enhanced age, gender, emotion detection

pull/280/head
Vladimir Mandic 2021-03-10 09:44:45 -05:00
parent 02696a65b3
commit 74ad5a2837
7 changed files with 167 additions and 154 deletions

View File

@ -1,7 +1,6 @@
# To-Do list for Human library
- Fix BlazeFace NodeJS missing ops
- Prune pre-packaged models
- Strong typing
- Build Face embedding database
- Dynamic sample processing
- Optimize for v1 release
- Explore EfficientPose: <https://github.com/daniegr/EfficientPose> <https://github.com/PINTO0309/PINTO_model_zoo/tree/main/084_EfficientPose>

View File

@ -80,10 +80,10 @@ export default {
// in short time (10 * 1/25 = 0.25 sec)
skipInitial: false, // if previous detection resulted in no faces detected,
// should skipFrames be reset immediately
minConfidence: 0.1, // threshold for discarding a prediction
minConfidence: 0.2, // threshold for discarding a prediction
iouThreshold: 0.1, // threshold for deciding whether boxes overlap too much in
// non-maximum suppression (0.1 means drop if overlap 10%)
scoreThreshold: 0.1, // threshold for deciding when to remove boxes based on score
scoreThreshold: 0.2, // threshold for deciding when to remove boxes based on score
// in non-maximum suppression,
// this is applied on detection objects only and before minConfidence
},

View File

@ -1,4 +1,5 @@
import Human from '../dist/human.esm.js'; // equivalent of @vladmandic/human
// import Human from '../dist/human.esm.js'; // equivalent of @vladmandic/human
import Human from '../src/human';
import Menu from './menu.js';
import GLBench from './gl-bench.js';
@ -8,7 +9,7 @@ const userConfig = { backend: 'webgl' }; // add any user configuration overrides
const userConfig = {
backend: 'wasm',
async: false,
warmup: 'face',
warmup: 'none',
videoOptimized: false,
face: { enabled: true, mesh: { enabled: false }, iris: { enabled: false }, age: { enabled: false }, gender: { enabled: false }, emotion: { enabled: false }, embedding: { enabled: false } },
hand: { enabled: false },
@ -360,7 +361,6 @@ async function processImage(input) {
// just initialize everything and call main function
async function detectVideo() {
userConfig.videoOptimized = true;
document.getElementById('samples-container').style.display = 'none';
document.getElementById('canvas').style.display = 'block';
const video = document.getElementById('video');
@ -389,8 +389,8 @@ async function detectVideo() {
// just initialize everything and call main function
async function detectSampleImages() {
userConfig.videoOptimized = false; // force disable video optimizations
document.getElementById('play').style.display = 'none';
userConfig.videoOptimized = false;
document.getElementById('canvas').style.display = 'none';
document.getElementById('samples-container').style.display = 'block';
log('Running detection of sample images');

View File

@ -9,7 +9,6 @@ let skipped = Number.MAX_SAFE_INTEGER;
// tuning values
const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale
const scale = 1; // score multiplication factor
export async function load(config) {
if (!model) {
@ -58,7 +57,7 @@ export async function predict(image, config) {
if (config.face.emotion.enabled) {
let data;
if (!config.profile) {
const emotionT = await model.predict(normalize);
const emotionT = await model.predict(normalize); // result is already in range 0..1, no need for additional activation
data = emotionT.dataSync();
tf.dispose(emotionT);
} else {
@ -68,7 +67,7 @@ export async function predict(image, config) {
profile.run('emotion', profileData);
}
for (let i = 0; i < data.length; i++) {
if (scale * data[i] > config.face.emotion.minConfidence) obj.push({ score: Math.min(0.99, Math.trunc(100 * scale * data[i]) / 100), emotion: annotations[i] });
if (data[i] > config.face.emotion.minConfidence) obj.push({ score: Math.min(0.99, Math.trunc(100 * data[i]) / 100), emotion: annotations[i] });
}
obj.sort((a, b) => b.score - a.score);
}

View File

@ -37,10 +37,11 @@ export async function predict(image, config) {
const greenNorm = tf.mul(green, rgb[1]);
const blueNorm = tf.mul(blue, rgb[2]);
const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);
return grayscale.sub(0.5).mul(2);
const normalize = grayscale.sub(0.5).mul(2); // range grayscale:-1..1
return normalize;
});
} else {
enhance = tf.mul(resize, [255.0]);
enhance = tf.mul(resize, [255.0]); // range RGB:0..255
}
tf.dispose(resize);
@ -61,10 +62,9 @@ export async function predict(image, config) {
const data = genderT.dataSync();
if (alternative) {
// returns two values 0..1, bigger one is prediction
const confidence = Math.trunc(100 * Math.abs(data[0] - data[1])) / 100;
if (confidence > config.face.gender.minConfidence) {
if (data[0] > config.face.gender.minConfidence || data[1] > config.face.gender.minConfidence) {
obj.gender = data[0] > data[1] ? 'female' : 'male';
obj.confidence = confidence;
obj.confidence = data[0] > data[1] ? (Math.trunc(100 * data[0]) / 100) : (Math.trunc(100 * data[1]) / 100);
}
} else {
// returns one value 0..1, .5 is prediction threshold

View File

@ -40,45 +40,57 @@ function mergeDeep(...objects) {
}
class Human {
tf: any;
draw: any;
package: any;
version: string;
config: any;
fx: any;
config: typeof config.default;
state: string;
numTensors: number;
analyzeMemoryLeaks: boolean;
checkSanity: boolean;
firstRun: boolean;
perf: any;
image: any;
models: any;
image: { tensor, canvas };
// classes
tf: typeof tf;
draw: typeof draw;
// models
facemesh: any;
age: any;
gender: any;
emotion: any;
body: any;
hand: any;
sysinfo: any;
models: {
face,
posenet,
blazepose,
handpose,
iris,
age,
gender,
emotion,
embedding,
};
classes: {
facemesh: typeof facemesh;
age: typeof age;
gender: typeof gender;
emotion: typeof emotion;
body: typeof posenet | typeof blazepose;
hand: typeof handpose;
};
sysinfo: { platform, agent };
#package: any;
#perf: any;
#numTensors: number;
#analyzeMemoryLeaks: boolean;
#checkSanity: boolean;
#firstRun: boolean;
// definition end
constructor(userConfig = {}) {
this.tf = tf;
this.draw = draw;
this.package = app;
this.#package = app;
this.version = app.version;
this.config = mergeDeep(config.default, userConfig);
this.fx = null;
this.state = 'idle';
this.numTensors = 0;
this.analyzeMemoryLeaks = false;
this.checkSanity = false;
this.firstRun = true;
this.perf = {};
this.#numTensors = 0;
this.#analyzeMemoryLeaks = false;
this.#checkSanity = false;
this.#firstRun = true;
this.#perf = {};
// object that contains all initialized models
this.models = {
facemesh: null,
face: null,
posenet: null,
blazepose: null,
handpose: null,
@ -86,38 +98,42 @@ class Human {
age: null,
gender: null,
emotion: null,
embedding: null,
};
// export access to image processing
this.image = (input) => image.process(input, this.config);
// @ts-ignore
this.image = (input: any) => image.process(input, this.config);
// export raw access to underlying models
this.facemesh = facemesh;
this.age = age;
this.gender = gender;
this.emotion = emotion;
this.body = this.config.body.modelType.startsWith('posenet') ? posenet : blazepose;
this.hand = handpose;
this.classes = {
facemesh,
age,
gender,
emotion,
body: this.config.body.modelType.startsWith('posenet') ? posenet : blazepose,
hand: handpose,
};
// include platform info
this.sysinfo = sysinfo.info();
}
profile() {
profileData(): { newBytes, newTensors, peakBytes, numKernelOps, timeKernelOps, slowestKernelOps, largestKernelOps } | {} {
if (this.config.profile) return profile.data;
return {};
}
// helper function: measure tensor leak
analyze(...msg) {
if (!this.analyzeMemoryLeaks) return;
#analyze = (...msg) => {
if (!this.#analyzeMemoryLeaks) return;
const current = this.tf.engine().state.numTensors;
const previous = this.numTensors;
this.numTensors = current;
const previous = this.#numTensors;
this.#numTensors = current;
const leaked = current - previous;
if (leaked !== 0) log(...msg, leaked);
}
// quick sanity check on inputs
sanity(input) {
if (!this.checkSanity) return null;
#sanity = (input) => {
if (!this.#checkSanity) return null;
if (!input) return 'input is not defined';
if (this.tf.ENV.flags.IS_NODE && !(input instanceof this.tf.Tensor)) {
return 'input must be a tensor';
@ -130,7 +146,7 @@ class Human {
return null;
}
simmilarity(embedding1, embedding2) {
simmilarity(embedding1, embedding2): number {
if (this.config.face.embedding.enabled) return embedding.simmilarity(embedding1, embedding2);
return 0;
}
@ -141,13 +157,13 @@ class Human {
const timeStamp = now();
if (userConfig) this.config = mergeDeep(this.config, userConfig);
if (this.firstRun) {
if (this.#firstRun) {
if (this.config.debug) log(`version: ${this.version}`);
if (this.config.debug) log(`tfjs version: ${this.tf.version_core}`);
if (this.config.debug) log('platform:', this.sysinfo.platform);
if (this.config.debug) log('agent:', this.sysinfo.agent);
await this.checkBackend(true);
await this.#checkBackend(true);
if (this.tf.ENV.flags.IS_BROWSER) {
if (this.config.debug) log('configuration:', this.config);
if (this.config.debug) log('tf flags:', this.tf.ENV.flags);
@ -184,17 +200,17 @@ class Human {
if (this.config.body.enabled && !this.models.blazepose && this.config.body.modelType.startsWith('blazepose')) this.models.blazepose = await blazepose.load(this.config);
}
if (this.firstRun) {
if (this.#firstRun) {
if (this.config.debug) log('tf engine state:', this.tf.engine().state.numBytes, 'bytes', this.tf.engine().state.numTensors, 'tensors');
this.firstRun = false;
this.#firstRun = false;
}
const current = Math.trunc(now() - timeStamp);
if (current > (this.perf.load || 0)) this.perf.load = current;
if (current > (this.#perf.load || 0)) this.#perf.load = current;
}
// check if backend needs initialization if it changed
async checkBackend(force = false) {
#checkBackend = async (force = false) => {
if (this.config.backend && (this.config.backend !== '') && force || (this.tf.getBackend() !== this.config.backend)) {
const timeStamp = now();
this.state = 'backend';
@ -242,11 +258,11 @@ class Human {
if (this.config.debug) log(`gl version:${gl.getParameter(gl.VERSION)} renderer:${gl.getParameter(gl.RENDERER)}`);
}
await this.tf.ready();
this.perf.backend = Math.trunc(now() - timeStamp);
this.#perf.backend = Math.trunc(now() - timeStamp);
}
}
calculateFaceAngle = (mesh) => {
#calculateFaceAngle = (mesh) => {
if (!mesh || mesh.length < 300) return {};
const radians = (a1, a2, b1, b2) => Math.atan2(b2 - a2, b1 - a1);
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
@ -264,7 +280,7 @@ class Human {
return angle;
}
async detectFace(input) {
#detectFace = async (input) => {
// run facemesh, includes blazeface and iris
// eslint-disable-next-line no-async-promise-executor
let timeStamp;
@ -293,9 +309,9 @@ class Human {
this.state = 'run:face';
timeStamp = now();
const faces = await this.models.face?.estimateFaces(input, this.config);
this.perf.face = Math.trunc(now() - timeStamp);
this.#perf.face = Math.trunc(now() - timeStamp);
for (const face of faces) {
this.analyze('Get Face');
this.#analyze('Get Face');
// is something went wrong, skip the face
if (!face.image || face.image.isDisposedInternal) {
@ -303,60 +319,60 @@ class Human {
continue;
}
const angle = this.calculateFaceAngle(face.mesh);
const angle = this.#calculateFaceAngle(face.mesh);
// run age, inherits face from blazeface
this.analyze('Start Age:');
this.#analyze('Start Age:');
if (this.config.async) {
ageRes = this.config.face.age.enabled ? age.predict(face.image, this.config) : {};
} else {
this.state = 'run:age';
timeStamp = now();
ageRes = this.config.face.age.enabled ? await age.predict(face.image, this.config) : {};
this.perf.age = Math.trunc(now() - timeStamp);
this.#perf.age = Math.trunc(now() - timeStamp);
}
// run gender, inherits face from blazeface
this.analyze('Start Gender:');
this.#analyze('Start Gender:');
if (this.config.async) {
genderRes = this.config.face.gender.enabled ? gender.predict(face.image, this.config) : {};
} else {
this.state = 'run:gender';
timeStamp = now();
genderRes = this.config.face.gender.enabled ? await gender.predict(face.image, this.config) : {};
this.perf.gender = Math.trunc(now() - timeStamp);
this.#perf.gender = Math.trunc(now() - timeStamp);
}
// run emotion, inherits face from blazeface
this.analyze('Start Emotion:');
this.#analyze('Start Emotion:');
if (this.config.async) {
emotionRes = this.config.face.emotion.enabled ? emotion.predict(face.image, this.config) : {};
} else {
this.state = 'run:emotion';
timeStamp = now();
emotionRes = this.config.face.emotion.enabled ? await emotion.predict(face.image, this.config) : {};
this.perf.emotion = Math.trunc(now() - timeStamp);
this.#perf.emotion = Math.trunc(now() - timeStamp);
}
this.analyze('End Emotion:');
this.#analyze('End Emotion:');
// run emotion, inherits face from blazeface
this.analyze('Start Embedding:');
this.#analyze('Start Embedding:');
if (this.config.async) {
embeddingRes = this.config.face.embedding.enabled ? embedding.predict(face.image, this.config) : [];
} else {
this.state = 'run:embedding';
timeStamp = now();
embeddingRes = this.config.face.embedding.enabled ? await embedding.predict(face.image, this.config) : [];
this.perf.embedding = Math.trunc(now() - timeStamp);
this.#perf.embedding = Math.trunc(now() - timeStamp);
}
this.analyze('End Emotion:');
this.#analyze('End Emotion:');
// if async wait for results
if (this.config.async) {
[ageRes, genderRes, emotionRes, embeddingRes] = await Promise.all([ageRes, genderRes, emotionRes, embeddingRes]);
}
this.analyze('Finish Face:');
this.#analyze('Finish Face:');
// calculate iris distance
// iris: array[ center, left, top, right, bottom]
@ -391,20 +407,20 @@ class Human {
// dont need face anymore
face.image?.dispose();
this.analyze('End Face');
this.#analyze('End Face');
}
this.analyze('End FaceMesh:');
this.#analyze('End FaceMesh:');
if (this.config.async) {
if (this.perf.face) delete this.perf.face;
if (this.perf.age) delete this.perf.age;
if (this.perf.gender) delete this.perf.gender;
if (this.perf.emotion) delete this.perf.emotion;
if (this.#perf.face) delete this.#perf.face;
if (this.#perf.age) delete this.#perf.age;
if (this.#perf.gender) delete this.#perf.gender;
if (this.#perf.emotion) delete this.#perf.emotion;
}
return faceRes;
}
// main detect function
async detect(input, userConfig = {}) {
async detect(input, userConfig = {}): Promise<{ face, body, hand, gesture, performance, canvas } | { error }> {
// detection happens inside a promise
return new Promise(async (resolve) => {
this.state = 'config';
@ -415,7 +431,7 @@ class Human {
// sanity checks
this.state = 'check';
const error = this.sanity(input);
const error = this.#sanity(input);
if (error) {
log(error, input);
resolve({ error });
@ -424,13 +440,13 @@ class Human {
const timeStart = now();
// configure backend
await this.checkBackend();
await this.#checkBackend();
// load models if enabled
await this.load();
if (this.config.scoped) this.tf.engine().startScope();
this.analyze('Start Scope:');
this.#analyze('Start Scope:');
timeStamp = now();
const process = image.process(input, this.config);
@ -439,8 +455,8 @@ class Human {
resolve({ error: 'could not convert input to tensor' });
return;
}
this.perf.image = Math.trunc(now() - timeStamp);
this.analyze('Get Image:');
this.#perf.image = Math.trunc(now() - timeStamp);
this.#analyze('Get Image:');
// prepare where to store model results
let bodyRes;
@ -449,42 +465,42 @@ class Human {
// run face detection followed by all models that rely on face bounding box: face mesh, age, gender, emotion
if (this.config.async) {
faceRes = this.config.face.enabled ? this.detectFace(process.tensor) : [];
if (this.perf.face) delete this.perf.face;
faceRes = this.config.face.enabled ? this.#detectFace(process.tensor) : [];
if (this.#perf.face) delete this.#perf.face;
} else {
this.state = 'run:face';
timeStamp = now();
faceRes = this.config.face.enabled ? await this.detectFace(process.tensor) : [];
this.perf.face = Math.trunc(now() - timeStamp);
faceRes = this.config.face.enabled ? await this.#detectFace(process.tensor) : [];
this.#perf.face = Math.trunc(now() - timeStamp);
}
// run body: can be posenet or blazepose
this.analyze('Start Body:');
this.#analyze('Start Body:');
if (this.config.async) {
if (this.config.body.modelType.startsWith('posenet')) bodyRes = this.config.body.enabled ? this.models.posenet?.estimatePoses(process.tensor, this.config) : [];
else bodyRes = this.config.body.enabled ? blazepose.predict(process.tensor, this.config) : [];
if (this.perf.body) delete this.perf.body;
if (this.#perf.body) delete this.#perf.body;
} else {
this.state = 'run:body';
timeStamp = now();
if (this.config.body.modelType.startsWith('posenet')) bodyRes = this.config.body.enabled ? await this.models.posenet?.estimatePoses(process.tensor, this.config) : [];
else bodyRes = this.config.body.enabled ? await blazepose.predict(process.tensor, this.config) : [];
this.perf.body = Math.trunc(now() - timeStamp);
this.#perf.body = Math.trunc(now() - timeStamp);
}
this.analyze('End Body:');
this.#analyze('End Body:');
// run handpose
this.analyze('Start Hand:');
this.#analyze('Start Hand:');
if (this.config.async) {
handRes = this.config.hand.enabled ? this.models.handpose?.estimateHands(process.tensor, this.config) : [];
if (this.perf.hand) delete this.perf.hand;
if (this.#perf.hand) delete this.#perf.hand;
} else {
this.state = 'run:hand';
timeStamp = now();
handRes = this.config.hand.enabled ? await this.models.handpose?.estimateHands(process.tensor, this.config) : [];
this.perf.hand = Math.trunc(now() - timeStamp);
this.#perf.hand = Math.trunc(now() - timeStamp);
}
this.analyze('End Hand:');
this.#analyze('End Hand:');
// if async wait for results
if (this.config.async) {
@ -493,24 +509,24 @@ class Human {
process.tensor.dispose();
if (this.config.scoped) this.tf.engine().endScope();
this.analyze('End Scope:');
this.#analyze('End Scope:');
let gestureRes = [];
if (this.config.gesture.enabled) {
timeStamp = now();
// @ts-ignore
gestureRes = [...gesture.face(faceRes), ...gesture.body(bodyRes), ...gesture.hand(handRes), ...gesture.iris(faceRes)];
if (!this.config.async) this.perf.gesture = Math.trunc(now() - timeStamp);
else if (this.perf.gesture) delete this.perf.gesture;
if (!this.config.async) this.#perf.gesture = Math.trunc(now() - timeStamp);
else if (this.#perf.gesture) delete this.#perf.gesture;
}
this.perf.total = Math.trunc(now() - timeStart);
this.#perf.total = Math.trunc(now() - timeStart);
this.state = 'idle';
resolve({ face: faceRes, body: bodyRes, hand: handRes, gesture: gestureRes, performance: this.perf, canvas: process.canvas });
resolve({ face: faceRes, body: bodyRes, hand: handRes, gesture: gestureRes, performance: this.#perf, canvas: process.canvas });
});
}
async warmupBitmap() {
#warmupBitmap = async () => {
const b64toBlob = (base64, type = 'application/octet-stream') => fetch(`data:${type};base64,${base64}`).then((res) => res.blob());
let blob;
let res;
@ -527,41 +543,39 @@ class Human {
return res;
}
async warmupCanvas() {
return new Promise((resolve) => {
let src;
let size = 0;
switch (this.config.warmup) {
case 'face':
size = 256;
src = 'data:image/jpeg;base64,' + sample.face;
break;
case 'full':
case 'body':
size = 1200;
src = 'data:image/jpeg;base64,' + sample.body;
break;
default:
src = null;
}
// src = encodeURI('../assets/human-sample-upper.jpg');
const img = new Image();
img.onload = async () => {
const canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(size, size) : document.createElement('canvas');
canvas.width = img.naturalWidth;
canvas.height = img.naturalHeight;
const ctx = canvas.getContext('2d');
ctx?.drawImage(img, 0, 0);
// const data = ctx?.getImageData(0, 0, canvas.height, canvas.width);
const res = await this.detect(canvas, this.config);
resolve(res);
};
if (src) img.src = src;
else resolve(null);
});
}
#warmupCanvas = async () => new Promise((resolve) => {
let src;
let size = 0;
switch (this.config.warmup) {
case 'face':
size = 256;
src = 'data:image/jpeg;base64,' + sample.face;
break;
case 'full':
case 'body':
size = 1200;
src = 'data:image/jpeg;base64,' + sample.body;
break;
default:
src = null;
}
// src = encodeURI('../assets/human-sample-upper.jpg');
const img = new Image();
img.onload = async () => {
const canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(size, size) : document.createElement('canvas');
canvas.width = img.naturalWidth;
canvas.height = img.naturalHeight;
const ctx = canvas.getContext('2d');
ctx?.drawImage(img, 0, 0);
// const data = ctx?.getImageData(0, 0, canvas.height, canvas.width);
const res = await this.detect(canvas, this.config);
resolve(res);
};
if (src) img.src = src;
else resolve(null);
});
async warmupNode() {
#warmupNode = async () => {
const atob = (str) => Buffer.from(str, 'base64');
const img = this.config.warmup === 'face' ? atob(sample.face) : atob(sample.body);
// @ts-ignore
@ -574,15 +588,15 @@ class Human {
return res;
}
async warmup(userConfig) {
async warmup(userConfig): Promise<{ face, body, hand, gesture, performance, canvas } | { error }> {
const t0 = now();
if (userConfig) this.config = mergeDeep(this.config, userConfig);
const video = this.config.videoOptimized;
this.config.videoOptimized = false;
let res;
if (typeof createImageBitmap === 'function') res = await this.warmupBitmap();
else if (typeof Image !== 'undefined') res = await this.warmupCanvas();
else res = await this.warmupNode();
if (typeof createImageBitmap === 'function') res = await this.#warmupBitmap();
else if (typeof Image !== 'undefined') res = await this.#warmupCanvas();
else res = await this.#warmupNode();
this.config.videoOptimized = video;
const t1 = now();
if (this.config.debug) log('Warmup', this.config.warmup, Math.round(t1 - t0), 'ms', res);

View File

@ -13,7 +13,7 @@ let fx = null;
// process input image and return tensor
// input can be tensor, imagedata, htmlimageelement, htmlvideoelement
// input is resized and run through imagefx filter
export function process(input, config) {
export function process(input, config): { tensor, canvas } {
let tensor;
if (input instanceof tf.Tensor) {
tensor = tf.clone(input);
@ -28,7 +28,7 @@ export function process(input, config) {
else if (config.filter.width > 0) targetHeight = originalHeight * (config.filter.width / originalWidth);
if (!targetWidth || !targetHeight) {
log('Human: invalid input', input);
return null;
return { tensor: null, canvas: null };
}
if (!inCanvas || (inCanvas.width !== targetWidth) || (inCanvas.height !== targetHeight)) {
inCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');
@ -46,7 +46,7 @@ export function process(input, config) {
// log('created FX filter');
fx = tf.ENV.flags.IS_BROWSER ? new fxImage.GLImageFilter({ canvas: outCanvas }) : null; // && (typeof document !== 'undefined')
}
if (!fx) return inCanvas;
if (!fx) return { tensor: null, canvas: inCanvas };
fx.reset();
fx.addFilter('brightness', config.filter.brightness); // must have at least one filter enabled
if (config.filter.contrast !== 0) fx.addFilter('contrast', config.filter.contrast);
@ -110,5 +110,6 @@ export function process(input, config) {
pixels.dispose();
casted.dispose();
}
return { tensor, canvas: config.filter.return ? outCanvas : null };
const canvas = config.filter.return ? outCanvas : null;
return { tensor, canvas };
}