update hand model

pull/293/head
Vladimir Mandic 2020-11-08 09:56:02 -05:00
parent 25884ca3e7
commit 80eeebc8f2
8 changed files with 107 additions and 111 deletions

View File

@ -113,6 +113,7 @@ export default {
scoreThreshold: 0.8, // threshold for deciding when to remove boxes based on score in non-maximum suppression
enlargeFactor: 1.65, // empiric tuning as skeleton prediction prefers hand box with some whitespace
maxHands: 1, // maximum number of hands detected in the input, should be set to the minimum number for performance
landmarks: true, // detect hand landmarks or just hand boundary box
detector: {
modelPath: '../models/handdetect.json',
},

View File

@ -27,6 +27,10 @@ const ui = {
maxFrames: 10,
modelsPreload: true,
modelsWarmup: true,
menuWidth: 0,
menuHeight: 0,
camera: {},
fps: [],
};
// global variables
@ -34,8 +38,6 @@ let menu;
let menuFX;
let worker;
let timeStamp;
let camera = {};
const fps = [];
// helper function: translates json to human readable string
function str(...msg) {
@ -62,17 +64,22 @@ const status = (msg) => {
// draws processed results and starts processing of a next frame
function drawResults(input, result, canvas) {
// update fps data
fps.push(1000 / (performance.now() - timeStamp));
if (fps.length > ui.maxFrames) fps.shift();
const elapsed = performance.now() - timeStamp;
ui.fps.push(1000 / elapsed);
if (ui.fps.length > ui.maxFrames) ui.fps.shift();
// enable for continous performance monitoring
// console.log(result.performance);
// eslint-disable-next-line no-use-before-define
if (input.srcObject) requestAnimationFrame(() => runHumanDetect(input, canvas)); // immediate loop before we even draw results
// immediate loop before we even draw results, but limit frame rate to 30
if (input.srcObject) {
// eslint-disable-next-line no-use-before-define
if (elapsed > 33) requestAnimationFrame(() => runHumanDetect(input, canvas));
// eslint-disable-next-line no-use-before-define
else setTimeout(() => runHumanDetect(input, canvas), 33 - elapsed);
}
// draw fps chart
menu.updateChart('FPS', fps);
menu.updateChart('FPS', ui.fps);
// draw image from video
const ctx = canvas.getContext('2d');
ctx.fillStyle = ui.baseBackground;
@ -94,9 +101,9 @@ function drawResults(input, result, canvas) {
const gpu = engine.backendInstance ? `gpu: ${(engine.backendInstance.numBytesInGPU ? engine.backendInstance.numBytesInGPU : 0).toLocaleString()} bytes` : '';
const memory = `system: ${engine.state.numBytes.toLocaleString()} bytes ${gpu} | tensors: ${engine.state.numTensors.toLocaleString()}`;
const processing = result.canvas ? `processing: ${result.canvas.width} x ${result.canvas.height}` : '';
const avg = Math.trunc(10 * fps.reduce((a, b) => a + b) / fps.length) / 10;
const avg = Math.trunc(10 * ui.fps.reduce((a, b) => a + b) / ui.fps.length) / 10;
document.getElementById('log').innerText = `
video: ${camera.name} | facing: ${camera.facing} | resolution: ${camera.width} x ${camera.height} ${processing}
video: ${ui.camera.name} | facing: ${ui.camera.facing} | resolution: ${ui.camera.width} x ${ui.camera.height} ${processing}
backend: ${human.tf.getBackend()} | ${memory}
performance: ${str(result.performance)} FPS:${avg}
`;
@ -147,7 +154,7 @@ async function setupCamera() {
const track = stream.getVideoTracks()[0];
const settings = track.getSettings();
log('camera constraints:', constraints, 'window:', { width: window.innerWidth, height: window.innerHeight }, 'settings:', settings, 'track:', track);
camera = { name: track.label, width: settings.width, height: settings.height, facing: settings.facingMode === 'user' ? 'front' : 'back' };
ui.camera = { name: track.label, width: settings.width, height: settings.height, facing: settings.facingMode === 'user' ? 'front' : 'back' };
return new Promise((resolve) => {
video.onloadeddata = async () => {
video.width = video.videoWidth;
@ -156,6 +163,8 @@ async function setupCamera() {
canvas.height = video.height;
canvas.style.width = canvas.width > canvas.height ? '100vw' : '';
canvas.style.height = canvas.width > canvas.height ? '' : '100vh';
ui.menuWidth.input.setAttribute('value', video.width);
ui.menuHeight.input.setAttribute('value', video.height);
// silly font resizing for paint-on-canvas since viewport can be zoomed
const size = 14 + (6 * canvas.width / window.innerWidth);
ui.baseFont = ui.baseFontProto.replace(/{size}/, `${size}px`);
@ -351,8 +360,8 @@ function setupMenu() {
menuFX.addHTML('<hr style="min-width: 200px; border-style: inset; border-color: dimgray">');
menuFX.addLabel('Image Processing');
menuFX.addBool('Enabled', human.config.filter, 'enabled');
menuFX.addRange('Image width', human.config.filter, 'width', 0, 3840, 10, (val) => human.config.filter.width = parseInt(val));
menuFX.addRange('Image height', human.config.filter, 'height', 0, 2160, 10, (val) => human.config.filter.height = parseInt(val));
ui.menuWidth = menuFX.addRange('Image width', human.config.filter, 'width', 0, 3840, 10, (val) => human.config.filter.width = parseInt(val));
ui.menuHeight = menuFX.addRange('Image height', human.config.filter, 'height', 0, 2160, 10, (val) => human.config.filter.height = parseInt(val));
menuFX.addRange('Brightness', human.config.filter, 'brightness', -1.0, 1.0, 0.05, (val) => human.config.filter.brightness = parseFloat(val));
menuFX.addRange('Contrast', human.config.filter, 'contrast', -1.0, 1.0, 0.05, (val) => human.config.filter.contrast = parseFloat(val));
menuFX.addRange('Sharpness', human.config.filter, 'sharpness', 0, 1.0, 0.05, (val) => human.config.filter.sharpness = parseFloat(val));

View File

@ -219,6 +219,7 @@ class Menu {
evt.target.setAttribute('value', evt.target.value);
if (callback) callback(evt.target.value);
});
el.input = el.children[0];
return el;
}

View File

@ -41,16 +41,16 @@
"scripts": {
"start": "node --trace-warnings --unhandled-rejections=strict --trace-uncaught --no-deprecation src/node.js",
"lint": "eslint src/*.js demo/*.js",
"dev": "npm install && node --trace-warnings --unhandled-rejections=strict --trace-uncaught --no-deprecation dev-server.js",
"dev": "npm install && node --trace-warnings --unhandled-rejections=strict --trace-uncaught --no-deprecation dev-server/dev-server.js",
"changelog": "node dev-server/changelog.js",
"build-iife": "esbuild --bundle --minify --platform=browser --sourcemap --target=es2018 --format=iife --external:fs --global-name=Human --metafile=dist/human.json --outfile=dist/human.js src/human.js",
"build-esm-bundle": "esbuild --bundle --minify --platform=browser --sourcemap --target=es2018 --format=esm --external:fs --metafile=dist/human.esm.json --outfile=dist/human.esm.js src/human.js",
"build-esm-nobundle": "esbuild --bundle --minify --platform=browser --sourcemap --target=es2018 --format=esm --external:@tensorflow --external:fs --metafile=dist/human.esm-nobundle.json --outfile=dist/human.esm-nobundle.js src/human.js",
"build-node": "esbuild --bundle --minify --platform=node --sourcemap --target=es2018 --format=cjs --metafile=dist/human.node.json --outfile=dist/human.node.js src/human.js",
"build-node-nobundle": "esbuild --bundle --minify --platform=node --sourcemap --target=es2018 --format=cjs --external:@tensorflow --metafile=dist/human.node.json --outfile=dist/human.node-nobundle.js src/human.js",
"build-demo": "esbuild --bundle --log-level=error --platform=browser --sourcemap --target=es2018 --format=esm --external:fs --metafile=dist/demo-browser-index.json --outfile=dist/demo-browser-index.js demo/browser.js",
"build": "rimraf dist/* && npm run build-iife && npm run build-esm-bundle && npm run build-esm-nobundle && npm run build-node && npm run build-node-nobundle && npm run build-demo",
"update": "npm update --depth 20 --force && npm dedupe && npm prune && npm audit",
"changelog": "node changelog.js"
"build": "rimraf dist/* && npm run build-iife && npm run build-esm-bundle && npm run build-esm-nobundle && npm run build-node && npm run build-node-nobundle && npm run build-demo && npm run changelog",
"update": "npm update --depth 20 --force && npm dedupe && npm prune && npm audit"
},
"keywords": [
"tensorflowjs",

View File

@ -46,7 +46,7 @@ function scaleBoxCoordinates(box, factor) {
const scaledCoord = [coord[0] * factor[0], coord[1] * factor[1]];
return scaledCoord;
});
return { startPoint, endPoint, palmLandmarks };
return { startPoint, endPoint, palmLandmarks, confidence: box.confidence };
}
function enlargeBox(box, factor = 1.5) {
const center = getBoxCenter(box);

View File

@ -49,29 +49,28 @@ class HandDetector {
async getBoxes(input, config) {
const batched = this.model.predict(input);
const predictions = batched.squeeze();
batched.dispose();
const scores = tf.tidy(() => tf.sigmoid(tf.slice(predictions, [0, 0], [-1, 1])).squeeze());
// const scoresVal = scores.dataSync(); // scoresVal[boxIndex] is box confidence
const scoresVal = scores.dataSync();
const rawBoxes = tf.slice(predictions, [0, 1], [-1, 4]);
const boxes = this.normalizeBoxes(rawBoxes);
const boxesWithHandsT = await tf.image.nonMaxSuppressionAsync(boxes, scores, config.maxHands, config.iouThreshold, config.scoreThreshold);
const boxesWithHands = boxesWithHandsT.arraySync();
const toDispose = [
batched,
boxesWithHandsT,
predictions,
boxes,
rawBoxes,
scores,
];
rawBoxes.dispose();
const filteredT = await tf.image.nonMaxSuppressionAsync(boxes, scores, config.maxHands, config.iouThreshold, config.scoreThreshold);
const filtered = filteredT.arraySync();
scores.dispose();
filteredT.dispose();
const hands = [];
for (const boxIndex of boxesWithHands) {
const matchingBox = tf.slice(boxes, [boxIndex, 0], [1, -1]);
const rawPalmLandmarks = tf.slice(predictions, [boxIndex, 5], [1, 14]);
const palmLandmarks = tf.tidy(() => this.normalizeLandmarks(rawPalmLandmarks, boxIndex).reshape([-1, 2]));
rawPalmLandmarks.dispose();
hands.push({ box: matchingBox, palmLandmarks });
for (const boxIndex of filtered) {
if (scoresVal[boxIndex] >= config.minConfidence) {
const matchingBox = tf.slice(boxes, [boxIndex, 0], [1, -1]);
const rawPalmLandmarks = tf.slice(predictions, [boxIndex, 5], [1, 14]);
const palmLandmarks = tf.tidy(() => this.normalizeLandmarks(rawPalmLandmarks, boxIndex).reshape([-1, 2]));
rawPalmLandmarks.dispose();
hands.push({ box: matchingBox, palmLandmarks, confidence: scoresVal[boxIndex] });
}
}
toDispose.forEach((tensor) => tensor.dispose());
predictions.dispose();
boxes.dispose();
return hands;
}
@ -84,13 +83,13 @@ class HandDetector {
if (!predictions || predictions.length === 0) return null;
const hands = [];
for (const prediction of predictions) {
const boundingBoxes = prediction.box.dataSync();
const startPoint = boundingBoxes.slice(0, 2);
const endPoint = boundingBoxes.slice(2, 4);
const boxes = prediction.box.dataSync();
const startPoint = boxes.slice(0, 2);
const endPoint = boxes.slice(2, 4);
const palmLandmarks = prediction.palmLandmarks.arraySync();
prediction.box.dispose();
prediction.palmLandmarks.dispose();
hands.push(box.scaleBoxCoordinates({ startPoint, endPoint, palmLandmarks }, [inputWidth / config.inputSize, inputHeight / config.inputSize]));
hands.push(box.scaleBoxCoordinates({ startPoint, endPoint, palmLandmarks, confidence: prediction.confidence }, [inputWidth / config.inputSize, inputHeight / config.inputSize]));
}
return hands;
}

View File

@ -19,7 +19,6 @@ const tf = require('@tensorflow/tfjs');
const box = require('./box');
const util = require('./util');
const UPDATE_REGION_OF_INTEREST_IOU_THRESHOLD = 0.8;
const PALM_BOX_SHIFT_VECTOR = [0, -0.4];
const PALM_BOX_ENLARGE_FACTOR = 3;
const HAND_BOX_SHIFT_VECTOR = [0, -0.1]; // move detected hand box by x,y to ease landmark detection
@ -87,68 +86,75 @@ class HandPipeline {
async estimateHands(image, config) {
this.skipped++;
let useFreshBox = false;
// run new detector every skipFrames
const boxes = (this.skipped > config.skipFrames)
? await this.boxDetector.estimateHandBounds(image, config) : null;
// run new detector every skipFrames unless we only want box to start with
let boxes;
if ((this.skipped > config.skipFrames) || !config.landmarks) {
boxes = await this.boxDetector.estimateHandBounds(image, config);
this.skipped = 0;
}
// if detector result count doesn't match current working set, use it to reset current working set
if (boxes && (boxes.length !== this.detectedHands) && (this.detectedHands !== config.maxHands)) {
// console.log(this.skipped, config.maxHands, this.detectedHands, this.storedBoxes.length, boxes.length);
if (boxes && (boxes.length > 0) && ((boxes.length !== this.detectedHands) && (this.detectedHands !== config.maxHands) || !config.landmarks)) {
this.storedBoxes = [];
this.detectedHands = 0;
for (const possible of boxes) this.storedBoxes.push(possible);
if (this.storedBoxes.length > 0) useFreshBox = true;
this.skipped = 0;
}
const hands = [];
// console.log(`skipped: ${this.skipped} max: ${config.maxHands} detected: ${this.detectedHands} stored: ${this.storedBoxes.length} new: ${boxes?.length}`);
// go through working set of boxes
for (const i in this.storedBoxes) {
const currentBox = this.storedBoxes[i];
if (!currentBox) continue;
const angle = util.computeRotation(currentBox.palmLandmarks[PALM_LANDMARKS_INDEX_OF_PALM_BASE], currentBox.palmLandmarks[PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE]);
const palmCenter = box.getBoxCenter(currentBox);
const palmCenterNormalized = [palmCenter[0] / image.shape[2], palmCenter[1] / image.shape[1]];
const rotatedImage = tf.image.rotateWithOffset(image, angle, 0, palmCenterNormalized);
const rotationMatrix = util.buildRotationMatrix(-angle, palmCenter);
const newBox = useFreshBox ? this.getBoxForPalmLandmarks(currentBox.palmLandmarks, rotationMatrix) : currentBox;
const croppedInput = box.cutBoxFromImageAndResize(newBox, rotatedImage, [this.inputSize, this.inputSize]);
const handImage = croppedInput.div(255);
croppedInput.dispose();
rotatedImage.dispose();
const [confidence, keypoints] = await this.meshDetector.predict(handImage);
handImage.dispose();
const confidenceValue = confidence.dataSync()[0];
confidence.dispose();
if (confidenceValue >= config.minConfidence) {
const keypointsReshaped = tf.reshape(keypoints, [-1, 3]);
const rawCoords = keypointsReshaped.arraySync();
if (config.landmarks) {
const angle = util.computeRotation(currentBox.palmLandmarks[PALM_LANDMARKS_INDEX_OF_PALM_BASE], currentBox.palmLandmarks[PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE]);
const palmCenter = box.getBoxCenter(currentBox);
const palmCenterNormalized = [palmCenter[0] / image.shape[2], palmCenter[1] / image.shape[1]];
const rotatedImage = tf.image.rotateWithOffset(image, angle, 0, palmCenterNormalized);
const rotationMatrix = util.buildRotationMatrix(-angle, palmCenter);
const newBox = useFreshBox ? this.getBoxForPalmLandmarks(currentBox.palmLandmarks, rotationMatrix) : currentBox;
const croppedInput = box.cutBoxFromImageAndResize(newBox, rotatedImage, [this.inputSize, this.inputSize]);
const handImage = croppedInput.div(255);
croppedInput.dispose();
rotatedImage.dispose();
const [confidence, keypoints] = await this.meshDetector.predict(handImage);
handImage.dispose();
const confidenceValue = confidence.dataSync()[0];
confidence.dispose();
if (confidenceValue >= config.minConfidence) {
const keypointsReshaped = tf.reshape(keypoints, [-1, 3]);
const rawCoords = keypointsReshaped.arraySync();
keypoints.dispose();
keypointsReshaped.dispose();
const coords = this.transformRawCoords(rawCoords, newBox, angle, rotationMatrix);
const nextBoundingBox = this.getBoxForHandLandmarks(coords);
this.storedBoxes[i] = nextBoundingBox;
const result = {
landmarks: coords,
confidence: confidenceValue,
box: {
topLeft: nextBoundingBox.startPoint,
bottomRight: nextBoundingBox.endPoint,
},
};
hands.push(result);
} else {
this.storedBoxes[i] = null;
}
keypoints.dispose();
keypointsReshaped.dispose();
const coords = this.transformRawCoords(rawCoords, newBox, angle, rotationMatrix);
const nextBoundingBox = this.getBoxForHandLandmarks(coords);
this.updateStoredBoxes(nextBoundingBox, i);
const result = {
landmarks: coords,
handInViewConfidence: confidenceValue,
boundingBox: {
topLeft: nextBoundingBox.startPoint,
bottomRight: nextBoundingBox.endPoint,
},
};
hands.push(result);
} else {
this.updateStoredBoxes(null, i);
/*
const enlarged = box.enlargeBox(box.squarifyBox(box.shiftBox(currentBox, HAND_BOX_SHIFT_VECTOR)), HAND_BOX_ENLARGE_FACTOR);
const result = {
handInViewConfidence: confidenceValue,
boundingBox: {
topLeft: currentBox.startPoint,
bottomRight: currentBox.endPoint,
confidence: currentBox.confidence,
box: {
topLeft: enlarged.startPoint,
bottomRight: enlarged.endPoint,
},
};
hands.push(result);
*/
}
keypoints.dispose();
}
this.storedBoxes = this.storedBoxes.filter((a) => a !== null);
this.detectedHands = hands.length;
@ -163,26 +169,6 @@ class HandPipeline {
const endPoint = [Math.max(...xs), Math.max(...ys)];
return { startPoint, endPoint };
}
updateStoredBoxes(newBox, i) {
const previousBox = this.storedBoxes[i];
let iou = 0;
if (newBox && previousBox && previousBox.startPoint) {
const [boxStartX, boxStartY] = newBox.startPoint;
const [boxEndX, boxEndY] = newBox.endPoint;
const [previousBoxStartX, previousBoxStartY] = previousBox.startPoint;
const [previousBoxEndX, previousBoxEndY] = previousBox.endPoint;
const xStartMax = Math.max(boxStartX, previousBoxStartX);
const yStartMax = Math.max(boxStartY, previousBoxStartY);
const xEndMin = Math.min(boxEndX, previousBoxEndX);
const yEndMin = Math.min(boxEndY, previousBoxEndY);
const intersection = (xEndMin - xStartMax) * (yEndMin - yStartMax);
const boxArea = (boxEndX - boxStartX) * (boxEndY - boxStartY);
const previousBoxArea = (previousBoxEndX - previousBoxStartX) * (previousBoxEndY - boxStartY);
iou = intersection / (boxArea + previousBoxArea - intersection);
}
this.storedBoxes[i] = iou > UPDATE_REGION_OF_INTEREST_IOU_THRESHOLD ? previousBox : newBox;
}
}
exports.HandPipeline = HandPipeline;

View File

@ -51,12 +51,12 @@ class HandPose {
}
}
hands.push({
confidence: prediction.handInViewConfidence,
box: prediction.boundingBox ? [
prediction.boundingBox.topLeft[0],
prediction.boundingBox.topLeft[1],
prediction.boundingBox.bottomRight[0] - prediction.boundingBox.topLeft[0],
prediction.boundingBox.bottomRight[1] - prediction.boundingBox.topLeft[1],
confidence: prediction.confidence,
box: prediction.box ? [
prediction.box.topLeft[0],
prediction.box.topLeft[1],
prediction.box.bottomRight[0] - prediction.box.topLeft[0],
prediction.box.bottomRight[1] - prediction.box.topLeft[1],
] : 0,
landmarks: prediction.landmarks,
annotations,