnabled; + }}; + function stringToNewUTF8(jsString) { + var length = lengthBytesUTF8(jsString) + 1; + var cString = _malloc(length); + stringToUTF8(jsString, cString, length); + return cString; + } + function _emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread, targetCanvas, width, height) { + var stackTop = stackSave(); + var varargs = stackAlloc(12); + var targetCanvasPtr = 0; + if (targetCanvas) { + targetCanvasPtr = stringToNewUTF8(targetCanvas); + } + GROWABLE_HEAP_I32()[varargs >> 2] = targetCanvasPtr; + GROWABLE_HEAP_I32()[varargs + 4 >> 2] = width; + GROWABLE_HEAP_I32()[varargs + 8 >> 2] = height; + __emscripten_call_on_thread(0, targetThread, 657457152, 0, targetCanvasPtr, varargs); + stackRestore(stackTop); + } + function _emscripten_set_offscreencanvas_size_on_target_thread(targetThread, targetCanvas, width, height) { + targetCanvas = targetCanvas ? UTF8ToString(targetCanvas) : ""; + _emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread, targetCanvas, width, height); + } + function maybeCStringToJsString(cString) { + return cString > 2 ? UTF8ToString(cString) : cString; + } + var specialHTMLTargets = [0, typeof document !== "undefined" ? document : 0, typeof window !== "undefined" ? window : 0]; + function findEventTarget(target) { + target = maybeCStringToJsString(target); + var domElement = specialHTMLTargets[target] || (typeof document !== "undefined" ? document.querySelector(target) : void 0); + return domElement; + } + function findCanvasEventTarget(target) { + return findEventTarget(target); + } + function _emscripten_set_canvas_element_size_calling_thread(target, width, height) { + var canvas = findCanvasEventTarget(target); + if (!canvas) + return -4; + if (canvas.canvasSharedPtr) { + GROWABLE_HEAP_I32()[canvas.canvasSharedPtr >> 2] = width; + GROWABLE_HEAP_I32()[canvas.canvasSharedPtr + 4 >> 2] = height; + } + if (canvas.offscreenCanvas || !canvas.controlTransferredOffscreen) { + if (canvas.offscreenCanvas) + canvas = canvas.offscreenCanvas; + var autoResizeViewport = false; + if (canvas.GLctxObject && canvas.GLctxObject.GLctx) { + var prevViewport = canvas.GLctxObject.GLctx.getParameter(2978); + autoResizeViewport = prevViewport[0] === 0 && prevViewport[1] === 0 && prevViewport[2] === canvas.width && prevViewport[3] === canvas.height; + } + canvas.width = width; + canvas.height = height; + if (autoResizeViewport) { + canvas.GLctxObject.GLctx.viewport(0, 0, width, height); + } + } else if (canvas.canvasSharedPtr) { + var targetThread = GROWABLE_HEAP_I32()[canvas.canvasSharedPtr + 8 >> 2]; + _emscripten_set_offscreencanvas_size_on_target_thread(targetThread, target, width, height); + return 1; + } else { + return -4; + } + return 0; + } + function _emscripten_set_canvas_element_size_main_thread(target, width, height) { + if (ENVIRONMENT_IS_PTHREAD) + return _emscripten_proxy_to_main_thread_js(2, 1, target, width, height); + return _emscripten_set_canvas_element_size_calling_thread(target, width, height); + } + function _emscripten_set_canvas_element_size(target, width, height) { + var canvas = findCanvasEventTarget(target); + if (canvas) { + return _emscripten_set_canvas_element_size_calling_thread(target, width, height); + } else { + return _emscripten_set_canvas_element_size_main_thread(target, width, height); + } + } + function _emscripten_set_current_thread_status(newStatus) { + } + function _emscripten_set_thread_name(threadId, name2) { + } + function __webgl_enable_ANGLE_instanced_arrays(ctx) { + var ext = ctx.getExtension("ANGLE_instanced_arrays"); + if (ext) { + ctx["vertexAttribDivisor"] = function(index, divisor) { + ext["vertexAttribDivisorANGLE"](index, divisor); + }; + ctx["drawArraysInstanced"] = function(mode, first, count2, primcount) { + ext["drawArraysInstancedANGLE"](mode, first, count2, primcount); + }; + ctx["drawElementsInstanced"] = function(mode, count2, type, indices, primcount) { + ext["drawElementsInstancedANGLE"](mode, count2, type, indices, primcount); + }; + return 1; + } + } + function __webgl_enable_OES_vertex_array_object(ctx) { + var ext = ctx.getExtension("OES_vertex_array_object"); + if (ext) { + ctx["createVertexArray"] = function() { + return ext["createVertexArrayOES"](); + }; + ctx["deleteVertexArray"] = function(vao) { + ext["deleteVertexArrayOES"](vao); + }; + ctx["bindVertexArray"] = function(vao) { + ext["bindVertexArrayOES"](vao); + }; + ctx["isVertexArray"] = function(vao) { + return ext["isVertexArrayOES"](vao); + }; + return 1; + } + } + function __webgl_enable_WEBGL_draw_buffers(ctx) { + var ext = ctx.getExtension("WEBGL_draw_buffers"); + if (ext) { + ctx["drawBuffers"] = function(n, bufs) { + ext["drawBuffersWEBGL"](n, bufs); + }; + return 1; + } + } + function __webgl_enable_WEBGL_multi_draw(ctx) { + return !!(ctx.multiDrawWebgl = ctx.getExtension("WEBGL_multi_draw")); + } + var GL = {counter: 1, buffers: [], programs: [], framebuffers: [], renderbuffers: [], textures: [], uniforms: [], shaders: [], vaos: [], contexts: {}, offscreenCanvases: {}, timerQueriesEXT: [], programInfos: {}, stringCache: {}, unpackAlignment: 4, recordError: function recordError(errorCode) { + if (!GL.lastError) { + GL.lastError = errorCode; + } + }, getNewId: function(table) { + var ret = GL.counter++; + for (var i = table.length; i < ret; i++) { + table[i] = null; + } + return ret; + }, getSource: function(shader, count2, string, length) { + var source = ""; + for (var i = 0; i < count2; ++i) { + var len = length ? GROWABLE_HEAP_I32()[length + i * 4 >> 2] : -1; + source += UTF8ToString(GROWABLE_HEAP_I32()[string + i * 4 >> 2], len < 0 ? void 0 : len); + } + return source; + }, createContext: function(canvas, webGLContextAttributes) { + var ctx = canvas.getContext("webgl", webGLContextAttributes); + if (!ctx) + return 0; + var handle = GL.registerContext(ctx, webGLContextAttributes); + return handle; + }, registerContext: function(ctx, webGLContextAttributes) { + var handle = _malloc(8); + GROWABLE_HEAP_I32()[handle + 4 >> 2] = _pthread_self(); + var context = {handle, attributes: webGLContextAttributes, version: webGLContextAttributes.majorVersion, GLctx: ctx}; + if (ctx.canvas) + ctx.canvas.GLctxObject = context; + GL.contexts[handle] = context; + if (typeof webGLContextAttributes.enableExtensionsByDefault === "undefined" || webGLContextAttributes.enableExtensionsByDefault) { + GL.initExtensions(context); + } + return handle; + }, makeContextCurrent: function(contextHandle) { + GL.currentContext = GL.contexts[contextHandle]; + Module.ctx = GLctx = GL.currentContext && GL.currentContext.GLctx; + return !(contextHandle && !GLctx); + }, getContext: function(contextHandle) { + return GL.contexts[contextHandle]; + }, deleteContext: function(contextHandle) { + if (GL.currentContext === GL.contexts[contextHandle]) + GL.currentContext = null; + if (typeof JSEvents === "object") + JSEvents.removeAllHandlersOnTarget(GL.contexts[contextHandle].GLctx.canvas); + if (GL.contexts[contextHandle] && GL.contexts[contextHandle].GLctx.canvas) + GL.contexts[contextHandle].GLctx.canvas.GLctxObject = void 0; + _free(GL.contexts[contextHandle].handle); + GL.contexts[contextHandle] = null; + }, initExtensions: function(context) { + if (!context) + context = GL.currentContext; + if (context.initExtensionsDone) + return; + context.initExtensionsDone = true; + var GLctx2 = context.GLctx; + __webgl_enable_ANGLE_instanced_arrays(GLctx2); + __webgl_enable_OES_vertex_array_object(GLctx2); + __webgl_enable_WEBGL_draw_buffers(GLctx2); + GLctx2.disjointTimerQueryExt = GLctx2.getExtension("EXT_disjoint_timer_query"); + __webgl_enable_WEBGL_multi_draw(GLctx2); + var exts = GLctx2.getSupportedExtensions() || []; + exts.forEach(function(ext) { + if (ext.indexOf("lose_context") < 0 && ext.indexOf("debug") < 0) { + GLctx2.getExtension(ext); + } + }); + }, populateUniformTable: function(program) { + var p2 = GL.programs[program]; + var ptable = GL.programInfos[program] = {uniforms: {}, maxUniformLength: 0, maxAttributeLength: -1, maxUniformBlockNameLength: -1}; + var utable = ptable.uniforms; + var numUniforms = GLctx.getProgramParameter(p2, 35718); + for (var i = 0; i < numUniforms; ++i) { + var u = GLctx.getActiveUniform(p2, i); + var name2 = u.name; + ptable.maxUniformLength = Math.max(ptable.maxUniformLength, name2.length + 1); + if (name2.slice(-1) == "]") { + name2 = name2.slice(0, name2.lastIndexOf("[")); + } + var loc = GLctx.getUniformLocation(p2, name2); + if (loc) { + var id = GL.getNewId(GL.uniforms); + utable[name2] = [u.size, id]; + GL.uniforms[id] = loc; + for (var j = 1; j < u.size; ++j) { + var n = name2 + "[" + j + "]"; + loc = GLctx.getUniformLocation(p2, n); + id = GL.getNewId(GL.uniforms); + GL.uniforms[id] = loc; + } + } + } + }}; + var __emscripten_webgl_power_preferences = ["default", "low-power", "high-performance"]; + function _emscripten_webgl_do_create_context(target, attributes) { + var a = attributes >> 2; + var powerPreference = GROWABLE_HEAP_I32()[a + (24 >> 2)]; + var contextAttributes = {alpha: !!GROWABLE_HEAP_I32()[a + (0 >> 2)], depth: !!GROWABLE_HEAP_I32()[a + (4 >> 2)], stencil: !!GROWABLE_HEAP_I32()[a + (8 >> 2)], antialias: !!GROWABLE_HEAP_I32()[a + (12 >> 2)], premultipliedAlpha: !!GROWABLE_HEAP_I32()[a + (16 >> 2)], preserveDrawingBuffer: !!GROWABLE_HEAP_I32()[a + (20 >> 2)], powerPreference: __emscripten_webgl_power_preferences[powerPreference], failIfMajorPerformanceCaveat: !!GROWABLE_HEAP_I32()[a + (28 >> 2)], majorVersion: GROWABLE_HEAP_I32()[a + (32 >> 2)], minorVersion: GROWABLE_HEAP_I32()[a + (36 >> 2)], enableExtensionsByDefault: GROWABLE_HEAP_I32()[a + (40 >> 2)], explicitSwapControl: GROWABLE_HEAP_I32()[a + (44 >> 2)], proxyContextToMainThread: GROWABLE_HEAP_I32()[a + (48 >> 2)], renderViaOffscreenBackBuffer: GROWABLE_HEAP_I32()[a + (52 >> 2)]}; + var canvas = findCanvasEventTarget(target); + if (!canvas) { + return 0; + } + if (contextAttributes.explicitSwapControl) { + return 0; + } + var contextHandle = GL.createContext(canvas, contextAttributes); + return contextHandle; + } + function _emscripten_webgl_create_context(a0, a12) { + return _emscripten_webgl_do_create_context(a0, a12); + } + var SYSCALLS = {mappings: {}, buffers: [null, [], []], printChar: function(stream, curr) { + var buffer3 = SYSCALLS.buffers[stream]; + if (curr === 0 || curr === 10) { + (stream === 1 ? out : err)(UTF8ArrayToString(buffer3, 0)); + buffer3.length = 0; + } else { + buffer3.push(curr); + } + }, varargs: void 0, get: function() { + SYSCALLS.varargs += 4; + var ret = GROWABLE_HEAP_I32()[SYSCALLS.varargs - 4 >> 2]; + return ret; + }, getStr: function(ptr) { + var ret = UTF8ToString(ptr); + return ret; + }, get64: function(low, high) { + return low; + }}; + function _fd_close(fd) { + if (ENVIRONMENT_IS_PTHREAD) + return _emscripten_proxy_to_main_thread_js(3, 1, fd); + return 0; + } + function _fd_seek(fd, offset_low, offset_high, whence, newOffset) { + if (ENVIRONMENT_IS_PTHREAD) + return _emscripten_proxy_to_main_thread_js(4, 1, fd, offset_low, offset_high, whence, newOffset); + } + function _fd_write(fd, iov, iovcnt, pnum) { + if (ENVIRONMENT_IS_PTHREAD) + return _emscripten_proxy_to_main_thread_js(5, 1, fd, iov, iovcnt, pnum); + var num = 0; + for (var i = 0; i < iovcnt; i++) { + var ptr = GROWABLE_HEAP_I32()[iov + i * 8 >> 2]; + var len = GROWABLE_HEAP_I32()[iov + (i * 8 + 4) >> 2]; + for (var j = 0; j < len; j++) { + SYSCALLS.printChar(fd, GROWABLE_HEAP_U8()[ptr + j]); + } + num += len; + } + GROWABLE_HEAP_I32()[pnum >> 2] = num; + return 0; + } + function _pthread_cleanup_pop(execute2) { + var routine = PThread.threadExitHandlers.pop(); + if (execute2) + routine(); + } + function _pthread_cleanup_push(routine, arg) { + PThread.threadExitHandlers.push(function() { + wasmTable.get(routine)(arg); + }); + } + function spawnThread(threadParams) { + if (ENVIRONMENT_IS_PTHREAD) + throw "Internal Error! spawnThread() can only ever be called from main application thread!"; + var worker = PThread.getNewWorker(); + if (worker.pthread !== void 0) + throw "Internal error!"; + if (!threadParams.pthread_ptr) + throw "Internal error, no pthread ptr!"; + PThread.runningWorkers.push(worker); + var tlsMemory = _malloc(128 * 4); + for (var i = 0; i < 128; ++i) { + GROWABLE_HEAP_I32()[tlsMemory + i * 4 >> 2] = 0; + } + var stackHigh = threadParams.stackBase + threadParams.stackSize; + var pthread = PThread.pthreads[threadParams.pthread_ptr] = {worker, stackBase: threadParams.stackBase, stackSize: threadParams.stackSize, allocatedOwnStack: threadParams.allocatedOwnStack, threadInfoStruct: threadParams.pthread_ptr}; + var tis = pthread.threadInfoStruct >> 2; + Atomics.store(GROWABLE_HEAP_U32(), tis + (64 >> 2), threadParams.detached); + Atomics.store(GROWABLE_HEAP_U32(), tis + (100 >> 2), tlsMemory); + Atomics.store(GROWABLE_HEAP_U32(), tis + (40 >> 2), pthread.threadInfoStruct); + Atomics.store(GROWABLE_HEAP_U32(), tis + (80 >> 2), threadParams.stackSize); + Atomics.store(GROWABLE_HEAP_U32(), tis + (76 >> 2), stackHigh); + Atomics.store(GROWABLE_HEAP_U32(), tis + (104 >> 2), threadParams.stackSize); + Atomics.store(GROWABLE_HEAP_U32(), tis + (104 + 8 >> 2), stackHigh); + Atomics.store(GROWABLE_HEAP_U32(), tis + (104 + 12 >> 2), threadParams.detached); + var global_libc = _emscripten_get_global_libc(); + var global_locale = global_libc + 40; + Atomics.store(GROWABLE_HEAP_U32(), tis + (172 >> 2), global_locale); + worker.pthread = pthread; + var msg = {cmd: "run", start_routine: threadParams.startRoutine, arg: threadParams.arg, threadInfoStruct: threadParams.pthread_ptr, stackBase: threadParams.stackBase, stackSize: threadParams.stackSize}; + worker.runPthread = function() { + msg.time = performance.now(); + worker.postMessage(msg, threadParams.transferList); + }; + if (worker.loaded) { + worker.runPthread(); + delete worker.runPthread; + } + } + function _pthread_create(pthread_ptr, attr, start_routine, arg) { + if (typeof SharedArrayBuffer === "undefined") { + err("Current environment does not support SharedArrayBuffer, pthreads are not available!"); + return 6; + } + if (!pthread_ptr) { + err("pthread_create called with a null thread pointer!"); + return 28; + } + var transferList = []; + var error = 0; + if (ENVIRONMENT_IS_PTHREAD && (transferList.length === 0 || error)) { + return _emscripten_sync_run_in_main_thread_4(687865856, pthread_ptr, attr, start_routine, arg); + } + if (error) + return error; + var stackSize = 0; + var stackBase = 0; + var detached = 0; + if (attr && attr != -1) { + stackSize = GROWABLE_HEAP_I32()[attr >> 2]; + stackSize += 81920; + stackBase = GROWABLE_HEAP_I32()[attr + 8 >> 2]; + detached = GROWABLE_HEAP_I32()[attr + 12 >> 2] !== 0; + } else { + stackSize = 2097152; + } + var allocatedOwnStack = stackBase == 0; + if (allocatedOwnStack) { + stackBase = _memalign(16, stackSize); + } else { + stackBase -= stackSize; + assert3(stackBase > 0); + } + var threadInfoStruct = _malloc(228); + for (var i = 0; i < 228 >> 2; ++i) + GROWABLE_HEAP_U32()[(threadInfoStruct >> 2) + i] = 0; + GROWABLE_HEAP_I32()[pthread_ptr >> 2] = threadInfoStruct; + GROWABLE_HEAP_I32()[threadInfoStruct + 12 >> 2] = threadInfoStruct; + var headPtr = threadInfoStruct + 152; + GROWABLE_HEAP_I32()[headPtr >> 2] = headPtr; + var threadParams = {stackBase, stackSize, allocatedOwnStack, detached, startRoutine: start_routine, pthread_ptr: threadInfoStruct, arg, transferList}; + if (ENVIRONMENT_IS_PTHREAD) { + threadParams.cmd = "spawnThread"; + postMessage(threadParams, transferList); + } else { + spawnThread(threadParams); + } + return 0; + } + function _sysconf(name2) { + if (ENVIRONMENT_IS_PTHREAD) + return _emscripten_proxy_to_main_thread_js(6, 1, name2); + switch (name2) { + case 30: + return 16384; + case 85: + var maxHeapSize = 2147483648; + return maxHeapSize / 16384; + case 132: + case 133: + case 12: + case 137: + case 138: + case 15: + case 235: + case 16: + case 17: + case 18: + case 19: + case 20: + case 149: + case 13: + case 10: + case 236: + case 153: + case 9: + case 21: + case 22: + case 159: + case 154: + case 14: + case 77: + case 78: + case 139: + case 82: + case 68: + case 67: + case 164: + case 11: + case 29: + case 47: + case 48: + case 95: + case 52: + case 51: + case 46: + return 200809; + case 27: + case 246: + case 127: + case 128: + case 23: + case 24: + case 160: + case 161: + case 181: + case 182: + case 242: + case 183: + case 184: + case 243: + case 244: + case 245: + case 165: + case 178: + case 179: + case 49: + case 50: + case 168: + case 169: + case 175: + case 170: + case 171: + case 172: + case 97: + case 76: + case 32: + case 173: + case 35: + case 80: + case 81: + case 79: + return -1; + case 176: + case 177: + case 7: + case 155: + case 8: + case 157: + case 125: + case 126: + case 92: + case 93: + case 129: + case 130: + case 131: + case 94: + case 91: + return 1; + case 74: + case 60: + case 69: + case 70: + case 4: + return 1024; + case 31: + case 42: + case 72: + return 32; + case 87: + case 26: + case 33: + return 2147483647; + case 34: + case 1: + return 47839; + case 38: + case 36: + return 99; + case 43: + case 37: + return 2048; + case 0: + return 2097152; + case 3: + return 65536; + case 28: + return 32768; + case 44: + return 32767; + case 75: + return 16384; + case 39: + return 1e3; + case 89: + return 700; + case 71: + return 256; + case 40: + return 255; + case 2: + return 100; + case 180: + return 64; + case 25: + return 20; + case 5: + return 16; + case 6: + return 6; + case 73: + return 4; + case 84: { + if (typeof navigator === "object") + return navigator["hardwareConcurrency"] || 1; + return 1; + } + } + setErrNo(28); + return -1; + } + if (!ENVIRONMENT_IS_PTHREAD) + PThread.initMainThreadBlock(); + var GLctx; + var proxiedFunctionTable = [null, _atexit, _emscripten_set_canvas_element_size_main_thread, _fd_close, _fd_seek, _fd_write, _sysconf]; + var asmLibraryArg = {e: ___assert_fail, r: ___call_main, x: __emscripten_notify_thread_queue, b: _abort, y: _emscripten_asm_const_int, j: _emscripten_conditional_set_current_thread_status, c: _emscripten_futex_wait, d: _emscripten_futex_wake, f: _emscripten_get_now, p: _emscripten_memcpy_big, z: _emscripten_num_logical_cores, u: _emscripten_receive_on_main_thread_js, q: _emscripten_resize_heap, v: _emscripten_set_canvas_element_size, i: _emscripten_set_current_thread_status, t: _emscripten_set_thread_name, w: _emscripten_webgl_create_context, m: _fd_close, n: _fd_seek, g: _fd_write, o: initPthreadsJS, a: wasmMemory || Module["wasmMemory"], k: _pthread_cleanup_pop, l: _pthread_cleanup_push, h: _pthread_create, s: _sysconf}; + var asm = createWasm(); + var ___wasm_call_ctors = Module["___wasm_call_ctors"] = function() { + return (___wasm_call_ctors = Module["___wasm_call_ctors"] = Module["asm"]["A"]).apply(null, arguments); + }; + var _init = Module["_init"] = function() { + return (_init = Module["_init"] = Module["asm"]["B"]).apply(null, arguments); + }; + var _register_tensor = Module["_register_tensor"] = function() { + return (_register_tensor = Module["_register_tensor"] = Module["asm"]["C"]).apply(null, arguments); + }; + var _dispose_data = Module["_dispose_data"] = function() { + return (_dispose_data = Module["_dispose_data"] = Module["asm"]["D"]).apply(null, arguments); + }; + var _dispose = Module["_dispose"] = function() { + return (_dispose = Module["_dispose"] = Module["asm"]["E"]).apply(null, arguments); + }; + var _Abs = Module["_Abs"] = function() { + return (_Abs = Module["_Abs"] = Module["asm"]["G"]).apply(null, arguments); + }; + var _Add = Module["_Add"] = function() { + return (_Add = Module["_Add"] = Module["asm"]["H"]).apply(null, arguments); + }; + var _AddN = Module["_AddN"] = function() { + return (_AddN = Module["_AddN"] = Module["asm"]["I"]).apply(null, arguments); + }; + var _ArgMax = Module["_ArgMax"] = function() { + return (_ArgMax = Module["_ArgMax"] = Module["asm"]["J"]).apply(null, arguments); + }; + var _AvgPool = Module["_AvgPool"] = function() { + return (_AvgPool = Module["_AvgPool"] = Module["asm"]["K"]).apply(null, arguments); + }; + var _BatchMatMul = Module["_BatchMatMul"] = function() { + return (_BatchMatMul = Module["_BatchMatMul"] = Module["asm"]["L"]).apply(null, arguments); + }; + var _Ceil = Module["_Ceil"] = function() { + return (_Ceil = Module["_Ceil"] = Module["asm"]["M"]).apply(null, arguments); + }; + var _ClipByValue = Module["_ClipByValue"] = function() { + return (_ClipByValue = Module["_ClipByValue"] = Module["asm"]["N"]).apply(null, arguments); + }; + var _Conv2D = Module["_Conv2D"] = function() { + return (_Conv2D = Module["_Conv2D"] = Module["asm"]["O"]).apply(null, arguments); + }; + var _Conv2DBackpropInput = Module["_Conv2DBackpropInput"] = function() { + return (_Conv2DBackpropInput = Module["_Conv2DBackpropInput"] = Module["asm"]["P"]).apply(null, arguments); + }; + var _Cos = Module["_Cos"] = function() { + return (_Cos = Module["_Cos"] = Module["asm"]["Q"]).apply(null, arguments); + }; + var _CropAndResize = Module["_CropAndResize"] = function() { + return (_CropAndResize = Module["_CropAndResize"] = Module["asm"]["R"]).apply(null, arguments); + }; + var _Cumsum = Module["_Cumsum"] = function() { + return (_Cumsum = Module["_Cumsum"] = Module["asm"]["S"]).apply(null, arguments); + }; + var _DepthToSpace = Module["_DepthToSpace"] = function() { + return (_DepthToSpace = Module["_DepthToSpace"] = Module["asm"]["T"]).apply(null, arguments); + }; + var _DepthwiseConv2dNative = Module["_DepthwiseConv2dNative"] = function() { + return (_DepthwiseConv2dNative = Module["_DepthwiseConv2dNative"] = Module["asm"]["U"]).apply(null, arguments); + }; + var _Equal = Module["_Equal"] = function() { + return (_Equal = Module["_Equal"] = Module["asm"]["V"]).apply(null, arguments); + }; + var _Exp = Module["_Exp"] = function() { + return (_Exp = Module["_Exp"] = Module["asm"]["W"]).apply(null, arguments); + }; + var _FlipLeftRight = Module["_FlipLeftRight"] = function() { + return (_FlipLeftRight = Module["_FlipLeftRight"] = Module["asm"]["X"]).apply(null, arguments); + }; + var _Floor = Module["_Floor"] = function() { + return (_Floor = Module["_Floor"] = Module["asm"]["Y"]).apply(null, arguments); + }; + var _FloorDiv = Module["_FloorDiv"] = function() { + return (_FloorDiv = Module["_FloorDiv"] = Module["asm"]["Z"]).apply(null, arguments); + }; + var _FusedBatchNorm = Module["_FusedBatchNorm"] = function() { + return (_FusedBatchNorm = Module["_FusedBatchNorm"] = Module["asm"]["_"]).apply(null, arguments); + }; + var _FusedConv2D = Module["_FusedConv2D"] = function() { + return (_FusedConv2D = Module["_FusedConv2D"] = Module["asm"]["$"]).apply(null, arguments); + }; + var _FusedDepthwiseConv2D = Module["_FusedDepthwiseConv2D"] = function() { + return (_FusedDepthwiseConv2D = Module["_FusedDepthwiseConv2D"] = Module["asm"]["aa"]).apply(null, arguments); + }; + var _Gather = Module["_Gather"] = function() { + return (_Gather = Module["_Gather"] = Module["asm"]["ba"]).apply(null, arguments); + }; + var _GatherNd = Module["_GatherNd"] = function() { + return (_GatherNd = Module["_GatherNd"] = Module["asm"]["ca"]).apply(null, arguments); + }; + var _Greater = Module["_Greater"] = function() { + return (_Greater = Module["_Greater"] = Module["asm"]["da"]).apply(null, arguments); + }; + var _GreaterEqual = Module["_GreaterEqual"] = function() { + return (_GreaterEqual = Module["_GreaterEqual"] = Module["asm"]["ea"]).apply(null, arguments); + }; + var _LeakyRelu = Module["_LeakyRelu"] = function() { + return (_LeakyRelu = Module["_LeakyRelu"] = Module["asm"]["fa"]).apply(null, arguments); + }; + var _Less = Module["_Less"] = function() { + return (_Less = Module["_Less"] = Module["asm"]["ga"]).apply(null, arguments); + }; + var _LessEqual = Module["_LessEqual"] = function() { + return (_LessEqual = Module["_LessEqual"] = Module["asm"]["ha"]).apply(null, arguments); + }; + var _Log = Module["_Log"] = function() { + return (_Log = Module["_Log"] = Module["asm"]["ia"]).apply(null, arguments); + }; + var _LogicalAnd = Module["_LogicalAnd"] = function() { + return (_LogicalAnd = Module["_LogicalAnd"] = Module["asm"]["ja"]).apply(null, arguments); + }; + var _Max = Module["_Max"] = function() { + return (_Max = Module["_Max"] = Module["asm"]["ka"]).apply(null, arguments); + }; + var _MaxPool = Module["_MaxPool"] = function() { + return (_MaxPool = Module["_MaxPool"] = Module["asm"]["la"]).apply(null, arguments); + }; + var _Maximum = Module["_Maximum"] = function() { + return (_Maximum = Module["_Maximum"] = Module["asm"]["ma"]).apply(null, arguments); + }; + var _Mean = Module["_Mean"] = function() { + return (_Mean = Module["_Mean"] = Module["asm"]["na"]).apply(null, arguments); + }; + var _Min = Module["_Min"] = function() { + return (_Min = Module["_Min"] = Module["asm"]["oa"]).apply(null, arguments); + }; + var _Minimum = Module["_Minimum"] = function() { + return (_Minimum = Module["_Minimum"] = Module["asm"]["pa"]).apply(null, arguments); + }; + var _Multiply = Module["_Multiply"] = function() { + return (_Multiply = Module["_Multiply"] = Module["asm"]["qa"]).apply(null, arguments); + }; + var _Neg = Module["_Neg"] = function() { + return (_Neg = Module["_Neg"] = Module["asm"]["ra"]).apply(null, arguments); + }; + var _NonMaxSuppressionV3 = Module["_NonMaxSuppressionV3"] = function() { + return (_NonMaxSuppressionV3 = Module["_NonMaxSuppressionV3"] = Module["asm"]["sa"]).apply(null, arguments); + }; + var _NonMaxSuppressionV4 = Module["_NonMaxSuppressionV4"] = function() { + return (_NonMaxSuppressionV4 = Module["_NonMaxSuppressionV4"] = Module["asm"]["ta"]).apply(null, arguments); + }; + var _NonMaxSuppressionV5 = Module["_NonMaxSuppressionV5"] = function() { + return (_NonMaxSuppressionV5 = Module["_NonMaxSuppressionV5"] = Module["asm"]["ua"]).apply(null, arguments); + }; + var _NotEqual = Module["_NotEqual"] = function() { + return (_NotEqual = Module["_NotEqual"] = Module["asm"]["va"]).apply(null, arguments); + }; + var _OneHot = Module["_OneHot"] = function() { + return (_OneHot = Module["_OneHot"] = Module["asm"]["wa"]).apply(null, arguments); + }; + var _PadV2 = Module["_PadV2"] = function() { + return (_PadV2 = Module["_PadV2"] = Module["asm"]["xa"]).apply(null, arguments); + }; + var _Pow = Module["_Pow"] = function() { + return (_Pow = Module["_Pow"] = Module["asm"]["ya"]).apply(null, arguments); + }; + var _Prelu = Module["_Prelu"] = function() { + return (_Prelu = Module["_Prelu"] = Module["asm"]["za"]).apply(null, arguments); + }; + var _Prod = Module["_Prod"] = function() { + return (_Prod = Module["_Prod"] = Module["asm"]["Aa"]).apply(null, arguments); + }; + var _RealDiv = Module["_RealDiv"] = function() { + return (_RealDiv = Module["_RealDiv"] = Module["asm"]["Ba"]).apply(null, arguments); + }; + var _Relu = Module["_Relu"] = function() { + return (_Relu = Module["_Relu"] = Module["asm"]["Ca"]).apply(null, arguments); + }; + var _Relu6 = Module["_Relu6"] = function() { + return (_Relu6 = Module["_Relu6"] = Module["asm"]["Da"]).apply(null, arguments); + }; + var _ResizeBilinear = Module["_ResizeBilinear"] = function() { + return (_ResizeBilinear = Module["_ResizeBilinear"] = Module["asm"]["Ea"]).apply(null, arguments); + }; + var _Reverse = Module["_Reverse"] = function() { + return (_Reverse = Module["_Reverse"] = Module["asm"]["Fa"]).apply(null, arguments); + }; + var _RotateWithOffset = Module["_RotateWithOffset"] = function() { + return (_RotateWithOffset = Module["_RotateWithOffset"] = Module["asm"]["Ga"]).apply(null, arguments); + }; + var _Round = Module["_Round"] = function() { + return (_Round = Module["_Round"] = Module["asm"]["Ha"]).apply(null, arguments); + }; + var _Rsqrt = Module["_Rsqrt"] = function() { + return (_Rsqrt = Module["_Rsqrt"] = Module["asm"]["Ia"]).apply(null, arguments); + }; + var _ScatterNd = Module["_ScatterNd"] = function() { + return (_ScatterNd = Module["_ScatterNd"] = Module["asm"]["Ja"]).apply(null, arguments); + }; + var _SelectV2 = Module["_SelectV2"] = function() { + return (_SelectV2 = Module["_SelectV2"] = Module["asm"]["Ka"]).apply(null, arguments); + }; + var _Sigmoid = Module["_Sigmoid"] = function() { + return (_Sigmoid = Module["_Sigmoid"] = Module["asm"]["La"]).apply(null, arguments); + }; + var _Sin = Module["_Sin"] = function() { + return (_Sin = Module["_Sin"] = Module["asm"]["Ma"]).apply(null, arguments); + }; + var _Softmax = Module["_Softmax"] = function() { + return (_Softmax = Module["_Softmax"] = Module["asm"]["Na"]).apply(null, arguments); + }; + var _Sqrt = Module["_Sqrt"] = function() { + return (_Sqrt = Module["_Sqrt"] = Module["asm"]["Oa"]).apply(null, arguments); + }; + var _Square = Module["_Square"] = function() { + return (_Square = Module["_Square"] = Module["asm"]["Pa"]).apply(null, arguments); + }; + var _SquaredDifference = Module["_SquaredDifference"] = function() { + return (_SquaredDifference = Module["_SquaredDifference"] = Module["asm"]["Qa"]).apply(null, arguments); + }; + var _Step = Module["_Step"] = function() { + return (_Step = Module["_Step"] = Module["asm"]["Ra"]).apply(null, arguments); + }; + var _StridedSlice = Module["_StridedSlice"] = function() { + return (_StridedSlice = Module["_StridedSlice"] = Module["asm"]["Sa"]).apply(null, arguments); + }; + var _Sub = Module["_Sub"] = function() { + return (_Sub = Module["_Sub"] = Module["asm"]["Ta"]).apply(null, arguments); + }; + var _Sum = Module["_Sum"] = function() { + return (_Sum = Module["_Sum"] = Module["asm"]["Ua"]).apply(null, arguments); + }; + var _Tanh = Module["_Tanh"] = function() { + return (_Tanh = Module["_Tanh"] = Module["asm"]["Va"]).apply(null, arguments); + }; + var _Tile = Module["_Tile"] = function() { + return (_Tile = Module["_Tile"] = Module["asm"]["Wa"]).apply(null, arguments); + }; + var _TopK = Module["_TopK"] = function() { + return (_TopK = Module["_TopK"] = Module["asm"]["Xa"]).apply(null, arguments); + }; + var _Transpose = Module["_Transpose"] = function() { + return (_Transpose = Module["_Transpose"] = Module["asm"]["Ya"]).apply(null, arguments); + }; + var __FusedMatMul = Module["__FusedMatMul"] = function() { + return (__FusedMatMul = Module["__FusedMatMul"] = Module["asm"]["Za"]).apply(null, arguments); + }; + var _malloc = Module["_malloc"] = function() { + return (_malloc = Module["_malloc"] = Module["asm"]["_a"]).apply(null, arguments); + }; + var _free = Module["_free"] = function() { + return (_free = Module["_free"] = Module["asm"]["$a"]).apply(null, arguments); + }; + var ___errno_location = Module["___errno_location"] = function() { + return (___errno_location = Module["___errno_location"] = Module["asm"]["ab"]).apply(null, arguments); + }; + var _emscripten_get_global_libc = Module["_emscripten_get_global_libc"] = function() { + return (_emscripten_get_global_libc = Module["_emscripten_get_global_libc"] = Module["asm"]["bb"]).apply(null, arguments); + }; + var _pthread_self = Module["_pthread_self"] = function() { + return (_pthread_self = Module["_pthread_self"] = Module["asm"]["cb"]).apply(null, arguments); + }; + var ___pthread_tsd_run_dtors = Module["___pthread_tsd_run_dtors"] = function() { + return (___pthread_tsd_run_dtors = Module["___pthread_tsd_run_dtors"] = Module["asm"]["db"]).apply(null, arguments); + }; + var _emscripten_main_thread_process_queued_calls = Module["_emscripten_main_thread_process_queued_calls"] = function() { + return (_emscripten_main_thread_process_queued_calls = Module["_emscripten_main_thread_process_queued_calls"] = Module["asm"]["eb"]).apply(null, arguments); + }; + var _emscripten_current_thread_process_queued_calls = Module["_emscripten_current_thread_process_queued_calls"] = function() { + return (_emscripten_current_thread_process_queued_calls = Module["_emscripten_current_thread_process_queued_calls"] = Module["asm"]["fb"]).apply(null, arguments); + }; + var _emscripten_register_main_browser_thread_id = Module["_emscripten_register_main_browser_thread_id"] = function() { + return (_emscripten_register_main_browser_thread_id = Module["_emscripten_register_main_browser_thread_id"] = Module["asm"]["gb"]).apply(null, arguments); + }; + var __emscripten_do_dispatch_to_thread = Module["__emscripten_do_dispatch_to_thread"] = function() { + return (__emscripten_do_dispatch_to_thread = Module["__emscripten_do_dispatch_to_thread"] = Module["asm"]["hb"]).apply(null, arguments); + }; + var _emscripten_sync_run_in_main_thread_4 = Module["_emscripten_sync_run_in_main_thread_4"] = function() { + return (_emscripten_sync_run_in_main_thread_4 = Module["_emscripten_sync_run_in_main_thread_4"] = Module["asm"]["ib"]).apply(null, arguments); + }; + var _emscripten_run_in_main_runtime_thread_js = Module["_emscripten_run_in_main_runtime_thread_js"] = function() { + return (_emscripten_run_in_main_runtime_thread_js = Module["_emscripten_run_in_main_runtime_thread_js"] = Module["asm"]["jb"]).apply(null, arguments); + }; + var __emscripten_call_on_thread = Module["__emscripten_call_on_thread"] = function() { + return (__emscripten_call_on_thread = Module["__emscripten_call_on_thread"] = Module["asm"]["kb"]).apply(null, arguments); + }; + var _emscripten_tls_init = Module["_emscripten_tls_init"] = function() { + return (_emscripten_tls_init = Module["_emscripten_tls_init"] = Module["asm"]["lb"]).apply(null, arguments); + }; + var __emscripten_thread_init = Module["__emscripten_thread_init"] = function() { + return (__emscripten_thread_init = Module["__emscripten_thread_init"] = Module["asm"]["mb"]).apply(null, arguments); + }; + var stackSave = Module["stackSave"] = function() { + return (stackSave = Module["stackSave"] = Module["asm"]["nb"]).apply(null, arguments); + }; + var stackRestore = Module["stackRestore"] = function() { + return (stackRestore = Module["stackRestore"] = Module["asm"]["ob"]).apply(null, arguments); + }; + var stackAlloc = Module["stackAlloc"] = function() { + return (stackAlloc = Module["stackAlloc"] = Module["asm"]["pb"]).apply(null, arguments); + }; + var _emscripten_stack_set_limits = Module["_emscripten_stack_set_limits"] = function() { + return (_emscripten_stack_set_limits = Module["_emscripten_stack_set_limits"] = Module["asm"]["qb"]).apply(null, arguments); + }; + var _memalign = Module["_memalign"] = function() { + return (_memalign = Module["_memalign"] = Module["asm"]["rb"]).apply(null, arguments); + }; + var __emscripten_allow_main_runtime_queued_calls = Module["__emscripten_allow_main_runtime_queued_calls"] = 9880; + var __emscripten_main_thread_futex = Module["__emscripten_main_thread_futex"] = 11368; + Module["cwrap"] = cwrap; + Module["PThread"] = PThread; + Module["PThread"] = PThread; + Module["wasmMemory"] = wasmMemory; + Module["ExitStatus"] = ExitStatus; + var calledRun; + function ExitStatus(status) { + this.name = "ExitStatus"; + this.message = "Program terminated with exit(" + status + ")"; + this.status = status; + } + dependenciesFulfilled = function runCaller() { + if (!calledRun) + run2(); + if (!calledRun) + dependenciesFulfilled = runCaller; + }; + function run2(args) { + args = args || arguments_; + if (runDependencies > 0) { + return; + } + if (ENVIRONMENT_IS_PTHREAD) { + readyPromiseResolve(Module); + postMessage({cmd: "loaded"}); + return; + } + preRun(); + if (runDependencies > 0) { + return; + } + function doRun() { + if (calledRun) + return; + calledRun = true; + Module["calledRun"] = true; + if (ABORT) + return; + initRuntime(); + preMain(); + readyPromiseResolve(Module); + if (Module["onRuntimeInitialized"]) + Module["onRuntimeInitialized"](); + postRun(); + } + if (Module["setStatus"]) { + Module["setStatus"]("Running..."); + setTimeout(function() { + setTimeout(function() { + Module["setStatus"](""); + }, 1); + doRun(); + }, 1); + } else { + doRun(); + } + } + Module["run"] = run2; + function exit(status, implicit) { + if (implicit && noExitRuntime && status === 0) { + return; + } + if (!implicit) { + if (ENVIRONMENT_IS_PTHREAD) { + postMessage({cmd: "exitProcess", returnCode: status}); + throw new ExitStatus(status); + } else { + } + } + if (noExitRuntime) { + } else { + PThread.terminateAllThreads(); + EXITSTATUS = status; + exitRuntime(); + if (Module["onExit"]) + Module["onExit"](status); + ABORT = true; + } + quit_(status, new ExitStatus(status)); + } + if (Module["preInit"]) { + if (typeof Module["preInit"] == "function") + Module["preInit"] = [Module["preInit"]]; + while (Module["preInit"].length > 0) { + Module["preInit"].pop()(); + } + } + if (ENVIRONMENT_IS_PTHREAD) { + noExitRuntime = false; + PThread.initWorker(); + } + run2(); + return WasmBackendModuleThreadedSimd2.ready; + }; + }(); + if (typeof exports === "object" && typeof module2 === "object") + module2.exports = WasmBackendModuleThreadedSimd; + else if (typeof define === "function" && define["amd"]) + define([], function() { + return WasmBackendModuleThreadedSimd; + }); + else if (typeof exports === "object") + exports["WasmBackendModuleThreadedSimd"] = WasmBackendModuleThreadedSimd; + }); + var require_tfjs_backend_wasm = __commonJS2((exports, module2) => { + var WasmBackendModule = function() { + var _scriptDir = typeof document !== "undefined" && document.currentScript ? document.currentScript.src : void 0; + if (typeof __filename !== "undefined") + _scriptDir = _scriptDir || __filename; + return function(WasmBackendModule2) { + WasmBackendModule2 = WasmBackendModule2 || {}; + var Module = typeof WasmBackendModule2 !== "undefined" ? WasmBackendModule2 : {}; + var readyPromiseResolve, readyPromiseReject; + Module["ready"] = new Promise(function(resolve, reject) { + readyPromiseResolve = resolve; + readyPromiseReject = reject; + }); + var moduleOverrides = {}; + var key; + for (key in Module) { + if (Module.hasOwnProperty(key)) { + moduleOverrides[key] = Module[key]; + } + } + var arguments_ = []; + var thisProgram = "./this.program"; + var quit_ = function(status, toThrow) { + throw toThrow; + }; + var ENVIRONMENT_IS_WEB = false; + var ENVIRONMENT_IS_WORKER = false; + var ENVIRONMENT_IS_NODE = false; + var ENVIRONMENT_IS_SHELL = false; + ENVIRONMENT_IS_WEB = typeof window === "object"; + ENVIRONMENT_IS_WORKER = typeof importScripts === "function"; + ENVIRONMENT_IS_NODE = typeof process === "object" && typeof process.versions === "object" && typeof process.versions.node === "string"; + ENVIRONMENT_IS_SHELL = !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER; + var scriptDirectory = ""; + function locateFile(path) { + if (Module["locateFile"]) { + return Module["locateFile"](path, scriptDirectory); + } + return scriptDirectory + path; + } + var read_, readAsync, readBinary, setWindowTitle; + var nodeFS; + var nodePath; + if (ENVIRONMENT_IS_NODE) { + if (ENVIRONMENT_IS_WORKER) { + scriptDirectory = require_path().dirname(scriptDirectory) + "/"; + } else { + scriptDirectory = __dirname + "/"; + } + read_ = function shell_read(filename, binary) { + if (!nodeFS) + nodeFS = require("fs"); + if (!nodePath) + nodePath = require_path(); + filename = nodePath["normalize"](filename); + return nodeFS["readFileSync"](filename, binary ? null : "utf8"); + }; + readBinary = function readBinary2(filename) { + var ret = read_(filename, true); + if (!ret.buffer) { + ret = new Uint8Array(ret); + } + assert3(ret.buffer); + return ret; + }; + if (process["argv"].length > 1) { + thisProgram = process["argv"][1].replace(/\\/g, "/"); + } + arguments_ = process["argv"].slice(2); + process["on"]("uncaughtException", function(ex) { + if (!(ex instanceof ExitStatus)) { + throw ex; + } + }); + process["on"]("unhandledRejection", abort); + quit_ = function(status) { + process["exit"](status); + }; + Module["inspect"] = function() { + return "[Emscripten Module object]"; + }; + } else if (ENVIRONMENT_IS_SHELL) { + if (typeof read != "undefined") { + read_ = function shell_read(f) { + return read(f); + }; + } + readBinary = function readBinary2(f) { + var data2; + if (typeof readbuffer === "function") { + return new Uint8Array(readbuffer(f)); + } + data2 = read(f, "binary"); + assert3(typeof data2 === "object"); + return data2; + }; + if (typeof scriptArgs != "undefined") { + arguments_ = scriptArgs; + } else if (typeof arguments != "undefined") { + arguments_ = arguments; + } + if (typeof quit === "function") { + quit_ = function(status) { + quit(status); + }; + } + if (typeof print !== "undefined") { + if (typeof console === "undefined") + console = {}; + console.log = print; + console.warn = console.error = typeof printErr !== "undefined" ? printErr : print; + } + } else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) { + if (ENVIRONMENT_IS_WORKER) { + scriptDirectory = self.location.href; + } else if (typeof document !== "undefined" && document.currentScript) { + scriptDirectory = document.currentScript.src; + } + if (_scriptDir) { + scriptDirectory = _scriptDir; + } + if (scriptDirectory.indexOf("blob:") !== 0) { + scriptDirectory = scriptDirectory.substr(0, scriptDirectory.lastIndexOf("/") + 1); + } else { + scriptDirectory = ""; + } + { + read_ = function(url) { + var xhr = new XMLHttpRequest(); + xhr.open("GET", url, false); + xhr.send(null); + return xhr.responseText; + }; + if (ENVIRONMENT_IS_WORKER) { + readBinary = function(url) { + var xhr = new XMLHttpRequest(); + xhr.open("GET", url, false); + xhr.responseType = "arraybuffer"; + xhr.send(null); + return new Uint8Array(xhr.response); + }; + } + readAsync = function(url, onload, onerror) { + var xhr = new XMLHttpRequest(); + xhr.open("GET", url, true); + xhr.responseType = "arraybuffer"; + xhr.onload = function() { + if (xhr.status == 200 || xhr.status == 0 && xhr.response) { + onload(xhr.response); + return; + } + onerror(); + }; + xhr.onerror = onerror; + xhr.send(null); + }; + } + setWindowTitle = function(title) { + document.title = title; + }; + } else { + } + var out = Module["print"] || console.log.bind(console); + var err = Module["printErr"] || console.warn.bind(console); + for (key in moduleOverrides) { + if (moduleOverrides.hasOwnProperty(key)) { + Module[key] = moduleOverrides[key]; + } + } + moduleOverrides = null; + if (Module["arguments"]) + arguments_ = Module["arguments"]; + if (Module["thisProgram"]) + thisProgram = Module["thisProgram"]; + if (Module["quit"]) + quit_ = Module["quit"]; + var wasmBinary; + if (Module["wasmBinary"]) + wasmBinary = Module["wasmBinary"]; + var noExitRuntime = Module["noExitRuntime"] || true; + if (typeof WebAssembly !== "object") { + abort("no native wasm support detected"); + } + var wasmMemory; + var ABORT = false; + var EXITSTATUS; + function assert3(condition, text) { + if (!condition) { + abort("Assertion failed: " + text); + } + } + function getCFunc(ident) { + var func2 = Module["_" + ident]; + assert3(func2, "Cannot call unknown function " + ident + ", make sure it is exported"); + return func2; + } + function ccall(ident, returnType, argTypes, args, opts) { + var toC = {string: function(str) { + var ret2 = 0; + if (str !== null && str !== void 0 && str !== 0) { + var len = (str.length << 2) + 1; + ret2 = stackAlloc(len); + stringToUTF8(str, ret2, len); + } + return ret2; + }, array: function(arr) { + var ret2 = stackAlloc(arr.length); + writeArrayToMemory(arr, ret2); + return ret2; + }}; + function convertReturnValue(ret2) { + if (returnType === "string") + return UTF8ToString(ret2); + if (returnType === "boolean") + return Boolean(ret2); + return ret2; + } + var func2 = getCFunc(ident); + var cArgs = []; + var stack2 = 0; + if (args) { + for (var i = 0; i < args.length; i++) { + var converter = toC[argTypes[i]]; + if (converter) { + if (stack2 === 0) + stack2 = stackSave(); + cArgs[i] = converter(args[i]); + } else { + cArgs[i] = args[i]; + } + } + } + var ret = func2.apply(null, cArgs); + ret = convertReturnValue(ret); + if (stack2 !== 0) + stackRestore(stack2); + return ret; + } + function cwrap(ident, returnType, argTypes, opts) { + argTypes = argTypes || []; + var numericArgs = argTypes.every(function(type) { + return type === "number"; + }); + var numericRet = returnType !== "string"; + if (numericRet && numericArgs && !opts) { + return getCFunc(ident); + } + return function() { + return ccall(ident, returnType, argTypes, arguments, opts); + }; + } + var UTF8Decoder = typeof TextDecoder !== "undefined" ? new TextDecoder("utf8") : void 0; + function UTF8ArrayToString(heap, idx, maxBytesToRead) { + var endIdx = idx + maxBytesToRead; + var endPtr = idx; + while (heap[endPtr] && !(endPtr >= endIdx)) + ++endPtr; + if (endPtr - idx > 16 && heap.subarray && UTF8Decoder) { + return UTF8Decoder.decode(heap.subarray(idx, endPtr)); + } else { + var str = ""; + while (idx < endPtr) { + var u0 = heap[idx++]; + if (!(u0 & 128)) { + str += String.fromCharCode(u0); + continue; + } + var u1 = heap[idx++] & 63; + if ((u0 & 224) == 192) { + str += String.fromCharCode((u0 & 31) << 6 | u1); + continue; + } + var u2 = heap[idx++] & 63; + if ((u0 & 240) == 224) { + u0 = (u0 & 15) << 12 | u1 << 6 | u2; + } else { + u0 = (u0 & 7) << 18 | u1 << 12 | u2 << 6 | heap[idx++] & 63; + } + if (u0 < 65536) { + str += String.fromCharCode(u0); + } else { + var ch = u0 - 65536; + str += String.fromCharCode(55296 | ch >> 10, 56320 | ch & 1023); + } + } + } + return str; + } + function UTF8ToString(ptr, maxBytesToRead) { + return ptr ? UTF8ArrayToString(HEAPU8, ptr, maxBytesToRead) : ""; + } + function stringToUTF8Array(str, heap, outIdx, maxBytesToWrite) { + if (!(maxBytesToWrite > 0)) + return 0; + var startIdx = outIdx; + var endIdx = outIdx + maxBytesToWrite - 1; + for (var i = 0; i < str.length; ++i) { + var u = str.charCodeAt(i); + if (u >= 55296 && u <= 57343) { + var u1 = str.charCodeAt(++i); + u = 65536 + ((u & 1023) << 10) | u1 & 1023; + } + if (u <= 127) { + if (outIdx >= endIdx) + break; + heap[outIdx++] = u; + } else if (u <= 2047) { + if (outIdx + 1 >= endIdx) + break; + heap[outIdx++] = 192 | u >> 6; + heap[outIdx++] = 128 | u & 63; + } else if (u <= 65535) { + if (outIdx + 2 >= endIdx) + break; + heap[outIdx++] = 224 | u >> 12; + heap[outIdx++] = 128 | u >> 6 & 63; + heap[outIdx++] = 128 | u & 63; + } else { + if (outIdx + 3 >= endIdx) + break; + heap[outIdx++] = 240 | u >> 18; + heap[outIdx++] = 128 | u >> 12 & 63; + heap[outIdx++] = 128 | u >> 6 & 63; + heap[outIdx++] = 128 | u & 63; + } + } + heap[outIdx] = 0; + return outIdx - startIdx; + } + function stringToUTF8(str, outPtr, maxBytesToWrite) { + return stringToUTF8Array(str, HEAPU8, outPtr, maxBytesToWrite); + } + function writeArrayToMemory(array2, buffer3) { + HEAP8.set(array2, buffer3); + } + function alignUp(x, multiple) { + if (x % multiple > 0) { + x += multiple - x % multiple; + } + return x; + } + var buffer2, HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64; + function updateGlobalBufferAndViews(buf) { + buffer2 = buf; + Module["HEAP8"] = HEAP8 = new Int8Array(buf); + Module["HEAP16"] = HEAP16 = new Int16Array(buf); + Module["HEAP32"] = HEAP32 = new Int32Array(buf); + Module["HEAPU8"] = HEAPU8 = new Uint8Array(buf); + Module["HEAPU16"] = HEAPU16 = new Uint16Array(buf); + Module["HEAPU32"] = HEAPU32 = new Uint32Array(buf); + Module["HEAPF32"] = HEAPF32 = new Float32Array(buf); + Module["HEAPF64"] = HEAPF64 = new Float64Array(buf); + } + var INITIAL_MEMORY = Module["INITIAL_MEMORY"] || 16777216; + var wasmTable; + var __ATPRERUN__ = []; + var __ATINIT__ = []; + var __ATMAIN__ = []; + var __ATPOSTRUN__ = []; + var runtimeInitialized = false; + __ATINIT__.push({func: function() { + ___wasm_call_ctors(); + }}); + function preRun() { + if (Module["preRun"]) { + if (typeof Module["preRun"] == "function") + Module["preRun"] = [Module["preRun"]]; + while (Module["preRun"].length) { + addOnPreRun(Module["preRun"].shift()); + } + } + callRuntimeCallbacks(__ATPRERUN__); + } + function initRuntime() { + runtimeInitialized = true; + callRuntimeCallbacks(__ATINIT__); + } + function preMain() { + callRuntimeCallbacks(__ATMAIN__); + } + function postRun() { + if (Module["postRun"]) { + if (typeof Module["postRun"] == "function") + Module["postRun"] = [Module["postRun"]]; + while (Module["postRun"].length) { + addOnPostRun(Module["postRun"].shift()); + } + } + callRuntimeCallbacks(__ATPOSTRUN__); + } + function addOnPreRun(cb) { + __ATPRERUN__.unshift(cb); + } + function addOnPostRun(cb) { + __ATPOSTRUN__.unshift(cb); + } + var runDependencies = 0; + var runDependencyWatcher = null; + var dependenciesFulfilled = null; + function addRunDependency(id) { + runDependencies++; + if (Module["monitorRunDependencies"]) { + Module["monitorRunDependencies"](runDependencies); + } + } + function removeRunDependency(id) { + runDependencies--; + if (Module["monitorRunDependencies"]) { + Module["monitorRunDependencies"](runDependencies); + } + if (runDependencies == 0) { + if (runDependencyWatcher !== null) { + clearInterval(runDependencyWatcher); + runDependencyWatcher = null; + } + if (dependenciesFulfilled) { + var callback = dependenciesFulfilled; + dependenciesFulfilled = null; + callback(); + } + } + } + Module["preloadedImages"] = {}; + Module["preloadedAudios"] = {}; + function abort(what) { + if (Module["onAbort"]) { + Module["onAbort"](what); + } + what += ""; + err(what); + ABORT = true; + EXITSTATUS = 1; + what = "abort(" + what + "). Build with -s ASSERTIONS=1 for more info."; + var e = new WebAssembly.RuntimeError(what); + readyPromiseReject(e); + throw e; + } + function hasPrefix(str, prefix) { + return String.prototype.startsWith ? str.startsWith(prefix) : str.indexOf(prefix) === 0; + } + var dataURIPrefix = "data:application/octet-stream;base64,"; + function isDataURI(filename) { + return hasPrefix(filename, dataURIPrefix); + } + var fileURIPrefix = "file://"; + function isFileURI(filename) { + return hasPrefix(filename, fileURIPrefix); + } + var wasmBinaryFile = "tfjs-backend-wasm.wasm"; + if (!isDataURI(wasmBinaryFile)) { + wasmBinaryFile = locateFile(wasmBinaryFile); + } + function getBinary(file) { + try { + if (file == wasmBinaryFile && wasmBinary) { + return new Uint8Array(wasmBinary); + } + if (readBinary) { + return readBinary(file); + } else { + throw "both async and sync fetching of the wasm failed"; + } + } catch (err2) { + abort(err2); + } + } + function getBinaryPromise() { + if (!wasmBinary && (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER)) { + if (typeof fetch === "function" && !isFileURI(wasmBinaryFile)) { + return fetch(wasmBinaryFile, {credentials: "same-origin"}).then(function(response) { + if (!response["ok"]) { + throw "failed to load wasm binary file at '" + wasmBinaryFile + "'"; + } + return response["arrayBuffer"](); + }).catch(function() { + return getBinary(wasmBinaryFile); + }); + } else { + if (readAsync) { + return new Promise(function(resolve, reject) { + readAsync(wasmBinaryFile, function(response) { + resolve(new Uint8Array(response)); + }, reject); + }); + } + } + } + return Promise.resolve().then(function() { + return getBinary(wasmBinaryFile); + }); + } + function createWasm() { + var info = {a: asmLibraryArg}; + function receiveInstance(instance, module22) { + var exports3 = instance.exports; + Module["asm"] = exports3; + wasmMemory = Module["asm"]["g"]; + updateGlobalBufferAndViews(wasmMemory.buffer); + wasmTable = Module["asm"]["m"]; + removeRunDependency("wasm-instantiate"); + } + addRunDependency("wasm-instantiate"); + function receiveInstantiatedSource(output) { + receiveInstance(output["instance"]); + } + function instantiateArrayBuffer(receiver) { + return getBinaryPromise().then(function(binary) { + return WebAssembly.instantiate(binary, info); + }).then(receiver, function(reason) { + err("failed to asynchronously prepare wasm: " + reason); + abort(reason); + }); + } + function instantiateAsync() { + if (!wasmBinary && typeof WebAssembly.instantiateStreaming === "function" && !isDataURI(wasmBinaryFile) && !isFileURI(wasmBinaryFile) && typeof fetch === "function") { + return fetch(wasmBinaryFile, {credentials: "same-origin"}).then(function(response) { + var result = WebAssembly.instantiateStreaming(response, info); + return result.then(receiveInstantiatedSource, function(reason) { + err("wasm streaming compile failed: " + reason); + err("falling back to ArrayBuffer instantiation"); + return instantiateArrayBuffer(receiveInstantiatedSource); + }); + }); + } else { + return instantiateArrayBuffer(receiveInstantiatedSource); + } + } + if (Module["instantiateWasm"]) { + try { + var exports2 = Module["instantiateWasm"](info, receiveInstance); + return exports2; + } catch (e) { + err("Module.instantiateWasm callback failed with error: " + e); + return false; + } + } + instantiateAsync().catch(readyPromiseReject); + return {}; + } + function callRuntimeCallbacks(callbacks2) { + while (callbacks2.length > 0) { + var callback = callbacks2.shift(); + if (typeof callback == "function") { + callback(Module); + continue; + } + var func2 = callback.func; + if (typeof func2 === "number") { + if (callback.arg === void 0) { + wasmTable.get(func2)(); + } else { + wasmTable.get(func2)(callback.arg); + } + } else { + func2(callback.arg === void 0 ? null : callback.arg); + } + } + } + function _abort() { + abort(); + } + function _emscripten_memcpy_big(dest, src, num) { + HEAPU8.copyWithin(dest, src, src + num); + } + function _emscripten_get_heap_size() { + return HEAPU8.length; + } + function emscripten_realloc_buffer(size) { + try { + wasmMemory.grow(size - buffer2.byteLength + 65535 >>> 16); + updateGlobalBufferAndViews(wasmMemory.buffer); + return 1; + } catch (e) { + } + } + function _emscripten_resize_heap(requestedSize) { + var oldSize = _emscripten_get_heap_size(); + var maxHeapSize = 2147483648; + if (requestedSize > maxHeapSize) { + return false; + } + for (var cutDown = 1; cutDown <= 4; cutDown *= 2) { + var overGrownHeapSize = oldSize * (1 + 0.2 / cutDown); + overGrownHeapSize = Math.min(overGrownHeapSize, requestedSize + 100663296); + var newSize = Math.min(maxHeapSize, alignUp(Math.max(requestedSize, overGrownHeapSize), 65536)); + var replacement = emscripten_realloc_buffer(newSize); + if (replacement) { + return true; + } + } + return false; + } + var SYSCALLS = {mappings: {}, buffers: [null, [], []], printChar: function(stream, curr) { + var buffer3 = SYSCALLS.buffers[stream]; + if (curr === 0 || curr === 10) { + (stream === 1 ? out : err)(UTF8ArrayToString(buffer3, 0)); + buffer3.length = 0; + } else { + buffer3.push(curr); + } + }, varargs: void 0, get: function() { + SYSCALLS.varargs += 4; + var ret = HEAP32[SYSCALLS.varargs - 4 >> 2]; + return ret; + }, getStr: function(ptr) { + var ret = UTF8ToString(ptr); + return ret; + }, get64: function(low, high) { + return low; + }}; + function _fd_close(fd) { + return 0; + } + function _fd_seek(fd, offset_low, offset_high, whence, newOffset) { + } + function _fd_write(fd, iov, iovcnt, pnum) { + var num = 0; + for (var i = 0; i < iovcnt; i++) { + var ptr = HEAP32[iov + i * 8 >> 2]; + var len = HEAP32[iov + (i * 8 + 4) >> 2]; + for (var j = 0; j < len; j++) { + SYSCALLS.printChar(fd, HEAPU8[ptr + j]); + } + num += len; + } + HEAP32[pnum >> 2] = num; + return 0; + } + var asmLibraryArg = {a: _abort, d: _emscripten_memcpy_big, e: _emscripten_resize_heap, f: _fd_close, c: _fd_seek, b: _fd_write}; + var asm = createWasm(); + var ___wasm_call_ctors = Module["___wasm_call_ctors"] = function() { + return (___wasm_call_ctors = Module["___wasm_call_ctors"] = Module["asm"]["h"]).apply(null, arguments); + }; + var _init = Module["_init"] = function() { + return (_init = Module["_init"] = Module["asm"]["i"]).apply(null, arguments); + }; + var _register_tensor = Module["_register_tensor"] = function() { + return (_register_tensor = Module["_register_tensor"] = Module["asm"]["j"]).apply(null, arguments); + }; + var _dispose_data = Module["_dispose_data"] = function() { + return (_dispose_data = Module["_dispose_data"] = Module["asm"]["k"]).apply(null, arguments); + }; + var _dispose = Module["_dispose"] = function() { + return (_dispose = Module["_dispose"] = Module["asm"]["l"]).apply(null, arguments); + }; + var _Abs = Module["_Abs"] = function() { + return (_Abs = Module["_Abs"] = Module["asm"]["n"]).apply(null, arguments); + }; + var _Add = Module["_Add"] = function() { + return (_Add = Module["_Add"] = Module["asm"]["o"]).apply(null, arguments); + }; + var _AddN = Module["_AddN"] = function() { + return (_AddN = Module["_AddN"] = Module["asm"]["p"]).apply(null, arguments); + }; + var _ArgMax = Module["_ArgMax"] = function() { + return (_ArgMax = Module["_ArgMax"] = Module["asm"]["q"]).apply(null, arguments); + }; + var _AvgPool = Module["_AvgPool"] = function() { + return (_AvgPool = Module["_AvgPool"] = Module["asm"]["r"]).apply(null, arguments); + }; + var _BatchMatMul = Module["_BatchMatMul"] = function() { + return (_BatchMatMul = Module["_BatchMatMul"] = Module["asm"]["s"]).apply(null, arguments); + }; + var _Ceil = Module["_Ceil"] = function() { + return (_Ceil = Module["_Ceil"] = Module["asm"]["t"]).apply(null, arguments); + }; + var _ClipByValue = Module["_ClipByValue"] = function() { + return (_ClipByValue = Module["_ClipByValue"] = Module["asm"]["u"]).apply(null, arguments); + }; + var _Conv2D = Module["_Conv2D"] = function() { + return (_Conv2D = Module["_Conv2D"] = Module["asm"]["v"]).apply(null, arguments); + }; + var _Conv2DBackpropInput = Module["_Conv2DBackpropInput"] = function() { + return (_Conv2DBackpropInput = Module["_Conv2DBackpropInput"] = Module["asm"]["w"]).apply(null, arguments); + }; + var _Cos = Module["_Cos"] = function() { + return (_Cos = Module["_Cos"] = Module["asm"]["x"]).apply(null, arguments); + }; + var _CropAndResize = Module["_CropAndResize"] = function() { + return (_CropAndResize = Module["_CropAndResize"] = Module["asm"]["y"]).apply(null, arguments); + }; + var _Cumsum = Module["_Cumsum"] = function() { + return (_Cumsum = Module["_Cumsum"] = Module["asm"]["z"]).apply(null, arguments); + }; + var _DepthToSpace = Module["_DepthToSpace"] = function() { + return (_DepthToSpace = Module["_DepthToSpace"] = Module["asm"]["A"]).apply(null, arguments); + }; + var _DepthwiseConv2dNative = Module["_DepthwiseConv2dNative"] = function() { + return (_DepthwiseConv2dNative = Module["_DepthwiseConv2dNative"] = Module["asm"]["B"]).apply(null, arguments); + }; + var _Equal = Module["_Equal"] = function() { + return (_Equal = Module["_Equal"] = Module["asm"]["C"]).apply(null, arguments); + }; + var _Exp = Module["_Exp"] = function() { + return (_Exp = Module["_Exp"] = Module["asm"]["D"]).apply(null, arguments); + }; + var _FlipLeftRight = Module["_FlipLeftRight"] = function() { + return (_FlipLeftRight = Module["_FlipLeftRight"] = Module["asm"]["E"]).apply(null, arguments); + }; + var _Floor = Module["_Floor"] = function() { + return (_Floor = Module["_Floor"] = Module["asm"]["F"]).apply(null, arguments); + }; + var _FloorDiv = Module["_FloorDiv"] = function() { + return (_FloorDiv = Module["_FloorDiv"] = Module["asm"]["G"]).apply(null, arguments); + }; + var _FusedBatchNorm = Module["_FusedBatchNorm"] = function() { + return (_FusedBatchNorm = Module["_FusedBatchNorm"] = Module["asm"]["H"]).apply(null, arguments); + }; + var _FusedConv2D = Module["_FusedConv2D"] = function() { + return (_FusedConv2D = Module["_FusedConv2D"] = Module["asm"]["I"]).apply(null, arguments); + }; + var _FusedDepthwiseConv2D = Module["_FusedDepthwiseConv2D"] = function() { + return (_FusedDepthwiseConv2D = Module["_FusedDepthwiseConv2D"] = Module["asm"]["J"]).apply(null, arguments); + }; + var _Gather = Module["_Gather"] = function() { + return (_Gather = Module["_Gather"] = Module["asm"]["K"]).apply(null, arguments); + }; + var _GatherNd = Module["_GatherNd"] = function() { + return (_GatherNd = Module["_GatherNd"] = Module["asm"]["L"]).apply(null, arguments); + }; + var _Greater = Module["_Greater"] = function() { + return (_Greater = Module["_Greater"] = Module["asm"]["M"]).apply(null, arguments); + }; + var _GreaterEqual = Module["_GreaterEqual"] = function() { + return (_GreaterEqual = Module["_GreaterEqual"] = Module["asm"]["N"]).apply(null, arguments); + }; + var _LeakyRelu = Module["_LeakyRelu"] = function() { + return (_LeakyRelu = Module["_LeakyRelu"] = Module["asm"]["O"]).apply(null, arguments); + }; + var _Less = Module["_Less"] = function() { + return (_Less = Module["_Less"] = Module["asm"]["P"]).apply(null, arguments); + }; + var _LessEqual = Module["_LessEqual"] = function() { + return (_LessEqual = Module["_LessEqual"] = Module["asm"]["Q"]).apply(null, arguments); + }; + var _Log = Module["_Log"] = function() { + return (_Log = Module["_Log"] = Module["asm"]["R"]).apply(null, arguments); + }; + var _LogicalAnd = Module["_LogicalAnd"] = function() { + return (_LogicalAnd = Module["_LogicalAnd"] = Module["asm"]["S"]).apply(null, arguments); + }; + var _Max = Module["_Max"] = function() { + return (_Max = Module["_Max"] = Module["asm"]["T"]).apply(null, arguments); + }; + var _MaxPool = Module["_MaxPool"] = function() { + return (_MaxPool = Module["_MaxPool"] = Module["asm"]["U"]).apply(null, arguments); + }; + var _Maximum = Module["_Maximum"] = function() { + return (_Maximum = Module["_Maximum"] = Module["asm"]["V"]).apply(null, arguments); + }; + var _Mean = Module["_Mean"] = function() { + return (_Mean = Module["_Mean"] = Module["asm"]["W"]).apply(null, arguments); + }; + var _Min = Module["_Min"] = function() { + return (_Min = Module["_Min"] = Module["asm"]["X"]).apply(null, arguments); + }; + var _Minimum = Module["_Minimum"] = function() { + return (_Minimum = Module["_Minimum"] = Module["asm"]["Y"]).apply(null, arguments); + }; + var _Multiply = Module["_Multiply"] = function() { + return (_Multiply = Module["_Multiply"] = Module["asm"]["Z"]).apply(null, arguments); + }; + var _Neg = Module["_Neg"] = function() { + return (_Neg = Module["_Neg"] = Module["asm"]["_"]).apply(null, arguments); + }; + var _NonMaxSuppressionV3 = Module["_NonMaxSuppressionV3"] = function() { + return (_NonMaxSuppressionV3 = Module["_NonMaxSuppressionV3"] = Module["asm"]["$"]).apply(null, arguments); + }; + var _NonMaxSuppressionV4 = Module["_NonMaxSuppressionV4"] = function() { + return (_NonMaxSuppressionV4 = Module["_NonMaxSuppressionV4"] = Module["asm"]["aa"]).apply(null, arguments); + }; + var _NonMaxSuppressionV5 = Module["_NonMaxSuppressionV5"] = function() { + return (_NonMaxSuppressionV5 = Module["_NonMaxSuppressionV5"] = Module["asm"]["ba"]).apply(null, arguments); + }; + var _NotEqual = Module["_NotEqual"] = function() { + return (_NotEqual = Module["_NotEqual"] = Module["asm"]["ca"]).apply(null, arguments); + }; + var _OneHot = Module["_OneHot"] = function() { + return (_OneHot = Module["_OneHot"] = Module["asm"]["da"]).apply(null, arguments); + }; + var _PadV2 = Module["_PadV2"] = function() { + return (_PadV2 = Module["_PadV2"] = Module["asm"]["ea"]).apply(null, arguments); + }; + var _Pow = Module["_Pow"] = function() { + return (_Pow = Module["_Pow"] = Module["asm"]["fa"]).apply(null, arguments); + }; + var _Prelu = Module["_Prelu"] = function() { + return (_Prelu = Module["_Prelu"] = Module["asm"]["ga"]).apply(null, arguments); + }; + var _Prod = Module["_Prod"] = function() { + return (_Prod = Module["_Prod"] = Module["asm"]["ha"]).apply(null, arguments); + }; + var _RealDiv = Module["_RealDiv"] = function() { + return (_RealDiv = Module["_RealDiv"] = Module["asm"]["ia"]).apply(null, arguments); + }; + var _Relu = Module["_Relu"] = function() { + return (_Relu = Module["_Relu"] = Module["asm"]["ja"]).apply(null, arguments); + }; + var _Relu6 = Module["_Relu6"] = function() { + return (_Relu6 = Module["_Relu6"] = Module["asm"]["ka"]).apply(null, arguments); + }; + var _ResizeBilinear = Module["_ResizeBilinear"] = function() { + return (_ResizeBilinear = Module["_ResizeBilinear"] = Module["asm"]["la"]).apply(null, arguments); + }; + var _Reverse = Module["_Reverse"] = function() { + return (_Reverse = Module["_Reverse"] = Module["asm"]["ma"]).apply(null, arguments); + }; + var _RotateWithOffset = Module["_RotateWithOffset"] = function() { + return (_RotateWithOffset = Module["_RotateWithOffset"] = Module["asm"]["na"]).apply(null, arguments); + }; + var _Round = Module["_Round"] = function() { + return (_Round = Module["_Round"] = Module["asm"]["oa"]).apply(null, arguments); + }; + var _Rsqrt = Module["_Rsqrt"] = function() { + return (_Rsqrt = Module["_Rsqrt"] = Module["asm"]["pa"]).apply(null, arguments); + }; + var _ScatterNd = Module["_ScatterNd"] = function() { + return (_ScatterNd = Module["_ScatterNd"] = Module["asm"]["qa"]).apply(null, arguments); + }; + var _SelectV2 = Module["_SelectV2"] = function() { + return (_SelectV2 = Module["_SelectV2"] = Module["asm"]["ra"]).apply(null, arguments); + }; + var _Sigmoid = Module["_Sigmoid"] = function() { + return (_Sigmoid = Module["_Sigmoid"] = Module["asm"]["sa"]).apply(null, arguments); + }; + var _Sin = Module["_Sin"] = function() { + return (_Sin = Module["_Sin"] = Module["asm"]["ta"]).apply(null, arguments); + }; + var _Softmax = Module["_Softmax"] = function() { + return (_Softmax = Module["_Softmax"] = Module["asm"]["ua"]).apply(null, arguments); + }; + var _Sqrt = Module["_Sqrt"] = function() { + return (_Sqrt = Module["_Sqrt"] = Module["asm"]["va"]).apply(null, arguments); + }; + var _Square = Module["_Square"] = function() { + return (_Square = Module["_Square"] = Module["asm"]["wa"]).apply(null, arguments); + }; + var _SquaredDifference = Module["_SquaredDifference"] = function() { + return (_SquaredDifference = Module["_SquaredDifference"] = Module["asm"]["xa"]).apply(null, arguments); + }; + var _Step = Module["_Step"] = function() { + return (_Step = Module["_Step"] = Module["asm"]["ya"]).apply(null, arguments); + }; + var _StridedSlice = Module["_StridedSlice"] = function() { + return (_StridedSlice = Module["_StridedSlice"] = Module["asm"]["za"]).apply(null, arguments); + }; + var _Sub = Module["_Sub"] = function() { + return (_Sub = Module["_Sub"] = Module["asm"]["Aa"]).apply(null, arguments); + }; + var _Sum = Module["_Sum"] = function() { + return (_Sum = Module["_Sum"] = Module["asm"]["Ba"]).apply(null, arguments); + }; + var _Tanh = Module["_Tanh"] = function() { + return (_Tanh = Module["_Tanh"] = Module["asm"]["Ca"]).apply(null, arguments); + }; + var _Tile = Module["_Tile"] = function() { + return (_Tile = Module["_Tile"] = Module["asm"]["Da"]).apply(null, arguments); + }; + var _TopK = Module["_TopK"] = function() { + return (_TopK = Module["_TopK"] = Module["asm"]["Ea"]).apply(null, arguments); + }; + var _Transpose = Module["_Transpose"] = function() { + return (_Transpose = Module["_Transpose"] = Module["asm"]["Fa"]).apply(null, arguments); + }; + var __FusedMatMul = Module["__FusedMatMul"] = function() { + return (__FusedMatMul = Module["__FusedMatMul"] = Module["asm"]["Ga"]).apply(null, arguments); + }; + var _malloc = Module["_malloc"] = function() { + return (_malloc = Module["_malloc"] = Module["asm"]["Ha"]).apply(null, arguments); + }; + var _free = Module["_free"] = function() { + return (_free = Module["_free"] = Module["asm"]["Ia"]).apply(null, arguments); + }; + var stackSave = Module["stackSave"] = function() { + return (stackSave = Module["stackSave"] = Module["asm"]["Ja"]).apply(null, arguments); + }; + var stackRestore = Module["stackRestore"] = function() { + return (stackRestore = Module["stackRestore"] = Module["asm"]["Ka"]).apply(null, arguments); + }; + var stackAlloc = Module["stackAlloc"] = function() { + return (stackAlloc = Module["stackAlloc"] = Module["asm"]["La"]).apply(null, arguments); + }; + Module["cwrap"] = cwrap; + var calledRun; + function ExitStatus(status) { + this.name = "ExitStatus"; + this.message = "Program terminated with exit(" + status + ")"; + this.status = status; + } + dependenciesFulfilled = function runCaller() { + if (!calledRun) + run2(); + if (!calledRun) + dependenciesFulfilled = runCaller; + }; + function run2(args) { + args = args || arguments_; + if (runDependencies > 0) { + return; + } + preRun(); + if (runDependencies > 0) { + return; + } + function doRun() { + if (calledRun) + return; + calledRun = true; + Module["calledRun"] = true; + if (ABORT) + return; + initRuntime(); + preMain(); + readyPromiseResolve(Module); + if (Module["onRuntimeInitialized"]) + Module["onRuntimeInitialized"](); + postRun(); + } + if (Module["setStatus"]) { + Module["setStatus"]("Running..."); + setTimeout(function() { + setTimeout(function() { + Module["setStatus"](""); + }, 1); + doRun(); + }, 1); + } else { + doRun(); + } + } + Module["run"] = run2; + if (Module["preInit"]) { + if (typeof Module["preInit"] == "function") + Module["preInit"] = [Module["preInit"]]; + while (Module["preInit"].length > 0) { + Module["preInit"].pop()(); + } + } + run2(); + return WasmBackendModule2.ready; + }; + }(); + if (typeof exports === "object" && typeof module2 === "object") + module2.exports = WasmBackendModule; + else if (typeof define === "function" && define["amd"]) + define([], function() { + return WasmBackendModule; + }); + else if (typeof exports === "object") + exports["WasmBackendModule"] = WasmBackendModule; + }); + var require_alea3 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function Alea(seed) { + var me = this, mash = Mash(); + me.next = function() { + var t = 2091639 * me.s0 + me.c * 23283064365386963e-26; + me.s0 = me.s1; + me.s1 = me.s2; + return me.s2 = t - (me.c = t | 0); + }; + me.c = 1; + me.s0 = mash(" "); + me.s1 = mash(" "); + me.s2 = mash(" "); + me.s0 -= mash(seed); + if (me.s0 < 0) { + me.s0 += 1; + } + me.s1 -= mash(seed); + if (me.s1 < 0) { + me.s1 += 1; + } + me.s2 -= mash(seed); + if (me.s2 < 0) { + me.s2 += 1; + } + mash = null; + } + function copy(f, t) { + t.c = f.c; + t.s0 = f.s0; + t.s1 = f.s1; + t.s2 = f.s2; + return t; + } + function impl(seed, opts) { + var xg = new Alea(seed), state = opts && opts.state, prng = xg.next; + prng.int32 = function() { + return xg.next() * 4294967296 | 0; + }; + prng.double = function() { + return prng() + (prng() * 2097152 | 0) * 11102230246251565e-32; + }; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + function Mash() { + var n = 4022871197; + var mash = function(data2) { + data2 = String(data2); + for (var i = 0; i < data2.length; i++) { + n += data2.charCodeAt(i); + var h = 0.02519603282416938 * n; + n = h >>> 0; + h -= n; + h *= n; + n = h >>> 0; + h -= n; + n += h * 4294967296; + } + return (n >>> 0) * 23283064365386963e-26; + }; + return mash; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.alea = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); + }); + var require_xor1283 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.x = 0; + me.y = 0; + me.z = 0; + me.w = 0; + me.next = function() { + var t = me.x ^ me.x << 11; + me.x = me.y; + me.y = me.z; + me.z = me.w; + return me.w ^= me.w >>> 19 ^ t ^ t >>> 8; + }; + if (seed === (seed | 0)) { + me.x = seed; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 64; k++) { + me.x ^= strseed.charCodeAt(k) | 0; + me.next(); + } + } + function copy(f, t) { + t.x = f.x; + t.y = f.y; + t.z = f.z; + t.w = f.w; + return t; + } + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xor128 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); + }); + var require_xorwow3 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.next = function() { + var t = me.x ^ me.x >>> 2; + me.x = me.y; + me.y = me.z; + me.z = me.w; + me.w = me.v; + return (me.d = me.d + 362437 | 0) + (me.v = me.v ^ me.v << 4 ^ (t ^ t << 1)) | 0; + }; + me.x = 0; + me.y = 0; + me.z = 0; + me.w = 0; + me.v = 0; + if (seed === (seed | 0)) { + me.x = seed; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 64; k++) { + me.x ^= strseed.charCodeAt(k) | 0; + if (k == strseed.length) { + me.d = me.x << 10 ^ me.x >>> 4; + } + me.next(); + } + } + function copy(f, t) { + t.x = f.x; + t.y = f.y; + t.z = f.z; + t.w = f.w; + t.v = f.v; + t.d = f.d; + return t; + } + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xorwow = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); + }); + var require_xorshift73 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this; + me.next = function() { + var X = me.x, i = me.i, t, v, w; + t = X[i]; + t ^= t >>> 7; + v = t ^ t << 24; + t = X[i + 1 & 7]; + v ^= t ^ t >>> 10; + t = X[i + 3 & 7]; + v ^= t ^ t >>> 3; + t = X[i + 4 & 7]; + v ^= t ^ t << 7; + t = X[i + 7 & 7]; + t = t ^ t << 13; + v ^= t ^ t << 9; + X[i] = v; + me.i = i + 1 & 7; + return v; + }; + function init2(me2, seed2) { + var j, w, X = []; + if (seed2 === (seed2 | 0)) { + w = X[0] = seed2; + } else { + seed2 = "" + seed2; + for (j = 0; j < seed2.length; ++j) { + X[j & 7] = X[j & 7] << 15 ^ seed2.charCodeAt(j) + X[j + 1 & 7] << 13; + } + } + while (X.length < 8) + X.push(0); + for (j = 0; j < 8 && X[j] === 0; ++j) + ; + if (j == 8) + w = X[7] = -1; + else + w = X[j]; + me2.x = X; + me2.i = 0; + for (j = 256; j > 0; --j) { + me2.next(); + } + } + init2(me, seed); + } + function copy(f, t) { + t.x = f.x.slice(); + t.i = f.i; + return t; + } + function impl(seed, opts) { + if (seed == null) + seed = +new Date(); + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (state.x) + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xorshift7 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); + }); + var require_xor40963 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this; + me.next = function() { + var w = me.w, X = me.X, i = me.i, t, v; + me.w = w = w + 1640531527 | 0; + v = X[i + 34 & 127]; + t = X[i = i + 1 & 127]; + v ^= v << 13; + t ^= t << 17; + v ^= v >>> 15; + t ^= t >>> 12; + v = X[i] = v ^ t; + me.i = i; + return v + (w ^ w >>> 16) | 0; + }; + function init2(me2, seed2) { + var t, v, i, j, w, X = [], limit = 128; + if (seed2 === (seed2 | 0)) { + v = seed2; + seed2 = null; + } else { + seed2 = seed2 + "\0"; + v = 0; + limit = Math.max(limit, seed2.length); + } + for (i = 0, j = -32; j < limit; ++j) { + if (seed2) + v ^= seed2.charCodeAt((j + 32) % seed2.length); + if (j === 0) + w = v; + v ^= v << 10; + v ^= v >>> 15; + v ^= v << 4; + v ^= v >>> 13; + if (j >= 0) { + w = w + 1640531527 | 0; + t = X[j & 127] ^= v + w; + i = t == 0 ? i + 1 : 0; + } + } + if (i >= 128) { + X[(seed2 && seed2.length || 0) & 127] = -1; + } + i = 127; + for (j = 4 * 128; j > 0; --j) { + v = X[i + 34 & 127]; + t = X[i = i + 1 & 127]; + v ^= v << 13; + t ^= t << 17; + v ^= v >>> 15; + t ^= t >>> 12; + X[i] = v ^ t; + } + me2.w = w; + me2.X = X; + me2.i = i; + } + init2(me, seed); + } + function copy(f, t) { + t.i = f.i; + t.w = f.w; + t.X = f.X.slice(); + return t; + } + ; + function impl(seed, opts) { + if (seed == null) + seed = +new Date(); + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (state.X) + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.xor4096 = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); + }); + var require_tychei3 = __commonJS2((exports, module2) => { + (function(global2, module22, define2) { + function XorGen(seed) { + var me = this, strseed = ""; + me.next = function() { + var b = me.b, c = me.c, d = me.d, a = me.a; + b = b << 25 ^ b >>> 7 ^ c; + c = c - d | 0; + d = d << 24 ^ d >>> 8 ^ a; + a = a - b | 0; + me.b = b = b << 20 ^ b >>> 12 ^ c; + me.c = c = c - d | 0; + me.d = d << 16 ^ c >>> 16 ^ a; + return me.a = a - b | 0; + }; + me.a = 0; + me.b = 0; + me.c = 2654435769 | 0; + me.d = 1367130551; + if (seed === Math.floor(seed)) { + me.a = seed / 4294967296 | 0; + me.b = seed | 0; + } else { + strseed += seed; + } + for (var k = 0; k < strseed.length + 20; k++) { + me.b ^= strseed.charCodeAt(k) | 0; + me.next(); + } + } + function copy(f, t) { + t.a = f.a; + t.b = f.b; + t.c = f.c; + t.d = f.d; + return t; + } + ; + function impl(seed, opts) { + var xg = new XorGen(seed), state = opts && opts.state, prng = function() { + return (xg.next() >>> 0) / 4294967296; + }; + prng.double = function() { + do { + var top = xg.next() >>> 11, bot = (xg.next() >>> 0) / 4294967296, result = (top + bot) / (1 << 21); + } while (result === 0); + return result; + }; + prng.int32 = xg.next; + prng.quick = prng; + if (state) { + if (typeof state == "object") + copy(state, xg); + prng.state = function() { + return copy(xg, {}); + }; + } + return prng; + } + if (module22 && module22.exports) { + module22.exports = impl; + } else if (define2 && define2.amd) { + define2(function() { + return impl; + }); + } else { + this.tychei = impl; + } + })(exports, typeof module2 == "object" && module2, typeof define == "function" && define); + }); + var require_seedrandom5 = __commonJS2((exports, module2) => { + (function(global2, pool3, math) { + var width = 256, chunks = 6, digits = 52, rngname = "random", startdenom = math.pow(width, chunks), significance = math.pow(2, digits), overflow = significance * 2, mask = width - 1, nodecrypto; + function seedrandom5(seed, options, callback) { + var key = []; + options = options == true ? {entropy: true} : options || {}; + var shortseed = mixkey(flatten4(options.entropy ? [seed, tostring(pool3)] : seed == null ? autoseed() : seed, 3), key); + var arc4 = new ARC4(key); + var prng = function() { + var n = arc4.g(chunks), d = startdenom, x = 0; + while (n < significance) { + n = (n + x) * width; + d *= width; + x = arc4.g(1); + } + while (n >= overflow) { + n /= 2; + d /= 2; + x >>>= 1; + } + return (n + x) / d; + }; + prng.int32 = function() { + return arc4.g(4) | 0; + }; + prng.quick = function() { + return arc4.g(4) / 4294967296; + }; + prng.double = prng; + mixkey(tostring(arc4.S), pool3); + return (options.pass || callback || function(prng2, seed2, is_math_call, state) { + if (state) { + if (state.S) { + copy(state, arc4); + } + prng2.state = function() { + return copy(arc4, {}); + }; + } + if (is_math_call) { + math[rngname] = prng2; + return seed2; + } else + return prng2; + })(prng, shortseed, "global" in options ? options.global : this == math, options.state); + } + function ARC4(key) { + var t, keylen = key.length, me = this, i = 0, j = me.i = me.j = 0, s = me.S = []; + if (!keylen) { + key = [keylen++]; + } + while (i < width) { + s[i] = i++; + } + for (i = 0; i < width; i++) { + s[i] = s[j = mask & j + key[i % keylen] + (t = s[i])]; + s[j] = t; + } + (me.g = function(count2) { + var t2, r = 0, i2 = me.i, j2 = me.j, s2 = me.S; + while (count2--) { + t2 = s2[i2 = mask & i2 + 1]; + r = r * width + s2[mask & (s2[i2] = s2[j2 = mask & j2 + t2]) + (s2[j2] = t2)]; + } + me.i = i2; + me.j = j2; + return r; + })(width); + } + function copy(f, t) { + t.i = f.i; + t.j = f.j; + t.S = f.S.slice(); + return t; + } + ; + function flatten4(obj, depth) { + var result = [], typ = typeof obj, prop; + if (depth && typ == "object") { + for (prop in obj) { + try { + result.push(flatten4(obj[prop], depth - 1)); + } catch (e) { + } + } + } + return result.length ? result : typ == "string" ? obj : obj + "\0"; + } + function mixkey(seed, key) { + var stringseed = seed + "", smear, j = 0; + while (j < stringseed.length) { + key[mask & j] = mask & (smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++); + } + return tostring(key); + } + function autoseed() { + try { + var out; + if (nodecrypto && (out = nodecrypto.randomBytes)) { + out = out(width); + } else { + out = new Uint8Array(width); + (global2.crypto || global2.msCrypto).getRandomValues(out); + } + return tostring(out); + } catch (e) { + var browser2 = global2.navigator, plugins = browser2 && browser2.plugins; + return [+new Date(), global2, plugins, global2.screen, tostring(pool3)]; + } + } + function tostring(a) { + return String.fromCharCode.apply(0, a); + } + mixkey(math.random(), pool3); + if (typeof module2 == "object" && module2.exports) { + module2.exports = seedrandom5; + try { + nodecrypto = require_crypto(); + } catch (ex) { + } + } else if (typeof define == "function" && define.amd) { + define(function() { + return seedrandom5; + }); + } else { + math["seed" + rngname] = seedrandom5; + } + })(typeof self !== "undefined" ? self : exports, [], Math); + }); + var require_seedrandom6 = __commonJS2((exports, module2) => { + var alea5 = require_alea3(); + var xor128 = require_xor1283(); + var xorwow = require_xorwow3(); + var xorshift7 = require_xorshift73(); + var xor4096 = require_xor40963(); + var tychei = require_tychei3(); + var sr = require_seedrandom5(); + sr.alea = alea5; + sr.xor128 = xor128; + sr.xorwow = xorwow; + sr.xorshift7 = xorshift7; + sr.xor4096 = xor4096; + sr.tychei = tychei; + module2.exports = sr; + }); + var require_string_decoder = __commonJS2(() => { + }); + var version = "3.2.0"; + var version2 = "3.2.0"; + var version3 = "3.2.0"; + var version4 = "3.2.0"; + var version5 = "3.2.0"; + /** + * @license + * Copyright 2020 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var EPSILON_FLOAT32 = 1e-7; + var EPSILON_FLOAT16 = 1e-4; + var DataStorage = class { + constructor(backend22, dataMover) { + this.backend = backend22; + this.dataMover = dataMover; + this.data = new WeakMap(); + this.dataIdsCount = 0; + } + get(dataId) { + if (!this.data.has(dataId)) { + this.dataMover.moveData(this.backend, dataId); + } + return this.data.get(dataId); + } + set(dataId, value) { + this.dataIdsCount++; + this.data.set(dataId, value); + } + has(dataId) { + return this.data.has(dataId); + } + delete(dataId) { + this.dataIdsCount--; + return this.data.delete(dataId); + } + numDataIds() { + return this.dataIdsCount; + } + }; + var KernelBackend = class { + refCount(dataId) { + return notYetImplemented("refCount"); + } + incRef(dataId) { + return notYetImplemented("incRef"); + } + timerAvailable() { + return true; + } + time(f) { + return notYetImplemented("time"); + } + read(dataId) { + return notYetImplemented("read"); + } + readSync(dataId) { + return notYetImplemented("readSync"); + } + numDataIds() { + return notYetImplemented("numDataIds"); + } + disposeData(dataId, force) { + return notYetImplemented("disposeData"); + } + write(values, shape, dtype) { + return notYetImplemented("write"); + } + move(dataId, values, shape, dtype, refCount) { + return notYetImplemented("move"); + } + memory() { + return notYetImplemented("memory"); + } + floatPrecision() { + return notYetImplemented("floatPrecision"); + } + epsilon() { + return this.floatPrecision() === 32 ? EPSILON_FLOAT32 : EPSILON_FLOAT16; + } + dispose() { + return notYetImplemented("dispose"); + } + }; + function notYetImplemented(kernelName) { + throw new Error(`'${kernelName}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`); + } + /** + * @license + * Copyright 2020 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + function shuffle(array2) { + let counter = array2.length; + let temp = 0; + let index = 0; + while (counter > 0) { + index = Math.random() * counter | 0; + counter--; + temp = array2[counter]; + array2[counter] = array2[index]; + array2[index] = temp; + } + } + function shuffleCombo(array2, array22) { + if (array2.length !== array22.length) { + throw new Error(`Array sizes must match to be shuffled together First array length was ${array2.length}Second array length was ${array22.length}`); + } + let counter = array2.length; + let temp, temp2; + let index = 0; + while (counter > 0) { + index = Math.random() * counter | 0; + counter--; + temp = array2[counter]; + temp2 = array22[counter]; + array2[counter] = array2[index]; + array22[counter] = array22[index]; + array2[index] = temp; + array22[index] = temp2; + } + } + function clamp(min6, x, max6) { + return Math.max(min6, Math.min(x, max6)); + } + function nearestLargerEven(val) { + return val % 2 === 0 ? val : val + 1; + } + function sum(arr) { + let sum6 = 0; + for (let i = 0; i < arr.length; i++) { + sum6 += arr[i]; + } + return sum6; + } + function randUniform(a, b) { + const r = Math.random(); + return b * r + (1 - r) * a; + } + function distSquared(a, b) { + let result = 0; + for (let i = 0; i < a.length; i++) { + const diff = Number(a[i]) - Number(b[i]); + result += diff * diff; + } + return result; + } + function assert(expr, msg) { + if (!expr) { + throw new Error(typeof msg === "string" ? msg : msg()); + } + } + function assertShapesMatch(shapeA, shapeB, errorMessagePrefix = "") { + assert(arraysEqual(shapeA, shapeB), () => errorMessagePrefix + ` Shapes ${shapeA} and ${shapeB} must match`); + } + function assertNonNull(a) { + assert(a != null, () => `The input to the tensor constructor must be a non-null value.`); + } + function flatten(arr, result = [], skipTypedArray = false) { + if (result == null) { + result = []; + } + if (Array.isArray(arr) || isTypedArray(arr) && !skipTypedArray) { + for (let i = 0; i < arr.length; ++i) { + flatten(arr[i], result, skipTypedArray); + } + } else { + result.push(arr); + } + return result; + } + function sizeFromShape(shape) { + if (shape.length === 0) { + return 1; + } + let size = shape[0]; + for (let i = 1; i < shape.length; i++) { + size *= shape[i]; + } + return size; + } + function isScalarShape(shape) { + return shape.length === 0; + } + function arraysEqual(n1, n2) { + if (n1 === n2) { + return true; + } + if (n1 == null || n2 == null) { + return false; + } + if (n1.length !== n2.length) { + return false; + } + for (let i = 0; i < n1.length; i++) { + if (n1[i] !== n2[i]) { + return false; + } + } + return true; + } + function isInt(a) { + return a % 1 === 0; + } + function tanh(x) { + if (Math.tanh != null) { + return Math.tanh(x); + } + if (x === Infinity) { + return 1; + } else if (x === -Infinity) { + return -1; + } else { + const e2x = Math.exp(2 * x); + return (e2x - 1) / (e2x + 1); + } + } + function sizeToSquarishShape(size) { + const width = Math.ceil(Math.sqrt(size)); + return [width, Math.ceil(size / width)]; + } + function createShuffledIndices(n) { + const shuffledIndices = new Uint32Array(n); + for (let i = 0; i < n; ++i) { + shuffledIndices[i] = i; + } + shuffle(shuffledIndices); + return shuffledIndices; + } + function rightPad(a, size) { + if (size <= a.length) { + return a; + } + return a + " ".repeat(size - a.length); + } + function repeatedTry(checkFn, delayFn = (counter) => 0, maxCounter) { + return new Promise((resolve, reject) => { + let tryCount = 0; + const tryFn = () => { + if (checkFn()) { + resolve(); + return; + } + tryCount++; + const nextBackoff = delayFn(tryCount); + if (maxCounter != null && tryCount >= maxCounter) { + reject(); + return; + } + setTimeout(tryFn, nextBackoff); + }; + tryFn(); + }); + } + function inferFromImplicitShape(shape, size) { + let shapeProd = 1; + let implicitIdx = -1; + for (let i = 0; i < shape.length; ++i) { + if (shape[i] >= 0) { + shapeProd *= shape[i]; + } else if (shape[i] === -1) { + if (implicitIdx !== -1) { + throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${implicitIdx} and dim ${i}`); + } + implicitIdx = i; + } else if (shape[i] < 0) { + throw Error(`Shapes can not be < 0. Found ${shape[i]} at dim ${i}`); + } + } + if (implicitIdx === -1) { + if (size > 0 && size !== shapeProd) { + throw Error(`Size(${size}) must match the product of shape ${shape}`); + } + return shape; + } + if (shapeProd === 0) { + throw Error(`Cannot infer the missing size in [${shape}] when there are 0 elements`); + } + if (size % shapeProd !== 0) { + throw Error(`The implicit shape can't be a fractional number. Got ${size} / ${shapeProd}`); + } + const newShape = shape.slice(); + newShape[implicitIdx] = size / shapeProd; + return newShape; + } + function parseAxisParam(axis, shape) { + const rank = shape.length; + axis = axis == null ? shape.map((s, i) => i) : [].concat(axis); + assert(axis.every((ax) => ax >= -rank && ax < rank), () => `All values in axis param must be in range [-${rank}, ${rank}) but got axis ${axis}`); + assert(axis.every((ax) => isInt(ax)), () => `All values in axis param must be integers but got axis ${axis}`); + return axis.map((a) => a < 0 ? rank + a : a); + } + function squeezeShape(shape, axis) { + const newShape = []; + const keptDims = []; + const isEmptyArray = axis != null && Array.isArray(axis) && axis.length === 0; + const axes = axis == null || isEmptyArray ? null : parseAxisParam(axis, shape).sort(); + let j = 0; + for (let i = 0; i < shape.length; ++i) { + if (axes != null) { + if (axes[j] === i && shape[i] !== 1) { + throw new Error(`Can't squeeze axis ${i} since its dim '${shape[i]}' is not 1`); + } + if ((axes[j] == null || axes[j] > i) && shape[i] === 1) { + newShape.push(shape[i]); + keptDims.push(i); + } + if (axes[j] <= i) { + j++; + } + } + if (shape[i] !== 1) { + newShape.push(shape[i]); + keptDims.push(i); + } + } + return {newShape, keptDims}; + } + function getTypedArrayFromDType(dtype, size) { + let values = null; + if (dtype == null || dtype === "float32") { + values = new Float32Array(size); + } else if (dtype === "int32") { + values = new Int32Array(size); + } else if (dtype === "bool") { + values = new Uint8Array(size); + } else { + throw new Error(`Unknown data type ${dtype}`); + } + return values; + } + function getArrayFromDType(dtype, size) { + let values = null; + if (dtype == null || dtype === "float32") { + values = new Float32Array(size); + } else if (dtype === "int32") { + values = new Int32Array(size); + } else if (dtype === "bool") { + values = new Uint8Array(size); + } else if (dtype === "string") { + values = new Array(size); + } else { + throw new Error(`Unknown data type ${dtype}`); + } + return values; + } + function checkConversionForErrors(vals, dtype) { + for (let i = 0; i < vals.length; i++) { + const num = vals[i]; + if (isNaN(num) || !isFinite(num)) { + throw Error(`A tensor of type ${dtype} being uploaded contains ${num}.`); + } + } + } + function isValidDtype(dtype) { + return dtype === "bool" || dtype === "complex64" || dtype === "float32" || dtype === "int32" || dtype === "string"; + } + function hasEncodingLoss(oldType, newType) { + if (newType === "complex64") { + return false; + } + if (newType === "float32" && oldType !== "complex64") { + return false; + } + if (newType === "int32" && oldType !== "float32" && oldType !== "complex64") { + return false; + } + if (newType === "bool" && oldType === "bool") { + return false; + } + return true; + } + function isTypedArray(a) { + return a instanceof Float32Array || a instanceof Int32Array || a instanceof Uint8Array; + } + function bytesPerElement(dtype) { + if (dtype === "float32" || dtype === "int32") { + return 4; + } else if (dtype === "complex64") { + return 8; + } else if (dtype === "bool") { + return 1; + } else { + throw new Error(`Unknown dtype ${dtype}`); + } + } + function bytesFromStringArray(arr) { + if (arr == null) { + return 0; + } + let bytes = 0; + arr.forEach((x) => bytes += x.length); + return bytes; + } + function isString(value) { + return typeof value === "string" || value instanceof String; + } + function isBoolean(value) { + return typeof value === "boolean"; + } + function isNumber(value) { + return typeof value === "number"; + } + function inferDtype(values) { + if (Array.isArray(values)) { + return inferDtype(values[0]); + } + if (values instanceof Float32Array) { + return "float32"; + } else if (values instanceof Int32Array || values instanceof Uint8Array) { + return "int32"; + } else if (isNumber(values)) { + return "float32"; + } else if (isString(values)) { + return "string"; + } else if (isBoolean(values)) { + return "bool"; + } + return "float32"; + } + function isFunction(f) { + return !!(f && f.constructor && f.call && f.apply); + } + function nearestDivisor(size, start) { + for (let i = start; i < size; ++i) { + if (size % i === 0) { + return i; + } + } + return size; + } + function computeStrides(shape) { + const rank = shape.length; + if (rank < 2) { + return []; + } + const strides = new Array(rank - 1); + strides[rank - 2] = shape[rank - 1]; + for (let i = rank - 3; i >= 0; --i) { + strides[i] = strides[i + 1] * shape[i + 1]; + } + return strides; + } + function createNestedArray(offset, shape, a) { + const ret = new Array(); + if (shape.length === 1) { + const d = shape[0]; + for (let i = 0; i < d; i++) { + ret[i] = a[offset + i]; + } + } else { + const d = shape[0]; + const rest = shape.slice(1); + const len = rest.reduce((acc, c) => acc * c); + for (let i = 0; i < d; i++) { + ret[i] = createNestedArray(offset + i * len, rest, a); + } + } + return ret; + } + function toNestedArray(shape, a) { + if (shape.length === 0) { + return a[0]; + } + const size = shape.reduce((acc, c) => acc * c); + if (size === 0) { + return []; + } + if (size !== a.length) { + throw new Error(`[${shape}] does not match the input size ${a.length}.`); + } + return createNestedArray(0, shape, a); + } + function makeOnesTypedArray(size, dtype) { + const array2 = makeZerosTypedArray(size, dtype); + for (let i = 0; i < array2.length; i++) { + array2[i] = 1; + } + return array2; + } + function makeZerosTypedArray(size, dtype) { + if (dtype == null || dtype === "float32" || dtype === "complex64") { + return new Float32Array(size); + } else if (dtype === "int32") { + return new Int32Array(size); + } else if (dtype === "bool") { + return new Uint8Array(size); + } else { + throw new Error(`Unknown data type ${dtype}`); + } + } + function makeZerosNestedTypedArray(shape, dtype) { + const size = shape.reduce((prev, curr) => prev * curr, 1); + if (dtype == null || dtype === "float32") { + return toNestedArray(shape, new Float32Array(size)); + } else if (dtype === "int32") { + return toNestedArray(shape, new Int32Array(size)); + } else if (dtype === "bool") { + return toNestedArray(shape, new Uint8Array(size)); + } else { + throw new Error(`Unknown data type ${dtype}`); + } + } + function assertNonNegativeIntegerDimensions(shape) { + shape.forEach((dimSize) => { + assert(Number.isInteger(dimSize) && dimSize >= 0, () => `Tensor must have a shape comprised of positive integers but got shape [${shape}].`); + }); + } + function locToIndex(locs, rank, strides) { + if (rank === 0) { + return 0; + } else if (rank === 1) { + return locs[0]; + } + let index = locs[locs.length - 1]; + for (let i = 0; i < locs.length - 1; ++i) { + index += strides[i] * locs[i]; + } + return index; + } + function indexToLoc(index, rank, strides) { + if (rank === 0) { + return []; + } else if (rank === 1) { + return [index]; + } + const locs = new Array(rank); + for (let i = 0; i < locs.length - 1; ++i) { + locs[i] = Math.floor(index / strides[i]); + index -= locs[i] * strides[i]; + } + locs[locs.length - 1] = index; + return locs; + } + function isPromise(object) { + return object && object.then && typeof object.then === "function"; + } + /** + * @license + * Copyright 2017 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var TENSORFLOWJS_FLAGS_PREFIX = "tfjsflags"; + var Environment = class { + constructor(global2) { + this.global = global2; + this.flags = {}; + this.flagRegistry = {}; + this.urlFlags = {}; + this.populateURLFlags(); + } + setPlatform(platformName, platform) { + if (this.platform != null) { + console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${platform}.`); + } + this.platformName = platformName; + this.platform = platform; + } + registerFlag(flagName, evaluationFn, setHook) { + this.flagRegistry[flagName] = {evaluationFn, setHook}; + if (this.urlFlags[flagName] != null) { + const flagValue = this.urlFlags[flagName]; + console.warn(`Setting feature override from URL ${flagName}: ${flagValue}.`); + this.set(flagName, flagValue); + } + } + async getAsync(flagName) { + if (flagName in this.flags) { + return this.flags[flagName]; + } + this.flags[flagName] = await this.evaluateFlag(flagName); + return this.flags[flagName]; + } + get(flagName) { + if (flagName in this.flags) { + return this.flags[flagName]; + } + const flagValue = this.evaluateFlag(flagName); + if (isPromise(flagValue)) { + throw new Error(`Flag ${flagName} cannot be synchronously evaluated. Please use getAsync() instead.`); + } + this.flags[flagName] = flagValue; + return this.flags[flagName]; + } + getNumber(flagName) { + return this.get(flagName); + } + getBool(flagName) { + return this.get(flagName); + } + getFlags() { + return this.flags; + } + get features() { + return this.flags; + } + set(flagName, value) { + if (this.flagRegistry[flagName] == null) { + throw new Error(`Cannot set flag ${flagName} as it has not been registered.`); + } + this.flags[flagName] = value; + if (this.flagRegistry[flagName].setHook != null) { + this.flagRegistry[flagName].setHook(value); + } + } + evaluateFlag(flagName) { + if (this.flagRegistry[flagName] == null) { + throw new Error(`Cannot evaluate flag '${flagName}': no evaluation function found.`); + } + return this.flagRegistry[flagName].evaluationFn(); + } + setFlags(flags) { + this.flags = Object.assign({}, flags); + } + reset() { + this.flags = {}; + this.urlFlags = {}; + this.populateURLFlags(); + } + populateURLFlags() { + if (typeof this.global === "undefined" || typeof this.global.location === "undefined" || typeof this.global.location.search === "undefined") { + return; + } + const urlParams = getQueryParams(this.global.location.search); + if (TENSORFLOWJS_FLAGS_PREFIX in urlParams) { + const keyValues = urlParams[TENSORFLOWJS_FLAGS_PREFIX].split(","); + keyValues.forEach((keyValue) => { + const [key, value] = keyValue.split(":"); + this.urlFlags[key] = parseValue(key, value); + }); + } + } + }; + function getQueryParams(queryString) { + const params = {}; + queryString.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g, (s, ...t) => { + decodeParam(params, t[0], t[1]); + return t.join("="); + }); + return params; + } + function decodeParam(params, name2, value) { + params[decodeURIComponent(name2)] = decodeURIComponent(value || ""); + } + function parseValue(flagName, value) { + value = value.toLowerCase(); + if (value === "true" || value === "false") { + return value === "true"; + } else if (`${+value}` === value) { + return +value; + } + throw new Error(`Could not parse value flag value ${value} for flag ${flagName}.`); + } + function env() { + return ENV; + } + var ENV = null; + function setEnvironmentGlobal(environment) { + ENV = environment; + } + /** + * @license + * Copyright 2020 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var globalNameSpace; + function getGlobalNamespace() { + if (globalNameSpace == null) { + let ns; + if (typeof window !== "undefined") { + ns = window; + } else if (typeof global !== "undefined") { + ns = global; + } else if (typeof process !== "undefined") { + ns = process; + } else if (typeof self !== "undefined") { + ns = self; + } else { + throw new Error("Could not find a global object"); + } + globalNameSpace = ns; + } + return globalNameSpace; + } + function getGlobalMap() { + const ns = getGlobalNamespace(); + if (ns._tfGlobals == null) { + ns._tfGlobals = new Map(); + } + return ns._tfGlobals; + } + function getGlobal(key, init2) { + const globalMap = getGlobalMap(); + if (globalMap.has(key)) { + return globalMap.get(key); + } else { + const singleton = init2(); + globalMap.set(key, singleton); + return globalMap.get(key); + } + } + var Abs = "Abs"; + var Acos = "Acos"; + var Acosh = "Acosh"; + var Add = "Add"; + var AddN = "AddN"; + var All = "All"; + var Any = "Any"; + var ArgMax = "ArgMax"; + var ArgMin = "ArgMin"; + var Asin = "Asin"; + var Asinh = "Asinh"; + var Atan = "Atan"; + var Atanh = "Atanh"; + var Atan2 = "Atan2"; + var AvgPool = "AvgPool"; + var AvgPoolGrad = "AvgPoolGrad"; + var AvgPool3D = "AvgPool3D"; + var AvgPool3DGrad = "AvgPool3DGrad"; + var BatchMatMul = "BatchMatMul"; + var BatchToSpaceND = "BatchToSpaceND"; + var Bincount = "Bincount"; + var BroadcastTo = "BroadcastTo"; + var Cast = "Cast"; + var Ceil = "Ceil"; + var ClipByValue = "ClipByValue"; + var Complex = "Complex"; + var ComplexAbs = "ComplexAbs"; + var Concat = "Concat"; + var Conv2D = "Conv2D"; + var Conv2DBackpropFilter = "Conv2DBackpropFilter"; + var Conv2DBackpropInput = "Conv2DBackpropInput"; + var Conv3D = "Conv3D"; + var Conv3DBackpropFilterV2 = "Conv3DBackpropFilterV2"; + var Conv3DBackpropInputV2 = "Conv3DBackpropInputV2"; + var Cos = "Cos"; + var Cosh = "Cosh"; + var Cumsum = "Cumsum"; + var CropAndResize = "CropAndResize"; + var DenseBincount = "DenseBincount"; + var DepthToSpace = "DepthToSpace"; + var DepthwiseConv2dNative = "DepthwiseConv2dNative"; + var DepthwiseConv2dNativeBackpropFilter = "DepthwiseConv2dNativeBackpropFilter"; + var DepthwiseConv2dNativeBackpropInput = "DepthwiseConv2dNativeBackpropInput"; + var Diag = "Diag"; + var Dilation2D = "Dilation2D"; + var Dilation2DBackpropInput = "Dilation2DBackpropInput"; + var Dilation2DBackpropFilter = "Dilation2DBackpropFilter"; + var RealDiv = "RealDiv"; + var Elu = "Elu"; + var EluGrad = "EluGrad"; + var Erf = "Erf"; + var Equal = "Equal"; + var Exp = "Exp"; + var ExpandDims = "ExpandDims"; + var Expm1 = "Expm1"; + var FFT = "FFT"; + var Fill = "Fill"; + var FlipLeftRight = "FlipLeftRight"; + var Floor = "Floor"; + var FloorDiv = "FloorDiv"; + var FusedBatchNorm = "FusedBatchNorm"; + var GatherV2 = "GatherV2"; + var GatherNd = "GatherNd"; + var Greater = "Greater"; + var GreaterEqual = "GreaterEqual"; + var Identity = "Identity"; + var IFFT = "IFFT"; + var Imag = "Imag"; + var IsFinite = "IsFinite"; + var IsInf = "IsInf"; + var IsNan = "IsNan"; + var LeakyRelu = "LeakyRelu"; + var Less = "Less"; + var LessEqual = "LessEqual"; + var LinSpace = "LinSpace"; + var Log = "Log"; + var Log1p = "Log1p"; + var LogicalAnd = "LogicalAnd"; + var LogicalNot = "LogicalNot"; + var LogicalOr = "LogicalOr"; + var LogSoftmax = "LogSoftmax"; + var LRN = "LRN"; + var LRNGrad = "LRNGrad"; + var Max = "Max"; + var Maximum = "Maximum"; + var MaxPool = "MaxPool"; + var MaxPoolGrad = "MaxPoolGrad"; + var MaxPool3D = "MaxPool3D"; + var MaxPool3DGrad = "MaxPool3DGrad"; + var MaxPoolWithArgmax = "MaxPoolWithArgmax"; + var Mean = "Mean"; + var Min = "Min"; + var Minimum = "Minimum"; + var MirrorPad = "MirrorPad"; + var Mod = "Mod"; + var Multinomial = "Multinomial"; + var Multiply = "Multiply"; + var Neg = "Neg"; + var NotEqual = "NotEqual"; + var NonMaxSuppressionV3 = "NonMaxSuppressionV3"; + var NonMaxSuppressionV4 = "NonMaxSuppressionV4"; + var NonMaxSuppressionV5 = "NonMaxSuppressionV5"; + var OnesLike = "OnesLike"; + var OneHot = "OneHot"; + var Pack = "Pack"; + var PadV2 = "PadV2"; + var Pool = "Pool"; + var Pow = "Pow"; + var Prelu = "Prelu"; + var Prod = "Prod"; + var Range = "Range"; + var Real = "Real"; + var Reciprocal = "Reciprocal"; + var Relu = "Relu"; + var Reshape = "Reshape"; + var ResizeNearestNeighbor = "ResizeNearestNeighbor"; + var ResizeNearestNeighborGrad = "ResizeNearestNeighborGrad"; + var ResizeBilinear = "ResizeBilinear"; + var ResizeBilinearGrad = "ResizeBilinearGrad"; + var Relu6 = "Relu6"; + var Reverse = "Reverse"; + var Round = "Round"; + var Rsqrt = "Rsqrt"; + var ScatterNd = "ScatterNd"; + var Select = "Select"; + var Selu = "Selu"; + var Slice = "Slice"; + var Sin = "Sin"; + var Sinh = "Sinh"; + var Sign = "Sign"; + var Sigmoid = "Sigmoid"; + var Softplus = "Softplus"; + var Sqrt = "Sqrt"; + var Sum = "Sum"; + var SpaceToBatchND = "SpaceToBatchND"; + var SplitV = "SplitV"; + var Softmax = "Softmax"; + var SquaredDifference = "SquaredDifference"; + var Square = "Square"; + var Sub = "Sub"; + var SparseToDense = "SparseToDense"; + var StridedSlice = "StridedSlice"; + var Tan = "Tan"; + var Tanh = "Tanh"; + var Tile = "Tile"; + var TopK = "TopK"; + var Transpose = "Transpose"; + var Unique = "Unique"; + var Unpack = "Unpack"; + var UnsortedSegmentSum = "UnsortedSegmentSum"; + var ZerosLike = "ZerosLike"; + var Step = "Step"; + var FromPixels = "FromPixels"; + var RotateWithOffset = "RotateWithOffset"; + var _FusedMatMul = "_FusedMatMul"; + var FusedConv2D = "FusedConv2D"; + var FusedDepthwiseConv2D = "FusedDepthwiseConv2D"; + /** + * @license + * Copyright 2019 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var kernelRegistry = getGlobal("kernelRegistry", () => new Map()); + var gradRegistry = getGlobal("gradRegistry", () => new Map()); + function getKernel(kernelName, backendName) { + const key = makeKey(kernelName, backendName); + return kernelRegistry.get(key); + } + function getGradient(kernelName) { + return gradRegistry.get(kernelName); + } + function getKernelsForBackend(backendName) { + const it = kernelRegistry.entries(); + const result = []; + while (true) { + const {done, value} = it.next(); + if (done) { + break; + } + const [key, config3] = value; + const [backend22] = key.split("_"); + if (backend22 === backendName) { + result.push(config3); + } + } + return result; + } + function registerKernel(config3) { + const {kernelName, backendName} = config3; + const key = makeKey(kernelName, backendName); + if (kernelRegistry.has(key)) { + console.warn(`The kernel '${kernelName}' for backend '${backendName}' is already registered`); + } + kernelRegistry.set(key, config3); + } + function registerGradient(config3) { + const {kernelName} = config3; + if (gradRegistry.has(kernelName)) { + if (env().getBool("DEBUG")) { + console.warn(`Overriding the gradient for '${kernelName}'`); + } + } + gradRegistry.set(kernelName, config3); + } + function unregisterKernel(kernelName, backendName) { + const key = makeKey(kernelName, backendName); + if (!kernelRegistry.has(key)) { + throw new Error(`The kernel '${kernelName}' for backend '${backendName}' is not registered`); + } + kernelRegistry.delete(key); + } + function unregisterGradient(kernelName) { + if (!gradRegistry.has(kernelName)) { + throw new Error(`The gradient '${kernelName}' for backend is not registered`); + } + gradRegistry.delete(kernelName); + } + function copyRegisteredKernels(registeredBackendName, newBackendName) { + const kernels = getKernelsForBackend(registeredBackendName); + kernels.forEach((kernelConfig) => { + const newKernelConfig = Object.assign({}, kernelConfig, {backendName: newBackendName}); + registerKernel(newKernelConfig); + }); + } + function makeKey(kernelName, backendName) { + return `${backendName}_${kernelName}`; + } + var util_exports = {}; + __export2(util_exports, { + arraysEqual: () => arraysEqual, + assert: () => assert, + assertNonNegativeIntegerDimensions: () => assertNonNegativeIntegerDimensions, + assertNonNull: () => assertNonNull, + assertShapesMatch: () => assertShapesMatch, + bytesFromStringArray: () => bytesFromStringArray, + bytesPerElement: () => bytesPerElement, + checkConversionForErrors: () => checkConversionForErrors, + clamp: () => clamp, + computeStrides: () => computeStrides, + createScalarValue: () => createScalarValue, + createShuffledIndices: () => createShuffledIndices, + decodeString: () => decodeString, + distSquared: () => distSquared, + encodeString: () => encodeString, + fetch: () => fetch2, + flatten: () => flatten, + getArrayFromDType: () => getArrayFromDType, + getTypedArrayFromDType: () => getTypedArrayFromDType, + hasEncodingLoss: () => hasEncodingLoss, + indexToLoc: () => indexToLoc, + inferDtype: () => inferDtype, + inferFromImplicitShape: () => inferFromImplicitShape, + isBoolean: () => isBoolean, + isFunction: () => isFunction, + isInt: () => isInt, + isNumber: () => isNumber, + isPromise: () => isPromise, + isScalarShape: () => isScalarShape, + isString: () => isString, + isTypedArray: () => isTypedArray, + isValidDtype: () => isValidDtype, + locToIndex: () => locToIndex, + makeOnesTypedArray: () => makeOnesTypedArray, + makeZerosNestedTypedArray: () => makeZerosNestedTypedArray, + makeZerosTypedArray: () => makeZerosTypedArray, + nearestDivisor: () => nearestDivisor, + nearestLargerEven: () => nearestLargerEven, + now: () => now, + parseAxisParam: () => parseAxisParam, + randUniform: () => randUniform, + repeatedTry: () => repeatedTry, + rightPad: () => rightPad, + shuffle: () => shuffle, + shuffleCombo: () => shuffleCombo, + sizeFromShape: () => sizeFromShape, + sizeToSquarishShape: () => sizeToSquarishShape, + squeezeShape: () => squeezeShape, + sum: () => sum, + tanh: () => tanh, + toNestedArray: () => toNestedArray, + toTypedArray: () => toTypedArray + }); + /** + * @license + * Copyright 2017 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + function createScalarValue(value, dtype) { + if (dtype === "string") { + return encodeString(value); + } + return toTypedArray([value], dtype); + } + function noConversionNeeded(a, dtype) { + return a instanceof Float32Array && dtype === "float32" || a instanceof Int32Array && dtype === "int32" || a instanceof Uint8Array && dtype === "bool"; + } + function toTypedArray(a, dtype) { + if (dtype === "string") { + throw new Error("Cannot convert a string[] to a TypedArray"); + } + if (Array.isArray(a)) { + a = flatten(a); + } + if (env().getBool("DEBUG")) { + checkConversionForErrors(a, dtype); + } + if (noConversionNeeded(a, dtype)) { + return a; + } + if (dtype == null || dtype === "float32" || dtype === "complex64") { + return new Float32Array(a); + } else if (dtype === "int32") { + return new Int32Array(a); + } else if (dtype === "bool") { + const bool = new Uint8Array(a.length); + for (let i = 0; i < bool.length; ++i) { + if (Math.round(a[i]) !== 0) { + bool[i] = 1; + } + } + return bool; + } else { + throw new Error(`Unknown data type ${dtype}`); + } + } + function now() { + return env().platform.now(); + } + function fetch2(path, requestInits) { + return env().platform.fetch(path, requestInits); + } + function encodeString(s, encoding = "utf-8") { + encoding = encoding || "utf-8"; + return env().platform.encode(s, encoding); + } + function decodeString(bytes, encoding = "utf-8") { + encoding = encoding || "utf-8"; + return env().platform.decode(bytes, encoding); + } + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var Profiler = class { + constructor(backendTimer, logger) { + this.backendTimer = backendTimer; + this.logger = logger; + if (logger == null) { + this.logger = new Logger(); + } + } + profileKernel(kernelName, inputs, f) { + let outputs; + const holdResultWrapperFn = () => { + outputs = f(); + }; + let timer; + const start = now(); + if (this.backendTimer.timerAvailable()) { + timer = this.backendTimer.time(holdResultWrapperFn); + } else { + holdResultWrapperFn(); + for (const output of outputs) { + output.dataSync(); + } + timer = Promise.resolve({kernelMs: now() - start}); + } + if (env().getBool("CHECK_COMPUTATION_FOR_ERRORS")) { + for (let i = 0; i < outputs.length; i++) { + const output = outputs[i]; + output.data().then((tensorVals) => { + checkComputationForErrors(tensorVals, output.dtype, kernelName); + }); + } + } + const kernelProfile = { + kernelName, + outputs, + inputs, + timeMs: timer.then((timing) => timing.kernelMs), + extraInfo: timer.then((timing) => timing.getExtraProfileInfo != null ? timing.getExtraProfileInfo() : "") + }; + return kernelProfile; + } + logKernelProfile(kernelProfile) { + const {kernelName, outputs, timeMs, inputs, extraInfo} = kernelProfile; + outputs.forEach((result) => { + Promise.all([result.data(), timeMs, extraInfo]).then((valueContainer) => { + this.logger.logKernelProfile(kernelName, result, valueContainer[0], valueContainer[1], inputs, valueContainer[2]); + }); + }); + } + }; + function checkComputationForErrors(vals, dtype, kernelName) { + if (dtype !== "float32") { + return false; + } + for (let i = 0; i < vals.length; i++) { + const num = vals[i]; + if (isNaN(num) || !isFinite(num)) { + console.warn(`Found ${num} in the result of '${kernelName}'`); + return true; + } + } + return false; + } + var Logger = class { + logKernelProfile(name2, result, vals, timeMs, inputs, extraInfo) { + const time2 = typeof timeMs === "number" ? rightPad(`${timeMs}ms`, 9) : timeMs["error"]; + const paddedName = rightPad(name2, 25); + const rank = result.rank; + const size = result.size; + const shape = rightPad(result.shape.toString(), 14); + let inputShapesDescription = ""; + for (const name22 in inputs) { + const input2 = inputs[name22]; + if (input2 != null) { + const inputShape = input2.shape || result.shape; + const inputRank = inputShape.length; + inputShapesDescription += `${name22}: ${inputRank}D ${inputRank > 0 ? inputShape : ""} `; + } + } + console.log(`%c${paddedName} %c${time2} %c${rank}D ${shape} %c${size} %c${inputShapesDescription} %c${extraInfo}`, "font-weight:bold", "color:red", "color:blue", "color: orange", "color: green", "color: steelblue"); + } + }; + /** + * @license + * Copyright 2017 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + function getFilteredNodesXToY(tape, xs, y) { + const tensorsFromX = {}; + const nodesFromX = {}; + for (let i = 0; i < xs.length; i++) { + tensorsFromX[xs[i].id] = true; + } + for (let i = 0; i < tape.length; i++) { + const node = tape[i]; + const nodeInputs = node.inputs; + for (const inputName in nodeInputs) { + const input2 = nodeInputs[inputName]; + let anyInputFromX = false; + for (let j = 0; j < xs.length; j++) { + if (tensorsFromX[input2.id]) { + node.outputs.forEach((output) => tensorsFromX[output.id] = true); + anyInputFromX = true; + nodesFromX[node.id] = true; + break; + } + } + if (anyInputFromX) { + break; + } + } + } + const tensorsLeadToY = {}; + tensorsLeadToY[y.id] = true; + const nodesToY = {}; + for (let i = tape.length - 1; i >= 0; i--) { + const node = tape[i]; + const nodeInputs = node.inputs; + for (let j = 0; j < node.outputs.length; j++) { + if (tensorsLeadToY[node.outputs[j].id]) { + for (const inputName in nodeInputs) { + tensorsLeadToY[nodeInputs[inputName].id] = true; + nodesToY[node.id] = true; + } + break; + } + } + } + const filteredTape = []; + for (let i = 0; i < tape.length; i++) { + const node = tape[i]; + if (nodesFromX[node.id] && nodesToY[node.id]) { + const prunedInputs = {}; + for (const inputName in node.inputs) { + const nodeInput = node.inputs[inputName]; + if (tensorsFromX[nodeInput.id]) { + prunedInputs[inputName] = nodeInput; + } + } + const prunedNode = Object.assign({}, node); + prunedNode.inputs = prunedInputs; + prunedNode.outputs = node.outputs; + filteredTape.push(prunedNode); + } + } + return filteredTape; + } + function backpropagateGradients(tensorAccumulatedGradientMap, filteredTape, tidy2, add5) { + for (let i = filteredTape.length - 1; i >= 0; i--) { + const node = filteredTape[i]; + const dys = []; + node.outputs.forEach((o) => { + const gradTensor = tensorAccumulatedGradientMap[o.id]; + if (gradTensor != null) { + dys.push(gradTensor); + } else { + dys.push(null); + } + }); + if (node.gradient == null) { + throw new Error(`Cannot compute gradient: gradient function not found for ${node.kernelName}.`); + } + const inputGradients = node.gradient(dys); + for (const inputName in node.inputs) { + if (!(inputName in inputGradients)) { + throw new Error(`Cannot backprop through input ${inputName}. Available gradients found: ${Object.keys(inputGradients)}.`); + } + const dx = tidy2(() => inputGradients[inputName]()); + if (dx.dtype !== "float32") { + throw new Error(`Error in gradient for op ${node.kernelName}. The gradient of input ${inputName} must have 'float32' dtype, but has '${dx.dtype}'`); + } + const x = node.inputs[inputName]; + if (!arraysEqual(dx.shape, x.shape)) { + throw new Error(`Error in gradient for op ${node.kernelName}. The gradient of input '${inputName}' has shape '${dx.shape}', which does not match the shape of the input '${x.shape}'`); + } + if (tensorAccumulatedGradientMap[x.id] == null) { + tensorAccumulatedGradientMap[x.id] = dx; + } else { + const curGradient = tensorAccumulatedGradientMap[x.id]; + tensorAccumulatedGradientMap[x.id] = add5(curGradient, dx); + curGradient.dispose(); + } + } + } + } + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var FORMAT_LIMIT_NUM_VALS = 20; + var FORMAT_NUM_FIRST_LAST_VALS = 3; + var FORMAT_NUM_SIG_DIGITS = 7; + function tensorToString(vals, shape, dtype, verbose) { + const strides = computeStrides(shape); + const padPerCol = computeMaxSizePerColumn(vals, shape, dtype, strides); + const rank = shape.length; + const valsLines = subTensorToString(vals, shape, dtype, strides, padPerCol); + const lines = ["Tensor"]; + if (verbose) { + lines.push(` dtype: ${dtype}`); + lines.push(` rank: ${rank}`); + lines.push(` shape: [${shape}]`); + lines.push(` values:`); + } + lines.push(valsLines.map((l) => " " + l).join("\n")); + return lines.join("\n"); + } + function computeMaxSizePerColumn(vals, shape, dtype, strides) { + const n = sizeFromShape(shape); + const numCols = strides[strides.length - 1]; + const padPerCol = new Array(numCols).fill(0); + const rank = shape.length; + const valuesOrTuples = dtype === "complex64" ? createComplexTuples(vals) : vals; + if (rank > 1) { + for (let row = 0; row < n / numCols; row++) { + const offset = row * numCols; + for (let j = 0; j < numCols; j++) { + padPerCol[j] = Math.max(padPerCol[j], valToString(valuesOrTuples[offset + j], 0, dtype).length); + } + } + } + return padPerCol; + } + function valToString(val, pad3, dtype) { + let valStr; + if (Array.isArray(val)) { + valStr = `${parseFloat(val[0].toFixed(FORMAT_NUM_SIG_DIGITS))} + ${parseFloat(val[1].toFixed(FORMAT_NUM_SIG_DIGITS))}j`; + } else if (isString(val)) { + valStr = `'${val}'`; + } else if (dtype === "bool") { + valStr = boolNumToString(val); + } else { + valStr = parseFloat(val.toFixed(FORMAT_NUM_SIG_DIGITS)).toString(); + } + return rightPad(valStr, pad3); + } + function boolNumToString(v) { + return v === 0 ? "false" : "true"; + } + function subTensorToString(vals, shape, dtype, strides, padPerCol, isLast = true) { + const storagePerElement = dtype === "complex64" ? 2 : 1; + const size = shape[0]; + const rank = shape.length; + if (rank === 0) { + if (dtype === "complex64") { + const complexTuple = createComplexTuples(vals); + return [valToString(complexTuple[0], 0, dtype)]; + } + if (dtype === "bool") { + return [boolNumToString(vals[0])]; + } + return [vals[0].toString()]; + } + if (rank === 1) { + if (size > FORMAT_LIMIT_NUM_VALS) { + const firstValsSize = FORMAT_NUM_FIRST_LAST_VALS * storagePerElement; + let firstVals = Array.from(vals.slice(0, firstValsSize)); + let lastVals = Array.from(vals.slice((size - FORMAT_NUM_FIRST_LAST_VALS) * storagePerElement, size * storagePerElement)); + if (dtype === "complex64") { + firstVals = createComplexTuples(firstVals); + lastVals = createComplexTuples(lastVals); + } + return [ + "[" + firstVals.map((x, i) => valToString(x, padPerCol[i], dtype)).join(", ") + ", ..., " + lastVals.map((x, i) => valToString(x, padPerCol[size - FORMAT_NUM_FIRST_LAST_VALS + i], dtype)).join(", ") + "]" + ]; + } + const displayVals = dtype === "complex64" ? createComplexTuples(vals) : Array.from(vals); + return [ + "[" + displayVals.map((x, i) => valToString(x, padPerCol[i], dtype)).join(", ") + "]" + ]; + } + const subshape = shape.slice(1); + const substrides = strides.slice(1); + const stride = strides[0] * storagePerElement; + const lines = []; + if (size > FORMAT_LIMIT_NUM_VALS) { + for (let i = 0; i < FORMAT_NUM_FIRST_LAST_VALS; i++) { + const start = i * stride; + const end = start + stride; + lines.push(...subTensorToString(vals.slice(start, end), subshape, dtype, substrides, padPerCol, false)); + } + lines.push("..."); + for (let i = size - FORMAT_NUM_FIRST_LAST_VALS; i < size; i++) { + const start = i * stride; + const end = start + stride; + lines.push(...subTensorToString(vals.slice(start, end), subshape, dtype, substrides, padPerCol, i === size - 1)); + } + } else { + for (let i = 0; i < size; i++) { + const start = i * stride; + const end = start + stride; + lines.push(...subTensorToString(vals.slice(start, end), subshape, dtype, substrides, padPerCol, i === size - 1)); + } + } + const sep = rank === 2 ? "," : ""; + lines[0] = "[" + lines[0] + sep; + for (let i = 1; i < lines.length - 1; i++) { + lines[i] = " " + lines[i] + sep; + } + let newLineSep = ",\n"; + for (let i = 2; i < rank; i++) { + newLineSep += "\n"; + } + lines[lines.length - 1] = " " + lines[lines.length - 1] + "]" + (isLast ? "" : newLineSep); + return lines; + } + function createComplexTuples(vals) { + const complexTuples = []; + for (let i = 0; i < vals.length; i += 2) { + complexTuples.push([vals[i], vals[i + 1]]); + } + return complexTuples; + } + /** + * @license + * Copyright 2017 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var TensorBuffer = class { + constructor(shape, dtype, values) { + this.dtype = dtype; + this.shape = shape.slice(); + this.size = sizeFromShape(shape); + if (values != null) { + const n = values.length; + assert(n === this.size, () => `Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`); + } + if (dtype === "complex64") { + throw new Error(`complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).`); + } + this.values = values || getArrayFromDType(dtype, this.size); + this.strides = computeStrides(shape); + } + set(value, ...locs) { + if (locs.length === 0) { + locs = [0]; + } + assert(locs.length === this.rank, () => `The number of provided coordinates (${locs.length}) must match the rank (${this.rank})`); + const index = this.locToIndex(locs); + this.values[index] = value; + } + get(...locs) { + if (locs.length === 0) { + locs = [0]; + } + let i = 0; + for (const loc of locs) { + if (loc < 0 || loc >= this.shape[i]) { + const msg = `Requested out of range element at ${locs}. Buffer shape=${this.shape}`; + throw new Error(msg); + } + i++; + } + let index = locs[locs.length - 1]; + for (let i2 = 0; i2 < locs.length - 1; ++i2) { + index += this.strides[i2] * locs[i2]; + } + return this.values[index]; + } + locToIndex(locs) { + if (this.rank === 0) { + return 0; + } else if (this.rank === 1) { + return locs[0]; + } + let index = locs[locs.length - 1]; + for (let i = 0; i < locs.length - 1; ++i) { + index += this.strides[i] * locs[i]; + } + return index; + } + indexToLoc(index) { + if (this.rank === 0) { + return []; + } else if (this.rank === 1) { + return [index]; + } + const locs = new Array(this.shape.length); + for (let i = 0; i < locs.length - 1; ++i) { + locs[i] = Math.floor(index / this.strides[i]); + index -= locs[i] * this.strides[i]; + } + locs[locs.length - 1] = index; + return locs; + } + get rank() { + return this.shape.length; + } + toTensor() { + return trackerFn().makeTensor(this.values, this.shape, this.dtype); + } + }; + var trackerFn = null; + var opHandler = null; + var deprecationWarningFn = null; + function setTensorTracker(fn) { + trackerFn = fn; + } + function setOpHandler(handler) { + opHandler = handler; + } + function setDeprecationWarningFn(fn) { + deprecationWarningFn = fn; + } + var Tensor = class { + constructor(shape, dtype, dataId, id) { + this.kept = false; + this.isDisposedInternal = false; + this.shape = shape.slice(); + this.dtype = dtype || "float32"; + this.size = sizeFromShape(shape); + this.strides = computeStrides(shape); + this.dataId = dataId; + this.id = id; + this.rankType = this.rank < 5 ? this.rank.toString() : "higher"; + } + get rank() { + return this.shape.length; + } + async buffer() { + const vals = await this.data(); + return opHandler.buffer(this.shape, this.dtype, vals); + } + bufferSync() { + return opHandler.buffer(this.shape, this.dtype, this.dataSync()); + } + async array() { + const vals = await this.data(); + return toNestedArray(this.shape, vals); + } + arraySync() { + return toNestedArray(this.shape, this.dataSync()); + } + async data() { + this.throwIfDisposed(); + const data2 = trackerFn().read(this.dataId); + if (this.dtype === "string") { + const bytes = await data2; + try { + return bytes.map((b) => decodeString(b)); + } catch (_a) { + throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes()."); + } + } + return data2; + } + dataSync() { + this.throwIfDisposed(); + const data2 = trackerFn().readSync(this.dataId); + if (this.dtype === "string") { + try { + return data2.map((b) => decodeString(b)); + } catch (_a) { + throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes()."); + } + } + return data2; + } + async bytes() { + this.throwIfDisposed(); + const data2 = await trackerFn().read(this.dataId); + if (this.dtype === "string") { + return data2; + } else { + return new Uint8Array(data2.buffer); + } + } + dispose() { + if (this.isDisposed) { + return; + } + trackerFn().disposeTensor(this); + this.isDisposedInternal = true; + } + get isDisposed() { + return this.isDisposedInternal; + } + throwIfDisposed() { + if (this.isDisposed) { + throw new Error(`Tensor is disposed.`); + } + } + print(verbose = false) { + return opHandler.print(this, verbose); + } + clone() { + this.throwIfDisposed(); + return opHandler.clone(this); + } + toString(verbose = false) { + const vals = this.dataSync(); + return tensorToString(vals, this.shape, this.dtype, verbose); + } + cast(dtype) { + this.throwIfDisposed(); + return opHandler.cast(this, dtype); + } + variable(trainable = true, name2, dtype) { + this.throwIfDisposed(); + return trackerFn().makeVariable(this, trainable, name2, dtype); + } + }; + Object.defineProperty(Tensor, Symbol.hasInstance, { + value: (instance) => { + return !!instance && instance.data != null && instance.dataSync != null && instance.throwIfDisposed != null; + } + }); + function getGlobalTensorClass() { + return getGlobal("Tensor", () => { + return Tensor; + }); + } + getGlobalTensorClass(); + var Variable = class extends Tensor { + constructor(initialValue, trainable, name2, tensorId) { + super(initialValue.shape, initialValue.dtype, initialValue.dataId, tensorId); + this.trainable = trainable; + this.name = name2; + } + assign(newValue) { + if (newValue.dtype !== this.dtype) { + throw new Error(`dtype of the new value (${newValue.dtype}) and previous value (${this.dtype}) must match`); + } + if (!arraysEqual(newValue.shape, this.shape)) { + throw new Error(`shape of the new value (${newValue.shape}) and previous value (${this.shape}) must match`); + } + trackerFn().disposeTensor(this); + this.dataId = newValue.dataId; + trackerFn().incRef(this, null); + } + dispose() { + trackerFn().disposeVariable(this); + this.isDisposedInternal = true; + } + }; + Object.defineProperty(Variable, Symbol.hasInstance, { + value: (instance) => { + return instance instanceof Tensor && instance.assign != null && instance.assign instanceof Function; + } + }); + var tensor_util_exports = {}; + __export2(tensor_util_exports, { + assertTypesMatch: () => assertTypesMatch, + getTensorsInContainer: () => getTensorsInContainer, + isTensorInList: () => isTensorInList, + makeTypesMatch: () => makeTypesMatch + }); + /** + * @license + * Copyright 2017 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var Rank; + (function(Rank2) { + Rank2["R0"] = "R0"; + Rank2["R1"] = "R1"; + Rank2["R2"] = "R2"; + Rank2["R3"] = "R3"; + Rank2["R4"] = "R4"; + Rank2["R5"] = "R5"; + Rank2["R6"] = "R6"; + })(Rank || (Rank = {})); + var UpcastInt32AndMap; + (function(UpcastInt32AndMap2) { + UpcastInt32AndMap2["float32"] = "float32"; + UpcastInt32AndMap2["int32"] = "int32"; + UpcastInt32AndMap2["bool"] = "int32"; + UpcastInt32AndMap2["complex64"] = "complex64"; + })(UpcastInt32AndMap || (UpcastInt32AndMap = {})); + var UpcastBoolAndMap; + (function(UpcastBoolAndMap2) { + UpcastBoolAndMap2["float32"] = "float32"; + UpcastBoolAndMap2["int32"] = "int32"; + UpcastBoolAndMap2["bool"] = "bool"; + UpcastBoolAndMap2["complex64"] = "complex64"; + })(UpcastBoolAndMap || (UpcastBoolAndMap = {})); + var UpcastFloat32AndMap; + (function(UpcastFloat32AndMap2) { + UpcastFloat32AndMap2["float32"] = "float32"; + UpcastFloat32AndMap2["int32"] = "float32"; + UpcastFloat32AndMap2["bool"] = "float32"; + UpcastFloat32AndMap2["complex64"] = "complex64"; + })(UpcastFloat32AndMap || (UpcastFloat32AndMap = {})); + var UpcastComplex64AndMap; + (function(UpcastComplex64AndMap2) { + UpcastComplex64AndMap2["float32"] = "complex64"; + UpcastComplex64AndMap2["int32"] = "complex64"; + UpcastComplex64AndMap2["bool"] = "complex64"; + UpcastComplex64AndMap2["complex64"] = "complex64"; + })(UpcastComplex64AndMap || (UpcastComplex64AndMap = {})); + var upcastTypeMap = { + float32: UpcastFloat32AndMap, + int32: UpcastInt32AndMap, + bool: UpcastBoolAndMap, + complex64: UpcastComplex64AndMap + }; + function upcastType(typeA, typeB) { + if (typeA === "string" || typeB === "string") { + if (typeA === "string" && typeB === "string") { + return "string"; + } + throw new Error(`Can not upcast ${typeA} with ${typeB}`); + } + return upcastTypeMap[typeA][typeB]; + } + function sumOutType(type) { + return upcastType(type, "int32"); + } + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + function makeTypesMatch(a, b) { + if (a.dtype === b.dtype) { + return [a, b]; + } + const dtype = upcastType(a.dtype, b.dtype); + return [a.cast(dtype), b.cast(dtype)]; + } + function assertTypesMatch(a, b) { + assert(a.dtype === b.dtype, () => `The dtypes of the first(${a.dtype}) and second(${b.dtype}) input must match`); + } + function isTensorInList(tensor2, tensorList) { + return tensorList.some((x) => x.id === tensor2.id); + } + function getTensorsInContainer(result) { + const list = []; + const seen = new Set(); + walkTensorContainer(result, list, seen); + return list; + } + function walkTensorContainer(container, list, seen) { + if (container == null) { + return; + } + if (container instanceof Tensor) { + list.push(container); + return; + } + if (!isIterable(container)) { + return; + } + const iterable = container; + for (const k in iterable) { + const val = iterable[k]; + if (!seen.has(val)) { + seen.add(val); + walkTensorContainer(val, list, seen); + } + } + } + function isIterable(obj) { + return Array.isArray(obj) || typeof obj === "object"; + } + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + function isRegisteredKernelInvocation(kernelInvocation) { + return kernelInvocation.kernelName != null; + } + var EngineState = class { + constructor() { + this.registeredVariables = {}; + this.nextTapeNodeId = 0; + this.numBytes = 0; + this.numTensors = 0; + this.numStringTensors = 0; + this.numDataBuffers = 0; + this.gradientDepth = 0; + this.kernelDepth = 0; + this.scopeStack = []; + this.numDataMovesStack = []; + this.nextScopeId = 0; + this.tensorInfo = new WeakMap(); + this.profiling = false; + this.activeProfile = { + newBytes: 0, + newTensors: 0, + peakBytes: 0, + kernels: [], + result: null, + get kernelNames() { + return Array.from(new Set(this.kernels.map((k) => k.name))); + } + }; + } + dispose() { + for (const variableName in this.registeredVariables) { + this.registeredVariables[variableName].dispose(); + } + } + }; + var Engine = class { + constructor(ENV5) { + this.ENV = ENV5; + this.registry = {}; + this.registryFactory = {}; + this.pendingBackendInitId = 0; + this.state = new EngineState(); + } + async ready() { + if (this.pendingBackendInit != null) { + return this.pendingBackendInit.then(() => { + }); + } + if (this.backendInstance != null) { + return; + } + const sortedBackends = this.getSortedBackends(); + for (let i = 0; i < sortedBackends.length; i++) { + const backendName = sortedBackends[i]; + const success = await this.initializeBackend(backendName).success; + if (success) { + await this.setBackend(backendName); + return; + } + } + throw new Error(`Could not initialize any backends, all backend initializations failed.`); + } + get backend() { + if (this.pendingBackendInit != null) { + throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`); + } + if (this.backendInstance == null) { + const {name: name2, asyncInit} = this.initializeBackendsAndReturnBest(); + if (asyncInit) { + throw new Error(`The highest priority backend '${name2}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`); + } + this.setBackend(name2); + } + return this.backendInstance; + } + backendNames() { + return Object.keys(this.registryFactory); + } + findBackend(backendName) { + if (!(backendName in this.registry)) { + if (backendName in this.registryFactory) { + const {asyncInit} = this.initializeBackend(backendName); + if (asyncInit) { + return null; + } + } else { + return null; + } + } + return this.registry[backendName]; + } + findBackendFactory(backendName) { + if (!(backendName in this.registryFactory)) { + return null; + } + return this.registryFactory[backendName].factory; + } + registerBackend(backendName, factory, priority = 1) { + if (backendName in this.registryFactory) { + console.warn(`${backendName} backend was already registered. Reusing existing backend factory.`); + return false; + } + this.registryFactory[backendName] = {factory, priority}; + return true; + } + async setBackend(backendName) { + if (this.registryFactory[backendName] == null) { + throw new Error(`Backend name '${backendName}' not found in registry`); + } + this.backendName = backendName; + if (this.registry[backendName] == null) { + this.backendInstance = null; + const {success, asyncInit} = this.initializeBackend(backendName); + const result = asyncInit ? await success : success; + if (!result) { + return false; + } + } + this.backendInstance = this.registry[backendName]; + this.setupRegisteredKernels(); + this.profiler = new Profiler(this.backendInstance); + return true; + } + setupRegisteredKernels() { + const kernels = getKernelsForBackend(this.backendName); + kernels.forEach((kernel) => { + if (kernel.setupFunc != null) { + kernel.setupFunc(this.backendInstance); + } + }); + } + disposeRegisteredKernels(backendName) { + const kernels = getKernelsForBackend(backendName); + kernels.forEach((kernel) => { + if (kernel.disposeFunc != null) { + kernel.disposeFunc(this.registry[backendName]); + } + }); + } + initializeBackend(backendName) { + const registryFactoryEntry = this.registryFactory[backendName]; + if (registryFactoryEntry == null) { + throw new Error(`Cannot initialize backend ${backendName}, no registration found.`); + } + try { + const backend22 = registryFactoryEntry.factory(); + if (backend22 && !(backend22 instanceof KernelBackend) && typeof backend22.then === "function") { + const promiseId = ++this.pendingBackendInitId; + const success = backend22.then((backendInstance) => { + if (promiseId < this.pendingBackendInitId) { + return false; + } + this.registry[backendName] = backendInstance; + this.pendingBackendInit = null; + return true; + }).catch((err) => { + if (promiseId < this.pendingBackendInitId) { + return false; + } + this.pendingBackendInit = null; + console.warn(`Initialization of backend ${backendName} failed`); + console.warn(err.stack || err.message); + return false; + }); + this.pendingBackendInit = success; + return {success, asyncInit: true}; + } else { + this.registry[backendName] = backend22; + return {success: true, asyncInit: false}; + } + } catch (err) { + console.warn(`Initialization of backend ${backendName} failed`); + console.warn(err.stack || err.message); + return {success: false, asyncInit: false}; + } + } + removeBackend(backendName) { + if (!(backendName in this.registryFactory)) { + throw new Error(`${backendName} backend not found in registry`); + } + if (this.backendName === backendName && this.pendingBackendInit != null) { + this.pendingBackendInitId++; + } + if (backendName in this.registry) { + this.disposeRegisteredKernels(backendName); + this.registry[backendName].dispose(); + delete this.registry[backendName]; + } + delete this.registryFactory[backendName]; + if (this.backendName === backendName) { + this.pendingBackendInit = null; + this.backendName = null; + this.backendInstance = null; + } + } + getSortedBackends() { + if (Object.keys(this.registryFactory).length === 0) { + throw new Error("No backend found in registry."); + } + return Object.keys(this.registryFactory).sort((a, b) => { + return this.registryFactory[b].priority - this.registryFactory[a].priority; + }); + } + initializeBackendsAndReturnBest() { + const sortedBackends = this.getSortedBackends(); + for (let i = 0; i < sortedBackends.length; i++) { + const backendName = sortedBackends[i]; + const {success, asyncInit} = this.initializeBackend(backendName); + if (asyncInit || success) { + return {name: backendName, asyncInit}; + } + } + throw new Error(`Could not initialize any backends, all backend initializations failed.`); + } + moveData(backend22, dataId) { + const info = this.state.tensorInfo.get(dataId); + const srcBackend = info.backend; + const values = this.readSync(dataId); + const refCount = srcBackend.refCount(dataId); + srcBackend.disposeData(dataId, true); + info.backend = backend22; + backend22.move(dataId, values, info.shape, info.dtype, refCount); + if (this.shouldCheckForMemLeaks()) { + this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1]++; + } + } + tidy(nameOrFn, fn) { + let name2 = null; + if (fn == null) { + if (typeof nameOrFn !== "function") { + throw new Error("Please provide a function to tidy()"); + } + fn = nameOrFn; + } else { + if (typeof nameOrFn !== "string" && !(nameOrFn instanceof String)) { + throw new Error("When calling with two arguments, the first argument to tidy() must be a string"); + } + if (typeof fn !== "function") { + throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function"); + } + name2 = nameOrFn; + } + let result; + return this.scopedRun(() => this.startScope(name2), () => this.endScope(result), () => { + result = fn(); + if (result instanceof Promise) { + console.error("Cannot return a Promise inside of tidy."); + } + return result; + }); + } + scopedRun(start, end, f) { + start(); + try { + const res = f(); + end(); + return res; + } catch (ex) { + end(); + throw ex; + } + } + nextTensorId() { + return Engine.nextTensorId++; + } + nextVariableId() { + return Engine.nextVariableId++; + } + clone(x) { + const y = ENGINE.runKernel(Identity, {x}); + const inputs = {x}; + const grad2 = (dy) => ({ + x: () => { + const dtype = "float32"; + const gradInputs = {x: dy}; + const attrs = {dtype}; + return ENGINE.runKernel(Cast, gradInputs, attrs); + } + }); + const saved = []; + this.addTapeNode(this.state.activeScope.name, inputs, [y], grad2, saved, {}); + return y; + } + runKernel(kernelName, inputs, attrs) { + const hasKernel = getKernel(kernelName, this.backendName) != null; + if (!hasKernel) { + throw new Error(`Kernel '${kernelName}' not registered for backend '${this.backendName}'`); + } + return this.runKernelFunc({kernelName, inputs, attrs}); + } + shouldCheckForMemLeaks() { + return this.ENV.getBool("IS_TEST"); + } + checkKernelForMemLeak(kernelName, numDataIdsBefore, outInfos) { + const numDataIdsAfter = this.backend.numDataIds(); + let numOutputDataIds = 0; + outInfos.forEach((info) => { + numOutputDataIds += info.dtype === "complex64" ? 3 : 1; + }); + const numMoves = this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1]; + const dataIdsLeaked = numDataIdsAfter - numDataIdsBefore - numOutputDataIds - numMoves; + if (dataIdsLeaked > 0) { + throw new Error(`Backend '${this.backendName}' has an internal memory leak (${dataIdsLeaked} data ids) after running '${kernelName}'`); + } + } + runKernelFunc(kernelParams) { + let outputs; + let saved = []; + const isTapeOn = this.isTapeOn(); + const startingBytecount = this.state.numBytes; + const startingNumTensors = this.state.numTensors; + if (this.shouldCheckForMemLeaks()) { + this.state.numDataMovesStack.push(0); + } + let kernelFunc3; + if (this.backendName == null) { + this.backend; + } + let out; + const kernelOrScopeName = isRegisteredKernelInvocation(kernelParams) ? kernelParams.kernelName : this.state.activeScope != null ? this.state.activeScope.name : ""; + if (isRegisteredKernelInvocation(kernelParams)) { + const {kernelName, inputs: inputs2, attrs: attrs2} = kernelParams; + if (this.backendName == null) { + this.backend; + } + const kernel = getKernel(kernelName, this.backendName); + assert(kernel != null, () => `Cannot find registered kernel '${kernelName}' for backend '${this.backendName}'`); + kernelFunc3 = () => { + const numDataIdsBefore = this.backend.numDataIds(); + out = kernel.kernelFunc({inputs: inputs2, attrs: attrs2, backend: this.backend}); + const outInfos = Array.isArray(out) ? out : [out]; + if (this.shouldCheckForMemLeaks()) { + this.checkKernelForMemLeak(kernelName, numDataIdsBefore, outInfos); + } + const outTensors = outInfos.map((outInfo) => { + if (outInfo.rank != null) { + return outInfo; + } + const {dataId, shape, dtype} = outInfo; + return this.makeTensorFromDataId(dataId, shape, dtype); + }); + if (isTapeOn) { + const tensorsToSave = this.getTensorsForGradient(kernelName, inputs2, outTensors); + saved = this.saveTensorsForBackwardMode(tensorsToSave); + } + return outTensors; + }; + } else { + const {forwardFunc} = kernelParams; + const saveFunc = (tensors) => { + if (!isTapeOn) { + return; + } + saved = tensors.map((tensor2) => this.keep(this.clone(tensor2))); + }; + kernelFunc3 = () => { + const numDataIdsBefore = this.backend.numDataIds(); + out = this.tidy(() => forwardFunc(this.backend, saveFunc)); + const outs = Array.isArray(out) ? out : [out]; + if (this.shouldCheckForMemLeaks()) { + this.checkKernelForMemLeak(kernelOrScopeName, numDataIdsBefore, outs); + } + return outs; + }; + } + const {inputs, attrs} = kernelParams; + const backwardsFunc = isRegisteredKernelInvocation(kernelParams) ? null : kernelParams.backwardsFunc; + let kernelProfile; + this.scopedRun(() => this.state.kernelDepth++, () => this.state.kernelDepth--, () => { + if (!this.ENV.getBool("DEBUG") && !this.state.profiling) { + outputs = kernelFunc3(); + } else { + kernelProfile = this.profiler.profileKernel(kernelOrScopeName, inputs, () => kernelFunc3()); + if (this.ENV.getBool("DEBUG")) { + this.profiler.logKernelProfile(kernelProfile); + } + outputs = kernelProfile.outputs; + } + }); + if (isTapeOn) { + this.addTapeNode(kernelOrScopeName, inputs, outputs, backwardsFunc, saved, attrs); + } + if (this.state.profiling) { + this.state.activeProfile.kernels.push({ + name: kernelOrScopeName, + bytesAdded: this.state.numBytes - startingBytecount, + totalBytesSnapshot: this.state.numBytes, + tensorsAdded: this.state.numTensors - startingNumTensors, + totalTensorsSnapshot: this.state.numTensors, + inputShapes: Object.keys(inputs).map((key) => inputs[key] != null ? inputs[key].shape : null), + outputShapes: outputs.map((item) => item.shape), + kernelTimeMs: kernelProfile.timeMs, + extraInfo: kernelProfile.extraInfo + }); + } + return Array.isArray(out) ? outputs : outputs[0]; + } + saveTensorsForBackwardMode(tensors) { + const saved = tensors.map((tensor2) => this.keep(this.clone(tensor2))); + return saved; + } + getTensorsForGradient(kernelName, inputs, outputs) { + const gradConfig = getGradient(kernelName); + if (gradConfig != null) { + const inputsToSave = gradConfig.inputsToSave || []; + const outputsToSave = gradConfig.outputsToSave || []; + let inputTensorsToSave; + if (gradConfig.saveAllInputs) { + assert(Array.isArray(inputs), () => "saveAllInputs is true, expected inputs to be an array."); + inputTensorsToSave = Object.keys(inputs).map((key) => inputs[key]); + } else { + inputTensorsToSave = inputsToSave.map((inputName) => inputs[inputName]); + } + const outputTensorsToSave = outputs.filter((_, i) => outputsToSave[i]); + return inputTensorsToSave.concat(outputTensorsToSave); + } + return []; + } + makeTensor(values, shape, dtype, backend22) { + if (values == null) { + throw new Error("Values passed to engine.makeTensor() are null"); + } + dtype = dtype || "float32"; + backend22 = backend22 || this.backend; + let backendVals = values; + if (dtype === "string" && isString(values[0])) { + backendVals = values.map((d) => encodeString(d)); + } + const dataId = backend22.write(backendVals, shape, dtype); + const t = new Tensor(shape, dtype, dataId, this.nextTensorId()); + this.trackTensor(t, backend22); + if (dtype === "string") { + const info = this.state.tensorInfo.get(dataId); + const newBytes = bytesFromStringArray(backendVals); + this.state.numBytes += newBytes - info.bytes; + info.bytes = newBytes; + } + return t; + } + makeTensorFromDataId(dataId, shape, dtype, backend22) { + dtype = dtype || "float32"; + const t = new Tensor(shape, dtype, dataId, this.nextTensorId()); + this.trackTensor(t, backend22); + return t; + } + makeVariable(initialValue, trainable = true, name2, dtype) { + name2 = name2 || this.nextVariableId().toString(); + if (dtype != null && dtype !== initialValue.dtype) { + initialValue = initialValue.cast(dtype); + } + const v = new Variable(initialValue, trainable, name2, this.nextTensorId()); + if (this.state.registeredVariables[v.name] != null) { + throw new Error(`Variable with name ${v.name} was already registered`); + } + this.state.registeredVariables[v.name] = v; + this.incRef(v, this.backend); + return v; + } + trackTensor(a, backend22) { + this.state.numTensors++; + if (a.dtype === "string") { + this.state.numStringTensors++; + } + let bytes = 0; + if (a.dtype !== "complex64" && a.dtype !== "string") { + bytes = a.size * bytesPerElement(a.dtype); + } + this.state.numBytes += bytes; + if (!this.state.tensorInfo.has(a.dataId)) { + this.state.numDataBuffers++; + this.state.tensorInfo.set(a.dataId, { + backend: backend22 || this.backend, + dtype: a.dtype, + shape: a.shape, + bytes + }); + } + if (!(a instanceof Variable)) { + this.track(a); + } + } + incRef(a, backend22) { + this.trackTensor(a, backend22); + this.backend.incRef(a.dataId); + } + removeDataId(dataId, backend22) { + if (this.state.tensorInfo.has(dataId) && this.state.tensorInfo.get(dataId).backend === backend22) { + this.state.tensorInfo.delete(dataId); + this.state.numDataBuffers--; + } + } + disposeTensor(a) { + if (!this.state.tensorInfo.has(a.dataId)) { + return; + } + const info = this.state.tensorInfo.get(a.dataId); + this.state.numTensors--; + if (a.dtype === "string") { + this.state.numStringTensors--; + this.state.numBytes -= info.bytes; + } + if (a.dtype !== "complex64" && a.dtype !== "string") { + const bytes = a.size * bytesPerElement(a.dtype); + this.state.numBytes -= bytes; + } + if (info.backend.disposeData(a.dataId)) { + this.removeDataId(a.dataId, info.backend); + } + } + disposeVariables() { + for (const varName in this.state.registeredVariables) { + const v = this.state.registeredVariables[varName]; + this.disposeVariable(v); + } + } + disposeVariable(v) { + this.disposeTensor(v); + if (this.state.registeredVariables[v.name] != null) { + delete this.state.registeredVariables[v.name]; + } + } + memory() { + const info = this.backend.memory(); + info.numTensors = this.state.numTensors; + info.numDataBuffers = this.state.numDataBuffers; + info.numBytes = this.state.numBytes; + if (this.state.numStringTensors > 0) { + info.unreliable = true; + if (info.reasons == null) { + info.reasons = []; + } + info.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)"); + } + return info; + } + async profile(query) { + this.state.profiling = true; + const startBytes = this.state.numBytes; + const startNumTensors = this.state.numTensors; + this.state.activeProfile.kernels = []; + this.state.activeProfile.result = await query(); + this.state.profiling = false; + this.state.activeProfile.peakBytes = Math.max(...this.state.activeProfile.kernels.map((d) => d.totalBytesSnapshot)); + this.state.activeProfile.newBytes = this.state.numBytes - startBytes; + this.state.activeProfile.newTensors = this.state.numTensors - startNumTensors; + for (const kernel of this.state.activeProfile.kernels) { + kernel.kernelTimeMs = await kernel.kernelTimeMs; + kernel.extraInfo = await kernel.extraInfo; + } + return this.state.activeProfile; + } + isTapeOn() { + return this.state.gradientDepth > 0 && this.state.kernelDepth === 0; + } + addTapeNode(kernelName, inputs, outputs, gradientsFunc, saved, attrs) { + const tapeNode = {id: this.state.nextTapeNodeId++, kernelName, inputs, outputs, saved}; + const gradConfig = getGradient(kernelName); + if (gradConfig != null) { + gradientsFunc = gradConfig.gradFunc; + } + if (gradientsFunc != null) { + tapeNode.gradient = (dys) => { + dys = dys.map((dy, i) => { + if (dy == null) { + const output = outputs[i]; + const vals = makeZerosTypedArray(output.size, output.dtype); + return this.makeTensor(vals, output.shape, output.dtype); + } + return dy; + }); + return gradientsFunc(dys.length > 1 ? dys : dys[0], saved, attrs); + }; + } + this.state.activeTape.push(tapeNode); + } + keep(result) { + result.kept = true; + return result; + } + startTape() { + if (this.state.gradientDepth === 0) { + this.state.activeTape = []; + } + this.state.gradientDepth++; + } + endTape() { + this.state.gradientDepth--; + } + startScope(name2) { + const scopeInfo = { + track: [], + name: "unnamed scope", + id: this.state.nextScopeId++ + }; + if (name2) { + scopeInfo.name = name2; + } + this.state.scopeStack.push(scopeInfo); + this.state.activeScope = scopeInfo; + } + endScope(result) { + const tensorsToTrackInParent = getTensorsInContainer(result); + const tensorsToTrackInParentSet = new Set(tensorsToTrackInParent.map((t) => t.id)); + for (let i = 0; i < this.state.activeScope.track.length; i++) { + const tensor2 = this.state.activeScope.track[i]; + if (!tensor2.kept && !tensorsToTrackInParentSet.has(tensor2.id)) { + tensor2.dispose(); + } + } + const oldScope = this.state.scopeStack.pop(); + this.state.activeScope = this.state.scopeStack.length === 0 ? null : this.state.scopeStack[this.state.scopeStack.length - 1]; + tensorsToTrackInParent.forEach((tensor2) => { + if (!tensor2.kept && tensor2.scopeId === oldScope.id) { + this.track(tensor2); + } + }); + } + gradients(f, xs, dy, allowNoGradients = false) { + assert(xs.length > 0, () => "gradients() received an empty list of xs."); + if (dy != null && dy.dtype !== "float32") { + throw new Error(`dy must have 'float32' dtype, but has '${dy.dtype}'`); + } + const y = this.scopedRun(() => this.startTape(), () => this.endTape(), () => this.tidy("forward", f)); + assert(y instanceof Tensor, () => "The result y returned by f() must be a tensor."); + const filteredTape = getFilteredNodesXToY(this.state.activeTape, xs, y); + if (!allowNoGradients && filteredTape.length === 0 && xs.length > 0) { + throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y."); + } + return this.tidy("backward", () => { + const accumulatedGradientMap = {}; + accumulatedGradientMap[y.id] = dy == null ? ones(y.shape) : dy; + backpropagateGradients(accumulatedGradientMap, filteredTape, (f2) => this.tidy(f2), add); + const grads2 = xs.map((x) => accumulatedGradientMap[x.id]); + if (this.state.gradientDepth === 0) { + this.state.activeTape.forEach((node) => { + for (const tensor2 of node.saved) { + tensor2.dispose(); + } + }); + this.state.activeTape = null; + } + return {value: y, grads: grads2}; + }); + } + customGrad(f) { + assert(isFunction(f), () => "The f passed in customGrad(f) must be a function."); + return (...inputs) => { + assert(inputs.every((t) => t instanceof Tensor), () => "The args passed in customGrad(f)(x1, x2,...) must all be tensors"); + let res; + const inputMap = {}; + inputs.forEach((input2, i) => { + inputMap[i] = input2; + }); + const forwardFunc = (_, save) => { + res = f(...[...inputs, save]); + assert(res.value instanceof Tensor, () => "The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"); + assert(isFunction(res.gradFunc), () => "The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."); + return res.value; + }; + const backwardsFunc = (dy, saved) => { + const gradRes = res.gradFunc(dy, saved); + const grads2 = Array.isArray(gradRes) ? gradRes : [gradRes]; + assert(grads2.length === inputs.length, () => "The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."); + assert(grads2.every((t) => t instanceof Tensor), () => "The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors."); + const gradMap = {}; + grads2.forEach((grad2, i) => { + gradMap[i] = () => grad2; + }); + return gradMap; + }; + return this.runKernelFunc({ + forwardFunc, + backwardsFunc, + inputs: inputMap + }); + }; + } + readSync(dataId) { + const info = this.state.tensorInfo.get(dataId); + return info.backend.readSync(dataId); + } + read(dataId) { + const info = this.state.tensorInfo.get(dataId); + return info.backend.read(dataId); + } + async time(query) { + const start = now(); + const timingInfo = await this.backend.time(query); + timingInfo.wallMs = now() - start; + return timingInfo; + } + track(result) { + if (this.state.activeScope != null) { + result.scopeId = this.state.activeScope.id; + this.state.activeScope.track.push(result); + } + return result; + } + get registeredVariables() { + return this.state.registeredVariables; + } + reset() { + this.pendingBackendInitId++; + this.state.dispose(); + this.ENV.reset(); + this.state = new EngineState(); + for (const backendName in this.registry) { + this.disposeRegisteredKernels(backendName); + this.registry[backendName].dispose(); + delete this.registry[backendName]; + } + this.backendName = null; + this.backendInstance = null; + this.pendingBackendInit = null; + } + }; + Engine.nextTensorId = 0; + Engine.nextVariableId = 0; + function ones(shape) { + const values = makeOnesTypedArray(sizeFromShape(shape), "float32"); + return ENGINE.makeTensor(values, shape, "float32"); + } + function getOrMakeEngine() { + const ns = getGlobalNamespace(); + if (ns._tfengine == null) { + const environment = new Environment(ns); + ns._tfengine = new Engine(environment); + } + setEnvironmentGlobal(ns._tfengine.ENV); + setTensorTracker(() => ns._tfengine); + return ns._tfengine; + } + var ENGINE = getOrMakeEngine(); + function add(a, b) { + const inputs = {a, b}; + return ENGINE.runKernel(Add, inputs); + } + var device_util_exports = {}; + __export2(device_util_exports, { + isBrowser: () => isBrowser, + isMobile: () => isMobile + }); + /** + * @license + * Copyright 2017 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + function _isNavigatorDefined() { + return typeof navigator !== "undefined" && navigator != null; + } + function isMobile() { + if (_isNavigatorDefined()) { + const a = navigator.userAgent || navigator.vendor || window.opera; + return /(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(a) || /1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(a.substr(0, 4)); + } + return false; + } + function isBrowser() { + return typeof window !== "undefined" && window.document != null || typeof WorkerGlobalScope !== "undefined"; + } + /** + * @license + * Copyright 2019 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var ENV2 = env(); + ENV2.registerFlag("DEBUG", () => false, (debugValue) => { + if (debugValue) { + console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance."); + } + }); + ENV2.registerFlag("IS_BROWSER", () => isBrowser()); + ENV2.registerFlag("IS_NODE", () => typeof process !== "undefined" && typeof process.versions !== "undefined" && typeof process.versions.node !== "undefined"); + ENV2.registerFlag("IS_CHROME", () => typeof navigator !== "undefined" && navigator != null && navigator.userAgent != null && /Chrome/.test(navigator.userAgent) && /Google Inc/.test(navigator.vendor)); + ENV2.registerFlag("PROD", () => false); + ENV2.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY", () => ENV2.getBool("DEBUG")); + ENV2.registerFlag("DEPRECATION_WARNINGS_ENABLED", () => true); + ENV2.registerFlag("IS_TEST", () => false); + ENV2.registerFlag("CHECK_COMPUTATION_FOR_ERRORS", () => true); + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + function inferShape(val, dtype) { + let firstElem = val; + if (isTypedArray(val)) { + return dtype === "string" ? [] : [val.length]; + } + if (!Array.isArray(val)) { + return []; + } + const shape = []; + while (Array.isArray(firstElem) || isTypedArray(firstElem) && dtype !== "string") { + shape.push(firstElem.length); + firstElem = firstElem[0]; + } + if (Array.isArray(val) && env().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")) { + deepAssertShapeConsistency(val, shape, []); + } + return shape; + } + function deepAssertShapeConsistency(val, shape, indices) { + indices = indices || []; + if (!Array.isArray(val) && !isTypedArray(val)) { + assert(shape.length === 0, () => `Element arr[${indices.join("][")}] is a primitive, but should be an array/TypedArray of ${shape[0]} elements`); + return; + } + assert(shape.length > 0, () => `Element arr[${indices.join("][")}] should be a primitive, but is an array of ${val.length} elements`); + assert(val.length === shape[0], () => `Element arr[${indices.join("][")}] should have ${shape[0]} elements, but has ${val.length} elements`); + const subShape = shape.slice(1); + for (let i = 0; i < val.length; ++i) { + deepAssertShapeConsistency(val[i], subShape, indices.concat(i)); + } + } + function assertDtype(expectedDtype, actualDType, argName, functionName) { + if (expectedDtype === "string_or_numeric") { + return; + } + if (expectedDtype == null) { + throw new Error(`Expected dtype cannot be null.`); + } + if (expectedDtype !== "numeric" && expectedDtype !== actualDType || expectedDtype === "numeric" && actualDType === "string") { + throw new Error(`Argument '${argName}' passed to '${functionName}' must be ${expectedDtype} tensor, but got ${actualDType} tensor`); + } + } + function convertToTensor(x, argName, functionName, parseAsDtype = "numeric") { + if (x instanceof Tensor) { + assertDtype(parseAsDtype, x.dtype, argName, functionName); + return x; + } + let inferredDtype = inferDtype(x); + if (inferredDtype !== "string" && ["bool", "int32", "float32"].indexOf(parseAsDtype) >= 0) { + inferredDtype = parseAsDtype; + } + assertDtype(parseAsDtype, inferredDtype, argName, functionName); + if (x == null || !isTypedArray(x) && !Array.isArray(x) && typeof x !== "number" && typeof x !== "boolean" && typeof x !== "string") { + const type = x == null ? "null" : x.constructor.name; + throw new Error(`Argument '${argName}' passed to '${functionName}' must be a Tensor or TensorLike, but got '${type}'`); + } + const inferredShape = inferShape(x, inferredDtype); + if (!isTypedArray(x) && !Array.isArray(x)) { + x = [x]; + } + const skipTypedArray = true; + const values = inferredDtype !== "string" ? toTypedArray(x, inferredDtype) : flatten(x, [], skipTypedArray); + return ENGINE.makeTensor(values, inferredShape, inferredDtype); + } + function convertToTensorArray(arg, argName, functionName, parseAsDtype = "numeric") { + if (!Array.isArray(arg)) { + throw new Error(`Argument ${argName} passed to ${functionName} must be a \`Tensor[]\` or \`TensorLike[]\``); + } + const tensors = arg; + return tensors.map((t, i) => convertToTensor(t, `${argName}[${i}]`, functionName, parseAsDtype)); + } + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var OP_SCOPE_SUFFIX = "__op"; + function op(f) { + const keys = Object.keys(f); + if (keys.length !== 1) { + throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${keys.length} keys.`); + } + let opName = keys[0]; + const fn = f[opName]; + if (opName.endsWith("_")) { + opName = opName.substring(0, opName.length - 1); + } + opName = opName + OP_SCOPE_SUFFIX; + const f2 = (...args) => { + ENGINE.startScope(opName); + try { + const result = fn(...args); + if (isPromise(result)) { + console.error("Cannot return a Promise inside of tidy."); + } + ENGINE.endScope(result); + return result; + } catch (ex) { + ENGINE.endScope(null); + throw ex; + } + }; + Object.defineProperty(f2, "name", {value: opName, configurable: true}); + return f2; + } + /** + * @license + * Copyright 2020 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + function complex_(real4, imag4) { + const $real = convertToTensor(real4, "real", "complex"); + const $imag = convertToTensor(imag4, "imag", "complex"); + assertShapesMatch($real.shape, $imag.shape, `real and imag shapes, ${$real.shape} and ${$imag.shape}, must match in call to tf.complex().`); + const inputs = {real: $real, imag: $imag}; + return ENGINE.runKernel(Complex, inputs); + } + var complex = op({complex_}); + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + function makeTensor(values, shape, inferredShape, dtype) { + if (dtype == null) { + dtype = inferDtype(values); + } + if (dtype === "complex64") { + throw new Error(`Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).`); + } + if (!isTypedArray(values) && !Array.isArray(values) && typeof values !== "number" && typeof values !== "boolean" && typeof values !== "string") { + throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray"); + } + if (shape != null) { + assertNonNegativeIntegerDimensions(shape); + const providedSize = sizeFromShape(shape); + const inferredSize = sizeFromShape(inferredShape); + assert(providedSize === inferredSize, () => `Based on the provided shape, [${shape}], the tensor should have ${providedSize} values but has ${inferredSize}`); + for (let i = 0; i < inferredShape.length; ++i) { + const inferred = inferredShape[i]; + const flatDimsDontMatch = i === inferredShape.length - 1 ? inferred !== sizeFromShape(shape.slice(i)) : true; + assert(inferredShape[i] === shape[i] || !flatDimsDontMatch, () => `Error creating a new Tensor. Inferred shape (${inferredShape}) does not match the provided shape (${shape}). `); + } + } + if (!isTypedArray(values) && !Array.isArray(values)) { + values = [values]; + } + shape = shape || inferredShape; + values = dtype !== "string" ? toTypedArray(values, dtype) : flatten(values, [], true); + return ENGINE.makeTensor(values, shape, dtype); + } + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + function tensor(values, shape, dtype) { + const inferredShape = inferShape(values, dtype); + return makeTensor(values, shape, inferredShape, dtype); + } + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var DTYPE_VALUE_SIZE_MAP = { + float32: 4, + float16: 2, + int32: 4, + uint16: 2, + uint8: 1, + bool: 1, + complex64: 8 + }; + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var NUM_BYTES_STRING_LENGTH = 4; + async function encodeWeights(tensors, group) { + const specs = []; + const dataPromises = []; + const names = Array.isArray(tensors) ? tensors.map((tensor2) => tensor2.name) : Object.keys(tensors); + for (let i = 0; i < names.length; ++i) { + const name2 = names[i]; + const t = Array.isArray(tensors) ? tensors[i].tensor : tensors[name2]; + if (t.dtype !== "float32" && t.dtype !== "int32" && t.dtype !== "bool" && t.dtype !== "string" && t.dtype !== "complex64") { + throw new Error(`Unsupported dtype in weight '${name2}': ${t.dtype}`); + } + const spec = {name: name2, shape: t.shape, dtype: t.dtype}; + if (t.dtype === "string") { + const utf8bytes = new Promise(async (resolve) => { + const vals = await t.bytes(); + const totalNumBytes = vals.reduce((p2, c) => p2 + c.length, 0) + NUM_BYTES_STRING_LENGTH * vals.length; + const bytes = new Uint8Array(totalNumBytes); + let offset = 0; + for (let i2 = 0; i2 < vals.length; i2++) { + const val = vals[i2]; + const bytesOfLength = new Uint8Array(new Uint32Array([val.length]).buffer); + bytes.set(bytesOfLength, offset); + offset += NUM_BYTES_STRING_LENGTH; + bytes.set(val, offset); + offset += val.length; + } + resolve(bytes); + }); + dataPromises.push(utf8bytes); + } else { + dataPromises.push(t.data()); + } + if (group != null) { + spec.group = group; + } + specs.push(spec); + } + const tensorValues = await Promise.all(dataPromises); + return {data: concatenateTypedArrays(tensorValues), specs}; + } + function decodeWeights(buffer2, specs) { + const out = {}; + let float16Decode; + let offset = 0; + for (const spec of specs) { + const name2 = spec.name; + const dtype = spec.dtype; + const shape = spec.shape; + const size = sizeFromShape(shape); + let values; + if ("quantization" in spec) { + const quantization = spec.quantization; + if (quantization.dtype === "uint8" || quantization.dtype === "uint16") { + if (!("min" in quantization && "scale" in quantization)) { + throw new Error(`Weight ${spec.name} with quantization ${quantization.dtype} doesn't have corresponding metadata min and scale.`); + } + } else if (quantization.dtype === "float16") { + if (dtype !== "float32") { + throw new Error(`Weight ${spec.name} is quantized with ${quantization.dtype} which only supports weights of type float32 not ${dtype}.`); + } + } else { + throw new Error(`Weight ${spec.name} has unknown quantization dtype ${quantization.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`); + } + const quantizationSizeFactor = DTYPE_VALUE_SIZE_MAP[quantization.dtype]; + const byteBuffer = buffer2.slice(offset, offset + size * quantizationSizeFactor); + const quantizedArray = quantization.dtype === "uint8" ? new Uint8Array(byteBuffer) : new Uint16Array(byteBuffer); + if (dtype === "float32") { + if (quantization.dtype === "uint8" || quantization.dtype === "uint16") { + values = new Float32Array(quantizedArray.length); + for (let i = 0; i < quantizedArray.length; i++) { + const v = quantizedArray[i]; + values[i] = v * quantization.scale + quantization.min; + } + } else if (quantization.dtype === "float16") { + if (float16Decode === void 0) { + float16Decode = getFloat16Decoder(); + } + values = float16Decode(quantizedArray); + } else { + throw new Error(`Unsupported quantization type ${quantization.dtype} for weight type float32.`); + } + } else if (dtype === "int32") { + if (quantization.dtype !== "uint8" && quantization.dtype !== "uint16") { + throw new Error(`Unsupported quantization type ${quantization.dtype} for weight type int32.`); + } + values = new Int32Array(quantizedArray.length); + for (let i = 0; i < quantizedArray.length; i++) { + const v = quantizedArray[i]; + values[i] = Math.round(v * quantization.scale + quantization.min); + } + } else { + throw new Error(`Unsupported dtype in weight '${name2}': ${dtype}`); + } + offset += size * quantizationSizeFactor; + } else if (dtype === "string") { + const size2 = sizeFromShape(spec.shape); + values = []; + for (let i = 0; i < size2; i++) { + const byteLength = new Uint32Array(buffer2.slice(offset, offset + NUM_BYTES_STRING_LENGTH))[0]; + offset += NUM_BYTES_STRING_LENGTH; + const bytes = new Uint8Array(buffer2.slice(offset, offset + byteLength)); + values.push(bytes); + offset += byteLength; + } + } else { + const dtypeFactor = DTYPE_VALUE_SIZE_MAP[dtype]; + const byteBuffer = buffer2.slice(offset, offset + size * dtypeFactor); + if (dtype === "float32") { + values = new Float32Array(byteBuffer); + } else if (dtype === "int32") { + values = new Int32Array(byteBuffer); + } else if (dtype === "bool") { + values = new Uint8Array(byteBuffer); + } else if (dtype === "complex64") { + values = new Float32Array(byteBuffer); + const real4 = new Float32Array(values.length / 2); + const image3 = new Float32Array(values.length / 2); + for (let i = 0; i < real4.length; i++) { + real4[i] = values[i * 2]; + image3[i] = values[i * 2 + 1]; + } + const realTensor = tensor(real4, shape, "float32"); + const imageTensor = tensor(image3, shape, "float32"); + out[name2] = complex(realTensor, imageTensor); + realTensor.dispose(); + imageTensor.dispose(); + } else { + throw new Error(`Unsupported dtype in weight '${name2}': ${dtype}`); + } + offset += size * dtypeFactor; + } + if (dtype !== "complex64") { + out[name2] = tensor(values, shape, dtype); + } + } + return out; + } + function concatenateTypedArrays(xs) { + if (xs === null) { + throw new Error(`Invalid input value: ${JSON.stringify(xs)}`); + } + let totalByteLength = 0; + const normalizedXs = []; + xs.forEach((x) => { + totalByteLength += x.byteLength; + normalizedXs.push(x.byteLength === x.buffer.byteLength ? x : new x.constructor(x)); + if (!(x instanceof Float32Array || x instanceof Int32Array || x instanceof Uint8Array)) { + throw new Error(`Unsupported TypedArray subtype: ${x.constructor.name}`); + } + }); + const y = new Uint8Array(totalByteLength); + let offset = 0; + normalizedXs.forEach((x) => { + y.set(new Uint8Array(x.buffer), offset); + offset += x.byteLength; + }); + return y.buffer; + } + var useNodeBuffer = typeof Buffer !== "undefined" && (typeof Blob === "undefined" || typeof atob === "undefined" || typeof btoa === "undefined"); + function stringByteLength(str) { + if (useNodeBuffer) { + return Buffer.byteLength(str); + } + return new Blob([str]).size; + } + function arrayBufferToBase64String(buffer2) { + if (useNodeBuffer) { + return Buffer.from(buffer2).toString("base64"); + } + const buf = new Uint8Array(buffer2); + let s = ""; + for (let i = 0, l = buf.length; i < l; i++) { + s += String.fromCharCode(buf[i]); + } + return btoa(s); + } + function base64StringToArrayBuffer(str) { + if (useNodeBuffer) { + const buf = Buffer.from(str, "base64"); + return buf.buffer.slice(buf.byteOffset, buf.byteOffset + buf.byteLength); + } + const s = atob(str); + const buffer2 = new Uint8Array(s.length); + for (let i = 0; i < s.length; ++i) { + buffer2.set([s.charCodeAt(i)], i); + } + return buffer2.buffer; + } + function concatenateArrayBuffers(buffers) { + if (buffers.length === 1) { + return buffers[0]; + } + let totalByteLength = 0; + buffers.forEach((buffer2) => { + totalByteLength += buffer2.byteLength; + }); + const temp = new Uint8Array(totalByteLength); + let offset = 0; + buffers.forEach((buffer2) => { + temp.set(new Uint8Array(buffer2), offset); + offset += buffer2.byteLength; + }); + return temp.buffer; + } + function basename(path) { + const SEPARATOR = "/"; + path = path.trim(); + while (path.endsWith(SEPARATOR)) { + path = path.slice(0, path.length - 1); + } + const items = path.split(SEPARATOR); + return items[items.length - 1]; + } + function getModelArtifactsInfoForJSON(modelArtifacts) { + if (modelArtifacts.modelTopology instanceof ArrayBuffer) { + throw new Error("Expected JSON model topology, received ArrayBuffer."); + } + return { + dateSaved: new Date(), + modelTopologyType: "JSON", + modelTopologyBytes: modelArtifacts.modelTopology == null ? 0 : stringByteLength(JSON.stringify(modelArtifacts.modelTopology)), + weightSpecsBytes: modelArtifacts.weightSpecs == null ? 0 : stringByteLength(JSON.stringify(modelArtifacts.weightSpecs)), + weightDataBytes: modelArtifacts.weightData == null ? 0 : modelArtifacts.weightData.byteLength + }; + } + function computeFloat16MantisaTable() { + const convertMantissa = (i) => { + let m = i << 13; + let e = 0; + while ((m & 8388608) === 0) { + e -= 8388608; + m <<= 1; + } + m &= ~8388608; + e += 947912704; + return m | e; + }; + const mantisaTable = new Uint32Array(2048); + mantisaTable[0] = 0; + for (let i = 1; i < 1024; i++) { + mantisaTable[i] = convertMantissa(i); + } + for (let i = 1024; i < 2048; i++) { + mantisaTable[i] = 939524096 + (i - 1024 << 13); + } + return mantisaTable; + } + function computeFloat16ExponentTable() { + const exponentTable = new Uint32Array(64); + exponentTable[0] = 0; + exponentTable[31] = 1199570944; + exponentTable[32] = 2147483648; + exponentTable[63] = 3347054592; + for (let i = 1; i < 31; i++) { + exponentTable[i] = i << 23; + } + for (let i = 33; i < 63; i++) { + exponentTable[i] = 2147483648 + (i - 32 << 23); + } + return exponentTable; + } + function computeFloat16OffsetTable() { + const offsetTable = new Uint32Array(64); + for (let i = 0; i < 64; i++) { + offsetTable[i] = 1024; + } + offsetTable[0] = offsetTable[32] = 0; + return offsetTable; + } + function getFloat16Decoder() { + const mantisaTable = computeFloat16MantisaTable(); + const exponentTable = computeFloat16ExponentTable(); + const offsetTable = computeFloat16OffsetTable(); + return (quantizedArray) => { + const buffer2 = new ArrayBuffer(4 * quantizedArray.length); + const bufferUint32View = new Uint32Array(buffer2); + for (let index = 0; index < quantizedArray.length; index++) { + const float16Bits = quantizedArray[index]; + const float32Bits = mantisaTable[offsetTable[float16Bits >> 10] + (float16Bits & 1023)] + exponentTable[float16Bits >> 10]; + bufferUint32View[index] = float32Bits; + } + return new Float32Array(buffer2); + }; + } + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var IORouterRegistry = class { + constructor() { + this.saveRouters = []; + this.loadRouters = []; + } + static getInstance() { + if (IORouterRegistry.instance == null) { + IORouterRegistry.instance = new IORouterRegistry(); + } + return IORouterRegistry.instance; + } + static registerSaveRouter(saveRouter) { + IORouterRegistry.getInstance().saveRouters.push(saveRouter); + } + static registerLoadRouter(loadRouter) { + IORouterRegistry.getInstance().loadRouters.push(loadRouter); + } + static getSaveHandlers(url) { + return IORouterRegistry.getHandlers(url, "save"); + } + static getLoadHandlers(url, loadOptions) { + return IORouterRegistry.getHandlers(url, "load", loadOptions); + } + static getHandlers(url, handlerType, loadOptions) { + const validHandlers = []; + const routers = handlerType === "load" ? IORouterRegistry.getInstance().loadRouters : IORouterRegistry.getInstance().saveRouters; + routers.forEach((router) => { + const handler = router(url, loadOptions); + if (handler !== null) { + validHandlers.push(handler); + } + }); + return validHandlers; + } + }; + var registerSaveRouter = (loudRouter) => IORouterRegistry.registerSaveRouter(loudRouter); + var registerLoadRouter = (loudRouter) => IORouterRegistry.registerLoadRouter(loudRouter); + var getSaveHandlers = (url) => IORouterRegistry.getSaveHandlers(url); + var getLoadHandlers = (url, loadOptions) => IORouterRegistry.getLoadHandlers(url, loadOptions); + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var DATABASE_NAME = "tensorflowjs"; + var DATABASE_VERSION = 1; + var MODEL_STORE_NAME = "models_store"; + var INFO_STORE_NAME = "model_info_store"; + function getIndexedDBFactory() { + if (!env().getBool("IS_BROWSER")) { + throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser."); + } + const theWindow = typeof window === "undefined" ? self : window; + const factory = theWindow.indexedDB || theWindow.mozIndexedDB || theWindow.webkitIndexedDB || theWindow.msIndexedDB || theWindow.shimIndexedDB; + if (factory == null) { + throw new Error("The current browser does not appear to support IndexedDB."); + } + return factory; + } + function setUpDatabase(openRequest) { + const db = openRequest.result; + db.createObjectStore(MODEL_STORE_NAME, {keyPath: "modelPath"}); + db.createObjectStore(INFO_STORE_NAME, {keyPath: "modelPath"}); + } + var BrowserIndexedDB = class { + constructor(modelPath) { + this.indexedDB = getIndexedDBFactory(); + if (modelPath == null || !modelPath) { + throw new Error("For IndexedDB, modelPath must not be null, undefined or empty."); + } + this.modelPath = modelPath; + } + async save(modelArtifacts) { + if (modelArtifacts.modelTopology instanceof ArrayBuffer) { + throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet."); + } + return this.databaseAction(this.modelPath, modelArtifacts); + } + async load() { + return this.databaseAction(this.modelPath); + } + databaseAction(modelPath, modelArtifacts) { + return new Promise((resolve, reject) => { + const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION); + openRequest.onupgradeneeded = () => setUpDatabase(openRequest); + openRequest.onsuccess = () => { + const db = openRequest.result; + if (modelArtifacts == null) { + const modelTx = db.transaction(MODEL_STORE_NAME, "readonly"); + const modelStore = modelTx.objectStore(MODEL_STORE_NAME); + const getRequest = modelStore.get(this.modelPath); + getRequest.onsuccess = () => { + if (getRequest.result == null) { + db.close(); + return reject(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`)); + } else { + resolve(getRequest.result.modelArtifacts); + } + }; + getRequest.onerror = (error) => { + db.close(); + return reject(getRequest.error); + }; + modelTx.oncomplete = () => db.close(); + } else { + const modelArtifactsInfo = getModelArtifactsInfoForJSON(modelArtifacts); + const infoTx = db.transaction(INFO_STORE_NAME, "readwrite"); + let infoStore = infoTx.objectStore(INFO_STORE_NAME); + const putInfoRequest = infoStore.put({modelPath: this.modelPath, modelArtifactsInfo}); + let modelTx; + putInfoRequest.onsuccess = () => { + modelTx = db.transaction(MODEL_STORE_NAME, "readwrite"); + const modelStore = modelTx.objectStore(MODEL_STORE_NAME); + const putModelRequest = modelStore.put({ + modelPath: this.modelPath, + modelArtifacts, + modelArtifactsInfo + }); + putModelRequest.onsuccess = () => resolve({modelArtifactsInfo}); + putModelRequest.onerror = (error) => { + infoStore = infoTx.objectStore(INFO_STORE_NAME); + const deleteInfoRequest = infoStore.delete(this.modelPath); + deleteInfoRequest.onsuccess = () => { + db.close(); + return reject(putModelRequest.error); + }; + deleteInfoRequest.onerror = (error2) => { + db.close(); + return reject(putModelRequest.error); + }; + }; + }; + putInfoRequest.onerror = (error) => { + db.close(); + return reject(putInfoRequest.error); + }; + infoTx.oncomplete = () => { + if (modelTx == null) { + db.close(); + } else { + modelTx.oncomplete = () => db.close(); + } + }; + } + }; + openRequest.onerror = (error) => reject(openRequest.error); + }); + } + }; + BrowserIndexedDB.URL_SCHEME = "indexeddb://"; + var indexedDBRouter = (url) => { + if (!env().getBool("IS_BROWSER")) { + return null; + } else { + if (!Array.isArray(url) && url.startsWith(BrowserIndexedDB.URL_SCHEME)) { + return browserIndexedDB(url.slice(BrowserIndexedDB.URL_SCHEME.length)); + } else { + return null; + } + } + }; + IORouterRegistry.registerSaveRouter(indexedDBRouter); + IORouterRegistry.registerLoadRouter(indexedDBRouter); + function browserIndexedDB(modelPath) { + return new BrowserIndexedDB(modelPath); + } + function maybeStripScheme(key) { + return key.startsWith(BrowserIndexedDB.URL_SCHEME) ? key.slice(BrowserIndexedDB.URL_SCHEME.length) : key; + } + var BrowserIndexedDBManager = class { + constructor() { + this.indexedDB = getIndexedDBFactory(); + } + async listModels() { + return new Promise((resolve, reject) => { + const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION); + openRequest.onupgradeneeded = () => setUpDatabase(openRequest); + openRequest.onsuccess = () => { + const db = openRequest.result; + const tx = db.transaction(INFO_STORE_NAME, "readonly"); + const store = tx.objectStore(INFO_STORE_NAME); + const getAllInfoRequest = store.getAll(); + getAllInfoRequest.onsuccess = () => { + const out = {}; + for (const item of getAllInfoRequest.result) { + out[item.modelPath] = item.modelArtifactsInfo; + } + resolve(out); + }; + getAllInfoRequest.onerror = (error) => { + db.close(); + return reject(getAllInfoRequest.error); + }; + tx.oncomplete = () => db.close(); + }; + openRequest.onerror = (error) => reject(openRequest.error); + }); + } + async removeModel(path) { + path = maybeStripScheme(path); + return new Promise((resolve, reject) => { + const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION); + openRequest.onupgradeneeded = () => setUpDatabase(openRequest); + openRequest.onsuccess = () => { + const db = openRequest.result; + const infoTx = db.transaction(INFO_STORE_NAME, "readwrite"); + const infoStore = infoTx.objectStore(INFO_STORE_NAME); + const getInfoRequest = infoStore.get(path); + let modelTx; + getInfoRequest.onsuccess = () => { + if (getInfoRequest.result == null) { + db.close(); + return reject(new Error(`Cannot find model with path '${path}' in IndexedDB.`)); + } else { + const deleteInfoRequest = infoStore.delete(path); + const deleteModelData = () => { + modelTx = db.transaction(MODEL_STORE_NAME, "readwrite"); + const modelStore = modelTx.objectStore(MODEL_STORE_NAME); + const deleteModelRequest = modelStore.delete(path); + deleteModelRequest.onsuccess = () => resolve(getInfoRequest.result.modelArtifactsInfo); + deleteModelRequest.onerror = (error) => reject(getInfoRequest.error); + }; + deleteInfoRequest.onsuccess = deleteModelData; + deleteInfoRequest.onerror = (error) => { + deleteModelData(); + db.close(); + return reject(getInfoRequest.error); + }; + } + }; + getInfoRequest.onerror = (error) => { + db.close(); + return reject(getInfoRequest.error); + }; + infoTx.oncomplete = () => { + if (modelTx == null) { + db.close(); + } else { + modelTx.oncomplete = () => db.close(); + } + }; + }; + openRequest.onerror = (error) => reject(openRequest.error); + }); + } + }; + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var PATH_SEPARATOR = "/"; + var PATH_PREFIX = "tensorflowjs_models"; + var INFO_SUFFIX = "info"; + var MODEL_TOPOLOGY_SUFFIX = "model_topology"; + var WEIGHT_SPECS_SUFFIX = "weight_specs"; + var WEIGHT_DATA_SUFFIX = "weight_data"; + var MODEL_METADATA_SUFFIX = "model_metadata"; + function getModelKeys(path) { + return { + info: [PATH_PREFIX, path, INFO_SUFFIX].join(PATH_SEPARATOR), + topology: [PATH_PREFIX, path, MODEL_TOPOLOGY_SUFFIX].join(PATH_SEPARATOR), + weightSpecs: [PATH_PREFIX, path, WEIGHT_SPECS_SUFFIX].join(PATH_SEPARATOR), + weightData: [PATH_PREFIX, path, WEIGHT_DATA_SUFFIX].join(PATH_SEPARATOR), + modelMetadata: [PATH_PREFIX, path, MODEL_METADATA_SUFFIX].join(PATH_SEPARATOR) + }; + } + function getModelPathFromKey(key) { + const items = key.split(PATH_SEPARATOR); + if (items.length < 3) { + throw new Error(`Invalid key format: ${key}`); + } + return items.slice(1, items.length - 1).join(PATH_SEPARATOR); + } + function maybeStripScheme2(key) { + return key.startsWith(BrowserLocalStorage.URL_SCHEME) ? key.slice(BrowserLocalStorage.URL_SCHEME.length) : key; + } + var BrowserLocalStorage = class { + constructor(modelPath) { + if (!env().getBool("IS_BROWSER") || typeof window === "undefined" || typeof window.localStorage === "undefined") { + throw new Error("The current environment does not support local storage."); + } + this.LS = window.localStorage; + if (modelPath == null || !modelPath) { + throw new Error("For local storage, modelPath must not be null, undefined or empty."); + } + this.modelPath = modelPath; + this.keys = getModelKeys(this.modelPath); + } + async save(modelArtifacts) { + if (modelArtifacts.modelTopology instanceof ArrayBuffer) { + throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet."); + } else { + const topology = JSON.stringify(modelArtifacts.modelTopology); + const weightSpecs = JSON.stringify(modelArtifacts.weightSpecs); + const modelArtifactsInfo = getModelArtifactsInfoForJSON(modelArtifacts); + try { + this.LS.setItem(this.keys.info, JSON.stringify(modelArtifactsInfo)); + this.LS.setItem(this.keys.topology, topology); + this.LS.setItem(this.keys.weightSpecs, weightSpecs); + this.LS.setItem(this.keys.weightData, arrayBufferToBase64String(modelArtifacts.weightData)); + const result = { + format: modelArtifacts.format, + generatedBy: modelArtifacts.generatedBy, + convertedBy: modelArtifacts.convertedBy + }; + if (modelArtifacts.signature != null) { + result.signature = modelArtifacts.signature; + } + if (modelArtifacts.userDefinedMetadata != null) { + result.userDefinedMetadata = modelArtifacts.userDefinedMetadata; + } + if (modelArtifacts.modelInitializer != null) { + result.modelInitializer = modelArtifacts.modelInitializer; + } + this.LS.setItem(this.keys.modelMetadata, JSON.stringify(result)); + return {modelArtifactsInfo}; + } catch (err) { + this.LS.removeItem(this.keys.info); + this.LS.removeItem(this.keys.topology); + this.LS.removeItem(this.keys.weightSpecs); + this.LS.removeItem(this.keys.weightData); + this.LS.removeItem(this.keys.modelMetadata); + throw new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${modelArtifactsInfo.modelTopologyBytes}, weightSpecsBytes=${modelArtifactsInfo.weightSpecsBytes}, weightDataBytes=${modelArtifactsInfo.weightDataBytes}.`); + } + } + } + async load() { + const info = JSON.parse(this.LS.getItem(this.keys.info)); + if (info == null) { + throw new Error(`In local storage, there is no model with name '${this.modelPath}'`); + } + if (info.modelTopologyType !== "JSON") { + throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet."); + } + const out = {}; + const topology = JSON.parse(this.LS.getItem(this.keys.topology)); + if (topology == null) { + throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`); + } + out.modelTopology = topology; + const weightSpecs = JSON.parse(this.LS.getItem(this.keys.weightSpecs)); + if (weightSpecs == null) { + throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`); + } + out.weightSpecs = weightSpecs; + const metadataString = this.LS.getItem(this.keys.modelMetadata); + if (metadataString != null) { + const metadata = JSON.parse(metadataString); + out.format = metadata["format"]; + out.generatedBy = metadata["generatedBy"]; + out.convertedBy = metadata["convertedBy"]; + if (metadata["signature"] != null) { + out.signature = metadata["signature"]; + } + if (metadata["userDefinedMetadata"] != null) { + out.userDefinedMetadata = metadata["userDefinedMetadata"]; + } + if (metadata["modelInitializer"] != null) { + out.modelInitializer = metadata["modelInitializer"]; + } + } + const weightDataBase64 = this.LS.getItem(this.keys.weightData); + if (weightDataBase64 == null) { + throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`); + } + out.weightData = base64StringToArrayBuffer(weightDataBase64); + return out; + } + }; + BrowserLocalStorage.URL_SCHEME = "localstorage://"; + var localStorageRouter = (url) => { + if (!env().getBool("IS_BROWSER")) { + return null; + } else { + if (!Array.isArray(url) && url.startsWith(BrowserLocalStorage.URL_SCHEME)) { + return browserLocalStorage(url.slice(BrowserLocalStorage.URL_SCHEME.length)); + } else { + return null; + } + } + }; + IORouterRegistry.registerSaveRouter(localStorageRouter); + IORouterRegistry.registerLoadRouter(localStorageRouter); + function browserLocalStorage(modelPath) { + return new BrowserLocalStorage(modelPath); + } + var BrowserLocalStorageManager = class { + constructor() { + assert(env().getBool("IS_BROWSER"), () => "Current environment is not a web browser"); + assert(typeof window === "undefined" || typeof window.localStorage !== "undefined", () => "Current browser does not appear to support localStorage"); + this.LS = window.localStorage; + } + async listModels() { + const out = {}; + const prefix = PATH_PREFIX + PATH_SEPARATOR; + const suffix = PATH_SEPARATOR + INFO_SUFFIX; + for (let i = 0; i < this.LS.length; ++i) { + const key = this.LS.key(i); + if (key.startsWith(prefix) && key.endsWith(suffix)) { + const modelPath = getModelPathFromKey(key); + out[modelPath] = JSON.parse(this.LS.getItem(key)); + } + } + return out; + } + async removeModel(path) { + path = maybeStripScheme2(path); + const keys = getModelKeys(path); + if (this.LS.getItem(keys.info) == null) { + throw new Error(`Cannot find model at path '${path}'`); + } + const info = JSON.parse(this.LS.getItem(keys.info)); + this.LS.removeItem(keys.info); + this.LS.removeItem(keys.topology); + this.LS.removeItem(keys.weightSpecs); + this.LS.removeItem(keys.weightData); + return info; + } + }; + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var URL_SCHEME_SUFFIX = "://"; + var ModelStoreManagerRegistry = class { + constructor() { + this.managers = {}; + } + static getInstance() { + if (ModelStoreManagerRegistry.instance == null) { + ModelStoreManagerRegistry.instance = new ModelStoreManagerRegistry(); + } + return ModelStoreManagerRegistry.instance; + } + static registerManager(scheme, manager) { + assert(scheme != null, () => "scheme must not be undefined or null."); + if (scheme.endsWith(URL_SCHEME_SUFFIX)) { + scheme = scheme.slice(0, scheme.indexOf(URL_SCHEME_SUFFIX)); + } + assert(scheme.length > 0, () => "scheme must not be an empty string."); + const registry = ModelStoreManagerRegistry.getInstance(); + assert(registry.managers[scheme] == null, () => `A model store manager is already registered for scheme '${scheme}'.`); + registry.managers[scheme] = manager; + } + static getManager(scheme) { + const manager = this.getInstance().managers[scheme]; + if (manager == null) { + throw new Error(`Cannot find model manager for scheme '${scheme}'`); + } + return manager; + } + static getSchemes() { + return Object.keys(this.getInstance().managers); + } + }; + function parseURL(url) { + if (url.indexOf(URL_SCHEME_SUFFIX) === -1) { + throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ModelStoreManagerRegistry.getSchemes().join(",")}`); + } + return { + scheme: url.split(URL_SCHEME_SUFFIX)[0], + path: url.split(URL_SCHEME_SUFFIX)[1] + }; + } + async function cloneModelInternal(sourceURL, destURL, deleteSource = false) { + assert(sourceURL !== destURL, () => `Old path and new path are the same: '${sourceURL}'`); + const loadHandlers = IORouterRegistry.getLoadHandlers(sourceURL); + assert(loadHandlers.length > 0, () => `Copying failed because no load handler is found for source URL ${sourceURL}.`); + assert(loadHandlers.length < 2, () => `Copying failed because more than one (${loadHandlers.length}) load handlers for source URL ${sourceURL}.`); + const loadHandler = loadHandlers[0]; + const saveHandlers = IORouterRegistry.getSaveHandlers(destURL); + assert(saveHandlers.length > 0, () => `Copying failed because no save handler is found for destination URL ${destURL}.`); + assert(saveHandlers.length < 2, () => `Copying failed because more than one (${loadHandlers.length}) save handlers for destination URL ${destURL}.`); + const saveHandler = saveHandlers[0]; + const sourceScheme = parseURL(sourceURL).scheme; + const sourcePath = parseURL(sourceURL).path; + const sameMedium = sourceScheme === parseURL(sourceURL).scheme; + const modelArtifacts = await loadHandler.load(); + if (deleteSource && sameMedium) { + await ModelStoreManagerRegistry.getManager(sourceScheme).removeModel(sourcePath); + } + const saveResult = await saveHandler.save(modelArtifacts); + if (deleteSource && !sameMedium) { + await ModelStoreManagerRegistry.getManager(sourceScheme).removeModel(sourcePath); + } + return saveResult.modelArtifactsInfo; + } + async function listModels() { + const schemes = ModelStoreManagerRegistry.getSchemes(); + const out = {}; + for (const scheme of schemes) { + const schemeOut = await ModelStoreManagerRegistry.getManager(scheme).listModels(); + for (const path in schemeOut) { + const url = scheme + URL_SCHEME_SUFFIX + path; + out[url] = schemeOut[path]; + } + } + return out; + } + async function removeModel(url) { + const schemeAndPath = parseURL(url); + const manager = ModelStoreManagerRegistry.getManager(schemeAndPath.scheme); + return manager.removeModel(schemeAndPath.path); + } + async function copyModel(sourceURL, destURL) { + const deleteSource = false; + return cloneModelInternal(sourceURL, destURL, deleteSource); + } + async function moveModel(sourceURL, destURL) { + const deleteSource = true; + return cloneModelInternal(sourceURL, destURL, deleteSource); + } + /** + * @license + * Copyright 2019 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var PlatformBrowser = class { + fetch(path, init2) { + return fetch(path, init2); + } + now() { + return performance.now(); + } + encode(text, encoding) { + if (encoding !== "utf-8" && encoding !== "utf8") { + throw new Error(`Browser's encoder only supports utf-8, but got ${encoding}`); + } + if (this.textEncoder == null) { + this.textEncoder = new TextEncoder(); + } + return this.textEncoder.encode(text); + } + decode(bytes, encoding) { + return new TextDecoder(encoding).decode(bytes); + } + }; + if (env().get("IS_BROWSER")) { + env().setPlatform("browser", new PlatformBrowser()); + try { + ModelStoreManagerRegistry.registerManager(BrowserLocalStorage.URL_SCHEME, new BrowserLocalStorageManager()); + } catch (err) { + } + try { + ModelStoreManagerRegistry.registerManager(BrowserIndexedDB.URL_SCHEME, new BrowserIndexedDBManager()); + } catch (err) { + } + } + /** + * @license + * Copyright 2019 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var getNodeFetch = { + importFetch: () => require_browser() + }; + var systemFetch; + var PlatformNode = class { + constructor() { + this.util = require("util"); + this.textEncoder = new this.util.TextEncoder(); + } + fetch(path, requestInits) { + if (env().global.fetch != null) { + return env().global.fetch(path, requestInits); + } + if (systemFetch == null) { + systemFetch = getNodeFetch.importFetch(); + } + return systemFetch(path, requestInits); + } + now() { + const time2 = process.hrtime(); + return time2[0] * 1e3 + time2[1] / 1e6; + } + encode(text, encoding) { + if (encoding !== "utf-8" && encoding !== "utf8") { + throw new Error(`Node built-in encoder only supports utf-8, but got ${encoding}`); + } + return this.textEncoder.encode(text); + } + decode(bytes, encoding) { + if (bytes.length === 0) { + return ""; + } + return new this.util.TextDecoder(encoding).decode(bytes); + } + }; + if (env().get("IS_NODE")) { + env().setPlatform("node", new PlatformNode()); + } + /** + * @license + * Copyright 2020 Google Inc. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + function buffer(shape, dtype = "float32", values) { + dtype = dtype || "float32"; + assertNonNegativeIntegerDimensions(shape); + return new TensorBuffer(shape, dtype, values); + } + /** + * @license + * Copyright 2020 Google Inc. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + function cast_(x, dtype) { + const $x = convertToTensor(x, "x", "cast"); + if (!isValidDtype(dtype)) { + throw new Error(`Failed to cast to unknown dtype ${dtype}`); + } + if (dtype === "string" && $x.dtype !== "string" || dtype !== "string" && $x.dtype === "string") { + throw new Error("Only strings can be casted to strings"); + } + const inputs = {x: $x}; + const attrs = {dtype}; + return ENGINE.runKernel(Cast, inputs, attrs); + } + var cast = op({cast_}); + /** + * @license + * Copyright 2020 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + function clone_(x) { + const $x = convertToTensor(x, "x", "clone", "string_or_numeric"); + const inputs = {x: $x}; + return ENGINE.runKernel(Identity, inputs); + } + var clone = op({clone_}); + /** + * @license + * Copyright 2020 Google Inc. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + function print2(x, verbose = false) { + console.log(x.toString(verbose)); + } + /** + * @license + * Copyright 2020 Google Inc. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + getOrMakeEngine(); + var opHandler2 = { + buffer, + cast, + clone, + print: print2 + }; + setOpHandler(opHandler2); + var io_exports = {}; + __export2(io_exports, { + browserFiles: () => browserFiles, + browserHTTPRequest: () => browserHTTPRequest, + concatenateArrayBuffers: () => concatenateArrayBuffers, + copyModel: () => copyModel, + decodeWeights: () => decodeWeights, + encodeWeights: () => encodeWeights, + fromMemory: () => fromMemory, + getLoadHandlers: () => getLoadHandlers, + getModelArtifactsInfoForJSON: () => getModelArtifactsInfoForJSON, + getSaveHandlers: () => getSaveHandlers, + http: () => http, + isHTTPScheme: () => isHTTPScheme, + listModels: () => listModels, + loadWeights: () => loadWeights, + moveModel: () => moveModel, + registerLoadRouter: () => registerLoadRouter, + registerSaveRouter: () => registerSaveRouter, + removeModel: () => removeModel, + weightsLoaderFactory: () => weightsLoaderFactory, + withSaveHandler: () => withSaveHandler + }); + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var DEFAULT_FILE_NAME_PREFIX = "model"; + var DEFAULT_JSON_EXTENSION_NAME = ".json"; + var DEFAULT_WEIGHT_DATA_EXTENSION_NAME = ".weights.bin"; + function defer(f) { + return new Promise((resolve) => setTimeout(resolve)).then(f); + } + var BrowserDownloads = class { + constructor(fileNamePrefix) { + if (!env().getBool("IS_BROWSER")) { + throw new Error("browserDownloads() cannot proceed because the current environment is not a browser."); + } + if (fileNamePrefix.startsWith(BrowserDownloads.URL_SCHEME)) { + fileNamePrefix = fileNamePrefix.slice(BrowserDownloads.URL_SCHEME.length); + } + if (fileNamePrefix == null || fileNamePrefix.length === 0) { + fileNamePrefix = DEFAULT_FILE_NAME_PREFIX; + } + this.modelTopologyFileName = fileNamePrefix + DEFAULT_JSON_EXTENSION_NAME; + this.weightDataFileName = fileNamePrefix + DEFAULT_WEIGHT_DATA_EXTENSION_NAME; + } + async save(modelArtifacts) { + if (typeof document === "undefined") { + throw new Error("Browser downloads are not supported in this environment since `document` is not present"); + } + const weightsURL = window.URL.createObjectURL(new Blob([modelArtifacts.weightData], {type: "application/octet-stream"})); + if (modelArtifacts.modelTopology instanceof ArrayBuffer) { + throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet."); + } else { + const weightsManifest = [{ + paths: ["./" + this.weightDataFileName], + weights: modelArtifacts.weightSpecs + }]; + const modelTopologyAndWeightManifest = { + modelTopology: modelArtifacts.modelTopology, + format: modelArtifacts.format, + generatedBy: modelArtifacts.generatedBy, + convertedBy: modelArtifacts.convertedBy, + weightsManifest + }; + if (modelArtifacts.signature != null) { + modelTopologyAndWeightManifest.signature = modelArtifacts.signature; + } + if (modelArtifacts.userDefinedMetadata != null) { + modelTopologyAndWeightManifest.userDefinedMetadata = modelArtifacts.userDefinedMetadata; + } + if (modelArtifacts.modelInitializer != null) { + modelTopologyAndWeightManifest.modelInitializer = modelArtifacts.modelInitializer; + } + const modelTopologyAndWeightManifestURL = window.URL.createObjectURL(new Blob([JSON.stringify(modelTopologyAndWeightManifest)], {type: "application/json"})); + const jsonAnchor = this.jsonAnchor == null ? document.createElement("a") : this.jsonAnchor; + jsonAnchor.download = this.modelTopologyFileName; + jsonAnchor.href = modelTopologyAndWeightManifestURL; + await defer(() => jsonAnchor.dispatchEvent(new MouseEvent("click"))); + if (modelArtifacts.weightData != null) { + const weightDataAnchor = this.weightDataAnchor == null ? document.createElement("a") : this.weightDataAnchor; + weightDataAnchor.download = this.weightDataFileName; + weightDataAnchor.href = weightsURL; + await defer(() => weightDataAnchor.dispatchEvent(new MouseEvent("click"))); + } + return {modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts)}; + } + } + }; + BrowserDownloads.URL_SCHEME = "downloads://"; + var BrowserFiles = class { + constructor(files) { + if (files == null || files.length < 1) { + throw new Error(`When calling browserFiles, at least 1 file is required, but received ${files}`); + } + this.files = files; + } + async load() { + const jsonFile = this.files[0]; + const weightFiles = this.files.slice(1); + return new Promise((resolve, reject) => { + const jsonReader = new FileReader(); + jsonReader.onload = (event) => { + const modelJSON = JSON.parse(event.target.result); + const modelTopology = modelJSON.modelTopology; + if (modelTopology == null) { + reject(new Error(`modelTopology field is missing from file ${jsonFile.name}`)); + return; + } + if (weightFiles.length === 0) { + resolve({modelTopology}); + } + const weightsManifest = modelJSON.weightsManifest; + if (weightsManifest == null) { + reject(new Error(`weightManifest field is missing from file ${jsonFile.name}`)); + return; + } + let pathToFile; + try { + pathToFile = this.checkManifestAndWeightFiles(weightsManifest, weightFiles); + } catch (err) { + reject(err); + return; + } + const weightSpecs = []; + const paths = []; + const perFileBuffers = []; + weightsManifest.forEach((weightsGroup) => { + weightsGroup.paths.forEach((path) => { + paths.push(path); + perFileBuffers.push(null); + }); + weightSpecs.push(...weightsGroup.weights); + }); + weightsManifest.forEach((weightsGroup) => { + weightsGroup.paths.forEach((path) => { + const weightFileReader = new FileReader(); + weightFileReader.onload = (event2) => { + const weightData = event2.target.result; + const index = paths.indexOf(path); + perFileBuffers[index] = weightData; + if (perFileBuffers.indexOf(null) === -1) { + const result = { + modelTopology, + weightSpecs, + weightData: concatenateArrayBuffers(perFileBuffers), + format: modelJSON.format, + generatedBy: modelJSON.generatedBy, + convertedBy: modelJSON.convertedBy + }; + if (modelJSON.signature != null) { + result.signature = modelJSON.signature; + } + if (modelJSON.userDefinedMetadata != null) { + result.userDefinedMetadata = modelJSON.userDefinedMetadata; + } + if (modelJSON.modelInitializer != null) { + result.modelInitializer = modelJSON.modelInitializer; + } + resolve(result); + } + }; + weightFileReader.onerror = (error) => reject(`Failed to weights data from file of path '${path}'.`); + weightFileReader.readAsArrayBuffer(pathToFile[path]); + }); + }); + }; + jsonReader.onerror = (error) => reject(`Failed to read model topology and weights manifest JSON from file '${jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`); + jsonReader.readAsText(jsonFile); + }); + } + checkManifestAndWeightFiles(manifest, files) { + const basenames = []; + const fileNames = files.map((file) => basename(file.name)); + const pathToFile = {}; + for (const group of manifest) { + group.paths.forEach((path) => { + const pathBasename = basename(path); + if (basenames.indexOf(pathBasename) !== -1) { + throw new Error(`Duplicate file basename found in weights manifest: '${pathBasename}'`); + } + basenames.push(pathBasename); + if (fileNames.indexOf(pathBasename) === -1) { + throw new Error(`Weight file with basename '${pathBasename}' is not provided.`); + } else { + pathToFile[path] = files[fileNames.indexOf(pathBasename)]; + } + }); + } + if (basenames.length !== files.length) { + throw new Error(`Mismatch in the number of files in weights manifest (${basenames.length}) and the number of weight files provided (${files.length}).`); + } + return pathToFile; + } + }; + var browserDownloadsRouter = (url) => { + if (!env().getBool("IS_BROWSER")) { + return null; + } else { + if (!Array.isArray(url) && url.startsWith(BrowserDownloads.URL_SCHEME)) { + return browserDownloads(url.slice(BrowserDownloads.URL_SCHEME.length)); + } else { + return null; + } + } + }; + IORouterRegistry.registerSaveRouter(browserDownloadsRouter); + function browserDownloads(fileNamePrefix = "model") { + return new BrowserDownloads(fileNamePrefix); + } + function browserFiles(files) { + return new BrowserFiles(files); + } + /** + * @license + * Copyright 2019 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + function monitorPromisesProgress(promises, onProgress, startFraction, endFraction) { + checkPromises(promises); + startFraction = startFraction == null ? 0 : startFraction; + endFraction = endFraction == null ? 1 : endFraction; + checkFraction(startFraction, endFraction); + let resolvedPromise = 0; + const registerMonitor = (promise) => { + promise.then((value) => { + const fraction = startFraction + ++resolvedPromise / promises.length * (endFraction - startFraction); + onProgress(fraction); + return value; + }); + return promise; + }; + function checkPromises(promises2) { + assert(promises2 != null && Array.isArray(promises2) && promises2.length > 0, () => "promises must be a none empty array"); + } + function checkFraction(startFraction2, endFraction2) { + assert(startFraction2 >= 0 && startFraction2 <= 1, () => `Progress fraction must be in range [0, 1], but got startFraction ${startFraction2}`); + assert(endFraction2 >= 0 && endFraction2 <= 1, () => `Progress fraction must be in range [0, 1], but got endFraction ${endFraction2}`); + assert(endFraction2 >= startFraction2, () => `startFraction must be no more than endFraction, but got startFraction ${startFraction2} and endFraction ${endFraction2}`); + } + return Promise.all(promises.map(registerMonitor)); + } + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + async function loadWeightsAsArrayBuffer(fetchURLs, loadOptions) { + if (loadOptions == null) { + loadOptions = {}; + } + const fetchFunc = loadOptions.fetchFunc == null ? env().platform.fetch : loadOptions.fetchFunc; + const requests = fetchURLs.map((fetchURL) => fetchFunc(fetchURL, loadOptions.requestInit, {isBinary: true})); + const fetchStartFraction = 0; + const fetchEndFraction = 0.5; + const responses = loadOptions.onProgress == null ? await Promise.all(requests) : await monitorPromisesProgress(requests, loadOptions.onProgress, fetchStartFraction, fetchEndFraction); + const bufferPromises = responses.map((response) => response.arrayBuffer()); + const bufferStartFraction = 0.5; + const bufferEndFraction = 1; + const buffers = loadOptions.onProgress == null ? await Promise.all(bufferPromises) : await monitorPromisesProgress(bufferPromises, loadOptions.onProgress, bufferStartFraction, bufferEndFraction); + return buffers; + } + async function loadWeights(manifest, filePathPrefix = "", weightNames, requestInit) { + const fetchWeights = (fetchUrls) => loadWeightsAsArrayBuffer(fetchUrls, {requestInit}); + const loadWeights2 = weightsLoaderFactory(fetchWeights); + return loadWeights2(manifest, filePathPrefix, weightNames); + } + function weightsLoaderFactory(fetchWeightsFunction) { + return async (manifest, filePathPrefix = "", weightNames) => { + const groupIndicesToFetchMap = manifest.map(() => false); + const groupWeightsToFetch = {}; + const weightsFound = weightNames != null ? weightNames.map(() => false) : []; + const allManifestWeightNames = []; + manifest.forEach((manifestGroupConfig, groupIndex) => { + let groupOffset = 0; + manifestGroupConfig.weights.forEach((weightsEntry) => { + const rawDtype = "quantization" in weightsEntry ? weightsEntry.quantization.dtype : weightsEntry.dtype; + const weightsBytes = DTYPE_VALUE_SIZE_MAP[rawDtype] * sizeFromShape(weightsEntry.shape); + const enqueueWeightsForFetchingFn = () => { + groupIndicesToFetchMap[groupIndex] = true; + if (groupWeightsToFetch[groupIndex] == null) { + groupWeightsToFetch[groupIndex] = []; + } + groupWeightsToFetch[groupIndex].push({ + manifestEntry: weightsEntry, + groupOffset, + sizeBytes: weightsBytes + }); + }; + if (weightNames != null) { + weightNames.forEach((weightName, weightIndex) => { + if (weightName === weightsEntry.name) { + enqueueWeightsForFetchingFn(); + weightsFound[weightIndex] = true; + } + }); + } else { + enqueueWeightsForFetchingFn(); + } + allManifestWeightNames.push(weightsEntry.name); + groupOffset += weightsBytes; + }); + }); + if (!weightsFound.every((found) => found)) { + const weightsNotFound = weightNames.filter((_, i) => !weightsFound[i]); + throw new Error(`Could not find weights in manifest with names: ${weightsNotFound.join(", ")}. +Manifest JSON has weights with names: ${allManifestWeightNames.join(", ")}.`); + } + const groupIndicesToFetch = groupIndicesToFetchMap.reduce((accumulator, shouldFetch, i) => { + if (shouldFetch) { + accumulator.push(i); + } + return accumulator; + }, []); + const fetchUrls = []; + groupIndicesToFetch.forEach((i) => { + manifest[i].paths.forEach((filepath) => { + const fetchUrl = filePathPrefix + (!filePathPrefix.endsWith("/") ? "/" : "") + filepath; + fetchUrls.push(fetchUrl); + }); + }); + const buffers = await fetchWeightsFunction(fetchUrls); + const weightsTensorMap = {}; + let bufferIndexOffset = 0; + groupIndicesToFetch.forEach((i) => { + const numBuffers = manifest[i].paths.length; + let groupBytes = 0; + for (let i2 = 0; i2 < numBuffers; i2++) { + groupBytes += buffers[bufferIndexOffset + i2].byteLength; + } + const groupBuffer = new ArrayBuffer(groupBytes); + const groupByteBuffer = new Uint8Array(groupBuffer); + let groupBufferOffset = 0; + for (let i2 = 0; i2 < numBuffers; i2++) { + const buffer2 = new Uint8Array(buffers[bufferIndexOffset + i2]); + groupByteBuffer.set(buffer2, groupBufferOffset); + groupBufferOffset += buffer2.byteLength; + } + const weightsEntries = groupWeightsToFetch[i]; + weightsEntries.forEach((weightsEntry) => { + const byteBuffer = groupBuffer.slice(weightsEntry.groupOffset, weightsEntry.groupOffset + weightsEntry.sizeBytes); + const nameToTensorMap = decodeWeights(byteBuffer, [weightsEntry.manifestEntry]); + for (const name2 in nameToTensorMap) { + weightsTensorMap[name2] = nameToTensorMap[name2]; + } + }); + bufferIndexOffset += numBuffers; + }); + return weightsTensorMap; + }; + } + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var OCTET_STREAM_MIME_TYPE = "application/octet-stream"; + var JSON_TYPE = "application/json"; + var HTTPRequest = class { + constructor(path, loadOptions) { + this.DEFAULT_METHOD = "POST"; + if (loadOptions == null) { + loadOptions = {}; + } + this.weightPathPrefix = loadOptions.weightPathPrefix; + this.onProgress = loadOptions.onProgress; + this.weightUrlConverter = loadOptions.weightUrlConverter; + if (loadOptions.fetchFunc != null) { + assert(typeof loadOptions.fetchFunc === "function", () => "Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"); + this.fetch = loadOptions.fetchFunc; + } else { + this.fetch = env().platform.fetch; + } + assert(path != null && path.length > 0, () => "URL path for http must not be null, undefined or empty."); + if (Array.isArray(path)) { + assert(path.length === 2, () => `URL paths for http must have a length of 2, (actual length is ${path.length}).`); + } + this.path = path; + if (loadOptions.requestInit != null && loadOptions.requestInit.body != null) { + throw new Error("requestInit is expected to have no pre-existing body, but has one."); + } + this.requestInit = loadOptions.requestInit || {}; + } + async save(modelArtifacts) { + if (modelArtifacts.modelTopology instanceof ArrayBuffer) { + throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet."); + } + const init2 = Object.assign({method: this.DEFAULT_METHOD}, this.requestInit); + init2.body = new FormData(); + const weightsManifest = [{ + paths: ["./model.weights.bin"], + weights: modelArtifacts.weightSpecs + }]; + const modelTopologyAndWeightManifest = { + modelTopology: modelArtifacts.modelTopology, + format: modelArtifacts.format, + generatedBy: modelArtifacts.generatedBy, + convertedBy: modelArtifacts.convertedBy, + weightsManifest + }; + if (modelArtifacts.signature != null) { + modelTopologyAndWeightManifest.signature = modelArtifacts.signature; + } + if (modelArtifacts.userDefinedMetadata != null) { + modelTopologyAndWeightManifest.userDefinedMetadata = modelArtifacts.userDefinedMetadata; + } + if (modelArtifacts.modelInitializer != null) { + modelTopologyAndWeightManifest.modelInitializer = modelArtifacts.modelInitializer; + } + init2.body.append("model.json", new Blob([JSON.stringify(modelTopologyAndWeightManifest)], {type: JSON_TYPE}), "model.json"); + if (modelArtifacts.weightData != null) { + init2.body.append("model.weights.bin", new Blob([modelArtifacts.weightData], {type: OCTET_STREAM_MIME_TYPE}), "model.weights.bin"); + } + const response = await this.fetch(this.path, init2); + if (response.ok) { + return { + modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts), + responses: [response] + }; + } else { + throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${response.status}.`); + } + } + async load() { + const modelConfigRequest = await this.fetch(this.path, this.requestInit); + if (!modelConfigRequest.ok) { + throw new Error(`Request to ${this.path} failed with status code ${modelConfigRequest.status}. Please verify this URL points to the model JSON of the model to load.`); + } + let modelConfig; + try { + modelConfig = await modelConfigRequest.json(); + } catch (e) { + let message = `Failed to parse model JSON of response from ${this.path}.`; + if (this.path.endsWith(".pb")) { + message += " Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository."; + } else { + message += " Please make sure the server is serving valid JSON for this request."; + } + throw new Error(message); + } + const modelTopology = modelConfig.modelTopology; + const weightsManifest = modelConfig.weightsManifest; + const generatedBy = modelConfig.generatedBy; + const convertedBy = modelConfig.convertedBy; + const format = modelConfig.format; + const signature = modelConfig.signature; + const userDefinedMetadata = modelConfig.userDefinedMetadata; + if (modelTopology == null && weightsManifest == null) { + throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`); + } + let weightSpecs; + let weightData; + if (weightsManifest != null) { + const results = await this.loadWeights(weightsManifest); + [weightSpecs, weightData] = results; + } + const artifacts = { + modelTopology, + weightSpecs, + weightData, + generatedBy, + convertedBy, + format + }; + if (signature != null) { + artifacts.signature = signature; + } + if (userDefinedMetadata != null) { + artifacts.userDefinedMetadata = userDefinedMetadata; + } + const initializer = modelConfig.modelInitializer; + if (initializer) { + artifacts.modelInitializer = initializer; + } + return artifacts; + } + async loadWeights(weightsManifest) { + const weightPath = Array.isArray(this.path) ? this.path[1] : this.path; + const [prefix, suffix] = parseUrl(weightPath); + const pathPrefix = this.weightPathPrefix || prefix; + const weightSpecs = []; + for (const entry of weightsManifest) { + weightSpecs.push(...entry.weights); + } + const fetchURLs = []; + const urlPromises = []; + for (const weightsGroup of weightsManifest) { + for (const path of weightsGroup.paths) { + if (this.weightUrlConverter != null) { + urlPromises.push(this.weightUrlConverter(path)); + } else { + fetchURLs.push(pathPrefix + path + suffix); + } + } + } + if (this.weightUrlConverter) { + fetchURLs.push(...await Promise.all(urlPromises)); + } + const buffers = await loadWeightsAsArrayBuffer(fetchURLs, { + requestInit: this.requestInit, + fetchFunc: this.fetch, + onProgress: this.onProgress + }); + return [weightSpecs, concatenateArrayBuffers(buffers)]; + } + }; + HTTPRequest.URL_SCHEME_REGEX = /^https?:\/\//; + function parseUrl(url) { + const lastSlash = url.lastIndexOf("/"); + const lastSearchParam = url.lastIndexOf("?"); + const prefix = url.substring(0, lastSlash); + const suffix = lastSearchParam > lastSlash ? url.substring(lastSearchParam) : ""; + return [prefix + "/", suffix]; + } + function isHTTPScheme(url) { + return url.match(HTTPRequest.URL_SCHEME_REGEX) != null; + } + var httpRouter = (url, loadOptions) => { + if (typeof fetch === "undefined" && (loadOptions == null || loadOptions.fetchFunc == null)) { + return null; + } else { + let isHTTP = true; + if (Array.isArray(url)) { + isHTTP = url.every((urlItem) => isHTTPScheme(urlItem)); + } else { + isHTTP = isHTTPScheme(url); + } + if (isHTTP) { + return http(url, loadOptions); + } + } + return null; + }; + IORouterRegistry.registerSaveRouter(httpRouter); + IORouterRegistry.registerLoadRouter(httpRouter); + function http(path, loadOptions) { + return new HTTPRequest(path, loadOptions); + } + function browserHTTPRequest(path, loadOptions) { + return http(path, loadOptions); + } + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var PassthroughLoader = class { + constructor(modelArtifacts) { + this.modelArtifacts = modelArtifacts; + } + async load() { + return this.modelArtifacts; + } + }; + var PassthroughSaver = class { + constructor(saveHandler) { + this.saveHandler = saveHandler; + } + async save(modelArtifacts) { + return this.saveHandler(modelArtifacts); + } + }; + function fromMemory(modelArtifacts, weightSpecs, weightData, trainingConfig) { + if (arguments.length === 1) { + const isModelArtifacts = modelArtifacts.modelTopology != null || modelArtifacts.weightSpecs != null; + if (isModelArtifacts) { + return new PassthroughLoader(modelArtifacts); + } else { + console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."); + return new PassthroughLoader({modelTopology: modelArtifacts}); + } + } else { + console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."); + return new PassthroughLoader({ + modelTopology: modelArtifacts, + weightSpecs, + weightData, + trainingConfig + }); + } + } + function withSaveHandler(saveHandler) { + return new PassthroughSaver(saveHandler); + } + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var math_exports = {}; + __export2(math_exports, { + confusionMatrix: () => confusionMatrix + }); + /** + * @license + * Copyright 2020 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + function matMul_(a, b, transposeA = false, transposeB = false) { + let $a = convertToTensor(a, "a", "matMul"); + let $b = convertToTensor(b, "b", "matMul"); + [$a, $b] = makeTypesMatch($a, $b); + const inputs = {a: $a, b: $b}; + const attrs = {transposeA, transposeB}; + return ENGINE.runKernel(BatchMatMul, inputs, attrs); + } + var matMul = op({matMul_}); + /** + * @license + * Copyright 2020 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + function oneHot_(indices, depth, onValue = 1, offValue = 0) { + if (depth < 2) { + throw new Error(`Error in oneHot: depth must be >=2, but it is ${depth}`); + } + const $indices = convertToTensor(indices, "indices", "oneHot", "int32"); + const inputs = {indices: $indices}; + const attrs = {depth, onValue, offValue}; + return ENGINE.runKernel(OneHot, inputs, attrs); + } + var oneHot = op({oneHot_}); + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + function transpose_(x, perm) { + const $x = convertToTensor(x, "x", "transpose"); + if (perm == null) { + perm = $x.shape.map((s, i) => i).reverse(); + } + assert($x.rank === perm.length, () => `Error in transpose: rank of input ${$x.rank} must match length of perm ${perm}.`); + perm.forEach((axis) => { + assert(axis >= 0 && axis < $x.rank, () => `All entries in 'perm' must be between 0 and ${$x.rank - 1} but got ${perm}`); + }); + if ($x.rank <= 1) { + return $x.clone(); + } + const inputs = {x: $x}; + const attrs = {perm}; + return ENGINE.runKernel(Transpose, inputs, attrs); + } + var transpose = op({transpose_}); + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + function confusionMatrix_(labels, predictions, numClasses) { + const $labels = convertToTensor(labels, "labels", "confusionMatrix"); + const $predictions = convertToTensor(predictions, "predictions", "confusionMatrix"); + assert(numClasses == null || numClasses > 0 && Number.isInteger(numClasses), () => `If provided, numClasses must be a positive integer, but got ${numClasses}`); + assert($labels.rank === 1, () => `Expected the rank of labels to be 1, but got ${$labels.rank}`); + assert($predictions.rank === 1, () => `Expected the rank of predictions to be 1, but got ${$predictions.rank}`); + assert($labels.shape[0] === $predictions.shape[0], () => `Mismatch in the number of examples: ${$labels.shape[0]} vs. ${$predictions.shape[0]}. Labels and predictions should have the same number of elements.`); + assert(numClasses > 0 && Number.isInteger(numClasses), () => `numClasses is required to be a positive integer, but got ${numClasses}`); + const oneHotLabels = oneHot(cast($labels, "int32"), numClasses); + const oneHotPredictions = oneHot(cast($predictions, "int32"), numClasses); + const oneHotLabelsT = transpose(oneHotLabels); + const product = matMul(oneHotLabelsT, oneHotPredictions); + return cast(product, "int32"); + } + var confusionMatrix = op({confusionMatrix_}); + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var browser_exports = {}; + __export2(browser_exports, { + fromPixels: () => fromPixels, + toPixels: () => toPixels + }); + /** + * @license + * Copyright 2018 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + function tensor3d(values, shape, dtype) { + assertNonNull(values); + if (shape != null && shape.length !== 3) { + throw new Error("tensor3d() requires shape to have three numbers"); + } + const inferredShape = inferShape(values, dtype); + if (inferredShape.length !== 3 && inferredShape.length !== 1) { + throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray"); + } + if (inferredShape.length === 1 && shape == null) { + throw new Error("tensor3d() requires shape to be provided when `values` are a flat array"); + } + return makeTensor(values, shape, inferredShape, dtype); + } + /** + * @license + * Copyright 2019 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + var fromPixels2DContext; + function fromPixels_(pixels, numChannels = 3) { + if (numChannels > 4) { + throw new Error("Cannot construct Tensor with more than 4 channels from pixels."); + } + if (pixels == null) { + throw new Error("pixels passed to tf.browser.fromPixels() can not be null"); + } + let isPixelData = false; + let isImageData = false; + let isVideo = false; + let isImage = false; + let isCanvasLike = false; + let isImageBitmap = false; + if (pixels.data instanceof Uint8Array) { + isPixelData = true; + } else if (typeof ImageData !== "undefined" && pixels instanceof ImageData) { + isImageData = true; + } else if (typeof HTMLVideoElement !== "undefined" && pixels instanceof HTMLVideoElement) { + isVideo = true; + } else if (typeof HTMLImageElement !== "undefined" && pixels instanceof HTMLImageElement) { + isImage = true; + } else if (pixels.getContext != null) { + isCanvasLike = true; + } else if (typeof ImageBitmap !== "undefined" && pixels instanceof ImageBitmap) { + isImageBitmap = true; + } else { + throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${pixels.constructor.name}`); + } + if (isVideo) { + const HAVE_CURRENT_DATA_READY_STATE = 2; + if (isVideo && pixels.readyState < HAVE_CURRENT_DATA_READY_STATE) { + throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the